WO2020034146A1 - 腹腔微创外科手术机器人 - Google Patents

腹腔微创外科手术机器人 Download PDF

Info

Publication number
WO2020034146A1
WO2020034146A1 PCT/CN2018/100823 CN2018100823W WO2020034146A1 WO 2020034146 A1 WO2020034146 A1 WO 2020034146A1 CN 2018100823 W CN2018100823 W CN 2018100823W WO 2020034146 A1 WO2020034146 A1 WO 2020034146A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
rotation
robot
link
minimally invasive
Prior art date
Application number
PCT/CN2018/100823
Other languages
English (en)
French (fr)
Inventor
张峰峰
陈军
吴昊
孙立宁
Original Assignee
苏州大学张家港工业技术研究院
苏州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州大学张家港工业技术研究院, 苏州大学 filed Critical 苏州大学张家港工业技术研究院
Publication of WO2020034146A1 publication Critical patent/WO2020034146A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms

Definitions

  • the invention relates to a abdominal cavity minimally invasive surgical robot, which is used for abdominal cavity minimally invasive surgery and belongs to the field of medical equipment.
  • minimally invasive surgical robots have become a research hotspot in the field of medical robots. It combines traditional medical equipment with information technology and robotics to enable surgical diagnosis and treatment to be minimally invasive, miniaturized, intelligent and digital. Compared with traditional surgery, minimally invasive surgical robots have significant advantages: minimally invasive robotic surgery can improve the doctor's working mode, making doctors more dexterous, more convenient, more accurate when performing surgery, and even allows surgery in two different fields The doctor performs two related operations at the same time; in addition, even if the operation is performed for a long time, the minimally invasive surgical robot will not tremble because of exhaustion like a human hand, which greatly improves the quality of the operation and prolongs the professional life of the surgeon.
  • the robotic surgical wound is only about 1 cm, which greatly reduces the blood loss and postoperative pain of the patient, and the patient recovers quickly.
  • the wound of the large intestine and stomach only needs five to seven days to heal, and the wound of the skin is only one or two days. Heals faster after surgery.
  • a puncture puncture device Before performing minimally invasive surgery in the abdominal cavity, it is necessary to use a puncture puncture device to make an incision at the corresponding position on the human abdomen, and then use a position adjustment mechanism to locate the telecentric point at the incision of the patient's body surface, and then hold the abdominal cavity held by the hand robot
  • the scope and surgical instruments penetrate the interior of the abdominal cavity through the cannula for lesion information detection and surgical operations.
  • laparoscopes and micro-instruments can only slide in the cannula or move around the incision.
  • the incision of the anterior wall of the abdominal cavity where the cannula is placed is called the telecentric point, and the position of the telecentric point is fixed during the operation.
  • the surgical instrument connected to the cannula has only four degrees of freedom in the cannula, namely, pitch, offset, and Rotation and translation four degrees of freedom.
  • Structural constraints are mainly realized by four ways: double parallelogram mechanism, passive joint, arc mechanism and spherical mechanism.
  • the dual parallelogram mechanism is a widely used mechanism. Many medical robot mechanisms use this mechanism to achieve telecentric movement, but the mechanism has multiple links and joints, so it is easy to cause the entire robot to be large and bulky. It may cause interference with other auxiliary equipment or personnel during the actual operation.
  • passive joints for telecentric motion, the telecentric point can adaptively change the position of the incision, without causing additional damage to surrounding tissues, and has high safety, but the operation accuracy is easily disturbed by the reaction force of the incision tissue.
  • the telecentric point of the arc mechanism is the circle center of the arc track, but the volume of this mechanism is relatively large and the drive design is more complicated.
  • the telecentric point of the spherical mechanism is located at the spherical center of the spherical mechanism.
  • This structure is relatively simple. There are only two joints. There are two types of structural forms, one is a serial form, and the other is a parallel form. High, so it is generally used in series. Although this form can make the mechanism smaller, but its reliability and stability are poor.
  • an object of the present invention is to propose a novel structured minimally invasive surgical robot for abdominal cavity.
  • a abdominal cavity minimally invasive surgical robot which includes a control device, a frame, and at least three robot arms connected to the frame, and at least one corresponding one-to-one connection with the robot arms.
  • the robot arm includes a position adjustment mechanism and a telecentric mechanism that can be controlled by a control device,
  • the position adjusting mechanism includes a first slider connected to the frame through the first sliding joint to move up and down, a first lever member rotationally connected to the first slider through the first rotary joint, and a first rod through the second rotary joint.
  • the telecentric mechanism includes a pivot member pivotally connected to the third lever member through a fourth rotation joint, a first link pivotally connected to the pivot member through a fifth rotation joint, and a first connection via a sixth rotation joint
  • the second link that is rotationally connected with the lever, the third link that is rotationally connected with the second link through the seventh rotation joint, and the second slider that is connected and moved with the third link through the second sliding joint.
  • the end is executed
  • the holder clamping device is connected with the second slider, and the first link, the second link, and the third link constitute a parallelogram mechanism.
  • the pivot axis of the pivot member is set along the Y-axis direction
  • the rotation axis of the first link, the rotation axis of the second link, and the rotation axis of the third link are all set along the X-axis direction
  • the second The moving direction of the slider is along the Z-axis direction
  • the X-axis, Y-axis, and Z-axis form a spatial rectangular coordinate system.
  • the Y axis is the axis line of the pivoting member.
  • the pivoting range of the pivoting member is ⁇ 70 ° along the center line along the Z-axis direction
  • the pivoting range of the first link is from -30 ° to 60 ° along the center line along the Z-axis direction.
  • the second The sliding distance of the slider is 250mm.
  • the moving distance range of the first slider is 900 to 1550 mm
  • the rotation range of the first lever is -120 ° to 20 °
  • the rotation range of the second lever is ⁇ 120 °
  • the rotation range of the third lever is It is ⁇ 100 °.
  • the length of the first rod is 670 ⁇ 20mm
  • the length of the second rod is 625 ⁇ 20mm.
  • the end effector clamping device includes an operation lever pivotally connected to the second slider, a wrist part rotatably connected to the operation lever at one end, and rotatably connected to the other end of the wrist part, respectively, and capable of being relatively opened and clamped.
  • the left and right fingers of the clamp are arranged in a manner that are relatively opened and clamped.
  • rotation axis of the wrist is perpendicular to the central axis of the operating lever and the central axis of the wrist at the same time.
  • the rotation range of the operation lever is ⁇ 180 °
  • the rotation range of the wrist is ⁇ 90 ° with the center axis of the operation lever as the center line
  • the rotation ranges of the left and right fingers of the clamp are The central axis of the wrist is ⁇ 90 ° from the centerline.
  • the end effectors held by two connected end effector holding devices are surgical micro instruments
  • the end effectors held by one connected end effector holding device are endoscopes. mirror.
  • the doctor When the abdominal minimally invasive surgical robot of the present invention performs abdominal minimally invasive shell surgery, before surgery, the doctor first drags each component and joint of the position adjustment mechanism without driving control to a proper position and posture and fixes it to achieve a telecentric point Positioning on the surface of the abdominal cavity of the human body, in which the order of adjustment of the joints does not matter before and after, only the telecentric point needs to be in a proper position; then drag the components and joints of the telecentric mechanism that can be driven and controlled to the appropriate position. Position and posture are fixed to ensure that the surgical instruments and endoscopes are in the proper position and posture, and connect the surgical instruments and endoscopes to the cannula at the abdominal incision.
  • the force feedback control device is first used to control the end effector (endoscope) of the second robotic arm of the minimally invasive surgical robot of the abdominal cavity to move to an appropriate position and posture, to obtain the lesion information inside the human abdominal cavity, and then through force feedback
  • the control device controls the movement of the end effectors (surgical micro-instruments) of the first and third robotic arms in the abdominal cavity, and realizes surgical operations such as clamping, cutting, and suture of the soft tissues in the abdominal cavity by the surgical micro-instruments, and completes the minimally invasive abdominal clinical surgery.
  • the position adjustment mechanism without drive control does not participate in the surgical operation.
  • the telecentric mechanism of the robotic arm of the present invention adopts a single parallelogram mechanism for the telecentric mechanism of the robotic arm, which increases the range of rotation of each joint and improves the flexibility and obstacle avoidance of the telecentric mechanism of the mechanical arm.
  • the structure is not only simple in structure and small in size, but also has high reliability, stability and safety, and has more industrial use value.
  • FIG. 1 is a first schematic structural diagram of a minimally invasive surgical robot for abdominal cavity according to the present invention, in which only one robot arm is drawn for explanation;
  • FIG. 2 is a schematic diagram of a second structure of a minimally invasive surgical robot for abdominal cavity according to the present invention, in which only one robot arm is drawn for explanation;
  • FIG. 3 is a schematic structural diagram of a telecentric mechanism and an end effector holding device in a minimally invasive surgical robot for abdominal cavity according to the present invention
  • FIG. 4 is a schematic structural diagram of an end effector holding device in a minimally invasive surgical robot for abdominal cavity according to the present invention
  • FIG. 5 is a schematic diagram of a state of use of the abdominal cavity minimally invasive surgical robot according to the present invention.
  • 200 end effector holding device
  • 201 operating lever
  • 202 wrist
  • 203 left finger of clamping forceps
  • 204 right finger of clamping forceps
  • the abdominal cavity minimally invasive surgical robot in this embodiment includes a control device, a rack, and at least three robot arms 100 connected to the rack, and is connected to the robot arm 100 in a one-to-one correspondence.
  • the at least three end effector clamping devices 200 are provided.
  • Each robot arm 100 includes a position adjustment mechanism and a telecentric mechanism that can be controlled by a control device.
  • Each robot arm 100 has a total of nine joints and nine degrees of freedom.
  • the position adjustment mechanism is composed of the first four joints of the robot arm 100, which is mainly used to achieve the positioning of the telecentric point on the surface of the abdominal cavity of the human body. It has only one control mode, namely manual dragging, manual operation without drive control before surgery.
  • the joint is fixed to a proper position and posture, and the telecentric point is positioned at the incision of the patient's surface.
  • the position adjustment mechanism includes a first slider 111 connected to the frame through a first sliding joint to move up and down, and a first slider 111 connected to the first slider 111 through a first rotary joint.
  • the first lever member 112, the second lever member 113 that is rotationally connected to the first lever member 112 through the second rotation joint, and the third lever member 114 that is rotationally connected to the second lever member 113 through the third rotation joint.
  • the telecentric mechanism is composed of the last five joints of the robotic arm 100. It is mainly used to adjust the position and attitude of the surgical micro-instrument (laparoscope) in the human abdominal cavity. It has two working modes, manual drag and master-slave control. . Before the operation, manually drag and control the joint to the proper position and posture and fix it to ensure that the surgical instruments and endoscopes are in the proper position and posture. Then connect the surgical instruments and endoscopes to the cannula. During the operation, The doctor controls the telecentric mechanism through the force feedback device to perform telecentric movement around the incision of the patient's abdominal body surface to complete the surgical operation. As shown in FIGS.
  • the telecentric mechanism includes a pivoting member 115 pivotally connected to the third lever member 114 through a fourth rotation joint, and a pivoting member 115 pivotally connected to the pivoting member 115 through a fifth rotation joint.
  • the second slider 119 is connected to the second slider 119 which is connected to the third link 118
  • the end effector clamping device 200 is connected to the second slider 119, the first link 116, the second link 117, and the third link
  • the rod 118 constitutes a parallelogram mechanism.
  • the parallelogram mechanism Compared with other types of telecentric positioning mechanisms, the parallelogram mechanism has a simple, compact structure, a small volume, and a wide range of joint angles, which greatly improves the flexibility of the robotic telecentric positioning mechanism and increases the operation. The range of motion of the device.
  • the rotation axis of the first link 116, the rotation axis of the second link 117, and the rotation axis of the third link 118 are all set along the X-axis direction, and the moving direction of the second slider 119 is along the Z-axis
  • the pivot axis of the pivoting member 115 is set along the Y-axis direction. More specifically, the Y-axis is the axis line of the pivoting member 115.
  • the X axis, Y axis, and Z axis form a spatial rectangular coordinate system.
  • the pivoting range of the pivoting member 115 is ⁇ 70 ° along the center line along the Z-axis direction
  • the pivoting range of the first link 116 is from -30 ° to 60 ° along the center line along the Z-axis direction
  • the moving distance range of the second slider 119 is 250 mm.
  • the movement range of the first slider 111 is 900 to 1550 mm
  • the rotation range of the first lever member 112 is -120 ° to 20 °
  • the rotation range of the second lever member 113 is ⁇ 120 °
  • the third The rotation range of the rod 114 is ⁇ 100 °.
  • the length of the first rod member 112 is 670 ⁇ 20 mm
  • the length of the second rod member 113 is 625 ⁇ 20 mm.
  • the end effector holding device 200 has four degrees of freedom. As shown in FIG. 3 and FIG. 4, the end effector clamping device 200 includes an operating lever 201 pivotally connected to the second slider 119, a wrist portion 202 that is rotatably connected to the operating lever 201 at one end, and respectively rotatably connected. The left jaw 203 and the right jaw 204 of the clamping forceps which can be relatively opened and clamped at the other end of the wrist 202.
  • the rotation axis of the wrist 202 is perpendicular to the central axis of the operating lever 201 and the central axis of the wrist 202 at the same time.
  • the rotation range of the operation lever 201 is ⁇ 180 °
  • the rotation range of the wrist 202 is ⁇ 90 ° with the center axis of the operation lever 201 as the center line
  • the left clamp 203 and the right clamp 204 The range of rotation is ⁇ 90 ° with the center axis of the wrist 202 as the center line.
  • the end effectors held by two connected end effector holding devices 200 are surgical micro instruments, and one connected end effector holding device The end effector held by the 200 is an endoscope.
  • the end effectors of the first and third robot arms are surgical micro instruments.
  • the end effector of the second robotic arm is an endoscope, which is used to feedback the lesion information of the surgical area.
  • the doctor when the abdominal minimally invasive surgical robot of the present invention performs abdominal minimally invasive shell surgery, before surgery, the doctor first drags each component and joint of the position adjustment mechanism without driving control to a proper position and posture and fixes it.
  • the components and joints are fixed to the proper position and posture to ensure that the surgical instruments and endoscopes are in the proper position and posture, and the surgical instruments and endoscopes are connected to the cannula at the abdominal incision.
  • the force feedback control device is first used to control the end effector (endoscope) of the second robotic arm 100 of the minimally invasive surgical robot of the abdominal cavity to move to an appropriate position and posture to obtain the lesion information inside the human abdominal cavity.
  • the feedback control device controls the movement of the end effectors (surgical micro-instruments) of the first and third robotic arms 100 in the abdominal cavity, and realizes surgical operations such as clamping, cutting, and suture of the soft tissue in the abdominal cavity by the surgical micro-instruments, and completes the abdominal micro-surgery.
  • the position adjustment mechanism without drive control does not participate in the surgical operation.
  • the abdominal cavity minimally invasive surgical robot of the present invention adopts a single parallelogram mechanism for the telecentric mechanism of the robot arm 100, which increases the range of rotation of each joint, and improves the flexibility and obstacle avoidance of the telecentric mechanism of the robot arm 100. ability.
  • the structure is not only simple in structure and small in size, but also has high reliability, stability and safety, and has more industrial use value.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Robotics (AREA)
  • Manipulator (AREA)
  • Surgical Instruments (AREA)

Abstract

一种腹腔微创外科手术机器人,包括控制装置、机架和连接在机架上的至少三条机械臂(100)、与机械臂连接的至少三个末端执行器夹持装置(200),机械臂(100)包括位置调整机构和能够通过控制装置进行控制的远心机构,位置调整机构包括第一滑块(111)、转动连接的第一杆件(112)、转动连接的第二杆件(113)、转动连接的第三杆件(114);远心机构包括与位置调整机构枢转连接的枢转件(115)、转动连接的第一连杆(116)、转动连接的第二连杆(117)、转动连接的第三连杆(118)、第二滑块(119)。本腹腔微创外科手术机器人,机械臂的远心机构采用单平行四边形机构,增加了各关节的转角范围,提高了机械臂远心机构的灵活性和避障能力。

Description

腹腔微创外科手术机器人 技术领域
本发明涉及一种腹腔微创外科手术机器人,用于腹腔微创手术,属于医疗器械领域。
背景技术
目前,微创外科手术机器人已经成为医疗机器人领域的研究热点,它把传统医疗器械与信息技术、机器人技术结合在一起,使外科诊断与治疗达到了微创化、微型化、智能化和数字化。与传统手术相比,微创手术机器人具有显著的优势:微创机器人手术能够改善医生的工作模式,让医生在进行手术时更灵巧、更方便、更精准,甚至能让两个不同领域的外科医生同时进行两个相关的手术;另外,即使长时间的手术操作,微创手术机器人也不会像人手那样因为疲惫而颤抖,大大提高了手术质量,延长了外科医生的职业寿命;微创外科机器人手术创口仅在1厘米左右,大大减少了患者的失血量及术后疼痛,且病人复原快,大肠和胃脏的伤口愈合只需五至七天,皮肤的伤口则一两天就好,胆囊在手术后的愈合速度更快。以上优点使得机器人成为医生最好的助手。
在进行腹腔外科微创手术前,需要利用戳卡穿刺器在人体腹部相应位置进行切口,然后利用位置调整机构实现远心点在患者体表切口处定位,再将从手机械臂夹持的腹腔镜和手术器械通过套管深入到腹腔内部进行病灶信息探测和手术操作。为了防止手术过程中手术器械对腹腔壁造成额外的伤害,腹腔镜和微器械只能在套管中滑动或者绕切口处运动。放置套管的腹腔前壁切口处称为远心点,在手术过程中远心点的位置固定不变。由于远心点的限制,手术器械 的运动和开放式手术中手术器械的运动不同,与套管相连的手术器械在套管中的自由度只有四个,即俯仰、偏移以及绕自身轴线的回转和平移四个自由度。
当前主要有两种方法能够实现远心运动:一种是通过多关节耦合方式实现远心运动,但是这种方法主要是依靠算法来实现远心运动,所以它对算法的可靠性和稳定性的要求比较高,且安全性比较差,因此在这方面的研究工作比较少;另外一种方法主要是通过采用机构约束来实现远心运动,这种方法拥有成本低、安全性高等优点,因此广泛地被应用于微创手术机器人研究中。
结构约束主要由四种实现方式:双平行四边形机构、被动关节、弧形机构和球形机构。双平行四边机构是一种应用广泛的机构,许多的医疗机器人机构都采用该机构来实现远心运动,但是该机构有多个连杆和关节,所以容易造成整个机器人的体积大而笨重,这样在实际手术过程中就可能会造成与其它辅助设备或人员干涉。利用被动关节实现的远心运动,远心点可以自适应切口位置的变化,不会对周围的组织造成额外的伤害,安全性较高,但是操作精度容易受到切口组织反作用力的干扰。弧形机构的远心点即为圆弧轨道的圆心,但是这种机构的体积较大,驱动设计比较复杂。球形机构远心点位于球形机构的球心,这种结构比较简单,只有两个关节,其结构形式有两种,一是串联形式,另一种是并联形式,由于并联机构发生碰撞的几率较高,所以一般采用串联形式,虽然这种形式能够使机构体积较小,但是可靠性和稳定性较差。
发明内容
为了解决以上技术问题,本发明的目的在于提出一种新型结构的腹腔微创外科手术机器人。
为了达到上述目的,本发明提供了一种技术方案:腹腔微创外科手术机器 人,它包括控制装置、机架和连接在机架上的至少三条机械臂、与机械臂相一一对应连接的至少三个末端执行器夹持装置,机械臂包括位置调整机构和能够通过控制装置进行控制的远心机构,
位置调整机构包括通过第一滑动关节上下移动地连接在机架上的第一滑块、通过第一旋转关节与第一滑块相转动连接的第一杆件、通过第二旋转关节与第一杆件相转动连接的第二杆件、通过第三旋转关节与第二杆件相转动连接的第三杆件;
远心机构包括通过第四旋转关节与第三杆件相枢转连接的枢转件、通过第五旋转关节与枢转件相转动连接的第一连杆、通过第六旋转关节与第一连杆相转动连接的第二连杆、通过第七旋转关节与第二连杆相转动连接的第三连杆、通过第二滑动关节与第三连杆相移动连接的第二滑块,末端执行器夹持装置与第二滑块相连接,第一连杆、第二连杆、第三连杆构成平行四边形机构。
进一步地,枢转件的枢转轴线沿着Y轴方向设置,第一连杆的转动轴线、第二连杆的转动轴线、第三连杆的转动轴线均沿着X轴方向设置,第二滑块的移动方向为沿着Z轴方向,X轴、Y轴、Z轴构成空间直角坐标系。
更进一步地,Y轴为枢转件的轴心线。
更进一步地,枢转件的转动范围为以沿着Z轴方向的中心线±70°,第一连杆的转动范围为以沿着Z轴方向的中心线-30°~60°,第二滑块的移动距离范围为250mm。
进一步地,第一滑块的移动距离范围为900~1550mm,第一杆件的转动范围是-120°~20°,第二杆件的转动范围为±120°,第三杆件的转动范围为±100°。
进一步地,第一杆件的长度为670±20mm,第二杆件的长度为625±20mm。
进一步地,末端执行器夹持装置包括与第二滑块相枢转连接的操作杆、一端与操作杆相转动连接的腕部、分别转动连接在腕部的另一端且能够相对打开和夹紧的夹持钳左指和夹持钳右指。
更进一步地,腕部的转动轴线同时垂直于操作杆的中心轴线和腕部的中心轴线。
更进一步地,操作杆的转动范围为±180°,腕部的转动范围为以操作杆的中心轴线为中心线±90°,夹持钳左指和夹持钳右指的转动范围均为以腕部的中心轴线为中心线±90°。
进一步地,至少三条机械臂中,两条连接的末端执行器夹持装置所夹持的末端执行器为手术微器械,一条连接的末端执行器夹持装置所夹持的末端执行器为内窥镜。
本发明腹腔微创外科手术机器人在进行腹腔微创外壳手术时,在术前,医生首先拖动无驱动控制的位置调整机构的各个构件和关节到合适的位置和姿态并固定,实现远心点在人体腹腔体表处的定位,其中各关节调整的顺序不分前后,只需要保证远心点位于合适的位置即可;然后再拖动可驱动控制的远心机构的各个构件和关节到合适的位置和姿态并固定,保证手术器械和内窥镜处于合适的位置和姿态,并将手术器械和内窥镜与腹腔切口处的套管相连接,其中远心机构的各关节的调整顺序也不分前后,只需要保证手术器械和内窥镜处于合适的位置和姿态即可。术中,首先通过力反馈控制装置控制腹腔微创手术机器人第二个机械臂的末端执行器(内窥镜)运动到合适的位置和姿态,获取人体腹腔内部的病灶信息,然后再通过力反馈控制装置控制第一、第三个机械臂的末端执行器(手术微器械)在腹腔内的运动,实现手术微器械对腹腔内软组织的夹持、切割、缝合等手术操作,完成腹腔微创临床手术。在这个过程中, 无驱动控制的位置调整机构不参与手术操作。
由于采用上述技术方案,本发明腹腔微创外科手术机器人,机械臂的远心机构采用单平行四边形机构,增加了各关节的转角范围,提高了机械臂远心机构的灵活性和避障能力。该结构相较现有技术,不仅结构简单、体积小,而且具有很高的可靠性、稳定性和安全性,更具产业上的利用价值。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。
附图说明
附图1为本发明腹腔微创外科手术机器人的第一结构示意图,其中,只画出一条机械臂以进行说明;
附图2为本发明腹腔微创外科手术机器人的第二结构示意图,其中,只画出一条机械臂以进行说明;
附图3为本发明腹腔微创外科手术机器人中远心机构和末端执行器加持装置的结构示意图;
附图4为本发明腹腔微创外科手术机器人中末端执行器加持装置的结构示意图;
附图5为本发明腹腔微创外科手术机器人的使用状态示意图。
图中标号为:
100、机械臂;
111、第一滑块;112、第一杆件;113、第二杆件;114、第三杆件;115、枢转件、116、第一连杆;117、第二连杆;118、第三连杆;119、第二滑块;
121、第一滑动关节;122、第一旋转关节;123、第二旋转关节;124、第三旋转关节;125、第四旋转关节;126、第五旋转关节;127、第六旋转关节;128、第七旋转关节;129、第二滑动关节;
200、末端执行器加持装置;201、操作杆;202、腕部;203、夹持钳左指;204、夹持钳右指;
300、机架;
400、手推车;401、底座;402、手柄;403、脚轮;
500、显示器。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
参照附图1至附图5,本实施例中的腹腔微创外科手术机器人,它包括控制装置、机架和连接在机架上的至少三条机械臂100、与机械臂100相一一对应连接的至少三个末端执行器夹持装置200。
每条机械臂100均包括位置调整机构和能够通过控制装置进行控制的远心机构。每条机械臂100一共有九个关节,九个自由度。
位置调整机构由机械臂100的前四个关节组成,主要用来实现远心点在人体腹腔体表处的定位,它只有一种控制模式,即手动拖动,术前,手动移动无驱动控制的关节到合适的位置和姿态并固定,实现远心点在患者体表切口处的定位。如附图1和附图2所示,位置调整机构包括通过第一滑动关节上下移动地连接在机架上的第一滑块111、通过第一旋转关节与第一滑块111相转动连接的第一杆件112、通过第二旋转关节与第一杆件112相转动连接的第二杆件113、 通过第三旋转关节与第二杆件113相转动连接的第三杆件114。
远心机构由机械臂100的后五个关节组成,主要用来实现手术微器械(腹腔镜)在人体腹腔内的位置和姿态的调整,它有两种工作模式,手动拖动和主从控制。术前,手动拖动可驱动控制关节到合适的位置和姿态并固定,保证手术器械和内窥镜处于合适的位置和姿态,然后将手术器械和内窥镜与套管相连接;术中,医生通过力反馈装置控制远心机构绕患者腹部体表切口处进行远心运动,完成手术操作。如附图1至附图3所示,远心机构包括通过第四旋转关节与第三杆件114相枢转连接的枢转件115、通过第五旋转关节与枢转件115相转动连接的第一连杆116、通过第六旋转关节与第一连杆116相转动连接的第二连杆117、通过第七旋转关节与第二连杆117相转动连接的第三连杆118、通过第二滑动关节与第三连杆118相移动连接的第二滑块119,末端执行器夹持装置200与第二滑块119相连接,第一连杆116、第二连杆117、第三连杆118构成平行四边形机构。该平行四边形机构较其它类型的远心定位机构而言,结构简单、紧凑,且体积较小,关节角范围较大,大大地提高了机械臂远心定位机构的运动灵活性,增大了手术器械的活动范围。
具体地,第一连杆116的转动轴线、第二连杆117的转动轴线、第三连杆118的转动轴线均沿着X轴方向设置,第二滑块119的移动方向为沿着Z轴方向,枢转件115的枢转轴线沿着Y轴方向设置,更为具体地,Y轴为枢转件115的轴心线。X轴、Y轴、Z轴构成空间直角坐标系。
本实施例中,枢转件115的转动范围为以沿着Z轴方向的中心线±70°,第一连杆116的转动范围为以沿着Z轴方向的中心线-30°~60°,第二滑块119的移动距离范围为250mm。
本实施例中,第一滑块111的移动距离范围为900~1550mm,第一杆件112 的转动范围是-120°~20°,第二杆件113的转动范围为±120°,第三杆件114的转动范围为±100°。
本实施例中,第一杆件112的长度为670±20mm,第二杆件113的长度为625±20mm。
末端执行器夹持装置200具有四个自由度。如附图3和附图4所示,末端执行器夹持装置200包括与第二滑块119相枢转连接的操作杆201、一端与操作杆201相转动连接的腕部202、分别转动连接在腕部202的另一端且能够相对打开和夹紧的夹持钳左指203和夹持钳右指204。
具体地,腕部202的转动轴线同时垂直于操作杆201的中心轴线和腕部202的中心轴线。
本实施例中,操作杆201的转动范围为±180°,腕部202的转动范围为以操作杆201的中心轴线为中心线±90°,夹持钳左指203和夹持钳右指204的转动范围均为以腕部202的中心轴线为中心线±90°。
在一种更为优选的实施方案中,至少三条机械臂100中,两条连接的末端执行器夹持装置200所夹持的末端执行器为手术微器械,一条连接的末端执行器夹持装置200所夹持的末端执行器为内窥镜。本实施例中的机械臂100有四条,其中第四机械臂作为备用的机械臂,一般不参与手术操作,前三个机械臂中,第一和第三机械臂的末端执行器是手术微器械,直接参与手术操作,第二机械臂的末端执行器是内窥镜,用来反馈手术区域的病灶信息。
参考附图5,本发明腹腔微创外科手术机器人在进行腹腔微创外壳手术时,在术前,医生首先拖动无驱动控制的位置调整机构的各个构件和关节到合适的位置和姿态并固定,实现远心点在人体腹腔体表处的定位,其中各关节调整的顺序不分前后,只需要保证远心点位于合适的位置即可;然后再拖动可驱动控 制的远心机构的各个构件和关节到合适的位置和姿态并固定,保证手术器械和内窥镜处于合适的位置和姿态,并将手术器械和内窥镜与腹腔切口处的套管相连接,其中远心机构的各关节的调整顺序也不分前后,只需要保证手术器械和内窥镜处于合适的位置和姿态即可。术中,首先通过力反馈控制装置控制腹腔微创手术机器人第二个机械臂100的末端执行器(内窥镜)运动到合适的位置和姿态,获取人体腹腔内部的病灶信息,然后再通过力反馈控制装置控制第一、第三个机械臂100的末端执行器(手术微器械)在腹腔内的运动,实现手术微器械对腹腔内软组织的夹持、切割、缝合等手术操作,完成腹腔微创临床手术。在这个过程中,无驱动控制的位置调整机构不参与手术操作。
由于采用上述技术方案,本发明腹腔微创外科手术机器人,机械臂100的远心机构采用单平行四边形机构,增加了各关节的转角范围,提高了机械臂100远心机构的灵活性和避障能力。该结构相较现有技术,不仅结构简单、体积小,而且具有很高的可靠性、稳定性和安全性,更具产业上的利用价值。
以上所述仅是本发明的优选实施方式,并不用于限制本发明,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。

Claims (10)

  1. 一种腹腔微创外科手术机器人,其特征在于:它包括控制装置、机架和连接在所述机架上的至少三条机械臂、与所述机械臂相一一对应连接的至少三个末端执行器夹持装置,所述的机械臂包括位置调整机构和能够通过所述控制装置进行控制的远心机构,
    所述的位置调整机构包括通过第一滑动关节上下移动地连接在所述机架上的第一滑块、通过第一旋转关节与所述第一滑块相转动连接的第一杆件、通过第二旋转关节与所述第一杆件相转动连接的第二杆件、通过第三旋转关节与所述第二杆件相转动连接的第三杆件;
    所述的远心机构包括通过第四旋转关节与所述第三杆件相枢转连接的枢转件、通过第五旋转关节与所述枢转件相转动连接的第一连杆、通过第六旋转关节与所述第一连杆相转动连接的第二连杆、通过第七旋转关节与所述第二连杆相转动连接的第三连杆、通过第二滑动关节与所述第三连杆相移动连接的第二滑块,所述的末端执行器夹持装置与所述第二滑块相连接,所述的第一连杆、第二连杆、第三连杆构成平行四边形机构。
  2. 根据权利要求1所述的腹腔微创外科手术机器人,其特征在于:所述枢转件的枢转轴线沿着Y轴方向设置,所述第一连杆的转动轴线、第二连杆的转动轴线、第三连杆的转动轴线均沿着X轴方向设置,所述第二滑块的移动方向为沿着Z轴方向,所述的X轴、Y轴、Z轴构成空间直角坐标系。
  3. 根据权利要求2所述的腹腔微创外科机器人虚拟手术方法,其特征在于:所述的Y轴为所述枢转件的轴心线。
  4. 根据权利要求2所述的腹腔微创外科手术机器人,其特征在于:所述枢转件的转动范围为以沿着Z轴方向的中心线±70°,所述第一连杆的转动范围为以沿着Z轴方向的中心线-30°~60°,所述第二滑块的移动距离范围为250mm。
  5. 根据权利要求1所述的腹腔微创外科手术机器人,其特征在于:所述第一滑块的移动距离范围为900~1550mm,所述第一杆件的转动范围是-120°~20°,所述第二杆件的转动范围为±120°,所述第三杆件的转动范围为±100°。
  6. 根据权利要求1所述的腹腔微创外科手术机器人,其特征在于:所述第一杆件的长度为670±20mm,所述第二杆件的长度为625±20mm。
  7. 根据权利要求1所述的腹腔微创外科手术机器人,其特征在于:所述的末端执行器夹持装置包括与所述第二滑块相枢转连接的操作杆、一端与所述操作杆相转动连接的腕部、分别转动连接在所述腕部的另一端且能够相对打开和夹紧的夹持钳左指和夹持钳右指。
  8. 根据权利要求7所述的腹腔微创外科手术机器人,其特征在于:所述腕部的转动轴线同时垂直于操作杆的中心轴线和腕部的中心轴线。
  9. 根据权利要求8所述的腹腔微创外科手术机器人,其特征在于:所述操作杆的转动范围为±180°,所述腕部的转动范围为以操作杆的中心轴线为中心线±90°,所述夹持钳左指和夹持钳右指的转动范围均为以腕部的中心轴线为中心线±90°。
  10. 根据权利要求1所述的腹腔微创外科手术机器人,其特征在于:所述至少三条机械臂中,两条连接的末端执行器夹持装置所夹持的末端执行器为手术微器械,一条连接的末端执行器夹持装置所夹持的末端执行器为内窥镜。
PCT/CN2018/100823 2018-08-15 2018-08-16 腹腔微创外科手术机器人 WO2020034146A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810929855.0A CN109009443A (zh) 2018-08-15 2018-08-15 腹腔微创外科手术机器人
CN201810929855.0 2018-08-15

Publications (1)

Publication Number Publication Date
WO2020034146A1 true WO2020034146A1 (zh) 2020-02-20

Family

ID=64630396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100823 WO2020034146A1 (zh) 2018-08-15 2018-08-16 腹腔微创外科手术机器人

Country Status (2)

Country Link
CN (1) CN109009443A (zh)
WO (1) WO2020034146A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245244A4 (en) * 2020-11-10 2024-10-16 Chongqing Jinshan Medical Robotics Co Ltd SURGICAL ROBOT AND SURGICAL ROBOT SYSTEM

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111345894B (zh) * 2018-12-21 2022-08-02 上海微创医疗机器人(集团)股份有限公司 机械臂及手术机器人
CN111374777B (zh) * 2018-12-29 2024-09-17 达科为(深圳)医疗设备有限公司 用于胸腹腔微创手术的主从式机器人系统及配置方法
JP7411665B2 (ja) 2019-01-18 2024-01-11 ノーグレン オートメーション ソリューションズ,リミティド ライアビリティ カンパニー 自動交換ツーリングシステムのための方法及び装置
CN109730778A (zh) * 2019-03-20 2019-05-10 苏州康多机器人有限公司 一种双控制协同操作的腹腔镜手术机器人及系统
CN110478044A (zh) * 2019-09-12 2019-11-22 上海交通大学医学院附属第九人民医院 基于高刚度平行四边形远心机构的多自由度手术机器人
CN112168482A (zh) * 2020-08-21 2021-01-05 西安交通大学 一种眼科角膜移植手术机器人操作机构
CN112006786A (zh) * 2020-08-28 2020-12-01 无锡华飞杰希科技有限公司 一种医用辅助工具
CN114452003B (zh) * 2020-11-10 2024-03-12 重庆金山医疗机器人有限公司 一种手术机器人
CN112754669A (zh) * 2021-01-19 2021-05-07 哈尔滨思哲睿智能医疗设备有限公司 一种手术机器人的主动臂及手术机器人
CN113069210B (zh) * 2021-04-06 2023-02-17 天津大学医疗机器人与智能系统研究院 一种可展器械臂
CN113081277B (zh) * 2021-04-06 2023-03-24 山东威高手术机器人有限公司 一种可展器械臂
CN113069209B (zh) * 2021-04-06 2023-02-21 天津大学医疗机器人与智能系统研究院 一种可展器械臂
CN113952037A (zh) * 2021-09-23 2022-01-21 武汉大学 一种穿刺针及伤口缝合装置
CN113729969B (zh) * 2021-10-11 2023-05-16 中南大学 力反馈一体式微创手术机器人
CN114098952A (zh) * 2021-11-11 2022-03-01 深圳市精锋医疗科技股份有限公司 机械臂、从操作设备以及手术机器人
CN114176731B (zh) * 2021-12-24 2024-01-12 王秀萍 一种用于低温等离子射频消融术的辅助定位装置
CN117440785A (zh) * 2022-05-20 2024-01-23 北京歌锐科技有限公司 一种手术设备、手术方法及手术装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026167A1 (en) * 1993-05-14 1994-11-24 Sri International Remote center positioner
CN101106952A (zh) * 2005-01-24 2008-01-16 直观外科手术公司 机器人手术的模块化机械手支架
CN102510740A (zh) * 2009-09-23 2012-06-20 直观外科手术操作公司 弯曲插管和自动操纵器
CN102973317A (zh) * 2011-09-05 2013-03-20 周宁新 微创手术机器人机械臂布置结构
US20170311951A1 (en) * 2011-05-27 2017-11-02 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
CN108210070A (zh) * 2017-12-29 2018-06-29 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107157581B (zh) * 2017-04-06 2020-02-18 上海工程技术大学 一种用于体外微创手术的解耦四自由度远心机构
CN107468293A (zh) * 2017-08-31 2017-12-15 中国科学院深圳先进技术研究院 微创手术机器人及应用其的外科手术设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026167A1 (en) * 1993-05-14 1994-11-24 Sri International Remote center positioner
CN101106952A (zh) * 2005-01-24 2008-01-16 直观外科手术公司 机器人手术的模块化机械手支架
CN102510740A (zh) * 2009-09-23 2012-06-20 直观外科手术操作公司 弯曲插管和自动操纵器
US20170311951A1 (en) * 2011-05-27 2017-11-02 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
CN102973317A (zh) * 2011-09-05 2013-03-20 周宁新 微创手术机器人机械臂布置结构
CN108210070A (zh) * 2017-12-29 2018-06-29 微创(上海)医疗机器人有限公司 机械臂及其工作方法与手术机器人

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4245244A4 (en) * 2020-11-10 2024-10-16 Chongqing Jinshan Medical Robotics Co Ltd SURGICAL ROBOT AND SURGICAL ROBOT SYSTEM

Also Published As

Publication number Publication date
CN109009443A (zh) 2018-12-18

Similar Documents

Publication Publication Date Title
WO2020034146A1 (zh) 腹腔微创外科手术机器人
CN111888012B (zh) 手术器械平台
CN112370167B (zh) 机器人手术器械臂及适用于各种孔数的微创手术机器人
JP4347043B2 (ja) プラットフォーム関節手首
US9089354B2 (en) Devices, systems and methods for minimally invasive surgery of the throat and other portions of mammalian body
KR101923049B1 (ko) 여분의 닫힘 메커니즘을 구비한 단부 작동기
Gu et al. A compliant transoral surgical robotic system based on a parallel flexible mechanism
CN105228539B (zh) 使用端口组件控制手术器械的方法以及装置
KR20150023359A (ko) 영-공간을 이용하여 매니퓰레이터 암 대 환자의 충돌을 회피하는 방법 및 시스템
JP2012005557A (ja) 医療用ロボットシステム
Sekiguchi et al. Development of a tool manipulator driven by a flexible shaft for single port endoscopic surgery
PISLA et al. New approach to hybrid robotic system aplication in single incision laparoscopic surgery
Sekiguchi et al. In vivo experiments of a surgical robot with vision field control for single port endoscopic surgery
Liu et al. Development of a smart surgical robot with bended forceps for infant congenital esophageal atresia surgery
JPH08224247A (ja) 医療用マニピュレータ
Zhang et al. Visible forceps manipulator with novel linkage bending mechanism for neurosurgery
US11944340B2 (en) Suction and irrigation valve and method of priming same in a robotic surgical system
US20220395626A1 (en) Suction and irrigation valve for a robotic surgical system and related matters
Ma et al. Design, teleoperation control and experimental validation of a dexterous robotic flexible endoscope for laparoscopic surgery
Sakurai et al. Thin-diameter chopsticks robot for laparoscopic surgery
Singh et al. A novel robotic platform for single-port abdominal surgery
CN215384231U (zh) 一种用于妇产科腹腔镜手术的标本夹取钳
Zhang et al. A Novel Miniature Flexible Instrument With Unfolding and Decoupling Design for Endoscopic Surgery
US11607218B2 (en) Translatable barrel cam of a robotic surgical system
Feng et al. A new assistant robot system for abdominal minimally invasive surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929901

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18929901

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18929901

Country of ref document: EP

Kind code of ref document: A1