WO2020034115A1 - System and method for tracking objects - Google Patents

System and method for tracking objects Download PDF

Info

Publication number
WO2020034115A1
WO2020034115A1 PCT/CN2018/100568 CN2018100568W WO2020034115A1 WO 2020034115 A1 WO2020034115 A1 WO 2020034115A1 CN 2018100568 W CN2018100568 W CN 2018100568W WO 2020034115 A1 WO2020034115 A1 WO 2020034115A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection nodes
accordance
tracking module
detection
tracking
Prior art date
Application number
PCT/CN2018/100568
Other languages
French (fr)
Inventor
Tsz Wai Maggie MOK
Original Assignee
Mok Tsz Wai Maggie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mok Tsz Wai Maggie filed Critical Mok Tsz Wai Maggie
Priority to PCT/CN2018/100568 priority Critical patent/WO2020034115A1/en
Publication of WO2020034115A1 publication Critical patent/WO2020034115A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

A system and method for tracking objects comprising the steps of receiving location information from one or more detection nodes wherein the one or more detection nodes are arranged to detect at least one tracking module arranged to maintain proximity to a tracked object; and processing the received location information to obtain an object position.

Description

[Title established by the ISA under Rule 37.2] SYSTEM AND METHOD FOR TRACKING OBJECTS TECHNICAL FIELD
The present invention relates to a system and method for tracking objects, and particularly, although not exclusively, to a system and method that uses a low energy signal to track objects.
BACKGROUND
With the recent advancement in computing and communication technologies, there have been various attempts by businesses and governments to build tracking devices. Such tracking devices are useful to track a person, vehicle or container to a specific geographical area. In turn, providing useful information to owners, guardians or Government agents.
The technologies used in these types of tracking devices often involve Global Positioning Systems (GPS) which uses satellite signals to determine the location of a GPS receiver anywhere on earth. Accordingly, due to the accuracy and ease of use of the GPS system, many trackers, including those of portable units will consider the usage of GPS to track a moving person or vehicle.
However, although GPS is highly accurate, its implementation is nonetheless expensive both in costs per unit and resource usage. Accordingly, whilst devices with GPS can be used as a tracking system, such devices may require a substantial amount of maintenance and despite its widespread use, trackers that uses GPS are not suitable for disposable implementations or very low cost maintenance implementations due to the power consumptions of GPS systems and computational complexities of such systems.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, there is provided a method for tracking objects comprising the steps of:
- receiving location information from one or more detection nodes wherein the one or more detection nodes are arranged to detect at least one tracking module arranged to maintain proximity to a tracked object; and
- processing the received location information to obtain an object position.
In an embodiment of the first aspect, the received location information from the one or more detection nodes are selected for processing to obtain the object position.
In an embodiment of the first aspect, the selection of the received location information for processing to obtain the object position is based on the location of the one or more detection nodes.
In an embodiment of the first aspect, the method further includes the step of:
- requesting the one or more detection nodes to detect the at least one tracking module.
In an embodiment of the first aspect, the request is made to the one or more detection nodes based on the location of the one or more detection nodes.
In an embodiment of the first aspect, the request is further made to the one or more detection nodes based on a predicted object position.
In an embodiment of the first aspect, the request is further made to the one or more detection nodes based on the number of detection nodes proximate to the object position or proximate to the predicted object position.
In an embodiment of the first aspect, the predicted object position is determined based on one or more last known object positions, characteristics of the one or more last known object positions, characteristics of the object, or one or more thereof.
In an embodiment of the first aspect, the method further includes the step of requesting the one or more detection nodes to deactivate from detecting the at least one or more tracking modules.
In an embodiment of the first aspect, the one or more detection nodes detect the at least one tracking module by listening for a unique signature from the tracking module.
In an embodiment of the first aspect, the unique signature is a low energy signal broadcast by the tracking module.
In an embodiment of the first aspect, the one or more detection nodes determines the strength of the low energy signal broadcast by the tracking module.
In an embodiment of the first aspect, the strength of the low energy signal is used to calculate a distance of the tracking module relative to the one or more detection nodes.
In an embodiment of the first aspect, the distance of the tracking module relative to the one or more detection nodes is a radius from the one or more detection nodes.
In an embodiment of the first aspect, a radius from one detection node or a combination of radi from more than one detection nodes are used to determine the object position.
In an embodiment of the first aspect, the one or more detection nodes are requested to detect the at least one tracking module when the one or more detection nodes are located at a pre-determine distance from the object position.
In an embodiment of the first aspect, the one or more detection nodes requested to detect the at least one tracking module forms an approximate radius around the object position.
In an embodiment of the first aspect, new requests are made to the one or more detection nodes to maintain the approximate radius around the object position when the object position changes.
In an embodiment of the first aspect, the detection nodes include mobile detection nodes or fixed detection nodes.
In an embodiment of the first aspect, the tracking module includes a Bluetooth Low Energy circuit to broadcast the unique signature.
In accordance with a second aspect of the present invention, there is provided a system for tracking objects comprising:
- a tracking gateway arranged to receive location information from one or more detection nodes wherein the one or more detection nodes are arranged to detect at least one tracking module arranged to maintain proximity to a tracked object; and
- a location processor arranged to process the received location information to obtain an object position.
In an embodiment of the second aspect, the received location information from the one or more detection nodes are selected for processing to obtain the object position.
In an embodiment of the second aspect, the selection of the received location information for processing to obtain the object position is based on the location of the one or more detection nodes.
In an embodiment of the second aspect, the location processor is further arranged to request the one or more detection nodes to detect the at least one tracking module.
In an embodiment of the second aspect, the request is made to the one or more detection nodes based on the location of the one or more detection nodes.
In an embodiment of the second aspect, the request is further made to the one or more detection nodes based on a predicted object position.
In an embodiment of the second aspect, the request is further made to the one or more detection nodes based on the number of detection nodes proximate to the object position or proximate to the predicted object position.
In an embodiment of the second aspect, the predicted object position is determined based on one or more last known object positions, characteristics of the one or more last known object positions, characteristics of the object, or one or more thereof.
In an embodiment of the second aspect, the location processor is further arranged to request the one or more detection nodes to deactivate from detecting the at least one or more tracking modules.
In an embodiment of the second aspect, the one or more detection nodes detect the at least one tracking module by listening for a unique signature from the tracking module.
In an embodiment of the second aspect, the unique signature is a low energy signal broadcast by the tracking module.
In an embodiment of the second aspect, the one or more detection nodes determines the strength of the low energy signal broadcast by the tracking module.
In an embodiment of the second aspect, the strength of the low energy signal is used to calculate a distance of the tracking module relative to the one or more detection nodes.
In an embodiment of the second aspect, the distance of the tracking module relative to the one or more detection nodes is a radius from the one or more detection nodes.
In an embodiment of the second aspect, the radius from one detection node or a combination of radi from more than one detection nodes are used to determine the object position.
In an embodiment of the second aspect, the one or more detection nodes are requested to detect the at least one tracking module when the one or more detection nodes are located at a pre-determine distance from the object position.
In an embodiment of the second aspect, the one or more detection nodes requested to detect the at least one tracking module forms an approximate radius around the object position.
In an embodiment of the second aspect, new requests are made to the one or more detection nodes to maintain the approximate radius around the object position when the object position changes.
In an embodiment of the second aspect, the detection nodes include mobile detection nodes or stationary detection nodes.
In an embodiment of the second aspect, the tracking module includes a Bluetooth Low Energy circuit to broadcast the unique signature.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the present invention will now be described, by way of example, with reference to the accompanying drawings in which:
Figure 1 is a schematic block diagram of a computer server or centralized server arranged to operate as, or at least in part, a system for tracking objects in accordance with one embodiment of the present invention;
Figure 2 is a block diagram of a system for tracking objects including the computer server of Figure 1;
Figure 3 is a block diagram of a system for tracking objects of Figure 2, whereby the computer server is connected with multiple examples of detection nodes;
Figure 4A is a diagram illustrating a distribution of multiple example detection nodes to detect a tracking module;
Figure 4B is a diagram illustrating an example establishment of a safety ring around a tracking module in accordance with one embodiment of the present invention;
Figure 4C is a diagram illustrating an example establishment of a safety ring around a moving tracking module in accordance with one embodiment of the present invention;
Figure 5 is a diagram illustrating an example establishment of a safety ring around a tracking module by use of multiple tracking modules in accordance with one embodiment of the present invention;
Figure 6A is a screenshot of an example user interface of the present invention;
Figure 6B is a screenshot of an example user interface of the present invention;
Figure 6C is a screenshot of an example user interface of the present invention;
Figure 6D is a screenshot of an example user interface of the present invention; and
Figure 6E is a screenshot of an example user interface of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
Referring to Figure 1, there is illustrated an example embodiment of a computer system 100 that may be arranged to operate as, or as part of, a system for tracking objects. This embodiment of the computer system comprises an interface or gateway for receiving location data from one or more detection nodes which are arranged to detect or listen for signals emitted from one or more tracker or tracking modules that are placed or secured to an object that is required to be tracked. By using a processor of the computer system to process the location information, various tracking and location functions can be performed so as to assist a user to track or otherwise locate an object associated with the tracker or tracking module.
In this example embodiment, the interface or gateway and processor are implemented on a computer having an appropriate user interface. The computer may be implemented by  any computing architecture, including stand-alone PC, client/server architecture, “dumb” terminal/mainframe architecture, portable computers, smartphones, tablet computers, wearable computers or any other appropriate architecture. The computer or computing device may also be appropriately programmed to implement part or all of the invention.
As shown in Figure 1 there is a shown a schematic diagram of a system for tracking objects which in this embodiment comprises a computer server 100, or sometimes referred to as a centralized server although it should be noted that there could be multiple centralized servers capable of communicating with each other as is the case with Cloud or Fog based computing to provide a computing server service.
The computer server 100 comprises suitable components necessary to receive, store and execute appropriate computer instructions. The components may include a processing unit 102, read-only memory (ROM) 104, random access memory (RAM) 106, and input/output devices such as disk drives 108, input devices 110 such as an Ethernet port, a USB port, etc. Display 112 such as a liquid crystal display, a light emitting display or any other suitable display and communications links 114. The server 100 includes instructions that may be included in ROM 104, RAM 106 or disk drives 108 and may be executed by the processing unit 102. There may be provided a plurality of communication links 114 which may variously connect to one or more other computing devices such as a server, personal computers, terminals, wireless, smartphones, tablet computers, wearable computers or handheld computing devices. At least one of a plurality of communications link may be connected to an external computing network through a telephone line, cellular network, cable Internet, ADSL or other type of communications link.
The server may also include storage devices such as a disk drive 108 which may encompass solid state drives, hard disk drives, optical drives or magnetic tape drives. The server 100 may use a single disk drive or multiple disk drives. The server 100 may also have a suitable operating system 116 which resides on the disk drive or in the ROM of the server 100.
The system may also have a database 120 residing on a disk or other storage device which is arranged to store at least one record to provide a record of any data or information exchanged between the server and any connected detection nodes. The database 120 is in communication with an interface, which is implemented by computer software residing on the server 100.
With reference to Figure 2, there is illustrated a block diagram of a system for tracking objects 200 comprising:
- a tracking gateway 204 arranged to receive location information from one or more detection nodes (210M, 210S) wherein the one or more detection nodes (210M, 210S) are arranged to detect at least one tracking module 212 arranged to maintain proximity to a tracked object; and
- a location processor 206 arranged to process the received location information to obtain an object position.
The system for tracking objects 200 is arranged to be operated by users to locate or track an object. Objects that may be located or tracked may include, without limitations, persons, animals, vehicles, ships, planes, containers or any other object. Preferably, the system 200 operates to locate and track any objects by determining a location of a tracking module 212 which is secured or otherwise placed in close proximity to an object which is required to be tracked. In some examples, where the object that is tracked is a person, such as a child or elderly person, the tracking module 212 may be worn or tied to the person as an individual item so as to maintain proximity to the person or it may also be integrated within an item of clothing, accessory or personal effect such as a watch or jewellery. If the object that is tracked is an animal, such as a house pet, then the tracking module 212 may be worn on the collar of the pet or integrated formed into a collar. Other examples of how the tracking module 212 can be worn or secured to the object may be decided by a skilled addressee for the specific usage.
In this example embodiment, the tracking module 212 is an electronic device arranged to communicate with a detection node 210M, 210S arranged to process and communicate any communication from the tracking module 212 to the system for tracking objects. The detection nodes (210M, 210S) may also include any electronic device that can communicate with the tracking module 212 whilst also having a known location placement or self-locating arrangement so as to determine location information of a detected tracking module 212. To communicate this location information to the system 200, the detection node 210M, 210S may also include a communication interface arranged to communicate with the computer system or centralized server 202 of the system for tracking objects 200. Examples of detection nodes (210M, 210S) may include, without limitations, smart phones that have a location function (e.g. GPS, WiFi, Cellular Location Data) and a communication interface that can send and receive data via a network or the internet 208, or a specifically made detection device that is placed in a known position and is connected to a communication network or internet 208.
When upon the tracking module 212 communicates with the detection node (210M, 210S) , the detection node (210M, 210S) may then detect the presence of the tracking module 212. In turn, the detection node (210M, 210S) is able to communicate with the computer system or centralized server 202 of the system for tracking objects 200 the location information relating to the tracking module 212. This location information may include, for example:
- the detection of the tracking module 212 at a particular time;
- the approximate distance the tracking module 212 relative to the detection node (210M, 210S) at the particular time; and
- the position of the detection node (210M, 210S) itself at the particular time.
This location information may then indicate an approximate position of the tracking module 212 as the location of the detection node (210M, 210S) is known as well as the approximate distance of the tracking module 212 relative to the detection node (210M, 210S) . In turn, any location information either individually or in combination with other information from other detection nodes (210M, 210S) may then be processed by the centralized server or computer system 202 of the system for tracking objects 200 to determine a position of the object that is being tracked.
In this embodiment, the computer system 202 which forms part of the system for tracking objects 200 includes a location processor 206 and a tracking gateway 204. The location processor 206 and tracking gateway 204 may be implemented as software, hardware or a combination both and arranged to be operated on the computing system 202 such as the computer server 100 as shown in Figure 1, computer system, cloud server, FOG computing server, EDGE computing server, personal computer (PC) , mainframe computer, portable computer, smartphone, tablet computers, wearable computer or any other computing device.
As shown, the computing system 202 may be deployed to have access to a communication network 208, such as the internet via a telecommunication network as provided by telephone networks, cellular networks or the like. By use of this communication network 208, the tracking gateway 204 is able to communicate with the one or more detection nodes (210M, 210S) arranged to detect one or more tracking modules 212. In turn, each of the one or more detection nodes (210M, 210S) may be able to provide location information to the tracking gateway 204 for subsequent processing by the location processor 206 to determine a position of the object that is being tracked.
In this example embodiment, the detection nodes (210M, 210S) may be implemented as an electronic device that may:
- detect the tracking module 212, such as by listening and detecting for a signal as emitted by each tracking module 212;
- have a known position, either by self-detection in the case of detection nodes (210M, 210S) that are mobile via location services such as GPS, Assisted GPS (A-GPS) , WiFi or other network information or in the case of stationary detection nodes 210S, its position as previously recorded during the installation process; and,
- communicate with the computing system 202 to report a detection of a tracking module 212 and the detection nodes’ (210M, 210S) own past or present location (s) .
The detection node (210M, 210S) may also be implemented to receive and process commands from the computing system 202, including commands to activate or deactivate its tracking module functions and/or commands to report its present location. In this regard, software in the form of Applications may be implemented to operate on each detection node (210M, 210S) with the Application being appropriately implemented to provide the various functions necessary of each detection node (210M, 210S) as well as to communicate with the tracking interface of the computer system 202 of the system for tracking objects 200.
In some example implementations, the detection nodes (210M, 210S) may also be able to report additional information to the computing system 202 on request, such as its present direction or speed of travel to obtain a general direction of a detected tracking module 212 or any calculations as to the position or change of position of the tracking module 212 that has been detected. Accordingly, there may be various examples of detection nodes (210M, 210S) , including mobile detection nodes 210M which are detection devices that are able to be mobile as well as stationary detection nodes 210S which are detection devices that are fixed to a specific location.
Examples of mobile detection nodes 210M include: smartphones, tablet computers, portable computers or specific electronic devices arranged to detect the tracking module 212 and have a localizer arrangement arranged to detect its present location (e.g. by GPS, Assisted GPS, WiFi, Cellular Information, RFID, Bluetooth etc) . Whilst fixed detection nodes 210S may include, without limitation a specific device that is arranged to be placed in a fixed and known location, whereby the device can detect any tracking modules 212 which comes within  range. As the device has a fixed and known location, when any tracking modules 212 are detected, the location of the detection node is known immediately by reference to the location of the device itself.
In a preferred example embodiment, the tracking module 212 may be arranged to emit a low energy signal in which it is encoded with a unique identifier that can be detected and decoded by a detection node (210M, 210S) . Examples of such a low energy signal may be a Bluetooth Low Energy Signal which uses the Bluetooth Low Energy (BTLE) standard. In these examples, the tracking module 212 may be a BTLE circuit that emits a unique identifier continuously over a predetermined interval. The use of a low energy signal such as signals that use the BTLE standard is particularly advantageous as BTLE standards ensures that the signal is low energy. In turn, when a tracking module 212 uses a BTLE signal, the cost to implement the circuitry for the module 212 is compact and low cost. Additionally, due to the low power consumption the tracking module’s batteries may last for months to years despite continuous usage and thus allowing for low maintenance tracking modules that can be worn by persons, animals, or secured to cargo, vehicles, planes or any object with minimal intervention.
This unique identifier may in turn be picked up by a listening detection node (210M, 210S) . When the detection node (210M, 210S) detects the presence of this unique identifier, the detection node may then communicate this detection and its position to the computer system 202 for further processing so as to determine an approximate position of the tracking module 212. In some example embodiments, where the low energy signal’s specification supports the measurement and detection of signal strength, the detection nodes (210M, 210S) may also measure the signal strength of the signal. In turn, this may allow the detection node to determine a more accurate approximate radius as to the position of the tracking module 212 relative to the detection node (210M, 210S) itself. This approximate radius and the position of the detection node may then also be communicated to the computer system 202 for processing to decide on an approximate position of the tracker module 212.
Once the computer system 202 receives the location of the detection node (210M, 210S) and where supported, this approximate radius as based on the signal strength, the computer system 202 may then be able to determine an approximate position of the tracking module 212 either to within a set radius of the location of the detection node as based on the expected range of the low energy signal (e.g. 10 to 20 metres for BTLE) or where the signal strength can be measured in certain types of low energy signal, a more precise radius from the detection node as based on the signal strength. Where there are multiple detection nodes  (210M, 210S) that can pick up the unique identifier of the tracking module 212, the location information received from these other detection nodes (210M, 210S) over a period of time may then be useful to determine a more accurate location of the tracking module 212 or to plot a path as to the movement and direction of the tracking module 212. These locations and movement information may than also be further processed by the computer system 202 to determine a predicted path of the tracking module 212 which can in turn allow the computer system 202 to monitor for detection nodes (210M, 210S) that are in the path of the predicted path of the tracking module 212, or alternatively, the multiple detection nodes (210M, 210S) can form a boundary around the tracking module 212 such that in the event the tracking module 212 leaves the range of one or all of these combined multiple detection nodes (210M, 210S) , then an alert can be raised to indicate the tracking module 212 has left the boundary.
With reference to Figure 3, there is illustrated a network topographical diagram illustrating an example implementation and operation of a system for tracking objects 300. As shown in this example, the computer system 202 which operates as part of the system 300 for tracking objects includes a tracking gateway and a location processor and in turn is connected to multiple detection nodes 304, both mobile 210M and stationary 210S, via a communication network 208, such as the internet.
In this example, when upon a tracking module 302 as attached to an object which is being tracked comes into range with any of the detection nodes 304, the detection nodes 304 will in turn detect and determine the tracking module identifier and where supported by the signal’s specification, measure the strength of the signal as emitted from the tracking module 302. The detection nodes 304 would then be able to determine an approximate distance or radius of the tracking module 302 from the detection node 304 itself. In turn, this information, together with the location of the detection node 304 and the timestamp of the detection may then be transmitted to the tracker gateway 204 for processing by the location processor 206 of the computer system 202.
In this example, the location processor 206 is made aware that a detection node 304 has detected the presence of a tracking module 302. However, although a position can be determined for the tracking module 302 based on the location information received, the exact position of the tracking module 302 may not yet be confirmed. Accordingly, the location processor may wait, request or command to receive additional location information that may be received from other detection nodes 304 that have also detected the tracking module 302. These other location information from other nodes may then be combined to improve the accuracy of the determined position of the tracking module 302.
With reference to Figure 4A, there is provided another network topographic diagram illustrating another example operation of the system for tracking objects 400. In this example, there is shown a distribution of detection nodes 402 over a geographic area. These detection nodes 402 may include mobile nodes 210M or stationary nodes 210S that are distributed in various locations over a specific space or area. It is important to appreciate that the distribution of the detection nodes 402 may not necessarily be uniform as shown in Figure 4A but rather may be distributed randomly. Additionally, some or all of the nodes 402 may also move in random directions or speeds over the geographical area with the tracking module 404 itself also capable of being stationary or randomly moving in different speeds or directions.
In this example, at any one time, the location processor 206 may be in communications with one or more of the distribution nodes 402 via the tracker gateway 204 and in turn may command or otherwise request for the one or more detection nodes 402 to detect for the specific tracking module 404. In examples where some of the detection nodes 402 are smartphones, a user of a smartphone may operate the smartphone as part of the system 400 for tracking objects by operating an application or “app” on their phone to detect for any signals from any specific tracking modules 404 that may be in their proximity. Where the signal emitted from the tracking module 404 is of a Bluetooth Low Energy (BTLE) standard, a Bluetooth receiver of the smartphone may listen, detect and where available, measure the signal strength as received from any tracking module 404 within range.
As is the case with smartphones which offers users with various options and freedoms to control the access and processing of their phones, users of these smartphones may choose to have their smartphones operating continuously to detect tracking modules 404 within its range. In such instances, a user may carry their smartphone with them as they travel about their business with the smartphone continuously listening for any signals from any tracking modules 404. In turn, the smartphone may receive many signals from many tracking modules 404 and may in turn keep a record of these detections, including a location of the smartphone at the time of the detection, the identifier of the signal and a timestamp of these detection events. Where the low energy signal standard supports the measurement of signal strength, the smartphone may also record the signal strength of the signal which can also assist with determining the approximate distance of the tracker modules 404 relative to the smartphone.
These records may then be recorded within the storage of the smartphone and/or communicated to the tracking gateway for storage or subsequent processing. This is advantageous as the historical movements of a tracking module 404 can be retained and  queried subsequent to any detection, providing useful information for searchers, rescuers and investigators as to the location of a person, vehicle, animal, container, or any other object at any particular time.
When the detection nodes 402 are listening for tracking modules 404, each detection node 402 may also be commanded by the computer system 202 for tracking  objects  200, 300, 400 to listen for one or more specific tracking modules that are deemed to be important. In this example, if a specific object is desired to be tracked and located, such as a missing pet, the identifier of the specific tracking module 404 associated with the missing pet is than broadcast to all or a selection of detection nodes 402 by the location gateway of the system for tracking objects.
In turn, when each of the detection nodes 402 receives this request, the detection nodes 402 may then flag this specific tracking module 404 as being an important tracking module 404. The detection nodes may then listen for this specific tracking module 404 by listening and detecting for the specific identifier associated with this tracking module 404 and/or query its own records as to whether this tracking module 404 had been previously detected within its detection logs. Should this specific identifier be detected by any one or more of the detection nodes 402 either presently or historically, the detection nodes 402 may then immediately inform the location processor 206 of the system for tracking  objects  200, 300, 400 with information of any of these detections.
Preferably, the detection nodes 402 would also report its individual location to the location processor 206 of the system 202. In cases where the detection node 402 is a stationary node 210S, the stationary node 210S would report its identity to the system 202 which can in turn look up a geographical location (e.g. GPS co-ordinates) of the stationary node from a database arranged to store the known location of each stationary node. As each transmission from the detection nodes 402 are time stamped, the location processor 206 can then determine the approximate position of the tracking module 404 at a particular time. In an example as shown in Figure 4A, as multiple detection nodes 402 can detect the tracking module 404, each detection node 402 can determine an approximate radius of the tracking module 404 from itself. This information can then be transmitted to the location processor for further processing, including the processing of the location information from each of the detection nodes 402 with a triangulation method or similar combination or summation method to determine a more accurate position of the tracking module 404.
Once the location processor 206 is able to determine an approximate position of the tracking module 404 as best it can with the location information provided, this position and any other location information may then be presented on a map interface for a user to view on a computer, smartphone, tablet or any computing device so as to provide the necessary position information to a user, searcher, rescuer or investigator. The detection nodes 402 may also be requested by the system to continue with the tracking process, that is, for example, to continuously listen for the tracking module 404 and report this location information to the system until such time as the tracking module 404 is out of range for a significant amount of time or that the tracking service is no longer required by the user, searcher, rescuer or investigator. If the system is able to determine that the tracking module 404 is moving in a specific direction, the tracking module 404 may also determine a predicted path of the tracking module 404 based on its current speed and direction of travel and request or otherwise activate detection nodes 402 that are in proximity to this predicted path to listen for the tracking module 404. In more advanced implementations, characteristics of the object that is tracked as well as any terrain data proximate to the tracking module 404 may also be considered as part of the process in determining this predicted path. In these examples, if the object that is tracked is an elderly person with characteristics such as age or mobility problems, the predicted path may assume a slow movement speed of the elderly person. It may also assume that the elderly person would avoid climbing hills or stairs and thus this information can be applied to the terrain data to assist in determining a predicted path.
In some example embodiments, where there are only a few detection nodes 402 around a tracking module 404 that is desired to be tracked, a user of the mobile detection node, such as a smartphone, may be specifically requested or directed to physically move towards the signal of the tracking module so as to aid in the search for the tracking module 404. This is particularly important in emergency situations where nearby smartphone users may be requested to volunteer their efforts to assist with a search or rescue operation. In these examples, the application operating on the user’s smartphone or computer may raise an alert so as to inform the user of the emergency or situation and request that the user participate in the search or rescue by directing the user towards the tracker module based on the tracked position.
As shown in Figure 4A, it is also possible that in an example implementation of the system, there could be a large number of detection nodes 402 which could be in close proximity to a tracking module 404 that is required to be tracked. As an example, should an elderly person become lost within a very crowded space, such as an airport, mass transit station, hospital, theatre, mall, stadium, etc, there could already be many detection nodes 402  due to the large number of smartphone users within these areas. In these examples, the system for tracking objects may request or otherwise command the detection nodes 402 in an optimal manner so as to minimize resources used by the detection nodes 402. As an example, without limitations:
- The system may request for all detection nodes 402 to listen for the tracking module 404, but when upon a detection of the tracking module 404, the system may request only the detection nodes 402 proximate to the tracking module 404 to continue to listen for the tracking module 404;
- The system may detect that there is a large volume of detection nodes 402 in a specific area, and may in turn only require some of the detection nodes 402 to listen for tracking modules 404, whilst other nodes may be requested to temporarily sleep so as to save resources and power usage;
- It follows that the system may operate a round robin or other type of scheduling method to control the detection nodes 402, such as request a certain set of detection nodes 402 to operate for a predetermine interval, then requesting the detection node 402 to rest for another predetermined interval whilst a neighbouring node is requested to operate during that rest interval. This is advantageous as it could assist in the sharing of resources amongst detection nodes that are in close proximity to each other and thus reducing their resource usage.
- The system may detect that a mobile detection node is near a stationary node for an extended period of time, in which case, the system may deactivate the mobile detection node until it is moving away from the stationary node to resource usage.
The system may also be implemented in an example manner to reward or encourage users of smartphones to participate within the system for tracking objects. In some examples, smartphone users may be able to control their participation as a detection node 404 based on their personal preferences. Thus some users may choose to share all of their smartphone’s resources with the system, whilst other users may choose to have their smartphone in a standby mode and only activated to perform a tracking service when a specific request (e.g. emergency) is requested. In any of these examples, a reward in the form of points, scores, coupons or even monetary benefit may be paid or given to the smartphone user for their contributions. Such rewards or benefits may be measured based on their contribution of resources and/or the success they have had in locating a specific object and in turn may be redeemed for various products or services, or for usage of the system to track a desired object.  Thus as an example, pet owners who may want to track their pet should the pet ever become lost on a walk may be motivated to share their smartphones to assist other pet owners to track their pets so as to accumulate rewards or points for a subsequent usage of the system should their pet, on the off chance, goes missing.
With reference to Figures 4B, 4C and 5, there is illustrated another example of a control method of the detection nodes to locate and track the tracking module. As shown in Figures 4B, 4C and 5, the system for tracking objects may be used to ensure an object does not leave a specific boundary and that when it leaves a specific boundary, an alert or alarm for follow up actions may be issued to a user or guardian.
As shown in Figure 4B, a ring of detection nodes 406 (referred to as a safety ring) may be established around a tracked object 404 by requesting or activating the detection nodes 402 that are at a predetermined distance “d” away from the tracked object. Each of the detection nodes 402 may also be arranged to operate with a minimum distance “l” from each other such that there is no gap in between any two nodes that may allow the tracking module 404 to leave the ring 406 of detection nodes 402 without it being detected.
In turn, these detection nodes 402 may become active and ensure that a tracking module 404 cannot leave the ring without detection. This is advantageous in that alerts can be generated for any tracked objects that depart from a safety area. Examples of this type of usage may be in schools, elderly homes, hospitals or prisons where a tracked person cannot depart the predetermined zone without an alert being raised.
As the system for tracking objects may communicate, request or command various detection nodes 402, where there is a distribution of a sufficient number of detection nodes 402, the system can arrange to request or command the detection nodes 402 to activate or deactivate about a tracked object 404 as desired so as to form a ring of detection nodes 406 around the tracked object 404. Thus if the detection nodes 402 are constantly moving in a random direction or pace, such as the case with smartphones held by users freely moving about in a public space, the system can count the number of smartphones participating in the tracking activity in a specific space around the tracking module 404 and activate or deactivate the detection nodes 402 around the tracking module 404 to continuously form a safety ring 406 around the tracking module 404.
In examples, where there may be insufficient number of active detection nodes 402 (e.g. lack of smartphone holders or smartphone holders who has granted permission for the  system for tracking objects to access their phones, the system may choose to extend the ring 406 to a specific radius or change the shape of the ring 406 as necessary depending on the distribution of the detection nodes 402 so as to maintain, as best possible, a safety boundary about the tracking module 404 that is being surrounded by the safety ring 406. It should be noted that the term ring or safety ring 406 does not imply that the ring or safety ring 406 must be circular, but can be any shape as dependent on the geographic area and the distribution of detection nodes 402.
With reference to Figure 4C, there is also shown another example implementation of a ring of detection nodes 406 being formed about a moving tracking module 404. In this example, as shown, the system may also continuously track the tracking module 404 as it is moved about an area with mobile detection nodes 402. Similar to the example as described with reference to Figure 4B, the system for tracking objects may also selectively request or command detection nodes 402 that are at a specific distance surrounding the tracking module 404 whilst operating these nodes as the tracking module 404 moves about a specific area. In this example, a prediction of the speed and direction of the tracking module 404 may also be determined by the system so as to pre-request or pre-activate detection nodes 402 that are in the path of the tracking module 404 so as to maintain this safety ring 406 about the tracking module 404.
It should be noted that the system for tracking objects as shown in Figures 4B and 4C may also allow a tracking module 404 being tracked to be within the safety ring 406 whilst a different tracking module 404 may be used to set the boundary or radius of the safety ring 406. Thus, in this example, there could be two tracking modules 404 in use, with a first tracking module 404 being placed or secured on a first tracked object which can set the size or boundary of the safety ring 406, whilst the second tracking module 404 is placed or secured to a second tracked object that is required to be tracked to stay within the safety ring 406.
This is particularly advantageous in such situations where a guardian wishes to ensure an object (such as a person or animal) must stay within a certain distance from them, even if the guardian has the freedom to move around as he or she pleases. An example of such a function in use may be that a user is minding a young child in a specific area such as a shopping mall or amusement park. In this example, the user may place a tracking module 404 on the young child, followed by setting a boundary of movement by the child with respect to their own tracking module 404. In turn, the user has set up a safety ring 406 for the child to move around the location of the minder. This can ensure that the young child could not leave a certain radius about the user who is minding the child without an alert being raised whilst both the child and the minder can move around the mall or amusement park freely.
As shown in Figure 5, the system for tracking objects may also allow for multiple tracking modules 410 so as to create a safety ring around a tracked object 404. In the above paragraphs, it was described in one example embodiment that a first tracking module 410 can belong to a guardian who would set the boundary of a safety ring 408, followed by placement of a second tracking module 410 on a tracked object 404 that would be tracked to stay within the safety ring 408. However, as shown in Figure 5, the safety ring 408 may be created with multiple tracking modules 410, with each tracking module 410 being held by an individual guardian “G”who would, together with an adjacent guardian “G” form a boundary as part of the safety ring 408. Effectively, the boundary of the safety ring 408 may be extended as based on the number of tracking modules 410 held by the multiple guardians “G” . In these examples, it is noted that the guardians “G” may not need a separate physical tracking module 410 as the guardian’s smartphones may also be able to operate as a tracking module 410 through its own low energy circuits.
As described in various example embodiments of the present invention, user may use the system to perform tracking or location functions of a tracking module 410 by use of mobile devices or handheld computing devices including but not limited to smartphones, laptops, computer tablets etc. Preferably, in order to interact with the network with these personal devices, the user is required to download a mobile application on to their devices so as to allow the device to connect and operate with the computer system which provides the functionalities to operate as a system for tracking objects.
Accordingly, to start using one example embodiment of the system for tracking objects, a user may firstly register a tracking module with the system such that the tracking module is associated with an object that is to be tracked. This registration process includes obtaining the unique identity of the tracking module, which is the unique identity as emitted from the tracking module, and recording that as part of a registration process on the system.
In one example, a user may download and open an “app” on their smartphone or computer to perform this registration. The user may firstly start by logging into the system or create a new account and pair the account with the tracking module. This could be performed by scanning for the BTLE signal with the smartphone of the user during the registration process in which case the unique signature of the tracking module is then recorded and associated with the user in a centralized server.
Additionally, users may also purchase custom key nodes which are stationary detection nodes that can be placed around an area of interest. These custom key nodes may then be linked with the user account. The custom key node may also be renamed, for example, to fit the environment that the user chooses to install the node into. Advantageously, if user owns multiple custom key nodes installed in different places, the rename function may facilitate easy reference for the user.
Preferably, custom key nodes may also be operated in two different modes. The first of this mode is referred to as a global mode whilst the second is what is referred to as a private mode. In global mode, the key node would assist to track all tracking modules, including tracking modules that do not belong to the user. On the other hand, in private mode, the key node would only track the tracking modules that are associated with the user account. This provides the user with superior control as to their resource usage.
Examples of a deployment of custom key nodes may be found in elderly homes, child care centres or medical facilities, etc, where individuals are required to be tracked during their care within these locations. Operators of these homes, centres or facilities may install multiple custom key nodes through out the building, including in rooms, hall ways, access points, lifts and stairwells whilst those under care within these facilities in turn are provided with a tracking module. In turn, those under care can be tracked and located within the building by using the custom key nodes to detect and where available, measure the unique identifier as emitted from each of the tracking modules.
With reference to Figure 6A, there is shown an example screenshot of a user interface 600 where by a user is able to track three persons’tracking modules 602. Although not shown, in this example the three person’s tracking modules were previously registered to the present user and thus the user would have permission to track the three persons.
To begin the tracking process, the user could open the application installed on their electronic device, such as a smartphone or portable computer and select the tagged person on the application. Accompanying with the name of the tagged person, the application also pinpoints the last known location and time of detection. Also shown in the interface, the status icons for passive/active modes 604 which would indicate whether the user’s smartphone is operating in passive or active modes. The passive mode is whereby the smartphone will continue to communicate with the centralized server of the system for tracking objects, including an exchange of location of the smartphone but would otherwise not be listening for any tracking modules. The active mode is whereby the smartphone would continue  communicate with the centralized server and would also be listening for any signals from tracking modules. Should a tracking module’s signal be detected and this tracking module’s signal is deemed to be important (required to be tracked) by the centralised server, then the smartphone will immediately transmit any such location information to the centralised server.
Also shown in this example interface are alerts icons 606 which can show alerts or requests from the centralised server. As it will be described below, in situations where users are required to assist with tracking objects, an alert may be sent to the user which would in turn be displayed on the interface so as to allow a user to respond accordingly.
With reference to Figure 6B, if tracking is requested by the user and that an alert is raised, the system would automatically try to find the last known location and last seen time of the tracking module associated with the person the user wishes to track 608. This information may also be shown on a map 610 so as to provide visual confirmation as to the last known locations of the person. At this stage, the system may attempt to find the followings:
1) 10 last known locations as reported of official key nodes;
2) all of the last known locations as reported by custom key nodes should there be any; and
3) all of the last lost and found locations of this particular tracking module.
However, if no last known location was found as shown in Figure 6C, the system may then prompt the user to select a possible last known location 612. Once a last known location has been chosen, the centralized server of the system for tracking objects may send an alert via server communication to all key nodes and mobile nodes within a predetermined (e.g. 5km) radius of the last known location. Advantageously, in this way, the entire process would be automatic so as to reduce manual intervention and errors, whilst also increasing the speed in which a tracking request can be sent out.
As shown in Figure 6D, if there are no mobile detection nodes or that the number of mobile detection nodes are below a sufficient amount within a 5km radius, a standard or a customized message 614 would be sent from the centralized server or any device which would have the Application for tracking an object installed so as to prompt for the smartphone users’permission to help track the concerned object. The customized message can be configured with the latest information 616 from the user. Likewise, if a user owns a custom key node that is in private mode, the system would also a standard or a customized message to  the user for permission to temporarily switching those custom nodes into global mode to assist the search.
In another situation, should there be no nodes discovered near the last found location within a predetermined interval (e.g. 300 seconds) , the centralized server or device capable to performing a similar function would then send an alert via server communication to all key nodes and mobile nodes within a certain radius e.g. 10km radius. This process would reiterate itself numerous times, with radius intervals of 3km, 5km, 10km, 20km, 50km etc, with a time delay apart from each interval. Advantageously, this method could optimize the number of participants, hence greater efficiency, although as a person skilled in the art would appreciate. In extreme urgent situations, all mobile nodes even those remote from any last known location, may be requested to listen for the tracking module.
With reference to Figure 6E, if the tracking module is found during the tracking process by any one or more detection nodes, the system would then report the location to the centralized server or any device carrying similar function of that and add the new location to the lost and found list of this tracker. Subsequently, the server would send the new location to the user’s application and may provide three options for the user including the followings: 1) disable tracking;
2) continue tracking for 1/6/12/24 hours in alert mode; or 3) continue tracking for 1/6/12/24 hours in stealth mode.
If disabled tracking is selected, all nodes upon receiving the thank you message 618 will transition back to passive state. However, if continue tracking (either in alert or stealth mode) is selected, all mobile nodes within 5km of the found location will be asked to allow BTLE tracking (remains in active state) for the selected period of time.
Although not required, the embodiments described with reference to the Figures can be implemented as an application programming interface (API) or as a series of libraries for use by a developer or can be included within another software application, such as a terminal or personal computer operating system or a portable computing device operating system. Generally, as program modules include routines, programs, objects, components and data files assisting in the performance of particular functions, the skilled person will understand that the functionality of the software application may be distributed across a number of routines, objects or components to achieve the same functionality desired herein.
It will also be appreciated that where the methods and systems of the present invention are either wholly implemented by computing system or partly implemented by computing systems then any appropriate computing system architecture may be utilised. This will include stand alone computers, network computers and dedicated hardware devices. Where the terms “computing system” and “computing device” are used, these terms are intended to cover any appropriate arrangement of computer hardware capable of implementing the function described.
It will be appreciated by persons skilled in the art that numerous variations and/or modifications may be made to the invention as shown in the specific embodiments without departing from the spirit or scope of the invention as broadly described. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive.
Any reference to prior art contained herein is not to be taken as an admission that the information is common general knowledge, unless otherwise indicated.

Claims (40)

  1. A method for tracking objects comprising the steps of:
    - receiving location information from one or more detection nodes wherein the one or more detection nodes are arranged to detect at least one tracking module arranged to maintain proximity to a tracked object; and
    - processing the received location information to obtain an object position.
  2. A method in accordance with claim 1, wherein the received location information from the one or more detection nodes are selected for processing to obtain the object position.
  3. A method in accordance with claim 2, wherein the selection of the received location information for processing to obtain the object position is based on the location of the one or more detection nodes.
  4. A method in accordance with any one of claims 1 to 3, further including the step of:
    - requesting the one or more detection nodes to detect the at least one tracking module.
  5. A method in accordance with claim 4, wherein the request is made to the one or more detection nodes based on the location of the one or more detection nodes.
  6. A method in accordance with claim 5, wherein the request is further made to the one or more detection nodes based on a predicted object position.
  7. A method in accordance with claim 5 or 6, wherein the request is further made to the one or more detection nodes based on the number of detection nodes proximate to the object position or proximate to the predicted object position.
  8. A method in accordance with claim 6 or 7, wherein the predicted object position is determined based on one or more last known object positions, characteristics of the one or more last known object positions, characteristics of the object, or one or more thereof.
  9. A method in accordance with any one of claims 1 to 8, further including the step of requesting the one or more detection nodes to deactivate from detecting the at least one or more tracking modules.
  10. A method in accordance with any one of claims 1 to 9, wherein the one or more detection nodes detect the at least one tracking module by listening for a unique signature from the tracking module.
  11. A method in accordance with claim 10, wherein the unique signature is a low energy signal broadcast by the tracking module.
  12. A method in accordance with claim 11, wherein the one or more detection nodes determines the strength of the low energy signal broadcast by the tracking module.
  13. A method in accordance with claim 12, wherein the strength of the low energy signal is used to calculate a distance of the tracking module relative to the one or more detection nodes.
  14. A method in accordance with claim 13, wherein the distance of the tracking module relative to the one or more detection nodes is a radius from the one or more detection nodes.
  15. A method in accordance with claim 14, wherein a radius from one detection node or a combination of radi from more than one detection nodes are used to determine the object position.
  16. A method in accordance with any one of claims 4 to 15, wherein the one or more detection nodes are requested to detect the at least one tracking module when the one or more detection nodes are located at a pre-determine distance from the object position.
  17. A method in accordance with claim 16, wherein the one or more detection nodes requested to detect the at least one tracking module forms an approximate radius around the object position.
  18. A method in accordance with claim 17, wherein new requests are made to the one or more detection nodes to maintain the approximate radius around the object position when the object position changes.
  19. A method in accordance with any one of claims 1 to 18, wherein the detection nodes include mobile detection nodes or fixed detection nodes.
  20. A method in accordance with any one of claims 1 to 19, wherein the tracking module includes a Bluetooth Low Energy circuit to broadcast the unique signature.
  21. A system for tracking objects comprising:
    - a tracking gateway arranged to receive location information from one or more detection nodes wherein the one or more detection nodes are arranged to detect at least one tracking module arranged to maintain proximity to a tracked object; and
    - a location processor arranged to process the received location information to obtain an object position.
  22. A system in accordance with claim 21, wherein the received location information from the one or more detection nodes are selected for processing to obtain the object position.
  23. A system in accordance with claim 22, wherein the selection of the received location information for processing to obtain the object position is based on the location of the one or more detection nodes.
  24. A system in accordance with any one of claims 21 to 23, wherein the location processor is further arranged to request the one or more detection nodes to detect the at least one tracking module.
  25. A system in accordance with claim 24, wherein the request is made to the one or more detection nodes based on the location of the one or more detection nodes.
  26. A system in accordance with claim 25, wherein the request is further made to the one or more detection nodes based on a predicted object position.
  27. A system in accordance with claim 25 or 26, wherein the request is further made to the one or more detection nodes based on the number of detection nodes proximate to the object position or proximate to the predicted object position.
  28. A system in accordance with claim 26 or 27, wherein the predicted object position is determined based on one or more last known object positions, characteristics of the one or more last known object positions, characteristics of the object, or one or more thereof.
  29. A system in accordance with any one of claims 21 to 28, wherein the location processor is further arranged to request the one or more detection nodes to deactivate from detecting the at least one or more tracking modules.
  30. A system in accordance with any one of claims 21 to 29, wherein the one or more  detection nodes detect the at least one tracking module by listening for a unique signature from the tracking module.
  31. A system in accordance with claim 30, wherein the unique signature is a low energy signal broadcast by the tracking module.
  32. A system in accordance with claim 31, wherein the one or more detection nodes determines the strength of the low energy signal broadcast by the tracking module.
  33. A system in accordance with claim 32, wherein the strength of the low energy signal is used to calculate a distance of the tracking module relative to the one or more detection nodes.
  34. A system in accordance with claim 33, wherein the distance of the tracking module relative to the one or more detection nodes is a radius from the one or more detection nodes.
  35. A system in accordance with claim 34, wherein a radius from one detection node or a combination of radi from more than one detection nodes are used to determine the object position.
  36. A system in accordance with any one of claims 24 to 35, wherein the one or more detection nodes are requested to detect the at least one tracking module when the one or more detection nodes are located at a pre-determine distance from the object position.
  37. A system in accordance with claim 26, wherein the one or more detection nodes requested to detect the at least one tracking module forms an approximate radius around the object position.
  38. A system in accordance with claim 27, wherein new requests are made to the one or more detection nodes to maintain the approximate radius around the object position when the object position changes.
  39. A system in accordance with any one of claims 21 to 38, wherein the detection nodes include mobile detection nodes or stationary detection nodes.
  40. A system in accordance with any one of claims 31 to 39, wherein the tracking module includes a Bluetooth Low Energy circuit to broadcast the unique signature.
PCT/CN2018/100568 2018-08-15 2018-08-15 System and method for tracking objects WO2020034115A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100568 WO2020034115A1 (en) 2018-08-15 2018-08-15 System and method for tracking objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100568 WO2020034115A1 (en) 2018-08-15 2018-08-15 System and method for tracking objects

Publications (1)

Publication Number Publication Date
WO2020034115A1 true WO2020034115A1 (en) 2020-02-20

Family

ID=69524935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100568 WO2020034115A1 (en) 2018-08-15 2018-08-15 System and method for tracking objects

Country Status (1)

Country Link
WO (1) WO2020034115A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080001764A1 (en) * 2006-06-28 2008-01-03 Randy Douglas Personal crime prevention bracelet
US20090280832A1 (en) * 2005-01-26 2009-11-12 Broadcom Corporation Cell phone relative position indication on displayed map using GPS coordinates
CN106595651A (en) * 2016-11-24 2017-04-26 歌尔科技有限公司 Monitoring terminal, anti-lost terminal, anti-lost system and anti-lost method
CN107948953A (en) * 2016-10-13 2018-04-20 中兴通讯股份有限公司 Location determining method and device, the terminal of a kind of wearable device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090280832A1 (en) * 2005-01-26 2009-11-12 Broadcom Corporation Cell phone relative position indication on displayed map using GPS coordinates
US20080001764A1 (en) * 2006-06-28 2008-01-03 Randy Douglas Personal crime prevention bracelet
CN107948953A (en) * 2016-10-13 2018-04-20 中兴通讯股份有限公司 Location determining method and device, the terminal of a kind of wearable device
CN106595651A (en) * 2016-11-24 2017-04-26 歌尔科技有限公司 Monitoring terminal, anti-lost terminal, anti-lost system and anti-lost method

Similar Documents

Publication Publication Date Title
JP7211981B2 (en) Operation of Tracking Devices in Safe Classified Zones
US9189948B2 (en) Object acquiring system and acquiring method thereof
US11146917B1 (en) Path storage and recovery using wireless devices
US9497594B2 (en) Identifying status based on heterogeneous sensors
US20200092683A1 (en) Sticker location device and associated methods
KR101534995B1 (en) Method and apparatus for mobile location determination
US9485613B2 (en) Wireless pairing and tracking system for locating lost items
US8872655B2 (en) System, method and network for monitoring of location of items
EP1709754B1 (en) System and method for establishing and monitoring the relative location of group members
US8725174B2 (en) Mobile device alert generation system and method
US11812332B2 (en) Notifications in a tracking device environment
CN104170412A (en) Method and apparatus using geofence to track individual group members
CN104471964A (en) Methods and systems for providing location based services in a venue
CA2788776A1 (en) System and method for mobile monitoring of non-associated tags
CN105247898A (en) Client access to mobile location services
US9839197B1 (en) Lost and found notifications for pets based on geolocation and profile information
US10805900B2 (en) Method and device for deriving location
US20140087764A1 (en) Method and System for Calculating Directional Information Including Estimated Distance to Recently Moved or Newly Tagged Objects to a Moving, Wireless Enabled Device
WO2020034115A1 (en) System and method for tracking objects
US20190311596A1 (en) Enhanced gps tracking devices and associated methods
CN103869349A (en) Positioning device
US11190924B2 (en) Tracking device for a track and locate system
EP3819858A1 (en) Track and locate system
US10939244B1 (en) Track and locate system
US20230016774A1 (en) Method and system for determining the location of a tracking device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929934

Country of ref document: EP

Kind code of ref document: A1