WO2015109715A1 - 一种基于转角测量的提升机主轴扭矩监测装置 - Google Patents

一种基于转角测量的提升机主轴扭矩监测装置 Download PDF

Info

Publication number
WO2015109715A1
WO2015109715A1 PCT/CN2014/078749 CN2014078749W WO2015109715A1 WO 2015109715 A1 WO2015109715 A1 WO 2015109715A1 CN 2014078749 W CN2014078749 W CN 2014078749W WO 2015109715 A1 WO2015109715 A1 WO 2015109715A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
base
torque
main shaft
Prior art date
Application number
PCT/CN2014/078749
Other languages
English (en)
French (fr)
Inventor
江帆
朱真才
李伟
曹国华
周公博
彭玉兴
沈刚
卢昊
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to US14/909,856 priority Critical patent/US9909941B2/en
Priority to AU2014379000A priority patent/AU2014379000B2/en
Priority to CA2936419A priority patent/CA2936419C/en
Priority to RU2015139549A priority patent/RU2615793C2/ru
Publication of WO2015109715A1 publication Critical patent/WO2015109715A1/zh
Priority to ZA2015/07359A priority patent/ZA201507359B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/08Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving optical means for indicating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/12Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving photoelectric means

Definitions

  • the invention relates to a hoist spindle torque monitoring device based on a rotation angle measurement, which is particularly suitable for torque monitoring of a main shaft of a mine hoist, and is also suitable for torque detection of rotating bodies such as other rotating shafts.
  • the hoist is a typical rotating machine widely used in mines. As the "throat" of the mine, it plays an important role in mining production. With the rapid development of modern industry and science and technology and the demand for high efficiency of production, the structure of mine hoist is becoming more and more complex, the capacity of single lifting is getting larger and larger, the speed of lifting is getting faster and faster, and the distance of lifting is getting bigger and bigger. . Once a tank hoist, skidding, over-rolling and over-discharging problems occur during the lifting process of the mine hoist, chain reaction may occur, and the working condition not only affects the operation of the equipment itself, but also affects subsequent production. Even the cause of the destruction of the aircraft caused a major loss to the national economy. Therefore, it is necessary to monitor the spindle torque of the mine hoist, because the torque of the spindle changes correspondingly when the tank is jammed, slipped, over-rolled and broken.
  • the tandem measurement method is to connect the corresponding torque measuring device in series with the component to be tested. This method needs to change the structural connection of the original device, which is costly for the installed device.
  • Torque measurement of the shaft can be achieved by attaching a strain gauge to the shaft, but there is a need for the strain gauge to fall off and the patch accuracy of the corresponding vane.
  • Torque measurement of the shaft can also be achieved by electromagnetic induction, but electromagnetic induction can affect the efficient transmission of wireless data.
  • the object of the present invention is to overcome the deficiencies in the prior art and provide a hoist spindle torque monitoring device based on the angle measurement, which realizes the measurement of the torque of the shaft through the principle of light sensing, thereby realizing the wireless data transmission to the shaft torque.
  • Monitoring System
  • the light source generating unit includes a signal processing unit disposed on the base, a light source disposed on the signal processing unit, and a top portion of the light source generating unit.
  • a light passing hole is arranged at a line where the light source and the spindle axis intersect, and a lens is arranged between the light passing hole and the light source connecting line, and the inner wall of the upper and lower housings is intersected with a line where the light source and the spindle axis intersect.
  • the light sensing element connected to the processing unit, the light sensing element and the light source generating unit are provided with an arc-shaped baffle fixed on the base 2 and concentric with the main shaft, and the baffle has a light-passing hole A light-passing hole 2 having a corresponding position and the same shape and size, and a lens 2 for collecting the received light source onto the light-sensing element is disposed between the light-transmitting hole 2 and the light-sensing element.
  • the light-passing hole on the light source generating unit is an arc-shaped hole concentric with the main shaft.
  • the signal processing unit includes a power source, a conditioning circuit, and a wireless transmitting module connected to the light sensing element, and the conditioning circuit
  • the input end is connected to the output end of the light sensing element, and the output end of the conditioning circuit is connected to the wireless transmitting module.
  • Advantageous Effects The invention realizes real-time monitoring of the torque of the shaft of the mine hoist by utilizing the principle of light sensation, and can also be applied to other torque measurement of the shaft.
  • the device can realize real-time measurement of the shaft torque without destroying the connection and foundation of the original equipment. It uses wireless transmission of data, with less wiring and no electromagnetic interference. Torque measurement at different speeds such as shaft rest can be realized, easy to use, low maintenance cost, remarkable effect, and wide practicality.
  • Figure 1 is an axial schematic view of the apparatus of the present invention.
  • Figure 2 is a side elevational view of the apparatus of the present invention.
  • FIG. 3 is a schematic illustration of the signal processing unit of the apparatus of the present invention.
  • - pedestal one 2-signal processing unit, 3-lens one, 4-pass optical aperture one, 5-pass optical aperture two, 6-upper housing, 7-light sensing element, 8-lens two, 9-baffle, 10-light source unit, 11-light source, 12-spindle, 13-lower housing, 14-base two, 15-power, 16-conditioning circuit, 17-wireless transmitter module.
  • the hoist spindle torque monitoring device based on the angle measurement of the present invention is mainly composed of a pedestal 1, a pedestal 2, a light source generating unit 10, a baffle 9 and a light sensing element 7.
  • the pedestal 1 and the pedestal 2 are Two fastening bodies with semi-circular arc grooves, the two bases are spaced 10 cm apart and fixed to the main shaft 12 of the hoist by bolt-symmetric fastening, and the base 1 and the base 2 are fixed thereon.
  • the upper housing 6 and the lower housing 13 are symmetrically disposed in the upper and lower housings.
  • the light source generating unit 10 includes a signal processing unit 2 disposed on the base 1 and is disposed on the signal.
  • the light source 11 on the processing unit 2, the top of the light source generating unit 10 and the line where the light source 11 and the axis of the main shaft 12 intersect are provided with a light-passing hole 4, and the light-passing hole 4 is a circular arc hole concentric with the spindle 12.
  • a lens 3 is disposed between the aperture 4 and the light source 11 for installation.
  • the light source 11 is placed at a focus of the lens 3 near the base 1 , and the inner wall of the upper and lower housings intersects the line of the light source 11 and the axis of the spindle 12 Place with signal processing unit
  • a two-phase connected light sensing element 7 is disposed between the light sensing element 7 and the light source generating unit 10, and an arc-shaped baffle 9 is fixed on the base 2 and concentric with the main shaft 12.
  • the baffle 9 is opened.
  • a light-passing hole 2 corresponding to the position of the light-passing hole 4 and having the same shape and size, and the light-transmitting hole 2 and the light-sensing element 7 are disposed between the light-receiving element 7 and the light source.
  • Lens 2 lens 2 is mounted with the light sensing element 7 in focus away from the base 1 .
  • the signal processing unit 2 includes a power source 15, a conditioning circuit 16, and a wireless transmitting module 17 connected to the photosensitive element 7, and the input end of the conditioning circuit 16 is connected to the output end of the photosensitive element 7.
  • the output of the conditioning circuit 16 is coupled to the wireless transmitting module 17.
  • the power source 15 supplies power to the light sensing element 7, the conditioning circuit 16, the wireless transmitting module 17, and the light source 11.
  • the device In operation, the device is mounted on the main shaft 12 of the hoist and remains relatively stationary therewith.
  • the light of the light source 1 passes through the action of the lens 3 and is parallel light, due to the initial position of the light passing hole 4 and the light passing hole 2
  • the alignment is just aligned, so that the parallel light passing through the light-passing hole 4 can all pass through the light-passing hole 2, and is collected by the lens 2 to the photosensitive element 7, so that the light-sensitive element 7 outputs a current, and the current passes through the signal processing unit.
  • the processing circuit of the conditioning circuit 16 is wirelessly transmitted to the host computer or the PC through the wireless transmitting module; when the main shaft is subjected to the torque generated by the main shaft, the main shaft 12 of the lifting machine is twisted, so that the base 1 and the base 2 are generated. Relatively rotating, the baffle plate 9 fixed on the base plate 14 rotates with the base plate 14, so that the originally aligned light-passing hole 4 and the light-passing hole 2 5 are displaced corresponding to the torque, and then pass through the light. Only part of the light of the hole 4 can enter the light-passing hole 2 and finally reach the light-sensing element 7.
  • the electrical signal corresponding to the light sense at this time is sent to the upper machine, and the contrast spindle is different.
  • the amount of light received by the light-sensing element 7 is measured to determine the torsion angle of the light-passing aperture 4 relative to the light-passing aperture 2, and the torque of the elevator main shaft 12 can be calculated from the measured torsion angle.
  • the present invention is described herein with respect to a hoist main shaft, but the present invention is not only applicable to torque monitoring of a hoist main shaft, but also to torque detection of other rotating shafts.
  • the torque value can be calculated by the signal processing unit and then transmitted to the host computer via wireless.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种基于转角测量的提升机主轴(12)扭矩监测装置,主要由基座一(1),基座二(14)、光源发生单元(10)、挡板(9)和光感元件(7)构成,光源发生单元(10)中设置的光源(11)、透镜一(3)、通光孔一(4)与挡板(9)上的通光孔二(5)、透镜二(8)、光感元件(7)形成一条光源(11)产生、传播和接收的通路,当提升机主轴(12)受到一定的扭矩时,通光孔一(4)和通光孔二(5)之间会产生相应的错位,从而测量最终到达通光孔二(5)的光量变化实现对转轴扭转角的检测,最终计算出转轴扭矩的大小。装置在不破坏原有设备和地基情况下,实现转轴不同转速时的扭矩测量。该装置可以实现转轴静止等不同转速下的扭矩测量,无电磁场对无线传输的干扰,使用方便,维护成本低,具有广泛的推广意义。

Description

一种基于转角测量的提升机主轴扭矩监测装置
技术领域
本发明涉及一种基于转角测量的提升机主轴扭矩监测装置,尤其适合用于矿井提升机主 轴的扭矩监测, 还适用于其他转轴等旋转体的扭矩检测。
背景技术
提升机是矿井广泛使用的一种典型旋转机械,作为矿井的 "咽喉" ,在矿业生产中具有 十分重要的地位。随着现代工业及科学技术的迅猛发展和对生产高效率的要求,矿井提升机 的结构日趋复杂, 单次提升容量越来越大, 提升速度越来越快, 提升的距离也越来越大。一 旦矿井提升机提升过程中出现卡罐、 打滑、 过卷和过放等故障, 可能引发链式反应, 其工况 状态不仅影响该设备本身的运行,而且还会对后续生产造成影响,严重时甚至引发机毁人亡 事故, 对国民经济造成重大损失。 因此, 有必要对矿井提升机的主轴扭矩进行监测, 因为提 升机卡罐、 打滑、 过卷和断绳时, 主轴的扭矩会发生相应的变化。
目前, 学者们研究出了不少的扭矩的测量方法和装置。 比如串接测量法, 此方法是在被 测部件上串联相应的扭矩测量装置,此方法需要改变原有设备的结构连接,对已安装好的设 备应用代价高。通过在转轴上贴应变片可以实现转轴的扭矩测量,但是会存在应变片脱落以 及对应变片的贴片精度要求高。通过电磁感应也可以实现转轴的扭矩测量,但是电磁感应会 影响无线数据的有效传输。 在轴表面进行一定的处理 (刻线, 安装线圈等), 然后再对应位 置安装检查装置实现转轴扭矩测量方法需要在原有的地基上安装支架, 需要大量的连接导 线, 具有一定的局限性。
发明内容
技术问题:本发明的目的是克服已有技术中的不足之处,提供一种基于转角测量的提升 机主轴扭矩监测装置,通过光感原理实现转轴扭矩的测量,从而实现无线数据传输对转轴扭 矩监测系统。
技术方案:本发明的基于转角测量的提升机主轴扭矩监测装置,包括扣合设在主轴上的 基座一和基座二、对称设在基座一和基座二上的上壳体和下壳体,上下壳体内对称设有安装 于基座一上的光源发生单元,光源发生单元包括设在基座一上的信号处理单元、设在信号处 理单元上的光源,光源发生单元的顶部与光源和主轴轴心所在直线相交处设有通光孔一,通 光孔一和光源连线之间设有透镜一,上下壳体内壁与光源和主轴轴心所在直线相交的地方设 有与信号处理单元相连接的光感元件,光感元件与光源发生单元之间设有一个固定在基座二 上、且与主轴同心的圆弧状挡板, 挡板上开有一个与通光孔一位置相对应、且形状和大小相 同的通光孔二, 通光孔二与光感元件之间设有将接收到的光源聚到光感元件上的透镜二。
所述光源发生单元上的通光孔一为与主轴同心的圆弧形孔。
所述的信号处理单元包括与光感元件相连的电源、调理电路和无线发射模块,调理电路 的输入端与光感元件的输出端相连接, 调理电路的输出端与无线发射模块相连接。 有益效果: 本发明利用光感原理实现对矿井提升机主轴扭矩进行实时监测, 同时, 也可 应用于其他的转轴扭矩测量。装置可在不破坏原有设备连接和基础的情况下实现转轴扭矩的 实时测量, 采用无线传输数据, 布线少, 无电磁干扰。可实现转轴静止等不同转速下的扭矩 测量, 使用方便, 维护成本低, 效果显著, 具有广泛的实用性。
附图说明
图 1 是本发明装置的轴向示意图。
图 2 是本发明装置的侧视图。
图 3 是本发明装置的信号处理单元示意图。
图中: -基座一, 2-信号处理单元, 3-透镜一, 4-通光孔一, 5-通光孔二, 6-上壳体, 7-光感元件, 8-透镜二, 9-挡板, 10-光源发生单元, 11-光源, 12-主轴, 13-下壳体, 14- 基座二, 15-电源, 16-调理电路, 17-无线发射模块。
具体实施方式
下面结合附图对本发明的一个实施例作进一步的描述:
本发明的基于转角测量的提升机主轴扭矩监测装置, 主要由基座一 1,基座二 14、 光源 发生单元 10、挡板 9和光感元件 7构成, 基座一 1和基座二 14为两个带有半圆弧槽的扣合 体, 两个基座间隔 10cm并通过螺栓对称扣合固定在提升机的主轴 12上, 基座一 1和基座 二 14上设有固定在其上的上壳体 6和下壳体 13,上下壳体内对称设有安装于基座一 1上的 光源发生单元 10, 光源发生单元 10包括设在基座一 1上的信号处理单元 2、 设在信号处理 单元 2上的光源 11, 光源发生单元 10的顶部与光源 11和主轴 12轴心所在直线相交处设有 通光孔一 4, 通光孔一 4为与主轴 12同心的圆弧孔, 通光孔一 4和光源 11连线之间设有透 镜一 3, 安装时使光源 11位于透镜一 3靠近基座一 1的焦点上, 上下壳体内壁与光源 11和 主轴 12轴心所在直线相交的地方设有与信号处理单元 2相连接的光感元件 7, 光感元件 7 与光源发生单元 10之间设有一个固定在基座二 14上、 且与主轴 12同心的圆弧状挡板 9, 挡板 9上开有一个与通光孔一 4位置相对应、 且形状和大小相同的通光孔二 5, 通光孔二 5 与光感元件 7之间设有将接收到的光源聚到光感元件 7上的透镜二 8,透镜二 8的安装标准 为使光感元件 7位于其远离基座一 1的焦点上。
如附图 3所示, 所述的信号处理单元 2包括与光感元件 7相连的电源 15、 调理电路 16 和无线发射模块 17, 调理电路 16的输入端与光感元件 7的输出端相连接, 调理电路 16的 输出端与无线发射模块 17相连接。 电源 15同时给光感元件 7、调理电路 16、无线发射模块 17和光源 11供电。
工作时, 将装置安装在提升机的主轴 12上并与其保持相对静止。 当主轴 12未受力时, 光源 1的光通过透镜一 3的作用后出来的是平行光,由于通光孔一 4和通光孔二 5的初始位 置刚好对齐, 这样通过通光孔一 4的平行光能全部通过通光孔二 5, 经过透镜二 8的作用聚 集到光感元件 7上, 使光感元件 7输出电流, 电流通过信号处理单元 2中的调理电路 16的 处理后经过无线发射模块无线传输到上位机或 PC机; 当主轴受力产生扭矩时, 提升机的主 轴 12会产生扭转, 使基座一 1和基座二 14产生相对转动, 固定在基座二 14上的挡板 9随 基座二 14转动, 从而使原本对齐的通光孔一 4和通光孔二 5产生与扭矩相对应的错位, 这 时通过通光孔一 4的平行光只有部分光能够进入通光孔二 5最终到达光感元件 7上,经光感 元件 7过处理后向上位机发送与此时光感相对应的电信号,通过对比主轴不同受力时光感元 件 7接收光的多少实现测量通光孔一 4相对于通光孔二 5的扭转角,即可通过测量的扭转角 计算出提升机主轴 12的扭矩。
此处以提升机主轴为对象阐述了本发明的一个实施例,但本发明不仅仅适用于提升机主 轴的扭矩监测, 还可用于其他转轴的扭矩检测。 同时, 实际应用时, 可以通过信号处理单元 计算出扭矩值后再通过无线将其传输到上位机。

Claims

权利要求书
1. 一种基于转角测量的提升机主轴扭矩监测装置, 其特征在于: 它包括扣合设在主轴 ( 12) 上的基座一 (1 ) 和基座二 (14)、 对称设在基座一 (1 ) 和基座二 (14) 上的上壳体 (6) 和下壳体 (13 ), 上下壳体内对称设有安装于基座一 (1 ) 上的光源发生单元 (10), 光 源发生单元 (10) 包括设在基座一 (1 ) 上的信号处理单元 (2)、 设在信号处理单元 (2) 上 的光源 (11 ), 光源发生单元 (10) 的顶部与光源 (11 ) 和主轴 (12) 轴心所在直线相交处 设有通光孔一 (4), 通光孔一 (4) 和光源 (11 ) 连线之间设有透镜一 (3 ), 上下壳体内壁 与光源 (11 ) 和主轴 (12) 轴心所在直线相交的地方设有与信号处理单元 (2) 相连接的光 感元件 (7 ), 光感元件 (7) 与光源发生单元 (10) 之间设有一个固定在基座二 (14) 上、 且与主轴 (12) 同心的圆弧状挡板 (9), 挡板 (9) 上开有一个与通光孔一 (4 ) 位置相对 应、 且形状和大小相同的通光孔二 (5), 通光孔二 (5) 与光感元件 (7) 之间设有将接收到 的光源聚到光感元件 (7) 上的透镜二 (8)。
2. 根据权利 1 要求所述的基于转角测量的提升机主轴扭矩监测装置, 其特征在于: 所 述光源发生单元 (10) 上的通光孔一 (4) 为与主轴 (12) 同心的圆弧形孔。
3. 根据权利 1 要求所述的基于转角测量的提升机主轴扭矩监测装置, 其特征在于: 所 述的信号处理单元 (2) 包括与光感元件 (7 ) 相连的电源 (15 )、 调理电路 (16) 和无线发 射模块 (17), 调理电路 (16) 的输入端与光感元件 (7) 的输出端相连接, 调理电路 (16) 的输出端与无线发射模块 (17) 相连接。
PCT/CN2014/078749 2014-01-22 2014-05-29 一种基于转角测量的提升机主轴扭矩监测装置 WO2015109715A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/909,856 US9909941B2 (en) 2014-01-22 2014-05-29 Hoist main shaft torque monitoring device based on angle measurement
AU2014379000A AU2014379000B2 (en) 2014-01-22 2014-05-29 Hoist main shaft torque monitoring device based on angle measurement
CA2936419A CA2936419C (en) 2014-01-22 2014-05-29 Hoist main shaft torque monitoring device based on angle measurement
RU2015139549A RU2615793C2 (ru) 2014-01-22 2014-05-29 Устройство для контроля крутящего момента главного вала подъемной машины, основанное на измерении угла кручения
ZA2015/07359A ZA201507359B (en) 2014-01-22 2015-10-05 Hoist main shaft torque monitoring device based on angle measurement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410028896.4A CN103792035B (zh) 2014-01-22 2014-01-22 一种基于转角测量的提升机主轴扭矩监测装置
CN201410028896.4 2014-01-22

Publications (1)

Publication Number Publication Date
WO2015109715A1 true WO2015109715A1 (zh) 2015-07-30

Family

ID=50667914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078749 WO2015109715A1 (zh) 2014-01-22 2014-05-29 一种基于转角测量的提升机主轴扭矩监测装置

Country Status (7)

Country Link
US (1) US9909941B2 (zh)
CN (1) CN103792035B (zh)
AU (1) AU2014379000B2 (zh)
CA (1) CA2936419C (zh)
RU (1) RU2615793C2 (zh)
WO (1) WO2015109715A1 (zh)
ZA (1) ZA201507359B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070025A (zh) * 2015-09-10 2015-11-18 南通大学 一种工业用无线扭矩监测系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103792035B (zh) 2014-01-22 2016-06-15 中国矿业大学 一种基于转角测量的提升机主轴扭矩监测装置
US10901190B2 (en) * 2015-06-23 2021-01-26 The Charles Stark Draper Laboratory, Inc. Hemispherical star camera
RU192609U1 (ru) * 2019-05-28 2019-09-23 Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет" (ДВФУ) Фотоэлектрический торсиометр

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389780A (en) * 1992-05-14 1995-02-14 Anderson; Philip M. Optical torque sensor utilizing single polarizing area filters and mechanical amplifier
CN1228532A (zh) * 1998-03-09 1999-09-15 钱广宇 非接触电测量旋转扭矩的方法
CN2755582Y (zh) * 2004-07-26 2006-02-01 周云山 光电式扭矩传感器
US20090266178A1 (en) * 2008-04-28 2009-10-29 Matzoll Jr Robert J Optical sensor for measurement of static and dynamic torque
CN102393268A (zh) * 2011-11-14 2012-03-28 南京航空航天大学 一种用于测量超高转速叶轮转轴扭矩的装置
CN103792035A (zh) * 2014-01-22 2014-05-14 中国矿业大学 一种基于转角测量的提升机主轴扭矩监测装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1129582A (en) * 1965-04-15 1968-10-09 Saunders Roe Dev Ltd Improvements in or relating to torque meters
GB1213066A (en) * 1968-04-08 1970-11-18 British Hovercraft Corp Ltd Improvements to meters for measuring torques
FR2564586A1 (fr) * 1984-05-18 1985-11-22 Honda Motor Co Ltd Appareil optique de detection de couple
ES2152420T3 (es) * 1994-08-25 2001-02-01 Trw Lucas Varity Electric Sensor de desplazamiento y sensor de momento de torsion.
JPH09257464A (ja) * 1996-03-25 1997-10-03 Tokai Rika Co Ltd ステアリングホイールの回転角度検出装置
CN1192225C (zh) * 1997-08-15 2005-03-09 毕晓普创新有限公司 转矩传感器
DE19848068C2 (de) * 1997-10-23 2001-02-08 Siemens Ag Vorrichtung zur Drehmomentmessung an rotierenden Drehwellen
JP4183370B2 (ja) * 2000-07-07 2008-11-19 株式会社東芝 トルク計測装置
CN2505330Y (zh) * 2001-09-28 2002-08-14 清华大学 车用光电式转矩传感器
US7322250B1 (en) * 2002-04-09 2008-01-29 Rockwell Automation Technologies, Inc. System and method for sensing torque on a rotating shaft
CN2869822Y (zh) * 2005-08-19 2007-02-14 大庆油田有限责任公司 螺杆泵井光杆的扭矩、转速、轴向力无线通信测量装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5389780A (en) * 1992-05-14 1995-02-14 Anderson; Philip M. Optical torque sensor utilizing single polarizing area filters and mechanical amplifier
CN1228532A (zh) * 1998-03-09 1999-09-15 钱广宇 非接触电测量旋转扭矩的方法
CN2755582Y (zh) * 2004-07-26 2006-02-01 周云山 光电式扭矩传感器
US20090266178A1 (en) * 2008-04-28 2009-10-29 Matzoll Jr Robert J Optical sensor for measurement of static and dynamic torque
CN102393268A (zh) * 2011-11-14 2012-03-28 南京航空航天大学 一种用于测量超高转速叶轮转轴扭矩的装置
CN103792035A (zh) * 2014-01-22 2014-05-14 中国矿业大学 一种基于转角测量的提升机主轴扭矩监测装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105070025A (zh) * 2015-09-10 2015-11-18 南通大学 一种工业用无线扭矩监测系统

Also Published As

Publication number Publication date
AU2014379000A1 (en) 2016-01-28
CA2936419A1 (en) 2015-07-30
CN103792035A (zh) 2014-05-14
RU2615793C2 (ru) 2017-04-11
US9909941B2 (en) 2018-03-06
US20160187211A1 (en) 2016-06-30
CA2936419C (en) 2020-04-14
RU2015139549A (ru) 2017-03-22
CN103792035B (zh) 2016-06-15
AU2014379000B2 (en) 2016-07-14
ZA201507359B (en) 2017-01-25

Similar Documents

Publication Publication Date Title
WO2015109716A1 (zh) 一种轴向差动式矿井提升机主轴扭矩检测装置
WO2015109715A1 (zh) 一种基于转角测量的提升机主轴扭矩监测装置
CN204964011U (zh) 便携式旋转机械主轴的振动检测及故障诊断装置
CN201464495U (zh) 速度角度传感器测试仪
CN201748913U (zh) 工程机械角度检测系统
CN102519723A (zh) 一种齿轮动态传动误差测控系统
CN105021352A (zh) 一种主轴内置机械式在线动平衡系统
WO2017150190A1 (ja) トルク計測装置、歯車箱及びトルク計測方法
CN103968983A (zh) 输出扭矩精确测量系统及其扭矩测量的方法
US9810203B2 (en) Method and calculator unit for determining total damage to at least one rotating component of a drive train
CN103332549A (zh) 电梯限速器动作速度的校验装置及其校验方法
CN104964820A (zh) 一种旋转机械断轴故障在线预测方法及装置
CN205520745U (zh) 电主轴机电一体化检测系统
CN104457592A (zh) 一种线缆长度测量装置
CN201181299Y (zh) 磁电式外挂扭矩测量装置
CN203232046U (zh) 风力发电机叶轮转速测量监控装置
CN202975039U (zh) 一种采用静电传感器测量旋转体转速的装置
CN107036800A (zh) 一种矿井天轮绳槽径向特性检测系统
CN203409597U (zh) 一种锯床金属锯带传动过程的动态包角检测装置
CN203848789U (zh) 一种三爪卡盘盘丝螺纹转角的测量机构
CN105651222A (zh) 波发生器的长轴径向跳动与对称度测试方法及系统
CN105974157B (zh) 含双传感单元可消除偏心误差的螺杆泵井角速度测量装置
CN113074858B (zh) 测量动态爆破的状态的传感系统、样本系统及试验方法
CN103394971B (zh) 一种锯床金属锯带传动过程的动态包角检测装置及方法
CN219255627U (zh) 一种关节装配检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14880239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015139549

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2936419

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2014379000

Country of ref document: AU

Date of ref document: 20140529

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14909856

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14880239

Country of ref document: EP

Kind code of ref document: A1