WO2020034065A1 - 超声成像的方法、超声成像设备以及穿刺导航系统 - Google Patents

超声成像的方法、超声成像设备以及穿刺导航系统 Download PDF

Info

Publication number
WO2020034065A1
WO2020034065A1 PCT/CN2018/100250 CN2018100250W WO2020034065A1 WO 2020034065 A1 WO2020034065 A1 WO 2020034065A1 CN 2018100250 W CN2018100250 W CN 2018100250W WO 2020034065 A1 WO2020034065 A1 WO 2020034065A1
Authority
WO
WIPO (PCT)
Prior art keywords
puncture
puncture needle
guide
ultrasound
target
Prior art date
Application number
PCT/CN2018/100250
Other languages
English (en)
French (fr)
Inventor
眭小丰
王超
周述文
夏正明
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
深圳迈瑞科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司, 深圳迈瑞科技有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201880095966.4A priority Critical patent/CN112533540A/zh
Priority to PCT/CN2018/100250 priority patent/WO2020034065A1/zh
Publication of WO2020034065A1 publication Critical patent/WO2020034065A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves

Definitions

  • the present application relates to the field of medical equipment, and in particular, to a method for ultrasound imaging, an ultrasound imaging device, and a puncture navigation system.
  • Ultrasound-guided puncture technology has emerged at the historic moment. This technology is a clinical technique for puncturing a lesion or a target in the body under the monitoring and guidance of real-time ultrasound images.
  • the specific method is to avoid the important organs and large blood vessels and nerves under the guidance of ultrasound, and accurately insert the puncture needle into the diseased tissue for treatment or aspiration, cut out a small number of cells or tissues for pathological examination, or
  • the puncture needle punctures the anesthetic drugs near the nerves, which avoids the damage to the surrounding tissues to the greatest extent. After the puncture, the puncture site, the puncture path, and the diffusion of the anesthetic medicine can be observed immediately to find possible bleeding in time. Such phenomena should be handled in the shortest time to avoid causing more serious complications.
  • Ultrasound puncture navigation can display the movement of the puncture needle in the tissue in real time, and provides a basis for the choice of the puncture path. It is an important means of ultrasound-assisted treatment.
  • conventional ultrasound-guided puncture relies heavily on the experience of the operator and the performance of the ultrasound instrument. There may be problems such as a large number of punctures and a long operation time, which leads to an increase in the incidence of complications.
  • the ultrasound emitted by the probe is actually very narrow, and it is emitted from a small gap in the middle of the probe.
  • the ultrasound emitted by the puncture needle and the probe is not in the same plane, so the ultrasound can not effectively guide the puncture.
  • the puncture needle when the probe and the skin are not perpendicular, the puncture needle needs to be inserted from the side opposite to the probe, and the puncture needle and the probe are not coplanar. If the nerve block is guided by ultrasound, nerve damage may exist if the needle tip is not fully displayed. For some puncture treatments, there are also great difficulties. For example, because the suction needle and the needle are small, the puncture needle does not display clearly when it reaches the depth of 2-3 cm in the ultrasound image, so it cannot effectively avoid important blood vessels and nerves.
  • the present application provides a method for ultrasound imaging, an ultrasound imaging device, and a puncture navigation system for improving operation accuracy.
  • a first aspect of the embodiments of the present application provides an ultrasonic imaging method, including: transmitting ultrasonic waves to a target area and receiving ultrasonic echoes returned by the target area to obtain ultrasonic echo data; and generating an ultrasonic image according to the ultrasonic echo data Acquiring position information of an interventional object; generating a guidance image according to the position information of the interventional object, the guidance image indicating a positional relationship between the interventional object and a puncture target in the target area; displaying the ultrasound image and the guidance image.
  • a second aspect of the embodiments of the present application provides an ultrasound imaging device, including: a probe, a transmitting circuit, a receiving circuit processor, and a display; the transmitting circuit transmits ultrasonic waves to a target area, and the receiving circuit controls the probe to receive the target area returned by the target area Ultrasound echo to obtain ultrasound echo data; the processor generates an ultrasound image according to the ultrasound echo data; the processor obtains position information of an interventional object; the processor generates a guidance image according to the position information of the interventional object, The guidance image indicates the positional relationship between the interventional object and the puncture target in the target area; the display displays the ultrasound image and the guidance image.
  • a third aspect of the embodiments of the present application provides an ultrasonic imaging method, including: transmitting ultrasonic waves to a target area through a probe and receiving ultrasonic echoes returned by the target area to obtain ultrasonic echo data; and generating an ultrasonic image according to the ultrasonic echo data ; Obtain the positional relationship of the interventional object relative to the probe; generate a puncture indication map according to the positional relationship of the interventional object relative to the probe; the puncture indication map indicates the positional relationship of the interventional object relative to the plane of the ultrasound image; display the ultrasound image and the puncture indication Illustration.
  • a fourth aspect of the embodiments of the present application provides an ultrasonic imaging device, including: a probe, a transmitting circuit, a receiving circuit processor, and a display; the transmitting circuit transmits ultrasonic waves to the target area through the probe; the receiving circuit controls the probe to receive the ultrasonic wave returned by the target area.
  • Wave to obtain ultrasound echo data the processor generates an ultrasound image according to the ultrasound echo data; the processor obtains the positional relationship of the interventional object relative to the probe; the processor generates a puncture indication map according to the positional relationship of the interventional object relative to the probe;
  • the puncture indicator indicates the positional relationship of the interventional object relative to the plane on which the ultrasound image is located; the display shows the ultrasound image and the puncture indicator.
  • a fifth aspect of the embodiments of the present application provides a puncture navigation system including a magnetizer for magnetizing an interventional object, and the ultrasound imaging apparatus provided by the second or fourth aspect described above.
  • a computer-readable storage medium stores instructions, and when the computer-readable storage medium is run on a computer, causes the computer to execute the above-mentioned first or third aspect.
  • Ultrasound imaging method Ultrasound imaging method.
  • the embodiments of the present application have the following advantages: After obtaining an ultrasound image and position information of an interventional object through ultrasound and ultrasound echo, a guidance image is generated according to the position information of the interventional object, and the guidance image can be Indicate the positional relationship between the interventional object and the puncture target in the target area, and display ultrasound images and guide images. Therefore, the guided image can be used to guide the interventional object and provide the operation direction for the interventional object, thereby improving the operation accuracy of the operator and effectively avoiding important tissues.
  • FIG. 1 is a schematic structural block diagram of a possible ultrasonic imaging device according to an embodiment of the present application
  • FIG. 2 is a flowchart of a possible ultrasound imaging method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a possible probe according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another possible probe according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 14 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 15 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 16 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 17 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 20 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 21 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 22 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • 23 is a schematic diagram of a possible puncture needle guidance provided by an embodiment of the present application.
  • FIG. 24 is a schematic diagram of guiding a possible puncture needle according to an embodiment of the present application.
  • the embodiments of the present application provide an acoustic imaging method and an ultrasonic imaging device, which are used to improve operation accuracy.
  • FIG. 1 is a schematic block diagram of a structure of an ultrasound imaging apparatus 10 in an embodiment of the present application.
  • the ultrasound imaging apparatus 10 may include a probe 100, a transmitting circuit 101, a transmitting / receiving selection switch 102, a receiving circuit 103, a beam combining circuit 104, a processor 105, and a display 106.
  • the transmitting circuit 101 can excite the probe 100 to transmit ultrasonic waves to a target area.
  • the receiving circuit 103 can receive an ultrasonic echo returned from the target area through the probe 100, thereby obtaining an ultrasonic echo signal / data.
  • the ultrasonic echo signal / data is transmitted to the processor 105 after the beam combining circuit 104 performs beam combining processing.
  • the processor 105 processes the ultrasound echo signal / data to obtain an ultrasound image of a target object or an ultrasound image of an interventional object.
  • the ultrasound image obtained by the processor 105 may be stored in the memory 107. These ultrasound images can be displayed on the display 106.
  • the display 106 of the aforementioned ultrasonic imaging device 10 may be a touch display screen, a liquid crystal display, or the like, or may be an independent display device such as a liquid crystal display or a television independent of the ultrasonic imaging device 10, It can also be the display on electronic devices such as mobile phones and tablets, and so on.
  • the memory 107 of the aforementioned ultrasound imaging apparatus 10 may be a flash memory card, a solid state memory, a hard disk, or the like.
  • a computer-readable storage medium stores a plurality of program instructions. After the plurality of program instructions are called and executed by the processor 105, various implementations of the application can be performed. Some or all steps or any combination of the steps in the ultrasound imaging method in the example.
  • the computer-readable storage medium may be the memory 107, which may be a non-volatile storage medium such as a flash memory card, a solid state memory, a hard disk, and the like.
  • the processor 105 of the aforementioned ultrasound imaging apparatus 10 may be implemented by software, hardware, firmware, or a combination thereof, and may use a circuit, a single or multiple application-specific integrated circuits (ASIC), A single or multiple general-purpose integrated circuits, a single or multiple microprocessors, a single or multiple programmable logic devices, or a combination of the foregoing circuits or devices, or other suitable circuits or devices, so that the processor 105 can execute the present invention Corresponding steps of the ultrasound imaging method in various embodiments of the application.
  • ASIC application-specific integrated circuits
  • the ultrasound imaging method provided in the embodiment of the present application may be applied to the following application scenarios: an operator places the probe 100 on the body surface of a site to be punctured, The puncture needle is inserted from the side of the probe 100, and the operator can see the tissue structure and the like through the display 106, and at the same time, the position of the puncture needle or the tip of the puncture needle in the tissue structure can be seen.
  • An ultrasound imaging method provided by an embodiment of the present application is applied to the ultrasound imaging device 10.
  • An embodiment of the ultrasound imaging method includes:
  • an operator may place the probe 100 on the target area, transmit ultrasonic waves to the target area, and receive ultrasonic echoes reflected by the target area to obtain ultrasonic echo data.
  • the received ultrasound echo data is different according to the tissue structure of the target area.
  • the processor 105 may control the transmitting / receiving selection switch 102 to be turned on, and control the transmitting circuit 101 to transmit an ultrasonic wave to a target area through the probe 100, and receive an ultrasonic echo through the probe 100, and transmit the echo
  • the circuit 103 can be understood as that the receiving circuit 103 can receive the ultrasonic echo returned from the target area through the probe 100 to obtain ultrasonic echo data.
  • the ultrasound echo data is transmitted to the processor 105 after being beam-synthesized by the beam synthesis circuit 104, and the processor 105 processes the ultrasound echo data to obtain an ultrasound image of the target area.
  • the processor 105 may obtain position information of an interventional object to be inserted or inserted into a target object, and determine a target imaging parameter according to the position information.
  • the position information may be a position relationship of the interventional object with respect to the probe.
  • the ultrasound imaging device 10 positions the interventional object to obtain position information of the interventional object.
  • the interventional object is taken as an example for description.
  • the position information of the interventional object may include the position of the needle tip of the puncture needle.
  • the intervening object may be another object, which is not specifically limited here.
  • the position information of the interventional object can be obtained through electromagnetic navigation technology.
  • the obtaining the position information of the interventional object to be inserted or inserted into the target object includes: the processor 105 detects the magnetic induction intensity generated after the puncture needle is magnetized; and determining the needle tip position of the puncture needle according to the magnetic induction intensity.
  • Electromagnetic navigation technology is a technology that uses a spatially distributed magnetic field to locate objects in a magnetic field based on data obtained by sensors in the magnetic field. It can be understood as realizing the real-time positioning technology in a non-visible state by utilizing the permeability of a magnetic field to an unshielded object.
  • the process of determining the position information of the puncture needle based on the magnetic field induction positioning technology includes: first monitoring the magnetic field strength around the probe 100 and recording the initial magnetic field strength. The operator can then magnetize the puncture needle through a magnetizer to obtain a magnetized puncture needle. When the magnetized puncture needle approaches the probe 100 of the ultrasonic imaging device 10, the magnetized puncture needle generates a magnetic field, and as shown in FIG.
  • the inside of the probe 100 may be integrated with a magnetically sensitive material.
  • Magnetic field sensor array 201 the magnetized puncture needle will affect the magnetic field around the magnetic field sensor array 201. Therefore, the magnetic field sensor array detects the magnetic induction strength of the magnetic field generated by the puncture needle, so that the ultrasonic imaging device 10 determines the change value of the magnetic field around the magnetic field sensor array according to the change value of the magnetic induction strength, and calculates the real-time value of the puncture needle based on the change value of the magnetic field.
  • the coordinate information and azimuth information of the needle tip are used to obtain the spatial coordinates of the puncture needle, and the spatial coordinates are converted into the plane coordinates relative to the plane where the ultrasound image is located.
  • the ultrasound image can be combined to generate the corresponding position information of the puncture needle in the ultrasound image.
  • the probe 100 may include a magnetic sensor to detect the strength of the magnetic field around the probe 100.
  • the calculated magnetic field strength of the puncture needle is compared with a preset magnetic field data table to calculate the relative value of the puncture needle
  • the system maps the spatial coordinate transformation of the needle tip and tail directly to the coordinates of the relative ultrasound plane
  • p (0) F (x 0 , y 0 , 0)
  • p (1) F (x 1 , y 1 , 0 )
  • the position information of the puncture needle is monitored in real time, so that the clinician can accurately see the position of the puncture needle tip under the ultrasound image guided puncture.
  • the position information of the interventional object can be obtained through image pattern recognition technology.
  • the ultrasound imaging device 10 transmits ultrasound through the probe 100 to obtain a B-mode ultrasound image (hereinafter referred to as a B-mode image) with a puncture needle, a tissue structure, and the like, and perform image enhancement on the B-mode image And equalization processing, and determine the position of the puncture needle by means of image pattern recognition in the B-ultrasound image.
  • a B-mode ultrasound image hereinafter referred to as a B-mode image
  • equalization processing determine the position of the puncture needle by means of image pattern recognition in the B-ultrasound image.
  • the position information of the interventional object can be obtained by infrared or laser technology.
  • the depth, displacement, etc. of the interventional object can be detected by infrared or laser to determine the position of the puncture needle in the ultrasound image.
  • the needle tip coordinates and needle tail coordinates of the puncture needle can be determined, and the needle tip coordinates and needle tail coordinates can be mapped into the ultrasound image to generate a guide image, and a guide image can be generated based on the position information of the puncture needle.
  • a real-time update display may be performed according to the monitoring of the puncture needle.
  • the guide image may include a first guide map indicating the area where the puncture needle is located, a second guide map indicating the area where the puncture needle point is located, a third guide map indicating the area where the puncture target is located, and / or a puncture of the puncture needle.
  • the fourth guide map of the path, the guide map is exemplarily described below in combination with the ultrasound image.
  • Puncture can be divided into in-plane puncture and out-of-plane puncture.
  • the in-plane puncture is a puncture performed in the acoustic beam emitted by the probe 100, and the in-plane puncture has a puncture path in the ultrasound image plane.
  • the puncture path of the out-of-plane puncture is the whole or a part of the puncture needle outside the sound beam emitted by the probe 100.
  • out-of-plane puncture can only show part of the puncture needle or the tip of the puncture needle in the ultrasound image.
  • a guide image can be generated for both out-of-plane puncture and in-plane puncture, and mapped into an ultrasound image.
  • part of the puncture needle or the needle tip of the puncture needle can be displayed in the ultrasound image of out-of-plane puncture, and this application only uses the needle tip of the puncture needle as an example for description.
  • the guide map in the embodiment of the present application uses the dotted line as an example for illustrative description.
  • the lines included in the actual guide image may be a guide line with a dotted line, a solid line, or other lines, and other colors, which are adjusted according to actual application scenarios. It is not limited here.
  • the first guide map may be as shown in FIG. 5 and FIG. 6.
  • the first guide map is a guide map of the area where the puncture needle is located.
  • the in-plane puncture is shown in the first guide map 401 in FIG. 5 or the out-of-plane puncture is in the first guide map 401 in FIG. 6.
  • the first guide map 401 includes a region where the puncture needle is located. When the puncture is performed out of the plane, the development of the intersection of the needle and the ultrasound imaging plane can be seen only when the needle has reached or passed through the imaging section.
  • the position information of the puncture needle can be determined by electromagnetic navigation technology.
  • the puncture path of the puncture needle can be determined according to the guide map of the area where the puncture needle is located.
  • the second guide map may be as shown in FIG. 7 and FIG. 8, the second guide map for in-plane puncture may be 402 shown in FIG. 7, and the second guide map for out-of-plane puncture may be 402 shown in FIG. 8.
  • the needle tip of the puncture needle is identified, so the operator can clearly know the position of the needle tip, and determine the puncture path of the puncture needle according to the position of the needle tip. Let the clinician accurately see the needle tip under the ultrasound image guided puncture, so as to better confirm the relative position of the puncture needle and the puncture target, adjust the puncture needle in time, and perform the puncture more accurately.
  • the third guide map is a guide map of the area where the puncture target is located.
  • the third guide map of the in-plane puncture may be shown as 403 shown in FIG. 9, and the third guide map of the out-of-plane puncture may be shown as 403 shown in FIG. 10.
  • in-plane puncture and out-of-plane puncture can determine the area where the puncture target is located.
  • the third guide map identifies the puncture target, so that the operator can clearly know the area where the puncture target is located.
  • the puncture target is located. Position, adjust the angle and position of the puncture needle in time to improve the accuracy of puncture.
  • the fourth guide map is a guide map indicating the puncture path of the puncture needle.
  • the fourth guide map of the in-plane puncture may be shown as 404 shown in FIG. 11, and the fourth guide map of the out-of-plane puncture may be shown as 404 shown in FIG. 12.
  • the fourth guide map may be a guide line
  • the processor 105 may obtain the needle tip coordinates and the needle tail coordinates of the puncture needle according to the position information of the puncture needle, and calculate the puncture needle to the puncture target according to the needle tip coordinates and the needle tail coordinates. Guide lines.
  • the distance from the puncture needle tip to the puncture target can be calculated using the position of the needle tip as a starting point. As shown in FIG. 11 and FIG.
  • the fourth guide map may be a guide line, and the guide line may be marked with a scale, that is, the fourth guide map may include a scale mark. It can be based on the physical pixel values of the ultrasound image to calculate the number of pixels corresponding to each scale value, and mark the scale points on the guide line according to the calculated scale value. Among them, the scale can be marked by line segments or dots, etc. Marking in other forms can be adjusted according to the application scenario, which is not limited here. For example, as shown in FIGS. 11 and 12, the puncture guide line is indicated by a dotted line, and the distance between each two dots indicates that the needle puncture direction is 5 mm.
  • the angle of the puncture needle relative to the probe must also be considered.
  • calculating the guide line of the needle, according to the puncture The angle between the needle and the probe calculates the distance that each scale value corresponds to the ultrasound plane. For example, a scale of 5 mm means that the distance on the ultrasound plane is 5 * cos (a), and a is the angle between the puncture needle and the ultrasound plane. Therefore, the present application can generate a guide image of the puncture needle to the puncture target according to the position information of the puncture needle, so that the operator can intuitively know the puncture guide path of the puncture needle and perform puncture more accurately.
  • the guide image may include one or more of a first guide image, a second guide image, a third guide image, and a fourth guide image, and may specifically be based on an actual application scenario, which is not limited herein.
  • a punctureable depth may be displayed in the ultrasound image. As shown in FIG. 13 and FIG. 14.
  • the puncture depth can be displayed directly in the ultrasound image.
  • FIG. 13 and FIG. 14 show that the maximum puncture depth that can be currently supported is 35 mm.
  • the 35 mm here is merely an example.
  • the guide image may also be adjusted according to the puncture angle of the puncture needle.
  • Schematic diagrams of changes in the puncture angle of the in-plane puncture are shown in FIGS. 15 and 16.
  • the intervention angle of the puncture needle is deflected
  • the deflection angle of the puncture needle is calculated, and the coordinates of the needle tip and the tail of the puncture needle are obtained again according to the deflection angle, and the distance from the puncture needle to the puncture target is calculated. The distance adjusts the scale in the fourth guide map. If the ultrasound image includes the puncture depth display information, the puncture depth display information can be updated.
  • the specific guide map update method is similar to in-plane puncture. Calculate the deflection angle of the puncture needle and re-acquire the needle tip coordinates of the puncture needle based on the deflection angle. And the coordinates of the tail of the needle, and calculate the distance between the puncture needle and the puncture target, and adjust the scale in the fourth guide map according to the distance between the puncture needle and the puncture target. If the ultrasound image includes depth display information, the depth display information can be updated. Furthermore, the distance between the puncture needle and the puncture target may be the distance between the puncture needle tip and the puncture target.
  • the guidance map and display distance of the puncture needle to the puncture target can be calculated and updated in real time according to the deflection angle of the puncture needle, so that the operator can intuitively know the puncture Situation, for more accurate puncture.
  • the display state change of the guide image may be adjusted according to the distance between the puncture needle tip and the puncture target.
  • the color change of the guide image can be adjusted according to the distance between the puncture needle tip and the puncture target
  • the displayed distance value or guideline scale value can also be adjusted according to the change in the distance between the puncture needle tip and the puncture target. For example, the closer the distance between the puncture needle tip and the puncture target, the darker the color of the guide image, or the closer the distance between the puncture needle tip and the puncture target, the more obvious the color of the guide image, or the different distances are identified by different colors.
  • green indicates a distance greater than 10 mm
  • yellow indicates a distance between 5-10 mm
  • red indicates a distance less than 5 mm. Therefore, in the embodiment of the present application, by changing the display state of the guide image, the change in the distance between the puncture needle tip and the puncture target can be more identified, so that the operator can intuitively know the distance between the puncture needle tip and the puncture target, The distance between the needle tip and the puncture target can be adjusted through the angle or speed of the puncture to improve the accuracy of the puncture.
  • a complete puncture needle may not be displayed from an ultrasound image, and only a partial puncture needle or the tip of the puncture needle may be displayed.
  • the position information of the puncture needle can be obtained according to the electromagnetic navigation technology, and a puncture indication map of the positional relationship between the puncture needle and the probe is generated, and the puncture indication map indicates the distance and / or puncture angle between the puncture needle and the plane where the ultrasound image is located.
  • the puncture indication map may be a probe top projection view, where the probe top projection view includes a distance from the puncture needle to a top projection plane of the ultrasound image and / or a puncture angle.
  • the puncture indication map may also be a projection view from another angle, which is not limited herein. Therefore, when performing an out-of-plane or in-plane puncture, the position of the puncture needle relative to the probe 100 and the puncture angle can also be obtained according to the probe top plan projection view, so that the operator can perform the puncture more accurately.
  • ultrasound imaging method includes:
  • the puncture indication map indicating a positional relationship of the interventional object with respect to a plane on which the ultrasound image is located
  • the interventional object may be a puncture needle
  • the puncture indicator indicates that the positional relationship of the interventional object with respect to the plane on which the ultrasound image is located includes: the puncture indicator indicates the distance from the puncture needle to the plane on which the ultrasound image is located and / or puncture angle.
  • the plane on which the ultrasound image is located can also be understood as the scanning plane on which the probe element emits ultrasound waves.
  • the puncture indication map may be a probe top projection view, where the probe top projection view includes a distance from the puncture needle to a top projection plane of the ultrasound image and / or a puncture angle.
  • the distance between the puncture needle tip and the point of intersection of the overhead projection plane of the ultrasound image and the tilt angle of the overhead projection plane of the ultrasound image can be displayed in real time; for in-plane puncture, the puncture needle can also be displayed in real time
  • the distance of puncture in the overhead projection plane of the ultrasound image For example, taking the top-view projection plane of the ultrasound image as a horizontal line as an example, the puncture needle intervening in the vertical direction of the horizontal line indicates out-of-plane puncture, and the puncture needle intervening in the horizontal direction of the horizontal line indicates in-plane puncture.
  • the puncture indication map may also be a projection view from another angle, which is not limited herein.
  • the puncture indication map also indicates the distance from the interventional object to the probe and / or the puncture angle.
  • the interventional object may be a puncture needle
  • the puncture indicator may be a top view of the probe, where the top view of the probe includes the distance between the puncture needle and the probe and / or the puncture angle.
  • the distance from the tip of the puncture needle to the intersection of the probe's top projection plane and the tilt angle of the probe and the probe's overhead projection plane can be displayed in real time; for in-plane puncture, the top of the puncture needle relative to the probe can also be displayed in real time The distance of the projection plane.
  • the puncture needle intervenes in the vertical direction of the rectangular frame to indicate out-of-plane puncture, and the puncture needle intervenes in the horizontal direction of the rectangular frame to indicate in-plane puncture.
  • the puncture indication map may also be a projection view from another angle, which is not limited herein.
  • the fourth guide map when it is determined that the distance between the puncture needle tip and the puncture target is smaller than the first threshold, the fourth guide map may be controlled to fade out, disappear, or change to a light color, etc. to more clearly display the needle tip. For example, as shown in FIG. 20, when the out-of-plane puncture is performed, if the distance between the puncture needle tip and the puncture target is less than 5 mm, the fourth guide map gradually disappears or immediately disappears to more clearly display the needle tip. In addition, the partial disappearance of the fourth guide map is shown in FIG. 21.
  • the fourth guide map 404 is not displayed or faded within the range of the guide map 403 of the puncture target, but the In addition, the fourth guide map may continue to be displayed to display the puncture needle tip more clearly and more accurately show the puncture direction of the puncture needle.
  • other guide maps can also disappear, fade away, fade or resize immediately.
  • FIG. 22 it is possible to adjust the size or shape of the first guide map or the third guide map, make the first guide map coincide with the third guide map, etc., to prevent the first guide map from causing the puncture target or puncture. Needle extra coverage.
  • FIG. 22 it is possible to adjust the size or shape of the first guide map or the third guide map, make the first guide map coincide with the third guide map, etc.
  • the first guide map may not be displayed or faded. Therefore, in the embodiment of the present application, when the distance between the puncture needle tip and the puncture target is less than the first threshold, the fourth guide map can be controlled to fade out, all disappear, partially disappear, or change to a light color, etc., to more clearly display the needle tip, It enables the operator to know the position of the needle tip more clearly, the path of puncture more clearly, and improve the accuracy of puncture.
  • a warning message may be generated to prompt the operator.
  • the warning information can be "the puncture target has been reached!”, "Please refer to the ultrasound image for puncture!, Etc., to alert the position of the puncture needle, prevent the operator from puncturing excessively or insufficiently, and improve the accuracy of puncture.
  • the embodiment of the present application firstly obtain the position information of the puncture needle, and generate a guide image according to the position information of the puncture needle, guide the puncture according to the guide image, and predict the puncture path of the puncture needle in real time, so that the operator clearly knows The puncture path of the puncture needle, and the puncture guidance of the puncture needle to the puncture target, timely puncture adjustment of the puncture needle according to the guided image, timely adjustment of puncture technique, puncture angle, puncture orientation, etc., to ensure that the puncture needle can reach the puncture target and perform more accurately Puncture.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium.
  • a computer device which may be a personal computer, a server, or a network device, etc.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .
  • the target object may be the face, spine, heart, uterus, or pelvic floor, etc., or other parts of human tissue, such as the brain, bones, liver, or kidney, etc. Be limited.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种声成像的方法、超声成像设备(10)以及穿刺导航系统,用于提高操作准确性。其中,超声成像方法包括:向目标区域发射超声波,并接收该目标区域返回的超声回波,以获得超声回波数据(201);根据该超声回波数据生成超声图像(202);获取介入性物体的位置信息(203);根据该介入性物体的位置信息生成引导图像(204),该引导图像指示该介入性物体与该目标区域内的穿刺目标的位置关系;显示该超声图像和该引导图像(205)。

Description

超声成像的方法、超声成像设备以及穿刺导航系统 技术领域
本申请涉及医疗器械领域,尤其涉及一种超声成像的方法、超声成像设备以及穿刺导航系统。
背景技术
随着科学技术的发展,超声波的指向性能够对病变组织进行相当准确的定位,而且能实时观察组织解剖结构的动态变化,其准确性和安全性相对其他影像检查手段具有不可比拟的优势。超声能够清晰的显示人体内部组织结构,超声引导穿刺技术应运而生,这种技术就是在实时超声影像的监视和引导下,针对体内病变或目标进行穿刺的临床技术。具体做法是在超声的引导下,避开重要脏器及较大的血管和神经,将穿刺针准确地穿入病变组织内进行治疗或通过吸出、切割出少量细胞或组织进行病理检查,或将穿刺针穿刺到神经附近注释麻醉药物等,这就在最大程度上避免了对周围组织的损伤,穿刺后还能立即对穿刺部位、穿刺路径以及麻醉药物的扩散进行观察,及时发现可能出现的出血等现象,用最短的时间加以处理,避免引起更加严重的并发症。
超声穿刺导航可以实时显示穿刺针在组织内的运动情况,为穿刺路径选择提供依据,是超声辅助治疗的重要手段。但是常规超声引导穿刺严重依赖操作者的经验与超声仪器性能,可能存在穿刺次数较多和操作用时较长等问题,进而导致并发症发生率增加。例如,探头发出的超声波实际上非常狭窄,是从探头中间的小缝隙发出的,穿刺针和探头发出的超声波不在一个平面内,因此无法通过超声成像对穿刺进行有效引导。另外,当探头和皮肤并不垂直时,穿刺针需要从相对于探头的侧方向进针,穿刺针和探头并不共面。若超声引导下神经阻滞,如果针尖没有完整显示,可能存在神经损伤。而对于一些穿刺治疗也存在比较大困难,例如,由于抽吸针针管很小,穿刺针在到达超声图像2-3cm深度时就显示不清晰,因而无法有效避开重要的血管和神经等。
发明内容
本申请提供一种超声成像的方法、超声成像设备以及穿刺导航系统,用于 提高操作准确性。
本申请实施例的第一方面提供一种超声成像方法,包括:向目标区域发射超声波,并接收该目标区域返回的超声回波,以获得超声回波数据;根据该超声回波数据生成超声图像;获取介入性物体的位置信息;根据该介入性物体的位置信息生成引导图像,该引导图像指示该介入性物体与该目标区域内的穿刺目标的位置关系;显示该超声图像和该引导图像。
本申请实施例的第二方面提供一种超声成像设备,包括:探头、发射电路、接收电路处理器以及显示器;该发射电路向目标区域发射超声波,该接收电路控制该探头接收该目标区域返回的超声回波,以获得超声回波数据;该处理器根据该超声回波数据生成超声图像;该处理器获取介入性物体的位置信息;该处理器根据该介入性物体的位置信息生成引导图像,该引导图像指示该介入性物体与该目标区域内的穿刺目标的位置关系;该显示器显示该超声图像和该引导图像。
本申请实施例的第三方面提供一种超声成像方法,包括:通过探头向目标区域发射超声波,并接收目标区域返回的超声回波,以获得超声回波数据;根据超声回波数据生成超声图像;获取介入性物体相对于探头的位置关系;根据介入性物体相对于探头的位置关系生成穿刺指示图,穿刺指示图指示介入性物体相对于超声图像所在平面的位置关系;显示超声图像和穿刺指示图。
本申请实施例的第四方面提供一种超声成像设备,包括:探头、发射电路、接收电路处理器以及显示器;发射电路通过探头向目标区域发射超声波;接收电路控制探头接收目标区域返回的超声回波,以获得超声回波数据;处理器根据超声回波数据生成超声图像;处理器获取介入性物体相对于探头的位置关系;处理器根据介入性物体相对于探头的位置关系生成穿刺指示图,穿刺指示图指示介入性物体相对于超声图像所在平面的位置关系;显示器显示超声图像和穿刺指示图。
本申请实施例的第五方面提供一种穿刺导航系统,包括用于磁化介入性物体的磁化器,以及如上述第二方面或第四方面提供的超声成像设备。
本申请实施例的第六方面提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方 面或第三方面提供的超声成像方法。
从以上技术方案可以看出,本申请实施例具有以下优点:在通过超声波以及超声回波获取超声图像以及介入性物体的位置信息后,根据介入性物体的位置信息生成引导图像,该引导图像可以指示介入性物体与目标区域内的穿刺目标的位置关系,并显示超声图像以及引导图像。因此,可以通过引导图像对介入性物体进行引导,为介入性物体提供操作方向,从而提高操作人员的操作准确性,有效避开重要组织。
附图说明
图1为本申请实施例提供的一种可能的超声成像设备的结构框图示意图;
图2为本申请实施例提供的一种可能的超声成像方法的流程图;
图3为本申请实施例提供的一种可能的探头示意图;
图4为本申请实施例提供的另一种可能的探头示意图;
图5为本申请实施例提供的一种可能的穿刺针引导示意图;
图6为本申请实施例提供的一种可能的穿刺针引导示意图;
图7为本申请实施例提供的一种可能的穿刺针引导示意图;
图8为本申请实施例提供的一种可能的穿刺针引导示意图;
图9为本申请实施例提供的一种可能的穿刺针引导示意图;
图10为本申请实施例提供的一种可能的穿刺针引导示意图;
图11为本申请实施例提供的一种可能的穿刺针引导示意图;
图12为本申请实施例提供的一种可能的穿刺针引导示意图;
图13为本申请实施例提供的一种可能的穿刺针引导示意图;
图14为本申请实施例提供的一种可能的穿刺针引导示意图;
图15为本申请实施例提供的一种可能的穿刺针引导示意图;
图16为本申请实施例提供的一种可能的穿刺针引导示意图;
图17为本申请实施例提供的一种可能的穿刺针引导示意图;
图18为本申请实施例提供的一种可能的穿刺针引导示意图;
图19为本申请实施例提供的一种可能的穿刺针引导示意图;
图20为本申请实施例提供的一种可能的穿刺针引导示意图;
图21为本申请实施例提供的一种可能的穿刺针引导示意图;
图22为本申请实施例提供的一种可能的穿刺针引导示意图;
图23为本申请实施例提供的一种可能的穿刺针引导示意图;
图24为本申请实施例提供的一种可能的穿刺针引导示意图。
具体实施方式
本申请实施例提供了一种声成像的方法以及超声成像设备,用于提高操作准确性。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1为本申请实施例中的超声成像设备10的结构框图示意图。该超声成像设备10可以包括探头100、发射电路101、发射/接收选择开关102、接收电路103、波束合成电路104、处理器105和显示器106。发射电路101可以激励探头100向目标区域发射超声波。接收电路103可以通过探头100接收从目标区域返回的超声回波,从而获得超声回波信号/数据。该超声回波信号/数据经过波束合成电路104进行波束合成处理后,送入处理器105。处理器105对该超声回波信号/数据进行处理,以获得目标对象的超声图像或者介入性物体的超声图像。处理器105获得的超声图像可以存储于存储器107中。这些超声图像可以在显示器106上显示。
本申请的一个实施例中,前述的超声成像设备10的显示器106可为触摸显示屏、液晶显示屏等,也可以是独立于超声成像设备10之外的液晶显示器、电视机等独立显示设备,也可为手机、平板电脑等电子设备上的显示屏,等等。
本申请的一个实施例中,前述的超声成像设备10的存储器107可为闪存卡、固态存储器、硬盘等。
本申请的一个实施例中,还提供一种计算机可读存储介质,该计算机可读存储介质存储有多条程序指令,该多条程序指令被处理器105调用执行后,可执行本申请各个实施例中的超声成像方法中的部分步骤或全部步骤或其中步骤的任意组合。
一个实施例中,该计算机可读存储介质可为存储器107,其可以是闪存卡、固态存储器、硬盘等非易失性存储介质。
本申请的一个实施例中,前述的超声成像设备10的处理器105可以通过软件、硬件、固件或者其组合实现,可以使用电路、单个或多个专用集成电路(application specific integrated circuits,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路或器件的组合、或者其他适合的电路或器件,从而使得该处理器105可以执行本申请的各个实施例中的超声成像方法的相应步骤。
下面对本申请中的超声成像方法进行详细描述。
需要说明的是,结合图1所示的超声成像设备10的结构框图示意图,本申请实施例提供的超声成像方法可应用于如下应用场景:操作人员将探头100放在待穿刺部位的体表,从探头100的侧面插入穿刺针,操作人员通过显示器106,可以看到组织结构等,同时也可以隐约看到穿刺针或穿刺针的针尖在组织结构内所处的位置。
基于此,请参阅图2,本申请实施例提供的一种超声成像方法,该方法应用于超声成像设备10,超声成像方法实施例包括:
201、向目标区域发射超声波,并接收目标区域返回的超声回波,以获得超声回波数据。
首先,为获取目标区域的图像,操作人员可以将探头100放在目标区域,向目标区域发射超声波,并接收目标区域反射的超声回波,以得到超声回波数据。根据目标区域的组织结构的不同,所接收到的超声回波数据也不同。
具体地,如图3所示,可以是处理器105控制打开发射/接收选择开关102,并控制发射电路101通过探头100向目标区域发射超声波,并通过探头100 接收超声回波,并传送至接收电路103,即可以理解为接收电路103可以通过探头100接收从目标区域返回的超声回波,从而获得超声回波数据。
202、根据超声回波数据生成超声图像。
超声回波数据经过波束合成电路104进行波束合成处理后,传输至处理器105,处理器105对该超声回波数据进行处理,以获得目标区域的超声图像。
203、获取介入性物体的位置信息。
本实施例中,处理器105可获取待插入或者插入目标对象的介入性物体的位置信息,并根据该位置信息确定目标成像参数。该位置信息可以是该介入性物体相对于探头的位置关系。
在临床操作中,当介入性物体插入或待插入目标对象时,超声成像设备10对该介入性物体进行定位,以获取该介入性物体的位置信息。
为便于描述,本申请实施例中,以介入性物体为穿刺针为例进行说明,对应的,介入性物体的位置信息可包括穿刺针的针尖位置。实际应用中,该介入性物体可以为其他物体,具体此处不做限定。
需要说明的是,实际应用中,获取该介入性物体的位置信息的方式有多种,包括通过电磁导航技术、图像模式识别技术、红外或者激光技术等,具体此处不做限定。
在一个实施例中,可通过电磁导航技术得到该介入性物体的位置信息。该获取待插入或者插入目标对象的介入性物体的位置信息包括:处理器105检测该穿刺针磁化后产生的磁感应强度;根据该磁感应强度确定该穿刺针的针尖位置。
电磁导航技术,为利用空间分布的磁场,根据传感器在磁场中获得的数据,对磁场中物体实现定位的技术。可以理解为利用磁场对非屏蔽物体的穿透性来实现非可视状态下的实时定位技术。示例性地,基于磁场感应定位技术确定穿刺针的位置信息的过程包括:首先监测探头100周边的磁场强度,记录初始磁场强度。然后操作人员可通过磁化器将穿刺针磁化,得到磁化后的穿刺针。当磁化后的穿刺针靠近超声成像设备10的探头100时,由于该磁化后的穿刺针会产生磁场,且如图4所示,一个实施例中,探头100的内部可集成有磁敏材料组成的磁场传感器阵列201,故磁化后的穿刺针会影响磁场传感器阵列201 周围的磁场。因此磁场传感器阵列检测出穿刺针产生的磁场的磁感应强度,使得超声成像设备10根据该磁感应强度的变化值确定磁场传感器阵列周围的磁场的变化值,并基于该磁场的变化值实时计算穿刺针的针尖的坐标信息和方位信息,以得到穿刺针的空间坐标,并将空间坐标转换为相对超声图像所在平面的平面坐标,可以结合超声图像,生成穿刺针在超声图像中对应的位置信息。
应理解,探头100中可以包括磁传感器,以检测探头100周围的磁场强度。
示例性地,首先监测探头100周边的磁场强度B(b),将穿刺针磁化后,检测因磁化的穿刺针引起的探头周边磁场变化强度B(t),根据原来的探头周边磁场强度和变化后的探头周边磁场强度计算出穿刺针的磁场B(n)=B(t)-B(b),将计算得到的穿刺针的磁场强度和预置的磁场数据表进行比较计算出穿刺针相对于探头的位置和角度,计算穿刺针的针尖和针尾的空间坐标B(0)=F(x 0,y 0,z 0)和B(1)=F(x 1,y 1,z 1),然后系统将针尖针尾的空间坐标转换直接映射到相对超声平面的坐标p(0)=F(x 0,y 0,0)和p(1)=F(x 1,y 1,0),即得到穿刺针的坐标信息。
因此,在本申请实施例中,实时监测穿刺针的位置信息,使临床医生准确地看见超声图像引导穿刺下的穿刺针针尖的位置。
在一个实施例中,可通过图像模式识别技术得到该介入性物体的位置信息。例如,当穿刺针插入目标对象后,超声成像设备10通过探头100发射超声波,得到带有穿刺针和组织结构等的B型超声图像(以下简称B超图像),对该B超图像进行图像增强和均衡化处理,并在该B超图像中通过图像模式识别的方式确定穿刺针的位置。
在一个实施例中,可通过红外或者激光技术得到该介入性物体的位置信息。例如,可通过红外或者激光探测该介入性物体介入的深度、位移等等,以确定在超声图像中穿刺针的位置。
综上,本申请实施例中,定位介入性物体的方式有多种,此处不再一一赘述。
204、根据介入性物体的位置信息生成引导图像。
在确定穿刺针的位置信息后,可以确定穿刺针的针尖坐标与针尾坐标,将针尖坐标与针尾坐标映射到超声图像中,生成引导图像,根据穿刺针的位置信 息生成引导图像。
205、显示超声图像和引导图像。
在显示器上显示超声图像与引导图像。一个实施例中,还可根据对穿刺针的监测进行实时更新显示。
引导图像可以包括指示穿刺针所在区域的第一引导图,指示穿刺针针尖所在区域的第二引导图,指示所述穿刺目标所在区域的第三引导图,和/或指示所述穿刺针的穿刺路径的第四引导图,以下结合超声图像对引导图进行示例性说明。
穿刺可以分为平面内穿刺与平面外穿刺。平面内穿刺为在探头100发出的声束内进行的穿刺,平面内穿刺的穿刺路径在超声图像平面内。平面外穿刺的穿刺路径为穿刺针整体或局部在探头100发出的声束以外进行穿刺的过程,通常平面外穿刺在超声图像中仅能显示部分穿刺针或穿刺针的针尖。在本申请实施例中,针对平面外穿刺与平面内穿刺都可以生成引导图像,并映射到超声图像中。
需要说明的是,平面外穿刺的超声图像中可以显示部分穿刺针或穿刺针的针尖,本申请仅以穿刺针的针尖为例进行说明。另外,本申请实施例中的引导图以虚线为例进行示例性说明,实际的引导图像中所包括的线条可以是虚线、实线或其他线条、其他颜色的引导图,具体根据实际应用场景调整,此处并不作限定。
例如,第一引导图可以如图5以及图6所示。第一引导图为穿刺针所在区域的引导图,平面内穿刺如图5中的第一引导图401或者平面外穿刺如图6中的第一引导图401。其中,第一引导图401包括穿刺针所在的区域。当平面外进行穿刺时,只有在针已经达到或者通过成像切面时,才能看到针和超声成像平面交点的显影,可以通过电磁导航技术确定穿刺针的位置信息,当仅能显示穿刺针的针尖时,根据穿刺针的位置信息,生成穿刺针的第一引导图,标识穿刺针所在的区域。因此,可以根据穿刺针所在区域的引导图,确定穿刺针的穿刺路径。
第二引导图可以如图7以及图8所示,平面内穿刺的第二引导图可以如图7所示的402,平面外穿刺的第二引导图可以如图8所示的402。标识穿刺针 的针尖,因此,操作人员可以清楚地获知针尖所处的位置,根据针尖的位置,确定穿刺针的穿刺路径。让临床医生准确地看见超声图像引导穿刺下的针尖,以此能更好地确认穿刺针与穿刺目标的相对位置,及时调整穿刺针,更准确地进行穿刺。
第三引导图为穿刺目标所在区域的引导图,平面内穿刺的第三引导图可以如图9所示的403,平面外穿刺的第三引导图可以如图10所示的403。其中,平面内穿刺与平面外穿刺都能确定穿刺目标所处的区域,通过第三引导图标识穿刺目标,可以使操作人员清楚地获知穿刺目标所在的区域,进行穿刺时,根据穿刺目标所处的位置,及时调整穿刺针的角度以及位置,提高穿刺的准确性。
第四引导图为穿刺针指示穿刺针穿刺路径的引导图,平面内穿刺的第四引导图可以如图11所示的404,平面外穿刺的第四引导图可以如图12所示的404。具体地,第四引导图可以是引导线,处理器105可以根据穿刺针的位置信息,得到穿刺针的针尖坐标以及针尾坐标,并根据针尖坐标以及针尾坐标计算出穿刺针到穿刺目标的引导线。可以以针尖的位置作为起点,计算出穿刺针针尖穿刺到穿刺目标的距离。如图11与图12所示为例,第四引导图可以是引导线,引导线上可以标记刻度,即第四引导图上可以包括刻度标识。可以是根据超声图像的物理像素值计算每个刻度值对应的像素数量,按照计算出来的刻度值在引导线上标记刻度点,其中,刻度可以通过线段或圆点等形式进行标记,还可以是通过其他形式进行刻度标记,具体可以根据应用场景进行调整,此处不作限定。例如,如图11以及图12用虚线表示穿刺引导线,每两个圆点之间表示针穿刺方向上的距离为5毫米。此外,在进行平面外穿刺计算穿刺针针尖到穿刺目标的距离时,还要考虑穿刺针相对于探头的角度,在计算出的针尖坐标和针尾坐标,计算出针的引导线后,根据穿刺针和探头之间的角度计算出每个刻度值对应在超声平面的距离。例如刻度为5毫米,则表示在超声平面上的距离为5*cos(a),a为穿刺针与超声平面的夹角。因此,本申请可以根据穿刺针的位置信息,生成穿刺针到穿刺目标的引导图像,使操作人员能够直观地获知穿刺针的穿刺引导路径,更准确地进行穿刺。
需要说明的是,引导图像中可以包括第一引导图、第二引导图、第三引导图以及第四引导图中的一种或多种,具体可以根据实际应用场景,此处并不作 限定。
在一个实施例中,除了当第四引导图为引导线时,在引导线上标记刻度外,还可以在超声图像中显示可穿刺的深度。如图13以及图14所示。可以直接在超声图像中显示可穿刺的深度。例如,图13以及图14中,显示当前可支持的最大穿刺深度为35毫米,当然,此处的35毫米仅仅是举例说明。
在一个实施例中,当穿刺针以不同的角度进行穿刺,或在穿刺中调整穿刺针的角度时,引导图像也可以根据穿刺针的穿刺角度进行调整。平面内穿刺的穿刺角度变化示意图如图15以及图16所示。当穿刺针的介入角度发生偏转时,计算穿刺针的偏转角度,并根据偏转角度重新获取穿刺针的针尖坐标以及针尾坐标,并计算穿刺针到穿刺目标的距离,根据穿刺针到穿刺目标的距离调整第四引导图中的刻度,若超声图像中包括穿刺深度显示信息,则可以更新穿刺深度显示信息。平面外穿刺时,如图17以及图18所示,若穿刺针角度偏转,具体的引导图更新方法与平面内穿刺类似,计算穿刺针的偏转角度,并根据偏转角度重新获取穿刺针的针尖坐标以及针尾坐标,并计算穿刺针到穿刺目标的距离,根据穿刺针到穿刺目标的距离调整第四引导图中的刻度,若超声图像中包括深度显示信息,则可以更新深度显示信息。更进一步地,穿刺针到穿刺目标的距离可以是穿刺针针尖到穿刺目标的距离。因此,在本申请实施例中,若穿刺针的穿刺角度发生偏转,可根据穿刺针的偏转角度,实时计算并更新穿刺针到穿刺目标的引导图以及显示距离,使操作人员可以直观地获知穿刺情况,进行更准确的穿刺。
在一个实施例中,在计算得到穿刺针针尖到穿刺目标的距离后,可以根据穿刺针针尖到穿刺目标的距离调整引导图像的显示状态变化。例如,可以根据穿刺针针尖到穿刺目标的距离调整引导图像的颜色变化,也可以根据穿刺针针尖到穿刺目标的距离变化调整显示的距离数值或引导线刻度值。具体例如,穿刺针针尖到穿刺目标的距离越近,引导图像的颜色越深,或穿刺针针尖到穿刺目标的距离越近,引导图像的颜色越明显等,或通过不同的颜色标识不同的距离,例如,绿色表示距离大于10毫米,黄色表示距离在5-10毫米之间,红色表示距离小于5毫米。因此,在本申请实施方式中,通过引导图像的显示状态变化,更能标识穿刺针针尖到穿刺目标的距离的变化,使操作人员可以直观地 获知穿刺针针尖到穿刺目标的距离,根据穿刺针针尖到穿刺目标的距离调整穿刺的角度或速度等,提高穿刺的准确性。
在一个实施例中,如图19所示,在进行平面外或平面内穿刺时,可能无法从超声图像中显示完整的穿刺针,仅能显示部分穿刺针或穿刺针的针尖。此时可以根据电磁导航技术得到穿刺针的位置信息,生成穿刺针相对于探头位置关系的穿刺指示图,该穿刺指示图指示穿刺针到超声图像所在平面的距离和/或穿刺角度。例如,该穿刺指示图可以是探头俯视投影图,其中,探头俯视投影图中包括穿刺针到超声图像的俯视投影平面的距离和/或穿刺角度。该穿刺指示图也可以是其他角度的投影图,此处不做限定。因此,在进行平面外或者平面内穿刺时,也可以根据探头俯视投影图获知穿刺针相对于探头100的位置以及穿刺角度,使操作人员可以更准确地进行穿刺。
一个实施例中,也可仅显示超声图像和上述穿刺指示图。本申请提供的另一超声成像方法包括:
通过探头向目标区域发射超声波,并接收所述目标区域返回的超声回波,以获得超声回波数据;
根据所述超声回波数据生成超声图像;
获取介入性物体相对于所述探头的位置关系;
根据所述介入性物体相对于所述探头的位置关系生成穿刺指示图,所述穿刺指示图指示所述介入性物体相对于所述超声图像所在平面的位置关系;
显示所述超声图像和所述穿刺指示图。
需要说明的是,生成超声图像和显示超声图像的方式可参考上述实施例进行理解,此处不再赘述。
该介入性物体可以是穿刺针,该穿刺指示图指示该介入性物体相对于该超声图像所在平面的位置关系包括:该穿刺指示图指示该穿刺针到该超声图像所在平面的距离和/或穿刺角度。该超声图像所在平面也可理解为探头阵元发射超声波的扫描平面。例如,该穿刺指示图可以是探头俯视投影图,其中,探头俯视投影图中包括穿刺针到超声图像的俯视投影平面的距离和/或穿刺角度。例如,对于面外穿刺,可实时显示穿刺针针尖到超声图像的俯视投影平面相交点的距离,和穿刺针与超声图像的俯视投影平面的倾斜角度;对于面内穿刺, 也可实时显示穿刺针在超声图像的俯视投影平面内穿刺的距离。例如以该超声图像的俯视投影平面为水平线为例,穿刺针沿该水平线的垂直方向介入表示面外穿刺,穿刺针沿该水平线的水平方向介入表示面内穿刺,此处仅作列举,不做具体限定。该穿刺指示图也可以是其他角度的投影图,此处不做限定。
一个实施例中,穿刺指示图还指示介入性物体到探头的距离和/或穿刺角度。例如该介入性物体可以是穿刺针,该穿刺指示图可以是探头俯视投影图,其中,探头俯视投影图中包括穿刺针到探头的距离和/或穿刺角度。例如,对于面外穿刺,可实时显示穿刺针针尖到探头俯视投影平面相交点的距离,和穿刺针与探头俯视投影平面的倾斜角度;对于面内穿刺,也可实时显示穿刺针相对于探头俯视投影平面的距离。例如以该探头俯视投影平面为矩形框为例,穿刺针沿该矩形框的垂直方向介入表示面外穿刺,穿刺针沿该矩形框的水平方向介入表示面内穿刺,此处仅作列举,不做具体限定。该穿刺指示图也可以是其他角度的投影图,此处不做限定。
在一个实施例中,当确定穿刺针针尖与穿刺目标的距离小于第一阈值时,可以控制第四引导图淡出、消失或转变为浅色等,以更清楚地显示针尖。例如,如图20所示,当进行面外穿刺时,若穿刺针针尖到穿刺目标的距离小于5毫米时,第四引导图逐渐消失或者立即消失,以更清楚地显示针尖。此外,第四引导图部分消失的情况如图21所示,当穿刺针到达穿刺目标,在穿刺目标的引导图403所处的范围内,不显示或淡化第四引导图404,但在穿刺目标以外,还可以继续显示第四引导图,以在更清楚地显示穿刺针针尖的同时,更准确地显示穿刺针的穿刺方向。当然,其他的引导图也可以立即消失、逐渐消失、淡化或调整尺寸等。例如,如图22所示,可以是调整第一引导图或第三引导图的尺寸或形状等,使第一引导图与第三引导图重合等,避免第一引导图引起对穿刺目标或穿刺针多余的覆盖。又例如,如图23所示,为更好地显示针尖的情况,也可以不显示或淡化第一引导图。因此,在本申请实施例中,当穿刺针针尖与穿刺目标的距离小于第一阈值时,可以控制第四引导图淡出、全部消失、部分消失或转变为浅色等,更清楚地显示针尖,使操作人员可以更清楚地获知针尖的位置,更清楚穿刺路径,提高穿刺准确性。
在一个实施例中,以图24为例,当穿刺针针尖到达穿刺目标后,继续沿 穿刺路径穿刺的距离超过第二阈值时,可以生成警示信息,以提示操作人员。例如,警示信息可以是“已到达穿刺目标!”、“请参考超声图像进行穿刺!”等,以对穿刺针的位置进行警示,防止操作人员穿刺过度或穿刺不足等,提高穿刺的准确性。
因此,在本申请实施例中,首先获取穿刺针的位置信息,并根据穿刺针的位置信息生成引导图像,根据引导图像对穿刺进行引导,实时预测穿刺针的穿刺路径,使操作人员清楚地获知穿刺针的穿刺路径,以及穿刺针到穿刺目标的穿刺引导,及时根据引导图像进行穿刺针的穿刺调整,及时调整穿刺手法、穿刺角度、穿刺方位等,保证穿刺针可以到达穿刺目标,进行更准确的穿刺。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器, 或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
需要说明的是,实际应用中,该目标对象可以为面部、脊柱、心脏、子宫或者盆底等,也可以是人体组织的其他部位,如脑部、骨骼、肝脏或者肾脏等,具体此处不做限定。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (29)

  1. 一种超声成像方法,其特征在于,包括:
    向目标区域发射超声波,并接收所述目标区域返回的超声回波,以获得超声回波数据;
    根据所述超声回波数据生成超声图像;
    获取介入性物体的位置信息;
    根据所述介入性物体的位置信息生成引导图像,所述引导图像指示所述介入性物体与所述目标区域内的穿刺目标的位置关系;
    显示所述超声图像和所述引导图像。
  2. 根据权利要求1所述的方法,其特征在于,所述介入性物体包括穿刺针,所述引导图像包括如下至少一种:指示所述穿刺针所在区域的第一引导图,指示所述穿刺针针尖所在区域的第二引导图,指示所述穿刺目标所在区域的第三引导图,以及指示所述穿刺针的穿刺路径的第四引导图。
  3. 根据权利要求2所述的方法,其特征在于,所述第四引导图包括引导线,所述引导线包括用于指示所述穿刺针到所述穿刺目标的距离的刻度标识。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    当所述穿刺针的介入角度发生偏转时,确定所述穿刺针的偏转角度;
    根据所述穿刺针的偏转角度控制所述引导线偏转。
  5. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    确定所述穿刺针针尖到所述穿刺目标的距离;
    根据所述穿刺针针尖到所述穿刺目标的距离控制所述引导图像的显示状态变化。
  6. 根据权利要求5所述的方法,其特征在于,所述根据所述穿刺针针尖到所述穿刺目标的距离控制所述引导图像的显示状态变化,包括:
    根据所述穿刺针针尖到所述穿刺目标的距离控制所述引导图像的颜色变化和/或距离的数值显示变化。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述穿刺针针尖到所述穿刺目标的距离控制所述引导图像的显示状态变化,包括:
    当所述穿刺针针尖到所述穿刺目标的距离小于第一阈值时,控制所述第四引导图淡出或者立即消失。
  8. 根据权利要求2所述的方法,其特征在于,所述根据所述介入性物体的位置信息生成引导图像,包括:
    计算所述穿刺针的针尖坐标与针尾坐标;
    将所述针尖坐标与所述针尾坐标,映射到所述超声图像所在平面,以生成所述引导图像。
  9. 根据权利要求2所述的方法,其特征在于,所述获取介入性物体的位置信息,包括:
    检测所述穿刺针磁化后的磁场强度;
    根据所述磁场强度确定所述穿刺针的位置信息。
  10. 根据权利要求2-9中任一项所述的方法,其特征在于,所述方法还包括:
    根据所述穿刺针的位置信息生成穿刺指示图,所述位置信息包括所述穿刺针相对于探头的位置关系,所述穿刺指示图指示所述穿刺针到所述超声图像所在平面的距离和/或穿刺角度;
    显示所述穿刺指示图。
  11. 根据权利要求2-9中任一项所述的方法,其特征在于,所述方法还包括:
    若所述穿刺针到达所述穿刺目标后,继续沿穿刺路径穿刺的距离超过第二阈值时,生成警示信息。
  12. 一种超声成像设备,其特征在于,包括:探头、发射电路、接收电路处理器以及显示器;
    所述发射电路向目标区域发射超声波;
    所述接收电路控制所述探头接收所述目标区域返回的超声回波,以获得超声回波数据;
    所述处理器根据所述超声回波数据生成超声图像;
    所述处理器获取介入性物体的位置信息;
    所述处理器根据所述介入性物体的位置信息生成引导图像,所述引导图像指示所述介入性物体与所述目标区域内的穿刺目标的位置关系;
    所述显示器显示所述超声图像和所述引导图像。
  13. 根据权利要求12所述的超声成像设备,其特征在于,所述介入性物体包括穿刺针,所述引导图像包括如下至少一种:指示所述穿刺针所在区域的第一引导图,指示所述穿刺针针尖所在区域的第二引导图,指示所述穿刺目标所在区域的第三引导图,以及指示所述穿刺针的穿刺路径的第四引导图。
  14. 根据权利要求13所述的超声成像设备,其特征在于,所述第四引导图包括引导线,所述引导线包括用于指示所述穿刺针到所述穿刺目标的距离的刻度标识。
  15. 根据权利要求14所述的超声成像设备,其特征在于,
    当所述穿刺针的介入角度发生偏转时,所述处理器确定所述穿刺针的偏转角度;
    所述处理器根据所述穿刺针的偏转角度控制所述引导线偏转。
  16. 根据权利要求13所述的超声成像设备,其特征在于,
    所述处理器确定所述穿刺针针尖到所述穿刺目标的距离;
    所述处理器根据所述穿刺针针尖到所述穿刺目标的距离控制所述引导图像的显示状态变化。
  17. 根据权利要求16所述的超声成像设备,其特征在于,
    所述处理器根据所述穿刺针针尖到所述穿刺目标的距离控制所述引导图像的颜色变化和/或距离的数值显示变化。
  18. 根据权利要求16所述的超声成像设备,其特征在于,
    当所述穿刺针针尖到所述穿刺目标的距离小于第一阈值时,所述控制器控制所述第四引导图淡出或者立即消失。
  19. 根据权利要求13所述的超声成像设备,其特征在于,
    所述处理器计算所述穿刺针的针尖坐标与针尾坐标;
    所述处理器将所述针尖坐标与所述针尾坐标,映射到所述超声图像所在平面,以生成所述引导图像。
  20. 根据权利要求13所述的超声成像设备,其特征在于,
    所述处理器检测所述穿刺针磁化后的磁场强度;根据所述磁场强度确定所述穿刺针的位置信息。
  21. 根据权利要求13-20中任一项所述的超声成像设备,其特征在于,
    所述处理器根据所述穿刺针的位置信息生成穿刺指示图,所述穿刺指示图指示所述穿刺针相对于探头的位置和/或穿刺角度;
    所述显示器显示所述穿刺指示图。
  22. 根据权利要求13-20中任一项所述的超声成像设备,其特征在于,
    若所述穿刺针到达所述穿刺目标后,继续沿穿刺路径穿刺的距离超过第二阈值时,所述处理器生成警示信息。
  23. 一种超声成像方法,其特征在于,包括:
    通过探头向目标区域发射超声波,并接收所述目标区域返回的超声回波, 以获得超声回波数据;
    根据所述超声回波数据生成超声图像;
    获取介入性物体相对于所述探头的位置关系;
    根据所述介入性物体相对于所述探头的位置关系生成穿刺指示图,所述穿刺指示图指示所述介入性物体相对于所述超声图像所在平面的位置关系;
    显示所述超声图像和所述穿刺指示图。
  24. 根据权利要求23所述的方法,其特征在于,所述介入性物体包括穿刺针,
    所述穿刺指示图指示所述介入性物体相对于所述超声图像所在平面的位置关系包括:所述穿刺指示图指示所述穿刺针到所述超声图像所在平面的距离和/或穿刺角度。
  25. 根据权利要求23或24所述的方法,其特征在于,所述穿刺指示图还指示所述介入性物体到所述探头的距离和/或穿刺角度。
  26. 一种超声成像设备,其特征在于,包括:探头、发射电路、接收电路处理器以及显示器;
    所述发射电路通过所述探头向目标区域发射超声波;
    所述接收电路控制所述探头接收所述目标区域返回的超声回波,以获得超声回波数据;
    所述处理器根据所述超声回波数据生成超声图像;
    所述处理器获取介入性物体相对于所述探头的位置关系;
    所述处理器根据所述介入性物体相对于所述探头的位置关系生成穿刺指示图,所述穿刺指示图指示所述介入性物体相对于所述超声图像所在平面的位置关系;
    所述显示器显示所述超声图像和所述穿刺指示图。
  27. 根据权利要求26所述的超声成像设备,其特征在于,所述介入性物 体包括穿刺针;
    所述穿刺指示图指示所述介入性物体相对于所述超声图像所在平面的位置关系包括:所述穿刺指示图指示所述穿刺针到所述超声图像所在平面的距离和/或穿刺角度。
  28. 根据权利要求26或27所述的超声成像设备,其特征在于,所述穿刺指示图还指示所述介入性物体到所述探头的距离和/或穿刺角度。
  29. 一种穿刺导航系统,其特征在于,包括用于磁化介入性物体的磁化器,以及如权利要求12-22、26-28任一项所述的超声成像设备。
PCT/CN2018/100250 2018-08-13 2018-08-13 超声成像的方法、超声成像设备以及穿刺导航系统 WO2020034065A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880095966.4A CN112533540A (zh) 2018-08-13 2018-08-13 超声成像的方法、超声成像设备以及穿刺导航系统
PCT/CN2018/100250 WO2020034065A1 (zh) 2018-08-13 2018-08-13 超声成像的方法、超声成像设备以及穿刺导航系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100250 WO2020034065A1 (zh) 2018-08-13 2018-08-13 超声成像的方法、超声成像设备以及穿刺导航系统

Publications (1)

Publication Number Publication Date
WO2020034065A1 true WO2020034065A1 (zh) 2020-02-20

Family

ID=69524943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100250 WO2020034065A1 (zh) 2018-08-13 2018-08-13 超声成像的方法、超声成像设备以及穿刺导航系统

Country Status (2)

Country Link
CN (1) CN112533540A (zh)
WO (1) WO2020034065A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113133813A (zh) * 2021-04-01 2021-07-20 上海复拓知达医疗科技有限公司 基于穿刺过程的动态信息显示系统及方法
CN113362294B (zh) * 2021-05-27 2022-09-02 同济大学 含穿刺针超声血管图像的穿刺针识别方法、系统和设备
CN113288370B (zh) * 2021-06-21 2022-11-15 清华大学深圳国际研究生院 一种术中穿刺针弯曲检测系统及其检测方法
CN113662592B (zh) * 2021-08-13 2023-11-21 深圳大学 穿刺路径规划方法、医学图像采集系统、设备及介质
CN115553880B (zh) * 2022-03-29 2024-08-16 中国人民解放军总医院第一医学中心 一种穿刺针尖的定位方法和系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090005687A1 (en) * 2007-06-27 2009-01-01 Sotaro Kawae Ultrasonic imaging apparatus
CN104939865A (zh) * 2014-03-31 2015-09-30 株式会社东芝 医用图像诊断装置
US20160089183A1 (en) * 2014-09-25 2016-03-31 Cardiac Pacemakers, Inc. Needle assembly with retractable cutting edge
CN106821499A (zh) * 2017-02-16 2017-06-13 清华大学深圳研究生院 一种3d虚拟超声引导穿刺导航系统及方法
CN107920775A (zh) * 2015-06-25 2018-04-17 瑞文那医疗有限责任公司 相对于解剖特征的探针超声引导

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5954786B2 (ja) * 2012-09-12 2016-07-20 東芝メディカルシステムズ株式会社 超音波診断装置及び画像データの表示制御プログラム
CN103027712A (zh) * 2012-11-28 2013-04-10 浙江大学 一种电磁定位的超声穿刺导航系统
CN104162223B (zh) * 2014-08-27 2017-01-11 深圳开立生物医疗科技股份有限公司 一种穿刺引导线设置方法、装置和系统
CN108210024B (zh) * 2017-12-29 2020-11-10 威朋(苏州)医疗器械有限公司 手术导航方法及系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090005687A1 (en) * 2007-06-27 2009-01-01 Sotaro Kawae Ultrasonic imaging apparatus
CN104939865A (zh) * 2014-03-31 2015-09-30 株式会社东芝 医用图像诊断装置
US20160089183A1 (en) * 2014-09-25 2016-03-31 Cardiac Pacemakers, Inc. Needle assembly with retractable cutting edge
CN107920775A (zh) * 2015-06-25 2018-04-17 瑞文那医疗有限责任公司 相对于解剖特征的探针超声引导
CN106821499A (zh) * 2017-02-16 2017-06-13 清华大学深圳研究生院 一种3d虚拟超声引导穿刺导航系统及方法

Also Published As

Publication number Publication date
CN112533540A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2020034065A1 (zh) 超声成像的方法、超声成像设备以及穿刺导航系统
JP7098565B2 (ja) 超音波イメージングプレーンと器具のアライメント及び追跡
WO2019100212A1 (zh) 用于规划消融的超声系统及方法
EP3554380B1 (en) Target probe placement for lung ultrasound
US9895135B2 (en) Freehand ultrasound imaging systems and methods providing position quality feedback
JP5830576B1 (ja) 医療システム
US20100286519A1 (en) Ultrasound system and method to automatically identify and treat adipose tissue
US20100286518A1 (en) Ultrasound system and method to deliver therapy based on user defined treatment spaces
US20170095226A1 (en) Ultrasonic diagnostic apparatus and medical image diagnostic apparatus
US10617383B2 (en) Medical image display apparatus, method, and medium
JP5889095B2 (ja) 穿刺計画支援装置、医用画像装置及び超音波診断装置
WO2015092628A1 (en) Ultrasound imaging systems and methods for tracking locations of an invasive medical device
JP2021510323A (ja) 超音波撮像システム、装置、方法及び記憶媒体
US20140316272A1 (en) Ultrasound diagnosis apparatus
CN115348839A (zh) 超声探头、用户控制台、系统和方法
CN116019486A (zh) 使用脉管检测进行相对定向的高保真多普勒超声
CN109414254A (zh) 控制设备、控制方法、控制系统及程序
KR101983389B1 (ko) 초음파 진단 장치 및 그의 방법
JP7309850B2 (ja) 異方性組織の誘導せん断波エラストグラフィのための超音波システム及び方法
CN113017785A (zh) 一种超声穿刺的提示方法和系统
JP6078134B1 (ja) 医療システム
KR102615722B1 (ko) 초음파 스캐너 및 초음파 스캐너에서의 조준 가이드 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930294

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18930294

Country of ref document: EP

Kind code of ref document: A1