WO2020034258A1 - 一种活性炭烟气净化塔 - Google Patents

一种活性炭烟气净化塔 Download PDF

Info

Publication number
WO2020034258A1
WO2020034258A1 PCT/CN2018/102914 CN2018102914W WO2020034258A1 WO 2020034258 A1 WO2020034258 A1 WO 2020034258A1 CN 2018102914 W CN2018102914 W CN 2018102914W WO 2020034258 A1 WO2020034258 A1 WO 2020034258A1
Authority
WO
WIPO (PCT)
Prior art keywords
activated carbon
flue gas
tower body
gas purification
tower
Prior art date
Application number
PCT/CN2018/102914
Other languages
English (en)
French (fr)
Inventor
王兰玉
朱廷钰
田欣
李玉然
李建新
刘连继
田京雷
王斌
Original Assignee
中国科学院过程工程研究所
河钢股份有限公司唐山分公司
河钢集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所, 河钢股份有限公司唐山分公司, 河钢集团有限公司 filed Critical 中国科学院过程工程研究所
Publication of WO2020034258A1 publication Critical patent/WO2020034258A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • B01D53/08Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds according to the "moving bed" method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40083Regeneration of adsorbents in processes other than pressure or temperature swing adsorption
    • B01D2259/40084Regeneration of adsorbents in processes other than pressure or temperature swing adsorption by exchanging used adsorbents with fresh adsorbents

Definitions

  • the present disclosure relates to the field of gas purification, for example, to an activated carbon flue gas purification tower.
  • Activated carbon flue gas purification technology has the advantages of simultaneous removal of multiple pollutants, recycling of by-products, activated carbon recycling, and high purification efficiency. It is a very promising flue gas purification technology.
  • Activated carbon flue gas purification process is widely used in industry.
  • Activated carbon flue gas purification equipment is generally fixed bed and moving bed. Among them, the fixed bed operation is simple, the removal efficiency is high, but the equipment is large and the continuity is poor; the moving bed reactor occupies less space and has good continuity, but the structure is relatively complicated, and the adsorbent activated carbon will cause certain machinery during the movement Abrasion requires continuous replenishment of fresh adsorbent activated carbon.
  • the activated carbon flue gas purification tower adopts a method of thickening the activated carbon layer, which results in a small actual contact area between the flue gas and the activated carbon, and a large initial filling amount of the activated carbon. Insufficient activated carbon reaction makes the utilization rate of activated carbon low.
  • a flue gas channel dedicated to flue gas flow is set inside part of the activated carbon flue gas purification tower, which increases the footprint of the activated carbon flue gas purification tower and makes the flue gas flow resistance Large, high energy consumption for flue gas purification.
  • the disclosure provides an activated carbon flue gas purification tower, which can increase the contact area between activated carbon and flue gas, improve the efficiency of using activated carbon, and improve the purification efficiency of the flue gas purification tower.
  • An activated carbon flue gas purification tower comprises: a tower body, wherein the interior of the tower body is hollow, a flue gas channel extending in a vertical direction is formed inside the tower body, and the tower body has a flue gas inlet and a flue gas outlet;
  • An activated carbon region is provided in the flue gas channel, the activated carbon region includes at least two activated carbon layers distributed in a vertical direction, and adjacent two activated carbon layers are sequentially connected through corners to form an activated carbon flow channel.
  • the zone has an activated carbon inlet and an activated carbon outlet.
  • the tower body has an ash discharge port, and a discharge valve is provided in the activated carbon inlet, the activated carbon outlet, and the ash discharge port.
  • the discharge valve is a double-sealed discharge valve.
  • the thickness of the activated carbon layer is 500 mm-2000 mm, and the included angle between the activated carbon layer and a horizontal line is 29 degrees to 35 degrees.
  • the activated carbon region includes two porous plates, the two porous plates are respectively located above and below the activated carbon layer to provide support for the activated carbon layer, and the two porous plates are in contact with the activated carbon layer.
  • the inner wall of the tower body is surrounded to form a space containing the activated carbon layer.
  • the pore size of the holes in the perforated plate is 1 mm-2 mm, and the open rate of the perforated plate is 35% -50%.
  • a driving mechanism is provided in at least one of the activated carbon layer and the corner, and the driving mechanism is configured to drive the activated carbon to flow.
  • the driving mechanism is a roller unloader, a stencil conveyor, or a screw conveyor.
  • the flow direction of the flue gas in the tower body is opposite to the flow direction of the activated carbon in the tower body.
  • the activated carbon inlet is provided at the top of the tower body, the activated carbon outlet is provided at the bottom of the tower body, the flue gas inlet is provided at the bottom of the tower body, and the flue gas outlet is provided at The top of the tower.
  • FIG. 1 is a schematic diagram of an activated carbon flue gas purification tower according to an embodiment
  • FIG. 2 is a schematic structural diagram of a perforated plate according to an embodiment
  • FIG. 3 is a schematic diagram of another activated carbon flue gas purification tower according to an embodiment
  • FIG. 4 is a schematic diagram of an activated carbon flue gas purification tower using a steel mesh conveyor as a driving mechanism according to an embodiment
  • FIG. 5 is a schematic diagram of another activated carbon flue gas purification tower using a screw conveyor as a driving mechanism according to an embodiment.
  • 1- tower body 2- activated carbon zone, 201- activated carbon layer, 202-corner, 203- porous plate, 3- flue gas inlet, 4- flue gas outlet, 5- activated carbon inlet, 6- activated carbon outlet, 7- ash discharge Port, 8-discharge valve, 9-roller unloader, 10-steel mesh conveyor, 11-spiral conveyor.
  • orientations or positional relationships indicated by the terms “up”, “down”, and the like are based on the orientations or positional relationships shown in the drawings, and are only for the convenience of describing the present invention and simplifying the description, rather than indicating or implying
  • the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation.
  • connection and “connected” should be understood in a broad sense unless otherwise specified and defined, for example, it may be a fixed connection, a detachable connection, or an integral connection; it may be Directly connected, or indirectly through intermediate media.
  • the activated carbon flue gas purification tower includes a tower body 1 and an activated carbon zone 2 disposed inside the tower body 1.
  • the shape of the tower body 1 may be a cylinder, a rectangular parallelepiped, or a cube.
  • the tower body 1 is a hollow tower body, which has a flue gas inlet 3 and a flue gas outlet 4, and a flue gas channel extending in a vertical direction is formed inside the flue gas inlet 3, the flue gas inlet 3 and the flue gas outlet 4, and a flue gas channel.
  • the activated carbon zone 2 is arranged on a flue gas passage in the tower body 1.
  • the activated carbon zone 2 has an activated carbon inlet 5 and an activated carbon outlet 6, the activated carbon inlet 5 is set to be charged, and the activated carbon outlet 6 is set to be discharged.
  • the tower body 1 has an ash discharge port 7 which is configured to remove solid phase dust precipitated in the flue gas and dust generated during the friction process of the activated carbon.
  • the activated carbon zone 2 is arranged inside the tower body 1 and connected to the inner wall of the tower body 1; the two ends of the activated carbon zone 2 are in communication with the activated carbon inlet 5 and the activated carbon outlet 6 in order to add activated carbon into the activated carbon zone 2 or discharge the activated carbon.
  • the activated carbon can be loaded and unloaded in the manner of loading, unloading, that is, the activated carbon inlet 5 is provided at the top of the tower body 1, and the activated carbon outlet 6 is provided at the bottom of the tower body 1.
  • the loading and unloading direction of the activated carbon can also be down-in and up-out, that is, the activated carbon inlet 5 is set at the bottom of the tower body 1, and the activated carbon outlet 6 is set at the top of the tower body 1.
  • an activated carbon inlet 5 is provided on the top of the tower body 1, and an activated carbon outlet 6 is provided on the bottom of the tower body 1.
  • the activated carbon zone 2 includes at least two activated carbon layers 201, the at least two activated carbon layers 201 are distributed in a vertical direction, and adjacent two activated carbon layers 201 are sequentially communicated at a corner 202.
  • the number and area of the activated carbon layer 201 and the size of the tower body 1 can be reasonably set according to the amount of flue gas to be treated and the flue gas concentration. If the amount of flue gas to be treated is large, the cross-sectional area of the tower body 1 can be increased to increase the activated carbon. The area of the layer 201; if the concentration of the flue gas to be processed is high, the height of the tower body 1 can be increased to accommodate the multilayer activated carbon layer 201.
  • the thickness of the activated carbon layer 201 can be selected according to the actual smoke concentration. If the smoke concentration to be processed is large, the thickness of the sexual carbon layer 201 can be increased accordingly.
  • the thickness of the activated carbon layer 201 can be between 500mm and 2000mm. When the thickness of the activated carbon layer 201 is between 500mm and 2000mm, the purification effect of the flue gas can be ensured, and the flue gas cannot be caused by the excessive thickness of the activated carbon layer 201. Excessive flow resistance increases energy consumption.
  • the activated carbon zone 2 includes two porous plates 203.
  • the activated carbon layer 201 can be supported by two porous plates 203.
  • the two porous plates 203 are located above and below the activated carbon layer 201, respectively.
  • two The perforated plate 203 may be surrounded with the inner wall of the tower body 1 to form a space for receiving activated carbon.
  • Two pieces of the perforated plate 203 serve as the top and bottom surfaces of the activated carbon storage cavity, and the inner wall of the tower body 1 serves as a side wall of the activated carbon storage cavity.
  • the perforated plate 203 may be replaced with a structure that can achieve the same function, such as a grid plate.
  • the shape of the holes in the porous plate 203 may be circular, oval or polygonal.
  • the pore diameter of the holes in the perforated plate 203 should be smaller than the diameter of the internal activated carbon particles to prevent the activated carbon from falling out. In the case where the support strength of the perforated plate 203 is satisfied, increasing the opening ratio of the perforated plate 203 can improve the flow efficiency of the flue gas.
  • the pore diameter of the pores of the porous plate 203 can be set to 1 mm-2 mm, and the opening ratio of the porous plate 203 can be between 35% and 50%.
  • the flue gas flows through the activated carbon layer 201 through the porous plate 203 and then flows out through the porous plate 203 on the other side.
  • a driving mechanism is provided in the activated carbon layer 201 and the corner 202, and the activated carbon is controlled by the driving mechanism to move along the activated carbon flow channel composed of the activated carbon layer 201 and the corner 202 from top to bottom.
  • the saturated activated carbon is unloaded from the tower body 1 through the activated carbon outlet 6.
  • activated carbon is added to the activated carbon zone 2 connected to the activated carbon inlet 5 through the activated carbon inlet 5 to realize real-time replacement of the activated carbon and avoid smoke caused by activated carbon saturation. Gas purification is incomplete.
  • the use of a driving mechanism to control the flow of activated carbon has the advantage of a controllable flow rate compared to activated carbon relying only on gravity flow.
  • the speed of activated carbon flow can be selected according to the actual smoke concentration. Generally, as the flue gas concentration increases, the flow rate of activated carbon can be appropriately accelerated to improve the purification rate of the flue gas.
  • a roller unloader 9 is adopted as a driving mechanism, wherein the roller unloader 9 is a roller conveying device.
  • the number and size of the roll dischargers 9 can be set according to the size of the activated carbon layer 201.
  • the activated carbon layer 201 has a certain angle with the horizontal line. This angle increases the area of the activated carbon layer 201 when the cross-sectional area of the tower 1 is constant, and increases the smoke passing through the activated carbon layer 201 when the thickness of the activated carbon layer 201 is constant.
  • the length of the path increases the residence time of the flue gas in the activated carbon layer 201; at the same time, the angle between the flow direction of the flue gas and the activated carbon layer 201 will also change.
  • the angle can be reduced
  • the pressure loss enables the flue gas to flow smoothly through the activated carbon layer 201, improves the flow efficiency of the flue gas, and reduces the energy consumption for purifying the flue gas.
  • the angle between the activated carbon layer 201 and the horizontal line increases, the height of the same number of activated carbon layers 201 increases, and the height of the corresponding tower 1 increases.
  • the angle between the activated carbon layer 201 and the horizontal line increases, the The flow is increased by the influence of gravity, and it is difficult to precisely control the flow velocity of the activated carbon through the driving mechanism. Therefore, the angle between the activated carbon layer 201 and the horizontal line can be set between 29 degrees and 35 degrees, such as 30 degrees or 33 degrees.
  • the flow direction of the flue gas in the tower 1 can be top-down or bottom-up. In this embodiment, the flow direction of the flue gas is opposite to that of the activated carbon.
  • the corresponding flue gas inlet 3 is set at the bottom of the tower 1
  • the outlet 4 is provided on the top of the tower body 1. The flue gas flows into the tower 1 from the flue gas inlet 3, and first comes into contact with the activated carbon located in the lower layer of the activated carbon zone 2. At this time, the concentration of the flue gas is large, and the activated carbon and the flue gas fully react out of the tower 1 from the activated carbon outlet 6. The activated carbon reaction is complete , High utilization.
  • the activated carbon Before the flue gas exits the flue gas outlet 4, it comes into contact with the activated carbon on the upper layer of the activated carbon zone 2. At this time, the activated carbon has just entered the activated carbon zone 2 from the activated carbon inlet 5 and the activated carbon has a good adsorption effect, which can ensure the complete purification of the flue gas. Setting the flow direction of the flue gas opposite to the flow direction of the activated carbon can simultaneously improve the purification rate of the flue gas and the utilization rate of the activated carbon, thereby improving the purification efficiency.
  • the ash discharge port 7 is set at the bottom of the tower body 1.
  • the solid phase dust precipitated in the flue gas and the dust generated during the friction process of the activated carbon can be removed from the ash discharge port 7. After the dust is removed from the tower body 1, it can be used as fuel for secondary use.
  • a discharge valve 8 is provided in the activated carbon inlet 5, the activated carbon outlet 6, and the ash discharge port 7, wherein the discharge valve 8 can be a star discharge valve, and the discharge valve 8 can block the upper air pressure of the discharge valve 8 when it is working. And lower air pressure to play a role in air lock.
  • the discharge valve 8 of this embodiment adopts a double-layer sealed discharge valve.
  • the double-layer sealed discharge valve is filled with nitrogen as a protective gas.
  • the double-layer sealed discharge valve can prevent flue gas from entering the activated carbon inlet 5, the activated carbon outlet 6, and the ash discharge.
  • the overflow in the port 7 ensures that all the flue gas is purified by the tower 1.
  • the activated carbon flue gas purification tower provided in this embodiment has a hollow inside the tower body and forms a flue gas channel extending in the vertical direction inside the tower body.
  • the cross section area of the flue gas channel is large and the flue gas flows in the tower body in the vertical direction.
  • the flow resistance of the flue gas is small, and the energy consumption of flue gas purification is small;
  • the tower body does not need to be additionally provided with flue gas channels, and the activated carbon area in the tower is closely arranged to reduce the footprint of the activated carbon flue gas purification tower;
  • the activated carbon area includes at least two mutually The connected activated carbon layer increases the contact area between the activated carbon and the flue gas, and improves the purification efficiency of the flue gas;
  • the activated carbon area has an activated carbon inlet and an activated carbon outlet, which facilitates the replacement of the activated carbon, and the activated carbon flows in the activated carbon area to improve the utilization rate of the activated carbon.
  • this embodiment provides an activated carbon flue gas purification tower.
  • an activated carbon layer 201 is horizontally disposed, and a corner 202 is perpendicular to the activated carbon layer 201.
  • a driving mechanism is provided in the horizontally-set activated carbon layer 201, and the activated carbon moves horizontally under the action of the driving mechanism.
  • the corner 202 may not be provided with a driving mechanism, and the activated carbon slowly moves from the top to the bottom by gravity at the corner 202.
  • a plurality of activated carbon layers 201 are arranged horizontally, so that the flow rate of activated carbon between each activated carbon layer 201 completely depends on the setting of the driving mechanism, and the precise adjustment of the activated carbon flow rate is realized.
  • the driving mechanism adopts a roller unloader 9.
  • the driving mechanism of the activated carbon zone 2 selects the steel mesh conveyor 10 and the screw conveyor 11 respectively, and the activated carbon layer 201 can be set in a horizontal direction or can be set to At an angle to the horizontal line.
  • FIG. 4 is a schematic diagram of an activated carbon flue gas purification tower using a steel mesh conveyor 10 as a driving device.
  • the steel mesh conveyor 10 may be provided with a lifting baffle, and the steel mesh conveyor 10 may be horizontal, inclined at a certain angle, and vertical.
  • Directional transport of activated carbon A steel mesh conveyor 10 with a baffle is arranged at the activated carbon layer 201 and the corner 202 of the activated carbon zone 2 to enable the activated carbon to move slowly from bottom to top or from top to bottom, and the transportation speed is accurately and controllable, which is suitable for various types of applications.
  • FIG. 5 is a schematic diagram of an activated carbon flue gas purification tower with the screw conveyor 11 selected as a driving device.
  • the selection of the screw conveyor 11 can realize the flow of activated carbon between the activated carbon layers 201, so that the distribution of activated carbon is more uniform, avoiding that some activated carbon in the same layer of the activated carbon layer 201 is saturated, but some activated carbon is still not fully utilized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种活性炭烟气净化塔包括:塔体(1),塔体(1)内部中空,塔体(1)内部形成有沿竖直方向延伸的烟气通道,塔体(1)具有烟气入口(3)和烟气出口(4);活性炭区(2),设置于烟气通道中,活性炭区(2)包括沿竖直方向分布的至少两个活性炭层(201),相邻两个活性炭层(201)通过拐角(202)依次连通,形成活性炭流动通道,活性炭区(2)具有活性炭入口(5)和活性炭出口(6)。

Description

一种活性炭烟气净化塔
本公开要求申请日为2018年8月13日、申请号为201810914745.7的中国专利申请的优先权,该申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及气体净化领域,例如涉及一种活性炭烟气净化塔。
背景技术
活性炭烟气净化技术具有同时脱除多种污染物、副产物可资源化、活性炭循环使用、净化效率高等优点,是非常具有发展前景的烟气净化技术。活性炭烟气净化工艺在工业上应用广泛,活性炭烟气净化设备一般为固定床和移动床。其中,固定床操作简单,脱除效率高,但设备庞大,连续性较差;移动床反应器占地空间少,连续性好,但结构相对复杂,吸附剂活性炭在移动过程中会造成一定机械磨损,需要连续补给新鲜吸附剂活性炭。
相关技术中,为了提高烟气净化率,活性炭烟气净化塔采用加厚活性炭层的方法,导致烟气与活性炭实际接触面积小,活性炭初次填充量大,且在与烟气反应过程中,部分活性炭反应不充分,使得活性炭利用率低。相关技术中,为实现烟气在装置内的流动,部分活性炭烟气净化塔内部设置专门用于烟气流动的烟气通道,增加了活性炭烟气净化塔的占地面积,使得烟气流动阻力大,烟气净化能耗高。
发明内容
本公开提供一种活性炭烟气净化塔,可以增大活性炭与烟气的接触面积, 提高活性炭的使用效率,提高烟气净化塔的净化效率。
一种活性炭烟气净化塔,包括:塔体,所述塔体内部中空,所述塔体内部形成有沿竖直方向延伸的烟气通道,所述塔体具有烟气入口和烟气出口;活性炭区,设置于所述烟气通道中,所述活性炭区包括沿竖直方向分布的至少两个活性炭层,相邻两个所述活性炭层通过拐角依次连通,形成活性炭流动通道,所述活性炭区具有活性炭入口和活性炭出口。
在一实施例中,所述塔体具有卸灰口,所述活性炭入口、所述活性炭出口和所述卸灰口中均设置有卸料阀。
在一实施例中,所述卸料阀为双层密封卸料阀。
在一实施例中,所述活性炭层的厚度为500mm-2000mm,所述活性炭层与水平线的夹角为29度-35度。
在一实施例中,所述活性炭区包括两片多孔板,所述两片多孔板分别位于所述活性炭层的上方和下方,为所述活性炭层提供支撑,所述两片多孔板与所述塔体的内壁围设形成容纳活性炭层的空间。
在一实施例中,所述多孔板上的孔的孔径为1mm-2mm,所述多孔板的开孔率为35%-50%。
在一实施例中,所述活性炭层和所述拐角的至少一个中设置有驱动机构,所述驱动机构设置为驱动活性炭流动。
在一实施例中,所述驱动机构为辊式卸料器、钢网输送机或螺旋输送机。
在一实施例中,烟气在所述塔体内的流动方向与活性炭在所述塔体内的流动方向相反。
在一实施例中,所述活性炭入口设置在所述塔体顶部,所述活性炭出口设置在所述塔体底部,所述烟气入口设置在所述塔体底部,所述烟气出口设置在所述塔体顶部。
附图说明
图1是一实施例提供的活性炭烟气净化塔的示意图;
图2是一实施例提供的多孔板的结构示意图;
图3是一实施例提供的另一活性炭烟气净化塔的示意图;
图4是一实施例提供的一种采用钢网输送机作为驱动机构的活性炭烟气净化塔示意图;
图5是一实施例提供的另一种采用螺旋输送机作为驱动机构的活性炭烟气净化塔示意图。
图中:
1-塔体,2-活性炭区,201-活性炭层,202-拐角,203-多孔板,3-烟气入口,4-烟气出口,5-活性炭入口,6-活性炭出口,7-卸灰口,8-卸料阀,9-辊式卸料器,10-钢网输送机,11-螺旋输送机。
具体实施方式
下面将结合附图对本公开进行描述。
在本公开的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作。
在本公开的描述中,除非另有明确的规定和限定,术语“连通”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。
如图1、图2所示,本实施例提供一种用于气体净化的活性炭烟气净化塔,该活性炭烟气净化塔包括塔体1以及设于塔体1内部的活性炭区2。塔体1的形 状可以是圆柱体或长方体或正方体。该塔体1为中空塔体,具有烟气入口3和烟气出口4,塔体1的内部形成有沿竖直方向延伸的烟气通道,烟气入口3和烟气出口4与烟气通道连通。活性炭区2设置在塔体1内的烟气通道上。烟气通过烟气入口3进入烟气通道后,烟气能够穿过活性炭区2净化,净化后的烟气通过烟气出口4排出。所述活性炭区2具有活性炭入口5和活性炭出口6,活性炭入口5设置为加料,活性炭出口6设置为卸料。塔体1具有卸灰口7,卸灰口7设置为移出烟气中沉淀的固相粉尘及活性炭摩擦过程中产生的粉尘。
其中活性炭区2设置在塔体1内部,与塔体1内壁连接;活性炭区2两端与活性炭入口5和活性炭出口6连通,以便向活性炭区2内添加活性炭或将活性炭卸出。其中,活性炭可以采用上进下出的方式装卸,即活性炭入口5设置在塔体1的顶部,活性炭出口6设置在塔体1的底部。活性炭的装卸方向也可以为下进上出,即活性炭入口5设置在塔体1的底部,活性炭出口6设置在塔体1的顶部。为了方便活性炭的添加和卸出,本实施例中将活性炭入口5设置在塔体1的顶部,活性炭出口6设置在塔体1底部。
该活性炭区2包括至少两个活性炭层201,至少两个活性炭层201沿竖直方向分布,相邻两个活性炭层201在拐角202处依次连通。
活性炭层201的数量、面积及塔体1的尺寸可以根据需处理的烟气量及烟气浓度进行合理设置,若需处理的烟气量大,可以加大塔体1的截面积从而增大活性炭层201的面积;若需处理的烟气浓度高,可以增加塔体1高度从而容纳多层活性炭层201。
在一实施例中,可以根据实际烟气的浓度选择相应的活性炭层201的厚度,若需处理的烟气浓度较大,可以相应增加性炭层201的厚度。其中该活性炭层201的厚度可以在500mm-2000mm之间,当活性炭层201的厚度选择 500mm-2000mm之间时,既能保证烟气的净化效果,又不会由于活性炭层201过厚导致烟气流动阻力过大,能耗升高。
活性炭区2包括两片多孔板203,活性炭层201可以由两片多孔板203提供支撑,两片多孔板203分别位于活性炭层201的上方和下方,为简化活性炭烟气净化塔的结构,两片多孔板203可以与塔体1的内壁围设形成容纳活性炭的空间,两片多孔板203作为活性炭容纳腔的顶面和底面,塔体1的内壁作为活性炭容纳腔的侧壁。该多孔板203也可以替换为网格板等可以实现相同功能的结构。该多孔板203上孔的形状可以是圆形、椭圆形或多边形。多孔板203上的孔的孔径应小于内部活性炭颗粒直径,避免活性炭落出。在满足多孔板203的支撑强度的情况下,提高多孔板203的开孔率可提高烟气的流动效率。通常,多孔板203的孔的孔径可以设置为1mm-2mm,多孔板203的开孔率可以在35%-50%之间。烟气通过多孔板203流经活性炭层201后再通过另一侧多孔板203流出。
活性炭层201内和拐角202内设置有驱动机构,活性炭受驱动机构控制自上而下沿由活性炭层201及拐角202组成的活性炭流动通道移动。通过活性炭的移动,将饱和的活性炭由活性炭出口6卸出塔体1,同时通过活性炭入口5向与该活性炭入口5连通的活性炭区2添加活性炭,实现活性炭的实时更换,避免由于活性炭饱和导致烟气净化不完全。采用驱动机构控制活性炭流动与活性炭仅依靠重力流动相比,具有流动速度可控的优势。在一实施例中可以根据实际烟气的浓度选择活性炭流动的速度。通常随烟气浓度升高可适当加快活性炭的流动速度,以提高烟气的净化率。本实施例中采用辊式卸料器9作为驱动机构,其中辊式卸料器9为辊式输送装置。辊式卸料器9的数量及尺寸可以根据活性炭层201的尺寸设置。
活性炭层201与水平线呈一定夹角,该角度在塔体1横截面积一定的情况下增大了活性炭层201面积,且在活性炭层201厚度一定的情况下增加了烟气穿过活性炭层201路径长度,增加了烟气在活性炭层201内的停留时间;同时烟气流动的方向与活性碳层201的夹角亦会改变,与烟气垂直穿过活性炭层201相比,该角度可以降低压损,使烟气顺畅流过活性炭层201,提高烟气的流动效率,降低烟气净化能耗。但是随着活性炭层201与水平线角度的增加,相同层数的活性炭层201高度增加,相应的塔体1高度增加;同时随着活性炭层201与水平线夹角的增加,活性炭在活性炭区2内的流动受重力影响增加,难以通过驱动机构精准控制活性炭的流动速度,因此活性炭层201与水平线的夹角可以设置在29度-35度之间,如30度或33度。
烟气在塔体1内的流向可以自上而下或者自下而上,本实施例中烟气的流动方向与活性炭流动方向相反,相应的烟气入口3设置在塔体1底部,烟气出口4设置在塔体1顶部。烟气从烟气入口3流入塔体1,首先与位于活性炭区2下层的活性炭接触;此时烟气浓度较大,活性炭与烟气充分反应后从活性炭出口6流出塔体1,活性炭反应完全,利用率高。烟气流出烟气出口4前,与活性炭区2上层活性炭接触;此时活性炭刚刚自活性炭入口5进入活性炭区2,活性炭吸附效果好,可以确保烟气净化完全。烟气的流动方向与活性炭流动方向相反设置可同时提高烟气的净化率及活性炭的利用率,从而提高净化效率。
卸灰口7设置在塔体1底部,烟气中沉淀的固相粉尘及活性炭摩擦过程中产生的粉尘可由卸灰口7移出,粉尘移出塔体1后,可以作为燃料二次利用。
活性炭入口5、活性炭出口6和卸灰口7中均设置有卸料阀8,其中,卸料阀8可以采用星型卸料阀,该卸料阀8工作时可以隔断卸料阀8上部气压和下部气压而起到锁气作用。本实施例卸料阀8采用双层密封卸料阀,双层密封卸 料阀内部充氮气作为保护气体,该双层密封卸料阀可以防止烟气从活性炭入口5、活性炭出口6和卸灰口7中溢出,确保全部烟气通过塔体1净化。
本实施例提供的活性炭烟气净化塔,塔体内部中空,并在塔体内部形成沿竖直方向延伸的烟气通道,烟气通道截面积大,烟气在塔体内部沿竖直方向流动,烟气流动阻力小,烟气净化能耗小;塔体无需额外加设烟气通道,且塔体内活性炭区布置紧密,降低活性炭烟气净化塔的占地面积;活性炭区包括至少两个相互连通的活性炭层,增大活性炭与烟气的接触面积,提高烟气净化效率;活性炭区具有活性炭入口和活性炭出口,便于活性炭的更换,活性炭在活性炭区内流动,提高活性炭的利用率。
如图3所示,本实施例提供了一种活性炭烟气净化塔,该活性炭烟气净化塔中,活性炭层201水平设置,拐角202垂直于活性炭层201。水平设置的活性炭层201内设置有驱动机构,活性炭在驱动机构的作用下水平移动。拐角202处可以不设置驱动机构,则活性炭在拐角202处靠重力自上向下缓慢移动。水平设置多个活性碳层201,使得活性炭在每个活性碳层201间的流动速度完全依赖于驱动机构的设定,实现对活性炭流动速度的精准调节。当烟气浓度变化时,可以通过调整驱动机构及时改变活性炭流动速度,提高活性炭利用率和烟气净化率。其中,本实施例中驱动机构采用辊式卸料器9。
如图4、图5所示,该活性炭烟气净化塔中,活性炭区2的驱动机构分别选择钢网输送机10及螺旋输送机11,其中活性炭层201可设置为水平方向,也可以设置成与水平线呈一定角度。
图4为选择钢网输送机10作为驱动装置的活性炭烟气净化塔示意图,其中钢网输送机10上可以设置提升挡板,钢网输送机10可以在水平方向、倾斜一定角度方向及竖直方向运输活性炭。在活性炭区2的活性炭层201及拐角202 处设置带挡板的钢网输送机10,可以实现活性炭自下向上或者自上而下缓慢移动,运输速度精确可控,适应多类应用场合。
图5为选择螺旋输送机11作为驱动装置的活性炭烟气净化塔示意图。选择螺旋输送机11可实现活性炭在活性炭层201间的流动,使活性炭分布更加均匀,避免活性炭层201同一层中部分活性炭已饱和,但仍有部分活性炭未充分利用的情况。

Claims (10)

  1. 一种活性炭烟气净化塔,包括:
    塔体(1),所述塔体(1)内部中空,所述塔体(1)内部形成有沿竖直方向延伸的烟气通道,所述塔体(1)具有烟气入口(3)和烟气出口(4);
    活性炭区(2),设置于所述烟气通道中,所述活性炭区(2)包括沿竖直方向分布的至少两个活性炭层(201),相邻两个所述活性炭层(201)通过拐角(202)依次连通,形成活性炭流动通道,所述活性炭区(2)具有活性炭入口(5)和活性炭出口(6)。
  2. 根据权利要求1所述的活性炭烟气净化塔,其中,所述塔体(1)具有卸灰口(7),所述活性炭入口(5)、所述活性炭出口(6)和所述卸灰口(7)中均设置有卸料阀(8)。
  3. 根据权利要求2所述的活性炭烟气净化塔,其中,所述卸料阀(8)为双层密封卸料阀。
  4. 根据权利要求1所述的活性炭烟气净化塔,其中,所述活性炭层(201)的厚度为500mm-2000mm,所述活性炭层(201)与水平线的夹角为29度-35度。
  5. 根据权利要求1所述的活性炭烟气净化塔,其中,所述活性炭区(2)包括两片多孔板(203),所述两片多孔板(203)分别位于所述活性炭层(201)的上方和下方,为所述活性炭层(201)提供支撑,所述两片多孔板(203)与所述塔体(1)的内壁围设形成容纳活性炭层(201)的空间。
  6. 根据权利要求5所述的活性炭烟气净化塔,其中,所述多孔板(203)上的孔的孔径为1mm-2mm,所述多孔板(203)的开孔率为35%-50%。
  7. 根据权利要求1所述的活性炭烟气净化塔,其中,所述活性炭层(201)和所述拐角(202)的至少一个中设置有驱动机构,所述驱动机构设置为驱动活性炭流动。
  8. 根据权利要求7所述的活性炭烟气净化塔,其中,所述驱动机构为辊式卸料器(9)、钢网输送机(10)或螺旋输送机(11)。
  9. 根据权利要求1所述的活性炭烟气净化塔,其中,烟气在所述塔体(1)内的流动方向与活性炭在所述塔体(1)内的流动方向相反。
  10. 根据权利要求9所述的活性炭烟气净化塔,其中,所述活性炭入口(5)设置在所述塔体(1)顶部,所述活性炭出口(6)设置在所述塔体(1)底部,所述烟气入口(3)设置在所述塔体(1)底部,所述烟气出口(4)设置在所述塔体(1)顶部。
PCT/CN2018/102914 2018-08-13 2018-08-29 一种活性炭烟气净化塔 WO2020034258A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810914745.7A CN108993094A (zh) 2018-08-13 2018-08-13 一种活性炭烟气净化塔
CN201810914745.7 2018-08-13

Publications (1)

Publication Number Publication Date
WO2020034258A1 true WO2020034258A1 (zh) 2020-02-20

Family

ID=64594889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102914 WO2020034258A1 (zh) 2018-08-13 2018-08-29 一种活性炭烟气净化塔

Country Status (2)

Country Link
CN (1) CN108993094A (zh)
WO (1) WO2020034258A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109647130A (zh) * 2019-01-16 2019-04-19 河北航天环境工程有限公司 一种新型活性炭吸附装置
CN112403188A (zh) * 2019-08-22 2021-02-26 安徽金叶碳素科技有限公司 一种多级并联式活性炭烟气净化装置
CN110585854A (zh) * 2019-09-23 2019-12-20 中国科学院过程工程研究所 一种烟气净化吸收装置及活性炭脱硫脱硝系统
CN110523215A (zh) * 2019-10-14 2019-12-03 中国科学院过程工程研究所 一种活性炭烟气净化再生一体化装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114717A (ja) * 1981-12-26 1983-07-08 Sumitomo Heavy Ind Ltd 乾式脱硫装置におけるso↓2吸着活性炭からのso↓2脱離方法
CN86104137A (zh) * 1986-12-15 1988-01-20 沈善明 移动床活性炭吸附-解吸装置
JPH04293516A (ja) * 1991-03-25 1992-10-19 Fujitsu Ltd 排気ガス処理装置
JPH0952015A (ja) * 1995-08-18 1997-02-25 Shinko Pantec Co Ltd 溶剤処理装置及び溶剤処理方法
CN101596392A (zh) * 2008-06-06 2009-12-09 承杰有限公司 流体化浮动床溶剂回收装置的吸附塔及其风量调整方法
CN102997264A (zh) * 2012-11-23 2013-03-27 中国华能集团清洁能源技术研究院有限公司 一种折流式烟气污染物脱除系统
CN104801150A (zh) * 2015-03-31 2015-07-29 中冶华天南京工程技术有限公司 滑床式活性焦/炭脱硫脱硝一体塔及脱硫脱硝系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206008370U (zh) * 2016-08-24 2017-03-15 韩志军 移动床式voc吸附脱附净化装置
CN108148627A (zh) * 2018-02-11 2018-06-12 广东国能中林实业有限公司 一种多段式螺旋移动床热解气化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58114717A (ja) * 1981-12-26 1983-07-08 Sumitomo Heavy Ind Ltd 乾式脱硫装置におけるso↓2吸着活性炭からのso↓2脱離方法
CN86104137A (zh) * 1986-12-15 1988-01-20 沈善明 移动床活性炭吸附-解吸装置
JPH04293516A (ja) * 1991-03-25 1992-10-19 Fujitsu Ltd 排気ガス処理装置
JPH0952015A (ja) * 1995-08-18 1997-02-25 Shinko Pantec Co Ltd 溶剤処理装置及び溶剤処理方法
CN101596392A (zh) * 2008-06-06 2009-12-09 承杰有限公司 流体化浮动床溶剂回收装置的吸附塔及其风量调整方法
CN102997264A (zh) * 2012-11-23 2013-03-27 中国华能集团清洁能源技术研究院有限公司 一种折流式烟气污染物脱除系统
CN104801150A (zh) * 2015-03-31 2015-07-29 中冶华天南京工程技术有限公司 滑床式活性焦/炭脱硫脱硝一体塔及脱硫脱硝系统

Also Published As

Publication number Publication date
CN108993094A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
WO2020034258A1 (zh) 一种活性炭烟气净化塔
RU2697688C1 (ru) Устройство для очистки топочных газов активированным углем и способ очистки топочных газов
CA2809973C (en) Radial bed vessels having uniform flow distribution
CN101310827B (zh) 一种活性焦炭气体净化方法及装置
CN210544365U (zh) 一种用于烟气脱硫脱硝治理系统的反应剂移动床
CN103230724B (zh) 一种新型错-对流烟气净化吸附塔
RU2471536C1 (ru) Вертикальный адсорбер кочетова
CN110585854A (zh) 一种烟气净化吸收装置及活性炭脱硫脱硝系统
CN102341155B (zh) 干式废气处理装置的吸附塔
CN203043829U (zh) 一种基于活性炭的烟气脱硫脱硝塔
CN105903314B (zh) 流化床气体吸附脱附系统及其处理方法
CN102824809A (zh) 一种吸附塔
CN110652852A (zh) 一种烟气净化装置
CN113828111B (zh) 具有分布器的移动床吸附塔和烟气净化系统
CN202654908U (zh) 活性炭移动床脱硫塔
CN201168537Y (zh) 一种活性焦炭气体净化装置
CN110038646B (zh) 一种炭基催化剂再生装置及工艺
CN110538647A (zh) 一种活性炭脱硫脱硝再生系统
CN102997264B (zh) 一种折流式烟气污染物脱除系统
CN205700037U (zh) 流化床气体吸附脱附系统
CN113828108B (zh) 烟气净化系统、移动床吸附塔
CN107433106A (zh) 一种烟气净化吸收塔及其处理方法
CN113680145B (zh) 循环式气体净化装置及其净化方法
CN1167491C (zh) 一体化逆流移动式净化装置
CN103041671A (zh) 一种气固两相斜流颗粒状吸附净化箱体及其净化方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929881

Country of ref document: EP

Kind code of ref document: A1