WO2020034285A1 - 电机转动圈数检测装置、方法和钢筋捆扎机 - Google Patents

电机转动圈数检测装置、方法和钢筋捆扎机 Download PDF

Info

Publication number
WO2020034285A1
WO2020034285A1 PCT/CN2018/104752 CN2018104752W WO2020034285A1 WO 2020034285 A1 WO2020034285 A1 WO 2020034285A1 CN 2018104752 W CN2018104752 W CN 2018104752W WO 2020034285 A1 WO2020034285 A1 WO 2020034285A1
Authority
WO
WIPO (PCT)
Prior art keywords
level signal
motor
fan
main control
control unit
Prior art date
Application number
PCT/CN2018/104752
Other languages
English (en)
French (fr)
Inventor
许长咏
黄海宝
罗泳杨
吴加元
李超
李移清
Original Assignee
广东顺德华焱电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东顺德华焱电子科技有限公司 filed Critical 广东顺德华焱电子科技有限公司
Publication of WO2020034285A1 publication Critical patent/WO2020034285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06MCOUNTING MECHANISMS; COUNTING OF OBJECTS NOT OTHERWISE PROVIDED FOR
    • G06M1/00Design features of general application
    • G06M1/27Design features of general application for representing the result of count in the form of electric signals, e.g. by sensing markings on the counter drum
    • G06M1/272Design features of general application for representing the result of count in the form of electric signals, e.g. by sensing markings on the counter drum using photoelectric means

Definitions

  • the invention relates to the technical field of motor rotation, in particular to a device and method for detecting the number of rotations of a motor, and a steel bar bundling machine.
  • the motor In these high-efficiency and low-strength production tools, the motor is usually used to work. Therefore, the corresponding work needs to be controlled by controlling the number of rotations of the motor. For example, on the steel bar bundling machine, the number of rotations of the motor needs to be controlled to achieve Silk and twisted wire work.
  • a signal feedback device In order to detect the number of rotations of the motor, a signal feedback device needs to be provided on the motor.
  • the signal feedback device for detecting the number of rotations of the motor is usually installed on the output shaft 1 of the reduction box of the motor 11, as shown in FIG. 1, It is necessary to pass the motor intermediate box to detect the number of rotations of the motor. Therefore, the detection accuracy is limited.
  • the space limitations of transmission parts, the influence of oil and other impurities on the transmission parts, and the signal feedback device needs to be small and resistant to the outside. Factor ability is strong. Use in this harsh environment location limits the use of higher precision signal feedback devices.
  • the commonly used signal feedback device is a signal feedback device with a magnet through a signal acquisition board, and the feedback mechanism transmits the situation through the change of the magnetic field. Due to the influence of the magnetic field between the magnets, the number and spacing of the magnets on the circumference are limited, which limits the accuracy improvement. Take the reinforcing bar bundling machine as an example. Due to the large error in the precision of the output wire length of the existing machine transmission, the excessive or short wire output causes the machine knuckle to become too loose or broken, and the role of tying the reinforcing bar cannot be achieved, resulting in waste of wire.
  • a first object of the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a device for detecting the number of rotations of a motor, by which the number of rotations of the motor can be accurately detected, and the motor can be radiated during the detection process. To increase the service life of the motor.
  • a second object of the present invention is to provide a method for detecting the number of rotations of a motor implemented by the device for detecting the number of rotations of a motor in the first object.
  • a third object of the present invention is to provide a device for detecting the number of rotations of a motor, by which the number of rotations of the motor can be more accurately detected, and the motor can be radiated at the same time during the detection process, thereby improving the service life of the motor.
  • a fourth object of the present invention is to provide a method for detecting the number of rotations of a motor implemented by the device for detecting the number of rotations of a motor in the third object.
  • a fifth object of the present invention is to provide a reinforcing bar bundling machine including the above-mentioned motor rotation number detection device.
  • the reinforcing bar bundling machine improves the accuracy of wire feeding and effectively saves material consumption.
  • the first object of the present invention is achieved by the following technical solution: a device for detecting the number of rotations of a motor, comprising a fan, a counting circle, a signal feedback unit, and a main control unit;
  • the fan is installed on a rotating shaft at the tail end of the motor;
  • the counting circle can be installed with one or more magnets, and each magnet is correspondingly arranged on each fan blade of the fan and rotates with the fan blade;
  • the signal feedback unit is a Hall sensor provided around the fan, and is configured to convert the induced magnetic field strength signal into a level signal;
  • the signal feedback unit is connected to the main control unit, and the main control unit calculates the number of motor rotations according to the level signal sent by the Hall sensor.
  • the number of magnets in the counting circle is 1 to 8, and the fan blades of the fan are 2 to 12, wherein each magnet is respectively disposed on a different fan blade;
  • the main control unit is a single-chip computer, and the main control unit is connected to the motor through a motor driver and is used to control the working state of the motor.
  • the second object of the present invention is achieved by the following technical solution: a method for detecting the number of rotations of a motor implemented by the device for detecting the number of rotations of a motor according to the first object, the steps are as follows:
  • the Hall sensor disposed around the fan converts the signal detected by the magnetic field strength into a level signal and transmits it to the main control unit in real time; wherein, when the Hall sensor detects that the magnetic field strength signal is greater than a certain value, it sends a first electrical signal. Level signal to the main control unit, otherwise send a second level signal to the main control unit;
  • the main control unit counts according to the change of the received level signal, and determines the current number of rotations of the motor according to the count value.
  • the main control unit performs counting in the following manner: when the received first level signal is converted into a second level signal and / or when the second level signal is converted into a first level signal, the count value is increased by one ;
  • the first level signal and the second level signal refer to a high level signal and a low level signal, wherein when the first level signal is a high level signal, the second level signal is a low level signal; when When the first level signal is a low level signal, the second level signal is a high level signal.
  • the third object of the present invention is achieved by the following technical solution: a device for detecting the number of rotations of a motor, including a fan, a signal feedback unit, and a main control unit;
  • the fan is installed on a rotating shaft at the tail end of the motor;
  • the signal feedback unit is a photocoupler, and the photocoupler is arranged around the fan.
  • the fan serves as a counting circle. When the fan rotates, each blade passes through the photocoupler in sequence.
  • the signal feedback unit is connected to the main control unit, and the main control unit calculates the number of rotations of the motor according to the signal sent by the photocoupler.
  • the main control unit is a single-chip computer, and the main control unit is connected to the motor through a motor driver.
  • the photocoupler is a U-shaped opening
  • the photocoupler includes a light source and a light receiver, wherein the light source is disposed on one side of the U-shaped opening and the light receiver is disposed on the other side of the U-shaped opening; when the fan rotates, each fan blade Pass through the U-shaped openings of the photocoupler in sequence;
  • the photocoupler includes a photo sensor ST188, where the photo sensor ST188 includes an infrared transmitting tube and an infrared receiver; the infrared transmitting tube and the infrared receiver are located on the same side of the fan.
  • the fourth object of the present invention is achieved by the following technical solution: a motor rotation number detection method implemented by the motor rotation number detection device according to the third object, the steps are as follows:
  • the rotating shaft of the motor drives the fan on the rotating shaft at the rear of the motor, and the blades of the fan pass through the photocoupler in order;
  • the photocoupler When the blades of the fan, namely the light-shielding part, pass the photocoupler, the photocoupler outputs the first level signal to the main control unit; when the gap between the two blades of the fan passes the photocoupler, it is transparent. When the optical part passes the photocoupler, the photocoupler outputs a second level signal to the main control unit;
  • the main control unit counts according to the change of the received level signal, and determines the current number of rotations of the motor according to the count value.
  • the main control unit performs counting in the following manner: when the received first level signal is converted into a second level signal and / or when the second level signal is converted into a first level signal, the count value is increased by one ;
  • the first level signal and the second level signal refer to a high level signal and a low level signal, wherein when the first level signal is a high level signal, the second level signal is a low level signal; when When the first level signal is a low level signal, the second level signal is a high level signal.
  • the fifth object of the present invention is achieved by the following technical solution: a reinforcing bar bundling machine comprising a motor rotation number detection device provided by the above first and third purposes, the motor comprising a wire feeding motor of the reinforcing bar bundling machine.
  • the present invention has the following advantages and effects:
  • the device for detecting the number of rotations of a motor of the present invention includes a fan, a counting circle, a signal feedback unit, and a main control unit; the fan is installed on a rotating shaft at the tail end of the motor; the counting circle includes a plurality of magnets, and each magnet is respectively Correspondingly arranged on each fan blade, it follows the fan blades to rotate; the signal feedback unit is a Hall sensor provided around the fan; among them, the rotation of the fan provided on the rotating shaft at the rear of the motor will drive the magnets on the fan blades to rotate, The Hall sensor outputs a corresponding level to the main control unit by sensing the change in the strength of the magnetic field, and the main control unit calculates the number of rotations of the motor according to the change of the received level signal.
  • the fan, the magnet, and the signal feedback unit are all located at the rear of the motor. Since the magnet is disposed on the fan at the rear of the motor, the device of the present invention directly detects the number of rotations of the motor.
  • the signal feedback device is arranged on the output shaft of the motor reduction box. The present invention no longer needs to calculate the number of rotations of the motor through an intermediate link.
  • the present invention The accuracy of detecting the number of revolutions of the motor of the invention is based on the original accuracy, which increases the gear ratio of the reduction gear by a corresponding multiple.
  • the fan, the magnet and the signal feedback unit are arranged at the rear of the motor, the environment is relatively spacious. Compared with the position of the prior art signal feedback device, the device of the present invention is greatly restricted by the environment. The magnets are affected by the magnetic field between them. As a result, the restrictions on the number of arrangements and spacing on the circumference will also be greatly reduced.
  • the fan drives the magnet to rotate the motor to detect the number of rotations of the motor in the present invention, it can also strengthen the air flow inside the machine, so that the heat generated by the motor under high load and frequent work is quickly dissipated, which greatly improves the motor life.
  • the device for detecting the number of rotations of a motor of the present invention includes a fan, a signal feedback unit, and a main control unit; the fan is installed on a rotating shaft at the rear end of the motor, the signal feedback unit is a photocoupler, and the photocoupler is arranged around the fan The fan is used as a counting circle.
  • the photocoupler unit is connected to the main control unit. When the fan rotates, each blade passes through the photocoupler in sequence. When the gap between the fan blade and the fan blade passes through the photocoupler, it outputs high and low level signals to The main control unit judges the number of rotations of the motor by reading the level signal output of the photocoupler.
  • the fan and the signal feedback unit are both located at the rear of the motor.
  • the device of the present invention directly detects the number of rotations of the motor, compared with the prior art.
  • the signal feedback device is arranged on the output shaft of the motor speed reducer. The invention no longer needs to calculate the number of rotations of the motor through an intermediate link, and the accuracy of the detection of the number of rotations is greatly improved. Because the fan and the signal feedback unit are arranged at the rear of the motor, the environment is relatively spacious. Compared with the position of the prior art signal feedback device, the device of the present invention is greatly reduced by environmental constraints.
  • the rotation of the motor is detected by rotating the fan through the photocoupler, and at the same time, the air flow inside the machine can be strengthened, so that the heat generated by the motor under high load and frequent work is quickly dissipated, which greatly improves Motor life.
  • the steel bar bundling machine of the present invention includes one of the above-mentioned motor rotation number detection devices.
  • the motor is a wire feeding motor, and the number of rotations of the wire feeding motor determines the wire output length of each time the steel bar bundling machine is bound. Since the motor rotation number detection device of the present invention detects the motor rotation number more accurately, the steel bar bundling machine of the present invention can greatly improve the accuracy of wire feeding, thereby effectively saving material consumption.
  • FIG. 1 is a schematic diagram of a mounting position of a motor signal feedback device in the prior art.
  • FIG. 2 is a schematic diagram of the installation position of the motor rotation detection device in Embodiment 1 of the present invention.
  • FIG. 3 is a schematic diagram of a counting circle in Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the installation position of the motor rotation detection device in Embodiment 2 of the present invention.
  • 5a and 5b are schematic diagrams of a photocoupler circuit in Embodiment 2 of the present invention.
  • 6a and 6b are partial structural diagrams of a reinforcing bar binding machine according to the present invention.
  • This embodiment discloses a device for detecting the number of rotations of a motor, which includes a fan, a counting circle, a signal feedback unit, and a main control unit.
  • the fan 3 is mounted on a rotating shaft at the rear end of the motor.
  • the counting circle includes a plurality of magnets 21, and each of the magnets 21 is respectively disposed on each of the blades of the fan 3 and rotates following the blades of the fan.
  • the number of magnets in the counting circle is 1 to 8, and the fan blades of the fan are 2 to 12, and each magnet is respectively disposed on a different fan blade.
  • the signal feedback unit is a Hall sensor 2 provided around the fan, and is configured to convert a signal of a magnetic field intensity induced into a level signal.
  • the signal feedback unit is connected to the main control unit, and the main control unit calculates the number of motor rotations according to the level signal sent by the Hall sensor.
  • the main control unit may be a single-chip microcomputer.
  • the main control unit is connected to the motor through a motor driver.
  • the main control unit can control the working state of the motor.
  • This embodiment also discloses a method for detecting the number of rotations of a motor implemented by the above device for detecting the number of rotations of a motor. The steps are as follows:
  • the Hall sensor disposed around the fan converts the signal detected by the magnetic field strength into a level signal and transmits it to the main control unit in real time; wherein, when the Hall sensor detects that the magnetic field strength signal is greater than a certain value, it sends a first electrical signal.
  • Level signal to the main control unit otherwise send a second level signal to the main control unit; in this embodiment, the first level signal and the second level signal refer to a high level signal and a low level signal, where When the first level signal is a high level signal, the second level signal is a low level signal; when the first level signal is a low level signal, the second level signal is a high level signal.
  • the main control unit counts according to the received level signal change, and determines the current number of rotations of the motor according to the count value.
  • the main control unit performs counting in the following manner: when the received first level signal is converted into a second level signal and / or when the second level signal is converted into a first level signal, the count is performed The value is increased by one.
  • the main control unit receives 1 when the first level signal is converted to the second level signal or the second level signal is converted to the first level signal, the count value is incremented by 1. Increase by 4; the main control unit obtains the number of motor rotations according to the value obtained by dividing the count value by 4, where the count value is divided by 4 as When a is an integer, it means that the number of motor rotations is a, a and a quarter, a and a second, and a and a third.
  • the main control unit increases the count value by 1 when the first level signal is converted into the second level signal and the second level signal is converted into the first level signal, then the motor Each revolution will increase the count value by 8; the main control unit obtains the number of revolutions of the motor according to the count value divided by 8, and if the count value is divided by 8 respectively,
  • a is an integer, it means that the number of motor rotations is a, a and one-eighth, a and two-eight, and a and seven-eight.
  • the main control unit compares the current count value with a preset value in real time. If the current count value is equal to the preset value, the motor driver controls the motor to stop rotating.
  • the fan, the magnet, and the signal feedback unit are located at the rear of the motor. Since the magnet is disposed on the fan at the rear of the motor, the device of this embodiment directly detects the number of rotations of the motor, compared with the prior art.
  • the signal feedback device is arranged on the output shaft of the motor speed reducer. In this embodiment, the number of rotations of the motor can be calculated without using an intermediate link.
  • the accuracy of detecting the number of rotations of the motor in this embodiment is a value that increases the gear ratio of the reduction gear by a corresponding multiple based on the original accuracy.
  • the fan, the magnet and the signal feedback unit are arranged at the rear of the motor, the environment is relatively spacious. Compared with the position of the prior art signal feedback device, the device in this embodiment is greatly restricted by the environment. The magnets are affected by the magnetic field between them. And the restriction on the number and spacing of the arrangement on the circumference will be greatly reduced.
  • the fan drives the magnet to rotate the motor to detect the number of rotations of the motor, it can also strengthen the air flow inside the machine, so that the heat generated by the motor during high-load and frequent work is quickly dissipated, which greatly improves the life of the motor.
  • This embodiment discloses a device for detecting the number of rotations of a motor, including a fan, a signal feedback unit, and a main control unit;
  • the fan is mounted on a rotating shaft at the rear end of the motor;
  • the signal feedback unit is a photocoupler 4.
  • the photocoupler is arranged around the fan, and the fan serves as a counting circle. When the fan rotates, each fan blade passes through the photocoupler in sequence. In this embodiment, the fan blades are 2 to 12 pieces. .
  • the signal feedback unit is connected to the main control unit, and the main control unit calculates the number of motor rotations according to the signal sent by the photocoupler.
  • the main control unit is a microcontroller.
  • the main control unit is connected to the motor through a motor driver.
  • the photocoupler may have a U-shaped opening, in which the light source is disposed on one side of the U-shaped opening and the light receiver is disposed on the other side of the U-shaped opening; when the fan rotates, each blade is in turn U-shaped opening through the photocoupler.
  • the light source and receiver are located on both sides of the fan in the photocoupler.
  • the photocoupler outputs a corresponding level signal (high level or low level) to the main control unit.
  • the photocoupler When the gap between the fan blades passes between the light source and the photoreceptor of the photocoupler, the light emitted by the light source will be received by the photoreceptor, and the photocoupler outputs another level signal (low level or high level) To the master control unit.
  • the photocoupler in this embodiment may also have the following structure.
  • the photocoupler includes a photo sensor ST188 and a comparator.
  • the connection relationship between the two can be shown in Figures 5a and 5b.
  • the photo sensor ST188 is composed of a high-power infrared transmitting tube and a high sensitivity It consists of a infrared receiver with a detection distance between 4 and 13mm.
  • the infrared transmitting tube and the infrared receiver are located on the same side of the fan.
  • the infrared receiver is turned on when receiving the diffused infrared light.
  • the detection output also changes accordingly. It can output a high level (close to + 5V) or a low level.
  • one end of the infrared transmitting tube is connected to a power source, and the other end is grounded through a resistor.
  • One end of the infrared receiver is connected to a power source, and the other end is grounded through a resistor. At the same time, the other end is connected to the non-inverting input end of the comparator.
  • the inverting input of the comparator is connected to the sliding end of the slide-wire varistor, and the two ends of the slide-wire varistor are respectively connected to the power and ground; the output of the comparator is connected to the IO port of the main control unit, and the output of the comparator is connected through a resistor Connected to power and grounded after connecting a light emitting diode through a resistor.
  • the photocoupler when the photocoupler outputs a high level, it indicates that the fan blades pass between the infrared transmitting tube and the infrared receiver.
  • the photocoupler When the photocoupler outputs a low level, it indicates that the gap between the fan blades passes between the infrared transmitting tube and the infrared receiver.
  • one end of the infrared transmitting tube is connected to the power supply, and the other end is grounded through a resistor.
  • One end of the infrared receiver is connected to the non-inverting input terminal of the comparator, and the power supply is connected through the resistor, and the other end is grounded.
  • the inverting input terminal is connected to the sliding end of the sliding line varistor, and the two ends of the sliding line varistor are respectively connected to the power and ground;
  • the output of the comparator is connected to the IO port of the main control unit, and the output of the comparator is connected to the power through a resistor
  • the LED is connected to ground through a resistor.
  • the photocoupler when the photocoupler outputs a low level, it indicates that the fan blades pass between the infrared transmitting tube and the infrared receiver.
  • the photocoupler When the photocoupler outputs a high level, it means that the gap between the fan blades passes between the infrared transmitting tube and the infrared receiver.
  • This embodiment also discloses a method for detecting the number of rotations of a motor implemented by the above device for detecting the number of rotations of a motor. The steps are as follows:
  • the rotating shaft of the motor drives the fan on the rotating shaft at the rear of the motor, and the blades of the fan pass through the photocoupler in order;
  • the photocoupler When the blades of the fan, namely the light-shielding part, pass the photocoupler, the photocoupler outputs the first level signal to the main control unit; when the gap between the two blades of the fan passes the photocoupler, it is transparent. When the optical part passes the photocoupler, the photocoupler outputs a second-level signal to the main control unit.
  • the photocoupler is a U-shaped opening as described above, when the blades of the fan pass through When passing between the light source and the receiver of the photocoupler, the light emitted by the light source will be blocked by the light-shielding part of the counting circle. The light receiver cannot receive the optical signal. At this time, the photocoupler outputs the first level signal to the main control.
  • the photocoupler when the gap between the two blades of the fan passes between the light source and the photoreceptor of the photocoupler, the light emitted by the light source will be received by the photoreceptor, and the photocoupler outputs a second level signal to the main control Unit; in this embodiment, if the photocoupler is the above-mentioned case including the photo sensor ST188 and a comparator, when the fan blade passes through the photocoupler, the infrared receiver will receive diffuse reflection of the object back The infrared light is turned on, so that the transistors therein are turned on, and the photocoupler outputs a phase-first signal to the main control unit. When the fan blade gap passes through the photocoupler, the infrared receiver cannot receive the infrared light diffusely reflected by the object, so the transistor is not conductive, and the photocoupler outputs a second level signal to the main control unit.
  • the main control unit counts according to the received level signal change, and determines the current number of rotations of the motor according to the count value.
  • the main control unit performs counting in the following manner: when the received first level signal is converted into a second level signal and / or when the second level signal is converted into a first level signal, the count is performed The value is increased by one.
  • the first level signal and the second level signal refer to a high level signal and a low level signal. When the first level signal is a high level signal, the second level signal is Low level signal; when the first level signal is a low level signal, the second level signal is a high level signal.
  • the main control unit receives a first level signal and converts it into a second level signal or a second level signal converts into a first level signal If the count value is increased by 1, the count value will increase by 8 for each revolution of the motor.
  • the main control unit obtains the number of motor revolutions based on the count value divided by 8. If the count value is divided by 8, then When a is an integer, it means that the number of motor rotations is a, a and one-eighth, a and two-eight, and a and seven-eight.
  • the main control unit increases the count value by 1 when the first level signal is converted into the second level signal and the second level signal is converted into the first level signal, then the motor The count value will increase by 16 for each revolution.
  • the main control unit obtains the number of revolutions of the motor according to the count value divided by 16.
  • the number of counts divided by 16 is When a is an integer, it means that the number of rotations of the motor is a, a and one-sixteenth, a and two-sixteen, and a and fifteenth.
  • the main control unit compares the current count value with a preset value in real time, and if the current count value is equal to the preset value, the motor driver controls the motor to stop rotating.
  • the fan and the signal feedback unit are both located at the rear of the motor. Since the number of rotations of the fan directly reflects the number of rotations of the motor, the device of this embodiment directly detects the number of rotations of the motor, compared with the existing In the technology, the signal feedback device is arranged on the output shaft of the motor reduction box. In this embodiment, the number of rotations of the motor can be calculated without using an intermediate link, and the accuracy of the detection of the number of rotations has been greatly improved. Since the fan and the signal feedback unit are arranged at the rear of the motor, the environment is relatively spacious. Compared with the position of the prior art signal feedback device, the device in this embodiment is greatly reduced by environmental constraints.
  • the rotation of the motor is detected by rotating the fan through the photocoupler.
  • the air flow inside the machine can be strengthened, so that the heat generated by the motor under high load and frequent work can be quickly dissipated and greatly improved. Increased motor life.
  • a reinforcing bar bundling machine includes the device for detecting the number of rotations of a motor of the foregoing embodiment 1 or example 2, as shown in FIGS. 6a and 6b, where the motor includes a wire feeding motor of the reinforcing bar bundling machine.
  • the steel bar bundling machine of this embodiment can greatly improve the accuracy of wire feeding, thereby effectively saving material consumption.

Abstract

一种电机转动圈数检测装置、方法和钢筋捆扎机,该检测装置包括风扇(3)、记数圈、信号反馈单元以及主控单元;风扇(3)安装在电机尾端的转轴上;信号反馈单元为设置在风扇(3)周围的霍尔传感器(2)或光电耦合器(4);信号反馈单元连接主控单元,由主控单元根据霍尔传感器(2)或光电耦合器(4)发送的信号计算出电机转动圈数。该方法包括如下步骤:当电机转动时带动风扇(3)扇叶转动,设置在风扇(3)周围的霍尔传感器(2)或光电耦合器(4)输出电平信号并实时传输给主控单元,主控单元根据接收到的电平信号变化情况进行计数从而确定电机的转动圈数。还包括一种具有该检测装置的钢筋捆扎机。该检测装置能够精确的检测出电机转动圈数,同时使用了该检测装置的钢筋捆扎机提高了送丝的精准度。

Description

电机转动圈数检测装置、方法和钢筋捆扎机 技术领域
本发明涉及电机转动技术领域,特别涉及电机转动圈数检测装置、方法和钢筋捆扎机。
背景技术
随着近年来国内人力成本的不断提高,同时,人们对工作环境及劳动强度的诉求也越来越多,特别是建筑行业的高强度劳动及艰苦的工作环境尤为突出。同样,在欧美发达国家,企业不仅为了应对较高的劳动力成本以及较低的工作效率和工作质量,还要应对个人对工作强度不满等诸多诉求。因而,如何实现工业自动化已经是整个社会发展的重要课题,于是,高效率低强度的生产工具慢慢被人们所接受,其中也包括钢筋捆扎机。
这些高效率低强度的生产工具中,通常通过电机提供动力进行工作,因此需要通过控制电机转动圈数来控制完成相应的工作;例如在钢筋捆扎机上,需要通过控制电机的转动圈数为实现送丝和扭丝的工作。为检测电机的转动圈数,需要在电机上设置信号反馈装置,现有技术中检测电机转动圈数的信号反馈装置通常安装在电机11减速箱的输出轴1上,如图1中所示,需要通过电机减速箱这个中间环节后才能检测电机转动圈数,因此检测精度受到限制,加上传动部件附件空间限制,传动部件油污等杂质的影响,致使信号反馈装置需要做到体积小且抗外部因素能力强。在该恶劣环境位置中使用限制了更高精度信号反馈装置的使用。
其中常用信号反馈装置是通过信号采集板,采集带有磁铁的信号反馈装置,通过磁场的变化,反馈机构传递情况。由于磁铁相互之间有磁场的影响,限制了圆周尺寸上磁铁的布置数量和间距,从而限制了精度提升。以钢筋捆扎机为 例,由于现有的机器传动出丝长度精度误差大,出丝过长或过短导致机器扭节过松或扭断,不能实现绑扎钢筋的作用,从而导致铁丝浪费。
另外,针对于生产工具的电机,即使电机箱体内部也自带了风叶降温,但由于空间的约束,能力有限,电机的温升比较高,长期在高温情况下运行,会缩短电机的寿命。以钢筋捆扎机为例,电机长期在高温下使用,会降低电机的性能和寿命。
发明内容
本发明的第一目的在于克服现有技术的缺点与不足,提供一种电机转动圈数检测装置,通过该装置能够精确的检测出电机转动圈数,并且在检测过程中能够同时对电机进行散热,提高了电机的使用寿命。
本发明的第二目的在于提供一种第一目的中电机转动圈数检测装置实现的电机转动圈数检测方法。
本发明的第三目的在于提供一种电机转动圈数检测装置,通过该装置能够更加精确的检测出电机转动圈数,并且在检测过程中能够同时对电机进行散热,提高了电机的使用寿命。
本发明的第四目的在于提供一种第三目的中电机转动圈数检测装置实现的电机转动圈数检测方法。
本发明的第五目的在于提供一种包括上述电机转动圈数检测装置的钢筋捆扎机,该钢筋捆扎机提高了送丝的精准度,有效的节省了耗料。
本发明的第一目的通过下述技术方案实现:一种电机转动圈数检测装置,包括风扇、记数圈、信号反馈单元以及主控单元;
所述风扇安装在电机尾端的转轴上;
所述记数圈可安装一个或多个磁铁,各磁铁分别对应设置在风扇的各扇叶上,跟随风扇的扇叶进行转动;
所述信号反馈单元为设置在风扇周围的霍尔传感器,用于将感应到的磁场强度信号转变成电平信号;
所述信号反馈单元连接主控单元,由主控单元根据霍尔传感器发送的电平 信号计算出电机转动圈数。
优选的,所述记数圈中磁铁的数量为1~8个,所述风扇的扇叶为2~12片,其中每个磁铁分别设置在不同的扇叶上;
主控单元为单片机,所述主控单元通过电机驱动器连接电机,用于控制电机的工作状态。
本发明的第二目的通过下述技术方案实现:一种第一目的所述的电机转动圈数检测装置实现的电机转动圈数检测方法,步骤如下:
当电机转动时,带动风扇扇叶上的磁铁转动;
设置在风扇周围的霍尔传感器将检测到磁场强度的信号转变成电平信号并实时的传输给主控单元;其中,当霍尔传感器检测到磁场强度信号大于一定值时,则发送第一电平信号至主控单元,否则发送第二电平信号至主控单元;
主控单元根据接收到的电平信号变化情况进行计数,并且根据计数值确定出电机的当前转动圈数。
优选的,主控单元通过以下方式进行计数:当接收到的第一电平信号转换成第二电平信号时和/或第二电平信号转换成第一电平信号时,计数值加一;
所述第一电平信号和第二电平信号指的是高电平和低电平信号,其中当第一电平信号为高电平信号时,第二电平信号为低电平信号;当第一电平信号为低电平信号时,第二电平信号为高电平信号。
本发明的第三目的通过下述技术方案实现:一种电机转动圈数检测装置,包括风扇、信号反馈单元以及主控单元;
所述风扇安装在电机尾端的转轴上;
所述信号反馈单元为光电耦合器,所述光电耦合器设置在风扇周围,所述风扇作为记数圈,风扇转动时各扇叶依次经过光电耦合器;
所述信号反馈单元连接主控单元,由主控单元根据光电耦合器发送的信号计算出电机转动圈数。
优选的,所述风扇的扇叶为2~12片;所述主控单元为单片机,主控单元通过电机驱动器连接电机。
优选的,所述光电耦合器为U形状开口,光电耦合器包括光源和受光器,其中光源设置在U形状开口的一边,受光器设置在U形状开口的另一边;风扇转动时,各扇叶依次穿过光电耦合器的U形状开口;
或者所述光电耦合器包括光电传感器ST188,其中光电传感器ST188包括红外发射管及红外接收器;所述红外发射管及红外接收器位于风扇的同一侧。
本发明的第四目的通过下述技术方案实现:一种第三目的所述的电机转动圈数检测装置实现的电机转动圈数检测方法,步骤如下:
电机的转轴转动,带动电机尾部转轴上的风扇转动,风扇的各扇叶依次经过光电耦合器;
当风扇的各扇叶即遮光部分经过光电耦合器时,此时光电耦合器输出第一电平信号到主控单元;当风扇的两个扇叶之间的间隙经过光电耦合器时,即透光部分经过光电耦合器时,则光电耦合器输出第二电平信号到主控单元;
主控单元根据接收到的电平信号变化情况进行计数,并且根据计数值确定出电机的当前转动圈数。
优选的,主控单元通过以下方式进行计数:当接收到的第一电平信号转换成第二电平信号时和/或第二电平信号转换成第一电平信号时,计数值加一;
所述第一电平信号和第二电平信号指的是高电平和低电平信号,其中当第一电平信号为高电平信号时,第二电平信号为低电平信号;当第一电平信号为低电平信号时,第二电平信号为高电平信号。
本发明的第五目的通过下述技术方案实现:一种钢筋捆扎机,包括上述第一目的和第三目的提供的电机转动圈数检测装置,所述电机包括钢筋捆扎机的送丝电机。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明一种电机转动圈数检测装置中,包括风扇、记数圈、信号反馈单元以及主控单元;风扇安装在电机尾端的转轴上;记数圈包括多个磁铁,各磁铁分别对应设置在风扇的各扇叶上,跟随风扇的扇叶进行转动;信号反馈单 元为设置在风扇周围的霍尔传感器;其中,设置在电机尾部转轴的风扇转动将带动扇叶上的磁铁转动,霍尔传感器通过感应磁场强度的变化情况输出相应的电平至主控单元,主控单元根据接收的电平信号变化情况计算出电机转动圈数。在本发明中,风扇、磁铁和信号反馈单元均位于电机的尾部,由于磁铁是设置在电机尾部风扇上的,因此本发明装置直接检测的是电机的转动圈数,相比现有技术中将信号反馈装置布置与电机减速箱输出轴上,本发明不再需要通过中间环节即可计算出电机的转动圈数,当和现有技术采用相同大小圆径和相等数量磁铁组成计数圈时,本发明电机转动圈数检测的精度是在原有精度基础上提高相应倍数的减速箱传动比的值。由于风扇、磁铁和信号反馈单元设置在电机尾部的,环境比较宽敞,相比现有技术信号反馈装置的位置,本发明装置受到环境的限制将大大减小,磁铁因为相互之间磁场的影响而使得圆周尺寸上布置数量和间距的限制也将大大减小。另外,本发明中风扇带动磁铁转动进行电机转动圈数检测的同时,也能够加强机器内部空气流动,使电机在高负荷频繁工作时产生的热量快速散发出去,极大的提升了电机寿命。
(2)本发明一种电机转动圈数检测装置中,包括风扇、信号反馈单元以及主控单元;风扇安装在电机尾端的转轴上,信号反馈单元为光电耦合器,光电耦合器设置在风扇周围;风扇作为记数圈;光电耦合器元连接主控单元,风扇转动时各扇叶依次经过光电耦合器,风扇扇叶和扇叶之间间隙经过光电耦合器时,分别输出高低电平信号到主控单元,主控单元通过读取光电耦合器输出的电平信号变化判断电机转动圈数。在本发明中,风扇和信号反馈单元均位于电机的尾部,由于风扇的转动圈数直接反应了电机的转动圈数,因此本发明装置直接检测的是电机的转动圈数,相比现有技术中将信号反馈装置布置与电机减速箱输出轴上,本发明不再需要通过中间环节即可计算出电机的转动圈数,转动圈数检测的精度有了更大的提高。由于风扇、信号反馈单元设置在电机尾部的,环境比较宽敞,相比现有技术信号反馈装置的位置,本发明装置受到环境的限制将大大减小。另外,本发明中通过风扇转动穿过光电耦合器实现电机转动圈数的检测同时,也能够加强机器内部空气流动,使电机在高负荷频繁工作时产生的热量快速散发出去,极大的提升了电机寿命。
(3)本发明的钢筋捆扎机中包括上述其中一种电机转动圈数检测装置,电机为送丝电机,其中送丝电机的转动圈数决定着钢筋捆扎机每次捆扎时的出丝长度,由于本发明中电机转动圈数检测装置针对电机转动圈数的检测更加准确, 因此本发明的钢筋捆扎机能够大大提高送丝的精准度,从而有效的节省了耗料。
附图说明
图1是现有技术中电机信号反馈装置安装位置示意图。
图2是本发明实施例1中电机转动圈数检测装置安装位置示意图。
图3是本发明实施例1记数圈结构示意图。
图4是本发明实施例2中电机转动圈数检测装置安装位置示意图。
图5a和5b是本发明实施例2中光电耦合器电路原理图。
图6a和6b是本发明钢筋捆扎机的部分结构示意图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例公开了一种电机转动圈数检测装置,包括风扇、记数圈、信号反馈单元以及主控单元。
如图2所示,风扇3安装在电机尾端的转轴上。
如图3中所示,记数圈包括多个磁铁21,各磁铁21分别对应设置在风扇3的各扇叶上,跟随风扇的扇叶进行转动。在本实施例中,记数圈中磁铁的数量为1~8个,风扇的扇叶为2~12片,其中每个磁铁分别设置在不同的扇叶上。
如图2中所示,信号反馈单元为设置在风扇周围的霍尔传感器2,用于将感应到磁场强度信号转变成电平信号。
信号反馈单元连接主控单元,由主控单元根据霍尔传感器发送的电平信号计算出电机转动圈数。在本实施例中,主控单元可以采用单片机。主控单元通过电机驱动器连接电机,通过主控单元可以控制电机的工作状态。
本实施例还公开了一种上述电机转动圈数检测装置实现的电机转动圈数检测方法,步骤如下:
当电机转动时,带动风扇扇叶上的磁铁转动;
设置在风扇周围的霍尔传感器将检测到磁场强度的信号转变成电平信号并实时的传输给主控单元;其中,当霍尔传感器检测到磁场强度信号大于一定值时,则发送第一电平信号至主控单元,否则发送第二电平信号至主控单元;在本实施例中,第一电平信号和第二电平信号指的是高电平信号和低电平信号,其中当第一电平信号为高电平信号时,第二电平信号为低电平信号;当第一电平信号为低电平信号时,第二电平信号为高电平信号。
主控单元根据接收到的电平信号变化进行计数,并且根据计数值确定出电机的当前转动圈数。在本实施例中,主控单元通过以下方式进行计数:当接收到的第一电平信号转换成第二电平信号时和/或第二电平信号转换成第一电平信号时,计数值加一。
在本实施例中,若风扇的扇叶数为8片,磁铁个数为4个,其中每隔一个扇叶上放置一个磁铁。若主控单元是在接收到第一电平信号转换成第二电平信号时或第二电平信号转换成第一电平信号时计数值加1,那么电机每转动一圈,计数值将增大4;主控单元根据计数值除以4得到值获取到电机转动圈数,其中若计数值除以4分别为
Figure PCTCN2018104752-appb-000001
时,a为整数,则表示电机转动圈数分别为a圈、a又四分之一圈、a又四分之二圈和a又四分之三圈。在本实施例中,若主控单元是在接收到第一电平信号转换成第二电平信号时和第二电平信号转换成第一电平信号时计数值均加1,则那么电机每转动一圈,计数值将增大8;主控单元根据计数值除以8得到值获取到电机转动圈数,其中若计数值除以8分别为
Figure PCTCN2018104752-appb-000002
Figure PCTCN2018104752-appb-000003
时,a为整数,则表示电机转动圈数分别为a圈、a又八分之一圈、a又八分之二圈,…,a又八分之七圈。
在本实施例中,主控单元实时的将当前计数值与预先设定值进行比较,若当前计数值与预先设定值相等,则通过电机驱动器控制电机停止转动。
在本实施例中,风扇、磁铁和信号反馈单元均位于电机的尾部,由于磁铁是设置在电机尾部风扇上的,因此本实施例装置直接检测的是电机的转动圈数,相比现有技术中将信号反馈装置布置与电机减速箱输出轴上,本实施例不再需 要通过中间环节即可计算出电机的转动圈数,当和现有技术采用相同大小圆径和相等数量磁铁组成计数圈时,本实施例电机转动圈数检测的精度是在原有精度基础上提高相应倍数的减速箱传动比的值。由于风扇、磁铁和信号反馈单元设置在电机尾部的,环境比较宽敞,相比现有技术信号反馈装置的位置,本实施例装置受到环境的限制将大大减小,磁铁因为相互之间磁场的影响而使得圆周尺寸上布置数量和间距的限制也将大大减小。另外,本实施例中风扇带动磁铁转动进行电机转动圈数检测的同时,也能够加强机器内部空气流动,使电机在高负荷频繁工作时产生的热量快速散发出去,极大的提升了电机寿命。
实施例2
本实施例公开了一种电机转动圈数检测装置,包括风扇、信号反馈单元以及主控单元;
如图4中所示,风扇安装在电机尾端的转轴上;
信号反馈单元为光电耦合器4,光电耦合器设置在风扇周围,风扇作为记数圈,风扇转动时各扇叶依次经过光电耦合器;在本实施例中,风扇的扇叶为2~12片。
信号反馈单元连接主控单元,由主控单元根据光电耦合器发送的信号计算出电机转动圈数。在本实施例中,主控单元为单片机。主控单元通过电机驱动器连接电机。
本实施例中,如图4中所示,光电耦合器可以为U形状开口,其中光源设置在U形状开口的一边,受光器设置在U形状开口的另一边;风扇转动时,各扇叶依次穿过光电耦合器的U形状开口。光电耦合器中光源和受光器处于风扇的两侧。当扇叶穿过光电耦合器的U形状开口时,受光器接收不到光信号,此时光电耦合器输出对应电平信号(高电平或低电平)到主控单元;当风扇的两个扇叶之间的间隙穿过光电耦合器的光源和受光器之间时,光源发射出的光线将被受光器接收,光电耦合器输出另一电平信号(低电平或高电平)到主控单元。
本实施例中光电耦合器也可以是以下结构,光电耦合器包括光电传感器ST188和比较器,两者连接关系可以如图5a和5b所示,其中光电传感器ST188由高功率红外发射管及高灵敏的红外接收器组成,检测距离在4~13mm之间,红外 发射管及红外接收器位于风扇的同一侧。红外接收器在接收到漫反射回来的红外光时导通,根据如图5a和5b所示接线方式的不同,检测输出也有相应的变化,可以输出高电平(接近+5V)或低电平(接近0V),再经过比较器转换为单片机可识别的数字信号,其中当风扇的扇叶穿过红外发射管和红外接收器时,红外接收器会接收到物体漫反射回来的红外光,从而使得其中的晶体管导通,光电耦合器输出相应数字信号到主控单元。
如图5a所示,光电耦合器中,红外发射管一端连接电源,另一端通过电阻接地,红外接收器的一端接电源,另一端通过电阻接地,同时另一端连接比较器的正相输入端,比较器的反相输入端连接滑线变阻器的滑动端,滑线变阻器的两端分别对应接电源和地;比较器的输出端连接主控单元的IO端口,同时比较器的输出端通过一电阻接电源以及通过一电阻连接发光二极管后接地。这种情况下,光电耦合器输出高电平时,表示风扇的扇叶穿过红外发射管和红外接收器之间。光电耦合器输出低电平时,表示风扇的扇叶之间间隙穿过红外发射管和红外接收器之间。
如图5b所示,光电耦合器中,红外发射管一端连接电源,另一端通过电阻接地,红外接收器的一端连接比较器的正相输入端,并且通过电阻接电源,另一端接地;比较器的反相输入端连接滑线变阻器的滑动端,滑线变阻器的两端分别对应接电源和地;比较器的输出端连接主控单元的IO端口,同时比较器的输出端通过一电阻接电源以及通过一电阻连接发光二极管后接地。这种情况下,光电耦合器输出低电平时,表示风扇的扇叶穿过红外发射管和红外接收器之间。光电耦合器输出高电平时,表示风扇的扇叶之间间隙穿过红外发射管和红外接收器之间。
本实施例还公开了一种上述电机转动圈数检测装置实现的电机转动圈数检测方法,步骤如下:
电机的转轴转动,带动电机尾部转轴上的风扇转动,风扇的各扇叶依次经过光电耦合器;
当风扇的各扇叶即遮光部分经过光电耦合器时,此时光电耦合器输出第一电平信号到主控单元;当风扇的两个扇叶之间的间隙经过光电耦合器时,即透光部分经过光电耦合器时,则光电耦合器输出第二电平信号到主控单元;在本实施例中,若光电耦合器为上述所述的U形状开口,则当风扇的各扇叶穿过光电 耦合器的光源和受光器之间时,光源发射出的光线将被记数圈的遮光部分遮挡,受光器接收不到光信号,此时光电耦合器输出第一电平信号到主控单元;当风扇的两个扇叶之间的间隙穿过光电耦合器的光源和受光器之间时,光源发射出的光线将被受光器接收,光电耦合器输出第二电平信号到主控单元;在本实施例中,若光电耦合器为上述包括光电传感器ST188和比较器的情况时,则当风扇的扇叶穿过光电耦合器时,红外接收器会接收到物体漫反射回来的红外光,从而使得其中的晶体管导通,光电耦合器输出相第一电平信号到主控单元。当风扇的扇叶间隙穿过光电耦合器时,红外接收器将不能接收到物体漫反射回来的红外光,因此晶体管不导通,光电耦合器输出第二电平信号到主控单元。
主控单元根据接收到的电平信号变化进行计数,并且根据计数值确定出电机的当前转动圈数。在本实施例中,主控单元通过以下方式进行计数:当接收到的第一电平信号转换成第二电平信号时和/或第二电平信号转换成第一电平信号时,计数值加一。在本实施例中,第一电平信号和第二电平信号指的是高电平信号和低电平信号,其中当第一电平信号为高电平信号时,第二电平信号为低电平信号;当第一电平信号为低电平信号时,第二电平信号为高电平信号。
本实施例中,若风扇的扇叶为8片,则若主控单元是在接收到第一电平信号转换成第二电平信号时或第二电平信号转换成第一电平信号时计数值加1,那么电机每转动一圈,计数值将增大8;主控单元根据计数值除以8得到值获取到电机转动圈数,其中若计数值除以8分别为
Figure PCTCN2018104752-appb-000004
时,a为整数,则表示电机转动圈数分别为a圈、a又八分之一圈、a又八分之二圈,…,a又八分之七圈。在本实施例中,若主控单元是在接收到第一电平信号转换成第二电平信号时和第二电平信号转换成第一电平信号时计数值均加1,则那么电机每转动一圈,计数值将增大16;主控单元根据计数值除以16值获取到电机转动圈数,其中若计数值除以16分别为
Figure PCTCN2018104752-appb-000005
时,a为整数,则表示电机转动圈数分别为a圈、a又十六分之一圈、a又十六分之二圈,…,a又十六分之十五圈。
在本实施例中,主控单元实时的将当前计数值与预先设定值进行比较,若当前计数值与预先设定值相等通过电机驱动器控制电机停止转动。
在实施例中,风扇和信号反馈单元均位于电机的尾部,由于风扇的转动圈数直接反应了电机的转动圈数,因此本实施例装置直接检测的是电机的转动圈数,相比现有技术中将信号反馈装置布置与电机减速箱输出轴上,本实施例不再需要通过中间环节即可计算出电机的转动圈数,转动圈数检测的精度有了更大的提高。由于风扇、信号反馈单元设置在电机尾部的,环境比较宽敞,相比现有技术信号反馈装置的位置,本实施例装置受到环境的限制将大大减小。另外,本实施例中通过风扇转动穿过光电耦合器实现电机转动圈数的检测同时,也能够加强机器内部空气流动,使电机在高负荷频繁工作时产生的热量快速散发出去,极大的提升了电机寿命。
实施例3
在本实施例公开了一种钢筋捆扎机,该钢筋捆扎机包括上述实施例1或实例2电机转动圈数检测装置,如图6a和6b所示,其中电机包括钢筋捆扎机的送丝电机。
由于本实施例中电机转动圈数检测装置针对电机转动圈数的检测更加准确,因此本实施例的钢筋捆扎机能够大大提高送丝的精准度,从而有效的节省了耗料。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种电机转动圈数检测装置,其特征在于,包括风扇、记数圈、信号反馈单元以及主控单元;
    所述风扇安装在电机尾端的转轴上;
    所述记数圈包括一个或多个磁铁,各磁铁分别对应设置在风扇的各扇叶上,跟随风扇的扇叶进行转动;
    所述信号反馈单元为设置在风扇周围的霍尔传感器,用于将感应到的磁场强度信号转变成电平信号;
    所述信号反馈单元连接主控单元,由主控单元根据霍尔传感器发送的电平信号计算出电机转动圈数。
  2. 根据权利要求1所述的电机转动圈数检测装置,其特征在于,所述记数圈中磁铁的数量为1~8个,所述风扇的扇叶为2~12片,其中每个磁铁分别设置在不同的扇叶上;
    主控单元为单片机,所述主控单元通过电机驱动器连接电机,用于控制电机的工作状态。
  3. 一种权利要求1所述的电机转动圈数检测装置实现的电机转动圈数检测方法,其特征在于,步骤如下:
    当电机转动时,带动风扇扇叶上的磁铁转动;
    设置在风扇周围的霍尔传感器将检测到磁场强度的信号转变成电平信号并实时的传输给主控单元;其中,当霍尔传感器检测到磁场强度信号大于一定值时,则发送第一电平信号至主控单元,否则发送第二电平信号至主控单元;
    主控单元根据接收到的电平信号变化情况进行计数,并且根据计数值确定出电机的当前转动圈数。
  4. 根据权利要求3所述的电机转动圈数检测方法,其特征在于,主控单元通过以下方式进行计数:当接收到的第一电平信号转换成第二电平信号时和/或 第二电平信号转换成第一电平信号时,计数值加一;
    所述第一电平信号和第二电平信号指的是高电平和低电平信号,其中当第一电平信号为高电平信号时,第二电平信号为低电平信号;当第一电平信号为低电平信号时,第二电平信号为高电平信号。
  5. 一种电机转动圈数检测装置,其特征在于,包括风扇、信号反馈单元以及主控单元;
    所述风扇安装在电机尾端的转轴上;
    所述信号反馈单元为光电耦合器,所述光电耦合器设置在风扇周围,所述风扇作为记数圈,风扇转动时各扇叶依次经过光电耦合器;
    所述信号反馈单元连接主控单元,由主控单元根据光电耦合器发送的信号计算出电机转动圈数。
  6. 根据权利要求5所述的电机转动圈数检测装置,其特征在于,所述风扇的扇叶为2~12片;所述主控单元为单片机,主控单元通过电机驱动器连接电机。
  7. 根据权利要求5所述的电机转动圈数检测装置,其特征在于,所述光电耦合器为U形状开口,光电耦合器包括光源和受光器,其中光源设置在U形状开口的一边,受光器设置在U形状开口的另一边;风扇转动时,各扇叶依次穿过光电耦合器的U形状开口;
    或者所述光电耦合器包括光电传感器ST188,其中光电传感器ST188包括红外发射管及红外接收器;所述红外发射管及红外接收器位于风扇的同一侧。
  8. 一种权利要求5所述的电机转动圈数检测装置实现的电机转动圈数检测方法,其特征在于,步骤如下:
    电机的转轴转动,带动电机尾部转轴上的风扇转动,风扇的各扇叶依次经过光电耦合器;
    当风扇的各扇叶即遮光部分经过光电耦合器时,此时光电耦合器输出第一电平信号到主控单元;当风扇的两个扇叶之间的间隙经过光电耦合器时,即透光部分经过光电耦合器时,则光电耦合器输出第二电平信号到主控单元;
    主控单元根据接收到的电平信号变化情况进行计数,并且根据计数值确定 出电机的当前转动圈数。
  9. 根据权利要求8所述的电机转动圈数检测方法,其特征在于,主控单元通过以下方式进行计数:当接收到的第一电平信号转换成第二电平信号时和/或第二电平信号转换成第一电平信号时,计数值加一;
    所述第一电平信号和第二电平信号指的是高电平和低电平信号,其中当第一电平信号为高电平信号时,第二电平信号为低电平信号;当第一电平信号为低电平信号时,第二电平信号为高电平信号。
  10. 一种钢筋捆扎机,其特征在于,包括权利要求1至2中和5至7中任一项所述的电机转动圈数检测装置,所述电机包括钢筋捆扎机的送丝电机。
PCT/CN2018/104752 2018-08-15 2018-09-10 电机转动圈数检测装置、方法和钢筋捆扎机 WO2020034285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810928973.XA CN108988581A (zh) 2018-08-15 2018-08-15 电机转动圈数检测装置、方法和钢筋捆扎机
CN201810928973.X 2018-08-15

Publications (1)

Publication Number Publication Date
WO2020034285A1 true WO2020034285A1 (zh) 2020-02-20

Family

ID=64553402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/104752 WO2020034285A1 (zh) 2018-08-15 2018-09-10 电机转动圈数检测装置、方法和钢筋捆扎机

Country Status (2)

Country Link
CN (1) CN108988581A (zh)
WO (1) WO2020034285A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109974574A (zh) * 2019-01-25 2019-07-05 九阳股份有限公司 一种炒菜机中搅拌臂的摆动角度检测方法和炒菜机
CN113639627A (zh) * 2021-07-26 2021-11-12 湖北三江航天红峰控制有限公司 伺服机构输出轴偏转角度获取方法、装置和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106554A (zh) * 1985-10-16 1987-05-27 赤石金属工业株式会社 具有编码器机构的风扇
US4811368A (en) * 1987-02-03 1989-03-07 Taihan Electric Wire Co., Ltd. Meter for remote inspection
CN2660774Y (zh) * 2003-12-01 2004-12-01 周德俭 可输出转数信号的电机
CN204068576U (zh) * 2014-03-26 2014-12-31 重庆大学 一种钢筋捆扎机的电机旋转圈数反馈装置
CN208806716U (zh) * 2018-08-15 2019-04-30 广东顺德华焱电子科技有限公司 电机转动圈数检测装置和钢筋捆扎机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205864307U (zh) * 2016-07-08 2017-01-04 广东美的生活电器制造有限公司 电机转速调节电路及破壁机
CN108343250B (zh) * 2018-05-03 2019-06-18 广东顺德华焱电子科技有限公司 一种钢筋捆扎机及其可更换式枪头和工作方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86106554A (zh) * 1985-10-16 1987-05-27 赤石金属工业株式会社 具有编码器机构的风扇
US4811368A (en) * 1987-02-03 1989-03-07 Taihan Electric Wire Co., Ltd. Meter for remote inspection
CN2660774Y (zh) * 2003-12-01 2004-12-01 周德俭 可输出转数信号的电机
CN204068576U (zh) * 2014-03-26 2014-12-31 重庆大学 一种钢筋捆扎机的电机旋转圈数反馈装置
CN208806716U (zh) * 2018-08-15 2019-04-30 广东顺德华焱电子科技有限公司 电机转动圈数检测装置和钢筋捆扎机

Also Published As

Publication number Publication date
CN108988581A (zh) 2018-12-11

Similar Documents

Publication Publication Date Title
WO2020034285A1 (zh) 电机转动圈数检测装置、方法和钢筋捆扎机
CN202083402U (zh) 一种电动执行器的非接触式实时位置检测装置
WO2019140939A1 (zh) 一种立井钢丝绳罐道滑套磨损量检测装置及其检测方法
CN202693600U (zh) 光电计数器
WO2015109716A1 (zh) 一种轴向差动式矿井提升机主轴扭矩检测装置
CN102735866A (zh) 基于光电计数器脉冲精确测量两轴转速差的方法
CN201579419U (zh) 机床主轴磁性编码器
CN101831778A (zh) 滚筒洗衣机
CN207761752U (zh) 一种油气分离器报警系统、油气分离器以及动力系统
CN105240305A (zh) 一种控制电风扇摇头角度的电路及方法
CN206093769U (zh) 一种高精度室内智能照明灯具
CN208806716U (zh) 电机转动圈数检测装置和钢筋捆扎机
WO2015109715A1 (zh) 一种基于转角测量的提升机主轴扭矩监测装置
CN203232046U (zh) 风力发电机叶轮转速测量监控装置
CN201528253U (zh) 印刷电机光电测速装置
CN201188006Y (zh) 计数器读数装置
CN210662341U (zh) 一种气体报警检定装置
CN203597904U (zh) 旋转拖把的甩干检测装置
CN104251719A (zh) 一种具有状态监测功能的振动信号处理系统及方法
TWI704760B (zh) 具定位及定扭力控制電路的電池驅動設備
CN201575863U (zh) 一种用于检测光源色度及亮度的转轮机构
CN101799272B (zh) 轮胎机电换能中动子抗离心力切向位移的测量装置
CN209247762U (zh) 一种乙硼烷气体检测装置
CN201313293Y (zh) 一种全自动直流无刷电动螺丝刀
CN209389967U (zh) 一种步进电机伺服控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930411

Country of ref document: EP

Kind code of ref document: A1