WO2020034358A1 - Compartiment de conservation de carotte ayant une fonction de pression constante - Google Patents

Compartiment de conservation de carotte ayant une fonction de pression constante Download PDF

Info

Publication number
WO2020034358A1
WO2020034358A1 PCT/CN2018/108979 CN2018108979W WO2020034358A1 WO 2020034358 A1 WO2020034358 A1 WO 2020034358A1 CN 2018108979 W CN2018108979 W CN 2018108979W WO 2020034358 A1 WO2020034358 A1 WO 2020034358A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
core
fidelity
capsule
flap
Prior art date
Application number
PCT/CN2018/108979
Other languages
English (en)
Chinese (zh)
Inventor
高明忠
谢和平
张茹
陈领
张泽天
张志龙
鲁义强
李聪
何志强
华夏
明传剑
彭高友
陆彤
Original Assignee
四川大学
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川大学, 深圳大学 filed Critical 四川大学
Publication of WO2020034358A1 publication Critical patent/WO2020034358A1/fr

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B25/00Apparatus for obtaining or removing undisturbed cores, e.g. core barrels or core extractors
    • E21B25/10Formed core retaining or severing means

Definitions

  • the invention relates to the field of oil and gas field exploration, in particular to a rock core fidelity cabin with a constant pressure function.
  • cores are important data for discovering oil and gas layers and studying formations, oil layers, reservoirs, caps, structures, etc. Through the observation and study of cores, you can directly understand the lithology and physical properties of underground rocks. And oily, gas, aquatic characteristics.
  • Coring is the use of special coring tools to pull underground rocks into the ground during drilling.
  • This type of rock is called a core, which can be used to determine various properties of the rock and intuitively study the underground structure. And rock sedimentary environment, and understand the fluid properties.
  • the core tools are drilled into the well, and the core samples are drilled and stored in the core storage compartment. During the ascent, environmental parameters such as the pressure of the core storage compartment will decrease, making the core unable to maintain its state in the in-situ environment.
  • the invention aims to provide a core fidelity capsule with a constant pressure function, which can automatically control the pressure in the fidelity capsule, which is beneficial for the core to maintain its state in the in-situ environment.
  • the rock core fidelity capsule with constant pressure function disclosed in the present invention includes a mechanical part and a control part.
  • the mechanical part includes an inner core barrel, an outer core barrel, and an accumulator.
  • the accumulator communicates with the outside through a pipe.
  • a coring cylinder, the outer coring cylinder is sleeved on the inner coring cylinder, and the outer coring cylinder is provided with a flap valve;
  • the control part includes a pressure sensor, a three-way shut-off valve A provided on the pipeline, two ports of the three-way shut-off valve A are respectively connected to an accumulator and an external core, and a third port of the three-way shut-off valve A A pressure relief valve is connected, and the three-way stop valve A is an electric control valve.
  • the pressure sensor and the three-way stop valve A are both connected to a processing unit. The pressure sensor is used to detect the pressure in the fidelity cabin.
  • the present invention also includes a pressure gauge, which is connected to the outer core barrel through a three-way stop valve B.
  • a graphene layer is attached to an inner wall of the inner core cylinder.
  • the upper part of the inner core tube is filled with a dripping film-forming agent.
  • the flap valve includes a valve seat and a valve disc
  • the valve disc includes an elastic sealing ring, an elastic connecting bar, a sealing member, and a plurality of locking bars arranged in parallel in sequence.
  • the elastic connecting bar connects all the locking bars in series and All the lock bars are hooped together by the elastic sealing ring to form an integrated structure.
  • the lock bar has a card slot adapted to the elastic seal ring.
  • the elastic seal ring is installed in the card slot, and a seal is provided between two adjacent lock bars.
  • valve flap One end of the valve flap is movably connected to the upper end of the valve seat through a limit hinge; the valve flap is curved when it is not turned down, and the valve flap is in conformity with the outer wall of the inner core barrel; the valve flap is flat and covered when it is turned down. Upper end of valve seat.
  • a sealing cavity is provided on an inner wall of the outer coring cylinder, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
  • a sealing ring is provided on the inner wall of the outer core barrel, and the sealing ring is located below the flap valve.
  • the inner core barrel is made of PVC.
  • the power source of the control part is located on the outer core barrel.
  • the principle of the present invention is as follows: the pressure in the fidelity cabin is detected in real time by a pressure sensor, and compared with the in-situ pressure of the core tested in advance, according to the difference between the two pressures, the on-off of the three-way shut-off valve A is controlled, so that the The pressure in the true cabin is increased to maintain the same as the core in-situ pressure. Because the environmental pressure of the fidelity cabin during the lifting process is gradually reduced, the core in-situ pressure is greater than the environmental pressure of the fidelity cabin during the lift process. Therefore, pressurization measures can be used.
  • the invention can automatically pressurize the fidelity cabin, which is beneficial to the core to maintain its state in the in-situ environment.
  • the flap mechanism of the present invention can automatically close the fidelity compartment when the coring is completed, and has a simple structure, safety and reliability.
  • the graphene layer of the present invention can reduce the sliding resistance of the rock core on the inside of the PVC pipe, at the same time improve the strength and surface accuracy of the inside, and enhance the thermal conductivity.
  • the sealed cavity of the present invention can isolate the drilling fluid passing through the fidelity cavity.
  • FIG. 1 is a schematic structural diagram of the present invention
  • FIG. 2 is a schematic structural diagram of a flap valve when it is not turned down
  • FIG. 3 is a schematic structural diagram of a flap valve when it has been turned down
  • valve disc 4 is a schematic structural diagram of a valve disc
  • FIG. 5 is a schematic structural diagram of a sealed cavity
  • Figure 6 is a partial cross-sectional view of an inner core barrel
  • FIG. 7 is an electrical schematic diagram of the present invention.
  • the rock core fidelity capsule with constant pressure function disclosed in the present invention includes a mechanical part and a control part.
  • the mechanical part includes an inner core barrel 8, an outer core barrel 6 and an energy accumulator 29.
  • the device 29 communicates with the outer core barrel through a pipe.
  • the inner core barrel 8 is used to place the core 1.
  • the outer core barrel 6 is set on the inner core barrel 6.
  • the upper end of the inner core barrel 8 is connected to one end of the pipeline.
  • One end is connected to a liquid nitrogen storage tank 25, and an electric control valve 26 is provided on the pipeline.
  • the liquid nitrogen storage tank 25 is located inside the outer core cylinder 6, and the outer core cylinder 6 is provided with a flap valve 3.
  • the flap valve 3 includes a valve seat 36 and a valve disc 37
  • the valve disc 37 includes an elastic sealing ring 34, an elastic connecting bar 32, a seal, and a plurality of parallel arrays in order.
  • the lock strip 35 and the elastic connecting strip 32 connect all the lock strips 35 in series and hoop all the lock strips 35 together by the elastic seal ring 34 to form an integrated structure.
  • the lock strip 35 has a slot 31 adapted to the elastic seal ring.
  • An elastic seal ring 34 is installed in the slot 31, and a seal is provided between two adjacent lock bars 35.
  • One end of the valve flap 3 is movably connected to the upper end of the valve seat 36 through a limit hinge 33.
  • the valve flap 37 is In an arc shape, the valve flap 37 fits on the outer wall of the inner core barrel 8; the valve flap 37 is flat and covers the upper end of the valve seat 36 when it is turned down.
  • the control part includes a pressure sensor 5, a three-way stop valve A210 provided on the pipeline, and two ports of the three-way stop valve A210 are connected to the accumulator 29 and the outer core 6, respectively.
  • the three-way stop valve The third port of A210 is connected to a pressure relief valve 211.
  • the three-way stop valve A210 is an electronically controlled valve.
  • the pressure sensor 5 and the three-way stop valve A210 are connected to a processing unit.
  • the pressure sensor 5 is used to detect the pressure in the fidelity cabin.
  • the invention also includes a pressure gauge 212, which communicates with the outer core through a three-way stop valve B213.
  • the inner wall of the outer coring cylinder 6 is provided with a sealing cavity 39, the flap is located in the sealing cavity, and the sealing cavity is in communication with the inner coring cylinder.
  • the inner core cylinder 8 is made of PVC.
  • the inner wall of the inner core cylinder 8 is attached with a graphene layer 81.
  • the upper part of the inner core cylinder 8 is filled with a drip film-forming agent 82, which is located below the piston 7. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Pressure Vessels And Lids Thereof (AREA)
  • Safety Valves (AREA)

Abstract

L'invention concerne un compartiment de conservation de carotte ayant une fonction de pression constante, comprenant une portion mécanique et une portion de commande. La portion mécanique comprend un cylindre de carottage intérieur (8), un cylindre de carottage extérieur (6) et un accumulateur (29). L'accumulateur (29) communique avec le cylindre de carottage extérieur (6) par le biais d'un tuyau. Le cylindre de carottage extérieur (6) est emmanché sur le cylindre de carottage intérieur (8) et il est pourvu d'une soupape à clapet (3). La portion de commande comprend un capteur de pression (5) et une vanne d'arrêt à trois voies A (210) disposée sur le tuyau. Deux ouvertures d'extrémité de la vanne d'arrêt à trois voies A (210) sont respectivement reliées à l'accumulateur (29) et au cylindre de carottage extérieur (6). Une troisième ouverture d'extrémité de la vanne d'arrêt à trois voies A (210) est reliée à une soupape de surpression (211). La vanne d'arrêt à trois voies A (210) est une vanne à commande électrique. Le capteur de pression (5) et la soupape d'arrêt à trois voies A (210) sont reliés à une unité de traitement. Le capteur de pression (5) est utilisé pour mesurer la pression dans le récipient de conservation. L'invention commande automatiquement la pression d'un récipient de conservation, facilitant ainsi la maintenance d'une carotte dans un environnement in situ.
PCT/CN2018/108979 2018-08-13 2018-09-30 Compartiment de conservation de carotte ayant une fonction de pression constante WO2020034358A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810917867.1A CN109113615B (zh) 2018-08-13 2018-08-13 具有恒压功能的岩芯保真舱
CN201810917867.1 2018-08-13

Publications (1)

Publication Number Publication Date
WO2020034358A1 true WO2020034358A1 (fr) 2020-02-20

Family

ID=64853243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108979 WO2020034358A1 (fr) 2018-08-13 2018-09-30 Compartiment de conservation de carotte ayant une fonction de pression constante

Country Status (2)

Country Link
CN (1) CN109113615B (fr)
WO (1) WO2020034358A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109113610A (zh) * 2018-08-13 2019-01-01 四川大学 岩芯保真舱
CN110761785B (zh) * 2019-11-26 2024-01-23 四川大学 一种带有玻璃视窗的保压舱结构
CN110749470A (zh) * 2019-11-26 2020-02-04 四川大学 一种保压舱压力补偿方法及结构
CN111458183B (zh) * 2020-06-05 2022-08-30 深圳大学 一种分体式保真取芯器压力加载实验方法
CN113236164B (zh) * 2021-03-31 2023-07-25 深圳大学 一种磁力触发装置的夹紧机构及翻板阀磁力闭合模拟装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155268A2 (fr) * 2008-06-19 2009-12-23 Schlumberger Canada Limited Système d'identification positive de carotte de paroi latérale de trou de forage
CN101672170A (zh) * 2009-09-01 2010-03-17 中国地质大学(北京) 一种新型电动定向取芯器
CN102561970A (zh) * 2011-12-20 2012-07-11 大连理工大学 一种天然气水合物天然岩芯的保真转移装置及方法
US20140305712A1 (en) * 2013-04-15 2014-10-16 National Oilwell Varco, L.P. Pressure core barrel for retention of core fluids and related method
CN206772624U (zh) * 2017-05-11 2017-12-19 四川大学 保压筒下部密封装置及保压取芯密封设备
CN207007658U (zh) * 2017-05-09 2018-02-13 中国石油化工股份有限公司 一种带电极的岩心夹持器
CN207715110U (zh) * 2018-01-16 2018-08-10 四川大学 保压岩芯转移装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009155268A2 (fr) * 2008-06-19 2009-12-23 Schlumberger Canada Limited Système d'identification positive de carotte de paroi latérale de trou de forage
CN101672170A (zh) * 2009-09-01 2010-03-17 中国地质大学(北京) 一种新型电动定向取芯器
CN102561970A (zh) * 2011-12-20 2012-07-11 大连理工大学 一种天然气水合物天然岩芯的保真转移装置及方法
US20140305712A1 (en) * 2013-04-15 2014-10-16 National Oilwell Varco, L.P. Pressure core barrel for retention of core fluids and related method
CN207007658U (zh) * 2017-05-09 2018-02-13 中国石油化工股份有限公司 一种带电极的岩心夹持器
CN206772624U (zh) * 2017-05-11 2017-12-19 四川大学 保压筒下部密封装置及保压取芯密封设备
CN207715110U (zh) * 2018-01-16 2018-08-10 四川大学 保压岩芯转移装置

Also Published As

Publication number Publication date
CN109113615B (zh) 2020-04-07
CN109113615A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2020034358A1 (fr) Compartiment de conservation de carotte ayant une fonction de pression constante
WO2020034357A1 (fr) Cabine de fidélité de carotte de roche
WO2020034360A1 (fr) Chambre de conservation de carotte à température constante et à pression constante
WO2020133724A1 (fr) Dispositif de carottage de type à maintien de fidélité pour échantillon de roche
EP2525216B1 (fr) Appareil pour mesurer la permittivité de roches et argiles de faille au moyen d'un capteur de permittivité
US7083009B2 (en) Pressure controlled fluid sampling apparatus and method
WO2020133726A1 (fr) Système de carottage retenu in situ d'échantillon de roche
CA2747806C (fr) Dispositif et procede de carottage a retention de volume de gaz
US11603757B2 (en) Drill stem testing
CN108049847A (zh) 一种双封隔器分层抽水装置及方法
NO339795B1 (no) Fremgangsmåte for anvendelse av formasjonsegenskapsdata
NO317492B1 (no) Formasjonsisolerings- og testeanordning og -fremgangsmate
NO341295B1 (no) Fremgangsmåte for måling av formasjonsegenskaper
CN105464649B (zh) 地层压力测量短节和地层压力模拟测量装置
CN209339889U (zh) 一种恒温、恒压的岩芯保真舱
CN211206162U (zh) 一种研究钻完井液沿井周地层渗透规律的装置
WO2020034359A1 (fr) Cabine de fidélité de carotte de roche ayant une fonction thermostatique
CN107631974B (zh) 一种致密砂岩蜡封岩心含水饱和度的获取方法
CN207636225U (zh) 一种隧道内地应力测试装置
KR101540669B1 (ko) 더블패커를 이용한 수리시험 장치
CN209339884U (zh) 一种岩芯保真舱
CN209129564U (zh) 一种具有恒压功能的岩芯保真舱
CN212180570U (zh) 一种高压天然气-水系统岩心自发渗吸测量装置
CN216894376U (zh) 一种随钻地层流体取样单相保温储罐机构
CN108825211B (zh) 地层压力测量平衡装置及其测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929972

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18929972

Country of ref document: EP

Kind code of ref document: A1