WO2020032470A1 - Slag treatment facility and slag treatment method - Google Patents

Slag treatment facility and slag treatment method Download PDF

Info

Publication number
WO2020032470A1
WO2020032470A1 PCT/KR2019/009560 KR2019009560W WO2020032470A1 WO 2020032470 A1 WO2020032470 A1 WO 2020032470A1 KR 2019009560 W KR2019009560 W KR 2019009560W WO 2020032470 A1 WO2020032470 A1 WO 2020032470A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
slag
reaction
molten slag
passage
Prior art date
Application number
PCT/KR2019/009560
Other languages
French (fr)
Korean (ko)
Inventor
김정일
조문경
박상현
이형정
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2020032470A1 publication Critical patent/WO2020032470A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a slag treatment plant and to a slag treatment plant and a slag treatment method capable of rapidly cooling the slag.
  • molten slag is produced during molten iron production and refining to remove impurities in the molten iron, and the molten slag has a heat of 1500 ° C.
  • the molten slag is transported to the yard and after being sprinkled and cooled to be pulverized and used as raw materials for sintering or other auxiliary raw materials, or as cement raw materials, landfill agents, or dephosphorization agents.
  • the molten slag is made of oxide, it is difficult to recover the retained heat or sensible heat that the molten slag has.
  • the energy consumed for melting the slag during the entire steelmaking operation is 10 to 15%, the input energy is not recovered, there is an inefficient problem in terms of energy efficiency.
  • the sensible heat refers to the amount of heat to be used for waste heat as the amount of heat retained when the heated substance has no change in state.
  • the present invention provides a slag treatment facility and a slag treatment method capable of quickly recovering the heat of slag so that no defect occurs during slag recycling.
  • the present invention provides a slag treatment facility and a slag treatment method capable of reforming gas generated during steelmaking operations using heat recovered from slag.
  • the slag processing apparatus includes a slag processing apparatus having a nozzle unit capable of injecting cooling gas into the molten slag, wherein the nozzle unit is provided with a first nozzle having a discharge port through which the molten slag is discharged. ; And a second nozzle mounted to the first nozzle to be positioned outside the first nozzle and provided with an injection passage for injecting the cooling gas in a falling direction of the molten slag discharged from the discharge port.
  • the first nozzle includes a first body having an accommodation space formed therein that is capable of accommodating the molten slag and extends in a vertical direction, and the discharge port is provided at a lower end of the accommodation space so as to communicate with the accommodation space.
  • the second nozzle is installed to be connected to the first body, and includes a second body having a passage corresponding to the discharge port, wherein the injection passage is cooled in a moving direction of the molten slag discharged to pass through the passage. It is provided inside the second body to inject gas.
  • the first nozzle extends downwardly from the first body and includes an extension member provided therein with an extension flow passage communicating with the discharge port of the first body.
  • the second body is connected to a lower portion of the first body, the passage is formed in a hollow shape formed in the lower side of the discharge port so as to communicate with the discharge port, the injection port is the end of the injection flow path is the injection port is injected The passage is formed or exposed to face downward.
  • the injection flow path may include a first flow path extending in the width direction of the second body; And a second flow passage extending from the first flow passage in a direction in which the passage is located, wherein the second flow passage is inclined downward to get closer to the passage toward the injection hole.
  • the first flow path has a constant internal diameter.
  • the first flow path is inclined upward in the direction in which the second flow path is located.
  • the first flow path has a shape in which an inner diameter thereof narrows toward the direction in which the second flow path is located.
  • the second body is formed to extend in the extending direction of the first body is installed to surround the outer surface of the first body, the lower end is formed to extend to protrude to the lower side of the discharge port, the injection flow path is the injection An end of the flow path is formed extending in the up and down direction inside the second body such that an injection hole through which cooling gas is injected is positioned below the discharge hole, and the passage is formed on an inner wall surface of the second body extending below the discharge hole. It is an area partitioned by.
  • At least a region located below the discharge port of the injection flow path is inclined so as to be closer to the passage toward the injection port.
  • An area adjacent to the injection hole of the injection flow passage has a shape in which the inner diameter becomes narrower and wider toward the direction in which the injection hole is located.
  • heating means connected to the first body to heat the molten slag received in the accommodation space.
  • the slag processing apparatus includes a container having an inner space in which at least a lower portion of the nozzle portion can be accommodated.
  • a distribution plate installed inside the reaction apparatus, extending in the width direction of the reaction apparatus, spaced apart from each other in the width direction, and having a plurality of holes through which the process gas and the reaction gas can pass.
  • a product gas discharge line connected to the reaction device for discharging a product gas generated by a reaction between the process gas and the reaction gas in the reaction device; And a first heat exchanger installed on an extension path of the product gas discharge line to generate steam using heat of the product gas.
  • a product gas discharge line connected to the reaction device for discharging a product gas generated by a reaction between the process gas and the reaction gas in the reaction device;
  • a second heat exchanger disposed on an extension path of the product gas discharge line to heat-exchange the process gas and the reaction gas with the product gas, thereby raising the process gas and the reaction gas;
  • a product gas supply line extending to connect the product gas discharge line and the second heat exchanger to supply the product gas to the second heat exchanger.
  • Slag treatment method comprises the steps of discharging the molten slag; Spraying a cooling gas in a direction in which the discharged molten slag falls, thereby cooling the molten slag and granulating it into particles; And reforming the process gas by reacting the process gas with the reaction gas using heat released from the granulated slag.
  • the cooling gas includes at least one of air, an inert gas, the processing gas, and the reaction gas.
  • the molten slag is cooled, granulated, and sprayed the processing gas and the reactive gas toward the granulated slag, thereby utilizing the heat of the granulated slag.
  • the process gas is reformed.
  • the cooling gas includes the processing gas and the reactive gas, and cools and granulates the molten slag by the cooling gas injected toward the molten slag, together with the cooling and granulation of the molten slag.
  • the treatment gas is reformed with cooling gas.
  • the cooling gas includes the processing gas and the reactive gas, and cools and granulates the molten slag by the cooling gas injected toward the molten slag, together with the cooling and granulation of the molten slag.
  • a first reforming reaction of reforming the process gas with a cooling gas occurs, and a granular slag used in the first reforming reaction is injected into the voyage process gas and the reactant gas to perform a second reforming reaction of reforming the process gas.
  • the heated process gas and reactant gas are sprayed towards the granulated slag.
  • the processing gas includes a gas generated in the steelmaking operation.
  • the processing gas includes a CO 2 containing gas and the reaction gas includes a CH 4 containing gas.
  • the molten slag is discharged downward through the first nozzle, and the cooling gas is injected toward the molten slag discharged through the second nozzle. Accordingly, the molten slag in the liquid state discharged from the first nozzle is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the injected cooling gas. For this reason, as the slag is quenched, it is possible to suppress or prevent the generation of free CaO precipitates due to slow cooling. Therefore, it is possible to suppress or prevent expansion due to the hydration reaction at the time of recycling the atomized slag.
  • cooling gas is injected at the local site or near the molten slag toward the molten slag. Accordingly, the consumption of cooling gas can be reduced, and scattering of slag can be suppressed or prevented.
  • the heat of the slag is recovered and used as a heat source for the reforming reaction of the processing gas.
  • the energy used for melting the slag can be recovered or recycled, thereby improving the energy efficiency in the entire steelmaking operation.
  • FIG. 1 conceptually illustrates a slag treatment facility according to a first embodiment of the present invention
  • FIG. 2 is a view showing a nozzle unit according to a first embodiment of the present invention.
  • FIG. 3 is an enlarged view of a part of a nozzle unit according to a first modification of the first embodiment
  • FIG. 4 shows a nozzle unit according to a second modification of the first embodiment
  • FIG. 5 shows a reaction device according to a third modification of the first embodiment
  • FIG. 6 is a conceptual block diagram illustrating a slag treatment facility and a slag treatment process according to the first embodiment of the present invention.
  • FIG. 7 conceptually illustrates a slag treatment facility according to a second embodiment of the present invention.
  • FIG. 8 conceptually illustrates a slag treatment facility according to a third embodiment of the present invention.
  • FIG. 9 is a conceptual block diagram illustrating a slag treatment facility and a slag treatment process according to a third embodiment of the present invention.
  • the present invention relates to a slag treatment facility and a slag treatment method in which heat is easily recovered from slag. More specifically, the present invention provides a slag treatment facility and a slag treatment method capable of quickly recovering the heat of slag so that no defect occurs during recycling. In addition, the present invention provides a slag treatment facility and a slag treatment method capable of converting or reforming a gas generated during the steelmaking operation to another material using the heat of the slag.
  • 1 is a view conceptually showing a slag treatment facility according to a first embodiment of the present invention.
  • 2 is a view showing a nozzle unit according to a first embodiment of the present invention.
  • a gas to be converted or reformed into another material using heat of the slag is called a treatment gas, and the treatment gas is converted or
  • the gas which reacts with the said process gas for reforming is called reaction gas.
  • the molten slag MS discharged from the discharge port 1213 and the discharge port 1213 from which the molten slag MS is discharged or falls or falls.
  • Slag processing apparatus 1000 provided with a nozzle portion 1200 having a flow path (hereinafter, the injection flow path (1222)) for injecting the gas for cooling and granulation (hereinafter, the cooling gas (CG)) in the moving direction,
  • CG cooling gas
  • reaction apparatus 5100 for converting or reforming the gas generated in the steelmaking operation, that is, the processing gas into another material, by using the heat of the slag provided from the slag processing apparatus 1000.
  • the slag treatment facility is connected to the nozzle unit 1200, the slag supply line 2000 for supplying the molten slag (MS) to the nozzle unit 1200, the nozzle unit 1200 is connected to the nozzle unit 1200 It includes a cooling gas supply line 3000 for supplying the furnace cooling gas (CG).
  • CG furnace cooling gas
  • the slag transfer line 4000 is installed to connect the slag processing apparatus 1000 and the reaction apparatus 5100 to transfer the granulated slag GS discharged from the slag processing apparatus 1000 to the reaction apparatus 5100.
  • a gas generated by a reaction between the process gas and the reaction gas in the process gas supply line 6000 for supplying the process gas and the reaction gas to the reaction apparatus 5100 and the reaction apparatus 5100 (hereinafter, referred to as a product gas)
  • a product gas discharge line 7000 that discharges or transfers to the outside.
  • the first gas exchanger may include a first heat exchanger 8000a installed on an extension path of the product gas discharge line 7000 to generate heat by heat-exchanging the product gas.
  • the slag to be treated in the slag treatment facility is produced or generated during the steelmaking operation, is in a liquid state, and has heat at a temperature of 1500 ° C to 1600 ° C. More specifically, the molten slag MS to be treated in the slag treatment facility includes at least one of slag produced during the refining operation in the blast furnace and slag produced during the refining operation of the converter molten iron.
  • the processing gas may be a CO 2 containing gas generated in the steelmaking operation, and the reaction gas may be a gas containing CH 4 , for example, at least one of Liquid Natural Gas (LNG) and COKE OVEN GAS (COG).
  • LNG Liquid Natural Gas
  • COG COKE OVEN GAS
  • the slag processing apparatus 1000 cools the molten slag MS so as to suppress or prevent the precipitation of free CaO due to slow cooling of the molten slag MS.
  • the slag processing apparatus 1000 granulates the molten slag MS in the form of a plurality of particles.
  • Granulating the molten slag (MS) means to atomize or powder into a plurality of particle forms.
  • molten slag MS is granulated in this way, surface area becomes large and heat dissipation becomes easier.
  • the slag processing apparatus 1000 is positioned separately from the discharge port 1213 and the discharge port 1213 through which the molten slag MS is discharged, and the molten slag MS discharged from the discharge port 1213 falls or moves. And a nozzle unit 1200 having an injection passage 1222 for injecting cooling gas CG in a direction to be obtained.
  • the slag processing apparatus 1000 includes at least the nozzle part 1200 so that the molten slag MS and the cooling gas CG discharged from the nozzle part 1200 and the granulated slag GS may be accommodated. It includes a container (1100) having an inner space that can be accommodated in the lower portion.
  • the nozzle unit 1200 extends in one direction and includes an inner space (hereinafter, the accommodation space 1212) and an accommodation space through which the molten slag MS can be accommodated and moved.
  • a first flow path 1213 provided with a discharge port 1213 for discharging the molten slag MS moved from the 1212 and an injection flow path for injecting cooling gas CG in a direction in which the molten slag MS is discharged and flowed ( 1222 and a second nozzle 1220 positioned outside the first nozzle 1210.
  • the nozzle unit 1200 may include heating means 1230 and vibration means (not shown) for preventing a blockage of the first nozzle 1210 and a rise in viscosity of the molten slag MS accommodated in the first nozzle 1210. It may include at least one of).
  • the first nozzle 1210 includes a first body 1211 extending in one direction, more specifically, in an up and down direction, and the first body 1211 is preferably made of refractory material.
  • the first body 1211 extends in the extending direction of the first body 1211, and extends so as to communicate with a lower end of the accommodation space 1212 and the accommodation space 1212 through which molten slag is accommodated or passed.
  • the discharge port 1213 which is formed and discharges molten slag MS to the outside is provided.
  • the first body 1211 is provided with an inlet 1217 connected to the accommodation space 1212 so as to be positioned higher than the discharge hole 1213 and supplying molten slag MS to the accommodation space 1212.
  • Inlet 1217 is connected to slag supply line 2000.
  • the accommodation space 1212 is a passage for temporarily storing the molten slag MS or moving to the discharge port 1213 and extending in the vertical direction.
  • the lower region adjacent to the discharge port 1213 of the accommodation space 1212 may have a shape in which the inner diameter thereof gradually decreases toward the direction in which the discharge hole 1213 is located. This is for the molten slag MS to be easily moved to the discharge port 1213.
  • the discharge port 1213 is a means for discharging the molten slag MS moved from the accommodation space 1212 to the outside, and is preferably formed such that its inner diameter is smaller than that of the accommodation space 1212.
  • the discharge port 1213 may be installed to be positioned at the center of the width direction of the accommodation space 1212.
  • the discharge port 1213 has a shape in which the inner diameter becomes narrower and wider toward the lower side from the accommodation space 1212. This is to discharge the molten slag MS at a higher speed by using the Venturi effect.
  • the molten slag MS moves downward by gravity. Is discharged through the discharge port 1213.
  • the heating means 1230 is a power source for generating heat of the heating element 1231 and the heating element 1231 embedded in the first body 1211, which partitions the accommodation space of the first nozzle 1210. It may include a power source 1232 for applying.
  • the heating element 1231 in the first body 1211 is heated by a power source applied from the power supply unit 1232, whereby the molten slag MS accommodated in the accommodation space 1212 is heated. . Accordingly, it is possible to prevent the viscosity of the molten slag MS due to the temperature drop of the molten slag MS and the blockage of the discharge port 1213 due to this, and the molten slag MS is easily moved to the discharge port 1213. Can be discharged.
  • the heating means 1230 is not limited to the above-described configuration of the heating element 1231 and the power supply 1232, and means including various means such as a burner (not shown) capable of heating the molten slag in the first nozzle 1210. Can be.
  • the burner may be installed to communicate with the accommodation space of the first nozzle 1210, and may burn-react the fuel gas and air, and heat the molten slag by this heat.
  • Vibration means includes a vibration member embedded in the first body 1211 partitioning the receiving space 1212 of the first nozzle 1210 and the energy or signal for vibration of the vibration member.
  • the vibration generator may be any one of an ultrasonic generator and a microwave generator.
  • the vibration means as described above When the vibration means as described above is operated, the molten slag MS in the first nozzle 1210 is vibrated or flows, thereby preventing the clogging of the discharge port due to the molten slag.
  • the second nozzle 1220 includes an injection passage 1222 for injecting cooling gas CG in a direction in which the molten slag MS discharged from the first nozzle 1210 falls or moves.
  • the cooling gas CG may be a gas including at least one of an inert gas such as air, nitrogen, and CO 2 and CH 4 .
  • the cooling gas CG is at a lower temperature than the molten slag MS, and may be, for example, room temperature.
  • the second nozzle 1220 includes a body positioned below the first nozzle 1210 (hereinafter referred to as a second body 1221), and an outlet 1213 of the first nozzle 1210. And the molten slag MS discharged to pass through the passage 1224 and the passage 1224 provided in the second body 1221 so as to pass through the molten slag MS discharged from the first nozzle 1210.
  • An injection flow path 1222 provided inside the second body 1221 so that the cooling gas CG is injected in the direction.
  • the second body 1221 is positioned below the first nozzle 1210 and passes through the passage 1224 which is a space through which the molten slag MS discharged from the discharge port 1213 of the first nozzle 1210 can pass. Branches may be hollow shaped. Accordingly, the second body 1221 is disposed to surround the stream of molten slag MS discharged from the first nozzle 1210.
  • the passage 1224 has a shape in which the upper side and the lower side are opened.
  • the passage 1224 may have a shape in which an inner diameter thereof gradually increases toward the lower side as shown in FIG. 2.
  • the shape of the passage 1224 is not limited thereto and may be a shape having no change in the inner diameter in the vertical direction.
  • the injection passage 1222 is a means for injecting the cooling gas CG in the falling or moving direction of the discharged molten slag MS, and is provided in the second body 1221 and communicates with the passage 1224.
  • one of both ends of the injection passage 1222, one end in the extension direction is an inlet through which the cooling gas CG flows, and the other end is an injection port 1222b-1 through which the cooling gas is injected.
  • one end of the injection passage 1222 is named the inlet and the other end of the injection opening 1222b-1, but the inlet and the injection hole 1222b-1 are integrally formed with both ends of the injection passage 1222. Configuration.
  • the injection hole 1222b-1 may be exposed to face the passage 1224 or the passage 1224. That is, as shown in FIG. 2, it is formed to be exposed to the corner portion between the inner surface and the lower surface of the second body 1221, which is the peripheral wall of the passage 1224, or to the lower surface of the second body 1221. It may be formed to be exposed.
  • the cooling gas CG is injected downward of the second body 1221, and the cooling gas CG and the molten slag MS meet at the lower side of the second body 1221 and the molten slag MS. Is cooled and granulated.
  • the position of the injection hole 1222b-1 is not limited to the above-described example, and may be formed so as to be exposed to the inner surface of the second body 1221 which defines the passage 1224 or is a peripheral wall of the passage 1224.
  • a cooling gas is injected into the passage 1224 of the second body 1221, and the cooling gas CG and the molten slag MS meet and cool within the passage 1224.
  • the injection passage 1222 may have a shape inclined downward as the region adjacent to the injection hole 1222b-1 approaches the passage 1224 toward the direction in which the injection hole 1222b-1 is located.
  • at least an area adjacent to the injection hole 1222b-1 of the injection passage 1222 may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
  • the injection passage 1222 includes a first passage 1222a extending in the width direction or the horizontal direction of the second body 1221 and a second passage 1222b extending from the first passage 1222a. .
  • the first flow path 1222a is formed to extend in the width direction of the second body 1221 without changing the inclination, and has a constant internal diameter.
  • the second flow path 1222b may be inclined downward so as to be closer to the passage toward the direction in which the injection hole 1222b-1 is located, and may have a shape in which the inner diameter gradually decreases. This is to inject the cooling gas to a high pressure by using the Venturi effect.
  • One end of both ends in the extending direction of the first flow path 1222a is connected to the cooling gas supply line 3000, and an inlet port through which the cooling gas CG flows into the inside, and the other end is an opening communicating with the second flow path 1222b. to be.
  • One end of both ends in the extending direction of the second flow path 1222b is an opening communicating with the other end of the first flow path 1222a, and the other end is an injection hole 1222b through which the cooling gas CG is injected toward the passage 1224. -1).
  • the area of the second flow path 1222b adjacent to the injection hole 1222b-1 may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
  • the inclination angle of the injection passage 1222 or the second passage 1222b may be injected in a direction in which the cooling gas injected from the injection hole 1222b-1 drops the molten slag MS discharged from the first nozzle 1210. Is adjusted so that.
  • the first flow passage 1222a is formed horizontally in the width direction of the second body 1221 without changing the inclination, and the internal diameter is constant.
  • the first flow passage 1222a may be formed to be inclined downward toward the second flow passage 1222b, and may have a shape in which an inner diameter thereof becomes narrower toward the second flow passage 1222b.
  • the injection passage 1222 as described above may be formed to extend in the circumferential direction of the discharge port 1213. That is, the injection passage 1222 may be provided in the form of a ring surrounding the discharge hole 1213. As another example, a plurality of injection passages 1222 may be provided to be arranged in the circumferential direction of the discharge port 1213.
  • At least a portion of the cooling gas supplied to the second nozzle 1220 to cool the molten slag may be supplied to a hot blast furnace of the blast furnace to be used in manufacturing hot air.
  • the container 1100 has an interior space for allowing the entire nozzle portion 1200 to be accommodated therein.
  • the nozzle unit 1200 is installed so that the whole thereof is located inside the container 1100.
  • the length of the container 1100 in the vertical direction is longer than that of the nozzle part 1200, and the space below the nozzle part 1200 is collected or stored by the granulated slag GS in the container 1100.
  • an outlet through which granulated slag GS is discharged may be provided at a lower end thereof.
  • the lower region of the nozzle portion 1200 of the inner space of the container 1100 is preferably a shape that the inner diameter is narrowed toward the discharge port provided at the lower end. This is to allow the granulated slag GS to move and discharge in the direction of the outlet.
  • the length of the container 1100 in the vertical direction is longer than that of the nozzle part 1200, and thus, the entire nozzle part 1200 is accommodated in the container 1100.
  • the container 1100 may include the molten slag MS and the cooling gas CG discharged from the nozzle unit 1200, and the nozzle unit 1200 to accommodate the granulated slag GS. A portion of) may be provided to a size that can be accommodated.
  • the molten slag MS is discharged downward through the first nozzle 1210 and the molten discharged using the second nozzle 1220. Cooling gas CG is injected in the direction in which slag MS falls. Accordingly, the molten slag MS in the liquid state discharged from the first nozzle 1210 is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the cooling gas CG injected.
  • the temperature of the atomized or granulated slag (GS) is 1100 °C or less, more specifically 600 °C or more, 1100 It should be below or below °C. More preferably, it is 1000 to 1100 degreeC.
  • the particle size of the granulated slag GS is preferably 5 mm or less. The temperature and particle diameter of the granulated slag as described above can be controlled by adjusting the type and cooling flow rate of the cooling gas (CG).
  • the heat of the slag is used to convert the CO 2 containing gas generated in the steelmaking operation, that is, the processing gas into another material.
  • the heat of slag is recovered and used as a heat source for the reforming reaction of the processing gas.
  • the molten slag with low thermal conductivity is granulated to increase the surface area, thereby facilitating heat release from the slag.
  • the particle diameter of the slag is 5 mm or less, because the larger the particle diameter of the slag increases the temperature deviation between the surface and the center of the particle, thereby lowering the thermal conductivity.
  • the temperature of the granulated slag GS may be 600 degreeC or more and 1100 degrees C or less as mentioned above.
  • the temperature of 1100 ° C. or less is to prevent precipitation of free calcium oxide (free CaO) as described above
  • the temperature of 600 ° C. or more is to ensure easy reactivity between the processing gas and the reaction gas. That is, a temperature of 600 ° C. or higher is required for easy reaction of CO 2 in the processing gas and CH 4 in the reaction gas. More preferably, the reaction rate of CO 2 in the processing gas and CH 4 in the reaction gas is greatly improved when the temperature is 1000 ° C.
  • the temperature of the slag GS granulated in the slag processing apparatus 1000 is 1000 ° C. to 1100 ° C. It is desirable to adjust as possible. This can be controlled by adjusting the type and cooling flow rate of the cooling gas (CG).
  • CG cooling gas
  • the reactor 5100 is a device for converting or reforming a process gas, that is, a CO 2 -containing gas generated in an iron making operation, to another material.
  • the reactor 5 is used by using the heat of slag provided from the slag treatment device 1000. 5100) to form a reaction temperature of CO 2 .
  • the reaction apparatus 5100 may have a cylindrical shape having an internal space in which the granulated slag GS is accommodated.
  • the reactor 5100 is connected to the process gas supply line 6000 and the product gas discharge line 7000, respectively.
  • the processing gas is a gas generated in the steelmaking operation and is a gas containing CO 2 .
  • the reaction gas may be, for example, at least one of LNG (Liquid Natural Gas) and COG (COKE OVEN GAS) as a gas containing CH 4 .
  • the temperature inside the reactor 5100 is heated to a temperature at which CO 2 and CH 4 can react by the heat discharged from the slag. That is, heat of the granulated slag GS is discharged into the reaction apparatus.
  • the temperature inside the reaction apparatus 5100 may be 600 ° C to 1100 ° C, preferably 1000 ° C to 1100 ° C, due to the granulated slag GS.
  • the reaction apparatus 5100 is loaded with slag for providing a heat source for reforming the processing gas, and the processing gas and the reaction gas are supplied thereto. At this time, in order to improve the reaction efficiency of the processing gas and the reaction gas, it is advantageous to increase the residence time of the processing gas and the reaction gas inside the reaction apparatus 5100.
  • the reactor 5100 may be a packed bed type.
  • the reaction apparatus 5100 is a packed bed type, since the supplied processing gas and the reaction gas must be moved to pass between the plurality of slag particles, the path is complicated and long, so that the processing gas and the reaction gas are The reaction time and reaction rate of the liver can be improved.
  • Granulated slag (GS) used as a heat source for reforming CO 2 in the reactor 5100 is discharged from the reactor 5100. And it is used as a raw material for sintering or other auxiliary raw materials, or recycled as a cement raw material, landfill, dephosphorization agent.
  • the product gas generated in the reactor 5100 may be discharged through the product gas discharge line 7000.
  • the present invention is not limited thereto, and the product gas may be supplied to the first heat exchanger 8000a through the product gas discharge line 7000 to be used to generate steam.
  • the shape or configuration of the nozzle unit 1200 described above is not limited to the first embodiment illustrated in FIGS. 1 and 2, and may be variously changed.
  • FIG 3 is an enlarged view of a part of a nozzle unit according to a first modification of the first embodiment.
  • the first nozzle 1210 may further include an extension member 1214 connected to the lower portion of the first body 1211. That is, the first nozzle 1210 according to the first modification includes a first body 1211 and an extension member 1214 extending downward from the first body 1211.
  • the first discharge hole 1213 is a means for discharging the molten slag MS into the extension member 1214, and may have a shape in which an inner diameter thereof gradually decreases toward the direction in which the extension member 1214 is positioned.
  • An extension flow passage 1215 extending downward is formed in the extension member 1214 so as to communicate with the first discharge port 1213. That is, one end of the extension flow path 1215 communicates with the first discharge port 1213, and the other end is an discharge port (hereinafter referred to as a second discharge port 1215-1) through which the molten slag MS is finally discharged.
  • the extending length of the extending member 1214 in the vertical direction is shorter than that of the first body 1211, and may be the same as or similar to the vertical length of the second nozzle 1220 described later.
  • the extension passage 1215 may have a shape in which the inner diameter of the extension channel 1215 is narrowed toward the lower side from the first discharge port 1213, and the inner diameter of the extension passage 1215 is widened toward the lower side thereof. At this time, the length of the region where the inner diameter widens further toward the lower side may be shorter than the length of the region where the inner diameter narrows toward the lower side from the first discharge port 1213 which is the upper region.
  • the first flow path 1222a is formed horizontally in the width direction of the second body 1221, and there is no change in the inner diameter
  • the second flow path 1222b is The injection hole 1222b-1 is inclined downward so as to be closer to the passage toward the direction in which it is located.
  • the present invention is not limited thereto, and both the first flow passage 1222a and the second flow passage 1222b may be provided such that the inclination and the inner diameter are variable.
  • the injection passage 1222 has a first passage having an inclined upward direction in the direction in which the injection opening 1222b-1 is located from the inlet through which the cooling gas is introduced. And a second flow path 1222b inclined downward from the direction 1222a and the first flow path 1222a in the direction in which the injection hole 1222b-1 is positioned.
  • the upper wall of the peripheral wall of the first flow passage 1222a does not have an inclination or a height change in the second body 1221, and the lower wall is inclined upward in the direction in which the second flow passage 1222b is positioned.
  • the first flow passage 1222a becomes inclined upward while the inner diameter thereof becomes narrower toward the direction in which the second flow passage 1222b is located.
  • the lower wall may have a convex curved surface or curvature in the upper wall direction.
  • the lower wall among the peripheral walls of the first flow passage 1222a may have a shape that does not have an inclination or a height change
  • the upper wall may have a shape inclined downward in the direction in which the second flow passage 1222b is positioned.
  • the second flow path 1222b may be inclined downward in the direction in which the injection hole 1222b-1 is positioned, and may have a shape in which an inner diameter thereof becomes narrower as it approaches the injection hole 1222b-1.
  • the area of the second flow path 1222b adjacent to the injection hole 1222b-1 may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
  • FIG. 4 is a view showing a nozzle unit according to a second modification of the first embodiment.
  • the nozzle unit 1200 according to the first embodiment and the first modification described above has been described that the second nozzle 1220 is located under the first nozzle 1210.
  • the nozzle unit 1200 is not limited to the above-described examples, and may be changed into various forms capable of injecting the cooling gas CG toward the molten slag MS discharged and flowing downward.
  • the first body 1211 of the first nozzle 1210 extends in the vertical direction, and the vertical direction is formed in the first body 1211.
  • An accommodation space 1212 is formed to extend.
  • the second body 1221 of the second nozzle 1220 extends in the extending direction of the first body 1211 and is installed to surround the outer surface of the first body 1211.
  • the second body 1221 is extended so that the lower end thereof protrudes further downwardly than the first body 1211.
  • the inside of the protruding region is an empty space, which is located below the discharge port 1213, and is a passage 1224 through which the molten slag from which the empty space is discharged passes.
  • At least one region protruding downward of the first body 1211 of the second body 1221 extends closer to the widthwise center of the discharge port 1213 toward the lower side.
  • the passage 1224 provided below the discharge port 1213 has a shape in which the inner diameter thereof becomes narrower toward the lower side.
  • the injection passage 1222 is formed to extend in the extending direction of the second body 1221 as described above, the region extending downward of the first body 1211 of the injection passage 1222 is discharged 1213 toward the lower side.
  • the shape is closer to the center of the width direction.
  • the injection passage 1222 is downward from the first passage 1222a so as to protrude downwardly from the first passage 1222a and the first body 1211 extending upwardly in the second body 1221.
  • An extended second flow path 1222b is included.
  • the second flow path 1222b is extended to be closer to the center of the width direction of the discharge port 1213 toward the lower side.
  • the region adjacent to the injection hole 1222b-1 of the second flow path 1222b may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
  • FIG 5 is a view showing a reaction device according to a third modification of the first embodiment.
  • the present invention is not limited thereto, and the reactor 5100 may be changed to a flow path type.
  • a dispersion plate 5200 is formed in the reaction apparatus 5100 extending in the width direction of the reaction apparatus and having a plurality of holes, and dispersed therein.
  • the slag GS granulated above the plate 5200 is placed so as to be positioned, and a processing gas and a reaction gas are supplied below the dispersion plate 5200.
  • the processing gas and the reaction gas supplied from the lower side of the dispersion plate 5200 go up through the plurality of holes, and the slag on the upper side of the dispersion plate flows by the processing gas and the reaction gas.
  • FIG. 6 is a diagram conceptually showing a slag treatment facility and a slag treatment process according to the first embodiment of the present invention.
  • the molten slag MS generated during the steelmaking operation is prepared, and the molten slag MS is supplied to the slag supply line 2000.
  • the molten slag MS supplied to the slag supply line 2000 is supplied to the accommodation space of the first nozzle 1210 of the slag processing apparatus 1000 and then discharged to the outside through the discharge port 1213. At this time, the molten slag MS is discharged to pass through the passage 1224 of the second body 1221 corresponding to the lower side of the discharge port 1213.
  • a cooling gas CG for example, air is sprayed toward the discharged molten slag MS, thereby melting the slag. (MS) is quenched and granulated. That is, when the cooling gas CG is supplied to the cooling gas supply line 3000, the cooling gas CG is moved along the injection passage 1222 of the second nozzle 1220, and then toward the molten slag MS. Sprayed.
  • the molten slag is quenched by the cooling gas injected through the second nozzle 1220 and granulated into a plurality of particles.
  • at least one of the flow rate and the injection pressure of the cooling gas CG is adjusted so that the granulated slag has a temperature of 600 ° C to 1100 ° C, more preferably 1000 ° C to 1100 ° C.
  • the granulated slag GS is dropped downward in the container 1100 and then transferred to the reaction apparatus 5100. At this time, since the granulated slag GS is 600 degreeC-1100 degreeC, the temperature inside the reaction apparatus 5100 raises with slag.
  • a processing gas which is a gas containing CO 2
  • a reaction gas which is a gas containing CH 4
  • the product gas including CO and H 2 generated in the reactor 5100 is discharged to the outside through the product gas discharge line 7000.
  • the slag discharged from the reaction apparatus 5100 is utilized as a raw material for sintering or other auxiliary raw materials, or recycled as a cement raw material, a landfill agent, a dephosphorizing agent, or the like.
  • the cooling gas CG is injected into the molten slag MS to granulate the molten slag while rapidly quenching the molten slag. Accordingly, it is possible to suppress or prevent the generation of free CaO precipitates.
  • the cooling gas CG is injected along the direction in which the molten slag falls, the consumption amount of the cooling gas CG can be reduced, and scattering of the slag can be suppressed or prevented.
  • FIG. 7 is a view conceptually showing a slag treatment facility according to a second embodiment of the present invention.
  • the product gas discharged from the reaction device 5100 is discharged as it is, or is supplied to the first heat exchanger 8000a to be used to generate steam.
  • the present invention is not limited thereto, and the generated gas discharged from the reaction device 5100 may be used to raise the temperature of the processing gas and the reaction gas supplied to the reaction device 5100.
  • the heat exchanger for raising the temperature of these gases by heat-exchanging the generated gas discharged from the reaction device 5100 with the processing gas and the reaction gas (hereinafter referred to as And a product heat recovery line 9000 connecting the second heat exchanger 8000b and the product gas discharge line 7000 and the second heat exchanger 8000b to supply the product gas to the second heat exchanger 8000b.
  • the generated gas discharged from the reaction device 5100 may be recycled to raise the process gas and the reaction gas to be supplied to the reaction device 5100 without being discharged as it is.
  • FIG. 8 is a view conceptually showing a slag treatment facility according to a third embodiment of the present invention.
  • the slag treatment facility includes a slag treatment device 1000 and a reaction device 5100. That is, the granulated slag GS provided in the slag processing apparatus 1000 was sent to the reaction apparatus 5100, and the process gas was reformed using the sensible heat of slag in the reaction apparatus 5100.
  • FIG. In other words, the apparatus for granulating the slag and the apparatus for reforming the processing gas are separate apparatuses.
  • the reaction apparatus 5100 may be omitted, as in the third embodiment shown in FIG. 8. Can be. That is, in the slag processing apparatus 1000, granulation of molten slag and modification of process gas can be performed. In other words, the slag is granulated and the reforming of the processing gas is performed in the same apparatus.
  • the slag processing facility includes a nozzle portion having a discharge port 1213 through which molten slag MS is discharged and an injection flow path 1222 separated from the discharge port 1213 and injecting cooling gas in a direction in which the discharged molten slag falls. And a slag processing apparatus 1000 provided with 1200.
  • the slag processing equipment is generated in the slag supply line 2000 for supplying the molten slag MS to the nozzle unit 1200, the cooling gas supply line 3000 for supplying the cooling gas CG, and the slag processing apparatus 1000.
  • 2 is provided to connect the heat exchanger (800b), the product gas recovery line 9000 for supplying the product gas to the second heat exchanger (8000b) and the process gas for supplying the processing gas and the reaction gas to the second heat exchanger (8000b) It may include a supply line 6000.
  • the slag supply line 2000 is installed to be connected to the accommodation space of the first nozzle 1210 and supplies molten slag MS to the accommodation space 1212.
  • the cooling gas supply line 3000 is connected to the injection passage 1222 of the second nozzle 1220 to supply the cooling gas to the injection passage 1222.
  • the cooling gas CG supplied to the second nozzle 1220 includes a CO 2 containing gas and a CH 4 containing gas.
  • the CO 2 -containing gas may be a gas by-produced in the steelmaking operation, and the CH 4 -containing gas may include at least one of Liquid Natural Gas (LNG) and COKE OVEN GAS (COG).
  • FIG. 9 is a diagram conceptually showing a slag treatment facility and a slag treatment process according to a third embodiment of the present invention.
  • molten slag MS generated during the steelmaking operation is prepared and supplied to the accommodation space 1212 of the first nozzle 1210 through the slag supply line 2000.
  • the molten slag MS supplied to the accommodation space of the first nozzle 1210 moves downward by gravity and is discharged to the outside through the discharge port 1213, and the discharged molten slag MS is discharged to the second body 1221. Fall through the passage 1224.
  • the cooling gas CG is injected toward the molten slag MS discharged to quench and granulate the molten slag MS. Let's do it.
  • the granulated slag (GS) has a temperature of 600 ° C to 1100 ° C, more preferably 1000 ° C to 1100 ° C. As the molten slag MS is quenched by the cooling gas CG in this way, precipitation of free CaO can be suppressed or prevented.
  • the cooling gas CG injected into the molten slag MS through the second nozzle 1220 includes a CO 2 containing gas, which is a processing gas to be reformed, and a CH 4 containing gas, which is a reactive gas.
  • the inner vessel 1100 of the slag treatment unit (1000) is the composition at a temperature which facilitates the reaction between CO 2 and CH 4.
  • the product gas may be supplied to the second heat exchanger 8000b through the product gas discharge line 7000, and the second nozzle 1220 may be exchanged with the product gas in the second heat exchanger 8000b.
  • the cooling gas to be supplied that is, the CO 2 containing gas and the CH 4 containing gas, can be heated.
  • a process gas supply line 6000 and a product gas recovery line 9000 may be connected to the second heat exchanger 8000b.
  • the cooling gas CG including the CO 2 containing gas and the CH 4 containing gas is heated and supplied to the second nozzle 1220 to supply the cooling gas supplied toward the molten slag MS. This is to facilitate the reaction between CO 2 and CH 4 in (CG).
  • the cooling gas supplied for granulating the molten slag is lower than the temperature of the molten slag, the molten slag can be cooled.
  • the processing gas and the reaction gas are heated in advance using the product gas, the reaction between the processing gas and the reaction gas in the slag processing apparatus may be easier.
  • the cooling gas supplied to the slag processing apparatus 1000 may be more easily reached at a temperature for the reaction between CO 2 and CH 4 .
  • the cooling gas supplied to the slag treatment apparatus 1000 may reach a temperature for the reaction between CO 2 and CH 4 due to the heat of the molten slag, so that the second heat exchanger 8000b may be omitted.
  • the molten slag may be quenched to be easily recycled in the slag treatment apparatus 1000, and the CO 2 containing gas generated in the steelmaking operation may be reformed without the reaction apparatus 5100. That is, the slag treatment plant according to the third embodiment has the advantage that the arrangement of the facility is simple compared to the first embodiment and the second embodiment.
  • the reaction apparatus in the case of supplying the cooling gas CG including the processing gas and the reaction gas, the reaction apparatus is not omitted as in the above-described third embodiment, and the reaction apparatus 5000 as in the first embodiment shown in FIG. 1. ) May be provided.
  • the slag processing apparatus 1000 and the reaction apparatus 5100 may recover the heat of the slag to reform the processing gas. That is, the first reforming reaction may occur in the slag treatment apparatus 1000, and the second reforming reaction may occur using the heat released from the granulated slag used for the first reforming reaction in the reaction apparatus 5100.
  • the heat recovery of the slag is further improved.
  • the molten slag MS is discharged downward through the first nozzle 1210, and discharged using the second nozzle 1220. Cooling gas is injected in the direction of falling molten slag. Accordingly, the molten slag MS in the liquid state discharged from the first nozzle 1210 is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the cooling gas CG injected. Therefore, as the slag is quenched to 1100 ° C. or less, it is possible to suppress or prevent the generation of free CaO precipitates due to slow cooling. Therefore, it is possible to suppress or prevent expansion due to the hydration reaction at the time of recycling the atomized slag.
  • the cooling gas is not sprayed radially through the nozzle unit 1200 according to the embodiments, but is sprayed at a local portion or in a position close to the molten slag toward the molten slag MS that is discharged and flows. Accordingly, the consumption of cooling gas can be reduced, and scattering of slag can be suppressed or prevented.
  • the heat of the slag is recovered and used as a heat source for the reforming reaction of the processing gas.
  • the energy used for melting the slag can be recovered or recycled, thereby improving the energy efficiency in the entire steelmaking operation.
  • the molten slag is discharged downward through the first nozzle, and the cooling gas is injected toward the molten slag discharged through the second nozzle. Accordingly, the molten slag in the liquid state discharged from the first nozzle is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the injected cooling gas. For this reason, as the slag is quenched, it is possible to suppress or prevent the generation of free CaO precipitates due to slow cooling. Therefore, it is possible to suppress or prevent expansion due to the hydration reaction at the time of recycling the atomized slag.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

A slag treatment facility according to an embodiment of the present invention comprises a slag treatment apparatus comprising a nozzle part capable of spraying a cooling gas at molten slag, wherein the nozzle part comprises: a first nozzle having, at the lower part thereof, a discharge hole through which molten slag is discharged; and a second nozzle which is mounted on the first nozzle so as to be positioned outside the first nozzle and which comprises a spray channel through which the cooling gas is sprayed in the falling direction of the molten slag to be discharged from the discharge hole. Therefore, the slag treatment facility according to an embodiment of the present invention rapidly cools slag, and thus can inhibit or prevent free calcium oxide (CaO) precipitate generation caused by slow cooling. Thus, when atomized slag is recycled, expansion caused by a hydration reaction can be inhibited or prevented.

Description

슬래그 처리 설비 및 슬래그 처리 방법Slag treatment equipment and slag treatment method
본 발명은 슬래그 처리 설비에 관한 것으로, 슬래그를 신속하게 냉각시킬 수 있는 슬래그 처리 설비 및 슬래그 처리 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slag treatment plant and to a slag treatment plant and a slag treatment method capable of rapidly cooling the slag.
고로에서 용선 제조 시 및 용선 중 불순물을 제거하는 정련시에 용융 슬래그가 발생되며, 상기 용융 슬래그는 1500℃의 열을 가지고 있다.In the blast furnace, molten slag is produced during molten iron production and refining to remove impurities in the molten iron, and the molten slag has a heat of 1500 ° C.
용융 슬래그는 야드장으로 운송되어 살수 냉각 과정을 거친후에 분쇄되어, 소결용 원료나 기타 부원료로 활용되거나, 시멘트 원료, 매립제, 탈린제 등으로 활용된다.The molten slag is transported to the yard and after being sprinkled and cooled to be pulverized and used as raw materials for sintering or other auxiliary raw materials, or as cement raw materials, landfill agents, or dephosphorization agents.
한편, 용융 슬래그는 산화물로 이루어져 있기 때문에, 열 전도도가 낮아 상기 용융 슬래그가 가지고 있는 보유열 또는 현열을 회수하기 어렵다. 보다 구체적으로 설명하면, 전체 제철 조업 중 슬래그의 용융을 위해 소비되는 에너지는 10 내지 15%인데, 이 투입된 에너지를 회수하지 못하고 있어, 에너지에 대한 효율적인 면에서 비효율적인 문제가 있다.On the other hand, since the molten slag is made of oxide, it is difficult to recover the retained heat or sensible heat that the molten slag has. In more detail, the energy consumed for melting the slag during the entire steelmaking operation is 10 to 15%, the input energy is not recovered, there is an inefficient problem in terms of energy efficiency.
여기서, 현열은 가열된 물질이 상태 변화가 없는 경우, 보유하고 있는 열량으로서, 폐열 이용 대상이 되는 열량을 말하는 것이다.Here, the sensible heat refers to the amount of heat to be used for waste heat as the amount of heat retained when the heated substance has no change in state.
용융 슬래그가 서냉되는 경우, 슬래그에 다량 함유되어 있는 CaO가 자유 산화칼슘(Free CaO)으로 석출된다. 그리고 자유 산화칼슘(Free CaO) 석출물이 포함된 슬래그를 시멘트 원료, 매립제 등으로 사용하게 되면, 수화 반응에 의한 부피 팽창으로 크랙 발생의 원인이 된다.When the molten slag is slowly cooled, CaO contained in a large amount in the slag is precipitated as free calcium oxide. And when the slag containing the free calcium oxide (Free CaO) precipitate is used as a cement raw material, landfill, etc., it causes a crack due to volume expansion by the hydration reaction.
또한, 제철 조업에서는 다량의 CO2 가스가 발생되는데, CO2 가스는 지구 온난화를 야기시키는 주요 물질이다. 이에, CO2 가스를 환경에 유해하지 않은 다른 물질로 개질시킬 필요가 있다.In addition, there is the seasonal operation, a large amount of CO 2 gas is generated, CO 2 gas is a major material causing the global warming. Accordingly, there is a need to reform the CO 2 gas into other substances that are not harmful to the environment.
(선행기술문헌)(Prior art document)
한국등록특허 KR1285786Korean Registered Patent KR1285786
본 발명은 슬래그 재활용 시 불량이 발생되지 않도록, 슬래그의 열을 신속하게 회수할 수 있는 슬래그 처리 설비 및 슬래그 처리 방법을 제공한다.The present invention provides a slag treatment facility and a slag treatment method capable of quickly recovering the heat of slag so that no defect occurs during slag recycling.
본 발명은 슬래그로부터 회수된 열을 이용하여 제철 조업중에 발생된 가스를 개질시킬 수 있는 슬래그 처리 설비 및 슬래그 처리 방법을 제공한다.The present invention provides a slag treatment facility and a slag treatment method capable of reforming gas generated during steelmaking operations using heat recovered from slag.
본 발명의 실시예에 따른 슬래그 처리 설비는 용융 슬래그에 냉각 가스를 분사할 수 있는 노즐부를 구비하는 슬래그 처리 장치를 포함하고, 상기 노즐부는, 하부에 상기 용융 슬래그를 토출시키는 토출구가 마련된 제 1 노즐; 및 상기 제 1 노즐의 외측에 위치되도록 상기 제 1 노즐에 장착되며, 상기 토출구로부터 토출되는 용융 슬래그의 낙하 방향으로 상기 냉각 가스를 분사하는 분사 유로가 마련된 제 2 노즐;을 포함한다.The slag processing apparatus according to the embodiment of the present invention includes a slag processing apparatus having a nozzle unit capable of injecting cooling gas into the molten slag, wherein the nozzle unit is provided with a first nozzle having a discharge port through which the molten slag is discharged. ; And a second nozzle mounted to the first nozzle to be positioned outside the first nozzle and provided with an injection passage for injecting the cooling gas in a falling direction of the molten slag discharged from the discharge port.
상기 제 1 노즐은, 내부에 상기 용융 슬래그의 수용이 가능하며 상하 방향으로 연장 형성된 수용 공간이 마련된 제 1 바디를 포함하고, 상기 토출구는 상기 수용 공간과 연통되도록 상기 수용 공간의 하측 끝단에 마련되며, 상기 제 2 노즐은 상기 제 1 바디에 연결되도록 설치되며, 상기 토출구와 대응 위치하는 통로가 마련된 제 2 바디를 포함하고, 상기 분사 유로는 상기 통로를 통과하도록 토출되는 용융 슬래그의 이동 방향으로 냉각 가스가 분사되도록 상기 제 2 바디 내부에 마련된 다.The first nozzle includes a first body having an accommodation space formed therein that is capable of accommodating the molten slag and extends in a vertical direction, and the discharge port is provided at a lower end of the accommodation space so as to communicate with the accommodation space. The second nozzle is installed to be connected to the first body, and includes a second body having a passage corresponding to the discharge port, wherein the injection passage is cooled in a moving direction of the molten slag discharged to pass through the passage. It is provided inside the second body to inject gas.
상기 제 1 노즐은 제 1 바디로부터 하측 방향으로 연장 형성되며, 내부에 상기 제 1 바디의 토출구와 연통된 연장 유로가 마련된 연장 부재를 포함한다.The first nozzle extends downwardly from the first body and includes an extension member provided therein with an extension flow passage communicating with the discharge port of the first body.
상기 제 2 바디는 상기 제 1 바디의 하부에 연결되고, 상기 토출구와 연통되도록 상기 통로가 상기 토출구의 하측에 형성된 중공형의 형상이며, 상기 분사 유로의 끝단이며 상기 냉각 가스가 분사되는 분사구가 상기 통로 또는 상기 통로 하측을 향하도록 노출 형성된다.The second body is connected to a lower portion of the first body, the passage is formed in a hollow shape formed in the lower side of the discharge port so as to communicate with the discharge port, the injection port is the end of the injection flow path is the injection port is injected The passage is formed or exposed to face downward.
상기 분사 유로는, 상기 제 2 바디의 폭 방향으로 연장 형성된 제 1 유로; 및 상기 제 1 유로로부터 상기 통로가 위치된 방향으로 연장 형성된 제 2 유로;를 포함하며, 상기 제 2 유로는 상기 분사구 쪽으로 갈수록 상기 통로와 가까워지도록 하향 경사진 형상이다.The injection flow path may include a first flow path extending in the width direction of the second body; And a second flow passage extending from the first flow passage in a direction in which the passage is located, wherein the second flow passage is inclined downward to get closer to the passage toward the injection hole.
상기 제 1 유로는 내경이 일정하다.The first flow path has a constant internal diameter.
상기 제 1 유로는 상기 제 2 유로가 위치된 방향으로 상향 경사진 형상이다.The first flow path is inclined upward in the direction in which the second flow path is located.
상기 제 1 유로는 상기 제 2 유로가 위치된 방향으로 갈수록 내경이 좁아지는 형상이다.The first flow path has a shape in which an inner diameter thereof narrows toward the direction in which the second flow path is located.
상기 제 2 바디는 상기 제 1 바디의 연장 방향으로 연장 형성되어 상기 제 1 바디의 외측면을 둘러 싸도록 설치되며, 하측 끝단이 상기 토출구의 하측으로 돌출되도록 연장 형성되고, 상기 분사 유로는 상기 분사 유로의 끝단이며 냉각 가스가 분사되는 분사구가 상기 토출구에 비해 하측에 위치하도록, 상기 제 2 바디 내부에서 상하 방향으로 연장 형성되며, 상기 통로는 상기 토출구 하측으로 연장 형성된 상기 제 2 바디의 내벽면에 의해 구획된 영역이다.The second body is formed to extend in the extending direction of the first body is installed to surround the outer surface of the first body, the lower end is formed to extend to protrude to the lower side of the discharge port, the injection flow path is the injection An end of the flow path is formed extending in the up and down direction inside the second body such that an injection hole through which cooling gas is injected is positioned below the discharge hole, and the passage is formed on an inner wall surface of the second body extending below the discharge hole. It is an area partitioned by.
상기 분사 유로 중 적어도 상기 토출구의 하측에 위치하는 영역은 상기 분사구 쪽으로 갈수록 상기 통로와 가까워지도록 경사진 형상이다.At least a region located below the discharge port of the injection flow path is inclined so as to be closer to the passage toward the injection port.
상기 분사 유로 중 상기 분사구와 인접한 영역은 상기 분사구가 위치된 방향으로 갈수록 내경이 좁아지다가 다시 넓어지는 형상이다.An area adjacent to the injection hole of the injection flow passage has a shape in which the inner diameter becomes narrower and wider toward the direction in which the injection hole is located.
상기 제 1 바디와 연결되어, 상기 수용 공간에 수용된 용융 슬래그를 가열하는 가열 수단을 포함한다.And heating means connected to the first body to heat the molten slag received in the accommodation space.
상기 제 1 바디와 연결되어, 상기 수용 공간에 수용된 용융 슬래그를 진동시키는 진동 수단을 포함한다.And vibrating means connected to the first body to vibrate the molten slag accommodated in the accommodation space.
상기 슬래그 처리 장치는 적어도 상기 노즐부의 하부가 수용될 수 있는 내부 공간을 가지는 용기를 포함한다.The slag processing apparatus includes a container having an inner space in which at least a lower portion of the nozzle portion can be accommodated.
상기 슬래그 처리 장치로부터 제공된 입상화된 슬래그의 수용이 가능하며, 입상화된 슬래그로부터 배출된 열을 이용하여 처리 가스와 반응 가스를 반응시켜, 상기 처리 가스를 개질시키는 반응 장치를 더 포함한다.It is possible to receive the granulated slag provided from the slag treatment apparatus, and further comprising a reaction apparatus for reacting the process gas and the reaction gas using the heat discharged from the granulated slag to reform the process gas.
상기 반응 장치의 내부에 설치되며, 상기 반응 장치의 폭 방향으로 연장 형성되고, 폭 방향으로 상호 이격 형성되어 상기 처리 가스 및 반응 가스의 통과가 가능한 복수의 홀을 가지는 분산판을 포함한다.And a distribution plate installed inside the reaction apparatus, extending in the width direction of the reaction apparatus, spaced apart from each other in the width direction, and having a plurality of holes through which the process gas and the reaction gas can pass.
상기 반응 장치에 연결되어, 상기 반응 장치에서 상기 처리 가스와 반응 가스 간의 반응으로 생성된 생성 가스를 배출시키는 생성 가스 배출 라인; 상기 생성 가스 배출 라인의 연장 경로 상에 설치되어, 상기 생성 가스의 열을 이용하여 스팀을 생성하는 제 1 열교환기;를 포함한다.A product gas discharge line connected to the reaction device for discharging a product gas generated by a reaction between the process gas and the reaction gas in the reaction device; And a first heat exchanger installed on an extension path of the product gas discharge line to generate steam using heat of the product gas.
상기 반응 장치에 연결되어, 상기 반응 장치에서 상기 처리 가스와 반응 가스 간의 반응으로 생성된 생성 가스를 배출시키는 생성 가스 배출 라인; 상기 생성 가스 배출 라인의 연장 경로 상에 설치되어, 상기 처리 가스 및 반응 가스를 상기 생성 가스와 열교환시켜, 상기 처리 가스 및 반응 가스를 승온시키는 제 2 열교환기; 및 상기 생성 가스 배출 라인과 상기 제 2 열교환기를 연결하도록 연장 형성되어, 상기 제 2 열교환기로 생성 가스를 공급하는 생성 가스 공급 라인;을 포함한다.A product gas discharge line connected to the reaction device for discharging a product gas generated by a reaction between the process gas and the reaction gas in the reaction device; A second heat exchanger disposed on an extension path of the product gas discharge line to heat-exchange the process gas and the reaction gas with the product gas, thereby raising the process gas and the reaction gas; And a product gas supply line extending to connect the product gas discharge line and the second heat exchanger to supply the product gas to the second heat exchanger.
본 발명의 실시예에 따른 슬래그 처리 방법은 용융 슬래그를 토출시키는 과정; 토출된 상기 용융 슬래그가 낙하되는 방향으로 냉각 가스를 분사하여, 상기 용융 슬래그를 냉각하고, 입자 형태로 입상화시키는 과정; 입상화된 슬래그로부터 방출된 열을 이용하여, 처리 가스와 반응 가스를 반응시켜, 상기 처리 가스를 개질시키는 과정;을 포함한다.Slag treatment method according to an embodiment of the present invention comprises the steps of discharging the molten slag; Spraying a cooling gas in a direction in which the discharged molten slag falls, thereby cooling the molten slag and granulating it into particles; And reforming the process gas by reacting the process gas with the reaction gas using heat released from the granulated slag.
상기 냉각 가스는 에어(air), 불활성 가스, 상기 처리 가스 및 상기 반응 가스 중 적어도 하나를 포함한다.The cooling gas includes at least one of air, an inert gas, the processing gas, and the reaction gas.
상기 용융 슬래그를 향해 분사되는 상기 냉각 가스에 의해, 상기 용융 슬래그를 냉각시키고, 입상화시키며, 입상화된 슬래그를 향해 상기 처리 가스 및 반응 가스를 분사하여, 상기 입상화된 슬래그의 열을 이용하여 상기 처리 가스를 개질시킨다.By the cooling gas injected toward the molten slag, the molten slag is cooled, granulated, and sprayed the processing gas and the reactive gas toward the granulated slag, thereby utilizing the heat of the granulated slag. The process gas is reformed.
상기 냉각 가스는 상기 처리 가스 및 상기 반응 가스를 포함하고, 상기 용융 슬래그를 향해 분사되는 상기 냉각 가스에 의해, 상기 용융 슬래그를 냉각시키고, 입상화시키며, 상기 용융 슬래그의 냉각 및 입상화와 함께 상기 냉각 가스로 상기 처리 가스를 개질시킨다.The cooling gas includes the processing gas and the reactive gas, and cools and granulates the molten slag by the cooling gas injected toward the molten slag, together with the cooling and granulation of the molten slag. The treatment gas is reformed with cooling gas.
상기 냉각 가스는 상기 처리 가스 및 상기 반응 가스를 포함하고, 상기 용융 슬래그를 향해 분사되는 상기 냉각 가스에 의해, 상기 용융 슬래그를 냉각시키고, 입상화시키며, 상기 용융 슬래그의 냉각 및 입상화와 함께 상기 냉각 가스로 상기 처리 가스를 개질시키는 제 1 개질 반응이 일어나며, 상기 제 1 개질 반응에 사용된 입상화된 슬래그를 항해 처리 가스와 반응 가스를 분사하여, 상기 처리 가스를 개질시키는 제 2 개질 반응을 실시한다.The cooling gas includes the processing gas and the reactive gas, and cools and granulates the molten slag by the cooling gas injected toward the molten slag, together with the cooling and granulation of the molten slag. A first reforming reaction of reforming the process gas with a cooling gas occurs, and a granular slag used in the first reforming reaction is injected into the voyage process gas and the reactant gas to perform a second reforming reaction of reforming the process gas. Conduct.
상기 처리 가스와 반응 가스 간의 반응에 의해 생성된 생성 가스를 열교환시켜 스팀을 생성하는 과정을 포함한다.And heat-generating the generated gas generated by the reaction between the process gas and the reaction gas to generate steam.
상기 처리 가스와 반응 가스 간의 반응에 의해 생성된 생성 가스와 상기 처리 가스 및 반응 가스를 열교환시켜 상기 처리 가스 및 반응 가스를 승온시키는 과정을 포함하고, 상기 처리 가스를 개질시키는데 있어서, 상기 열교환에 의해 승온된 처리 가스 및 반응 가스를 상기 입상화된 슬래그를 향해 분사한다.Heat-exchanging the generated gas generated by the reaction between the process gas and the reactant gas, and the process gas and the reactant gas to raise the process gas and the reactant gas, and in reforming the process gas, The heated process gas and reactant gas are sprayed towards the granulated slag.
상기 용융 슬래그를 냉각시키는데 있어서, 600℃ 내지 1100℃의 온도가 되도록 한다.In cooling the molten slag, it is brought to a temperature of 600 ° C to 1100 ° C.
상기 처리 가스는 제철 조업에 발생된 가스를 포함한다.The processing gas includes a gas generated in the steelmaking operation.
상기 처리 가스는 CO2 함유 가스를 포함하고, 상기 반응 가스는 CH4 함유 가스를 포함한다.The processing gas includes a CO 2 containing gas and the reaction gas includes a CH 4 containing gas.
본 발명의 실시예들에 따른 슬래그 처리 설비에 의하면, 제 1 노즐을 통해 하측으로 용융 슬래그를 토출하고, 제 2 노즐을 통해 토출된 용융 슬래그를 향해 냉각 가스를 분사한다. 이에, 제 1 노즐로부터 토출된 액상 상태의 용융 슬래그는 분사되는 냉각 가스에 의해 급냉 및 분쇄되면서 구형에 가까운 고상 상태의 미립자 형태로 입상화된다. 이로 인해, 슬래그가 급냉됨에 따라 서냉으로 인한 자유 산화칼슘(Free CaO) 석출물 생성을 억제 또는 방지할 수 있다. 따라서, 미립화된 슬래그의 재활용 시에 수화 반응으로 인한 팽창을 억제 또는 방지할 수 있다.According to the slag treatment equipment according to the embodiments of the present invention, the molten slag is discharged downward through the first nozzle, and the cooling gas is injected toward the molten slag discharged through the second nozzle. Accordingly, the molten slag in the liquid state discharged from the first nozzle is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the injected cooling gas. For this reason, as the slag is quenched, it is possible to suppress or prevent the generation of free CaO precipitates due to slow cooling. Therefore, it is possible to suppress or prevent expansion due to the hydration reaction at the time of recycling the atomized slag.
그리고, 실시예들에 따르면, 용융 슬래그를 향해 국소 부위에 또는 용융 슬래그와 근접한 위치에서 냉각 가스를 분사한다. 이에 냉각 가스의 소모량을 줄일 수 있고, 슬래그의 비산을 억제 또는 방지할 수 있다.And, according to embodiments, cooling gas is injected at the local site or near the molten slag toward the molten slag. Accordingly, the consumption of cooling gas can be reduced, and scattering of slag can be suppressed or prevented.
또한, 슬래그의 열을 회수하여 처리 가스의 개질 반응에 필요한 열원으로서 사용한다. 이렇게 슬래그의 용융에 사용된 에너지를 회수 또는 재활용 할 수 있어, 제철 조업 전체에 있어 에너지 효율을 향상시키는 효과가 있다.In addition, the heat of the slag is recovered and used as a heat source for the reforming reaction of the processing gas. Thus, the energy used for melting the slag can be recovered or recycled, thereby improving the energy efficiency in the entire steelmaking operation.
도 1은 본 발명의 제 1 실시예에 따른 슬래그 처리 설비를 개념적으로 도시한 도면1 conceptually illustrates a slag treatment facility according to a first embodiment of the present invention
도 2는 본 발명의 제 1 실시예에 따른 노즐부를 도시한 도면2 is a view showing a nozzle unit according to a first embodiment of the present invention.
도 3은 제 1 실시예의 제 1 변형예에 따른 노즐부의 일부를 확대 도시한 도면3 is an enlarged view of a part of a nozzle unit according to a first modification of the first embodiment;
도 4는 제 1 실시예의 제 2 변형예에 따른 노즐부를 도시한 도면4 shows a nozzle unit according to a second modification of the first embodiment;
도 5는 제 1 실시예의 제 3 변형예에 따른 반응 장치를 도시한 도면FIG. 5 shows a reaction device according to a third modification of the first embodiment
도 6은 본 발명의 제 1 실시예에 따른 슬래그 처리 설비 및 슬래그 처리 과정을 개념적으로 블록화하여 도시한 도면6 is a conceptual block diagram illustrating a slag treatment facility and a slag treatment process according to the first embodiment of the present invention.
도 7은 본 발명의 제 2 실시예에 따른 슬래그 처리 설비를 개념적으로 도시한 도면7 conceptually illustrates a slag treatment facility according to a second embodiment of the present invention.
도 8은 본 발명의 제 3 실시예에 따른 슬래그 처리 설비를 개념적으로 도시한 도면8 conceptually illustrates a slag treatment facility according to a third embodiment of the present invention.
도 9는 본 발명의 제 3 실시예에 따른 슬래그 처리 설비 및 슬래그 처리 과정을 개념적으로 블록화하여 도시한 도면9 is a conceptual block diagram illustrating a slag treatment facility and a slag treatment process according to a third embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention, and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. In the drawings, like reference numerals refer to like elements.
본 발명은 슬래그로부터 열의 회수가 용이한 슬래그 처리 설비 및 슬래그 처리 방법에 관한 것이다. 보다 구체적으로, 본 발명은 재활용 시 불량이 발생되지 않도록, 슬래그의 열을 신속하게 회수할 수 있는 슬래그 처리 설비 및 슬래그 처리 방법을 제공한다. 또한, 본 발명은 슬래그의 열을 이용하여 제철 조업중에 발생된 가스를 다른 물질로 전환 또는 개질시킬 수 있는 슬래그 처리 설비 및 슬래그 처리 방법을 제공한다.The present invention relates to a slag treatment facility and a slag treatment method in which heat is easily recovered from slag. More specifically, the present invention provides a slag treatment facility and a slag treatment method capable of quickly recovering the heat of slag so that no defect occurs during recycling. In addition, the present invention provides a slag treatment facility and a slag treatment method capable of converting or reforming a gas generated during the steelmaking operation to another material using the heat of the slag.
도 1은 본 발명의 제 1 실시예에 따른 슬래그 처리 설비를 개념적으로 도시한 도면이다. 도 2는 본 발명의 제 1 실시예에 따른 노즐부를 도시한 도면이다.1 is a view conceptually showing a slag treatment facility according to a first embodiment of the present invention. 2 is a view showing a nozzle unit according to a first embodiment of the present invention.
이하, 본 발명의 실시예들에 따른 슬래그 처리 설비 및 슬래그 처리 방법을 설명하는데 있어서, 슬래그의 열을 이용하여 다른 물질로 전환 또는 개질처리하고자 하는 가스를 처리 가스라 명명하고, 처리 가스를 전환 또는 개질시키기 위해 상기 처리 가스와 반응시키는 가스를 반응 가스라 명명한다.Hereinafter, in describing the slag treatment facility and the slag treatment method according to the embodiments of the present invention, a gas to be converted or reformed into another material using heat of the slag is called a treatment gas, and the treatment gas is converted or The gas which reacts with the said process gas for reforming is called reaction gas.
도 1 및 도 2를 참조하면, 본 발명의 제 1 실시예에 따른 슬래그 처리 설비는 용융 슬래그(MS)가 토출되는 토출구(1213) 및 토출구(1213)로부터 토출된 용융 슬래그(MS)가 낙하 또는 이동되는 방향으로 냉각 및 입상화를 위한 가스(이하, 냉각 가스(CG))를 분사하는 유로(이하, 분사 유로(1222))를 가지는 노즐부(1200)가 구비된 슬래그 처리 장치(1000), 슬래그 처리 장치(1000)로부터 제공된 슬래그의 열을 이용하여 제철 조업에서 발생된 가스 즉, 처리 가스를 다른 물질로 전환 또는 개질시키는 반응 장치(5100)를 포함한다.1 and 2, in the slag treatment equipment according to the first embodiment of the present invention, the molten slag MS discharged from the discharge port 1213 and the discharge port 1213 from which the molten slag MS is discharged or falls or falls. Slag processing apparatus 1000 provided with a nozzle portion 1200 having a flow path (hereinafter, the injection flow path (1222)) for injecting the gas for cooling and granulation (hereinafter, the cooling gas (CG)) in the moving direction, And a reaction apparatus 5100 for converting or reforming the gas generated in the steelmaking operation, that is, the processing gas into another material, by using the heat of the slag provided from the slag processing apparatus 1000.
또한, 슬래그 처리 설비는, 노즐부(1200)와 연결되어 상기 노즐부(1200)로 용융 슬래그(MS)를 공급하는 슬래그 공급 라인(2000), 노즐부(1200)와 연결되어 노즐부(1200)로 냉각 가스(CG)를 공급하는 냉각 가스 공급 라인(3000)을 포함한다.In addition, the slag treatment facility is connected to the nozzle unit 1200, the slag supply line 2000 for supplying the molten slag (MS) to the nozzle unit 1200, the nozzle unit 1200 is connected to the nozzle unit 1200 It includes a cooling gas supply line 3000 for supplying the furnace cooling gas (CG).
또한, 슬래그 처리 장치(1000)와 반응 장치(5100)를 연결하도록 설치되어, 슬래그 처리 장치(1000)로부터 배출된 입상화된 슬래그(GS)를 반응 장치(5100)로 이송시키는 슬래그 이송 라인(4000), 반응 장치(5100)로 처리 가스와, 반응 가스를 공급하는 처리 가스 공급 라인(6000) 및 반응 장치(5100)에서 처리 가스와 반응 가스 간의 반응에 의해 생성된 가스(이하, 생성 가스)를 외부로 배출 또는 이송시키는 생성 가스 배출 라인(7000)을 포함한다.In addition, the slag transfer line 4000 is installed to connect the slag processing apparatus 1000 and the reaction apparatus 5100 to transfer the granulated slag GS discharged from the slag processing apparatus 1000 to the reaction apparatus 5100. ), A gas generated by a reaction between the process gas and the reaction gas in the process gas supply line 6000 for supplying the process gas and the reaction gas to the reaction apparatus 5100 and the reaction apparatus 5100 (hereinafter, referred to as a product gas) And a product gas discharge line 7000 that discharges or transfers to the outside.
또한, 생성 가스 배출 라인(7000)의 연장 경로 상에 설치되어, 생성 가스를 열교환시켜 스팀을 생성하는 제 1 열교환기(8000a)를 포함할 수 있다.In addition, the first gas exchanger may include a first heat exchanger 8000a installed on an extension path of the product gas discharge line 7000 to generate heat by heat-exchanging the product gas.
실시예에 따른 슬래그 처리 설비에서 처리하고자 하는 슬래그는 제철 조업 중에 제조 또는 발생된 것으로서, 액상 상태이며, 1500℃ 내지 1600℃의 온도로 열을 가지고 있다. 보다 구체적으로, 슬래그 처리 설비에서 처리하고자 하는 용융 슬래그(MS)는 고로에서 제선 공정 중에 생성된 슬래그 및 전로 용선의 정련 조업 중에 제조된 슬래그 중 적어도 하나를 포함한다.The slag to be treated in the slag treatment facility according to the embodiment is produced or generated during the steelmaking operation, is in a liquid state, and has heat at a temperature of 1500 ° C to 1600 ° C. More specifically, the molten slag MS to be treated in the slag treatment facility includes at least one of slag produced during the refining operation in the blast furnace and slag produced during the refining operation of the converter molten iron.
처리 가스는 제철 조업에서 발생되는 CO2 함유 가스일 수 있고, 반응 가스는 CH4를 함유하는 가스로서, 예컨대 LNG(Liquid Natural Gas) 및 COG(COKE OVEN GAS) 중 적어도 하나를 사용할 수 있다.The processing gas may be a CO 2 containing gas generated in the steelmaking operation, and the reaction gas may be a gas containing CH 4 , for example, at least one of Liquid Natural Gas (LNG) and COKE OVEN GAS (COG).
한편, 용융 슬래그(MS)는 산화물로 이루어져 있기 때문에, 열 전도도가 낮다. 그리고, 용융 슬래그(MS)가 서냉될 경우, 슬래그에 다량 함유되어 있는 산화칼슘(CaO)이 자유 산화칼슘(Free CaO)으로 석출되는 문제가 있다.On the other hand, since molten slag MS consists of an oxide, thermal conductivity is low. In addition, when molten slag MS is slowly cooled, there is a problem that calcium oxide (CaO) contained in a large amount of slag is precipitated as free calcium oxide (Free CaO).
따라서, 실시예에 따른 슬래그 처리 장치(1000)는 용융 슬래그(MS)의 서냉에 의한 자유 산화칼슘(Free CaO) 석출을 억제 또는 방지되도록 용융 슬래그(MS)를 냉각시킨다. 또한, 슬래그의 열 전도도를 향상시키기 위해 또는 처리 가스를 개질시키는 열원으로서 슬래그의 열을 이용하기 위해, 슬래그 처리 장치(1000)는 용융 슬래그(MS)를 다수의 입자 형태로 입상화시킨다.Therefore, the slag processing apparatus 1000 according to the embodiment cools the molten slag MS so as to suppress or prevent the precipitation of free CaO due to slow cooling of the molten slag MS. In addition, in order to improve the thermal conductivity of the slag or to use the heat of the slag as a heat source for reforming the processing gas, the slag processing apparatus 1000 granulates the molten slag MS in the form of a plurality of particles.
용융 슬래그(MS)를 입상화 시킨다는 것은, 다수의 입자 형태로 미립화 또는 분체화시키는 것을 의미한다. 이렇게 용융 슬래그(MS)가 입상화되는 경우, 표면적이 넓어져 열 방출이 보다 용이해진다.Granulating the molten slag (MS) means to atomize or powder into a plurality of particle forms. When molten slag MS is granulated in this way, surface area becomes large and heat dissipation becomes easier.
실시예에 따른 슬래그 처리 장치(1000)는 용융 슬래그(MS)가 토출되는 토출구(1213) 및 상기 토출구(1213)와 분리 위치되며, 토출구(1213)로부터 토출된 용융 슬래그(MS)가 낙하 또는 이동되는 방향으로 냉각 가스(CG)를 분사하는 분사 유로(1222)를 가지는 노즐부(1200)를 포함한다.The slag processing apparatus 1000 according to the embodiment is positioned separately from the discharge port 1213 and the discharge port 1213 through which the molten slag MS is discharged, and the molten slag MS discharged from the discharge port 1213 falls or moves. And a nozzle unit 1200 having an injection passage 1222 for injecting cooling gas CG in a direction to be obtained.
또한, 슬래그 처리 장치(1000)는 노즐부(1200)로부터 토출된 용융 슬래그(MS) 및 냉각 가스(CG)와, 입상화된 슬래그(GS)가 수용될 수 있도록, 적어도 상기 노즐부(1200)의 하부가 수용될 수 있는 내부 공간을 가지는 용기(1100)를 포함한다.In addition, the slag processing apparatus 1000 includes at least the nozzle part 1200 so that the molten slag MS and the cooling gas CG discharged from the nozzle part 1200 and the granulated slag GS may be accommodated. It includes a container (1100) having an inner space that can be accommodated in the lower portion.
도 1 및 도 2를 참조하면, 노즐부(1200)는 일 방향으로 연장 형성되며, 내부에 용융 슬래그(MS)가 수용 및 이동할 수 있는 내부 공간(이하, 수용 공간(1212)) 및 수용 공간(1212)으로부터 이동된 용융 슬래그(MS)를 외부로 토출시키는 토출구(1213)가 마련된 제 1 노즐(1210) 및 용융 슬래그(MS)가 토출되어 흐르는 방향으로 냉각 가스(CG)를 분사하는 분사 유로(1222)를 구비하며, 제 1 노즐(1210)의 외측에 위치된 제 2 노즐(1220)을 포함한다.1 and 2, the nozzle unit 1200 extends in one direction and includes an inner space (hereinafter, the accommodation space 1212) and an accommodation space through which the molten slag MS can be accommodated and moved. A first flow path 1213 provided with a discharge port 1213 for discharging the molten slag MS moved from the 1212 and an injection flow path for injecting cooling gas CG in a direction in which the molten slag MS is discharged and flowed ( 1222 and a second nozzle 1220 positioned outside the first nozzle 1210.
또한, 노즐부(1200)는 제 1 노즐(1210)의 막힘 및 상기 제 1 노즐(1210) 내부에 수용된 용융 슬래그(MS)의 점도 상승을 방지하기 위한 가열 수단(1230) 및 진동 수단(미도시) 중 적어도 하나를 포함할 수 있다.In addition, the nozzle unit 1200 may include heating means 1230 and vibration means (not shown) for preventing a blockage of the first nozzle 1210 and a rise in viscosity of the molten slag MS accommodated in the first nozzle 1210. It may include at least one of).
제 1 노즐(1210)은 일 방향, 보다 구체적으로는 상하 방향으로 연장 형성된 제 1 바디(1211)를 포함하며, 제 1 바디(1211)는 내화물로 제조되는 것이 바람직하다. 그리고, 제 1 바디(1211) 내부에는 상기 제 1 바디(1211)의 연장 방향으로 연장 형성되어, 용융 슬래그가 수용 또는 통과하는 수용 공간(1212) 및 수용 공간(1212)의 하측 끝단과 연통되도록 연장 형성되어 용융 슬래그(MS)를 외부로 토출하는 토출구(1213)가 마련되어 있다.The first nozzle 1210 includes a first body 1211 extending in one direction, more specifically, in an up and down direction, and the first body 1211 is preferably made of refractory material. In addition, the first body 1211 extends in the extending direction of the first body 1211, and extends so as to communicate with a lower end of the accommodation space 1212 and the accommodation space 1212 through which molten slag is accommodated or passed. The discharge port 1213 which is formed and discharges molten slag MS to the outside is provided.
또한, 제 1 바디(1211)에는 토출구(1213)에 비해 높게 위치하도록 수용 공간(1212)과 연결되어, 수용 공간(1212)으로 용융 슬래그(MS)를 공급하는 유입구(1217)가 마련된다. 유입구(1217)는 슬래그 공급 라인(2000)과 연결된다.In addition, the first body 1211 is provided with an inlet 1217 connected to the accommodation space 1212 so as to be positioned higher than the discharge hole 1213 and supplying molten slag MS to the accommodation space 1212. Inlet 1217 is connected to slag supply line 2000.
수용 공간(1212)은 상술한 바와 같이 용융 슬래그(MS)를 일시 저장하거나, 토출구(1213)로 이동시키는 통로로서, 상하 방향으로 연장 형성된다. 그리고, 수용 공간(1212) 중 토출구(1213)와 인접한 하부 영역은 상기 토출구(1213)가 위치된 방향으로 갈수록 그 내경이 점차 좁아지는 형상인 것이 바람직하다. 이는 용융 슬래그(MS)가 토출구(1213)로 용이하게 이동되도록 하기 위함이다.As described above, the accommodation space 1212 is a passage for temporarily storing the molten slag MS or moving to the discharge port 1213 and extending in the vertical direction. The lower region adjacent to the discharge port 1213 of the accommodation space 1212 may have a shape in which the inner diameter thereof gradually decreases toward the direction in which the discharge hole 1213 is located. This is for the molten slag MS to be easily moved to the discharge port 1213.
토출구(1213)는 수용 공간(1212)으로부터 이동된 용융 슬래그(MS)를 외부로 배출시키는 수단으로서, 그 내경이 수용 공간(1212)의 내경에 비해 작도록 형성되는 것이 바람직하다. 그리고, 토출구(1213)는 수용 공간(1212)의 폭 방향 중심에 위치되도록 설치될 수 있다.The discharge port 1213 is a means for discharging the molten slag MS moved from the accommodation space 1212 to the outside, and is preferably formed such that its inner diameter is smaller than that of the accommodation space 1212. The discharge port 1213 may be installed to be positioned at the center of the width direction of the accommodation space 1212.
또한, 토출구(1213)는 도 2에 도시된 바와 같이 수용 공간(1212)으로부터 하측으로 갈수록 내경이 좁아지다가 다시 넓어지는 형상인 것이 효과적이다. 이는 벤츄리 효과를 이용하여 용융 슬래그(MS)를 보다 고속으로 토출시키기 위함이다.In addition, as shown in FIG. 2, the discharge port 1213 has a shape in which the inner diameter becomes narrower and wider toward the lower side from the accommodation space 1212. This is to discharge the molten slag MS at a higher speed by using the Venturi effect.
상술한 바와 같이 제 1 노즐(1210)은 상하 방향으로 연장 형성되어 있고, 토출구(1213)에 비해 높은 위치에서 용융 슬래그(MS)가 유입되므로, 상기 용융 슬래그(MS)가 중력에 의해 하측으로 이동하여 토출구(1213)를 통해 토출된다.As described above, since the first nozzle 1210 extends in the vertical direction and the molten slag MS is introduced at a position higher than the discharge port 1213, the molten slag MS moves downward by gravity. Is discharged through the discharge port 1213.
가열 수단(1230)은 도 2에 도시된 바와 같이, 제 1 노즐(1210)의 수용 공간을 구획하는 제 1 바디(1211) 내부에 매설된 발열체(1231) 및 발열체(1231)의 발열을 위한 전원을 인가하는 전원부(1232)를 포함할 수 있다. 이러한 가열 수단(1230)에 의하면, 전원부(1232)로부터 인가되는 전원에 의해 제 1 바디(1211) 내 발열체(1231)가 가열됨으로써, 수용 공간(1212) 내부에 수용된 용융 슬래그(MS)가 가열된다. 이에, 용융 슬래그(MS)의 온도 하락으로 인한 용융 슬래그(MS)의 점도 상승 및 이로 인한 토출구(1213)의 막힘을 방지할 수 있고, 용융 슬래그(MS)가 토출구(1213)로 용이하게 이동되어 토출되도록 할 수 있다.As shown in FIG. 2, the heating means 1230 is a power source for generating heat of the heating element 1231 and the heating element 1231 embedded in the first body 1211, which partitions the accommodation space of the first nozzle 1210. It may include a power source 1232 for applying. According to the heating means 1230, the heating element 1231 in the first body 1211 is heated by a power source applied from the power supply unit 1232, whereby the molten slag MS accommodated in the accommodation space 1212 is heated. . Accordingly, it is possible to prevent the viscosity of the molten slag MS due to the temperature drop of the molten slag MS and the blockage of the discharge port 1213 due to this, and the molten slag MS is easily moved to the discharge port 1213. Can be discharged.
가열 수단(1230)은 상술한 발열체(1231) 및 전원부(1232)의 구성에 한정되지 않고, 제 1 노즐(1210) 내 용융 슬래그를 가열할 수 있는 다양한 수단 예컨대 버너(미도시)를 포함하는 수단일 수 있다. 버너는 제 1 노즐(1210)의 수용 공간과 연통되도록 설치될 수 있고, 연료 가스와 공기를 연소 반응시키고, 이 열에 의해 용융 슬래그를 가열할 수 있다.The heating means 1230 is not limited to the above-described configuration of the heating element 1231 and the power supply 1232, and means including various means such as a burner (not shown) capable of heating the molten slag in the first nozzle 1210. Can be. The burner may be installed to communicate with the accommodation space of the first nozzle 1210, and may burn-react the fuel gas and air, and heat the molten slag by this heat.
진동 수단(미도시)은 제 1 노즐(1210)의 수용 공간(1212)을 구획하는 제 1 바디(1211) 내부에 매설된 진동 부재 및 진동 부재의 진동을 위한 에너지 또는 신호를 진동 발생부를 포함한다. 여기서, 진동 발생부는 초음파 발생기 및 마이크로 웨이브 발생기 중 어느 하나일 수 있다.Vibration means (not shown) includes a vibration member embedded in the first body 1211 partitioning the receiving space 1212 of the first nozzle 1210 and the energy or signal for vibration of the vibration member. . Here, the vibration generator may be any one of an ultrasonic generator and a microwave generator.
상술한 바와 같은 진동 수단이 동작하면, 제 1 노즐(1210) 내 용융 슬래그(MS)가 진동 또는 유동되고, 이에 따라 용융 슬래그로 인한 토출구의 막힘을 방지할 수 있다.When the vibration means as described above is operated, the molten slag MS in the first nozzle 1210 is vibrated or flows, thereby preventing the clogging of the discharge port due to the molten slag.
제 2 노즐(1220)은 제 1 노즐(1210)로부터 토출된 용융 슬래그(MS)가 낙하 또는 이동하는 방향으로 냉각 가스(CG)를 분사하기 위한 분사 유로(1222)를 포함한다. 여기서, 냉각 가스(CG)는 에어(air), 질소 등과 같은 불활성 가스, CO2, CH4 중 적어도 하나를 포함하는 가스일 수 있다. 냉각 가스(CG)는 용융 슬래그(MS)에 비해 낮은 온도이며, 예컨대 상온일 수 있다.The second nozzle 1220 includes an injection passage 1222 for injecting cooling gas CG in a direction in which the molten slag MS discharged from the first nozzle 1210 falls or moves. Here, the cooling gas CG may be a gas including at least one of an inert gas such as air, nitrogen, and CO 2 and CH 4 . The cooling gas CG is at a lower temperature than the molten slag MS, and may be, for example, room temperature.
도 1 및 도 2를 참조하면, 제 2 노즐(1220)은 제 1 노즐(1210)의 하측에 위치되는 바디(이하, 제 2 바디(1221)), 제 1 노즐(1210)의 토출구(1213)와 대향 위치하고, 제 1 노즐(1210)로부터 토출된 용융 슬래그(MS)가 통과하도록 제 2 바디(1221)에 마련된 통로(1224) 및 통로(1224)를 통과하도록 토출되는 용융 슬래그(MS)의 낙하 방향으로 냉각 가스(CG)가 분사되도록 제 2 바디(1221)의 내부에 마련된 분사 유로(1222)를 포함한다.1 and 2, the second nozzle 1220 includes a body positioned below the first nozzle 1210 (hereinafter referred to as a second body 1221), and an outlet 1213 of the first nozzle 1210. And the molten slag MS discharged to pass through the passage 1224 and the passage 1224 provided in the second body 1221 so as to pass through the molten slag MS discharged from the first nozzle 1210. An injection flow path 1222 provided inside the second body 1221 so that the cooling gas CG is injected in the direction.
제 2 바디(1221)는 제 1 노즐(1210)의 하측에 위치되며, 제 1 노즐(1210)의 토출구(1213)로부터 토출된 용융 슬래그(MS)가 통과할 수 있는 공간인 통로(1224)를 가지는 중공형의 형상일 수 있다. 따라서, 제 2 바디(1221)는 제 1 노즐(1210)로부터 토출되는 용융 슬래그(MS)의 스트림(stream)을 둘러 싸도록 배치된다.The second body 1221 is positioned below the first nozzle 1210 and passes through the passage 1224 which is a space through which the molten slag MS discharged from the discharge port 1213 of the first nozzle 1210 can pass. Branches may be hollow shaped. Accordingly, the second body 1221 is disposed to surround the stream of molten slag MS discharged from the first nozzle 1210.
통로(1224)는 상측 및 하측이 개구된 형상이다. 그리고, 통로(1224)는 도 2에 도시된 바와 같이 하측으로 갈수록 그 내경이 점차 증가하는 형상인 것이 바람직하다. 물론, 통로(1224)의 형상은 이에 한정되지 않고 상하 방향으로 내경에 변화가 없는 형상일 수 있다.The passage 1224 has a shape in which the upper side and the lower side are opened. In addition, the passage 1224 may have a shape in which an inner diameter thereof gradually increases toward the lower side as shown in FIG. 2. Of course, the shape of the passage 1224 is not limited thereto and may be a shape having no change in the inner diameter in the vertical direction.
분사 유로(1222)는 토출된 용융 슬래그(MS)의 낙하 또는 이동 방향으로 냉각 가스(CG)를 분사하는 수단으로서, 제 2 바디(1221)의 내부에 마련되며, 통로(1224)와 연통된 관로 형태이다. 여기서, 분사 유로(1222)의 양 끝단 중, 연장 방향의 일단은 냉각 가스(CG)가 유입되는 유입구이고, 타단은 냉각 가스가 분사되는 분사구(1222b-1)이다.The injection passage 1222 is a means for injecting the cooling gas CG in the falling or moving direction of the discharged molten slag MS, and is provided in the second body 1221 and communicates with the passage 1224. Form. Here, one of both ends of the injection passage 1222, one end in the extension direction is an inlet through which the cooling gas CG flows, and the other end is an injection port 1222b-1 through which the cooling gas is injected.
설명의 편의를 위하여 분사 유로(1222)의 일단을 유입구, 타단을 분사구(1222b-1)로 명명하였으나, 상기 유입구 및 분사구(1222b-1)는 분사 유로(1222)의 양 끝단에 해당하는 일체형의 구성이다.For convenience of description, one end of the injection passage 1222 is named the inlet and the other end of the injection opening 1222b-1, but the inlet and the injection hole 1222b-1 are integrally formed with both ends of the injection passage 1222. Configuration.
분사구(1222b-1)는 통로(1224) 또는 통로(1224) 하측을 향하도록 노출 형성될 수 있다. 즉, 도 2에 도시된 바와 같이, 통로(1224)의 주변벽인 제 2 바디(1221)의 내측면과 하부면 사이의 코너 부분으로 노출되도록 형성되거나, 제 2 바디(1221)의 하부면으로 노출되도록 형성될 수 있다. 이러한 경우, 제 2 바디(1221)의 하측 방향으로 냉각 가스(CG)가 분사되고, 제 2 바디(1221)의 하측에서 냉각 가스(CG)와 용융 슬래그(MS)가 만나, 용융 슬래그(MS)가 냉각 및 입상화된다.The injection hole 1222b-1 may be exposed to face the passage 1224 or the passage 1224. That is, as shown in FIG. 2, it is formed to be exposed to the corner portion between the inner surface and the lower surface of the second body 1221, which is the peripheral wall of the passage 1224, or to the lower surface of the second body 1221. It may be formed to be exposed. In this case, the cooling gas CG is injected downward of the second body 1221, and the cooling gas CG and the molten slag MS meet at the lower side of the second body 1221 and the molten slag MS. Is cooled and granulated.
분사구(1222b-1)의 위치는 상술한 예에 한정되지 않고, 통로(1224)를 구획하는 또는 통로(1224)의 주변벽인 제 2 바디(1221)의 내측면으로 노출되도록 형성될 수 있다. 이러한 경우, 제 2 바디(1221)의 통로(1224) 내로 냉각 가스가 분사되며, 상기 통로(1224) 내부에서 냉각 가스(CG)와 용융 슬래그(MS)가 만나 냉각 및 입상화된다.The position of the injection hole 1222b-1 is not limited to the above-described example, and may be formed so as to be exposed to the inner surface of the second body 1221 which defines the passage 1224 or is a peripheral wall of the passage 1224. In this case, a cooling gas is injected into the passage 1224 of the second body 1221, and the cooling gas CG and the molten slag MS meet and cool within the passage 1224.
분사 유로(1222)는 분사구(1222b-1)와 인접한 영역이 분사구(1222b-1)가 위치된 방향으로 갈수록 통로(1224)와 가까워지면서 하향 경사진 형상일 수 있다. 또한, 분사 유로(1222) 중 적어도 분사구(1222b-1)와 인접한 영역은 분사구(1222b-1)가 위치된 방향으로 갈수록 그 내경이 좁아지다가 다시 넓어지는 형상일 수 있다.The injection passage 1222 may have a shape inclined downward as the region adjacent to the injection hole 1222b-1 approaches the passage 1224 toward the direction in which the injection hole 1222b-1 is located. In addition, at least an area adjacent to the injection hole 1222b-1 of the injection passage 1222 may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
보다 구체적으로, 분사 유로(1222)는 제 2 바디(1221)의 폭 방향 또는 수평 방향으로 연장 형성된 제 1 유로(1222a) 및 제 1 유로(1222a)로부터 연장 형성된 제 2 유로(1222b)를 포함한다.More specifically, the injection passage 1222 includes a first passage 1222a extending in the width direction or the horizontal direction of the second body 1221 and a second passage 1222b extending from the first passage 1222a. .
제 1 유로(1222a)는 경사 변화 없이 제 2 바디(1221)의 폭 방향으로 연장 형성되고, 내경이 일정한 형상이다. 제 2 유로(1222b)는 분사구(1222b-1)가 위치된 방향으로 갈수록 통로와 가까워지도록 하향 경사지면서, 내경이 점차 좁아지는 형상일 수 있다. 이는 벤츄리 효과를 이용하여 냉각 가스를 고압으로 분사시키기 위함이다.The first flow path 1222a is formed to extend in the width direction of the second body 1221 without changing the inclination, and has a constant internal diameter. The second flow path 1222b may be inclined downward so as to be closer to the passage toward the direction in which the injection hole 1222b-1 is located, and may have a shape in which the inner diameter gradually decreases. This is to inject the cooling gas to a high pressure by using the Venturi effect.
제 1 유로(1222a)의 연장 방향의 양 끝단 중 일단은 냉각 가스 공급 라인(3000)과 연결되어 냉각 가스(CG)가 내부로 유입되는 유입구이고, 타단은 제 2 유로(1222b)와 연통되는 개구이다. 그리고, 제 2 유로(1222b)의 연장 방향의 양 끝단 중 일단은 제 1 유로(1222a)의 타단과 연통된 개구이고, 타단은 냉각 가스(CG)가 통로(1224)를 향해 분사되는 분사구(1222b-1)이다. 이때, 분사구(1222b-1)와 인접한 제 2 유로(1222b)의 영역은 분사구(1222b-1)가 위치된 방향으로 갈수록 그 내경이 좁아지다가 넓어지는 형상일 수 있다.One end of both ends in the extending direction of the first flow path 1222a is connected to the cooling gas supply line 3000, and an inlet port through which the cooling gas CG flows into the inside, and the other end is an opening communicating with the second flow path 1222b. to be. One end of both ends in the extending direction of the second flow path 1222b is an opening communicating with the other end of the first flow path 1222a, and the other end is an injection hole 1222b through which the cooling gas CG is injected toward the passage 1224. -1). In this case, the area of the second flow path 1222b adjacent to the injection hole 1222b-1 may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
분사 유로(1222) 또는 제 2 유로(1222b)의 경사 각도는 분사구(1222b-1)로부터 분사된 냉각 가스가 제 1 노즐(1210)로부터 토출된 용융 슬래그(MS)가 낙하되는 방향으로 분사될 수 있도록 조절된다.The inclination angle of the injection passage 1222 or the second passage 1222b may be injected in a direction in which the cooling gas injected from the injection hole 1222b-1 drops the molten slag MS discharged from the first nozzle 1210. Is adjusted so that.
상술한 예에서는 제 1 유로(1222a)가 경사 변화 없이 제 2 바디(1221)의 폭 방향으로 수평하게 형성되며, 내경이 일정한 것을 설명하였다. 하지만, 제 1 유로(1222a)가 제 2 유로(1222b)를 향해 하향 경사지게 형성될 수 있고, 제 2 유로(1222b) 방향으로 갈수록 내경이 좁아지는 형상일 수도 있다.In the above-described example, the first flow passage 1222a is formed horizontally in the width direction of the second body 1221 without changing the inclination, and the internal diameter is constant. However, the first flow passage 1222a may be formed to be inclined downward toward the second flow passage 1222b, and may have a shape in which an inner diameter thereof becomes narrower toward the second flow passage 1222b.
상술한 바와 같은 분사 유로(1222)는 토출구(1213)의 둘레 방향으로 연장되도록 형성될 수 있다. 즉, 분사 유로(1222)는 토출구(1213)를 둘러싸는 링(ring) 형태로 마련될 수 있다. 또한 다른 예로 분사 유로(1222)는 복수개로 마련되어 토출구(1213)의 둘레 방향으로 나열되도록 마련될 수 있다.The injection passage 1222 as described above may be formed to extend in the circumferential direction of the discharge port 1213. That is, the injection passage 1222 may be provided in the form of a ring surrounding the discharge hole 1213. As another example, a plurality of injection passages 1222 may be provided to be arranged in the circumferential direction of the discharge port 1213.
그리고, 제 2 노즐(1220)로 공급되어 용융 슬래그를 냉각시킨 냉각 가스 중 적어도 일부는 고로의 열풍로로 공급되어 열풍 제조 시에 사용될 수 있다.In addition, at least a portion of the cooling gas supplied to the second nozzle 1220 to cool the molten slag may be supplied to a hot blast furnace of the blast furnace to be used in manufacturing hot air.
용기(1100)는 내부에 노즐부(1200) 전체가 수용될 수 있도록 하는 내부 공간을 가진다. 다른 말로 하면, 노즐부(1200)는 그 전체가 용기(1100) 내부에 위치되도록 설치된다. 또한, 용기(1100)의 상하 방향의 길이는 노즐부(1200)에 비해 길도록 형성되며, 용기(1100) 내부에서 노즐부(1200)의 하측 공간은 입상화된 슬래그(GS)가 수집 또는 저장되는 공간으로, 하단에는 입상화된 슬래그(GS)가 배출되는 배출구가 마련될 수 있다.The container 1100 has an interior space for allowing the entire nozzle portion 1200 to be accommodated therein. In other words, the nozzle unit 1200 is installed so that the whole thereof is located inside the container 1100. In addition, the length of the container 1100 in the vertical direction is longer than that of the nozzle part 1200, and the space below the nozzle part 1200 is collected or stored by the granulated slag GS in the container 1100. As a space to be provided, an outlet through which granulated slag GS is discharged may be provided at a lower end thereof.
이때, 용기(1100)의 내부 공간 중 노즐부(1200)의 하측 영역은 하단에 마련된 배출구 방향으로 갈수록 그 내경이 좁아지는 형상인 것이 바람직하다. 이는 입상화된 슬래그(GS)가 배출구 방향으로 이동 및 배출이 용이하도록 하기 위함이다.At this time, the lower region of the nozzle portion 1200 of the inner space of the container 1100 is preferably a shape that the inner diameter is narrowed toward the discharge port provided at the lower end. This is to allow the granulated slag GS to move and discharge in the direction of the outlet.
상기에서는 용기(1100)의 상하 방향 길이가 노즐부(1200)에 비해 길도록 형성되어, 용기(1100) 내부에 노즐부(1200) 전체가 수용되는 것을 설명하였다.In the above, the length of the container 1100 in the vertical direction is longer than that of the nozzle part 1200, and thus, the entire nozzle part 1200 is accommodated in the container 1100.
하지만, 이에 한정되지 않고, 용기(1100)는 노즐부(1200)로부터 토출된 용융 슬래그(MS) 및 냉각 가스(CG)와, 입상화된 슬래그(GS)가 수용될 수 있도록 상기 노즐부(1200)의 일부가 수용될 수 있는 크기로 마련될 수도 있다.However, the present invention is not limited thereto, and the container 1100 may include the molten slag MS and the cooling gas CG discharged from the nozzle unit 1200, and the nozzle unit 1200 to accommodate the granulated slag GS. A portion of) may be provided to a size that can be accommodated.
이와 같이, 본 발명의 실시예에 따른 슬래그 처리 장치(1000)에 의하면, 제 1 노즐(1210)을 통해 하측으로 용융 슬래그(MS)를 토출하고, 제 2 노즐(1220)을 이용하여 토출된 용융 슬래그(MS)가 낙하되는 방향으로 냉각 가스(CG)를 분사한다. 이에, 제 1 노즐(1210)로부터 토출된 액상 상태의 용융 슬래그(MS)는 분사되는 냉각 가스(CG)에 의해 급냉 및 분쇄되면서 구형에 가까운 고상 상태의 미립자 형태로 입상화된다.As described above, according to the slag processing apparatus 1000 according to the exemplary embodiment of the present invention, the molten slag MS is discharged downward through the first nozzle 1210 and the molten discharged using the second nozzle 1220. Cooling gas CG is injected in the direction in which slag MS falls. Accordingly, the molten slag MS in the liquid state discharged from the first nozzle 1210 is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the cooling gas CG injected.
이때, 슬래그 내 산화칼슘(CaO)이 자유 산화칼슘(Free CaO)으로 석출되는 것을 방지하기 위해서는 미립화되는 또는 입상화된 슬래그(GS)의 온도가 1100℃ 이하, 보다 구체적으로는 600℃ 이상, 1100℃ 이하가 되도록 한다. 보다 바람직하게는 1000℃ 내지 1100℃가 되도록 한다. 또한, 입상화된 슬래그(GS)의 입경이 5mm 이하가 되도록 하는 것이 바람직하다. 상술한 바와 같은 입상화된 슬래그의 온도 및 입경은 냉각 가스(CG)의 종류 및 분사 유량 등을 조절하여 제어할 수 있다.At this time, in order to prevent the precipitation of calcium oxide (CaO) in the slag as free calcium oxide (Free CaO), the temperature of the atomized or granulated slag (GS) is 1100 ℃ or less, more specifically 600 ℃ or more, 1100 It should be below or below ℃. More preferably, it is 1000 to 1100 degreeC. In addition, the particle size of the granulated slag GS is preferably 5 mm or less. The temperature and particle diameter of the granulated slag as described above can be controlled by adjusting the type and cooling flow rate of the cooling gas (CG).
이렇게, 실시예에서는 용융 슬래그(MS)에 냉각 가스(CG)를 분사하여 1100℃ 이하로 급냉시킴으로써, 자유 산화칼슘(Free CaO) 석출물의 생성을 억제 또는 방지할 수 있다. 이로 인해, 입상화된 슬래그(GS)를 재활용할 때, 수화 반응으로 인한 팽창을 억제 또는 방지할 수 있다.Thus, in the embodiment, by cooling the cooling gas (CG) to the molten slag (MS) by quenching to 1100 ℃ or less, it is possible to suppress or prevent the formation of free calcium oxide (Free CaO) precipitates. Therefore, when recycling the granulated slag GS, it is possible to suppress or prevent expansion due to the hydration reaction.
그리고, 실시예에 따른 슬래그 처리 장치(1000)에 의하면, 제 2 노즐(1220)을 이용하여 제 1 노즐(1210)로부터 토출된 용융 슬래그(MS)가 낙하되는 또는 흐르는 방향으로 냉각 가스(CG)를 분사한다. 즉, 낙하되는 용융 슬래그(MS)의 하측에서 상측으로 냉각 가스(CG)를 분사하거나, 낙하되는 용융 슬래그(MS)의 주변 영역까지 방사형 또는 넓게 분사하지 않고, 용융 슬래그(MS)의 낙하 방향으로 냉각 가스(CG)를 분사하고, 국부적 또는 집중적으로 분사한다. 이에, 용융 슬래그(MS)를 입상화하기 위한 냉각 가스(CG)의 소모량을 줄일 수 있고, 슬래그의 비산을 방지할 수 있다.And, according to the slag processing apparatus 1000 according to the embodiment, the cooling gas CG in the direction in which the molten slag MS discharged from the first nozzle 1210 falls or flows using the second nozzle 1220. Spray it. That is, the cooling gas CG is not sprayed from the lower side to the upper side of the molten slag MS that falls, or radially or widely sprayed to the peripheral region of the molten slag MS that falls, in the falling direction of the molten slag MS. Cooling gas (CG) is sprayed and sprayed locally or intensively. Accordingly, the consumption amount of the cooling gas CG for granulating the molten slag MS can be reduced, and scattering of slag can be prevented.
또한, 실시예에서는 슬래그의 열을 이용하여 제철 조업에서 발생된 CO2 함유 가스 즉, 처리 가스를 다른 물질로 전환시킨다. 이를 다른 말로 하면, 슬래그의 열을 회수하여 처리 가스의 개질 반응에 필요한 열원으로서 사용한다.In addition, in the embodiment, the heat of the slag is used to convert the CO 2 containing gas generated in the steelmaking operation, that is, the processing gas into another material. In other words, the heat of slag is recovered and used as a heat source for the reforming reaction of the processing gas.
이를 위해서는 슬래그로부터의 열 회수가 용이해야 하는데, 실시예에서는 열 전도도가 낮은 용융 슬래그를 입상화시켜 표면적을 증가시킴으로써, 슬래그로부터의 열 방출을 용이하게 한다.This requires easy recovery of heat from the slag. In embodiments, the molten slag with low thermal conductivity is granulated to increase the surface area, thereby facilitating heat release from the slag.
슬래그의 입경은 5mm 이하로 하는 것이 효과적이며, 이는 슬래그의 입경이 클 수록 입자의 표면과 중심 간의 온도 편차가 증가하고, 이에 따라 열 전도도가 저하되기 때문이다.It is effective that the particle diameter of the slag is 5 mm or less, because the larger the particle diameter of the slag increases the temperature deviation between the surface and the center of the particle, thereby lowering the thermal conductivity.
그리고, 슬래그 처리 장치(1000)에서 용융 슬래그(MS)를 냉각시키는데 있어서, 상술한 바와 같이 입상화된 슬래그(GS)의 온도가 600℃ 이상, 1100℃ 이하가 되도록 한다. 여기서, 1100℃ 이하가 되도록 하는 것은 상술한 바와 같이 자유 산화칼슘(free CaO)의 석출을 방지하기 위함이고, 600℃ 이상으로 하는 것은 처리 가스와 반응 가스 간의 용이한 반응성을 확보하기 위함이다. 즉, 처리 가스 중 CO2와 반응 가스 중 CH4가 용이하게 반응하기 위해서는 600℃ 이상의 온도가 필요하기 때문이다. 보다 바람직하게는 1000℃ 이상일 때, 처리 가스 중 CO2와 반응 가스 중 CH4의 반응율이 크게 향상되므로, 슬래그 처리 장치(1000)에서 입상화된 슬래그(GS)의 온도가 1000℃ 내지 1100℃가 되도록 조절하는 것이 바람직하다. 이는 냉각 가스(CG)의 종류 및 분사 유량 등을 조절하여 제어할 수 있다.And in cooling the molten slag MS in the slag processing apparatus 1000, it is made so that the temperature of the granulated slag GS may be 600 degreeC or more and 1100 degrees C or less as mentioned above. Here, the temperature of 1100 ° C. or less is to prevent precipitation of free calcium oxide (free CaO) as described above, and the temperature of 600 ° C. or more is to ensure easy reactivity between the processing gas and the reaction gas. That is, a temperature of 600 ° C. or higher is required for easy reaction of CO 2 in the processing gas and CH 4 in the reaction gas. More preferably, the reaction rate of CO 2 in the processing gas and CH 4 in the reaction gas is greatly improved when the temperature is 1000 ° C. or higher, so that the temperature of the slag GS granulated in the slag processing apparatus 1000 is 1000 ° C. to 1100 ° C. It is desirable to adjust as possible. This can be controlled by adjusting the type and cooling flow rate of the cooling gas (CG).
반응 장치(5100)는 처리 가스 즉, 제철 조업에서 발생된 CO2 함유 가스를 다른 물질로 전환 또는 개질시키는 장치로서, 실시예에서는 슬래그 처리 장치(1000)로부터 제공된 슬래그의 열을 이용하여 반응 장치(5100) 내부를 CO2의 반응 온도로 조성한다.The reactor 5100 is a device for converting or reforming a process gas, that is, a CO 2 -containing gas generated in an iron making operation, to another material. In an embodiment, the reactor 5 is used by using the heat of slag provided from the slag treatment device 1000. 5100) to form a reaction temperature of CO 2 .
실시예에 따른 반응 장치(5100)는 입상화된 슬래그(GS)가 수용되는 내부 공간을 가지는 통형상일 수 있다. 그리고, 반응 장치(5100)는 처리 가스 공급 라인(6000) 및 생성 가스 배출 라인(7000)과 각기 연결된다.The reaction apparatus 5100 according to the embodiment may have a cylindrical shape having an internal space in which the granulated slag GS is accommodated. The reactor 5100 is connected to the process gas supply line 6000 and the product gas discharge line 7000, respectively.
처리 가스는 제철 조업에서 발생된 가스로서, CO2를 포함하는 가스이다. 그리고, 반응 가스는 CH4를 함유하는 가스로서, 예컨대 LNG(Liquid Natural Gas) 및 COG(COKE OVEN GAS) 중 적어도 하나를 사용할 수 있다.The processing gas is a gas generated in the steelmaking operation and is a gas containing CO 2 . The reaction gas may be, for example, at least one of LNG (Liquid Natural Gas) and COG (COKE OVEN GAS) as a gas containing CH 4 .
반응 장치(5100) 내로 입상화된 슬래그(GS)가 장입되면, 상기 슬래그로부터 배출된 열에 의해 반응 장치(5100) 내부의 온도가 CO2와 CH4가 반응할 수 있는 온도로 가열된다. 즉, 입상화된 슬래그(GS)의 열이 반응 장치 내부로 방출된다. 이때, 반응 장치(5100) 내부의 온도는 입상화된 슬래그(GS)로 인해 600℃ 내지 1100℃, 바람직하게는 1000℃ 내지 1100℃ 일 수 있다. 그리고, 반응 장치(5100) 내부로 처리 가스인 CO2 함유 가스와 반응 가스인 CH4 함유 가스가 공급되면, 반응식 1과 같은 흡열 반응에 의해 CO와 H2로 전환 또는 개질된다.When the slag GS granulated into the reactor 5100 is charged, the temperature inside the reactor 5100 is heated to a temperature at which CO 2 and CH 4 can react by the heat discharged from the slag. That is, heat of the granulated slag GS is discharged into the reaction apparatus. In this case, the temperature inside the reaction apparatus 5100 may be 600 ° C to 1100 ° C, preferably 1000 ° C to 1100 ° C, due to the granulated slag GS. Then, when the CO 2 -containing gas, which is a processing gas, and the CH 4 -containing gas, which is a reaction gas, are supplied into the reaction apparatus 5100, the CO 2 and the H 2 are converted or reformed by an endothermic reaction as in Scheme 1.
반응식 1) CO2 + CH4 = 2CO + 2H2(Methane Dry Reforming)Scheme 1) CO 2 + CH 4 = 2CO + 2H 2 (Methane Dry Reforming)
반응 장치(5100)에는 상술한 바와 같이 처리 가스의 개질을 위한 열원을 제공하는 슬래그가 장입되고, 여기에 상기 처리 가스 및 반응 가스가 공급된다. 이때, 처리 가스와 반응 가스의 반응 효율을 향상시키기 위해서는 반응 장치(5100) 내부에서의 처리 가스와 반응 가스의 체류 시간을 증가시키는 것이 유리하다.As described above, the reaction apparatus 5100 is loaded with slag for providing a heat source for reforming the processing gas, and the processing gas and the reaction gas are supplied thereto. At this time, in order to improve the reaction efficiency of the processing gas and the reaction gas, it is advantageous to increase the residence time of the processing gas and the reaction gas inside the reaction apparatus 5100.
이에, 반응 장치(5100) 내에 입상화된 슬래그(GS)가 수용되는데 있어서, 입상화된 슬래그(GS)가 유동되지 않도록, 다른 말로 하면, 충전층(packed bed) 형태로 수용시킨다. 이를 또 다른 말로 하면, 반응 장치(5100)는 충전층(packed bed) 타입일 수 있다.Therefore, in order to accommodate the granulated slag GS in the reaction apparatus 5100, in other words, it is accommodated in the form of a packed bed so that the granulated slag GS may not flow. In other words, the reactor 5100 may be a packed bed type.
이렇게 반응 장치(5100)가 충전층(packed bed) 타입인 경우, 공급된 처리 가스와 반응 가스가 다수의 슬래그 입자들의 사이를 통과하도록 이동되어야 하므로, 그 경로가 복잡하고 길어, 처리 가스와 반응 가스 간의 반응 시간 및 반응율을 향상시킬 수 있다.Thus, when the reaction apparatus 5100 is a packed bed type, since the supplied processing gas and the reaction gas must be moved to pass between the plurality of slag particles, the path is complicated and long, so that the processing gas and the reaction gas are The reaction time and reaction rate of the liver can be improved.
반응 장치(5100)에서 CO2의 개질시키기 위한 열원으로 사용된 입상화된 슬래그(GS)는 상기 반응 장치(5100)로부터 배출된다. 그리고 이는 소결용 원료나 기타 부원료로 활용되거나, 시멘트 원료, 매립제, 탈린제 등으로 재활용된다.Granulated slag (GS) used as a heat source for reforming CO 2 in the reactor 5100 is discharged from the reactor 5100. And it is used as a raw material for sintering or other auxiliary raw materials, or recycled as a cement raw material, landfill, dephosphorization agent.
반응 장치(5100)에서 생성된 생성 가스는 생성 가스 배출 라인(7000)을 통해 배출될 수 있다.The product gas generated in the reactor 5100 may be discharged through the product gas discharge line 7000.
하지만, 이에 한정되지 않고, 생성 가스는 생성 가스 배출 라인(7000)을 통해 제 1 열교환기(8000a)로 공급되어 스팀(steam)을 생성하는데 활용될 수 있다.However, the present invention is not limited thereto, and the product gas may be supplied to the first heat exchanger 8000a through the product gas discharge line 7000 to be used to generate steam.
상술한 노즐부(1200)의 형상 또는 구성은 도 1 및 도 2에 도시된 제 1 실시예에 한정되지 않고, 다양하게 변경 가능하다.The shape or configuration of the nozzle unit 1200 described above is not limited to the first embodiment illustrated in FIGS. 1 and 2, and may be variously changed.
이하, 제 1 실시예의 변형예들에 따른 노즐부에 대해 설명한다.Hereinafter, the nozzle unit according to the modifications of the first embodiment will be described.
도 3은 제 1 실시예의 제 1 변형예에 따른 노즐부의 일부를 확대 도시한 도면이다.3 is an enlarged view of a part of a nozzle unit according to a first modification of the first embodiment.
예컨대, 도 3에 도시된 제 1 실시예의 제 1 변형예와 같이 제 1 노즐(1210)은 제 1 바디(1211)의 하부에 연결된 연장 부재(1214)를 더 포함할 수 있다. 즉, 제 1 변형예에 따른 제 1 노즐(1210)은 제 1 바디(1211) 및 제 1 바디(1211)로부터 하측으로 연장 형성된 연장 부재(1214)를 포함한다.For example, as in the first modification of the first embodiment shown in FIG. 3, the first nozzle 1210 may further include an extension member 1214 connected to the lower portion of the first body 1211. That is, the first nozzle 1210 according to the first modification includes a first body 1211 and an extension member 1214 extending downward from the first body 1211.
제 1 바디(1211)의 내부에는 용융 슬래그(MS)가 이동하는 수용 공간(1212) 및 수용 공간(1212)으로부터 하측 방향으로 연장 형성되며, 수용 공간(1212)에 비해 내경이 작은 토출구(이하, 제 1 토출구(1213))가 마련되어 있다. 이때, 제 1 토출구(1213)는 용융 슬래그(MS)를 연장 부재(1214) 내부로 토출하는 수단으로서, 연장 부재(1214)가 위치된 방향으로 갈수록 그 내경이 점차 감소하는 형상일 수 있다.Inside the first body 1211 is formed extending downward from the receiving space 1212 and the receiving space 1212 to which the molten slag (MS) is moved, the discharge opening smaller than the receiving space 1212 (hereinafter, The first discharge port 1213 is provided. In this case, the first discharge hole 1213 is a means for discharging the molten slag MS into the extension member 1214, and may have a shape in which an inner diameter thereof gradually decreases toward the direction in which the extension member 1214 is positioned.
그리고, 연장 부재(1214)의 내부에는 제 1 토출구(1213)와 연통되도록 하측 방향으로 연장 형성된 연장 유로(1215)가 마련되어 있다. 즉, 연장 유로(1215)의 일단은 제 1 토출구(1213)와 연통되고, 타단은 용융 슬래그(MS)가 최종적으로 토출되는 토출구(이하, 제 2 토출구(1215-1))이다.An extension flow passage 1215 extending downward is formed in the extension member 1214 so as to communicate with the first discharge port 1213. That is, one end of the extension flow path 1215 communicates with the first discharge port 1213, and the other end is an discharge port (hereinafter referred to as a second discharge port 1215-1) through which the molten slag MS is finally discharged.
연장 부재(1214)의 상하 방향의 연장 길이는 제 1 바디(1211)에 비해 짧으며, 이후 설명되는 제 2 노즐(1220)의 상하 방향 길이와 동일하거나, 유사할 수 있다.The extending length of the extending member 1214 in the vertical direction is shorter than that of the first body 1211, and may be the same as or similar to the vertical length of the second nozzle 1220 described later.
그리고, 연장 유로(1215)는 제 1 토출구(1213)로부터 하측 방향으로 갈수록 내경이 좁아지다가, 하측으로 더 갈수록 다시 내경이 넓어지는 형상일 수 있다. 이때, 하측으로 갈수록 다시 내경이 넓어지는 영역의 길이는 그 상측 영역인 제 1 토출구(1213)로부터 하측 방향으로 갈수록 내경이 좁아지는 영역의 길이에 비해 짧을 수 있다.The extension passage 1215 may have a shape in which the inner diameter of the extension channel 1215 is narrowed toward the lower side from the first discharge port 1213, and the inner diameter of the extension passage 1215 is widened toward the lower side thereof. At this time, the length of the region where the inner diameter widens further toward the lower side may be shorter than the length of the region where the inner diameter narrows toward the lower side from the first discharge port 1213 which is the upper region.
상술한 제 1 실시예에 따른 제 2 노즐(1220)에서 제 1 유로(1222a)는 제 2 바디(1221)의 폭 방향으로 수평하게 형성되며, 내경에 변화가 없고, 제 2 유로(1222b)는 분사구(1222b-1)가 위치된 방향으로 갈수록 통로와 가까워지도록 하향 경사진 형상이다. 하지만, 이에 한정되지 않고, 제 1 유로(1222a) 및 제 2 유로(1222b) 모두 경사 및 내경이 가변되도록 마련될 수 있다.In the second nozzle 1220 according to the first embodiment described above, the first flow path 1222a is formed horizontally in the width direction of the second body 1221, and there is no change in the inner diameter, and the second flow path 1222b is The injection hole 1222b-1 is inclined downward so as to be closer to the passage toward the direction in which it is located. However, the present invention is not limited thereto, and both the first flow passage 1222a and the second flow passage 1222b may be provided such that the inclination and the inner diameter are variable.
즉, 도 3에 도시된 제 1 실시예의 제 1 변형예와 같이, 분사 유로(1222)는 냉각 가스가 유입되는 유입구로부터 분사구(1222b-1)가 위치된 방향으로 상향 경사진 형상의 제 1 유로(1222a) 및 제 1 유로(1222a)로부터 분사구(1222b-1)가 위치된 방향으로 하향 경사진 제 2 유로(1222b)를 포함한다.That is, like the first modification of the first embodiment shown in FIG. 3, the injection passage 1222 has a first passage having an inclined upward direction in the direction in which the injection opening 1222b-1 is located from the inlet through which the cooling gas is introduced. And a second flow path 1222b inclined downward from the direction 1222a and the first flow path 1222a in the direction in which the injection hole 1222b-1 is positioned.
이때, 제 2 바디(1221) 내부에서 제 1 유로(1222a)의 주변벽 중 상부벽은 경사 또는 높이 변화가 없는 형상이고, 하부벽은 제 2 유로(1222b)가 위치된 방향으로 상향 경사진 형상일 수 있다. 이러한 하부벽의 경사에 의해, 제 1 유로(1222a)는 제 2 유로(1222b)가 위치된 방향으로 갈수록 그 내경이 좁아지면서 상향 경사진 형상이 된다. 또한, 하부벽이 제 2 유로(1222b) 방향으로 상향 경사지는데 있어서, 상기 하부벽은 상부벽 방향으로 볼록한 곡면 또는 곡률을 가지는 형상일 수 있다.At this time, the upper wall of the peripheral wall of the first flow passage 1222a does not have an inclination or a height change in the second body 1221, and the lower wall is inclined upward in the direction in which the second flow passage 1222b is positioned. Can be. Due to the inclination of the lower wall, the first flow passage 1222a becomes inclined upward while the inner diameter thereof becomes narrower toward the direction in which the second flow passage 1222b is located. In addition, when the lower wall is inclined upward in the direction of the second flow path 1222b, the lower wall may have a convex curved surface or curvature in the upper wall direction.
물론, 제 1 유로(1222a)의 주변벽 중 하부벽이 경사 또는 높이 변화가 없는 형상이고, 상부벽이 제 2 유로(1222b)가 위치된 방향으로 하향 경사진 형상일 수 있다.Of course, the lower wall among the peripheral walls of the first flow passage 1222a may have a shape that does not have an inclination or a height change, and the upper wall may have a shape inclined downward in the direction in which the second flow passage 1222b is positioned.
제 2 유로(1222b)는 상술한 바와 같이 분사구(1222b-1)가 위치된 방향으로 하향 경사지면서, 분사구(1222b-1)와 가까워질수록 내경이 좁아지는 형상일 수 있다. 이때, 분사구(1222b-1)와 인접한 제 2 유로(1222b)의 영역은 분사구(1222b-1)가 위치된 방향으로 갈수록 내경이 좁아지다가 다시 넓어지는 형상일 수 있다.As described above, the second flow path 1222b may be inclined downward in the direction in which the injection hole 1222b-1 is positioned, and may have a shape in which an inner diameter thereof becomes narrower as it approaches the injection hole 1222b-1. In this case, the area of the second flow path 1222b adjacent to the injection hole 1222b-1 may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
도 4는 제 1 실시예의 제 2 변형예에 따른 노즐부를 도시한 도면이다.4 is a view showing a nozzle unit according to a second modification of the first embodiment.
상술한 제 1 실시예 및 제 1 변형예에 따른 노즐부(1200)는 제 2 노즐(1220)이 제 1 노즐(1210)의 하측에 위치되는 것을 설명하였다.The nozzle unit 1200 according to the first embodiment and the first modification described above has been described that the second nozzle 1220 is located under the first nozzle 1210.
하지만, 노즐부(1200)는 상술한 예들에 한정되지 않고, 토출되어 하측으로 흐르는 용융 슬래그(MS)를 향해 냉각 가스(CG)를 분사할 수 있는 다양한 형태로 변경 가능하다.However, the nozzle unit 1200 is not limited to the above-described examples, and may be changed into various forms capable of injecting the cooling gas CG toward the molten slag MS discharged and flowing downward.
예컨대, 도 4에 도시된 제 1 실시예의 제 2 변형예와 같이, 제 1 노즐(1210)의 제 1 바디(1211)는 상하 방향으로 연장 형성되며, 상기 제 1 바디(1211) 내부에는 상하 방향으로 연장 형성된 수용 공간(1212)이 마련된다.For example, as in the second modification of the first embodiment illustrated in FIG. 4, the first body 1211 of the first nozzle 1210 extends in the vertical direction, and the vertical direction is formed in the first body 1211. An accommodation space 1212 is formed to extend.
제 2 노즐(1220)의 제 2 바디(1221)는 제 1 바디(1211)의 연장 방향으로 연장 형성되어, 제 1 바디(1211)의 외측면을 둘러 싸도록 설치된다. 그리고, 제 2 바디(1221)는 그 하측 끝단이 제 1 바디(1211)에 비해 하측으로 더 돌출되도록 연장 형성된다. 이때, 돌출된 영역 내부는 빈 공간으로서, 토출구(1213)의 하측에 대응 위치되며, 상기 빈 공간이 토출된 용융 슬래그가 통과하는 통로(1224)이다.The second body 1221 of the second nozzle 1220 extends in the extending direction of the first body 1211 and is installed to surround the outer surface of the first body 1211. The second body 1221 is extended so that the lower end thereof protrudes further downwardly than the first body 1211. At this time, the inside of the protruding region is an empty space, which is located below the discharge port 1213, and is a passage 1224 through which the molten slag from which the empty space is discharged passes.
제 2 바디(1221) 중 적어도 제 1 바디(1211)의 하측으로 돌출된 영역은 하측으로 갈수록 토출구(1213)의 폭 방향 중심과 가까워지도록 연장 형성된다. 이에, 토출구(1213)의 하측에 마련된 통로(1224)는 하측으로 갈수록 그 내경이 좁아지는 형상이다.At least one region protruding downward of the first body 1211 of the second body 1221 extends closer to the widthwise center of the discharge port 1213 toward the lower side. Thus, the passage 1224 provided below the discharge port 1213 has a shape in which the inner diameter thereof becomes narrower toward the lower side.
분사 유로(1222)는 상술한 바와 같이 제 2 바디(1221)의 연장 방향으로 연장 형성되므로, 분사 유로(1222) 중 제 1 바디(1211)의 하측으로 연장된 영역은 하측으로 갈수록 토출구(1213)의 폭 방향 중심과 가까워지는 형상이다.Since the injection passage 1222 is formed to extend in the extending direction of the second body 1221 as described above, the region extending downward of the first body 1211 of the injection passage 1222 is discharged 1213 toward the lower side. The shape is closer to the center of the width direction.
보다 구체적으로, 분사 유로(1222)는 제 2 바디(1221) 내부에서 상하 방향으로 연장 형성된 제 1 유로(1222a) 및 제 1 바디(1211)의 하측으로 돌출되도록 제 1 유로(1222a)로부터 하측으로 연장 형성된 제 2 유로(1222b)를 포함한다. 여기서 제 2 유로(1222b)는 하측으로 갈수록 토출구(1213)의 폭 방향 중심과 가까워지도록 연장 형성된다.More specifically, the injection passage 1222 is downward from the first passage 1222a so as to protrude downwardly from the first passage 1222a and the first body 1211 extending upwardly in the second body 1221. An extended second flow path 1222b is included. Here, the second flow path 1222b is extended to be closer to the center of the width direction of the discharge port 1213 toward the lower side.
그리고, 제 2 유로(1222b) 중 분사구(1222b-1)와 인접한 영역은 상기 분사구(1222b-1)가 위치된 방향으로 갈수록 내경이 좁아지다가 다시 넓어지는 형상일 수 있다.The region adjacent to the injection hole 1222b-1 of the second flow path 1222b may have a shape in which the inner diameter thereof becomes narrower and wider toward the direction in which the injection hole 1222b-1 is located.
도 5는 제 1 실시예의 제 3 변형예에 따른 반응 장치를 도시한 도면이다.5 is a view showing a reaction device according to a third modification of the first embodiment.
상기에서는 반응 장치(5100) 내에 입상화된 슬래그가 충전층(packed bed) 타입으로 수용되도록 하는 것을 설명하였다.In the above, it was described that the slag granulated in the reaction device 5100 is accommodated in a packed bed type.
하지만, 이에 한정되지 않고, 반응 장치(5100)를 유동로 타입으로 변경 가능하다.However, the present invention is not limited thereto, and the reactor 5100 may be changed to a flow path type.
즉, 도 5에 도시된 제 1 실시예의 제 3 변형예와 같이, 반응 장치(5100) 내부에 반응 장치의 폭 방향으로 연장 형상되며, 복수의 홀을 가지는 분산판(5200)을 설치하고, 분산판(5200) 상측에 입상화된 슬래그(GS)가 위치하도록 장입시키고, 분산판(5200)의 하측에서 처리 가스 및 반응 가스를 공급한다. 이러한 경우, 분산판(5200) 하측에서 공급된 처리 가스 및 반응 가스가 복수의 홀을 통과하여 상측으로 올라가고, 이때 분산판 상측의 슬래그가 처리 가스 및 반응 가스에 의해 유동된다.That is, as in the third modification of the first embodiment shown in FIG. 5, a dispersion plate 5200 is formed in the reaction apparatus 5100 extending in the width direction of the reaction apparatus and having a plurality of holes, and dispersed therein. The slag GS granulated above the plate 5200 is placed so as to be positioned, and a processing gas and a reaction gas are supplied below the dispersion plate 5200. In this case, the processing gas and the reaction gas supplied from the lower side of the dispersion plate 5200 go up through the plurality of holes, and the slag on the upper side of the dispersion plate flows by the processing gas and the reaction gas.
이러한 유동로 타입의 반응 장치(5100)를 적용하게 되면, 고온의 슬래그가 반응 장치 내벽에 부분적으로 융착되는 것을 방지할 수 있다.By applying the reactor type reactor 5100, it is possible to prevent the hot slag from being partially fused to the inner wall of the reactor.
이하, 도 1 및 도 2와 도 6을 참조하여, 본 발명의 제 1 실시예에 따른 슬래그 처리 설비의 동작 및 슬래그 처리 방법을 설명한다.Hereinafter, with reference to FIGS. 1, 2 and 6, the operation of the slag treatment equipment and the slag treatment method according to the first embodiment of the present invention will be described.
도 6은 본 발명의 제 1 실시예에 따른 슬래그 처리 설비 및 슬래그 처리 과정을 개념적으로 블록화하여 도시한 도면이다.6 is a diagram conceptually showing a slag treatment facility and a slag treatment process according to the first embodiment of the present invention.
먼저, 제철 조업 중 발생된 용융 슬래그(MS)를 준비하고, 이를 슬래그 공급 라인(2000)으로 공급한다. 슬래그 공급 라인(2000)으로 공급된 용융 슬래그(MS)는 슬래그 처리 장치(1000)의 제 1 노즐(1210)의 수용 공간으로 공급된 후, 토출구(1213)를 통해 외부로 토출된다. 이때, 용융 슬래그(MS)는 토출구(1213)의 하측에 대응 위치한 제 2 바디(1221)의 통로(1224)를 통과하도록 토출된다.First, the molten slag MS generated during the steelmaking operation is prepared, and the molten slag MS is supplied to the slag supply line 2000. The molten slag MS supplied to the slag supply line 2000 is supplied to the accommodation space of the first nozzle 1210 of the slag processing apparatus 1000 and then discharged to the outside through the discharge port 1213. At this time, the molten slag MS is discharged to pass through the passage 1224 of the second body 1221 corresponding to the lower side of the discharge port 1213.
이렇게 제 1 노즐(1210)의 토출구(1213)를 통해 용융 슬래그(MS)가 토출될 때, 토출되는 용융 슬래그(MS)를 향해 냉각 가스(CG) 예컨대 에어(air)를 분사하여, 상기 용융 슬래그(MS)를 급냉 및 입상화시킨다. 즉, 냉각 가스 공급 라인(3000)으로 냉각 가스(CG)를 공급하면, 냉각 가스(CG)가 제 2 노즐(1220)의 분사 유로(1222)를 따라 이동된 후, 용융 슬래그(MS)를 향해 분사된다.When the molten slag MS is discharged through the discharge port 1213 of the first nozzle 1210, a cooling gas CG, for example, air is sprayed toward the discharged molten slag MS, thereby melting the slag. (MS) is quenched and granulated. That is, when the cooling gas CG is supplied to the cooling gas supply line 3000, the cooling gas CG is moved along the injection passage 1222 of the second nozzle 1220, and then toward the molten slag MS. Sprayed.
이렇게 제 2 노즐(1220)을 통해 분사되는 냉각 가스에 의해 용융 슬래그가 급냉되며, 다수의 입자 형태로 입상화된다. 이때, 냉각 가스(CG)의 유량 및 분사압 중 적어도 하나를 조절하여, 입상화된 슬래그의 온도가 600℃ 내지 1100℃, 보다 바람직하게는 1000℃ 내지 1100℃가 되도록 한다.In this way, the molten slag is quenched by the cooling gas injected through the second nozzle 1220 and granulated into a plurality of particles. At this time, at least one of the flow rate and the injection pressure of the cooling gas CG is adjusted so that the granulated slag has a temperature of 600 ° C to 1100 ° C, more preferably 1000 ° C to 1100 ° C.
입상화된 슬래그(GS)는 용기(1100) 내 하측으로 낙하된 후, 반응 장치(5100)로 이송된다. 이때, 입상화된 슬래그(GS)는 600℃ 내지 1100℃이기 때문에, 반응 장치(5100) 내부의 온도가 슬래그에 의해 상승한다. 입상화된 슬래그(GS)가 장입되면, 반응 장치(5100) 내부로 CO2를 함유하는 가스인 처리 가스 및 CH4를 함유하는 가스인 반응 가스를 공급한다.The granulated slag GS is dropped downward in the container 1100 and then transferred to the reaction apparatus 5100. At this time, since the granulated slag GS is 600 degreeC-1100 degreeC, the temperature inside the reaction apparatus 5100 raises with slag. When the granulated slag GS is charged, a processing gas, which is a gas containing CO 2 , and a reaction gas, which is a gas containing CH 4 , are supplied into the reaction apparatus 5100.
이때, 입상화된 슬래그의 열에 의해 반응 장치(5100) 내부의 온도가 600℃ 내지 1100℃이기 때문에, 반응 장치(5100) 내로 공급된 처리 가스의 CO2와 반응 가스의 CH4가 상호 반응되어, CO 및 H2가 생성된다(반응식 1). 즉, 반응 장치(5100) 내부에서 CO2 함유 가스의 개질 반응이 일어나는데, 이때 슬래그로부터 방출되는 열을 이용한다.At this time, since the temperature inside the reaction apparatus 5100 is 600 ° C to 1100 ° C by the heat of the granulated slag, CO 2 of the processing gas supplied into the reaction apparatus 5100 and CH 4 of the reaction gas are mutually reacted. CO and H 2 are produced (Scheme 1). That is, the reforming reaction of the CO 2 -containing gas occurs inside the reaction apparatus 5100, where the heat released from the slag is used.
반응 장치(5100) 내에서 생성된 CO 및 H2를 포함하는 생성 가스는 생성 가스 배출 라인(7000)을 통해 외부로 배출된다.The product gas including CO and H 2 generated in the reactor 5100 is discharged to the outside through the product gas discharge line 7000.
그리고, CO2 개질이 종료된 후, 반응 장치(5100)로부터 배출된 슬래그는 소결용 원료나 기타 부원료로 활용되거나, 시멘트 원료, 매립제, 탈린제 등으로 재활용된다.After the completion of the CO 2 reforming, the slag discharged from the reaction apparatus 5100 is utilized as a raw material for sintering or other auxiliary raw materials, or recycled as a cement raw material, a landfill agent, a dephosphorizing agent, or the like.
이와 같이, 실시예에 따른 슬래그 처리 설비에 의하면, 용융 슬래그(MS)에 냉각 가스(CG)를 분사하여 상기 용융 슬래그를 빠르게 급냉시키면서 입상화시킨다. 이에, 자유 산화칼슘(Free CaO) 석출물 생성을 억제 또는 방지할 수 있다. As described above, according to the slag treatment facility according to the embodiment, the cooling gas CG is injected into the molten slag MS to granulate the molten slag while rapidly quenching the molten slag. Accordingly, it is possible to suppress or prevent the generation of free CaO precipitates.
또한, 냉각 가스(CG)를 용융 슬래그가 낙하되는 방향을 따라 분사시킴에 따라, 냉각 가스(CG)의 소모량을 줄일 수 있고, 슬래그의 비산을 억제 또는 방지할 수 있다.In addition, as the cooling gas CG is injected along the direction in which the molten slag falls, the consumption amount of the cooling gas CG can be reduced, and scattering of the slag can be suppressed or prevented.
그리고, 슬래그의 열을 회수하여 처리 가스의 개질 반응에 필요한 열원으로서 사용함으로써, 제철 조업 전체에 있어 에너지 효율을 향상시키는 효과가 있다.In addition, by recovering the heat of the slag and using it as a heat source for the reforming reaction of the processing gas, there is an effect of improving energy efficiency in the entire steelmaking operation.
도 7은 본 발명의 제 2 실시예에 따른 슬래그 처리 설비를 개념적으로 도시한 도면이다.7 is a view conceptually showing a slag treatment facility according to a second embodiment of the present invention.
상술한 제 1 실시예에서는 반응 장치(5100)로부터 배출된 생성 가스가 그대로 배출되거나, 제 1 열교환기(8000a)로 공급되어 스팀(steam)을 생성하는데 활용되는 것을 설명하였다.In the above-described first embodiment, the product gas discharged from the reaction device 5100 is discharged as it is, or is supplied to the first heat exchanger 8000a to be used to generate steam.
하지만, 이에 한정되지 않고, 반응 장치(5100)로부터 배출된 생성 가스는 반응 장치(5100)로 공급되는 처리 가스 및 반응 가스를 승온시키는데 활용될 수 있다.However, the present invention is not limited thereto, and the generated gas discharged from the reaction device 5100 may be used to raise the temperature of the processing gas and the reaction gas supplied to the reaction device 5100.
즉, 제 2 실시예에 따른 슬래그 처리 설비는 도 7에 도시된 바와 같이, 반응 장치(5100)로부터 배출된 생성 가스를 처리 가스 및 반응 가스와 열교환시켜 이들 가스의 온도를 승온시키는 열교환기(이하, 제 2 열교환기(8000b)) 및 생성 가스 배출 라인(7000)과 제 2 열교환기(8000b)를 연결하여 상기 제 2 열교환기(8000b)로 생성 가스를 공급하는 생성 가스 회수 라인(9000)을 포함한다.That is, the slag treatment plant according to the second embodiment, as shown in Figure 7, the heat exchanger for raising the temperature of these gases by heat-exchanging the generated gas discharged from the reaction device 5100 with the processing gas and the reaction gas (hereinafter referred to as And a product heat recovery line 9000 connecting the second heat exchanger 8000b and the product gas discharge line 7000 and the second heat exchanger 8000b to supply the product gas to the second heat exchanger 8000b. Include.
이에 따라, 반응 장치(5100)로부터 배출된 생성 가스를 그대로 배출하지 않고, 반응 장치(5100)로 공급될 처리 가스 및 반응 가스를 승온시키는데 재활용될 수도 있다.Accordingly, the generated gas discharged from the reaction device 5100 may be recycled to raise the process gas and the reaction gas to be supplied to the reaction device 5100 without being discharged as it is.
도 8은 본 발명의 제 3 실시예에 따른 슬래그 처리 설비를 개념적으로 도시한 도면이다.8 is a view conceptually showing a slag treatment facility according to a third embodiment of the present invention.
상술한 제 1 실시예 및 제 2 실시예에 따른 슬래그 처리 설비는 슬래그 처리 장치(1000) 및 반응 장치(5100)를 포함한다. 즉, 슬래그 처리 장치(1000)에서 마련된 입상화 슬래그(GS)를 반응 장치(5100)로 보내, 반응 장치(5100)에서 슬래그의 현열을 이용하여 처리 가스를 개질시켰다. 다른 말로 하면, 슬래그를 입상화시키는 장치와 처리 가스를 개질하는 장치가 별개의 장치이다.The slag treatment facility according to the first and second embodiments described above includes a slag treatment device 1000 and a reaction device 5100. That is, the granulated slag GS provided in the slag processing apparatus 1000 was sent to the reaction apparatus 5100, and the process gas was reformed using the sensible heat of slag in the reaction apparatus 5100. FIG. In other words, the apparatus for granulating the slag and the apparatus for reforming the processing gas are separate apparatuses.
하지만, 슬래그 처리 장치(1000)로 공급되는 냉각 가스(CG)로서 CO2 함유 가스 및 CH4 함유 가스를 이용하는 경우, 도 8에 도시된 제 3 실시예와 같이, 반응 장치(5100)가 생략될 수 있다. 즉, 슬래그 처리 장치(1000)에서 용융 슬래그의 입상화 및 처리 가스의 개질을 실시할 수 있다. 다른 말로 하면, 슬래그를 입상화 및 처리 가스의 개질이 동일 장치에서 이루어진다.However, when using the CO 2 containing gas and the CH 4 containing gas as the cooling gas CG supplied to the slag processing apparatus 1000, the reaction apparatus 5100 may be omitted, as in the third embodiment shown in FIG. 8. Can be. That is, in the slag processing apparatus 1000, granulation of molten slag and modification of process gas can be performed. In other words, the slag is granulated and the reforming of the processing gas is performed in the same apparatus.
이하, 도 8을 참조하여, 본 발명의 제 3 실시예에 따른 슬래그 처리 설비에 대해 보다 구체적으로 설명한다. 이때, 상술한 제 1 실시예 및 제 2 실시예와 중복되는 내용은 생략하거나 간략히 설명한다.Hereinafter, the slag treatment facility according to the third embodiment of the present invention will be described in more detail with reference to FIG. 8. At this time, the content overlapping with the above-described first and second embodiments will be omitted or briefly described.
슬래그 처리 설비는, 용융 슬래그(MS)가 토출되는 토출구(1213) 및 상기 토출구(1213)와 분리 위치되어 토출된 용융 슬래그가 낙하되는 방향으로 냉각 가스를 분사하는 분사 유로(1222)를 가지는 노즐부(1200)가 구비된 슬래그 처리 장치(1000)를 포함한다.The slag processing facility includes a nozzle portion having a discharge port 1213 through which molten slag MS is discharged and an injection flow path 1222 separated from the discharge port 1213 and injecting cooling gas in a direction in which the discharged molten slag falls. And a slag processing apparatus 1000 provided with 1200.
슬래그 처리 설비는 노즐부(1200)로 용융 슬래그(MS)를 공급하는 슬래그 공급 라인(2000), 냉각 가스(CG)를 공급하는 냉각 가스 공급 라인(3000) 및 슬래그 처리 장치(1000)에서 생성된 가스를 배출하는 생성 가스 배출 라인(7000)을 포함한다. The slag processing equipment is generated in the slag supply line 2000 for supplying the molten slag MS to the nozzle unit 1200, the cooling gas supply line 3000 for supplying the cooling gas CG, and the slag processing apparatus 1000. A product gas discharge line 7000 for discharging the gas.
또한, 슬래그 처리 장치(1000)로부터 배출된 생성 가스를 이용하여 상기 슬래그 처리(1000)로 공급될 냉각 가스(CG)를 가열하는 제 2 열교환기(8000b), 생성 가스 배출 라인(7000)과 제 2 열교환기(800b)를 연결하도록 설치되어 제 2 열교환기(8000b)로 생성 가스를 공급하는 생성 가스 회수 라인(9000) 및 제 2 열교환기(8000b)로 처리 가스 및 반응 가스를 공급하는 처리 가스 공급 라인(6000)을 포함할 수 있다.In addition, a second heat exchanger 8000b, a product gas discharge line 7000, and a second heat exchanger 8000b for heating the cooling gas CG to be supplied to the slag treatment 1000 by using the product gas discharged from the slag processing apparatus 1000. 2 is provided to connect the heat exchanger (800b), the product gas recovery line 9000 for supplying the product gas to the second heat exchanger (8000b) and the process gas for supplying the processing gas and the reaction gas to the second heat exchanger (8000b) It may include a supply line 6000.
슬래그 공급 라인(2000)은 제 1 노즐(1210)의 수용 공간과 연결되도록 설치되어, 상기 수용 공간(1212)으로 용융 슬래그(MS)를 공급한다.The slag supply line 2000 is installed to be connected to the accommodation space of the first nozzle 1210 and supplies molten slag MS to the accommodation space 1212.
냉각 가스 공급 라인(3000)은 제 2 노즐(1220)의 분사 유로(1222)와 연결되어, 상기 분사 유로(1222)로 냉각 가스를 공급한다. 이때, 제 2 노즐(1220)로 공급되는 냉각 가스(CG)는 CO2 함유 가스 및 CH4 함유 가스를 포함한다. CO2 함유 가스는 제철 조업에서 부생된 가스일 수 있고, CH4 함유 가스는 LNG(Liquid Natural Gas) 및 COG(COKE OVEN GAS) 중 적어도 하나를 포함할 수 있다.The cooling gas supply line 3000 is connected to the injection passage 1222 of the second nozzle 1220 to supply the cooling gas to the injection passage 1222. At this time, the cooling gas CG supplied to the second nozzle 1220 includes a CO 2 containing gas and a CH 4 containing gas. The CO 2 -containing gas may be a gas by-produced in the steelmaking operation, and the CH 4 -containing gas may include at least one of Liquid Natural Gas (LNG) and COKE OVEN GAS (COG).
도 9는 본 발명의 제 3 실시예에 따른 슬래그 처리 설비 및 슬래그 처리 과정을 개념적으로 블록화하여 도시한 도면이다.9 is a diagram conceptually showing a slag treatment facility and a slag treatment process according to a third embodiment of the present invention.
이하, 도 8 및 9를 참조하여, 본 발명의 제 3 실시예에 따른 슬래그 처리 설비의 동작 및 슬래그 처리 방법을 설명한다. 이때, 제 1 실시예 및 제 2 실시예에 따른 슬래그 처리 설비의 동작 및 슬래그 처리 방법과 중복되는 설명은 생략하거나 간략히 설명한다.8 and 9, the operation of the slag treatment facility and the slag treatment method according to the third embodiment of the present invention will be described. At this time, the description of the operation of the slag treatment facility and the slag treatment method according to the first and second embodiments will be omitted or briefly described.
먼저, 제철 조업 중 발생된 용융 슬래그(MS)를 준비하고, 이를 슬래그 공급 라인(2000)을 통해 제 1 노즐(1210)의 수용 공간(1212)으로 공급한다. 제 1 노즐(1210)의 수용 공간으로 공급된 용융 슬래그(MS)는 중력에 의해 하측으로 이동하여 토출구(1213)를 통해 외부로 토출되며, 토출된 용융 슬래그(MS)는 제 2 바디(1221)의 통로(1224)를 통과하도록 낙하된다.First, molten slag MS generated during the steelmaking operation is prepared and supplied to the accommodation space 1212 of the first nozzle 1210 through the slag supply line 2000. The molten slag MS supplied to the accommodation space of the first nozzle 1210 moves downward by gravity and is discharged to the outside through the discharge port 1213, and the discharged molten slag MS is discharged to the second body 1221. Fall through the passage 1224.
이렇게 제 1 노즐(1210)의 토출구(1213)를 통해 용융 슬래그가 토출될 때, 토출되는 용융 슬래그(MS)를 향해 냉각 가스(CG)를 분사하여, 상기 용융 슬래그(MS)를 급냉 및 입상화시킨다. 이때 입상화된 슬래그(GS)의 온도가 600℃ 내지 1100℃, 보다 바람직하게는 1000℃ 내지 1100℃가 되도록 한다. 이렇게 용융 슬래그(MS)가 냉각 가스(CG)에 의해 급냉됨에 따라, 자유 생석회(free CaO)의 석출을 억제 또는 방지할 수 있다.When the molten slag is discharged through the discharge port 1213 of the first nozzle 1210, the cooling gas CG is injected toward the molten slag MS discharged to quench and granulate the molten slag MS. Let's do it. At this time, the granulated slag (GS) has a temperature of 600 ° C to 1100 ° C, more preferably 1000 ° C to 1100 ° C. As the molten slag MS is quenched by the cooling gas CG in this way, precipitation of free CaO can be suppressed or prevented.
한편, 상술한 바와 같이 제 2 노즐(1220)을 통해 용융 슬래그(MS)로 분사된 냉각 가스(CG)는 개질하고자 하는 처리 가스인 CO2 함유 가스와 반응 가스인 CH4 함유 가스를 포함한다. 그리고 슬래그의 온도는 600℃ 이상이기 때문에, 슬래그 처리 장치(1000)의 용기(1100) 내부는 CO2와 CH4 간의 반응이 용이한 온도로 조성된다.Meanwhile, as described above, the cooling gas CG injected into the molten slag MS through the second nozzle 1220 includes a CO 2 containing gas, which is a processing gas to be reformed, and a CH 4 containing gas, which is a reactive gas. And since the temperature of the slag is more than 600 ℃, the inner vessel 1100 of the slag treatment unit (1000) is the composition at a temperature which facilitates the reaction between CO 2 and CH 4.
이에, 제 2 노즐(1220)을 통해 분사된 냉각 가스(CG) 중 CO2 및 CH4는 슬래그로부터 방출된 열에 의해 개질 반응하며, 반응에 의해 CO 및 H2가 생성된다(반응식 1).Accordingly, CO 2 and CH 4 in the cooling gas CG injected through the second nozzle 1220 are reformed by heat released from the slag, and CO and H 2 are generated by the reaction (Scheme 1).
이때, 생성 가스는 생성 가스 배출 라인(7000)을 통과하여 제 2 열교환기(8000b)로 공급될 수 있으며, 제 2 열교환기(8000b)에서는 생성 가스와의 열 교환을 통해 제 2 노즐(1220)로 공급될 냉각 가스 즉, CO2 함유 가스와 CH4 함유 가스를 가열할 수 있다. 이를 위해, 제 2 열교환기(8000b)에는 처리 가스 공급 라인(6000) 및 생성 가스 회수 라인(9000)이 연결될 수 있다.In this case, the product gas may be supplied to the second heat exchanger 8000b through the product gas discharge line 7000, and the second nozzle 1220 may be exchanged with the product gas in the second heat exchanger 8000b. The cooling gas to be supplied, that is, the CO 2 containing gas and the CH 4 containing gas, can be heated. To this end, a process gas supply line 6000 and a product gas recovery line 9000 may be connected to the second heat exchanger 8000b.
제 2 열교환기(8000b)에서 CO2 함유 가스와 CH4 함유 가스를 포함하는 냉각 가스(CG)를 가열하여 제 2 노즐(1220)로 공급하는 것은, 용융 슬래그(MS)를 향해 공급된 냉각 가스(CG) 중 CO2와 CH4 간의 반응이 용이하도록 하기 위함이다.In the second heat exchanger 8000b, the cooling gas CG including the CO 2 containing gas and the CH 4 containing gas is heated and supplied to the second nozzle 1220 to supply the cooling gas supplied toward the molten slag MS. This is to facilitate the reaction between CO 2 and CH 4 in (CG).
즉, 용융 슬래그의 입상화를 위해 공급되는 냉각 가스는 상기 용융 슬래그의 온도에 비해 낮으면, 용융 슬래그를 냉각시킬 수 있다. 그러나 이때, 생성 가스를 이용하여 처리 가스 및 반응 가스를 미리 가열하면, 슬래그 처리 장치에서 처리 가스와 반응 가스 간의 반응이 더 용이해 질 수 있다.That is, when the cooling gas supplied for granulating the molten slag is lower than the temperature of the molten slag, the molten slag can be cooled. However, in this case, when the processing gas and the reaction gas are heated in advance using the product gas, the reaction between the processing gas and the reaction gas in the slag processing apparatus may be easier.
이에, 제 2 열교환기(8000b)에서 냉각 가스를 가열하여 공급하는 경우, 슬래그 처리 장치(1000)로 공급된 냉각 가스가 CO2와 CH4 간의 반응을 위한 온도로 보다 용이하게 도달될 수 있다.Thus, when the cooling gas is heated and supplied from the second heat exchanger 8000b, the cooling gas supplied to the slag processing apparatus 1000 may be more easily reached at a temperature for the reaction between CO 2 and CH 4 .
물론, 슬래그 처리 장치(1000)로 공급된 냉각 가스는 용융 슬래그의 열로 인해 CO2와 CH4 간의 반응을 위한 온도에 도달할 수 있으며, 이에, 제 2 열교환기(8000b)는 생략될 수 있다.Of course, the cooling gas supplied to the slag treatment apparatus 1000 may reach a temperature for the reaction between CO 2 and CH 4 due to the heat of the molten slag, so that the second heat exchanger 8000b may be omitted.
이와 같이 제 3 실시예에서는 슬래그 처리 장치(1000)에서 재활용이 용이하도록 용융 슬래그를 급냉시킬 수 있고, 제철 조업에서 발생된 CO2 함유 가스를 반응 장치(5100) 없이 개질시킬 수 있다. 즉, 제 3 실시예에 따른 슬래그 처리 설비는 제 1 실시예 및 제 2 실시예에 비해 설비 구성이 간단한 장점이 있다.As described above, in the third embodiment, the molten slag may be quenched to be easily recycled in the slag treatment apparatus 1000, and the CO 2 containing gas generated in the steelmaking operation may be reformed without the reaction apparatus 5100. That is, the slag treatment plant according to the third embodiment has the advantage that the arrangement of the facility is simple compared to the first embodiment and the second embodiment.
또한, 처리 가스 및 반응 가스를 포함하는 냉각 가스(CG)를 공급하는 경우, 상술한 제 3 실시예와 같이 반응 장치가 생략되지 않고, 도 1에 도시된 제 1 실시예와 같이 반응 장치(5000)를 구비할 수 있다.In addition, in the case of supplying the cooling gas CG including the processing gas and the reaction gas, the reaction apparatus is not omitted as in the above-described third embodiment, and the reaction apparatus 5000 as in the first embodiment shown in FIG. 1. ) May be provided.
이러한 경우, 슬래그 처리 장치(1000) 및 반응 장치(5100) 모두에서 슬래그의 열을 회수하여 처리 가스를 개질시킬 수 있다. 즉, 슬래그 처리 장치(1000)에서 제 1 개질 반응이 일어나고, 반응 장치(5100)에서 제 1 개질 반응에 사용된 입상화된 슬래그로부터 방출된 열을 이용한 제 2 개질 반응이 일어날 수 있다. 이에, 슬래그의 열 회수율이 보다 향상되는 효과가 있다.In this case, the slag processing apparatus 1000 and the reaction apparatus 5100 may recover the heat of the slag to reform the processing gas. That is, the first reforming reaction may occur in the slag treatment apparatus 1000, and the second reforming reaction may occur using the heat released from the granulated slag used for the first reforming reaction in the reaction apparatus 5100. Thus, there is an effect that the heat recovery of the slag is further improved.
앞에서 설명한 실시예들 및 변형예들은 상술한 예들에 한정되지 않고, 실시예들과 변형예들이 상호 조합되도록 구성될 수 있다.The above-described embodiments and modifications are not limited to the above-described examples, and the embodiments and modifications may be configured to be combined with each other.
본 발명의 실시예들에 따른 슬래그 처리 설비의 슬래그 처리 장치(1000)에 의하면, 제 1 노즐(1210)을 통해 하측으로 용융 슬래그(MS)를 토출하고, 제 2 노즐(1220)을 이용하여 토출된 용융 슬래그가 낙하되는 방향으로 냉각 가스를 분사한다. 이에, 제 1 노즐(1210)로부터 토출된 액상 상태의 용융 슬래그(MS)는 분사되는 냉각 가스(CG)에 의해 급냉 및 분쇄되면서 구형에 가까운 고상 상태의 미립자 형태로 입상화된다. 이로 인해, 슬래그가 1100℃ 이하로 급냉됨에 따라 서냉으로 인한 자유 산화칼슘(Free CaO) 석출물 생성을 억제 또는 방지할 수 있다. 따라서, 미립화된 슬래그의 재활용 시에 수화 반응으로 인한 팽창을 억제 또는 방지할 수 있다.According to the slag processing apparatus 1000 of the slag processing equipment according to the embodiments of the present invention, the molten slag MS is discharged downward through the first nozzle 1210, and discharged using the second nozzle 1220. Cooling gas is injected in the direction of falling molten slag. Accordingly, the molten slag MS in the liquid state discharged from the first nozzle 1210 is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the cooling gas CG injected. Therefore, as the slag is quenched to 1100 ° C. or less, it is possible to suppress or prevent the generation of free CaO precipitates due to slow cooling. Therefore, it is possible to suppress or prevent expansion due to the hydration reaction at the time of recycling the atomized slag.
그리고, 실시예들에 따른 노즐부(1200)를 통해 방사형으로 분사하지 않고, 토출되어 흐르는 용융 슬래그(MS)를 향해 국소 부위에 또는 용융 슬래그와 근접한 위치에서 냉각 가스를 분사한다. 이에 냉각 가스의 소모량을 줄일 수 있고, 슬래그의 비산을 억제 또는 방지할 수 있다.Then, the cooling gas is not sprayed radially through the nozzle unit 1200 according to the embodiments, but is sprayed at a local portion or in a position close to the molten slag toward the molten slag MS that is discharged and flows. Accordingly, the consumption of cooling gas can be reduced, and scattering of slag can be suppressed or prevented.
또한, 슬래그의 열을 회수하여 처리 가스의 개질 반응에 필요한 열원으로서 사용한다. 이렇게 슬래그의 용융에 사용된 에너지를 회수 또는 재활용 할 수 있어, 제철 조업 전체에 있어 에너지 효율을 향상시키는 효과가 있다.In addition, the heat of the slag is recovered and used as a heat source for the reforming reaction of the processing gas. Thus, the energy used for melting the slag can be recovered or recycled, thereby improving the energy efficiency in the entire steelmaking operation.
본 발명의 실시예들에 따른 슬래그 처리 설비에 의하면, 제 1 노즐을 통해 하측으로 용융 슬래그를 토출하고, 제 2 노즐을 통해 토출된 용융 슬래그를 향해 냉각 가스를 분사한다. 이에, 제 1 노즐로부터 토출된 액상 상태의 용융 슬래그는 분사되는 냉각 가스에 의해 급냉 및 분쇄되면서 구형에 가까운 고상 상태의 미립자 형태로 입상화된다. 이로 인해, 슬래그가 급냉됨에 따라 서냉으로 인한 자유 산화칼슘(Free CaO) 석출물 생성을 억제 또는 방지할 수 있다. 따라서, 미립화된 슬래그의 재활용 시에 수화 반응으로 인한 팽창을 억제 또는 방지할 수 있다.According to the slag treatment equipment according to the embodiments of the present invention, the molten slag is discharged downward through the first nozzle, and the cooling gas is injected toward the molten slag discharged through the second nozzle. Accordingly, the molten slag in the liquid state discharged from the first nozzle is granulated in the form of particulates in a solid state close to a spherical shape while being quenched and pulverized by the injected cooling gas. For this reason, as the slag is quenched, it is possible to suppress or prevent the generation of free CaO precipitates due to slow cooling. Therefore, it is possible to suppress or prevent expansion due to the hydration reaction at the time of recycling the atomized slag.

Claims (28)

  1. 용융 슬래그에 냉각 가스를 분사할 수 있는 노즐부를 구비하는 슬래그 처리 장치를 포함하고,A slag processing apparatus having a nozzle portion capable of injecting cooling gas into the molten slag,
    상기 노즐부는,The nozzle unit,
    하부에 상기 용융 슬래그를 토출시키는 토출구가 마련된 제 1 노즐; 및A first nozzle having a discharge port through which the molten slag is discharged; And
    상기 제 1 노즐의 외측에 위치되도록 상기 제 1 노즐에 장착되며, 상기 토출구로부터 토출되는 용융 슬래그의 낙하 방향으로 상기 냉각 가스를 분사하는 분사 유로가 마련된 제 2 노즐;A second nozzle mounted to the first nozzle so as to be located outside the first nozzle and provided with an injection passage for injecting the cooling gas in a falling direction of the molten slag discharged from the discharge port;
    을 포함하는 슬래그 처리 설비.Slag treatment equipment comprising a.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 제 1 노즐은, 내부에 상기 용융 슬래그의 수용이 가능하며 상하 방향으로 연장 형성된 수용 공간이 마련된 제 1 바디를 포함하고,The first nozzle may include a first body having an accommodation space formed therein and capable of receiving the molten slag and extending in a vertical direction.
    상기 토출구는 상기 수용 공간과 연통되도록 상기 수용 공간의 하측 끝단에 마련되며,The discharge port is provided at the lower end of the accommodation space to communicate with the accommodation space,
    상기 제 2 노즐은 상기 제 1 바디에 연결되도록 설치되며, 상기 토출구와 대응 위치하는 통로가 마련된 제 2 바디를 포함하고,The second nozzle is installed to be connected to the first body, and includes a second body provided with a passage corresponding to the discharge port,
    상기 분사 유로는 상기 통로를 통과하도록 토출되는 용융 슬래그의 이동 방향으로 냉각 가스가 분사되도록 상기 제 2 바디 내부에 마련된 슬래그 처리 설비.And the injection passage is provided inside the second body such that a cooling gas is injected in a moving direction of the molten slag discharged to pass through the passage.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 제 1 노즐은 제 1 바디로부터 하측 방향으로 연장 형성되며, 내부에 상기 제 1 바디의 토출구와 연통된 연장 유로가 마련된 연장 부재를 포함하는 슬래그 처리 설비.And the first nozzle extends downwardly from the first body and includes an extension member provided therein with an extension flow passage communicating with the discharge port of the first body.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 제 2 바디는 상기 제 1 바디의 하부에 연결되고, 상기 토출구와 연통되도록 상기 통로가 상기 토출구의 하측에 형성된 중공형의 형상이며,The second body is connected to the lower portion of the first body, the passage is formed in a hollow shape formed below the discharge port so as to communicate with the discharge port,
    상기 분사 유로의 끝단이며 상기 냉각 가스가 분사되는 분사구가 상기 통로 또는 상기 통로 하측을 향하도록 노출 형성된 슬래그 처리 설비.The slag treatment facility of the end of the said injection flow path and formed so that the injection hole which the cooling gas is injected may face to the said passage or the said passage lower side.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 분사 유로는,The injection passage,
    상기 제 2 바디의 폭 방향으로 연장 형성된 제 1 유로; 및A first flow path extending in the width direction of the second body; And
    상기 제 1 유로로부터 상기 통로가 위치된 방향으로 연장 형성된 제 2 유로;A second flow passage extending from the first flow passage in a direction in which the passage is located;
    를 포함하며,Including;
    상기 제 2 유로는 상기 분사구 쪽으로 갈수록 상기 통로와 가까워지도록 하향 경사진 형상인 슬래그 처리 설비.And the second flow path is inclined downward so as to be closer to the passage toward the injection hole.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 제 1 유로는 내경이 일정한 슬래그 처리 설비.The said 1st flow path is a slag processing facility with a constant internal diameter.
  7. 청구항 5에 있어서,The method according to claim 5,
    상기 제 1 유로는 상기 제 2 유로가 위치된 방향으로 상향 경사진 형상인 슬래그 처리 설비.And said first flow path is inclined upwardly in the direction in which said second flow path is located.
  8. 청구항 7에 있어서,The method according to claim 7,
    상기 제 1 유로는 상기 제 2 유로가 위치된 방향으로 갈수록 내경이 좁아지는 형상인 슬래그 처리 설비.And the first flow passage has a shape in which an inner diameter thereof narrows toward the direction in which the second flow passage is located.
  9. 청구항 2에 있어서,The method according to claim 2,
    상기 제 2 바디는 상기 제 1 바디의 연장 방향으로 연장 형성되어 상기 제 1 바디의 외측면을 둘러 싸도록 설치되며, 하측 끝단이 상기 토출구의 하측으로 돌출되도록 연장 형성되고,The second body is formed to extend in the extending direction of the first body is installed to surround the outer surface of the first body, the lower end is formed to extend to protrude to the lower side of the discharge port,
    상기 분사 유로는 상기 분사 유로의 끝단이며 냉각 가스가 분사되는 분사구가 상기 토출구에 비해 하측에 위치하도록, 상기 제 2 바디 내부에서 상하 방향으로 연장 형성되며,The injection passage is an end of the injection passage and is formed to extend in the up and down direction inside the second body so that the injection hole in which the cooling gas is injected is located below the discharge hole,
    상기 통로는 상기 토출구 하측으로 연장 형성된 상기 제 2 바디의 내벽면에 의해 구획된 영역인 슬래그 처리 설비.And said passage is a region partitioned by an inner wall surface of said second body extending below said discharge port.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 분사 유로 중 적어도 상기 토출구의 하측에 위치하는 영역은 상기 분사구 쪽으로 갈수록 상기 통로와 가까워지도록 경사진 형상인 슬래그 처리 설비.At least a region located below the discharge port of the injection flow path is inclined so as to be closer to the passage toward the injection port.
  11. 청구항 4 내지 청구항 10 중 어느 한 항에 있어서,The method according to any one of claims 4 to 10,
    상기 분사 유로 중 상기 분사구와 인접한 영역은 상기 분사구가 위치된 방향으로 갈수록 내경이 좁아지다가 다시 넓어지는 형상인 슬래그 처리 설비.The area of the injection passage adjacent to the injection port is a slag treatment equipment having a shape that narrows the inner diameter toward the direction in which the injection port is located and then widens again.
  12. 청구항 2에 있어서,The method according to claim 2,
    상기 제 1 바디와 연결되어, 상기 수용 공간에 수용된 용융 슬래그를 가열하는 가열 수단을 포함하는 슬래그 처리 설비.And heating means connected to the first body to heat the molten slag contained in the receiving space.
  13. 청구항 2에 있어서,The method according to claim 2,
    상기 제 1 바디와 연결되어, 상기 수용 공간에 수용된 용융 슬래그를 진동시키는 진동 수단을 포함하는 슬래그 처리 설비.And a vibrating means connected to the first body to vibrate the molten slag contained in the accommodation space.
  14. 청구항 2에 있어서,The method according to claim 2,
    상기 슬래그 처리 장치는 적어도 상기 노즐부의 하부가 수용될 수 있는 내부 공간을 가지는 용기를 포함하는 슬래그 처리 설비.The slag processing apparatus includes a container having an inner space in which at least a lower portion of the nozzle portion can be accommodated.
  15. 청구항 1 내지 청구항 10 중 어느 한 항에 있어서,The method according to any one of claims 1 to 10,
    상기 슬래그 처리 장치로부터 제공된 입상화된 슬래그의 수용이 가능하며, 입상화된 슬래그로부터 배출된 열을 이용하여 처리 가스와 반응 가스를 반응시켜, 상기 처리 가스를 개질시키는 반응 장치를 더 포함하는 슬래그 처리 설비.The slag treatment which can accommodate the granulated slag provided from the said slag processing apparatus, and reacts a process gas and a reaction gas using the heat | emission from the granulated slag, and reforms the process gas further. equipment.
  16. 청구항 15에 있어서,The method according to claim 15,
    상기 반응 장치의 내부에 설치되며, 상기 반응 장치의 폭 방향으로 연장 형성되고, 폭 방향으로 상호 이격 형성되어 상기 처리 가스 및 반응 가스의 통과가 가능한 복수의 홀을 가지는 분산판을 포함하는 슬래그 처리 설비.Slag treatment equipment installed in the reaction apparatus, the slag treatment equipment including a dispersion plate extending in the width direction of the reaction apparatus, spaced apart from each other in the width direction and having a plurality of holes through which the process gas and the reaction gas can pass. .
  17. 청구항 15에 있어서,The method according to claim 15,
    상기 반응 장치에 연결되어, 상기 반응 장치에서 상기 처리 가스와 반응 가스 간의 반응으로 생성된 생성 가스를 배출시키는 생성 가스 배출 라인; A product gas discharge line connected to the reaction device for discharging a product gas generated by a reaction between the process gas and the reaction gas in the reaction device;
    상기 생성 가스 배출 라인의 연장 경로 상에 설치되어, 상기 생성 가스의 열을 이용하여 스팀을 생성하는 제 1 열교환기;A first heat exchanger installed on an extension path of the product gas discharge line to generate steam by using heat of the product gas;
    를 포함하는 슬래그 처리 실비.Slag treatment actual cost including.
  18. 청구항 15에 있어서,The method according to claim 15,
    상기 반응 장치에 연결되어, 상기 반응 장치에서 상기 처리 가스와 반응 가스 간의 반응으로 생성된 생성 가스를 배출시키는 생성 가스 배출 라인;A product gas discharge line connected to the reaction device for discharging a product gas generated by a reaction between the process gas and the reaction gas in the reaction device;
    상기 생성 가스 배출 라인의 연장 경로 상에 설치되어, 상기 처리 가스 및 반응 가스를 상기 생성 가스와 열교환시켜, 상기 처리 가스 및 반응 가스를 승온시키는 제 2 열교환기; 및A second heat exchanger disposed on an extension path of the product gas discharge line to heat-exchange the process gas and the reaction gas with the product gas, thereby raising the process gas and the reaction gas; And
    상기 생성 가스 배출 라인과 상기 제 2 열교환기를 연결하도록 연장 형성되어, 상기 제 2 열교환기로 생성 가스를 공급하는 생성 가스 공급 라인;A product gas supply line extending to connect the product gas discharge line with the second heat exchanger and supplying a product gas to the second heat exchanger;
    을 포함하는 슬래그 처리 설비.Slag treatment equipment comprising a.
  19. 용융 슬래그를 토출시키는 과정;Discharging molten slag;
    토출된 상기 용융 슬래그가 낙하되는 방향으로 냉각 가스를 분사하여, 상기 용융 슬래그를 냉각하고, 입자 형태로 입상화시키는 과정;Spraying a cooling gas in a direction in which the discharged molten slag falls, thereby cooling the molten slag and granulating it into particles;
    입상화된 슬래그로부터 방출된 열을 이용하여, 처리 가스와 반응 가스를 반응시켜, 상기 처리 가스를 개질시키는 과정;Reforming the process gas by reacting the process gas with the reaction gas using heat released from the granulated slag;
    을 포함하는 슬래그 처리 방법.Slag treatment method comprising a.
  20. 청구항 19에 있어서,The method according to claim 19,
    상기 냉각 가스는 에어(air), 불활성 가스, 상기 처리 가스 및 상기 반응 가스 중 적어도 하나를 포함하는 슬래그 처리 방법.And the cooling gas comprises at least one of air, an inert gas, the processing gas, and the reactive gas.
  21. 청구항 20에 있어서,The method of claim 20,
    상기 용융 슬래그를 향해 분사되는 상기 냉각 가스에 의해, 상기 용융 슬래그를 냉각시키고, 입상화시키며,The molten slag is cooled and granulated by the cooling gas injected toward the molten slag,
    입상화된 슬래그를 향해 상기 처리 가스 및 반응 가스를 분사하여, 상기 입상화된 슬래그의 열을 이용하여 상기 처리 가스를 개질시키는 슬래그 처리 방법.And treating the processing gas and the reaction gas toward granulated slag to reform the processing gas using the heat of the granulated slag.
  22. 청구항 19에 있어서,The method according to claim 19,
    상기 냉각 가스는 상기 처리 가스 및 상기 반응 가스를 포함하고,The cooling gas includes the processing gas and the reaction gas,
    상기 용융 슬래그를 향해 분사되는 상기 냉각 가스에 의해, 상기 용융 슬래그를 냉각시키고, 입상화시키며, 상기 용융 슬래그의 냉각 및 입상화와 함께 상기 냉각 가스로 상기 처리 가스를 개질시키는 슬래그 처리 방법.The slag processing method of cooling and granulating the said molten slag by the said cooling gas injected toward the said molten slag, and reforming the said processing gas with the said cooling gas with cooling and granulation of the said molten slag.
  23. 청구항 19에 있어서,The method according to claim 19,
    상기 냉각 가스는 상기 처리 가스 및 상기 반응 가스를 포함하고,The cooling gas includes the processing gas and the reaction gas,
    상기 용융 슬래그를 향해 분사되는 상기 냉각 가스에 의해, 상기 용융 슬래그를 냉각시키고, 입상화시키며, 상기 용융 슬래그의 냉각 및 입상화와 함께 상기 냉각 가스로 상기 처리 가스를 개질시키는 제 1 개질 반응이 일어나며,The cooling gas injected toward the molten slag causes the first reforming reaction to cool and granulate the molten slag and to reform the processing gas with the cooling gas together with cooling and granulating of the molten slag. ,
    상기 제 1 개질 반응에 사용된 입상화된 슬래그를 항해 처리 가스와 반응 가스를 분사하여, 상기 처리 가스를 개질시키는 제 2 개질 반응을 실시하는 슬래그 처리 방법.The slag treatment method of performing the 2nd reforming reaction which reforms the process gas by injecting the granulated slag used for the said 1st reforming reaction by injecting a navigation process gas and a reaction gas.
  24. 청구항 19에 있어서,The method according to claim 19,
    상기 처리 가스와 반응 가스 간의 반응에 의해 생성된 생성 가스를 열교환시켜 스팀을 생성하는 과정을 포함하는 슬래그 처리 방법.And exchanging heat generated gas generated by the reaction between the processing gas and the reaction gas to generate steam.
  25. 청구항 19에 있어서,The method according to claim 19,
    상기 처리 가스와 반응 가스 간의 반응에 의해 생성된 생성 가스와 상기 처리 가스 및 반응 가스를 열교환시켜 상기 처리 가스 및 반응 가스를 승온시키는 과정을 포함하고,Heat-exchanging the generated gas generated by the reaction between the process gas and the reactant gas and the process gas and the reactant gas to raise the process gas and the reactant gas,
    상기 처리 가스를 개질시키는데 있어서,In reforming the process gas,
    상기 열교환에 의해 승온된 처리 가스 및 반응 가스를 상기 입상화된 슬래그를 향해 분사하는 슬래그 처리 방법.The slag processing method which sprays the process gas and reaction gas heated up by the said heat exchange toward the said granulated slag.
  26. 청구항 19 내지 청구항 25 중 어느 한 항에 있어서,The method according to any one of claims 19 to 25,
    상기 용융 슬래그를 냉각시키는데 있어서, 600℃ 내지 1100℃의 온도가 되도록 하는 슬래그 처리 방법.The slag treatment method for cooling the molten slag to a temperature of 600 ℃ to 1100 ℃.
  27. 청구항 19 내지 청구항 25 중 어느 한 항에 있어서,The method according to any one of claims 19 to 25,
    상기 처리 가스는 제철 조업에 발생된 가스를 포함하는 슬래그 처리 방법.The processing gas is a slag treatment method comprising a gas generated in the steelmaking operation.
  28. 청구항 27에 있어서,The method of claim 27,
    상기 처리 가스는 CO2 함유 가스를 포함하고,The process gas comprises a CO 2 containing gas,
    상기 반응 가스는 CH4 함유 가스를 포함하는 슬래그 처리 방법.The reaction gas is a slag treatment method comprising a CH 4 containing gas.
PCT/KR2019/009560 2018-08-07 2019-07-31 Slag treatment facility and slag treatment method WO2020032470A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0091950 2018-08-07
KR1020180091950A KR102103383B1 (en) 2018-08-07 2018-08-07 Equipment for treating slag and Method for treating slag

Publications (1)

Publication Number Publication Date
WO2020032470A1 true WO2020032470A1 (en) 2020-02-13

Family

ID=69414939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009560 WO2020032470A1 (en) 2018-08-07 2019-07-31 Slag treatment facility and slag treatment method

Country Status (2)

Country Link
KR (1) KR102103383B1 (en)
WO (1) WO2020032470A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462830A (en) * 2021-07-09 2021-10-01 内蒙古高等级公路建设开发有限责任公司 Hot slag cracking processing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090036352A (en) * 2007-10-09 2009-04-14 재단법인 포항산업과학연구원 Apparatus for recycling heat of slag
JP2011102421A (en) * 2009-11-11 2011-05-26 Jfe Steel Corp Method for recovering heat-energy of exhaust gas generated from metallurgical furnace
KR20120033086A (en) * 2010-09-29 2012-04-06 현대제철 주식회사 Method and apparatus for cooling of slag
KR20120044172A (en) * 2010-10-27 2012-05-07 현대제철 주식회사 Apparatus for waste heat recovery of furnace slag
JP2016188754A (en) * 2015-03-27 2016-11-04 Jfeスチール株式会社 Carbon dioxide gas regeneration system using potential heat of slug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3533964C1 (en) * 1985-09-24 1987-01-15 Alfred Prof Dipl-Ing Dr-I Walz Method and device for producing fine powder in spherical form
CN101479046B (en) * 2006-09-01 2012-06-27 株式会社神户制钢所 Acceleration nozzle and injection nozzle apparatus
JP2009132546A (en) * 2007-11-29 2009-06-18 Jfe Steel Corp Method and apparatus for processing molten slag
JP2010095433A (en) * 2008-10-20 2010-04-30 Sumitomo Chemical Co Ltd Method of manufacturing silicon
KR101285786B1 (en) 2011-12-22 2013-07-22 주식회사 포스코 Carbon dioixde sequester using molten slag
KR101776111B1 (en) * 2015-09-30 2017-09-08 주식회사 화우 Zr or Zr-based alloy powders for Production Method and thereof Zr or Zr-based alloy powders

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090036352A (en) * 2007-10-09 2009-04-14 재단법인 포항산업과학연구원 Apparatus for recycling heat of slag
JP2011102421A (en) * 2009-11-11 2011-05-26 Jfe Steel Corp Method for recovering heat-energy of exhaust gas generated from metallurgical furnace
KR20120033086A (en) * 2010-09-29 2012-04-06 현대제철 주식회사 Method and apparatus for cooling of slag
KR20120044172A (en) * 2010-10-27 2012-05-07 현대제철 주식회사 Apparatus for waste heat recovery of furnace slag
JP2016188754A (en) * 2015-03-27 2016-11-04 Jfeスチール株式会社 Carbon dioxide gas regeneration system using potential heat of slug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113462830A (en) * 2021-07-09 2021-10-01 内蒙古高等级公路建设开发有限责任公司 Hot slag cracking processing device
CN113462830B (en) * 2021-07-09 2022-04-29 内蒙古高等级公路建设开发有限责任公司 Hot slag cracking processing device

Also Published As

Publication number Publication date
KR20200016630A (en) 2020-02-17
KR102103383B1 (en) 2020-04-22

Similar Documents

Publication Publication Date Title
WO2011081267A1 (en) Method and apparatus for recovering valuable metals from slag and for producing multifunctional aggregates
KR900007783B1 (en) Method for producing iron
JP4353706B2 (en) Process for producing milled slag and facility for producing milled slag
KR860700265A (en) Continuous steelmaking method and apparatus
CN103930573A (en) Slag supply container for electric furnace for steel slag reduction
WO2020032470A1 (en) Slag treatment facility and slag treatment method
GB2302397A (en) Utilising heat from molten slag to produce fuel gas from coal
WO2013165122A1 (en) Non-melt and partial melt type entrained flow bed gasifier
KR20090080965A (en) Method and device for producing molten material
WO2012060547A1 (en) Apparatus for atomizing molten slag and recovering valuable metal
RU2299245C2 (en) Plant for producing melt iron provided with reducing apparatus operating in modified mode and having fluidized bed, production method with use of such plant
WO2013081285A1 (en) Method for recovering valuable metals from slag and apparatus for manufacturing multifunctional aggregate
CA1050277A (en) Method for melting sponge iron
JPH0471963B2 (en)
KR100769794B1 (en) Process and plant for producing pig iron or liquid primary steel products in a blast furnace
RU2008146999A (en) METHOD FOR PRODUCING LIQUID IRON OR LIQUID STEEL INTERMEDIATE PRODUCTS FROM THIN-DISPERSED MATERIAL CONTAINING IRON OXIDE
KR19980703744A (en) Steelmaking facility and steelmaking process for producing molten iron
KR930007308B1 (en) Process for the production of liquid steel or pre-pig iron
US3010820A (en) Process for refining ferrous materials
WO2018021634A1 (en) Sintering apparatus and method for manufacturing sintered ore using same
US4857105A (en) Process for producing pig iron using coal degassing reactor to form reductants
CN113286868A (en) Reactor and method for gasifying and/or melting raw materials
KR100466631B1 (en) Method and apparatus for producing liquid iron or steel semi-finished products from iron-containing materials
JPH11351524A (en) Method and apparatus for thermally converting residues containing combustible energy
WO2024111758A1 (en) Reduction furnace and method for producing reduced iron

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846515

Country of ref document: EP

Kind code of ref document: A1