WO2020034210A1 - 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器 - Google Patents

光学玻璃、玻璃预制件、光学元件和具有其的光学仪器 Download PDF

Info

Publication number
WO2020034210A1
WO2020034210A1 PCT/CN2018/101134 CN2018101134W WO2020034210A1 WO 2020034210 A1 WO2020034210 A1 WO 2020034210A1 CN 2018101134 W CN2018101134 W CN 2018101134W WO 2020034210 A1 WO2020034210 A1 WO 2020034210A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
glass
optical
optical glass
present disclosure
Prior art date
Application number
PCT/CN2018/101134
Other languages
English (en)
French (fr)
Inventor
孙伟
Original Assignee
成都光明光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都光明光电股份有限公司 filed Critical 成都光明光电股份有限公司
Priority to US16/959,418 priority Critical patent/US11878938B2/en
Priority to JP2020536866A priority patent/JP7171734B2/ja
Priority to PCT/CN2018/101134 priority patent/WO2020034210A1/zh
Publication of WO2020034210A1 publication Critical patent/WO2020034210A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/068Glass compositions containing silica with less than 40% silica by weight containing boron containing rare earths
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/14Silica-free oxide glass compositions containing boron
    • C03C3/15Silica-free oxide glass compositions containing boron containing rare earths
    • C03C3/155Silica-free oxide glass compositions containing boron containing rare earths containing zirconium, titanium, tantalum or niobium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Definitions

  • the present disclosure belongs to the field of optical glass technology, and in particular, the present disclosure relates to optical glass, glass preforms, optical elements, and optical instruments having the same.
  • High-refraction and low-dispersion optical glass can simplify the optical system, eliminate spherical aberration, chromatic aberration, and image quality distortion, and expand the field of view of the lens. It is of great significance to improve the imaging quality of optical instruments. Satisfy the high-quality imaging quality requirements of new optoelectronic products, especially high refractive index and low dispersion optical glass with refractive index nd greater than 1.86 and Abbe number vd greater than 38.8. The market demand is greater.
  • high-refractive low-dispersion glass formulation systems need to introduce more rare earth oxides to increase the refractive index of the glass. Craft manufacturing brings difficulties. Therefore, the composition of the existing optical glass needs to be further explored.
  • an object of the present disclosure is to propose optical glass, glass preforms, optical elements, and optical instruments having the same.
  • the optical glass has a refractive index nd greater than 1.86 and an Abbe number vd greater than 38.8, thereby solving the prior art.
  • Medium and high refractive low-dispersion optical glass is susceptible to devitrification and is difficult to mass produce. It is a technical problem with high cost.
  • the present disclosure proposes an optical glass.
  • the optical glass includes: 5 to 25% by weight of B 2 O 3 , 25 to 45% by weight of La 2 O 3 , 0 to 10% by weight of Y 2 O 3 , and 10 to 35% by weight.
  • Gd 2 O 3 0.5 to 15% by weight of SiO 2 , 1 to 15% by weight of ZrO 2 , 0 to 5% by weight of TiO 2 , 0 to 7% by weight of WO 3 , and 0 to 15% by weight of Ta 2 O 5 , 0 to 10% by weight of ZnO and 0 to 8.5% by weight of Nb 2 O 5 , wherein m (B2O3 + SiO2 + ZrO2 + Nb2O5 + TiO2 + WO3) / m (La2O3 + ZrO2) is not less than 0.6 .
  • the inventors have found that by controlling its components, content, and the proportion of the amount of use of specific components, the optical glass of the present disclosure can have devitrification resistance and excellent performance with little or no use of Ta 2 O 5 High-refractive low-dispersion optical glass (optical glass with refractive index nd greater than 1.86 and Abbe number vd greater than 38.8), and the optical glass of the present disclosure has low production cost and is easy for mass production.
  • optical glass according to the above embodiments of the present disclosure may also have the following additional technical features:
  • the optical glass includes: 8 to 20% by weight of B 2 O 3 and / or 30 to 42% by weight of La 2 O 3 and / or 0 to 8% by weight of Y 2 O 3 And / or 15 to 28% by weight of Gd 2 O 3 and / or 2 to 13% by weight of SiO 2 and / or 1 to 10% by weight of ZrO 2 and / or 0.1 to 5% by weight of TiO 2 and / or 0.1 ⁇ 5 wt% WO 3 and / or 0.5-10 wt% Ta 2 O 5 and / or 0-5 wt% ZnO and / or 0-8.5 wt% Nb 2 O 5 . Therefore, the optical glass can be guaranteed to have excellent performance.
  • the optical glass includes: 10 to 16% by weight of B 2 O 3 and / or 33 to 39% by weight of La 2 O 3 and / or 1 to 5% by weight of Y 2 O 3 And / or 17 to 25% by weight of Gd 2 O 3 and / or 4 to 10% by weight of SiO 2 and / or 3 to 8% by weight of ZrO 2 and / or 0.5 to 3% by weight of TiO 2 and / or 0.5 ⁇ 4% by weight of WO 3 and / or 3-4% by weight of Ta 2 O 5 and / or 1-3% by weight of ZnO and / or 0-8.5% by weight of Nb 2 O 5 . Therefore, the optical glass can be guaranteed to have excellent performance.
  • m (B2O3 + SiO2 + ZrO2 + Nb2O5 + TiO2 + WO3) / m (La2O3 + ZrO2) is not lower than 0.65, and preferably 0.65 to 0.72. This can further ensure that the optical glass has excellent performance.
  • m (ZrO2 + TiO2 + La2O3) / m (Nb2O5 + SiO2 + WO3 + Gd2O3) 1.0 to 1.6, preferably 1.1 to 1.45, and more preferably 1.35 to 1.42. This can further ensure that the optical glass has excellent performance.
  • the optical glass further includes: 0 to 1% by weight of Sb 2 O 3 and / or 0 to 1% by weight of SnO 2 and / or 0 to 1% by weight of CeO 2 and / or 0 to 10% by weight of Yb 2 O 3 and / or 0 to 10% by weight of Lu 2 O 3 and / or 0 to 10% by weight of Al 2 O 3 and / or 0 to 10% by weight of Bi 2 O 3 and 0 or 10 to 10% by weight of GeO 2 and / or 0 to 10% by weight of Li 2 O, Na 2 O, and K 2 O, and / or 0 to 10% by weight of CaO, SrO, BaO, and MgO. This can further ensure that the optical glass has excellent performance.
  • the refractive index of the optical glass is greater than 1.86, preferably 1.87 to 1.89, and the Abbe number is greater than 38.8, preferably 39.0 to 41.0.
  • the ⁇ 70 of the optical glass is not more than 420 nm, preferably not more than 390 nm, and the ⁇ 5 is not more than 360 nm, preferably not more than 350 nm.
  • the crystallization upper limit temperature of the optical glass is not higher than 1350 degrees Celsius, and preferably not higher than 1300 degrees Celsius.
  • the water-resistant stability of the optical glass is not lower than 3, preferably not lower than 2, and the acid-resistant stability of the optical glass is not lower than 3, preferably not lower than Level 2.
  • the weather resistance of the optical glass is not lower than level 3. Preferably, it is not lower than level 2.
  • the stripes of the optical glass are at least C grade, preferably at least B grade, and more preferably at A grade.
  • the bubble degree of the optical glass is not lower than A grade, preferably not lower than A 0 grade, and more preferably A 00 grade.
  • the density of the optical glass is not higher than 5.6 g / cm 3 , and preferably not higher than 5.5 g / cm 3 .
  • the present disclosure proposes a glass preform.
  • the glass preform is made of the above-mentioned optical glass. Therefore, the glass preform made by using the above-mentioned high-refraction and low-dispersion optical glass has excellent performance, thereby meeting market demand.
  • the present disclosure proposes an optical element.
  • the optical element is made of the above-mentioned optical glass or glass preform. Therefore, by using the above-mentioned high-refractive low-dispersion optical glass or glass preform, the optical element has excellent performance, so as to meet market demand.
  • the present disclosure proposes an optical instrument.
  • the optical instrument has the optical element described above. Therefore, by using the above-mentioned optical element with excellent performance on the optical instrument, the customer experience of the optical instrument can be improved.
  • the present disclosure proposes an optical glass.
  • the optical glass includes: 5 to 25% by weight of B 2 O 3 , 25 to 45% by weight of La 2 O 3 , 0 to 10% by weight of Y 2 O 3 , and 10 to 35% by weight.
  • Gd 2 O 3 0.5 to 15% by weight of SiO 2 , 1 to 15% by weight of ZrO 2 , 0 to 5% by weight of TiO 2 , 0 to 7% by weight of WO 3 , and 0 to 15% by weight of Ta 2 O 5 , 0 to 10% by weight of ZnO and 0 to 8.5% by weight of Nb 2 O 5 , wherein m (B2O3 + SiO2 + ZrO2 + Nb2O5 + TiO2 + WO3) / m (La2O3 + ZrO2) is not less than 0.6 .
  • B 2 O 3 is a skeleton component of glass, and has the effects of improving glass meltability, devitrification resistance, and reducing glass dispersion in the present disclosure.
  • the content of B 2 O 3 in the present disclosure is 5 to 25% by weight, preferably the content of B 2 O 3 is 8 to 20% by weight, and more preferably 10 to 16% by weight.
  • La 2 O 3 is an essential component for obtaining the required optical characteristics of the present disclosure.
  • the content of La 2 O 3 in the present disclosure is 25 to 45% by weight, preferably the content of La 2 O 3 is 30 to 42% by weight, and more preferably 33 to 39% by weight.
  • the Y 2 O 3 can improve the melting and devitrification resistance of the glass, and can also lower the upper limit of the crystallization temperature of the glass. However, if the content of Y 2 O 3 exceeds 10% by weight, the stability and devitrification resistance of the glass will be reduced. Therefore, the Y 2 O 3 content range of the present disclosure is 0 to 10% by weight, preferably the Y 2 O 3 content range is 0 to 8% by weight, and more preferably 1 to 5% by weight.
  • the coexistence of Gd 2 O 3 and La 2 O 3 can improve the stability of glass formation.
  • the content of Gd 2 O 3 is less than 10% by weight, the above effect is not obvious. If the content exceeds 35% by weight , The devitrification resistance of the glass is reduced, and the stability of the formed glass is deteriorated. Therefore, the content of Gd 2 O 3 in the present disclosure is 10 to 35% by weight, preferably the content of Gd 2 O 3 is 15 to 28% by weight, and more preferably 17 to 25% by weight.
  • SiO 2 is a component constituting a glass skeleton, and has the effects of improving devitrification resistance, improving weatherability of glass, and improving thermal stability of glass.
  • the content of SiO 2 is less than 0.5% by weight, the effect of improving devitrification resistance is not obvious. If the content exceeds 15% by weight, the meltability of the glass is reduced and the refractive index required by the present disclosure cannot be obtained. Therefore, in the present disclosure, the SiO 2 content is 0.5 to 15% by weight, preferably the SiO 2 content is 2 to 13% by weight, and more preferably 4 to 10% by weight.
  • ZrO 2 is a component that improves the refractive index and stability. Since it forms glass as an intermediate oxide, it also has the effect of improving devitrification resistance and chemical durability.
  • the content of ZrO 2 is less than 1% by weight, the above-mentioned expected effect cannot be achieved.
  • the content of ZrO 2 exceeds 15% by weight, the tendency to devitrification becomes strong and vitrification tends to become difficult. Therefore, in the present disclosure, the ZrO 2 content is 1 to 15% by weight, preferably the ZrO 2 content is 1 to 10% by weight, and more preferably 3 to 8% by weight.
  • TiO 2 also has the effect of increasing the refractive index of glass, and can participate in the formation of glass networks. A proper amount of TiO 2 can make the glass more stable. However, if the excess is more than 5% by weight, the glass dispersion will increase significantly, at the same time, the transmittance of the short-wave portion of the visible light region of the glass will decrease, and the tendency of glass coloring will increase. Therefore, in the present disclosure, the TiO 2 content is 0 to 5% by weight, preferably the TiO 2 content is 0.1 to 5% by weight, and more preferably 0.5 to 3% by weight.
  • WO 3 plays a role in increasing the refractive index, but when its content exceeds 7% by weight, the dispersion increases significantly, the transmittance on the short wavelength side of the visible light region of the glass decreases, and the tendency of coloring increases. Therefore, the content of WO 3 in the present disclosure is 0 to 7% by weight, preferably the content of WO 3 is 0.1 to 5% by weight, and more preferably 0.5 to 4% by weight.
  • Ta 2 O 5 has the effect of increasing the refractive index and maintaining the low dispersion of the glass. If its content is higher than 15% by weight, the cost of optical glass is increased because it is more expensive than other components. From a cost perspective, its use is reduced.
  • the Ta 2 O 5 content of the present disclosure is 0 to 15% by weight, preferably the Ta 2 O 5 content is 0.5 to 10% by weight, and more preferably 3 to 10% by weight.
  • the ZnO can adjust the refractive index and dispersion of glass.
  • An appropriate amount of ZnO can play a role in improving the stability or melting of glass and improving the moldability under pressure.
  • the ZnO content of the present disclosure is 0 to 10% by weight, preferably the ZnO content is 0 to 5% by weight, and more preferably 1 to 3% by weight.
  • Nb 2 O 5 is a high-refraction and high-dispersion component, which can increase the refractive index without significantly increasing the dispersion, and also has the effect of improving the crystallization resistance and chemical stability of the glass. If its content exceeds 8.5% by weight, the optical characteristics of the glass of the present disclosure cannot be achieved, and the devitrification resistance of the glass is deteriorated. Therefore, the content of Nb 2 O 5 in the present disclosure is 0 to 8.5% by weight, and it is preferably not introduced.
  • the total weight of B 2 O 3 , SiO 2 , ZrO 2 , Nb 2 O 5 , TiO 2 and WO 3 and La 2 O 3 and the total weight of ZrO 2 Not less than 0.65, more preferably 0.65 to 0.72, the refractive index of the obtained optical glass is 1.87 to 1.89, the Abbe number is 39.0 to 41.0, the maximum crystallization temperature is not higher than 1300 degrees Celsius, the water resistance is not lower than level 2, and the acid resistance is not lower than Below level 2, weather resistance is not lower than level 2, streak is level B or higher, more preferably level A is not lower than, degree of air bubble is not lower than level A 0, and level A 00 is more preferred.
  • the inventor also found that the optical glass of the present application also requires excellent light transmission characteristics and light weight characteristics, and the inventor of the present application has found through extensive research that by controlling the total weight of ZrO 2 , TiO 2 and La 2 O 3
  • the ratio of the total weight to Nb 2 O 5 , SiO 2 , WO 3 and Gd 2 O 3 is 1.0 to 1.6, which can effectively control the gas dissolution rate during the melting process, increase the transmittance of the glass, and improve the chemical stability of the glass.
  • optical glass ⁇ 70 is not greater than 420nm, ⁇ 5 is not greater than 360nm, the density is not higher than 5.6g / cm 3 , the water resistance is not lower than 3, the acid resistance is not lower than 3,
  • the degree of bubble is not lower than Class A, and it is more preferable to control the ratio of the total weight of ZrO 2 , TiO 2 and La 2 O 3 to the total weight of Nb 2 O 5 , SiO 2 , WO 3 and Gd 2 O 3 to be 1.1 to 1.45.
  • ⁇ 70 of the obtained optical glass is not more than 390 nm, ⁇ 5 is not more than 350 nm, density is not more than 5.5 g / cm 3 , water resistance is not less than level 2, and acid resistance is not less than level 2,
  • the degree of bubble is not less than A 0 grade, and more preferably A 00 grade.
  • the optical glass further includes: 0 to 1% by weight of Sb 2 O 3 and / or 0 to 1% by weight of SnO 2 and / or 0 to 1% by weight of CeO 2 and / or 0 to 10% by weight of Yb 2 O 3 and / or 0 to 10% by weight of Lu 2 O 3 and / or 0 to 10% by weight of Al 2 O 3 and / or 0 to 10% by weight of Bi 2 O 3 and 0 or 10 to 10% by weight of GeO 2 and / or 0 to 10% by weight of Li 2 O, Na 2 O, and K 2 O, and / or 0 to 10% by weight of CaO, SrO, BaO, and MgO.
  • the present disclosure preferably adds Sb 2 O 3 in an amount of 0-1% by weight, more preferably 0-0.5% by weight, and even more preferably does not add it.
  • SnO 2 can also be added as a fining agent, but when its content exceeds 1% by weight, the glass will be colored, or when the glass is heated, softened and re-molded, such as compression molding, Sn will become the starting point of nucleation and generate Devitrification tendency. Therefore, the content of SnO 2 in the present disclosure is preferably 0-1% by weight, more preferably 0-0.5% by weight, and still more preferably not added.
  • the effect and proportion of CeO 2 are the same as those of SnO 2 , and its content is preferably 0-1% by weight, more preferably 0-0.5% by weight, and still more preferably not added.
  • Yb 2 O 3 is also a high-refractive index and low-dispersion component in the glass of the present disclosure.
  • the content range of Yb 2 O 3 is preferably 0-10 weight. %, More preferably 0-8% by weight, and still more preferably no introduction.
  • Lu 2 O 3 can increase the refractive index of glass and reduce dispersion, but when its content exceeds 10% by weight, the devitrification resistance and melting properties of the glass are deteriorated.
  • the cost of optical glass is more expensive than other components, resulting in the cost of optical glass increase. Therefore, the content of Lu 2 O 3 in the present disclosure is 0 to 10%, and the preferred range of the content of Lu 2 O 3 is 0 to 8% by weight, and it is more preferable not to introduce it.
  • Al 2 O 3 is preferred in the present disclosure.
  • the content thereof is 0 to 10% by weight, and more preferably 0 to 8% by weight.
  • Bi 2 O 3 can increase the refractive index of glass, but excessive addition shows that the transmittance on the short wavelength side of the visible light region decreases, and the glass tends to be colored. Therefore, the present disclosure preferably has a Bi 2 O 3 content of 0-10% by weight. It is preferably 0 to 5% by weight, and more preferably not introduced.
  • GeO 2 is formed may also be effective in improving the stability and devitrification resistance of the glass, but since GeO 2 component is very expensive, and therefore the content of GeO 2 is preferably 0-10 wt% and more preferably 0-5 wt%, It is further preferably not introduced.
  • Li 2 O, Na 2 O, and K 2 O are components for suppressing phase separation and improving glass stability. When the total content thereof exceeds 10% by weight, there is a tendency that the weather resistance is significantly lowered or the refractive index is lowered. Therefore, it is preferred in the present disclosure that the total weight content of Li 2 O, Na 2 O, and K 2 O is 0-10% by weight, and more preferably The content range is from 0 to 5% by weight, and it is more preferable not to introduce it.
  • Alkaline earth metal oxides such as CaO, SrO, BaO, and MgO can reduce the weather resistance of glass and significantly increase the upper limit of crystallization. However, when the total content exceeds 10% by weight, the devitrification resistance of glass decreases. It is disclosed that the total weight of CaO, SrO, BaO, and MgO is preferably from 0 to 10% by weight, more preferably from 0 to 5% by weight, and even more preferably not incorporated.
  • the short-wave transmission spectral characteristics of the glass of the present disclosure are expressed by the degree of coloration ( ⁇ 70 / ⁇ 5 ).
  • ⁇ 70 refers to the wavelength when the transmittance of the glass reaches 70%
  • ⁇ 5 refers to the wavelength when the transmittance of the glass reaches 5%.
  • the measurement of ⁇ 70 is made by using two opposite planes which are parallel and optically polished A glass having a thickness of 10 ⁇ 0.1 mm was measured at a wavelength showing a spectral transmittance in a wavelength range from 280 nm to 700 nm and exhibiting a transmittance of 70%.
  • the spectral transmittance or transmittance is an amount expressed by I out / I in when light having an intensity I in is incident perpendicularly to the above-mentioned surface of the glass, and the light having an intensity I out passes through the glass and is emitted from one plane, and Also included is the transmittance of surface reflection loss on the above surface of glass.
  • the wavelength ( ⁇ 70 ) corresponding to the optical glass transmittance of the present disclosure is not greater than 420 nm, preferably not greater than 390 nm, and the wavelength ( ⁇ 5 ) corresponding to the glass transmittance of 5% is not greater than 360 nm, preferably not greater than 350 nm. .
  • a glass sample having a thickness of 10 ⁇ 0.1 mm having two optically polished planes facing each other was used to measure the spectral transmittance and calculated based on the results.
  • the density of optical glass is the weight per unit volume at a temperature of 20 ° C, and the unit is expressed in g / cm 3.
  • the density of the optical glass of the present disclosure is not higher than 5.6 g / cm 3 , and preferably not higher than 5.5 g / cm 3 .
  • the upper crystallization temperature of the optical glass is not higher than 1350 ° C, preferably not higher than 1300 ° C, and more preferably not higher than 1280 ° C.
  • Bubble degree is the level of allowable bubble content in glass. Bubbles will not only affect the appearance quality of glass products, but also affect the optical properties, transparency, and mechanical strength of the glass, which will cause many adverse effects on the glass. Therefore, controlling the bubble degree of glass is very important
  • the bubble degree of the optical glass of the present disclosure is not lower than A grade, preferably not lower than A 0 grade, and more preferably A 00 grade.
  • Optical glass bubble quality is measured according to the test method specified in GB / T7962.8-2010.
  • the optical glass of the present disclosure is high-refractive-index low-dispersion glass, and lenses made of high-refractive-index and low-dispersion glass are often combined with lenses made of high-refractive-index and high-dispersion glass for chromatic aberration correction, and the optical glass is used as a lens In this case, as the refractive index is increased, the lens can be thinner, which is advantageous for miniaturization of the optical device.
  • the refractive index of the optical glass of the present disclosure is nd> 1.86, preferably nd is 1.87 to 1.89, Abbe number vd> 38.8, preferably vd It is 39.0 to 41.0.
  • the refractive index and Abbe number are tested in accordance with the method specified in GB / T7962.1-2010.
  • the fringe degree is a fringe meter composed of a point light source and a lens. From the direction in which the fringe is most easily seen, it is compared with the standard sample for inspection. It is divided into 4 levels, which are A, B, C, and D. Under specified detection conditions, level A is no streaks visible to the naked eye under specified detection conditions, level B is fine and scattered streaks under specified detection conditions, level C is no slight parallel streaks under specified detection conditions, and level D is specified There are rough streaks under the detection conditions.
  • the stripes of the optical glass of the present disclosure are C grade or higher, preferably B grade or higher, and more preferably A grade.
  • the sample was placed in a test box with a relative humidity of 90% in a saturated water vapor environment, and alternately cycled every 40 hours at a temperature of 40 ° C to 50 ° C for 15 cycles.
  • the turbidity refers to the surface of the colorless optical glass that is corroded by the atmosphere and has a "white spot" or "mist”.
  • the degree of erosion on the glass surface is determined by measuring the difference in turbidity before and after the erosion of the sample. Turbidity measurement was performed using an integrating sphere turbidimeter with a relative error of within 5% of the haze indication.
  • the following table is the classification of weather resistance:
  • the weather resistance of the glass of the present disclosure is not lower than 3, preferably not lower than 2, and more preferably not lower than 1.
  • the present disclosure proposes a glass preform.
  • the glass preform is made of the above-mentioned optical glass. Therefore, the optical preform of the present disclosure has characteristics such as high refractive index and low dispersion, thereby meeting the market demand for high-performance glass.
  • the obtained optical glass is cut into a predetermined size, and a release agent composed of boron nitride powder is evenly coated on the surface, and then it is heated, softened, and pressure-molded to produce a concave meniscus shape.
  • Prefabricated lenses, prisms, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, plano-concave lenses, and prisms Prefabricated lenses, prisms, convex meniscus lenses, biconvex lenses, biconcave lenses, plano-convex lenses, plano-concave lenses, and prisms. It should be noted that the above-mentioned features and advantages described for the optical glass also apply to the glass preform, which will not be repeated here.
  • the present disclosure proposes an optical element.
  • the optical element is made of the above-mentioned optical glass or glass preform. Accordingly, the optical element of the present disclosure has high refractive index and low dispersion characteristics, and can provide various optical elements such as lenses and prisms with excellent performance at low cost.
  • various lenses such as a convex meniscus lens, a concave meniscus lens, a biconvex lens, a biconcave lens, a plano-convex lens, and a plano-concave lens can be used as the lens surface.
  • This lens can be used as a lens for correcting chromatic aberration by combining with a lens made of high refractive index and high dispersion glass to correct chromatic aberration. It is also an effective lens for reducing the size of an optical system.
  • a prism has a high refractive index
  • a compact and wide-angle optical system can be realized by combining it in an imaging optical system and bending an optical path to a desired direction. Specifically, the above-mentioned glass preform is annealed, and fine adjustment is performed while reducing the deformation inside the glass so that the optical properties such as the refractive index reach the desired value.
  • each preform is ground and ground to produce a concave meniscus lens , Convex meniscus lens, biconvex lens, biconcave lens, plano-convex lens, plano-concave lens and other lenses, prisms are optical elements, and the surface of the obtained optical elements can also be coated with an anti-reflection film. It should be noted that the features and advantages described above for the optical glass and the glass preform are also applicable to the optical element, and are not repeated here.
  • the present disclosure proposes an optical instrument.
  • the optical instrument has the optical element described above. Therefore, by using the above-mentioned optical element with excellent performance on the optical instrument, the customer experience of the optical instrument can be improved.
  • the optical instrument of the present disclosure may be a digital camera, a video camera, or the like. It should be noted that the features and advantages described above for the optical element are also applicable to the optical instrument, and are not repeated here.
  • the total amount in the above table is 100% after deducting measurement error, equipment accuracy and unavoidable impurities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

公开了光学玻璃、玻璃预制件、光学元件及具有其的光学仪器。其中,所述光学玻璃包括:5~25重量%的B2O3、25~45重量%的La2O3、0~10重量%的Y2O3、10~35重量%的Gd2O3、0.5~15重量%的SiO2、1~15重量%的ZrO2、0~5重量%的TiO2、0~7重量%的WO3、0~15重量%的Ta2O5、0~10重量%的ZnO和0~8.5重量%的Nb2O5,其中,m(B2O3+SiO2+ZrO2+Nb2O5+TiO2+WO3)/m(La2O3+ZrO2)不低于0.6。

Description

光学玻璃、玻璃预制件、光学元件和具有其的光学仪器 技术领域
本公开属于光学玻璃技术领域,具体而言,本公开涉及光学玻璃、玻璃预制件、光学元件和具有其的光学仪器。
背景技术
高折射低色散光学玻璃能简化光学系统,消除球差、色差和像质畸变,扩大镜头的视场,对改善光学仪器的成像质量有着重要意义,使镜头小型化、轻型化,能够更好地满足新型光电产品对成像质量高品质要求,特别是折射率nd大于1.86、阿贝数vd大于38.8的高折射率低色散光学玻璃,市场需求较大。
通常情况下,高折射低色散玻璃配方系统中需要引入较多的稀土氧化物以提高玻璃折射率,但在不同的配方体系里,越多引入镧系氧化物会影响成玻璃性,给量产工艺制造带来难度。因此,现有的光学玻璃组成有待进一步探究。
公开内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的一个目的在于提出光学玻璃、玻璃预制件、光学元件及具有其的光学仪器,该光学玻璃折射率nd大于1.86、阿贝数vd大于38.8光学玻璃,从而解决了现有技术中高折射低色散光学玻璃易失透量产难度高、成本较高的技术问题。
在本公开的一个方面,本公开提出了一种光学玻璃。根据本公开的实施例,所述光学玻璃包括:5~25重量%的B 2O 3、25~45重量%的La 2O 3、0~10重量%的Y 2O 3、10~35重量%的Gd 2O 3、0.5~15重量%的SiO 2、1~15重量%的ZrO 2、0~5重量%的TiO 2、0~7重量%的WO 3、0~15重量%的Ta 2O 5、0~10重量%的ZnO和0~8.5重量%的Nb 2O 5,其中,m (B2O3+SiO2+ZrO2+Nb2O5+TiO2+WO3)/m (La2O3+ZrO2)不低于0.6。
发明人发现,通过控制其组分、含量及特定组分之间的用量比例,使得本公开的光学玻璃在使用少量或不使用Ta 2O 5的情况下,能获得具有耐失透且性能优异的高折射低色散光学玻璃(折射率nd大于1.86、阿贝数vd大于38.8光学玻璃),而且本公开的光学玻璃生产成本低,易于量产。
另外,根据本公开上述实施例的光学玻璃还可以具有如下附加的技术特征:
在本公开的一些实施例中,上述光学玻璃包括:8~20重量%的B 2O 3和/或30~42重量%的La 2O 3和/或0~8重量%的Y 2O 3和/或15~28重量%的Gd 2O 3和/或2~13重量%的SiO 2和/ 或1~10重量%的ZrO 2和/或0.1~5重量%的TiO 2和/或0.1~5重量%的WO 3和/或0.5~10重量%的Ta 2O 5和/或0~5重量%的ZnO和/或0~8.5重量%的Nb 2O 5。由此,可以保证该光学玻璃具有优异的性能。
在本公开的一些实施例中,上述光学玻璃包括:10~16重量%的B 2O 3和/或33~39重量%的La 2O 3和/或1~5重量%的Y 2O 3和/或17~25重量%的Gd 2O 3和/或4~10重量%的SiO 2和/或3~8重量%的ZrO 2和/或0.5~3重量%的TiO 2和/或0.5~4重量%的WO 3和/或3~10重量%的Ta 2O 5和/或1~3重量%的ZnO和/或0~8.5重量%的Nb 2O 5。由此,可以保证该光学玻璃具有优异的性能。
在本公开的一些实施例中,上述光学玻璃组成中,m (B2O3+SiO2+ZrO2+Nb2O5+TiO2+WO3)/m (La2O3+ZrO2)不低于0.65,优选0.65~0.72。由此,可以进一步保证该光学玻璃具有优异的性能。
在本公开的一些实施例中,上述光学玻璃组成中,m (ZrO2+TiO2+La2O3)/m (Nb2O5+SiO2+WO3+Gd2O3)=1.0~1.6,优选1.1~1.45,更优选1.35~1.42。由此,可以进一步保证该光学玻璃具有优异的性能。
在本公开的一些实施例中,上述光学玻璃进一步包括:0~1重量%的Sb 2O 3和/或0~1重量%的SnO 2和/或0~1重量%的CeO 2和/或0~10重量%的Yb 2O 3和/或0~10重量%的Lu 2O 3和/或0~10重量%的Al 2O 3和/或0~10重量%的Bi 2O 3和/或0~10重量%的GeO 2和/或0~10重量%的Li 2O、Na 2O和K 2O总和和/或0~10重量%的CaO、SrO、BaO和MgO总和。由此,可以进一步保证该光学玻璃具有优异的性能。
在本公开的一些实施例中,上述光学玻璃折射率为大于1.86,优选1.87~1.89,阿贝数为大于38.8,优选39.0~41.0。
在本公开的一些实施例中,上述光学玻璃的λ 70不大于420nm,优选不大于390nm,λ 5不大于360nm,优选不大于350nm。
在本公开的一些实施例中,所述光学玻璃的析晶上限温度不高于1350摄氏度,优选不高于1300摄氏度。
在本公开的一些实施例中,所述光学玻璃的耐水作用稳定性不低于3级,优选不低于2级,所述光学玻璃的耐酸作用稳定性不低于3级,优选不低于2级,所述光学玻璃的耐候性不低于3级,优选不低于2级。
在本公开的一些实施例中,所述光学玻璃的条纹为C级以上,优选B级以上,更优选为A级。
在本公开的一些实施例中,所述光学玻璃的气泡度为不低于A级,优选不低于A 0级,更优选A 00级。
在本公开的一些实施例中,所述光学玻璃的密度不高于5.6g/cm 3,优选不高于5.5g/cm 3
在本公开的第二个方面,本公开提出了一种玻璃预制件。根据本公开的实施例,所述玻璃预制件采用上述的光学玻璃制成。由此,通过采用上述的高折射低色散的光学玻璃制得玻璃预制件具有优异的性能,从而满足市场的需求。
在本公开第三个方面,本公开提出了一种光学元件。根据本公开的实施例,所述光学元件采用上述光学玻璃或玻璃预制件制成。由此,通过采用上述的高折射低色散的光学玻璃或玻璃预制件制得光学元件具有优异的性能,从而满足市场的需求。
在本公开的第四个方面,本公开提出了一种光学仪器。根据本公开的实施例,所述光学仪器具有上述的光学元件。由此,通过在该光学仪器上使用上述具有优异性能的光学元件,可以提高该光学仪器的客户体验。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
公开详细描述
下面详细描述本公开的实施例,下面描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
在本公开的一个方面,本公开提出了一种光学玻璃。根据本公开的实施例,所述光学玻璃包括:5~25重量%的B 2O 3、25~45重量%的La 2O 3、0~10重量%的Y 2O 3、10~35重量%的Gd 2O 3、0.5~15重量%的SiO 2、1~15重量%的ZrO 2、0~5重量%的TiO 2、0~7重量%的WO 3、0~15重量%的Ta 2O 5、0~10重量%的ZnO和0~8.5重量%的Nb 2O 5,其中,m (B2O3+SiO2+ZrO2+Nb2O5+TiO2+WO3)/m (La2O3+ZrO2)不低于0.6。
玻璃成分:
B 2O 3为玻璃的骨架成分,在本公开中具有提高玻璃可熔融性、耐失透性和降低玻璃色散的作用。但当其引入量超过25重量%时,玻璃稳定性会下降,并且折射率下降,当其引入量不足5重量%时,玻璃熔融性降低,达不到本公开所需的光学常数。因此,本公开的B 2O 3的含量为5~25重量%,优选B 2O 3含量为8~20重量%,更优选10~16重量%。
La 2O 3是获得本公开所需光学特性的必须组分,当La 2O 3的含量小于25重量%时,难以实现所需要的光学特性,但当其含量超过45重量%时,玻璃耐失透性与熔融性能均恶化。因此,本公开的La 2O 3的含量为25~45重量%,优选La 2O 3含量为30~42重量%,更优选33~39重量%。
Y 2O 3可改善玻璃的熔融性、耐失透性,同时还可降低玻璃析晶上限温度,但若其含量超过10重量%,则玻璃的稳定性、耐失透性降低。因此,本公开的Y 2O 3含量范围为0~10 重量%,优选Y 2O 3含量范围为0~8重量%,更优选为1~5重量%。
本公开中通过Gd 2O 3与La 2O 3共存,可以提高形成玻璃的稳定性,但当Gd 2O 3含量低于10重量%时,上述效果不明显,如果其含量超过35重量%时,则玻璃耐失透性降低,形成玻璃的稳定性变差。因此,本公开的Gd 2O 3的含量为10~35重量%,优选Gd 2O 3的含量为15~28重量%,更优选17~25重量%。
SiO 2为构成玻璃骨架的成分,其具有提高耐失透性、提高玻璃的耐候性和改善玻璃的热稳定性等作用。但当SiO 2含量低于0.5重量%时,其提高耐失透性作用不明显,若其含量超过15重量%,则玻璃可熔融性能降低,且无法获得本公开所需要的折射率。因此,在本公开中SiO2含量为0.5~15重量%,优选SiO 2含量为2~13重量%,更优选4~10重量%。
ZrO 2为提高折射率和稳定性的成分,由于作为中间氧化物形成玻璃,所以还具有提高耐失透性和化学耐久性的作用。ZrO 2的含量不足1重量%时,无法达到上述预期效果,当ZrO 2的含量超过15重量%时,存在失透倾向变强、玻璃化变得困难的倾向。因此,在本公开中ZrO 2含量为1~15重量%,优选ZrO 2含量为1~10重量%,更优选3~8重量%。
TiO 2也具有提高玻璃折射率的作用,并且能参与玻璃网络形成,适量引入使玻璃更稳定。但若过量高于5重量%时,玻璃色散会显著增加,同时玻璃可见光区域的短波部分的透射率降低,玻璃着色的倾向增加。因此,在本公开中TiO 2含量为0~5重量%,优选TiO 2含量为0.1~5重量%,更优选0.5~3重量%。
WO 3起到提高折射率的作用,但当其含量超过7重量%时,色散提高显著,并且玻璃可见光区域的短波长侧的透射率降低,着色的倾向增加。因此,在本公开中WO 3的含量为0~7重量%,优选WO 3的含量为0.1~5重量%,更优选0.5~4重量%。
Ta 2O 5具有提高折射率的作用,具有维持玻璃低色散的作用,如果其含量高于15重量%,由于其价格较其它组分昂贵,导致光学玻璃成本增加,因此,本公开从实用以及成本的角度考虑,减少了其使用量。本公开的Ta 2O 5含量为0~15重量%,优选Ta 2O 5含量为0.5~10重量%,更优选3~10重量%。
ZnO可以调整玻璃的折射率和色散,适量的ZnO可以起到改善玻璃的稳定性或熔融性、改善加压成型性的作用,但当其含量高于10重量%时,折射率降低,达不到本公开的要求,同时玻璃的耐失透性降低,析晶上限温度上升。因此,本公开的ZnO含量为0~10重量%,优选ZnO含量0~5重量%,更优选1~3重量%。
Nb 2O 5是一种高折射高色散成分,可以在不明显提高色散的同时提高折射率,也具有提高玻璃的抗析晶性与化学稳定性的作用。如果其含量超过8.5重量%,无法达到本公开玻璃的光学特性,同时玻璃耐失透性恶化。因此,在本公开中Nb 2O 5含量为0~8.5重量%,优选不引入。
发明人发现,本申请的光学玻璃要求具有优异的光学性能、耐失透性、化学稳定性、耐候性、气泡等级和条纹等级以及较低的析晶上限温度,而本申请的发明人通过大量研究发现,通过控制玻璃组分中B 2O 3、SiO 2、ZrO 2、Nb 2O 5、TiO 2和WO 3的合计重量与La 2O 3和ZrO 2的合计重量之比不低于0.6,使得各组分之间发挥协同作用,能有效控制玻璃熔融过程的气体溶解率,并且玻璃不易析晶,玻璃光学常数得到提高,化学稳定性和均匀性得到改善,使得光学玻璃折射率大于1.86,阿贝数大于38.8,析晶上限温度不高于1350摄氏度,耐水性不低于3级,耐酸性不低于3级,耐候性不低于3级,条纹为C级以上,气泡度为不低于A级,同时所得光学玻璃具有优异的耐失透性能,进一步优选控制B 2O 3、SiO 2、ZrO 2、Nb 2O 5、TiO 2和WO 3的合计重量与La 2O 3和ZrO 2的合计重量之比不低于0.65,更优选0.65~0.72,得到光学玻璃折射率为1.87~1.89,阿贝数为39.0~41.0,析晶上限温度不高于1300摄氏度,耐水性不低于2级,耐酸性不低于2级,耐候性不低于2级,条纹为B级以上,更优选为不低于A级,气泡度为不低于A 0级,更优选A 00级。
同时发明人还发现,本申请光学玻璃还要求具有优异的透光特性以及轻量化的特性,而本申请的发明人通过大量研究发现,通过控制ZrO 2、TiO 2和La 2O 3的合计重量与Nb 2O 5、SiO 2、WO 3和Gd 2O 3的合计重量之比为1.0~1.6,可以有效控制熔融过程气体溶解率,提高玻璃的透过率,使玻璃的化稳性得到改善,并实现玻璃的轻量化,得到光学玻璃λ 70不大于420nm,λ 5不大于360nm,密度不高于5.6g/cm 3,耐水性为不低于3级,耐酸性不低于3级,气泡度为不低于A级,进一步优选控制ZrO 2、TiO 2和La 2O 3的合计重量与Nb 2O 5、SiO 2、WO 3和Gd 2O 3的合计重量之比为1.1~1.45,更优选1.35~1.42,所得光学玻璃的λ 70不大于390nm,λ 5不大于350nm,密度不高于5.5g/cm 3,耐水性为不低于2级,耐酸性不低于2级,气泡度为不低于A 0级,更优选A 00级。
根据本公开的再一个实施例,上述光学玻璃进一步包括:0~1重量%的Sb 2O 3和/或0~1重量%的SnO 2和/或0~1重量%的CeO 2和/或0~10重量%的Yb 2O 3和/或0~10重量%的Lu 2O 3和/或0~10重量%的Al 2O 3和/或0~10重量%的Bi 2O 3和/或0~10重量%的GeO 2和/或0~10重量%的Li 2O、Na 2O和K 2O总和和/或0~10重量%的CaO、SrO、BaO和MgO总和。发明人发现,通过少量添加Sb 2O 3和/或SnO 2和/或CeO 2组分可以提高玻璃的澄清效果,但当Sb 2O 3含量超过1重量%时,玻璃有澄清性能降低的倾向,同时由于其强氧化作用促进了成型模具的恶化,因此本公开优选Sb 2O 3的添加量为0-1重量%,更优选为0-0.5重量%,进一步优选不加入。SnO 2也可以作为澄清剂来添加,但当其含量超过1重量%时,则玻璃会着色,或者当加热、软化玻璃并进行模压成形等再次成形时,Sn会成为晶核生成的起点,产生失透的倾向。因此本公开的SnO 2的含量优选为0-1重量%,更优选为0-0.5重量%,进一步优选不添加。CeO 2的作用及添加量比例与SnO 2一致,其含量优选为0-1重量%,更优选 为0-0.5重量%,进一步优选不添加。Yb 2O 3也是本公开玻璃中的高折射率低色散组分,其含量超过10重量%时,玻璃的稳定性、耐失透性降低,因而优选Yb 2O 3含量范围为0-10重量%,更优选为0-8重量%,进一步优选不引入。Lu 2O 3可以提高玻璃的折射率且能降低色散,但当其含量超过10重量%时,玻璃耐失透性与熔融性能均恶化,同时由于其价格较其它组分昂贵,导致光学玻璃成本增加。因此,本公开的Lu 2O 3的含量为0~10%,Lu 2O 3含量的优选范围为0-8重量%,更优选不引入。少量引入Al 2O 3能改善形成玻璃的稳定性和化学稳定性,但其含量超过10重量%时,显示玻璃熔融性变差、耐失透性降低的倾向,因此本公开优选Al 2O 3的含量为0-10重量%,更优选0~8重量%。Bi 2O 3可以提高玻璃折射率,但过量加入则显示可见光区域的短波长侧的透射率降低,玻璃有发生着色的倾向,因此本公开优选Bi 2O 3含量为0-10重量%,更优选为0-5重量%,进一步优选不引入。GeO 2也可有效改善形成玻璃的稳定性和耐失透性,但由于GeO 2是非常昂贵的组分,因此优选GeO 2含量分别为0-10重量%,更优选为0-5重量%,进一步优选不引入。Li 2O、Na 2O和K 2O为用于抑制分相、提高玻璃稳定性的成分。当其总含量超过10重量%时,存在耐候性显著降低或折射率降低的倾向,因此本公开优选Li 2O、Na 2O和K 2O的合计重量含量为0-10重量%,更优选含量范围为0-5重量%,进一步优选不引入。CaO、SrO、BaO和MgO这类的碱土金属氧化物,能够使玻璃的耐候性降低和析晶上限温度显著上升,但当其总含量超过10重量%时,玻璃耐失透性降低,因此本公开优选CaO、SrO、BaO和MgO的合计重量为0-10重量%,更优选范围为0-5重量%,进一步优选不引入。
下面,对本公开的光学玻璃的性能及测试方法进行说明。
1、着色度(λ 705)
本公开玻璃的短波透射光谱特性用着色度(λ 705)表示。λ 70是指玻璃透射比达到70%时对应的波长,λ 5是指玻璃透射比达到5%时对应的波长,其中,λ 70的测定是使用具有彼此平行且光学抛光的两个相对平面的厚度为10±0.1mm的玻璃,测定从280nm到700nm的波长域内的分光透射率并表现出透射率70%的波长。所谓分光透射率或透射率是在向玻璃的上述表面垂直地入射强度I in的光,透过玻璃并从一个平面射出强度I out的光的情况下通过I out/I in表示的量,并且也包含了玻璃的上述表面上的表面反射损失的透射率。玻璃的折射率越高,表面反射损失越大。因此,在高折射率玻璃中,λ 70的值小意味着玻璃自身的着色少。本公开的光学玻璃透射比达到70%时对应的波长(λ 70)不大于420nm,优选不大于390nm,其玻璃透射比达到5%时对应的波长(λ 5)不大于360nm,优选不大于350nm。
使用具有彼此相对的两个光学抛光平面的厚度为10±0.1mm的玻璃样品,测定分光透射率,根据其结果而计算得出。
2、密度
光学玻璃的密度是温度为20℃时单位体积的重量,单位以g/cm 3表示,本公开的光学玻璃的密度不高于5.6g/cm 3,优选不高于5.5g/cm 3
按GB/T7962.20-2010规定的方法进行测量。
3、析晶上限温度
采用梯温炉法测定玻璃的析晶性能,将玻璃制成180*10*10mm的样品,侧面抛光,放入带有温度梯度(5℃/cm)的炉内升温至1400℃保温4小时后取出自然冷却到室温,在显微镜下观察玻璃析晶情况,玻璃出现晶体对应的最高温度即为玻璃的析晶上限温度。玻璃的析晶上限温度越低,则玻璃在高温时稳定性越强,生产的工艺性能越好。根据本公开一种典型的实施方式,优选的,光学玻璃的析晶上限温度不高于1350℃,优选不高于1300℃,更优选不高于1280℃。
4、化学稳定性(耐水作用稳定性DW、耐酸作用稳定性DA)
光学玻璃元件在制造和使用过程中,其抛光表面抵抗水、酸等各种侵蚀介质作用的能力称为光学玻璃的化学稳定性,其主要取决于玻璃的化学组分,本公开的光学玻璃的耐水作用稳定性Dw(粉末法)不低于3级,优选不低于2级,更优选不低于1级;耐酸作用稳定性DA(粉末法)不低于3级,优选不低于2级,更优选不低于1级。
按GB/T 17129的测试方法测试耐水作用稳定性Dw和耐酸作用稳定性DA。
5、气泡
气泡度是玻璃中允许气泡含量的等级,气泡不仅会影响玻璃制品的外观质量,更会影响玻璃的光学性能、透明度、机械强度等,对玻璃造成很多不良影响,因此控制玻璃的气泡度非常重要,本公开的光学玻璃的气泡度不低于A级,优选不低于A 0级,更优选A 00级。
光学玻璃气泡质量按GB/T7962.8-2010规定的测试方法进行测量。
6、折射率及阿贝数
本公开的光学玻璃是高折射率低色散玻璃,高折射率低色散玻璃制成的透镜多与高折射率高色散玻璃制成的透镜相组合,用于色差校正,且光学玻璃作为透镜使用的情况下,越提高折射率则透镜越能够变薄,对于光学设备的小型化有利,本公开的光学玻璃的折射率nd>1.86,优选nd为1.87~1.89,阿贝数vd>38.8,优选vd为39.0~41.0。
折射率与阿贝数按照GB/T7962.1-2010规定的方法进行测试。
7、条纹
条纹度是用点光源和透镜组成的条纹仪,从最容易看见条纹的方向上,与标准试样比较检查,共分为4级,分别为A、B、C、D级,A级为在规定检测条件下,A级为规定检测条件下无肉眼可见的条纹,B级为规定检测条件下有细而分散的条纹,C级为规定检测条件下无有轻微的平行条纹,D级为规定检测条件下有粗略的条纹。本公开的光学玻璃的条 纹为C级以上,优选B级以上,更优选为A级。
按MLL-G-174B规定的方法进行测量。
8、耐候性
将试样放置在相对湿度为90%的饱和水蒸气环境的测试箱内,在40℃~50℃每隔1h交替循环,循环15个周期。根据试样放置前后的浊度变化量来划分耐候性类别,其中浊度是指无色光学玻璃被大气侵蚀后,其表面产生“白斑”或“雾浊”等变质层。玻璃表面的侵蚀程度,通过测量样品侵蚀前、后的浊度差来确定。浊度测量采用雾度示值相对误差±5%以内的积分球式浊度计进行。下表为耐候性分类情况:
Figure PCTCN2018101134-appb-000001
本公开的玻璃耐候性不低于3级,优选不低于2级,更优选不低于1级。
在本公开的第二个方面,本公开提出了一种玻璃预制件。根据本公开的实施例,该玻璃预制件是采用上述光学玻璃制成的。由此,本公开的光学预制件具有高折射率低色散等特性,从而满足市场对高性能玻璃的需求。具体的,将所得到的光学玻璃切割成预定大小,再在表面上均匀地涂布由氮化硼粉末构成的脱模剂,然后将其加热、软化,进行加压成型,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜的预制件。需要说明的是,上述针对光学玻璃所说描述的特征和优点同样适用于该玻璃预制件,此处不再赘述。
在本公开的第三个方面,本公开提出了一种光学元件。根据本公开的实施例,该光学元件是采用上述光学玻璃或玻璃预制件制成的。由此,本公开的光学元件具有高折射率低色散特性,能够以低成本提供性能优异的各种透镜、棱镜等光学元件。例如作为透镜,可以作为透镜面为球面或非球面的凸弯月形透镜、凹弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜。这种透镜通过与高折射率高色散玻璃制成的透镜组合,可校正色差,适合作为色差校正用的透镜。另外,对于光学体系的紧凑化也是有效的透镜。另外,对于棱镜来说,由于折射率高,因此通过组合在摄像光学体系中,通过弯曲光路,朝向所需的方向,即可实现紧凑、广角的光学体系。具体的,将上述玻璃预制件退火,在降低玻璃内部的变形的同时进行微调,使得折射率等光学特性达到所需值,接着,对各预制件进行磨削、研磨,制作凹弯月形透镜、凸弯月形透镜、双凸透镜、双凹透镜、平凸透镜、平凹透镜等各种透镜、棱镜即光学元件,并且所得光学元件的表面上还可涂布防反射 膜。需要说明的是,上述针对光学玻璃和玻璃预制件所描述的特征和优点同样适用于该光学元件,此处不再赘述。
在本公开的第四个方面,本公开提出了一种光学仪器。根据本公开的实施例,该光学仪器具有上述描述的光学元件。由此,通过在该光学仪器上使用上述具有优异性能的光学元件,可以提高该光学仪器的客户体验。具体的,本公开的光学仪器可以是数码照相机、摄像机等。需要说明的是,上述针对光学元件所描述的特征和优点同样适用于该光学仪器,此处不再赘述。
下面参考具体实施例,对本公开进行描述,需要说明的是,这些实施例仅仅是描述性的,而不以任何方式限制本公开。
为了得到具有表1~表5所示的组成的玻璃,使用碳酸盐、硝酸盐、氢氧化物、氧化物、硼酸等作为原料,将光学玻璃成分所对应的原料按比例称量各原料,充分混合后成为调合原料,将该调合原料放入到铂制坩埚内,加热至1200~1450℃,经熔化、搅拌、澄清后形成均匀的熔融玻璃,再将该熔融玻璃适度降温后浇注到预热的模具中并在650~700℃保持2~4小时之后进行缓冷,得到光学玻璃。另外,通过上述所示的方法测定各玻璃的特性,并将测定结果表示在表1~表5中。
表1
Figure PCTCN2018101134-appb-000002
Figure PCTCN2018101134-appb-000003
表2
Figure PCTCN2018101134-appb-000004
Figure PCTCN2018101134-appb-000005
表3
Figure PCTCN2018101134-appb-000006
Figure PCTCN2018101134-appb-000007
表4
Figure PCTCN2018101134-appb-000008
Figure PCTCN2018101134-appb-000009
表5
Figure PCTCN2018101134-appb-000010
Figure PCTCN2018101134-appb-000011
注:上述表格中总量100%是扣除了测量误差、设备精度和不可避免的杂质后的数据。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (16)

  1. 一种光学玻璃,其中,包括:
    5~25重量%的B 2O 3
    25~45重量%的La 2O 3
    0~10重量%的Y 2O 3
    10~35重量%的Gd 2O 3
    0.5~15重量%的SiO 2
    1~15重量%的ZrO 2
    0~5重量%的TiO 2
    0~7重量%的WO 3
    0~15重量%的Ta 2O 5
    0~10重量%的ZnO;
    0~8.5重量%的Nb 2O 5
    其中,m (B2O3+SiO2+ZrO2+Nb2O5+TiO2+WO3)/m (La2O3+ZrO2)不低于0.6。
  2. 根据权利要求1所述的光学玻璃,其中,包括:
    8~20重量%的B 2O 3;和/或
    30~42重量%的La 2O 3;和/或
    0~8重量%的Y 2O 3;和/或
    15~28重量%的Gd 2O 3;和/或
    2~13重量%的SiO 2;和/或
    1~10重量%的ZrO 2;和/或
    0.1~5重量%的TiO 2;和/或
    0.1~5重量%的WO 3;和/或
    0.5~10重量%的Ta 2O 5;和/或
    0~5重量%的ZnO;和/或
    0~8.5重量%的Nb 2O 5
  3. 根据权利要求1或2所述的光学玻璃,其中,包括:
    10~16重量%的B 2O 3;和/或
    33~39重量%的La 2O 3;和/或
    1~5重量%的Y 2O 3;和/或
    17~25重量%的Gd 2O 3;和/或
    4~10重量%的SiO 2;和/或
    3~8重量%的ZrO 2;和/或
    0.5~3重量%的TiO 2;和/或
    0.5~4重量%的WO 3;和/或
    3~10重量%的Ta 2O 5;和/或
    1~3重量%的ZnO;和/或
    0~8.5重量%的Nb 2O 5
  4. 根据权利要求1-3中任一项所述的光学玻璃,其中,m (B2O3+SiO2+ZrO2+Nb2O5+TiO2+WO3)/m (La2O3+ZrO2)不低于0.65,优选0.65~0.72。
  5. 根据权利要求1-4中任一项所述的光学玻璃,其中,m (ZrO2+TiO2+La2O3)/m (Nb2O5+SiO2+WO3+Gd2O3)=1.0~1.6,优选1.1~1.45,更优选1.35~1.42。
  6. 根据权利要求1-5中任一项所述的光学玻璃,其中,进一步包括:
    0~1重量%的Sb 2O 3;和/或
    0~1重量%的SnO 2;和/或
    0~1重量%的CeO 2;和/或
    0~10重量%的Yb 2O 3;和/或
    0~10重量%的Lu 2O 3;和/或
    0~10重量%的Al 2O 3;和/或
    0~10重量%的Bi 2O 3;和/或
    0~10重量%的GeO 2;和/或
    0~10重量%的Li 2O、Na 2O和K 2O总和;和/或
    0~10重量%的CaO、SrO、BaO和MgO总和。
  7. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃折射率为大于1.86,优选1.87~1.89,阿贝数为大于38.8,优选39.0~41.0。
  8. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃的λ 70不大于420nm,优选不大于390nm,λ 5不大于360nm,优选不大于350nm。
  9. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃的析晶上限温度不高于1350摄氏度,优选不高于1300摄氏度。
  10. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃的耐水作用稳定性不低于3级,优选不低于2级,所述光学玻璃的耐酸作用稳定性不低于3级,优选不低于2级,所述光学玻璃的耐候性不低于3级,优选不低于2级。
  11. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃的条纹为C级 以上,优选B级以上,更优选为A级。
  12. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃的气泡度为不低于A级,优选不低于A 0级,更优选A 00级。
  13. 根据权利要求1-6中任一项所述的光学玻璃,其中,所述光学玻璃的密度不高于5.6g/cm 3,优选不高于5.5g/cm 3
  14. 一种玻璃预制件,其中,所述玻璃预制件采用权利要求1-13中任一项所述的光学玻璃制成。
  15. 一种光学元件,其中,所述光学元件采用权利要求1-13中任一项所述的光学玻璃或权利要求14所述的玻璃预制件制成。
  16. 一种光学仪器,其中,所述光学仪器具有权利要求15所述的光学元件。
PCT/CN2018/101134 2018-08-17 2018-08-17 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器 WO2020034210A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/959,418 US11878938B2 (en) 2018-08-17 2018-08-17 Optical glass, glass preform, optical element and optical instrument having the same
JP2020536866A JP7171734B2 (ja) 2018-08-17 2018-08-17 光学ガラス、ガラスプリフォーム、光学素子及びこれを有する光学機器
PCT/CN2018/101134 WO2020034210A1 (zh) 2018-08-17 2018-08-17 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/101134 WO2020034210A1 (zh) 2018-08-17 2018-08-17 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器

Publications (1)

Publication Number Publication Date
WO2020034210A1 true WO2020034210A1 (zh) 2020-02-20

Family

ID=69524994

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101134 WO2020034210A1 (zh) 2018-08-17 2018-08-17 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器

Country Status (3)

Country Link
US (1) US11878938B2 (zh)
JP (1) JP7171734B2 (zh)
WO (1) WO2020034210A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892296A (zh) * 2020-08-03 2020-11-06 成都光明光电股份有限公司 玻璃组合物

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11952311B2 (en) * 2018-08-17 2024-04-09 Cdgm Glass Co., Ltd. Optical glass, glass prefabricated member or optical element prepared therefrom, and optical instrument
WO2020034215A1 (zh) * 2018-08-17 2020-02-20 成都光明光电股份有限公司 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN113816600A (zh) * 2021-08-31 2021-12-21 甘肃光轩高端装备产业有限公司 玻璃组合物、镧系玻璃及其制备方法和应用、镧系玻璃晶圆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287280A1 (en) * 2007-04-24 2008-11-20 Matsushita Electric Industrial Co., Ltd. Optical glass composition, preform and optical element
CN101397187A (zh) * 2007-09-29 2009-04-01 株式会社小原 光学玻璃
CN102030474A (zh) * 2009-09-30 2011-04-27 Hoya株式会社 光学玻璃、加压成型用玻璃原材料、光学元件及其制造方法
CN102295409A (zh) * 2011-03-11 2011-12-28 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN105198206A (zh) * 2015-08-14 2015-12-30 成都光明光电股份有限公司 光学玻璃
CN105293897A (zh) * 2015-08-14 2016-02-03 成都光明光电股份有限公司 光学玻璃

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5827067B2 (ja) * 2010-08-23 2015-12-02 株式会社オハラ 光学ガラス及び光学素子
JP5761603B2 (ja) * 2011-07-01 2015-08-12 日本電気硝子株式会社 光学ガラス
JP5979371B2 (ja) * 2012-10-19 2016-08-24 Hoya株式会社 カレット、光学ガラスおよびそれらの製造方法
CN106467359A (zh) * 2015-08-14 2017-03-01 成都光明光电股份有限公司 光学玻璃
US11952311B2 (en) * 2018-08-17 2024-04-09 Cdgm Glass Co., Ltd. Optical glass, glass prefabricated member or optical element prepared therefrom, and optical instrument
WO2020034215A1 (zh) * 2018-08-17 2020-02-20 成都光明光电股份有限公司 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080287280A1 (en) * 2007-04-24 2008-11-20 Matsushita Electric Industrial Co., Ltd. Optical glass composition, preform and optical element
CN101397187A (zh) * 2007-09-29 2009-04-01 株式会社小原 光学玻璃
CN102030474A (zh) * 2009-09-30 2011-04-27 Hoya株式会社 光学玻璃、加压成型用玻璃原材料、光学元件及其制造方法
CN102295409A (zh) * 2011-03-11 2011-12-28 成都光明光电股份有限公司 一种光学玻璃及光学元件
CN105198206A (zh) * 2015-08-14 2015-12-30 成都光明光电股份有限公司 光学玻璃
CN105293897A (zh) * 2015-08-14 2016-02-03 成都光明光电股份有限公司 光学玻璃

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111892296A (zh) * 2020-08-03 2020-11-06 成都光明光电股份有限公司 玻璃组合物

Also Published As

Publication number Publication date
US11878938B2 (en) 2024-01-23
US20210070648A1 (en) 2021-03-11
JP2021514338A (ja) 2021-06-10
JP7171734B2 (ja) 2022-11-15

Similar Documents

Publication Publication Date Title
TWI610899B (zh) 光學玻璃、玻璃預製件、光學元件
US10252934B2 (en) Optical glass, glass preform and optical element
TWI779744B (zh) 光學玻璃、玻璃預製件及光學元件
WO2020034210A1 (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
TWI610898B (zh) 光學玻璃、玻璃預製件及光學元件
WO2020151716A1 (zh) 氟磷酸盐玻璃、玻璃预制件、光学元件及具有其的光学仪器
TWI726386B (zh) 光學玻璃、由其製備而成的玻璃預製件或光學元件及光學儀器
CN110835229B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
WO2017152656A1 (zh) 光学玻璃及光学元件
JP7213952B2 (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
CN109250903B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
TWI728429B (zh) 光學玻璃、由其製備而成的玻璃預製件或光學元件及光學儀器
CN110835230B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
CN109650716B (zh) 一种无色光学玻璃及其玻璃预制件、元件和仪器
CN109455925B (zh) 一种低软化点光学玻璃及其玻璃预制件、元件和仪器
JP7165810B2 (ja) 光学ガラス、光学ガラスで製造されるガラスプリフォーム又は光学素子及び光学機器
CN109250902B (zh) 光学玻璃、玻璃预制件、光学元件和具有其的光学仪器
CN110835227A (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN111453989A (zh) 镧系光学玻璃及其玻璃预制件、元件和仪器
CN108975683A (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN110835231B (zh) 光学玻璃、由其制备而成的玻璃预制件或光学元件及光学仪器
CN111453988A (zh) 光学玻璃及其玻璃预制件、元件和仪器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020536866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930034

Country of ref document: EP

Kind code of ref document: A1