WO2020032255A1 - Sensor system, and measuring device employing same - Google Patents
Sensor system, and measuring device employing same Download PDFInfo
- Publication number
- WO2020032255A1 WO2020032255A1 PCT/JP2019/031637 JP2019031637W WO2020032255A1 WO 2020032255 A1 WO2020032255 A1 WO 2020032255A1 JP 2019031637 W JP2019031637 W JP 2019031637W WO 2020032255 A1 WO2020032255 A1 WO 2020032255A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- piezoelectric
- impedance
- sensor
- capacitance
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 claims abstract description 18
- 238000005259 measurement Methods 0.000 claims description 131
- 238000001514 detection method Methods 0.000 claims description 15
- 230000035882 stress Effects 0.000 description 78
- 239000010419 fine particle Substances 0.000 description 29
- 229920003002 synthetic resin Polymers 0.000 description 28
- 239000000057 synthetic resin Substances 0.000 description 28
- 238000003860 storage Methods 0.000 description 26
- 229920005989 resin Polymers 0.000 description 24
- 239000011347 resin Substances 0.000 description 24
- 229920002725 thermoplastic elastomer Polymers 0.000 description 19
- 239000011230 binding agent Substances 0.000 description 17
- 238000000034 method Methods 0.000 description 17
- 238000012937 correction Methods 0.000 description 11
- 239000006260 foam Substances 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 9
- 239000005060 rubber Substances 0.000 description 9
- 230000008602 contraction Effects 0.000 description 7
- 239000003973 paint Substances 0.000 description 6
- 238000004891 communication Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010030 laminating Methods 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000010287 polarization Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920002943 EPDM rubber Polymers 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 229920005549 butyl rubber Polymers 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010894 electron beam technology Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002589 poly(vinylethylene) polymer Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 229920001195 polyisoprene Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229920003048 styrene butadiene rubber Polymers 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000002847 impedance measurement Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 230000000241 respiratory effect Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- ZVWKZXLXHLZXLS-UHFFFAOYSA-N zirconium nitride Chemical compound [Zr]#N ZVWKZXLXHLZXLS-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/16—Measuring force or stress, in general using properties of piezoelectric devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/04—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning
- H10N30/045—Treatments to modify a piezoelectric or electrostrictive property, e.g. polarisation characteristics, vibration characteristics or mode tuning by polarising
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/857—Macromolecular compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
Definitions
- the present invention relates to a sensor system and a measuring device using the same.
- the piezoelectric sheet is a material in which a permanent charge is imparted inside by injecting charges into an insulating polymer material. Piezoelectric sheets are expected to be developed for sensor applications by utilizing their excellent sensitivity.
- Patent Literature 1 discloses a paired structure in which two piezoelectric elements made of a polymer piezoelectric material and subjected to an external load or force are superimposed, and a capacitance made of a dielectric polyester insulating film is connected in parallel between the electrodes.
- a load measuring device including a piezoelectric element, a resistor and a coil for increasing the voltage of the pair of piezoelectric elements, and a sine wave generation power supply capable of resonating the voltage of the pair of piezoelectric elements.
- the load measuring device When a load or force is applied to a pair of piezoelectric elements, the load measuring device changes the frequency characteristics of the voltage of the piezoelectric elements, and the voltage between both elements can be detected by a differential voltage output, and the magnitude of the load or force is detected. And a detecting means for performing the detection.
- the load measurement device described in Patent Literature 1 can detect stress (stress having a small frequency) applied over a long time, but sufficiently detect stress (stress having a large frequency) applied in a short time. Can not. In addition, there is a problem that it is not possible to sufficiently detect stress applied to the piezoelectric element in the plane direction (for example, extension of the piezoelectric element in the plane direction).
- cracks in a concrete structure include cracks that are gradually formed due to strain over time, and cracks that are generated when stress is applied to a concrete structure in a short time or momentarily.
- the former crack is generated such that the width of the crack gradually increases due to the stress gradually applied over a long period of time.
- the cracks are instantaneously expanded or peeled off in the direction of the concrete surface.
- the present invention can detect both the pressure in the thickness direction of the piezoelectric sheet and the stress generated in the surface direction, and can apply the stress gradually applied over a long time (stress having a small frequency) to the short time or momentarily.
- a sensor system capable of detecting both applied stress (stress having a large frequency).
- the sensor system of the present invention comprises: A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction; A first detection unit that measures a potential generated by the piezoelectric sensor; A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; And characterized in that:
- the sensor system of the present invention can detect both the pressure applied in the thickness direction of the piezoelectric sheet and the stress applied in the plane direction of the piezoelectric sensor, and can also detect both the low frequency stress and the high frequency stress. . Therefore, it can be suitably used for applications that require detection of stress applied in the thickness direction and the surface direction, and low-frequency stress and high-frequency stress generated by various movements. Specifically, it can be suitably used for applications (wearable applications) used by sticking to the skin surface of a human body, inspection of concrete structures, and the like.
- the sensor system according to the present invention can detect stress applied to the measured object in the thickness direction and the surface direction, as well as low-frequency stress and high-frequency stress. Therefore, unlike the related art, it is not necessary to prepare sensors for detecting respective stresses, and the structure of the measuring device can be simplified and downsized.
- FIG. 2 is a diagram illustrating a functional configuration of a sensor system.
- FIG. 2 is a diagram illustrating a hardware configuration of a sensor system.
- FIG. 2 is a circuit diagram showing a Wheatstone bridge circuit.
- the sensor system is A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction; A first detection unit that measures a potential generated by the piezoelectric sensor; A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; And
- the piezoelectric sheet A1 of the piezoelectric sensor A constituting the sensor system S is a sheet that can generate an electric charge when an external force is applied, and has elasticity in the plane direction.
- the piezoelectric sheet A1 is not particularly limited, but is preferably a piezoelectric sheet in which a synthetic resin foam sheet is polarized.
- the synthetic resin constituting the synthetic resin foam sheet is not particularly limited, and examples thereof include a polyolefin resin such as a polyethylene resin and a polypropylene resin, polyvinylidene fluoride, polylactic acid, and a liquid crystal resin.
- the synthetic resin has excellent insulating properties.
- a volume resistivity (hereinafter simply referred to as a “volume resistivity”) after applying a voltage at an applied voltage of 500 V for one minute in accordance with JIS K6911 is used. ) Is preferably 1.0 ⁇ 10 10 ⁇ ⁇ m or more.
- the volume resistivity value of the synthetic resin is preferably 1.0 ⁇ 10 12 ⁇ ⁇ m or more, more preferably 1.0 ⁇ 10 14 ⁇ ⁇ m or more, since the piezoelectric sheet A1 has more excellent piezoelectricity. .
- the method for imparting polarization to the synthetic resin foam sheet is not particularly limited, and examples thereof include the methods (1) to (3).
- a synthetic resin foam sheet is sandwiched between a pair of flat electrodes, the flat electrode in contact with the surface to be charged is connected to a high-voltage DC power supply, and the other flat electrode is grounded.
- An electrode or a wire electrode is provided.
- a corona discharge is generated by electric field concentration at the tip of the needle electrode or near the surface of the wire electrode, ionizing air molecules, and repelling air ions generated by the polarity of the needle electrode or wire electrode to synthesize.
- the expansion and contraction rate of the piezoelectric sheet A1 is preferably 0.5% or more, more preferably 1% or more, more preferably 1.5% or more, and particularly preferably 1.8% or more.
- the expansion and contraction rate of the piezoelectric sheet A1 is preferably 30% or less, more preferably 20% or less, more preferably 10% or less, and particularly preferably 7% or less.
- the piezoelectric sheet A1 When the expansion and contraction rate of the piezoelectric sheet A1 is 30% or less, the piezoelectric sheet A1 can maintain stable piezoelectricity over a long period of time, and can accurately detect stress having a small frequency.
- the expansion / contraction rate (%) of the piezoelectric sheet A1 refers to a value measured in the following manner. First, a flat square test piece with a side of 5 cm is cut out from the piezoelectric sheet, and this test piece is stretched in a direction of an arbitrary edge by a force of 10 N, and the length (cm) of the test piece in the stretching direction at the time of stretching is determined. Measure.
- the first electrode A2 is laminated and integrated on one surface (first surface) of the piezoelectric sheet A1, and the second electrode A3 is laminated on the other surface (second surface) of the piezoelectric sheet A1.
- the piezoelectric sensor A is integrally formed. Then, by measuring the potential difference between the first electrode A2 and the second electrode A3, the potential generated in the piezoelectric sheet A1 of the piezoelectric sensor can be measured.
- one surface (first surface) of the piezoelectric sheet A1 is a surface of the piezoelectric sheet having the largest area.
- the other surface (second surface) of the piezoelectric sheet A1 is a surface opposite to the one surface (first surface) of the piezoelectric sheet.
- a first electrode A2 having elasticity is laminated and integrated on one surface of the piezoelectric sheet A1.
- the first electrode A2 only needs to have elasticity in the plane direction of the piezoelectric sheet A1.
- the first electrode A2 is not particularly limited, and preferably contains conductive fine particles and a binder resin having elasticity.
- the first electrode A2 is made of a stretchable binder resin containing conductive fine particles, it exhibits more excellent stretchability and more accurately detects a small frequency stress applied to the piezoelectric sensor. can do. Further, not only stress applied in the thickness direction of the piezoelectric sheet such as compression but also stress applied in the surface direction of the piezoelectric sheet such as elongation can be accurately detected.
- a second electrode A3 having elasticity is laminated and integrated on the other surface of the piezoelectric sheet A1.
- the second electrode A3 only needs to have elasticity in the plane direction of the piezoelectric sheet A1.
- the second electrode A3 is not particularly limited, and preferably contains conductive fine particles and a binder resin having elasticity.
- the second electrode A3 is made of an elastic binder resin containing conductive fine particles, it exhibits more excellent elasticity and more accurately detects a small frequency stress applied to the piezoelectric sensor. can do.
- not only stress applied in the thickness direction of the piezoelectric sheet, such as compression, but also stress applied in the surface direction of the piezoelectric sheet, such as elongation, can be accurately detected.
- the conductive fine particles are there is no particular limitation.
- the conductive fine particles include silver fine particles, aluminum fine particles, copper fine particles, nickel fine particles, metal fine particles such as palladium fine particles, carbon black, graphite, carbon nanotubes, carbon fibers, and carbon-based conductive fine particles such as metal-coated carbon black.
- Examples include conductive ceramic fine particles such as tungsten carbide, titanium nitride, zirconium nitride, and titanium carbide, and conductive potassium titanate whiskers.
- metal fine particles are preferable, and silver fine particles are more preferable, since they are excellent in conductivity.
- the conductive fine particles may be used alone or in combination of two or more. Note that the conductive fine particles included in the first electrode A2 and the conductive fine particles included in the second electrode A3 may be the same or different.
- the content of the conductive fine particles in the electrode is preferably 40 to 90 parts by mass, and more preferably 60 to 90 parts by mass with respect to 100 parts by mass of the binder resin. 85 parts by mass is more preferable, and 60 to 80 parts by mass is particularly preferable.
- the second electrode A3 is made of a binder resin containing conductive fine particles, the content of the conductive fine particles in the electrode is preferably 40 to 90 parts by mass, and more preferably 60 to 90 parts by mass with respect to 100 parts by mass of the binder resin. 85 parts by mass is more preferable, and 60 to 80 parts by mass is particularly preferable.
- the first electrode A2 and the second electrode A3 are maintained while maintaining the elasticity of the first electrode A2 and the second electrode A3. Conductivity can be given to the two electrodes A3.
- the binder resin follows the expansion and contraction of the piezoelectric sheet A1 in the plane direction, and can expand and contract without causing damage such as cracks. There is no particular limitation as long as the properties can be imparted to the first electrode A2 and the second electrode A3.
- binder resin for example, modified silicone, acrylic modified polymer, styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyvinyl chloride-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based Thermoplastic elastomers such as thermoplastic elastomers, polyamide-based thermoplastic elastomers, 1,2-polybutadiene-based thermoplastic elastomers, polychloroprene (CR), EPDM, polyisoprene rubber (IR), polybutadiene rubber (BR), and styrene-butadiene Rubber materials such as heavy rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene copolymer rubber, and butyl rubber are exemplified.
- the binder resin may be used alone, or two or more kinds may
- the method for laminating and integrating the first electrode A2 and the second electrode A3 on the surface of the piezoelectric sheet A1 is not particularly limited, and examples thereof include the methods (1) and (2).
- the curable resin is cured by heating or ionizing radiation to form a binder resin.
- the ionizing radiation includes, for example, electron beams, ultraviolet rays, ⁇ rays, ⁇ rays, ⁇ rays, and the like.
- the method of laminating and integrating is not limited to only these methods.
- the first electrode A2 or the second electrode A3 is supported on the surface of the stretchable synthetic resin sheet (laminated and integrated), and then the stretchable synthetic resin sheet is placed on the first electrode A2 or the second electrode A2.
- a method in which the surface on which the two electrodes A3 are formed faces the piezoelectric sheet A1 side, and the surface of the piezoelectric sheet A1 is laminated and integrated with a known adhesive such as a fixing agent as necessary.
- the stretchable synthetic resin sheet is not particularly limited as long as the stretchable synthetic resin sheet can expand and contract following the expansion and contraction in the plane direction of the piezoelectric sheet A1 without causing damage such as cracks.
- the synthetic resin constituting the stretchable synthetic resin sheet include styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyvinyl chloride-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer.
- Thermoplastic elastomers such as thermoplastic elastomers, polyamide-based thermoplastic elastomers and 1,2-polybutadiene-based thermoplastic elastomers, polychloroprene (CR), EPDM, polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer Rubber materials such as rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene copolymer rubber, and butyl rubber.
- the synthetic resin constituting the stretchable synthetic resin sheet may be used alone, or two or more kinds may be used in combination.
- the method for supporting the first electrode A2 or the second electrode A3 on the surface of the stretchable synthetic resin sheet is not particularly limited, and examples thereof include the methods (1) and (2).
- the sensor system S includes a piezoelectric sensor A, a first detection unit B for measuring a potential generated by the piezoelectric sensor A, and an electrostatic capacitance of a capacitor formed between a first electrode and a second electrode of the piezoelectric sensor A.
- a second detecting unit that detects a change in capacitance or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor;
- the sensor system S functionally includes a piezoelectric sensor A, a first detection unit B, and a second detection unit C, as shown in FIG.
- the sensor system S physically includes a piezoelectric sensor A, a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, It has an auxiliary storage device 14, a first measurement module 15, a second measurement module 16, an output module 17, and a temperature sensor 18.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- the piezoelectric sensor A, the ROM 12, the RAM 13, the auxiliary storage device 14, the first measuring module 15, the second measuring module 16, the output module 17, and the temperature sensor 18 are electrically connected to the CPU 11 in a communicable manner.
- the CPU 11, the auxiliary storage device 14, the first measurement module, the second measurement module 16, the output module 17, and the temperature sensor 18 are attached or mounted with a general-purpose wireless module, and are electrically connected to each other so as to be able to communicate with each other through wireless communication. Is also good.
- the wireless module is a module that performs wireless data communication with a communication terminal, and is a module that performs wireless data communication (Wi-Fi) (registered trademark), Bluetooth (registered trademark) [Bluetooth (registered trademark)], W-CDMA standard, LTE standard, This is a module for realizing a normal wireless communication system such as the LPWA (Low Power Wide Area) standard.
- the auxiliary storage device 14 includes, for example, a solid state drive (SSD) and a hard disk drive (HDD).
- the output module 17 includes, for example, a display, a speaker, a portable terminal device, and the like.
- the first measurement module 15 measures a potential generated in the piezoelectric sheet A1 by applying a stress having a large frequency in the thickness direction to the piezoelectric sheet A1 of the piezoelectric sensor A. Further, the first measurement module 15 is configured to determine that the piezoelectric sheet A1 of the piezoelectric sensor A is compressed in the thickness direction for a short period of time or momentarily by being expanded in the surface direction for a short time or momentarily. Is used to measure the potential generated in the piezoelectric sheet A1.
- the first measurement module 15 measures the potential generated in the piezoelectric sheet A1 by the high frequency stress applied to the piezoelectric sheet A1 of the piezoelectric sensor A in the thickness direction or the surface direction for a short time or instantaneously.
- a known electrometer used for measuring an electric potential can be used as the first measurement module 15.
- the second measurement module 16 measures the capacitance of the capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A.
- the capacitance of the capacitor is measured by the second measurement module 16 to detect a change in the capacitance of the capacitor caused by the piezoelectric sensor A extending in the surface direction and the thickness of the piezoelectric sensor A decreasing. can do.
- a pressing force is applied to the piezoelectric sensor A in the thickness direction thereof, and the capacitance of the capacitor caused by the decrease in the thickness of the piezoelectric sensor A is generated.
- a change in capacitance can be detected.
- the second measurement module 16 can be suitably used for detecting a low frequency stress.
- a known measurement device such as an LCR meter can be used.
- the high frequency stress detected by the first measurement module 15 is preferably a stress having a frequency of 0.01 Hz or more.
- the frequency is 0.01 Hz or more, it is easy to detect a change in potential. As a result, stress having a large frequency can be accurately detected.
- the stress having a large frequency is preferably a stress of 0.1 Hz or more, more preferably a stress of 1 Hz or more. Stress having a frequency lower than that of the stress detected by the first measurement module 15 can be suitably detected by the second measurement module 16.
- the sensor system S operates a first measurement module 15, a second measurement module 16, an output module 17, and a temperature sensor 18 under the control of the CPU 11 by reading a predetermined program on the CPU 11 and the RAM 13. This is realized by reading and writing data in the RAM 13 and the auxiliary storage device 14.
- the first detector B and the second detector C perform predetermined functions by executing a program stored in the ROM 12 or the like under the control of the CPU 11.
- the first electrode A2 and the second electrode A3 of the piezoelectric sensor are electrically connected to the first measurement module 15 via a conductive wire.
- the second electrode A3 is used as a reference potential, and the potential of the first electrode A2 is used as the first potential. It is configured to be measurable by one measurement module 15.
- the potential of the second electrode A3 may be measured by the first measurement module 15 using the first electrode A2 as a reference potential.
- first electrode A2 and the second electrode A3 of the piezoelectric sensor A are also electrically connected to the second measurement module 16 via a conductive wire, and are provided between the first electrode A2 and the second electrode A3.
- the capacitance of the formed capacitor can be measured by the second measurement module 16.
- the first electrode A2 and the second electrode A3 of the piezoelectric sensor A are electrically connected to both the first measurement module 15 and the second measurement module 16, but have a potential measured by the first measurement module 15,
- the capacitance is measured independently from the capacitance measured by the second measurement module 16 without interference at the time of measurement.
- the potential measured by the first measurement module 15 and the capacitance measured by the second measurement module 16 are constantly monitored by the CPU 11.
- the CPU 11 determines that a stress exceeding a predetermined magnitude has been applied to the piezoelectric sensor A, A warning signal to the effect is transmitted to the output module 17 by the CPU 11.
- the output module 17 notifies a manager who manages the sensor system S by displaying on a display or emitting a warning sound from a speaker.
- the administrator who has received the notification can take necessary actions based on the notification.
- the potential measured by the first measurement module 15 may be stored in the auxiliary storage device 14 as needed.
- the transmission of the warning signal to the output module 17 by the CPU 11 may be continued until the potential measured by the first measurement module 15 becomes equal to or less than a predetermined threshold (potential threshold), It may be stopped after a certain period of time or by an administrator.
- a predetermined threshold potential threshold
- the first electrode A2 and the second electrode The capacitance of the capacitor formed between A3 and A3 increases.
- the CPU 11 determines that a stress equal to or larger than a predetermined magnitude has been applied to the piezoelectric sensor A. You. Then, the CPU 11 transmits a warning signal to that effect to the output module 17.
- the output module 17 notifies a manager who manages the sensor system by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. If necessary, the capacitance measured by the second measurement module 16 may be stored in the auxiliary storage device 14.
- the transmission of the warning signal by the CPU 11 to the output module 17 may be continuously performed until the capacitance measured by the second measurement module 16 becomes equal to or less than the capacitance threshold, or may be performed for a certain period of time. It may be stopped after a lapse or by an administrator.
- the second detection unit C allows the first electrode A2 of the piezoelectric sensor A to be connected to the second electrode A2. It is possible to detect a change in the capacitance of the capacitor formed between the electrode A3. Therefore, by measuring the capacitance of the capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A, the stress applied to the piezoelectric sensor A gradually applied over a long period of time, That is, it is possible to accurately detect a stress having a small frequency.
- the capacitance measured by the second measurement module 16 changes depending on the temperature of the measurement environment (atmosphere at the time of measurement). That is, the capacitance measured by the second measurement module 16 decreases as the temperature of the measurement environment to be measured increases. Therefore, the temperature sensor 18 constantly measures the temperature of the measurement environment, and the temperature measured by the temperature sensor 18 is transmitted to the CPU 11 as an electric signal.
- the auxiliary storage device 14 stores the relationship between the temperature of the measurement environment and the capacitance threshold at the temperature of the measurement environment. Specifically, (1) a relational expression showing the relationship between the temperature of the measurement environment and the capacitance threshold at the temperature of the measurement environment, (2) the temperature of the measurement environment and the capacitance threshold at the temperature of the measurement environment Is stored.
- a capacitance threshold at the temperature of the measurement environment is determined, and the above determination is made based on the capacitance threshold.
- a predetermined capacitance threshold is determined based on the temperature of the measurement environment, and the determination is performed based on the capacitance threshold.
- the above determination may be made by correcting the measured capacitance in the following manner and comparing the corrected capacitance with a capacitance threshold.
- the auxiliary storage device 14 has a correction temperature T 0 as a reference for correcting the measured capacitance, and a correction temperature of a capacitor formed between the first electrode A 2 and the second electrode A 3 of the piezoelectric sensor.
- the capacitance Ca at T 0 and the temperature coefficient W (ppm / ° C.) of the capacitance are stored.
- the correction temperature T 0 may be an arbitrary temperature, and is not particularly limited, but is preferably a temperature close to the average value of the temperature of the measurement environment of the sensor system.
- the capacitance is corrected by the CPU 11 based on the following correction formula stored in the auxiliary storage device 14.
- the capacitance C after correction C Ca + Ca ⁇ (temperature of measurement environment ⁇ T 0 ) ⁇ W / 10 6
- the CPU 11 may determine the capacitance by comparing the capacitance corrected as described above with the capacitance threshold.
- the presence or absence of the stress applied to the piezoelectric sensor is determined based on whether or not the capacitance measured by the second measurement module 16 exceeds a predetermined threshold (capacitance threshold).
- the presence or absence of the stress applied to the piezoelectric sensor may be determined based on whether or not the change rate of the capacitance exceeds a predetermined threshold (hereinafter, referred to as “capacitance change rate threshold”).
- Capacitance change rate threshold When making a judgment based on this criterion, it is necessary to determine the threshold value of the change rate of the capacitance (capacitance change rate threshold value) in consideration of the change in the capacitance itself due to the temperature change.
- the capacitance of the capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A is constantly measured by the second measurement module 16 as described above. Further, the temperature of the measurement environment is constantly measured by the temperature sensor 18 as described above. The measured capacitance and the temperature of the measurement environment are constantly transmitted to the CPU 11 as electric signals. Then, the capacitance and the temperature of the measurement environment transmitted to the CPU 11 are paired with the measurement time (the time at which the CPU 11 receives the capacitance and the temperature of the measurement environment), and are then stored in a predetermined area of the auxiliary storage device 14. Is stored.
- the capacitance and the temperature of the measurement environment at the time returned by the preset time from the measurement time of the capacitance and the temperature of the measurement environment transmitted from the second measurement module 16 are transmitted from the auxiliary storage device 14. Is read.
- the capacitance transmitted from the second measurement module 16 is referred to as “current capacitance”.
- the temperature of the measurement environment is called “current temperature”.
- the measurement time of the current capacitance and the current temperature is called “current time”.
- the time returned from the current time by a preset time is referred to as “reference time”.
- the capacitance at the reference time is called “reference capacitance”.
- the temperature of the measurement environment at the reference time is called “reference temperature”.
- the CPU 11 determines that the calculated change rate of the capacitance has exceeded the capacitance change rate threshold, the CPU 11 determines that a stress equal to or larger than a predetermined magnitude has been applied to the piezoelectric sensor A. . Then, the CPU 11 transmits a warning signal to that effect to the output module 17.
- the output module 17 notifies an administrator who manages the sensor system by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. Further, the change rate of the capacitance measured by the second measurement module 16 may be stored in the auxiliary storage device 14 as needed.
- the CPU 11 transmits the warning signal to the output module 17 until the potential measured by the first measurement module 15 becomes equal to or less than the potential threshold, or the capacitance measured by the second measurement module 16 or The change may be continuously performed until the change rate becomes equal to or less than the capacitance threshold value or the capacitance change rate threshold value, respectively.
- the output of the warning signal to the output module 17 by the CPU 11 may be stopped after a predetermined time has elapsed or by the administrator.
- the capacitance of the capacitor formed by the first electrode A2 and the second electrode A3 of the piezoelectric sensor A or the rate of change of the capacitance is described.
- the impedance between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A may be measured by the second measurement module 16, and the determination may be made based on the measured impedance.
- the description of the same configuration as the above-described sensor system is omitted.
- a predetermined threshold impedance threshold
- the output module 17 notifies an administrator who manages the sensor system by displaying it on a display or emitting a warning sound from a speaker.
- the administrator who has received the notification can take necessary actions based on the notification. Further, if necessary, the impedance measured by the second measurement module 16 may be stored in the auxiliary storage device 14.
- the transmission of the warning signal by the CPU 11 to the output module 17 may be continuously performed until the impedance measured by the second measurement module 16 becomes equal to or more than the impedance threshold, or after a predetermined time elapses or when the management is performed. May be stopped by a person.
- the impedance of the piezoelectric sensor A changes depending on the environmental temperature to be measured. That is, the impedance of the piezoelectric sensor A increases as the environmental temperature to be measured increases. Therefore, the temperature sensor 18 constantly measures the temperature of the measurement environment, and the temperature measured by the temperature sensor 18 is transmitted to the CPU 11 as an electric signal.
- the auxiliary storage device 14 stores the relationship between the temperature of the measurement environment and the impedance threshold at the temperature of the measurement environment. Specifically, (1) a relational expression showing the relationship between the temperature of the measurement environment and the impedance threshold at the temperature of the measurement environment, and (2) the relationship between the temperature of the measurement environment and the impedance threshold at the temperature of the measurement environment.
- the illustrated graph and the like are stored.
- the measurement environment is measured according to the relationship between the temperature of the measurement environment stored in the auxiliary storage device 14 and the impedance threshold value at the temperature of the measurement environment. Is determined, and the above determination is made based on this impedance threshold.
- a predetermined impedance threshold is determined based on the temperature of the measurement environment, and the determination is made based on the impedance threshold.
- a predetermined value may be determined in advance as the impedance threshold value, the calculated impedance of the piezoelectric sensor A may be corrected in the following manner, and the above-described determination may be made by comparing the corrected impedance with the impedance threshold value.
- the auxiliary storage device 14 the correction temperature T 1 of which is a reference for correcting the measured impedance, and the impedance Za of the piezoelectric sensor A in the correction temperature T 1 of, the temperature coefficient of impedance Y (ppm / °C) is stored Have been.
- the correction temperature T 1 may be any temperature, and is not particularly limited, but is preferably a temperature close to the average value of the temperature of the measurement environment of the sensor system.
- the impedance is corrected by the CPU 11 based on the following correction formula stored in the auxiliary storage device 14.
- Impedance after correction Z Za + Za ⁇ (Temperature of measurement environment ⁇ T 1 ) ⁇ Y / 10 6
- the determination may be made by the CPU 11 comparing the impedance corrected as described above with the impedance threshold.
- the second detection unit C that detects a change in impedance between the first electrode A2 and the second electrode A3 of the piezoelectric sensor has a Wheatstone bridge circuit. That is, the impedance between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A is preferably calculated using a Wheatstone bridge circuit. The use of a Wheatstone bridge circuit enables more accurate detection.
- a Wheatstone bridge circuit having two or more piezoelectric sensors of a measurement piezoelectric sensor and a reference piezoelectric sensor is preferable.
- the use of such a Wheatstone bridge circuit enables more accurate detection.
- the measurement and reference piezoelectric sensors are provided, there is no need to correct impedance changes due to temperature, and detection accuracy is further improved.
- An example of a Wheatstone bridge circuit having two or more piezoelectric sensors, a measurement piezoelectric sensor and a reference piezoelectric sensor includes an active dummy method.
- two Wheatstone bridge circuits are formed by preparing two piezoelectric sensors A.
- the two piezoelectric sensors A4 and A5 are incorporated in a circuit by electrically connecting a conductive wire to each of the first electrode A2 and the second electrode A3.
- one of the two piezoelectric sensors A4 and A5 is a piezoelectric sensor for measurement
- the other piezoelectric sensor is a piezoelectric sensor for reference.
- fixed resistances (or reference piezoelectric sensors) R 1 and R 2 whose impedance values are known are incorporated between points G 1 and G 3 and between points G 3 and G 4, respectively. .
- the impedance value J 3 of the piezoelectric sensor for measurement in a normal state satisfies the following expression.
- 0.8 ⁇ J 3 ⁇ J 1 ⁇ 1.2 ⁇ J 3 0.8 ⁇ J 3 ⁇ J 2 ⁇ 1.2 ⁇ J 3
- the piezoelectric sensor A4 constitutes a piezoelectric sensor for measurement.
- an AC voltage V 1 is applied between the points G 1 and G 4 at predetermined time intervals (preferably, fixed time intervals), and a potential difference V 2 between the points G 2 and G 3 is applied.
- the potential difference V 2 which is measured is sent to the CPU11 as an electric signal.
- the impedance of the piezoelectric sensor A4 is calculated by CPU11 based on a potential difference V 2.
- a known electrometer or the like is used for measuring the potential difference.
- the predetermined size of the piezoelectric sensor is determined based on whether or not the impedance calculated based on the potential V 2 measured by the second measurement module 16 is lower than a predetermined threshold (impedance threshold). It was determined whether or not the above stress was applied. Whether or not a stress equal to or greater than a predetermined magnitude is applied to the piezoelectric sensor may be determined based on whether or not the rate of change of the impedance exceeds a predetermined threshold (hereinafter, referred to as “impedance change rate threshold”). .
- impedance change rate threshold it is necessary to determine the impedance change rate threshold value in consideration of a change in the impedance itself due to a temperature change.
- the impedance is calculated using the Wheatstone bridge circuit shown in FIG. 4, it is not necessary to correct the change of the impedance itself due to the temperature change of the measurement environment in the current impedance and the reference impedance described later.
- the CPU 11 reads out the impedance from the auxiliary storage device 14 at a time that is returned by a preset time from the impedance measurement time calculated based on the potential difference V 2 transmitted from the second measurement module 16.
- the impedance calculated based on the potential difference V 2 transmitted from the second measurement module 16 is called “current impedance”.
- the measurement time of the current impedance is called “current time”.
- the time returned from the current time by a preset time is referred to as “reference time”.
- the impedance at the reference time is called “reference impedance”.
- the CPU 11 determines that the calculated rate of change in impedance exceeds a predetermined threshold (impedance change rate threshold), it is determined that a stress equal to or larger than a predetermined magnitude has been applied to the piezoelectric sensor A. Then, the CPU 11 transmits a warning signal to that effect to the output module 17.
- the output module 17 notifies an administrator who manages the sensor system, for example, by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. Further, the change rate of the impedance measured by the second measurement module 16 may be stored in the auxiliary storage device 14 as needed.
- the CPU 11 transmits the warning signal to the output module 17 until the potential measured by the first measurement module 15 becomes equal to or lower than the potential threshold, or the impedance measured by the second measurement module 16 or its change. It may be performed continuously until the rates become equal to or more than the impedance threshold or the impedance change rate threshold, respectively. Alternatively, the transmission of the warning signal to the output module 17 by the CPU 11 may be stopped after a predetermined time has elapsed or by the administrator.
- the sensor system can detect both stress (stress having a small frequency) applied gradually over a long period of time and stress (stress having a large frequency) applied for a short time or instantaneously. It is possible to detect two types of stress in the object to be detected. In addition, not only stress applied in the thickness direction of the piezoelectric sheet such as compression but also stress applied in the surface direction of the piezoelectric sheet such as elongation can be detected.
- the piezoelectric sensor A, the ROM 12, the RAM 13, the auxiliary storage device 14, the first measuring module 15, the second measuring module 16, the output module 17, the temperature sensor 18, and the CPU 11 are electrically connected so as to be able to communicate with each other by wire or wirelessly.
- the connected sensor system has been described.
- a server device having a CPU 11, a ROM 12, and a RAM 13 and a database server device as an auxiliary storage device 14 are prepared.
- the database server device is electrically connected to the server device in a communicable manner, and the server device is connected to the piezoelectric sensor A, the first measurement module 15, the second measurement module 16, the output module 17, and the like via a network such as the Internet.
- the sensor system may be configured to be communicably connected to the temperature sensor 18.
- the measurement result measured by the first measurement module 15, the second measurement module 16 and the temperature sensor 18 is transmitted to the server device via the network, and the measurement result or the measurement is measured by the CPU 11.
- a predetermined value is calculated based on the result.
- the measurement result or a value calculated based on the measurement result is referred to as a “comparison value”.
- a warning signal is transmitted to the output module 17 via the network.
- the output module 17 notifies an administrator who manages the sensor system, for example, by displaying it on a display or emitting a warning sound from a speaker. The notified administrator can take necessary measures based on the warning signal.
- Other operations of the sensor system via the network are the same as those of the above-described sensor system, and a description thereof will be omitted.
- the charge generated by the pressure or elongation gradually applied to the piezoelectric sensor A over a long period of time leaks, when measuring the pressure or elongation gradually applied to the piezoelectric sensor A over a long period of time, (2) It is preferable to detect by capacitance or impedance measured by the measurement module.
- Examples of the object to be detected by the sensor system include a human body, a robot, an unmanned aerial vehicle, a concrete structure, a bridge, and a transportation device (for example, a vehicle).
- the sensor system can be suitably used for applications in which the piezoelectric sensor A is attached to or attached to the skin of a human body, so-called wearable applications, and biological signals such as pulse waves and respiratory signals and movements of the skin surface. Can be accurately detected.
- the sensor system may constitute a measuring device itself, or may be used as a sensor unit of a conventionally known measuring device or a part thereof.
- the sensor system can accurately detect contact with another object and movement of a movable part of the machine by attaching the piezoelectric sensor A to a surface of a machine such as a robot or an unmanned aerial vehicle.
- the sensor system can detect cracks generated in the concrete structure by attaching the piezoelectric sensor A to the surface of a concrete structure such as a tunnel.
- concrete structures such as tunnels crack with the aging.
- the cracks in the concrete structure include a crack that is gradually formed by the strain applied over time and a crack that is generated by applying the stress to the concrete structure for a short time or momentarily.
- the former crack can be detected by detecting a change in the capacitance or impedance of a capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A. Further, according to the above sensor system, the latter crack can be detected by detecting the vibration generated when the latter crack is formed as a stress having a large frequency.
- the sensor system can detect both the pressure in the thickness direction of the piezoelectric sheet and the stress generated in the surface direction. In addition, the sensor system can detect both stresses applied gradually over a long period of time (stresses of low frequency) and stresses applied shortly or momentarily (stresses of high frequency).
- the sensor system is applied to various detected objects such as a human body, a robot, an unmanned aerial vehicle, a concrete structure, a bridge, and a transportation device (for example, a vehicle), and detects various stresses applied to the detected objects, Can be detected.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
The present invention provides a sensor system capable of detecting both stress applied gradually over a long period, and stress applied over a short period or instantaneously. This sensor system is characterized by being provided with: a piezoelectric sensor including a piezoelectric sheet having elasticity in a surface direction, a first electrode which is laminated onto one surface of the piezoelectric sheet and which has elasticity in the surface direction of the piezoelectric sheet, and a second electrode which is laminated onto the other surface of the piezoelectric sheet and which has elasticity in the surface direction of the piezoelectric sheet; a first detecting portion which measures an electric potential generated by the piezoelectric sensor; and a second detecting portion which detects a change in an electrostatic capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor, or a change in an impedance between the first electrode and the second electrode of the piezoelectric sensor.
Description
本発明は、センサシステム及びこれを用いた測定装置に関する。
The present invention relates to a sensor system and a measuring device using the same.
圧電シートは、絶縁性の高分子材料に電荷を注入することにより、内部に永久帯電を付与した材料である。圧電シートは、その優れた感度を利用してセンサ用途への展開が期待されている。
The piezoelectric sheet is a material in which a permanent charge is imparted inside by injecting charges into an insulating polymer material. Piezoelectric sheets are expected to be developed for sensor applications by utilizing their excellent sensitivity.
特許文献1には、高分子圧電材料からなり外部からの荷重又は力を受ける2つの圧電素子を重ね合わせた一対構成と、電極の間に誘電体のポリエステル絶縁膜から成る静電容量を並列接続した圧電素子と、一対の圧電素子の電圧を急峻化する抵抗及びコイルと、一対の圧電素子の電圧を共振できる正弦波発生電源を有する荷重測定装置が開示されている。
Patent Literature 1 discloses a paired structure in which two piezoelectric elements made of a polymer piezoelectric material and subjected to an external load or force are superimposed, and a capacitance made of a dielectric polyester insulating film is connected in parallel between the electrodes. There is disclosed a load measuring device including a piezoelectric element, a resistor and a coil for increasing the voltage of the pair of piezoelectric elements, and a sine wave generation power supply capable of resonating the voltage of the pair of piezoelectric elements.
荷重測定装置は、一対の圧電素子に荷重または力が加わったとき、圧電素子の電圧の周波数特性が変化し、両素子間電圧が差動電圧出力で検出でき、荷重または力の大きさを検出する検出手段を更に備えている。
When a load or force is applied to a pair of piezoelectric elements, the load measuring device changes the frequency characteristics of the voltage of the piezoelectric elements, and the voltage between both elements can be detected by a differential voltage output, and the magnitude of the load or force is detected. And a detecting means for performing the detection.
しかしながら、特許文献1に記載の荷重測定装置は、長い時間をかけて加わる応力(周波数の小さい応力)は検出できるものの、短い時間のうちに加わる応力(周波数が大きい応力)を充分に検出することができない。また、圧電素子の面方向に加わる応力(例えば、圧電素子の面方向への伸長)を充分に検出することができない、という問題点を有している。
However, the load measurement device described in Patent Literature 1 can detect stress (stress having a small frequency) applied over a long time, but sufficiently detect stress (stress having a large frequency) applied in a short time. Can not. In addition, there is a problem that it is not possible to sufficiently detect stress applied to the piezoelectric element in the plane direction (for example, extension of the piezoelectric element in the plane direction).
例えば、トンネルなどのコンクリート構造物は、経時劣化に伴ってひび割れが生じる。コンクリート構造物のひび割れには、経時的に歪みが加わることで徐々に形成されるひび割れと、コンクリート構造物に短時間で又は瞬間的に応力が加わることによって生じるひび割れとがある。前者のひび割れは、長い時間をかけて徐々に加わる応力によって、ひび割れ幅が徐々に拡大するように生じる。後者のひび割れは、コンクリート表面方向にひび割れが瞬間的に拡大したり、剥落が生じたりする。
For example, concrete structures such as tunnels are subject to cracks due to aging. Cracks in a concrete structure include cracks that are gradually formed due to strain over time, and cracks that are generated when stress is applied to a concrete structure in a short time or momentarily. The former crack is generated such that the width of the crack gradually increases due to the stress gradually applied over a long period of time. In the latter cracking, the cracks are instantaneously expanded or peeled off in the direction of the concrete surface.
前者のひび割れを検出するためには、コンクリート表面に沿った、長い時間をかけて徐々に加わる応力を検出する必要がある。一方、後者のひび割れを検出するためには、面方向に短時間又は瞬間的に加わる応力に加え、コンクリート表面に対して直交する方向(厚み方向)に生じる応力をも検出する必要がある。しかし、特許文献1に記載の荷重測定装置のような従来の技術では、一つのセンサでこれらの応力全てを検出することはできず、複数のセンサを配置する必要があるという問題点を有している。
応 力 In order to detect the former crack, it is necessary to detect the stress gradually applied over a long time along the concrete surface. On the other hand, in order to detect the latter crack, it is necessary to detect not only stress applied in a plane direction for a short time or instantaneously, but also stress generated in a direction perpendicular to the concrete surface (thickness direction). However, the conventional technology such as the load measuring device described in Patent Document 1 has a problem that it is not possible to detect all of these stresses with one sensor, and it is necessary to arrange a plurality of sensors. ing.
本発明は、圧電シートの厚み方向の圧力及び面方向に生じる応力の双方を検出することができると共に、長い時間をかけて徐々に加わる応力(周波数の小さい応力)と、短い時間又は瞬間的に加わる応力(周波数の大きい応力)の双方を検出することができるセンサシステムを提供する。
The present invention can detect both the pressure in the thickness direction of the piezoelectric sheet and the stress generated in the surface direction, and can apply the stress gradually applied over a long time (stress having a small frequency) to the short time or momentarily. Provided is a sensor system capable of detecting both applied stress (stress having a large frequency).
本発明のセンサシステムは、
面方向に伸縮性を有する圧電シート、前記圧電シートの一面に積層され且つ前記圧電シートの面方向に伸縮性を有する第1電極、及び、前記圧電シートの他面に積層され且つ前記圧電シートの面方向に伸縮性を有する第2電極を有する圧電センサと、
前記圧電センサにて発生した電位を測定する第1検出部と、
前記圧電センサの第1電極と第2電極との間に構成されたコンデンサの静電容量の変化又は圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部とを備えていることを特徴とする。 The sensor system of the present invention comprises:
A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction;
A first detection unit that measures a potential generated by the piezoelectric sensor;
A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; And characterized in that:
面方向に伸縮性を有する圧電シート、前記圧電シートの一面に積層され且つ前記圧電シートの面方向に伸縮性を有する第1電極、及び、前記圧電シートの他面に積層され且つ前記圧電シートの面方向に伸縮性を有する第2電極を有する圧電センサと、
前記圧電センサにて発生した電位を測定する第1検出部と、
前記圧電センサの第1電極と第2電極との間に構成されたコンデンサの静電容量の変化又は圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部とを備えていることを特徴とする。 The sensor system of the present invention comprises:
A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction;
A first detection unit that measures a potential generated by the piezoelectric sensor;
A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; And characterized in that:
本発明のセンサシステムは、圧電シートの厚み方向に加わる圧力と、圧電センサの面方向に加わる応力とを検出できることに加え、周波数の小さい応力と、周波数の大きい応力の双方を検出することができる。従って、様々な動きにより生じる、厚み方向及び面方向に加わる応力や、周波数の小さい応力及び周波数の大きい応力の検出を必要とする用途に好適に用いることができる。具体的には、人体の皮膚表面に貼着して用いられる用途(ウエアラブル用途)やコンクリート構築物の検査などの用途に好適に用いることができる。
The sensor system of the present invention can detect both the pressure applied in the thickness direction of the piezoelectric sheet and the stress applied in the plane direction of the piezoelectric sensor, and can also detect both the low frequency stress and the high frequency stress. . Therefore, it can be suitably used for applications that require detection of stress applied in the thickness direction and the surface direction, and low-frequency stress and high-frequency stress generated by various movements. Specifically, it can be suitably used for applications (wearable applications) used by sticking to the skin surface of a human body, inspection of concrete structures, and the like.
本発明のセンサシステムは、被測定体に加わる厚み方向及び面方向に生じる応力並びに、周波数の小さい応力及び周波数の大きい応力の検出を行なうことができる。従って、従来技術のように、それぞれの応力を検出するセンサを用意する必要がなく、測定装置の構造の簡略化及び小型化を図ることができる。
The sensor system according to the present invention can detect stress applied to the measured object in the thickness direction and the surface direction, as well as low-frequency stress and high-frequency stress. Therefore, unlike the related art, it is not necessary to prepare sensors for detecting respective stresses, and the structure of the measuring device can be simplified and downsized.
本発明のセンサシステムの一例を図面を参照しつつ説明する。
センサシステムは、
面方向に伸縮性を有する圧電シート、前記圧電シートの一面に積層され且つ前記圧電シートの面方向に伸縮性を有する第1電極、及び、前記圧電シートの他面に積層され且つ前記圧電シートの面方向に伸縮性を有する第2電極を有する圧電センサと、
前記圧電センサにて発生した電位を測定する第1検出部と、
前記圧電センサの第1電極と第2電極との間に構成されたコンデンサの静電容量の変化又は圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部とを備えている。 An example of the sensor system of the present invention will be described with reference to the drawings.
The sensor system is
A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction;
A first detection unit that measures a potential generated by the piezoelectric sensor;
A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; And
センサシステムは、
面方向に伸縮性を有する圧電シート、前記圧電シートの一面に積層され且つ前記圧電シートの面方向に伸縮性を有する第1電極、及び、前記圧電シートの他面に積層され且つ前記圧電シートの面方向に伸縮性を有する第2電極を有する圧電センサと、
前記圧電センサにて発生した電位を測定する第1検出部と、
前記圧電センサの第1電極と第2電極との間に構成されたコンデンサの静電容量の変化又は圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部とを備えている。 An example of the sensor system of the present invention will be described with reference to the drawings.
The sensor system is
A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction;
A first detection unit that measures a potential generated by the piezoelectric sensor;
A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; And
センサシステムSを構成している圧電センサAの圧電シートA1は、外力が加えられることによって電荷を発生させることができるシートであり且つ面方向に伸縮性を有する。
圧 電 The piezoelectric sheet A1 of the piezoelectric sensor A constituting the sensor system S is a sheet that can generate an electric charge when an external force is applied, and has elasticity in the plane direction.
このような圧電シートA1としては、特に限定されないが、合成樹脂発泡シートに分極を付与した圧電シートが好ましい。
と し て The piezoelectric sheet A1 is not particularly limited, but is preferably a piezoelectric sheet in which a synthetic resin foam sheet is polarized.
合成樹脂発泡シートを構成する合成樹脂としては、特に限定されず、例えば、ポリエチレン系樹脂、ポリプロピレン系樹脂などのポリオレフィン系樹脂、ポリフッ化ビニリデン、ポリ乳酸、液晶樹脂などが挙げられる。
合成 The synthetic resin constituting the synthetic resin foam sheet is not particularly limited, and examples thereof include a polyolefin resin such as a polyethylene resin and a polypropylene resin, polyvinylidene fluoride, polylactic acid, and a liquid crystal resin.
合成樹脂は絶縁性に優れていることが好ましく、合成樹脂としては、JIS K6911に準拠して印加電圧500Vにて電圧印加1分後の体積固有抵抗値(以下、単に「体積固有抵抗値」という)が1.0×1010Ω・m以上である合成樹脂が好ましい。
It is preferable that the synthetic resin has excellent insulating properties. As the synthetic resin, a volume resistivity (hereinafter simply referred to as a “volume resistivity”) after applying a voltage at an applied voltage of 500 V for one minute in accordance with JIS K6911 is used. ) Is preferably 1.0 × 10 10 Ω · m or more.
合成樹脂の上記体積固有抵抗値は、圧電シートA1がより優れた圧電性を有することから、1.0×1012Ω・m以上が好ましく、1.0×1014Ω・m以上がより好ましい。
The volume resistivity value of the synthetic resin is preferably 1.0 × 10 12 Ω · m or more, more preferably 1.0 × 10 14 Ω · m or more, since the piezoelectric sheet A1 has more excellent piezoelectricity. .
合成樹脂発泡シートに分極を付与する方法としては、特に限定されず、例えば、(1)~(3)の方法が挙げられる。
方法 The method for imparting polarization to the synthetic resin foam sheet is not particularly limited, and examples thereof include the methods (1) to (3).
(1)合成樹脂発泡シートを一対の平板電極で挟持し、帯電させたい表面に接触させている平板電極を高圧直流電源に接続すると共に他方の平板電極をアースし、合成樹脂発泡シートに直流又はパルス状の高電圧を印加して合成樹脂又は無機材料に電荷を注入して合成樹脂発泡シートに分極を付与する方法。
(2)電子線、X線などの電離性放射線や紫外線を合成樹脂発泡シートの表面に照射して、合成樹脂発泡シートの近傍部の空気分子をイオン化することによって合成樹脂又は無機系シートに分極を付与する方法。
(3)合成樹脂発泡シートの一面に、アースされた平板電極を密着状態に重ね合わせ、合成樹脂発泡シートの他面側に所定間隔を存して直流の高圧電源に電気的に接続された針状電極又はワイヤー電極を配設する。次に、針状電極の先端又はワイヤー電極の表面近傍への電界集中によりコロナ放電を発生させ、空気分子をイオン化させて、針状電極又はワイヤー電極の極性により発生した空気イオンを反発させて合成樹脂発泡シートに分極を付与する方法。 (1) A synthetic resin foam sheet is sandwiched between a pair of flat electrodes, the flat electrode in contact with the surface to be charged is connected to a high-voltage DC power supply, and the other flat electrode is grounded. A method of applying a pulsed high voltage to inject electric charge into a synthetic resin or an inorganic material to impart polarization to a synthetic resin foam sheet.
(2) Polarizing the synthetic resin or inorganic sheet by irradiating the surface of the synthetic resin foam sheet with ionizing radiation or ultraviolet rays such as electron beams and X-rays to ionize air molecules near the synthetic resin foam sheet. How to give.
(3) A needle electrically connected to a DC high-voltage power supply at a predetermined interval on the other surface of the synthetic resin foam sheet, with a grounded flat electrode superimposed on one surface of the synthetic resin foam sheet in close contact. An electrode or a wire electrode is provided. Next, a corona discharge is generated by electric field concentration at the tip of the needle electrode or near the surface of the wire electrode, ionizing air molecules, and repelling air ions generated by the polarity of the needle electrode or wire electrode to synthesize. A method for imparting polarization to a resin foam sheet.
(2)電子線、X線などの電離性放射線や紫外線を合成樹脂発泡シートの表面に照射して、合成樹脂発泡シートの近傍部の空気分子をイオン化することによって合成樹脂又は無機系シートに分極を付与する方法。
(3)合成樹脂発泡シートの一面に、アースされた平板電極を密着状態に重ね合わせ、合成樹脂発泡シートの他面側に所定間隔を存して直流の高圧電源に電気的に接続された針状電極又はワイヤー電極を配設する。次に、針状電極の先端又はワイヤー電極の表面近傍への電界集中によりコロナ放電を発生させ、空気分子をイオン化させて、針状電極又はワイヤー電極の極性により発生した空気イオンを反発させて合成樹脂発泡シートに分極を付与する方法。 (1) A synthetic resin foam sheet is sandwiched between a pair of flat electrodes, the flat electrode in contact with the surface to be charged is connected to a high-voltage DC power supply, and the other flat electrode is grounded. A method of applying a pulsed high voltage to inject electric charge into a synthetic resin or an inorganic material to impart polarization to a synthetic resin foam sheet.
(2) Polarizing the synthetic resin or inorganic sheet by irradiating the surface of the synthetic resin foam sheet with ionizing radiation or ultraviolet rays such as electron beams and X-rays to ionize air molecules near the synthetic resin foam sheet. How to give.
(3) A needle electrically connected to a DC high-voltage power supply at a predetermined interval on the other surface of the synthetic resin foam sheet, with a grounded flat electrode superimposed on one surface of the synthetic resin foam sheet in close contact. An electrode or a wire electrode is provided. Next, a corona discharge is generated by electric field concentration at the tip of the needle electrode or near the surface of the wire electrode, ionizing air molecules, and repelling air ions generated by the polarity of the needle electrode or wire electrode to synthesize. A method for imparting polarization to a resin foam sheet.
圧電シートA1の伸縮率は0.5%以上が好ましく、1%以上がより好ましく、1.5%以上がより好ましく、1.8%以上が特に好ましい。圧電シートA1の伸縮率は30%以下が好ましく、20%以下がより好ましく、10%以下がより好ましく、7%以下が特に好ましい。圧電シートA1の伸縮率が0.5%以上であると、周波数の小さい応力を精度良く検出することができる。又、圧縮などの圧電シートの厚み方向に加わる応力のみならず、伸長などの圧電シートの面方向に加わる応力をも精度良く検出することができる。圧電シートA1の伸縮率が30%以下であると、圧電シートA1が長期間に亘って安定的な圧電性を維持し、周波数の小さい応力を精度良く検出することができる。なお、圧電シートA1の伸縮率(%)は、下記の要領で測定された値をいう。先ず、圧電シートから一辺が5cmの平面正方形状の試験片を切り出し、この試験片を任意の縁辺の方向に10Nの力で伸長し、伸長時における伸長方向の試験片の長さ(cm)を測定する。圧電シートA1の伸縮率(%)は、下記式に基づいて算出された値をいう。
伸縮率(%)
=100×〔伸長時における伸長方向の試験片の長さ(cm)-5〕/5 The expansion and contraction rate of the piezoelectric sheet A1 is preferably 0.5% or more, more preferably 1% or more, more preferably 1.5% or more, and particularly preferably 1.8% or more. The expansion and contraction rate of the piezoelectric sheet A1 is preferably 30% or less, more preferably 20% or less, more preferably 10% or less, and particularly preferably 7% or less. When the expansion and contraction rate of the piezoelectric sheet A1 is 0.5% or more, stress with a small frequency can be detected with high accuracy. Further, not only stress applied in the thickness direction of the piezoelectric sheet such as compression, but also stress applied in the surface direction of the piezoelectric sheet such as elongation can be detected with high accuracy. When the expansion and contraction rate of the piezoelectric sheet A1 is 30% or less, the piezoelectric sheet A1 can maintain stable piezoelectricity over a long period of time, and can accurately detect stress having a small frequency. Note that the expansion / contraction rate (%) of the piezoelectric sheet A1 refers to a value measured in the following manner. First, a flat square test piece with a side of 5 cm is cut out from the piezoelectric sheet, and this test piece is stretched in a direction of an arbitrary edge by a force of 10 N, and the length (cm) of the test piece in the stretching direction at the time of stretching is determined. Measure. The expansion ratio (%) of the piezoelectric sheet A1 refers to a value calculated based on the following equation.
Expansion ratio (%)
= 100 × [length of test specimen in extension direction at extension (cm) -5] / 5
伸縮率(%)
=100×〔伸長時における伸長方向の試験片の長さ(cm)-5〕/5 The expansion and contraction rate of the piezoelectric sheet A1 is preferably 0.5% or more, more preferably 1% or more, more preferably 1.5% or more, and particularly preferably 1.8% or more. The expansion and contraction rate of the piezoelectric sheet A1 is preferably 30% or less, more preferably 20% or less, more preferably 10% or less, and particularly preferably 7% or less. When the expansion and contraction rate of the piezoelectric sheet A1 is 0.5% or more, stress with a small frequency can be detected with high accuracy. Further, not only stress applied in the thickness direction of the piezoelectric sheet such as compression, but also stress applied in the surface direction of the piezoelectric sheet such as elongation can be detected with high accuracy. When the expansion and contraction rate of the piezoelectric sheet A1 is 30% or less, the piezoelectric sheet A1 can maintain stable piezoelectricity over a long period of time, and can accurately detect stress having a small frequency. Note that the expansion / contraction rate (%) of the piezoelectric sheet A1 refers to a value measured in the following manner. First, a flat square test piece with a side of 5 cm is cut out from the piezoelectric sheet, and this test piece is stretched in a direction of an arbitrary edge by a force of 10 N, and the length (cm) of the test piece in the stretching direction at the time of stretching is determined. Measure. The expansion ratio (%) of the piezoelectric sheet A1 refers to a value calculated based on the following equation.
Expansion ratio (%)
= 100 × [length of test specimen in extension direction at extension (cm) -5] / 5
図1に示したように、圧電シートA1の一面(第1の面)に第1電極A2を積層一体化すると共に、圧電シートA1の他面(第2の面)に第2電極A3を積層一体化させて圧電センサAが構成されている。そして、第1電極A2と第2電極A3との電位差を測定することによって、圧電センサの圧電シートA1にて発生した電位を測定することができる。なお、圧電シートA1の一面(第1の面)は、圧電シートの最も大きな面積を有する面をいう。圧電シートA1の他面(第2の面)は、圧電シートの一面(第1の面)の反対側の面をいう。
As shown in FIG. 1, the first electrode A2 is laminated and integrated on one surface (first surface) of the piezoelectric sheet A1, and the second electrode A3 is laminated on the other surface (second surface) of the piezoelectric sheet A1. The piezoelectric sensor A is integrally formed. Then, by measuring the potential difference between the first electrode A2 and the second electrode A3, the potential generated in the piezoelectric sheet A1 of the piezoelectric sensor can be measured. Note that one surface (first surface) of the piezoelectric sheet A1 is a surface of the piezoelectric sheet having the largest area. The other surface (second surface) of the piezoelectric sheet A1 is a surface opposite to the one surface (first surface) of the piezoelectric sheet.
圧電シートA1の一面には、伸縮性を有する第1電極A2が積層一体化されている。第1電極A2は、圧電シートA1の面方向に伸縮性を有しておればよい。第1電極A2としては、特に限定されず、導電性微粒子及び伸縮性を有する結着樹脂を含むことが好ましい。第1電極A2が、導電性微粒子を含有する、伸縮性を有する結着樹脂によって構成されている場合、より優れた伸縮性を発現し、圧電センサに加えられる周波数の小さい応力をより精度良く検出することができる。また、圧縮などの圧電シートの厚み方向に加わる応力のみならず、伸長などの圧電シートの面方向に加わる応力をも精度よく検出することができる。
伸縮 A first electrode A2 having elasticity is laminated and integrated on one surface of the piezoelectric sheet A1. The first electrode A2 only needs to have elasticity in the plane direction of the piezoelectric sheet A1. The first electrode A2 is not particularly limited, and preferably contains conductive fine particles and a binder resin having elasticity. When the first electrode A2 is made of a stretchable binder resin containing conductive fine particles, it exhibits more excellent stretchability and more accurately detects a small frequency stress applied to the piezoelectric sensor. can do. Further, not only stress applied in the thickness direction of the piezoelectric sheet such as compression but also stress applied in the surface direction of the piezoelectric sheet such as elongation can be accurately detected.
同様に、圧電シートA1の他面にも、伸縮性を有する第2電極A3が積層一体化されている。第2電極A3は、圧電シートA1の面方向に伸縮性を有しておればよい。第2電極A3としては、特に限定されず、導電性微粒子及び伸縮性を有する結着樹脂を含むことが好ましい。第2電極A3が、導電性微粒子を含有する、伸縮性を有する結着樹脂によって構成されている場合、より優れた伸縮性を発現し、圧電センサに加えられる周波数の小さい応力をより精度良く検出することができる。又、圧縮などの圧電シートの厚み方向に加わる応力のみならず、伸長などの圧電シートの面方向に加わる応力をも精度よく検出することができる。
Similarly, a second electrode A3 having elasticity is laminated and integrated on the other surface of the piezoelectric sheet A1. The second electrode A3 only needs to have elasticity in the plane direction of the piezoelectric sheet A1. The second electrode A3 is not particularly limited, and preferably contains conductive fine particles and a binder resin having elasticity. When the second electrode A3 is made of an elastic binder resin containing conductive fine particles, it exhibits more excellent elasticity and more accurately detects a small frequency stress applied to the piezoelectric sensor. can do. In addition, not only stress applied in the thickness direction of the piezoelectric sheet, such as compression, but also stress applied in the surface direction of the piezoelectric sheet, such as elongation, can be accurately detected.
第1電極A2又は第2電極A3が、導電性微粒子を含有する、結着樹脂により構成される場合、第1電極A2及び第2電極A3に導電性を付与することができれば、導電性微粒子は特に限定されない。導電性微粒子としては、例えば、銀微粒子、アルミニウム微粒子、銅微粒子、ニッケル微粒子、パラジウム微粒子などの金属微粒子、カーボンブラック、グラファイト、カーボンナノチューブ、炭素繊維、金属被覆カーボンブラックなどの炭素系導電性微粒子、炭化タングステン、窒化チタン、窒化ジルコニウム、炭化チタンなどのセラミック系導電性微粒子、導電性チタン酸カリウムウイスカーなどが挙げられる。なかでも導電性に優れることから、金属微粒子が好ましく、銀微粒子がより好ましい。導電性微粒子は、単独で用いられても二種以上が併用されてもよい。なお、第1電極A2に含まれている導電性微粒子と、第2電極A3に含まれている導電性微粒子とは同一であっても相違してもよい。
When the first electrode A2 or the second electrode A3 is made of a binder resin containing conductive fine particles, if the first electrode A2 and the second electrode A3 can be provided with conductivity, the conductive fine particles are There is no particular limitation. Examples of the conductive fine particles include silver fine particles, aluminum fine particles, copper fine particles, nickel fine particles, metal fine particles such as palladium fine particles, carbon black, graphite, carbon nanotubes, carbon fibers, and carbon-based conductive fine particles such as metal-coated carbon black. Examples include conductive ceramic fine particles such as tungsten carbide, titanium nitride, zirconium nitride, and titanium carbide, and conductive potassium titanate whiskers. Among them, metal fine particles are preferable, and silver fine particles are more preferable, since they are excellent in conductivity. The conductive fine particles may be used alone or in combination of two or more. Note that the conductive fine particles included in the first electrode A2 and the conductive fine particles included in the second electrode A3 may be the same or different.
第1電極A2が導電性微粒子を含有する結着樹脂により構成される場合、電極中の導電性微粒子の含有量は、結着樹脂100質量部に対して40~90質量部が好ましく、60~85質量部がより好ましく、60~80質量部が特に好ましい。第2電極A3が導電性微粒子を含有する結着樹脂により構成される場合、電極中の導電性微粒子の含有量は、結着樹脂100質量部に対して40~90質量部が好ましく、60~85質量部がより好ましく、60~80質量部が特に好ましい。第1電極A2及び第2電極A3中に含まれる導電性微粒子の含有量が上記範囲内であると、第1電極A2及び第2電極A3の伸縮性を維持しつつ、第1電極A2及び第2電極A3に導電性を付与することができる。
When the first electrode A2 is composed of a binder resin containing conductive fine particles, the content of the conductive fine particles in the electrode is preferably 40 to 90 parts by mass, and more preferably 60 to 90 parts by mass with respect to 100 parts by mass of the binder resin. 85 parts by mass is more preferable, and 60 to 80 parts by mass is particularly preferable. When the second electrode A3 is made of a binder resin containing conductive fine particles, the content of the conductive fine particles in the electrode is preferably 40 to 90 parts by mass, and more preferably 60 to 90 parts by mass with respect to 100 parts by mass of the binder resin. 85 parts by mass is more preferable, and 60 to 80 parts by mass is particularly preferable. When the content of the conductive fine particles contained in the first electrode A2 and the second electrode A3 is within the above range, the first electrode A2 and the second electrode A3 are maintained while maintaining the elasticity of the first electrode A2 and the second electrode A3. Conductivity can be given to the two electrodes A3.
第1電極A2又は第2電極A3が結着樹脂により構成されている場合、結着樹脂は圧電シートA1の面方向への伸縮に追従して、亀裂などの損傷を生じることなく伸縮可能な伸縮性を第1電極A2及び第2電極A3に付与することができればよく、特に限定されない。
When the first electrode A2 or the second electrode A3 is made of a binder resin, the binder resin follows the expansion and contraction of the piezoelectric sheet A1 in the plane direction, and can expand and contract without causing damage such as cracks. There is no particular limitation as long as the properties can be imparted to the first electrode A2 and the second electrode A3.
上記結着樹脂としては、例えば、変性シリコーン、アクリル変性ポリマー、スチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、1,2-ポリブタジエン系熱可塑性エラストマーなどの熱可塑性エラストマー、ポリクロロプレン(CR)、EPDM、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、エチレン-プロピレン共重合体ゴム、ブチルゴムなどのゴム材料などが挙げられる。なお、結着樹脂は、単独で用いられてもよいし、二種以上が併用されてもよい。
As the binder resin, for example, modified silicone, acrylic modified polymer, styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyvinyl chloride-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, polyamide-based Thermoplastic elastomers such as thermoplastic elastomers, polyamide-based thermoplastic elastomers, 1,2-polybutadiene-based thermoplastic elastomers, polychloroprene (CR), EPDM, polyisoprene rubber (IR), polybutadiene rubber (BR), and styrene-butadiene Rubber materials such as heavy rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene copolymer rubber, and butyl rubber are exemplified. The binder resin may be used alone, or two or more kinds may be used in combination.
圧電シートA1の表面に第1電極A2及び第2電極A3を積層一体化する方法としては、特に限定されず、例えば、(1)及び(2)の方法が挙げられる。
The method for laminating and integrating the first electrode A2 and the second electrode A3 on the surface of the piezoelectric sheet A1 is not particularly limited, and examples thereof include the methods (1) and (2).
(1)導電性微粒子及び結着樹脂を溶媒中に分散又は溶解させてなる導電性塗料を圧電シートA1の表面に塗布した後、導電性塗料の溶媒を除去することによって、第1電極A2又は第2電極A3を圧電シートA1の表面に積層一体化する方法。
(2)導電性微粒子を硬化性樹脂中に分散させてなる導電性塗料を圧電シートA1の表面に塗布した後、硬化性樹脂を加熱又は電離性放射線によって硬化させて結着樹脂とし、第1電極A2又は第2電極A3を圧電シートA1の表面に積層一体化する方法。なお、電離性放射線としては、例えば、電子線、紫外線、α線、β線、γ線などが挙げられる。 (1) After applying a conductive paint obtained by dispersing or dissolving conductive fine particles and a binder resin in a solvent to the surface of the piezoelectric sheet A1, by removing the solvent of the conductive paint, the first electrode A2 or A method of laminating and integrating the second electrode A3 on the surface of the piezoelectric sheet A1.
(2) After applying a conductive paint obtained by dispersing conductive fine particles in a curable resin to the surface of the piezoelectric sheet A1, the curable resin is cured by heating or ionizing radiation to form a binder resin. A method of laminating and integrating the electrode A2 or the second electrode A3 on the surface of the piezoelectric sheet A1. The ionizing radiation includes, for example, electron beams, ultraviolet rays, α rays, β rays, γ rays, and the like.
(2)導電性微粒子を硬化性樹脂中に分散させてなる導電性塗料を圧電シートA1の表面に塗布した後、硬化性樹脂を加熱又は電離性放射線によって硬化させて結着樹脂とし、第1電極A2又は第2電極A3を圧電シートA1の表面に積層一体化する方法。なお、電離性放射線としては、例えば、電子線、紫外線、α線、β線、γ線などが挙げられる。 (1) After applying a conductive paint obtained by dispersing or dissolving conductive fine particles and a binder resin in a solvent to the surface of the piezoelectric sheet A1, by removing the solvent of the conductive paint, the first electrode A2 or A method of laminating and integrating the second electrode A3 on the surface of the piezoelectric sheet A1.
(2) After applying a conductive paint obtained by dispersing conductive fine particles in a curable resin to the surface of the piezoelectric sheet A1, the curable resin is cured by heating or ionizing radiation to form a binder resin. A method of laminating and integrating the electrode A2 or the second electrode A3 on the surface of the piezoelectric sheet A1. The ionizing radiation includes, for example, electron beams, ultraviolet rays, α rays, β rays, γ rays, and the like.
上記では、第1電極A2及び第2電極A3を圧電シートA1の表面に直接、積層一体化した場合を説明したが、積層一体化する方法はこれらの方法のみに限定されない。他の方法としては、第1電極A2又は第2電極A3を伸縮性合成樹脂シートの表面に担持させた(積層一体化させた)上で、伸縮性合成樹脂シートをその第1電極A2又は第2電極A3の形成面を圧電シートA1側に向けて圧電シートA1の表面に必要に応じて固定剤などの公知の接着剤を用いて積層一体化させる方法等が挙げられる。
(4) In the above description, the case where the first electrode A2 and the second electrode A3 are directly laminated and integrated on the surface of the piezoelectric sheet A1 has been described, but the method of laminating and integrating is not limited to only these methods. As another method, the first electrode A2 or the second electrode A3 is supported on the surface of the stretchable synthetic resin sheet (laminated and integrated), and then the stretchable synthetic resin sheet is placed on the first electrode A2 or the second electrode A2. A method in which the surface on which the two electrodes A3 are formed faces the piezoelectric sheet A1 side, and the surface of the piezoelectric sheet A1 is laminated and integrated with a known adhesive such as a fixing agent as necessary.
伸縮性合成樹脂シートとしては、亀裂などの損傷を生じることなく、圧電シートA1の面方向における伸縮に追従して伸縮可能であれば、特に限定されない。伸縮性合成樹脂シートを構成する合成樹脂としては、例えば、スチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリ塩化ビニル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、1,2-ポリブタジエン系熱可塑性エラストマーなどの熱可塑性エラストマー、ポリクロロプレン(CR)、EPDM、ポリイソプレンゴム(IR)、ポリブタジエンゴム(BR)、スチレン-ブタジエン共重体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、エチレン-プロピレン共重合体ゴム、ブチルゴムなどのゴム材料などが挙げられる。なお、伸縮性合成樹脂シートを構成する合成樹脂は、単独で用いられてもよいし、二種以上が併用されてもよい。
(4) The stretchable synthetic resin sheet is not particularly limited as long as the stretchable synthetic resin sheet can expand and contract following the expansion and contraction in the plane direction of the piezoelectric sheet A1 without causing damage such as cracks. Examples of the synthetic resin constituting the stretchable synthetic resin sheet include styrene-based thermoplastic elastomer, polyolefin-based thermoplastic elastomer, polyvinyl chloride-based thermoplastic elastomer, polyurethane-based thermoplastic elastomer, polyester-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. Thermoplastic elastomers such as thermoplastic elastomers, polyamide-based thermoplastic elastomers and 1,2-polybutadiene-based thermoplastic elastomers, polychloroprene (CR), EPDM, polyisoprene rubber (IR), polybutadiene rubber (BR), styrene-butadiene copolymer Rubber materials such as rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR), ethylene-propylene copolymer rubber, and butyl rubber. The synthetic resin constituting the stretchable synthetic resin sheet may be used alone, or two or more kinds may be used in combination.
伸縮性合成樹脂シートの表面に第1電極A2又は第2電極A3を担持させる方法としては、特に限定されず、例えば、(1)及び(2)の方法が挙げられる。
The method for supporting the first electrode A2 or the second electrode A3 on the surface of the stretchable synthetic resin sheet is not particularly limited, and examples thereof include the methods (1) and (2).
(1)導電性微粒子及び結着樹脂を溶媒中に分散又は溶解させてなる導電性塗料を伸縮性合成樹脂シートの表面に塗布した後、導電性塗料の溶媒を除去することによって、第1電極A2又は第2電極A3を伸縮性合成樹脂シートの表面に積層一体化する方法。
(2)導電性微粒子を硬化性樹脂中に分散させてなる導電性塗料を伸縮性合成樹脂シートの表面に塗布した後、硬化性樹脂を加熱又は電離性放射線によって硬化させて結着樹脂とし、第1電極A2又は第2電極A3を伸縮性合成樹脂シートの表面に積層一体化する方法。 (1) After applying a conductive paint obtained by dispersing or dissolving conductive fine particles and a binder resin in a solvent to the surface of a stretchable synthetic resin sheet, the solvent of the conductive paint is removed to form the first electrode. A method in which A2 or the second electrode A3 is laminated and integrated on the surface of a stretchable synthetic resin sheet.
(2) After applying a conductive paint obtained by dispersing conductive fine particles in a curable resin to the surface of a stretchable synthetic resin sheet, the curable resin is cured by heating or ionizing radiation to form a binder resin, A method of laminating and integrating the first electrode A2 or the second electrode A3 on the surface of a stretchable synthetic resin sheet.
(2)導電性微粒子を硬化性樹脂中に分散させてなる導電性塗料を伸縮性合成樹脂シートの表面に塗布した後、硬化性樹脂を加熱又は電離性放射線によって硬化させて結着樹脂とし、第1電極A2又は第2電極A3を伸縮性合成樹脂シートの表面に積層一体化する方法。 (1) After applying a conductive paint obtained by dispersing or dissolving conductive fine particles and a binder resin in a solvent to the surface of a stretchable synthetic resin sheet, the solvent of the conductive paint is removed to form the first electrode. A method in which A2 or the second electrode A3 is laminated and integrated on the surface of a stretchable synthetic resin sheet.
(2) After applying a conductive paint obtained by dispersing conductive fine particles in a curable resin to the surface of a stretchable synthetic resin sheet, the curable resin is cured by heating or ionizing radiation to form a binder resin, A method of laminating and integrating the first electrode A2 or the second electrode A3 on the surface of a stretchable synthetic resin sheet.
センサシステムSは、圧電センサAと、圧電センサAにて発生した電位を測定する第1検出部Bと、圧電センサAの第1電極と第2電極との間に構成されたコンデンサの静電容量の変化又は圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部Cとを備えている。
The sensor system S includes a piezoelectric sensor A, a first detection unit B for measuring a potential generated by the piezoelectric sensor A, and an electrostatic capacitance of a capacitor formed between a first electrode and a second electrode of the piezoelectric sensor A. A second detecting unit that detects a change in capacitance or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor;
センサシステムSは、機能的には、図2に示したように、圧電センサAと、第1検出部Bと、第2検出部Cとを有している。
The sensor system S functionally includes a piezoelectric sensor A, a first detection unit B, and a second detection unit C, as shown in FIG.
センサシステムSは、物理的には、図3に示したように、圧電センサAと、CPU(Central Processing Unit)11と、ROM(Read Only Memory)12と、RAM(Random Access Memory)13と、補助記憶装置14と、第1測定モジュール15と、第2測定モジュール16と、出力モジュール17と、温度センサ18とを有している。
As shown in FIG. 3, the sensor system S physically includes a piezoelectric sensor A, a CPU (Central Processing Unit) 11, a ROM (Read Only Memory) 12, a RAM (Random Access Memory) 13, It has an auxiliary storage device 14, a first measurement module 15, a second measurement module 16, an output module 17, and a temperature sensor 18.
CPU11に、圧電センサA、ROM12、RAM13、補助記憶装置14、第1測定モジュール15、第2測定モジュール16、出力モジュール17及び温度センサ18が通信可能に電気的に接続されている。CPU11、補助記憶装置14、第1測定モジュール、第2測定モジュール16、出力モジュール17及び温度センサ18に汎用の無線モジュールを付帯又は実装させて、相互に無線を通じて通信可能に電気的に接続してもよい。無線モジュールとは、通信端末と無線データ通信を行なうモジュールであって、ワイファイ(Wi-Fi)(登録商標)やブルートゥース(登録商標)[Bluetooth(登録商標)]、W-CDMA規格、LTE規格、LPWA(Low Power Wide Area)規格などの通常の無線通信方式を実現するためのモジュールである。
(4) The piezoelectric sensor A, the ROM 12, the RAM 13, the auxiliary storage device 14, the first measuring module 15, the second measuring module 16, the output module 17, and the temperature sensor 18 are electrically connected to the CPU 11 in a communicable manner. The CPU 11, the auxiliary storage device 14, the first measurement module, the second measurement module 16, the output module 17, and the temperature sensor 18 are attached or mounted with a general-purpose wireless module, and are electrically connected to each other so as to be able to communicate with each other through wireless communication. Is also good. The wireless module is a module that performs wireless data communication with a communication terminal, and is a module that performs wireless data communication (Wi-Fi) (registered trademark), Bluetooth (registered trademark) [Bluetooth (registered trademark)], W-CDMA standard, LTE standard, This is a module for realizing a normal wireless communication system such as the LPWA (Low Power Wide Area) standard.
補助記憶装置14としては、例えば、SSD(Solid State Drive)やHDD(Hard Disk Drive)などが挙げられる。出力モジュール17としては、例えば、ディスプレイ、スピーカー、携帯端末機器などが挙げられる。
The auxiliary storage device 14 includes, for example, a solid state drive (SSD) and a hard disk drive (HDD). The output module 17 includes, for example, a display, a speaker, a portable terminal device, and the like.
第1測定モジュール15は、圧電センサAの圧電シートA1にその厚み方向に周波数の大きい応力が加えられることによって、圧電シートA1にて発生した電位を測定する。更に、第1測定モジュール15は、圧電センサAの圧電シートA1がその面方向に短い時間又は瞬間的に伸長されることによって、圧電シートA1が厚み方向に短い時間又は瞬間的に圧縮されることで圧電シートA1にて発生した電位を測定する。つまり、第1測定モジュール15は、圧電センサAの圧電シートA1にその厚み方向又は面方向に短い時間又は瞬間的に加えられた、周波数の大きい応力によって圧電シートA1にて生じる電位を測定する。第1測定モジュール15としては、電位の測定に用いられる公知の電位計を用いることができる。
(1) The first measurement module 15 measures a potential generated in the piezoelectric sheet A1 by applying a stress having a large frequency in the thickness direction to the piezoelectric sheet A1 of the piezoelectric sensor A. Further, the first measurement module 15 is configured to determine that the piezoelectric sheet A1 of the piezoelectric sensor A is compressed in the thickness direction for a short period of time or momentarily by being expanded in the surface direction for a short time or momentarily. Is used to measure the potential generated in the piezoelectric sheet A1. That is, the first measurement module 15 measures the potential generated in the piezoelectric sheet A1 by the high frequency stress applied to the piezoelectric sheet A1 of the piezoelectric sensor A in the thickness direction or the surface direction for a short time or instantaneously. As the first measurement module 15, a known electrometer used for measuring an electric potential can be used.
第2測定モジュール16は、圧電センサAの第1電極A2と第2電極A3との間に構成されたコンデンサの静電容量を測定する。第2測定モジュール16によって上記コンデンサの静電容量を測定することにより、圧電センサAがその面方向に伸長され、圧電センサAの厚みが減少することによって生じる上記コンデンサの静電容量の変化を検出することができる。更に、第2測定モジュール16によって上記コンデンサの静電容量を測定することにより、圧電センサAにその厚み方向に押圧力が加えられ、圧電センサAの厚みが減少することによって生じる上記コンデンサの静電容量の変化を検出することができる。第2測定モジュール16は、周波数の小さい応力を検出するために好適に用いることができる。第2測定モジュール16としては、LCRメーターなどの公知の測定装置を用いることができる。
The second measurement module 16 measures the capacitance of the capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A. The capacitance of the capacitor is measured by the second measurement module 16 to detect a change in the capacitance of the capacitor caused by the piezoelectric sensor A extending in the surface direction and the thickness of the piezoelectric sensor A decreasing. can do. Further, by measuring the capacitance of the capacitor by the second measurement module 16, a pressing force is applied to the piezoelectric sensor A in the thickness direction thereof, and the capacitance of the capacitor caused by the decrease in the thickness of the piezoelectric sensor A is generated. A change in capacitance can be detected. The second measurement module 16 can be suitably used for detecting a low frequency stress. As the second measurement module 16, a known measurement device such as an LCR meter can be used.
第1測定モジュール15が検出する周波数の大きい応力は、周波数が0.01Hz以上である応力であることが好ましい。周波数が0.01Hz以上であることで、電位の変化を検出しやすい。その結果、周波数の大きい応力を精度良く検出することができる。上記周波数の大きい応力は、0.1Hz以上の応力であることがより好ましく、1Hz以上の応力であることがさらに好ましい。第1測定モジュール15が検出する応力よりも周波数の小さい応力は、第2測定モジュール16により好適に検出することができる。
(4) The high frequency stress detected by the first measurement module 15 is preferably a stress having a frequency of 0.01 Hz or more. When the frequency is 0.01 Hz or more, it is easy to detect a change in potential. As a result, stress having a large frequency can be accurately detected. The stress having a large frequency is preferably a stress of 0.1 Hz or more, more preferably a stress of 1 Hz or more. Stress having a frequency lower than that of the stress detected by the first measurement module 15 can be suitably detected by the second measurement module 16.
センサシステムSは、CPU11やRAM13上に所定のプログラムを読み込ませることにより、CPU11の制御のもとで第1測定モジュール15、第2測定モジュール16、出力モジュール17及び温度センサ18を作動させると共に、RAM13や補助記憶装置14におけるデータの読み出し及び書き込みを行うことで実現される。
The sensor system S operates a first measurement module 15, a second measurement module 16, an output module 17, and a temperature sensor 18 under the control of the CPU 11 by reading a predetermined program on the CPU 11 and the RAM 13. This is realized by reading and writing data in the RAM 13 and the auxiliary storage device 14.
第1検出部B及び第2検出部Cは、CPU11の制御のもとで、ROM12などに記憶されているプログラムを実行することで所定の機能を発揮する。
The first detector B and the second detector C perform predetermined functions by executing a program stored in the ROM 12 or the like under the control of the CPU 11.
圧電センサの第1電極A2及び第2電極A3は、第1測定モジュール15に導電線を介して電気的に接続されており、第2電極A3を基準電位とし、第1電極A2の電位を第1測定モジュール15によって測定可能に構成されている。なお、第1電極A2を基準電位として第2電極A3の電位を第1測定モジュール15によって測定してもよい。
The first electrode A2 and the second electrode A3 of the piezoelectric sensor are electrically connected to the first measurement module 15 via a conductive wire. The second electrode A3 is used as a reference potential, and the potential of the first electrode A2 is used as the first potential. It is configured to be measurable by one measurement module 15. The potential of the second electrode A3 may be measured by the first measurement module 15 using the first electrode A2 as a reference potential.
更に、圧電センサAの第1電極A2及び第2電極A3は、第2測定モジュール16にも導電線を介して電気的に接続されており、第1電極A2と第2電極A3との間に構成されたコンデンサの静電容量が第2測定モジュール16によって測定可能に構成されている。
Further, the first electrode A2 and the second electrode A3 of the piezoelectric sensor A are also electrically connected to the second measurement module 16 via a conductive wire, and are provided between the first electrode A2 and the second electrode A3. The capacitance of the formed capacitor can be measured by the second measurement module 16.
圧電センサAの第1電極A2及び第2電極A3は、第1測定モジュール15及び第2測定モジュール16の双方に電気的に接続されているが、第1測定モジュール15で測定される電位と、第2測定モジュール16で測定される静電容量とは測定時において干渉することなく独立して測定される。
The first electrode A2 and the second electrode A3 of the piezoelectric sensor A are electrically connected to both the first measurement module 15 and the second measurement module 16, but have a potential measured by the first measurement module 15, The capacitance is measured independently from the capacitance measured by the second measurement module 16 without interference at the time of measurement.
第1測定モジュール15によって測定された電位、及び、第2測定モジュール16によって測定された静電容量は、CPU11によって常時監視されている。
The potential measured by the first measurement module 15 and the capacitance measured by the second measurement module 16 are constantly monitored by the CPU 11.
そして、第1測定モジュール15にて測定された電位が予め定められた閾値(電位閾値)を超えると、CPU11は、予め定められた大きさを超える応力が圧電センサAに加わったと判断し、その旨の警告信号がCPU11によって出力モジュール17に送信される。出力モジュール17はディスプレイに表示又はスピーカーから警告音を発するなどして、センサシステムSを管理する管理者に通知する。通知を受けた管理者は、通知に基づいて必要な措置を講ずることができる。又、必要に応じて、第1測定モジュール15にて測定された電位を補助記憶装置14に記憶してもよい。
When the potential measured by the first measurement module 15 exceeds a predetermined threshold (potential threshold), the CPU 11 determines that a stress exceeding a predetermined magnitude has been applied to the piezoelectric sensor A, A warning signal to the effect is transmitted to the output module 17 by the CPU 11. The output module 17 notifies a manager who manages the sensor system S by displaying on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. Further, the potential measured by the first measurement module 15 may be stored in the auxiliary storage device 14 as needed.
なお、CPU11による警告信号の出力モジュール17への送信は、第1測定モジュール15にて測定された電位が予め定められた閾値(電位閾値)以下となるまで継続して行なわれてもよいし、一定時間経過後又は管理者によって停止されてもよい。
The transmission of the warning signal to the output module 17 by the CPU 11 may be continued until the potential measured by the first measurement module 15 becomes equal to or less than a predetermined threshold (potential threshold), It may be stopped after a certain period of time or by an administrator.
又、圧電センサAがその面方向に伸長されて圧電センサAの厚みが薄くなり、又は、圧電センサAをその厚み方向に圧縮させる応力が加わると、圧電センサの第1電極A2と第2電極A3との間に形成されたコンデンサの静電容量は大きくなる。第2測定モジュール16にて測定された静電容量が予め定められた閾値(静電容量閾値)を超えると、CPU11によって、予め定められた大きさ以上の応力が圧電センサAに加わったと判断される。すると、CPU11はその旨の警告信号を出力モジュール17に送信する。出力モジュール17はディスプレイに表示又はスピーカーから警告音を発するなどして、センサシステムを管理する管理者に通知する。通知を受けた管理者は、通知に基づいて必要な措置を講ずることができる。又、必要に応じて、第2測定モジュール16にて測定された静電容量を補助記憶装置14に記憶してもよい。
Further, when the piezoelectric sensor A is extended in the surface direction to reduce the thickness of the piezoelectric sensor A, or when a stress for compressing the piezoelectric sensor A in the thickness direction is applied, the first electrode A2 and the second electrode The capacitance of the capacitor formed between A3 and A3 increases. When the capacitance measured by the second measurement module 16 exceeds a predetermined threshold (capacitance threshold), the CPU 11 determines that a stress equal to or larger than a predetermined magnitude has been applied to the piezoelectric sensor A. You. Then, the CPU 11 transmits a warning signal to that effect to the output module 17. The output module 17 notifies a manager who manages the sensor system by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. If necessary, the capacitance measured by the second measurement module 16 may be stored in the auxiliary storage device 14.
なお、CPU11による警告信号の出力モジュール17への送信は、第2測定モジュール16にて測定された静電容量が、静電容量閾値以下となるまで継続して行なわれてもよいし、一定時間経過後又は管理者によって停止されてもよい。
The transmission of the warning signal by the CPU 11 to the output module 17 may be continuously performed until the capacitance measured by the second measurement module 16 becomes equal to or less than the capacitance threshold, or may be performed for a certain period of time. It may be stopped after a lapse or by an administrator.
圧電センサAに長期間をかけて徐々に加えられる応力によって圧電センサAの厚みが徐々に圧縮される場合であっても、第2検出部Cによって、圧電センサAの第1電極A2と第2電極A3との間に形成されたコンデンサの静電容量の変化を検出することができる。従って、圧電センサAの第1電極A2と第2電極A3との間に形成されたコンデンサの静電容量を測定することによって、圧電センサAに加えられる、長期間をかけて徐々に加わる応力、即ち、周波数の小さい応力を精度良く検出することができる。
Even when the thickness of the piezoelectric sensor A is gradually compressed by the stress gradually applied to the piezoelectric sensor A over a long period of time, the second detection unit C allows the first electrode A2 of the piezoelectric sensor A to be connected to the second electrode A2. It is possible to detect a change in the capacitance of the capacitor formed between the electrode A3. Therefore, by measuring the capacitance of the capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A, the stress applied to the piezoelectric sensor A gradually applied over a long period of time, That is, it is possible to accurately detect a stress having a small frequency.
ここで、第2測定モジュール16にて測定される静電容量は、測定環境(測定時の雰囲気)の温度によって変化する。即ち、第2測定モジュール16にて測定される静電容量は、測定する測定環境の温度が高くなるほど小さくなる。そこで、温度センサ18が測定環境の温度を常時、測定しており、温度センサ18にて測定された温度は電気信号としてCPU11に送信される。
Here, the capacitance measured by the second measurement module 16 changes depending on the temperature of the measurement environment (atmosphere at the time of measurement). That is, the capacitance measured by the second measurement module 16 decreases as the temperature of the measurement environment to be measured increases. Therefore, the temperature sensor 18 constantly measures the temperature of the measurement environment, and the temperature measured by the temperature sensor 18 is transmitted to the CPU 11 as an electric signal.
補助記憶装置14には、測定環境の温度と、測定環境の温度における静電容量閾値との関係が記憶されている。具体的には、(1)測定環境の温度と、測定環境の温度における静電容量閾値との関係を示した関係式、(2)測定環境の温度と、測定環境の温度における静電容量閾値との関係を示したグラフなどが記憶されている。
The auxiliary storage device 14 stores the relationship between the temperature of the measurement environment and the capacitance threshold at the temperature of the measurement environment. Specifically, (1) a relational expression showing the relationship between the temperature of the measurement environment and the capacitance threshold at the temperature of the measurement environment, (2) the temperature of the measurement environment and the capacitance threshold at the temperature of the measurement environment Is stored.
そして、CPU11によって、温度センサ18にて測定された測定環境の温度に基づき、補助記憶装置14に記憶されている測定環境の温度と、測定環境の温度における静電容量閾値との関係にしたがって、測定環境の温度における静電容量閾値が決定され、この静電容量閾値に基づいて上記判断が行なわれる。
Then, based on the temperature of the measurement environment measured by the temperature sensor 18 by the CPU 11, according to the relationship between the temperature of the measurement environment stored in the auxiliary storage device 14 and the capacitance threshold at the temperature of the measurement environment, A capacitance threshold at the temperature of the measurement environment is determined, and the above determination is made based on the capacitance threshold.
上記では、測定環境の温度に基づいて予め定められた静電容量閾値を決定し、この静電容量閾値に基づいて判断が行なわれていたが、静電容量閾値として一定の値を予め定めると共に、測定された静電容量を下記の要領で補正し、この補正後の静電容量を静電容量閾値と比較することによって上記判断を行なってもよい。
In the above description, a predetermined capacitance threshold is determined based on the temperature of the measurement environment, and the determination is performed based on the capacitance threshold. The above determination may be made by correcting the measured capacitance in the following manner and comparing the corrected capacitance with a capacitance threshold.
上述の通り、静電容量自体が温度によって変化することから、測定環境の温度変化による静電容量の変化を補正する。補助記憶装置14には、測定された静電容量を補正するための基準となる補正温度T0と、圧電センサの第1電極A2と第2電極A3との間に形成されたコンデンサの補正温度T0における静電容量Caと、静電容量の温度係数W(ppm/℃)が記憶されている。この補正温度T0は、任意の温度が定められればよく、特に限定されないが、センサシステムの測定環境の温度の平均値に近い温度が好ましい。
As described above, since the capacitance itself changes with temperature, the change in capacitance due to the temperature change in the measurement environment is corrected. The auxiliary storage device 14 has a correction temperature T 0 as a reference for correcting the measured capacitance, and a correction temperature of a capacitor formed between the first electrode A 2 and the second electrode A 3 of the piezoelectric sensor. The capacitance Ca at T 0 and the temperature coefficient W (ppm / ° C.) of the capacitance are stored. The correction temperature T 0 may be an arbitrary temperature, and is not particularly limited, but is preferably a temperature close to the average value of the temperature of the measurement environment of the sensor system.
そして、CPU11によって、補助記憶装置14に記憶された下記補正式に基づいて静電容量が補正される。
補正後の静電容量C=Ca+Ca×(測定環境の温度-T0)×W/106 Then, the capacitance is corrected by the CPU 11 based on the following correction formula stored in the auxiliary storage device 14.
The capacitance C after correction C = Ca + Ca × (temperature of measurement environment−T 0 ) × W / 10 6
補正後の静電容量C=Ca+Ca×(測定環境の温度-T0)×W/106 Then, the capacitance is corrected by the CPU 11 based on the following correction formula stored in the auxiliary storage device 14.
The capacitance C after correction C = Ca + Ca × (temperature of measurement environment−T 0 ) × W / 10 6
そして、CPU11によって、上述のようにして補正された静電容量と静電容量閾値を比較して判断されてもよい。
Then, the CPU 11 may determine the capacitance by comparing the capacitance corrected as described above with the capacitance threshold.
上記では、第2測定モジュール16にて測定された静電容量が予め定められた閾値(静電容量閾値)を超えたか否かを基準として圧電センサに加えられた応力の有無を判断していたが、静電容量の変化率が予め定めた閾値(以下「静電容量変化率閾値」という)を超えたか否かを基準として圧電センサに加えられた応力の有無を判断してもよい。この基準で判断する場合は、温度変化による静電容量自体の変化を考慮した上で、静電容量の変化率の閾値(静電容量変化率閾値)を定める必要がある。
In the above, the presence or absence of the stress applied to the piezoelectric sensor is determined based on whether or not the capacitance measured by the second measurement module 16 exceeds a predetermined threshold (capacitance threshold). However, the presence or absence of the stress applied to the piezoelectric sensor may be determined based on whether or not the change rate of the capacitance exceeds a predetermined threshold (hereinafter, referred to as “capacitance change rate threshold”). When making a judgment based on this criterion, it is necessary to determine the threshold value of the change rate of the capacitance (capacitance change rate threshold value) in consideration of the change in the capacitance itself due to the temperature change.
具体的には、圧電センサAの第1電極A2と第2電極A3との間に形成されたコンデンサの静電容量は、上述の通り、第2測定モジュール16によって常時測定されている。更に、測定環境の温度は、上述の通り、温度センサ18によって測定環境の温度が常時測定されている。測定された静電容量及び測定環境の温度は電気信号としてCPU11に常時、送信されている。そして、CPU11に送信された静電容量及び測定環境の温度は、測定時間(CPU11が静電容量及び測定環境の温度を受信した時間)と対にされた上で、補助記憶装置14の所定領域に記憶される。
Specifically, the capacitance of the capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A is constantly measured by the second measurement module 16 as described above. Further, the temperature of the measurement environment is constantly measured by the temperature sensor 18 as described above. The measured capacitance and the temperature of the measurement environment are constantly transmitted to the CPU 11 as electric signals. Then, the capacitance and the temperature of the measurement environment transmitted to the CPU 11 are paired with the measurement time (the time at which the CPU 11 receives the capacitance and the temperature of the measurement environment), and are then stored in a predetermined area of the auxiliary storage device 14. Is stored.
一方、CPU11によって、第2測定モジュール16から送信された静電容量及び測定環境の温度の測定時間から予め設定された時間だけ戻った時間における静電容量及び測定環境の温度が補助記憶装置14から読み出される。なお、第2測定モジュール16から送信された静電容量を「現在静電容量」という。測定環境の温度を「現在温度」という。現在静電容量及び現在温度の測定時間を「現在時間」という。現在時間から予め設定された時間だけ戻った時間を「基準時間」という。基準時間における静電容量を「基準静電容量」という。基準時間における測定環境の温度を「基準温度」という。
On the other hand, by the CPU 11, the capacitance and the temperature of the measurement environment at the time returned by the preset time from the measurement time of the capacitance and the temperature of the measurement environment transmitted from the second measurement module 16 are transmitted from the auxiliary storage device 14. Is read. Note that the capacitance transmitted from the second measurement module 16 is referred to as “current capacitance”. The temperature of the measurement environment is called “current temperature”. The measurement time of the current capacitance and the current temperature is called “current time”. The time returned from the current time by a preset time is referred to as “reference time”. The capacitance at the reference time is called “reference capacitance”. The temperature of the measurement environment at the reference time is called “reference temperature”.
上述の通り、静電容量自体が温度によって変化することから、測定環境の温度変化による静電容量の変化を上述の要領で補正することが好ましい。
(4) As described above, since the capacitance itself changes depending on the temperature, it is preferable to correct the change in the capacitance due to the temperature change in the measurement environment in the above-described manner.
そして、CPU11によって、上述のようにして補正された現在静電容量及び基準静電容量を用いて補助記憶装置14に記憶されている下記式に基づいて静電容量の変化率が常時、算出される。
静電容量の変化率(%)
=100×[(補正後の現在静電容量)-(補正後の基準静電容量)]
/補正後の基準静電容量 The change rate of the capacitance is always calculated by the CPU 11 based on the following equation stored in the auxiliary storage device 14 using the current capacitance and the reference capacitance corrected as described above. You.
Change rate of capacitance (%)
= 100 x [(corrected current capacitance)-(corrected reference capacitance)]
/ Corrected reference capacitance
静電容量の変化率(%)
=100×[(補正後の現在静電容量)-(補正後の基準静電容量)]
/補正後の基準静電容量 The change rate of the capacitance is always calculated by the CPU 11 based on the following equation stored in the auxiliary storage device 14 using the current capacitance and the reference capacitance corrected as described above. You.
Change rate of capacitance (%)
= 100 x [(corrected current capacitance)-(corrected reference capacitance)]
/ Corrected reference capacitance
CPU11によって、算出された静電容量の変化率が、静電容量変化率閾値を超えたと判断されると、予め定められた大きさ以上の応力が圧電センサAに加えられたとCPU11によって判断される。すると、CPU11はその旨の警告信号を出力モジュール17に送信する。出力モジュール17はディスプレイに表示し又はスピーカーから警告音を発するなどして、センサシステムを管理する管理者に通知する。通知を受けた管理者は、通知に基づいて必要な措置を講ずることができる。又、必要に応じて、第2測定モジュール16にて測定された静電容量の変化率を補助記憶装置14に記憶してもよい。
When the CPU 11 determines that the calculated change rate of the capacitance has exceeded the capacitance change rate threshold, the CPU 11 determines that a stress equal to or larger than a predetermined magnitude has been applied to the piezoelectric sensor A. . Then, the CPU 11 transmits a warning signal to that effect to the output module 17. The output module 17 notifies an administrator who manages the sensor system by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. Further, the change rate of the capacitance measured by the second measurement module 16 may be stored in the auxiliary storage device 14 as needed.
なお、CPU11による警告信号の出力モジュール17への送信は、第1測定モジュール15にて測定された電位が電位閾値以下となるまで、又は、第2測定モジュール16にて測定された静電容量若しくはその変化率がそれぞれ、静電容量閾値若しくは静電容量変化率閾値以下となるまで継続して行なわれてもよい。又は、CPU11による警告信号の出力モジュール17への出力は、一定時間経過後又は管理者によって停止されてもよい。
Note that the CPU 11 transmits the warning signal to the output module 17 until the potential measured by the first measurement module 15 becomes equal to or less than the potential threshold, or the capacitance measured by the second measurement module 16 or The change may be continuously performed until the change rate becomes equal to or less than the capacitance threshold value or the capacitance change rate threshold value, respectively. Alternatively, the output of the warning signal to the output module 17 by the CPU 11 may be stopped after a predetermined time has elapsed or by the administrator.
上記では、圧電センサに加えられた周波数の小さい応力を特に検出するために、圧電センサAの第1電極A2と第2電極A3とで構成されたコンデンサの静電容量又は静電容量の変化率を用いて判断していた。第2測定モジュール16によって、圧電センサAの第1電極A2と第2電極A3との間のインピーダンスを測定し、この測定されたインピーダンスに基づいて判断してもよい。なお、上述したセンサシステムと同様の構成についてはその説明を省略する。
In the above description, in order to particularly detect a low frequency stress applied to the piezoelectric sensor, the capacitance of the capacitor formed by the first electrode A2 and the second electrode A3 of the piezoelectric sensor A or the rate of change of the capacitance is described. Was determined using The impedance between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A may be measured by the second measurement module 16, and the determination may be made based on the measured impedance. The description of the same configuration as the above-described sensor system is omitted.
圧電センサAがその面方向に伸長されて圧電センサAの厚みが薄くなり、又は、圧電センサAをその厚み方向に圧縮させる応力が加わると、圧電センサAの第1電極A2と第2電極A3との間のインピーダンスは小さくなる。そこで、第2測定モジュール16にて測定された後述する電位差V2に基づいて算出されたインピーダンスが予め定められた閾値(インピーダンス閾値)を下回ると、CPU11によって、予め定められた大きさ以上の応力が圧電センサAに加わったと判断される。すると、CPU11はその旨の警告信号を出力モジュール17に送信する。出力モジュール17はディスプレイに表示し又はスピーカーから警告音を発するなどして、センサシステムを管理する管理者に通知する。通知を受けた管理者は、通知に基づいて必要な措置を講ずることができる。又、必要に応じて、第2測定モジュール16にて測定されたインピーダンスを補助記憶装置14に記憶してもよい。
When the piezoelectric sensor A is extended in the plane direction to reduce the thickness of the piezoelectric sensor A, or when a stress for compressing the piezoelectric sensor A in the thickness direction is applied, the first electrode A2 and the second electrode A3 of the piezoelectric sensor A And the impedance between them becomes smaller. Then, when the impedance calculated based on a potential difference V 2 described later measured by the second measurement module 16 falls below a predetermined threshold (impedance threshold), the CPU 11 causes the CPU 11 to apply a stress equal to or larger than a predetermined magnitude. Is added to the piezoelectric sensor A. Then, the CPU 11 transmits a warning signal to that effect to the output module 17. The output module 17 notifies an administrator who manages the sensor system by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. Further, if necessary, the impedance measured by the second measurement module 16 may be stored in the auxiliary storage device 14.
なお、CPU11による警告信号の出力モジュール17への送信は、第2測定モジュール16にて測定されたインピーダンスが、インピーダンス閾値以上となるまで継続して行なわれてもよいし、一定時間経過後又は管理者によって停止されてもよい。
The transmission of the warning signal by the CPU 11 to the output module 17 may be continuously performed until the impedance measured by the second measurement module 16 becomes equal to or more than the impedance threshold, or after a predetermined time elapses or when the management is performed. May be stopped by a person.
ここで、圧電センサAのインピーダンスは、測定する環境温度によって変化する。即ち、圧電センサAのインピーダンスは、測定する環境温度が高くなるほど大きくなる。そこで、温度センサ18が測定環境の温度を常時、測定しており、温度センサ18にて測定された温度は電気信号としてCPU11に送信される。
Here, the impedance of the piezoelectric sensor A changes depending on the environmental temperature to be measured. That is, the impedance of the piezoelectric sensor A increases as the environmental temperature to be measured increases. Therefore, the temperature sensor 18 constantly measures the temperature of the measurement environment, and the temperature measured by the temperature sensor 18 is transmitted to the CPU 11 as an electric signal.
補助記憶装置14には、測定環境の温度と、測定環境の温度におけるインピーダンス閾値との関係が記憶されている。具体的には、(1)測定環境の温度と、測定環境の温度におけるインピーダンス閾値との関係を示した関係式、(2)測定環境の温度と、測定環境の温度におけるインピーダンス閾値との関係を示したグラフなどが記憶されている。
The auxiliary storage device 14 stores the relationship between the temperature of the measurement environment and the impedance threshold at the temperature of the measurement environment. Specifically, (1) a relational expression showing the relationship between the temperature of the measurement environment and the impedance threshold at the temperature of the measurement environment, and (2) the relationship between the temperature of the measurement environment and the impedance threshold at the temperature of the measurement environment. The illustrated graph and the like are stored.
そして、CPU11によって、温度センサ18にて測定された測定環境の温度に基づき、補助記憶装置14に記憶されている測定環境の温度と、測定環境の温度におけるインピーダンス閾値との関係にしたがって、測定環境の温度におけるインピーダンス閾値が決定され、このインピーダンス閾値に基づいて上記判断が行なわれる。
Then, based on the temperature of the measurement environment measured by the temperature sensor 18 by the CPU 11, the measurement environment is measured according to the relationship between the temperature of the measurement environment stored in the auxiliary storage device 14 and the impedance threshold value at the temperature of the measurement environment. Is determined, and the above determination is made based on this impedance threshold.
上記では、測定環境の温度に基づいて予め定められたインピーダンス閾値を決定し、このインピーダンス閾値に基づいて判断が行なわれていた。インピーダンス閾値として一定の値を予め定めると共に、算出された圧電センサAのインピーダンスを下記の要領で補正し、この補正後のインピーダンスをインピーダンス閾値と比較することによって上記判断を行なってもよい。
In the above description, a predetermined impedance threshold is determined based on the temperature of the measurement environment, and the determination is made based on the impedance threshold. A predetermined value may be determined in advance as the impedance threshold value, the calculated impedance of the piezoelectric sensor A may be corrected in the following manner, and the above-described determination may be made by comparing the corrected impedance with the impedance threshold value.
上述の通り、インピーダンス自体が温度によって変化することから、測定環境の温度変化によるインピーダンスの変化を補正する。補助記憶装置14には、測定されたインピーダンスを補正するための基準となる補正温度T1と、補正温度T1における圧電センサAのインピーダンスZaと、インピーダンスの温度係数Y(ppm/℃)が記憶されている。この補正温度T1は、任意の温度が定められればよく、特に限定されないが、センサシステムの測定環境の温度の平均値に近い温度が好ましい。
As described above, since the impedance itself changes with temperature, the change in impedance due to the temperature change in the measurement environment is corrected. The auxiliary storage device 14, the correction temperature T 1 of which is a reference for correcting the measured impedance, and the impedance Za of the piezoelectric sensor A in the correction temperature T 1 of, the temperature coefficient of impedance Y (ppm / ℃) is stored Have been. The correction temperature T 1 may be any temperature, and is not particularly limited, but is preferably a temperature close to the average value of the temperature of the measurement environment of the sensor system.
そして、CPU11によって、補助記憶装置14に記憶された下記補正式に基づいて、インピーダンスが補正される。
補正後のインピーダンスZ=Za+Za×(測定環境の温度-T1)×Y/106 Then, the impedance is corrected by the CPU 11 based on the following correction formula stored in the auxiliary storage device 14.
Impedance after correction Z = Za + Za × (Temperature of measurement environment−T 1 ) × Y / 10 6
補正後のインピーダンスZ=Za+Za×(測定環境の温度-T1)×Y/106 Then, the impedance is corrected by the CPU 11 based on the following correction formula stored in the auxiliary storage device 14.
Impedance after correction Z = Za + Za × (Temperature of measurement environment−T 1 ) × Y / 10 6
CPU11によって、上述のようにして補正されたインピーダンスとインピーダンス閾値を比較して判断されてもよい。
The determination may be made by the CPU 11 comparing the impedance corrected as described above with the impedance threshold.
圧電センサの第1電極A2と第2電極A3との間のインピーダンスの変化を検出する第2検出部Cは、ホイートストンブリッジ回路を有することが好ましい。即ち、圧電センサAの第1電極A2と第2電極A3との間のインピーダンスは、ホイートストンブリッジ回路を用いて算出されることが好ましい。ホイートストンブリッジ回路を用いることで、より精度よく検出することができる。
第 It is preferable that the second detection unit C that detects a change in impedance between the first electrode A2 and the second electrode A3 of the piezoelectric sensor has a Wheatstone bridge circuit. That is, the impedance between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A is preferably calculated using a Wheatstone bridge circuit. The use of a Wheatstone bridge circuit enables more accurate detection.
ホイートストンブリッジ回路のなかでも、測定用の圧電センサと基準用の圧電センサの2つ以上の圧電センサを有するホイートストンブリッジ回路であることが好ましい。このようなホイートストンブリッジ回路を用いることで、より精度よく検出することができる。また、測定用と基準用の圧電センサを有するため、温度によるインピーダンス変化の補正の必要がなく、検出精度が一層優れる。測定用の圧電センサと基準用の圧電センサの2つ以上の圧電センサを有するホイートストンブリッジ回路としては、アクティブ・ダミー法などが挙げられる。
Among the Wheatstone bridge circuits, a Wheatstone bridge circuit having two or more piezoelectric sensors of a measurement piezoelectric sensor and a reference piezoelectric sensor is preferable. The use of such a Wheatstone bridge circuit enables more accurate detection. In addition, since the measurement and reference piezoelectric sensors are provided, there is no need to correct impedance changes due to temperature, and detection accuracy is further improved. An example of a Wheatstone bridge circuit having two or more piezoelectric sensors, a measurement piezoelectric sensor and a reference piezoelectric sensor, includes an active dummy method.
ホイートストンブリッジ回路を用いたインピーダンスの測定回路の一例を説明する。図4に示したように、圧電センサAを2個用意してホイートストンブリッジ回路を構成する。2個の圧電センサA4、A5は、第1電極A2及び第2電極A3のそれぞれに導電線を電気的に接続することによって回路に組み込まれている。そして、2個の圧電センサA4、A5のうちの一方の圧電センサが測定用の圧電センサ、他方の圧電センサが基準用の圧電センサとなる。更に、G1点とG3点の間及びG3点とG4点の間にはそれぞれ、インピーダンス値が既知の固定抵抗(又は基準用の圧電センサ)R1及びR2が組み込まれている。測定精度が向上するので、G1点とG3点の間及びG3点とG4点の間に組み込まれる固定抵抗(又は基準用の圧電センサ)R1及びR2のインピーダンス値J1及びJ2はそれぞれ、常態(伸長されていない状態)における測定用の圧電センサのインピーダンス値J3と同程度であることが好ましい。具体的には、G1点とG3点の間及びG3点とG4点の間に組み込まれる固定抵抗(又は基準用の圧電センサ)R1及びR2のインピーダンス値J1及びJ2と、常態(伸長されていない状態)における測定用の圧電センサのインピーダンス値J3とは下記式を満たしていることが好ましい。
0.8×J3≦J1≦1.2×J3
0.8×J3≦J2≦1.2×J3
なお、下記の説明においては、圧電センサA4が測定用の圧電センサを構成している。 An example of an impedance measuring circuit using a Wheatstone bridge circuit will be described. As shown in FIG. 4, two Wheatstone bridge circuits are formed by preparing two piezoelectric sensors A. The two piezoelectric sensors A4 and A5 are incorporated in a circuit by electrically connecting a conductive wire to each of the first electrode A2 and the second electrode A3. Then, one of the two piezoelectric sensors A4 and A5 is a piezoelectric sensor for measurement, and the other piezoelectric sensor is a piezoelectric sensor for reference. Further, fixed resistances (or reference piezoelectric sensors) R 1 and R 2 whose impedance values are known are incorporated between points G 1 and G 3 and between points G 3 and G 4, respectively. . Since the measurement accuracy is improved, the impedance values J 1 and R 2 of the fixed resistors (or reference piezoelectric sensors) R 1 and R 2 incorporated between the points G 1 and G 3 and between the points G 3 and G 4. It is preferable that each of J 2 is approximately the same as the impedance value J 3 of the piezoelectric sensor for measurement in a normal state (a state in which the piezoelectric sensor is not stretched). More specifically, impedance values J 1 and J 2 of fixed resistors (or reference piezoelectric sensors) R 1 and R 2 incorporated between points G 1 and G 3 and between points G 3 and G 4. It is preferable that the impedance value J 3 of the piezoelectric sensor for measurement in a normal state (a state where the piezoelectric sensor is not stretched) satisfies the following expression.
0.8 × J 3 ≦ J 1 ≦ 1.2 × J 3
0.8 × J 3 ≦ J 2 ≦ 1.2 × J 3
In the following description, the piezoelectric sensor A4 constitutes a piezoelectric sensor for measurement.
0.8×J3≦J1≦1.2×J3
0.8×J3≦J2≦1.2×J3
なお、下記の説明においては、圧電センサA4が測定用の圧電センサを構成している。 An example of an impedance measuring circuit using a Wheatstone bridge circuit will be described. As shown in FIG. 4, two Wheatstone bridge circuits are formed by preparing two piezoelectric sensors A. The two piezoelectric sensors A4 and A5 are incorporated in a circuit by electrically connecting a conductive wire to each of the first electrode A2 and the second electrode A3. Then, one of the two piezoelectric sensors A4 and A5 is a piezoelectric sensor for measurement, and the other piezoelectric sensor is a piezoelectric sensor for reference. Further, fixed resistances (or reference piezoelectric sensors) R 1 and R 2 whose impedance values are known are incorporated between points G 1 and G 3 and between points G 3 and G 4, respectively. . Since the measurement accuracy is improved, the impedance values J 1 and R 2 of the fixed resistors (or reference piezoelectric sensors) R 1 and R 2 incorporated between the points G 1 and G 3 and between the points G 3 and G 4. It is preferable that each of J 2 is approximately the same as the impedance value J 3 of the piezoelectric sensor for measurement in a normal state (a state in which the piezoelectric sensor is not stretched). More specifically, impedance values J 1 and J 2 of fixed resistors (or reference piezoelectric sensors) R 1 and R 2 incorporated between points G 1 and G 3 and between points G 3 and G 4. It is preferable that the impedance value J 3 of the piezoelectric sensor for measurement in a normal state (a state where the piezoelectric sensor is not stretched) satisfies the following expression.
0.8 × J 3 ≦ J 1 ≦ 1.2 × J 3
0.8 × J 3 ≦ J 2 ≦ 1.2 × J 3
In the following description, the piezoelectric sensor A4 constitutes a piezoelectric sensor for measurement.
そして、G1点とG4点との間に交流電圧V1を所定の時間間隔(好ましくは、一定の時間間隔)毎に印加し、G2点とG3点との間の電位差V2が第2測定モジュール16によって所定の時間間隔毎に測定されており、測定された電位差V2が電気信号としてCPU11に送信されている。そして、電位差V2に基づいてCPU11によって圧電センサA4のインピーダンスが算出される。なお、電位差の測定には、公知の電位計などが用いられる。
Then, an AC voltage V 1 is applied between the points G 1 and G 4 at predetermined time intervals (preferably, fixed time intervals), and a potential difference V 2 between the points G 2 and G 3 is applied. There are measured at predetermined time intervals by the second measurement module 16, the potential difference V 2 which is measured is sent to the CPU11 as an electric signal. Then, the impedance of the piezoelectric sensor A4 is calculated by CPU11 based on a potential difference V 2. A known electrometer or the like is used for measuring the potential difference.
圧電センサAのインピーダンスを測定するためにG1点とG4点との間に交流電圧V1を印加している。この交流電圧V1と、第1測定モジュール15で測定される電位とが干渉を生じるため、圧電センサA4のインピーダンスを測定するための交流電圧V1は、所定の時間間隔毎に印加され、交流電圧V1が印加されている間は、第1測定モジュール15での電位の測定は中断される。一方、交流電圧V1が印加されていない時は、第1測定モジュール15によって圧電シートA1にて発生した電位が常に測定される。
And applying an alternating voltages V 1 between the one point and the G 4 points G to measure the impedance of the piezoelectric sensor A. This AC voltages V 1, since the potential measured by the first measurement module 15 is causing interference, AC voltages V 1 for measuring the impedance of the piezoelectric sensor A4 is applied at predetermined time intervals, alternating While the voltage V 1 is being applied, the measurement of the potential in the first measurement module 15 is interrupted. Meanwhile, when the AC voltage V 1 is not applied, the potential generated in the piezoelectric sheet A1 by the first measurement module 15 is always measured.
上記では、第2測定モジュール16にて測定された電位V2に基づいて算出されたインピーダンスが予め定められた閾値(インピーダンス閾値)を下回ったか否かを基準として圧電センサに予め定められた大きさ以上の応力が加わったか否かを判断していた。インピーダンスの変化率が予め定めた閾値(以下「インピーダンス変化率閾値」という)を超えたか否かを基準として圧電センサに予め定められた大きさ以上の応力が加わったか否かを判断してもよい。この基準で判断する場合は、温度変化によるインピーダンス自体の変化を考慮した上で、インピーダンス変化率閾値を定める必要がある。なお、図4に示したホイートストンブリッジ回路を用いてインピーダンスを算出した場合、後述する現在インピーダンス及び基準インピーダンスは、測定環境の温度変化に伴うインピーダンス自体の変化を補正する必要はない。
In the above description, the predetermined size of the piezoelectric sensor is determined based on whether or not the impedance calculated based on the potential V 2 measured by the second measurement module 16 is lower than a predetermined threshold (impedance threshold). It was determined whether or not the above stress was applied. Whether or not a stress equal to or greater than a predetermined magnitude is applied to the piezoelectric sensor may be determined based on whether or not the rate of change of the impedance exceeds a predetermined threshold (hereinafter, referred to as “impedance change rate threshold”). . When making a judgment based on this criterion, it is necessary to determine the impedance change rate threshold value in consideration of a change in the impedance itself due to a temperature change. When the impedance is calculated using the Wheatstone bridge circuit shown in FIG. 4, it is not necessary to correct the change of the impedance itself due to the temperature change of the measurement environment in the current impedance and the reference impedance described later.
具体的には、上述の通り、第2測定モジュール16によって測定された電位差V2が電気信号としてCPU11に所定の時間間隔毎に(好ましくは、一定の時間間隔毎に)送信されている。そして、電位差V2に基づいてCPU11によって圧電センサAのインピーダンスが算出される。そして、CPU11によって算出されたインピーダンスは、測定時間(CPU11が電位差V2を受信した時間)と対にされた上で、補助記憶装置14の所定領域に記憶される。
Specifically, as described above, as (preferably, at every predetermined time interval) at predetermined time intervals to CPU11 potential difference V 2 measured by the second measurement module 16 is an electric signal is transmitted. Then, the impedance of the piezoelectric sensor A is calculated by the CPU11 on the basis of the potential difference V 2. Then, the impedance calculated by the CPU 11, on the measurement time is the pair (CPU 11 time which has received the potential difference V 2), it is stored in a predetermined area of the auxiliary storage device 14.
一方、CPU11によって、第2測定モジュール16から送信された電位差V2に基づいて算出されたインピーダンスの測定時間から予め設定された時間だけ戻った時間におけるインピーダンスが補助記憶装置14から読み出される。なお、第2測定モジュール16から送信された電位差V2に基づいて算出されたインピーダンスを「現在インピーダンス」という。現在インピーダンスの測定時間を「現在時間」という。現在時間から予め設定された時間だけ戻った時間を「基準時間」という。基準時間におけるインピーダンスを「基準インピーダンス」という。
On the other hand, the CPU 11 reads out the impedance from the auxiliary storage device 14 at a time that is returned by a preset time from the impedance measurement time calculated based on the potential difference V 2 transmitted from the second measurement module 16. Note that the impedance calculated based on the potential difference V 2 transmitted from the second measurement module 16 is called “current impedance”. The measurement time of the current impedance is called “current time”. The time returned from the current time by a preset time is referred to as “reference time”. The impedance at the reference time is called “reference impedance”.
そして、CPU11によって、現在インピーダンス及び基準インピーダンスを用いて、補助記憶装置14に記憶されている下記式に基づいてインピーダンスの変化率が所定の時間間隔毎に(好ましくは、一定の時間間隔毎に)算出される。なお、現在インピーダンスと基準インピーダンスとの間において、測定環境の温度変化に伴うインピーダンス自体の変化が考慮されていない場合には、上述の補正式に基づいて現在インピーダンス及び基準インピーダンスについて補正を行なえばよい、
インピーダンスの変化率(%)
=100×[(現在インピーダンス)-(基準インピーダンス)]
/(基準インピーダンス) Then, the CPU 11 uses the current impedance and the reference impedance to change the rate of change of the impedance at predetermined time intervals (preferably at predetermined time intervals) based on the following equation stored in the auxiliary storage device 14. Is calculated. If the change in the impedance itself due to the temperature change of the measurement environment is not considered between the current impedance and the reference impedance, the current impedance and the reference impedance may be corrected based on the above-described correction formula. ,
Change rate of impedance (%)
= 100 x [(current impedance)-(reference impedance)]
/ (Reference impedance)
インピーダンスの変化率(%)
=100×[(現在インピーダンス)-(基準インピーダンス)]
/(基準インピーダンス) Then, the CPU 11 uses the current impedance and the reference impedance to change the rate of change of the impedance at predetermined time intervals (preferably at predetermined time intervals) based on the following equation stored in the auxiliary storage device 14. Is calculated. If the change in the impedance itself due to the temperature change of the measurement environment is not considered between the current impedance and the reference impedance, the current impedance and the reference impedance may be corrected based on the above-described correction formula. ,
Change rate of impedance (%)
= 100 x [(current impedance)-(reference impedance)]
/ (Reference impedance)
CPU11によって、算出されたインピーダンスの変化率が予め定められた閾値(インピーダンス変化率閾値)を超えたと判断されると、予め定められた大きさ以上の応力が圧電センサAに加わったと判断される。そして、CPU11は、その旨の警告信号を出力モジュール17に送信する。出力モジュール17は、ディスプレイに表示し又はスピーカーから警告音を発するなどして、センサシステムを管理する管理者に通知する。通知を受けた管理者は、通知に基づいて必要な措置を講ずることができる。又、必要に応じて、第2測定モジュール16にて測定されたインピーダンスの変化率を補助記憶装置14に記憶してもよい。
(4) When the CPU 11 determines that the calculated rate of change in impedance exceeds a predetermined threshold (impedance change rate threshold), it is determined that a stress equal to or larger than a predetermined magnitude has been applied to the piezoelectric sensor A. Then, the CPU 11 transmits a warning signal to that effect to the output module 17. The output module 17 notifies an administrator who manages the sensor system, for example, by displaying it on a display or emitting a warning sound from a speaker. The administrator who has received the notification can take necessary actions based on the notification. Further, the change rate of the impedance measured by the second measurement module 16 may be stored in the auxiliary storage device 14 as needed.
なお、CPU11による警告信号の出力モジュール17への送信は、第1測定モジュール15にて測定された電位が電位閾値以下となるまで、又は、第2測定モジュール16にて測定されたインピーダンス若しくはその変化率がそれぞれ、インピーダンス閾値若しくはインピーダンス変化率閾値以上となるまで継続して行なわれてもよい。又は、CPU11による警告信号の出力モジュール17への送信は、一定時間経過後又は管理者によって停止されてもよい。
Note that the CPU 11 transmits the warning signal to the output module 17 until the potential measured by the first measurement module 15 becomes equal to or lower than the potential threshold, or the impedance measured by the second measurement module 16 or its change. It may be performed continuously until the rates become equal to or more than the impedance threshold or the impedance change rate threshold, respectively. Alternatively, the transmission of the warning signal to the output module 17 by the CPU 11 may be stopped after a predetermined time has elapsed or by the administrator.
上記センサシステムは、上述の如く、長期間をかけて徐々に加わる応力(周波数が小さい応力)と、短い時間又は瞬間的に加わる応力(周波数が大きい応力)の双方を検出することができるので、被検出体における二種類の応力を検出することができる。また、圧縮などの圧電シートの厚み方向に加わる応力のみならず、伸長などの圧電シートの面方向に加わる応力をも検出することができる。
As described above, the sensor system can detect both stress (stress having a small frequency) applied gradually over a long period of time and stress (stress having a large frequency) applied for a short time or instantaneously. It is possible to detect two types of stress in the object to be detected. In addition, not only stress applied in the thickness direction of the piezoelectric sheet such as compression but also stress applied in the surface direction of the piezoelectric sheet such as elongation can be detected.
上記では、圧電センサA、ROM12、RAM13、補助記憶装置14、第1測定モジュール15、第2測定モジュール16、出力モジュール17及び温度センサ18と、CPU11とを有線又は無線によって通信可能に電気的に接続されているセンサシステムを説明した。CPU11、ROM12及びRAM13を備えたサーバー装置と、補助記憶装置14としてデータベースサーバ装置を用意する。そして、データベースサーバ装置をサーバー装置と通信可能に電気的に接続すると共に、サーバー装置をインターネットなどのネットワークを介して、圧電センサA、第1測定モジュール15、第2測定モジュール16、出力モジュール17及び温度センサ18と通信可能に接続させてセンサシステムを構成してもよい。
In the above description, the piezoelectric sensor A, the ROM 12, the RAM 13, the auxiliary storage device 14, the first measuring module 15, the second measuring module 16, the output module 17, the temperature sensor 18, and the CPU 11 are electrically connected so as to be able to communicate with each other by wire or wirelessly. The connected sensor system has been described. A server device having a CPU 11, a ROM 12, and a RAM 13 and a database server device as an auxiliary storage device 14 are prepared. Then, the database server device is electrically connected to the server device in a communicable manner, and the server device is connected to the piezoelectric sensor A, the first measurement module 15, the second measurement module 16, the output module 17, and the like via a network such as the Internet. The sensor system may be configured to be communicably connected to the temperature sensor 18.
上記ネットワークを介するセンサシステムにおいては、第1測定モジュール15、第2測定モジュール16及び温度センサ18にて測定された測定結果は、ネットワークを介してサーバー装置に送信され、CPU11によって、測定結果又は測定結果に基づいて所定の値が算出される。なお、以下において、測定結果、又は、測定結果に基づいて算出された値を「比較値」という。
In the sensor system via the network, the measurement result measured by the first measurement module 15, the second measurement module 16 and the temperature sensor 18 is transmitted to the server device via the network, and the measurement result or the measurement is measured by the CPU 11. A predetermined value is calculated based on the result. In the following, the measurement result or a value calculated based on the measurement result is referred to as a “comparison value”.
CPU11によって、比較値が予め定められた上述した種々の閾値を超え又は下回ったと判断されると、ネットワークを介して出力モジュール17に警告信号が送信される。出力モジュール17は、ディスプレイに表示し又はスピーカーから警告音を発するなどして、センサシステムを管理する管理者に通知する。通知を受けた管理者は、警告信号に基づいて必要な措置を講ずることができる。上記ネットワークを介するセンサシステムにおいて、その他の動作は上述したセンサシステムと同様であるのでその説明を省略する。
(4) When the CPU 11 determines that the comparison value exceeds or falls below the predetermined various thresholds, a warning signal is transmitted to the output module 17 via the network. The output module 17 notifies an administrator who manages the sensor system, for example, by displaying it on a display or emitting a warning sound from a speaker. The notified administrator can take necessary measures based on the warning signal. Other operations of the sensor system via the network are the same as those of the above-described sensor system, and a description thereof will be omitted.
又、圧電センサAに長期間をかけて徐々に加えられる圧力又は伸長によって発生する電荷は漏洩するため、圧電センサAに長期間をかけて徐々に加えられる圧力又は伸長を測定する場合は、第2測定モジュールで測定される静電容量又はインピーダンスで検出することが好ましい。
Further, since the charge generated by the pressure or elongation gradually applied to the piezoelectric sensor A over a long period of time leaks, when measuring the pressure or elongation gradually applied to the piezoelectric sensor A over a long period of time, (2) It is preferable to detect by capacitance or impedance measured by the measurement module.
センサシステムが対象とする被検出体としては、例えば、人体、ロボット、無人航空機、コンクリート構造物、橋梁、及び輸送機器(例えば、車輛など)などが挙げられる。
(4) Examples of the object to be detected by the sensor system include a human body, a robot, an unmanned aerial vehicle, a concrete structure, a bridge, and a transportation device (for example, a vehicle).
センサシステムは、その圧電センサAを人体の皮膚に貼着又は人体に装着して用いる用途、所謂、ウエアラブル用途に好適に用いることができ、脈波や呼吸信号などの生体信号及び皮膚表面の動きを精度良く検出することができる。
The sensor system can be suitably used for applications in which the piezoelectric sensor A is attached to or attached to the skin of a human body, so-called wearable applications, and biological signals such as pulse waves and respiratory signals and movements of the skin surface. Can be accurately detected.
上記センサシステムは、これ自体が測定装置を構成してもよいし、又は、従来公知の測定装置のセンサ部又はその一部として用いることができる。
The sensor system may constitute a measuring device itself, or may be used as a sensor unit of a conventionally known measuring device or a part thereof.
又、センサシステムは、その圧電センサAをロボットや無人航空機などの機械に表面に貼着させることによって、他の物体との接触や機械の可動部の動きを精度良く検出することができる。
The sensor system can accurately detect contact with another object and movement of a movable part of the machine by attaching the piezoelectric sensor A to a surface of a machine such as a robot or an unmanned aerial vehicle.
又、センサシステムは、その圧電センサAをトンネルなどのコンクリート構造物の表面に貼着させることによって、コンクリート構造物に生じるひび割れの検出を行なうことができる。
(4) The sensor system can detect cracks generated in the concrete structure by attaching the piezoelectric sensor A to the surface of a concrete structure such as a tunnel.
具体的には、トンネルなどのコンクリート構造物は、経時劣化に伴ってひび割れが生じる。コンクリート構造物のひび割れには、経時的に歪みが加わることで徐々に形成されるひび割れと、コンクリート構造物に短時間で又は瞬間的に応力が加わることによって生じるひび割れとがある。
Specifically, concrete structures such as tunnels crack with the aging. The cracks in the concrete structure include a crack that is gradually formed by the strain applied over time and a crack that is generated by applying the stress to the concrete structure for a short time or momentarily.
前者のひび割れは、コンクリート表面に沿った動きを検出する必要がある。そして、前者のひび割れは、経時的な歪みによって生じるため、振動を殆ど生じることなく徐々に発生し進行する。
For the former crack, it is necessary to detect the movement along the concrete surface. Since the former cracks are caused by temporal distortion, they gradually occur and proceed with almost no vibration.
一方、後者のひび割れは、コンクリート構造物に応力が加わることによって生じる。従って、後者のひび割れの形成時にはコンクリート構造物にひび割れに伴う振動が生じる。
On the other hand, the latter cracks are caused by stress applied to concrete structures. Therefore, when the latter crack is formed, the concrete structure vibrates due to the crack.
上記センサシステムによれば、圧電センサAの第1電極A2と第2電極A3との間に形成されたコンデンサの静電容量又はインピーダンスの変化を検出することによって前者のひび割れを検出することができる。更に、上記センサシステムによれば、後者のひび割れの形成時に生じる振動を周波数の大きい応力として検出することによって後者のひび割れを検出することができる。
According to the above sensor system, the former crack can be detected by detecting a change in the capacitance or impedance of a capacitor formed between the first electrode A2 and the second electrode A3 of the piezoelectric sensor A. . Further, according to the above sensor system, the latter crack can be detected by detecting the vibration generated when the latter crack is formed as a stress having a large frequency.
センサシステムは、圧電シートの厚み方向の圧力及び面方向に生じる応力の双方を検出することができる。更に、センサシステムは、長い時間をかけて徐々に加わる応力(周波数の小さい応力)と、短い時間又は瞬間的に加わる応力(周波数の大きい応力)の双方を検出することができる。センサシステムは、人体、ロボット、無人航空機、コンクリート構造物、橋梁、及び輸送機器(例えば、車輛など)などの様々な被検出体に適用し、被検出体に加わる様々な応力や、被検出体の様々な動きを検出することができる。
The sensor system can detect both the pressure in the thickness direction of the piezoelectric sheet and the stress generated in the surface direction. In addition, the sensor system can detect both stresses applied gradually over a long period of time (stresses of low frequency) and stresses applied shortly or momentarily (stresses of high frequency). The sensor system is applied to various detected objects such as a human body, a robot, an unmanned aerial vehicle, a concrete structure, a bridge, and a transportation device (for example, a vehicle), and detects various stresses applied to the detected objects, Can be detected.
(関連出願の相互参照)
本出願は、2018年8月10日に出願された日本国特許出願第2018-151257に基づく優先権を主張し、この出願の開示はこれらの全体を参照することにより本明細書に組み込まれる。 (Cross-reference of related applications)
This application claims priority based on Japanese Patent Application No. 2018-151257 filed on August 10, 2018, the disclosure of which is incorporated herein by reference in its entirety.
本出願は、2018年8月10日に出願された日本国特許出願第2018-151257に基づく優先権を主張し、この出願の開示はこれらの全体を参照することにより本明細書に組み込まれる。 (Cross-reference of related applications)
This application claims priority based on Japanese Patent Application No. 2018-151257 filed on August 10, 2018, the disclosure of which is incorporated herein by reference in its entirety.
A 圧電センサ
A1 圧電シート
A2 第1電極
A3 第2電極
A4 圧電センサ
A5 圧電センサ
B 第1検出部
C 第2検出部
S センサシステム A Piezoelectric sensor
A1 Piezoelectric sheet
A2 1st electrode
A3 2nd electrode
A4 Piezoelectric sensor
A5 Piezoelectric sensor B First detector C Second detector S Sensor system
A1 圧電シート
A2 第1電極
A3 第2電極
A4 圧電センサ
A5 圧電センサ
B 第1検出部
C 第2検出部
S センサシステム A Piezoelectric sensor
A1 Piezoelectric sheet
A2 1st electrode
A3 2nd electrode
A4 Piezoelectric sensor
A5 Piezoelectric sensor B First detector C Second detector S Sensor system
Claims (5)
- 面方向に伸縮性を有する圧電シート、前記圧電シートの一面に積層され且つ前記圧電シートの面方向に伸縮性を有する第1電極、及び、前記圧電シートの他面に積層され且つ前記圧電シートの面方向に伸縮性を有する第2電極を有する圧電センサと、
前記圧電センサにて発生した電位を測定する第1検出部と、
前記圧電センサの第1電極と第2電極との間に構成されたコンデンサの静電容量の変化又は圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部とを備えていることを特徴とするセンサシステム。 A piezoelectric sheet having elasticity in the surface direction, a first electrode laminated on one surface of the piezoelectric sheet and having elasticity in the surface direction of the piezoelectric sheet, and a first electrode laminated on the other surface of the piezoelectric sheet and A piezoelectric sensor having a second electrode having elasticity in the plane direction;
A first detection unit that measures a potential generated by the piezoelectric sensor;
A second detecting unit that detects a change in capacitance of a capacitor formed between the first electrode and the second electrode of the piezoelectric sensor or a change in impedance between the first electrode and the second electrode of the piezoelectric sensor; A sensor system comprising: - 圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部が、ホイートストンブリッジ回路を有することを特徴とする、請求項1に記載のセンサシステム。 2. The sensor system according to claim 1, wherein the second detection unit that detects a change in impedance between the first electrode and the second electrode of the piezoelectric sensor includes a Wheatstone bridge circuit. 3.
- 圧電センサの第1電極と第2電極との間のインピーダンスの変化を検出する第2検出部が、測定用の圧電センサと基準用の圧電センサの2つ以上の圧電センサを有するホイートストンブリッジ回路を有することを特徴とする、請求項1又は2に記載のセンサシステム。 A second detection unit that detects a change in impedance between the first electrode and the second electrode of the piezoelectric sensor includes a Wheatstone bridge circuit having two or more piezoelectric sensors, a piezoelectric sensor for measurement and a piezoelectric sensor for reference. The sensor system according to claim 1, further comprising:
- 前記静電容量の変化又はインピーダンスの変化を、それぞれ静電容量の変化率又はインピーダンスの変化率として算出することを特徴とする、請求項1~3の何れか1項に記載のセンサシステム。 4. The sensor system according to claim 1, wherein the change in the capacitance or the change in the impedance is calculated as a change rate of the capacitance or a change rate of the impedance, respectively.
- 請求項1~4の何れか1項に記載のセンサシステムを含むことを特徴とする測定装置。 (5) A measuring device comprising the sensor system according to any one of (1) to (4).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019552310A JPWO2020032255A1 (en) | 2018-08-10 | 2019-08-09 | Sensor system and measuring device using it |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-151257 | 2018-08-10 | ||
JP2018151257 | 2018-08-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020032255A1 true WO2020032255A1 (en) | 2020-02-13 |
Family
ID=69413289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/031637 WO2020032255A1 (en) | 2018-08-10 | 2019-08-09 | Sensor system, and measuring device employing same |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2020032255A1 (en) |
TW (1) | TWI821360B (en) |
WO (1) | WO2020032255A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001099725A (en) * | 1999-09-28 | 2001-04-13 | Fuji Heavy Ind Ltd | Load measuring device |
JP2004226294A (en) * | 2003-01-24 | 2004-08-12 | Matsushita Electric Ind Co Ltd | Static and dynamic pressure detection sensor |
JP2018056287A (en) * | 2016-09-28 | 2018-04-05 | 住友理工株式会社 | Transducer arranged by use of flexible piezoelectric material |
US20180217014A1 (en) * | 2015-07-31 | 2018-08-02 | Sikorsky Aircraft Corporation | Multifunctional piezoelectric load sensor assembly |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04106494A (en) * | 1990-08-28 | 1992-04-08 | Toshiba Corp | Radiation detector |
US10175130B2 (en) * | 2015-04-20 | 2019-01-08 | Infineon Technologies Ag | System and method for a MEMS sensor |
TWI746560B (en) * | 2016-05-30 | 2021-11-21 | 日商日東電工股份有限公司 | Touch sensor |
-
2019
- 2019-08-09 WO PCT/JP2019/031637 patent/WO2020032255A1/en active Application Filing
- 2019-08-09 JP JP2019552310A patent/JPWO2020032255A1/en active Pending
- 2019-08-12 TW TW108128573A patent/TWI821360B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001099725A (en) * | 1999-09-28 | 2001-04-13 | Fuji Heavy Ind Ltd | Load measuring device |
JP2004226294A (en) * | 2003-01-24 | 2004-08-12 | Matsushita Electric Ind Co Ltd | Static and dynamic pressure detection sensor |
US20180217014A1 (en) * | 2015-07-31 | 2018-08-02 | Sikorsky Aircraft Corporation | Multifunctional piezoelectric load sensor assembly |
JP2018056287A (en) * | 2016-09-28 | 2018-04-05 | 住友理工株式会社 | Transducer arranged by use of flexible piezoelectric material |
Also Published As
Publication number | Publication date |
---|---|
TW202009454A (en) | 2020-03-01 |
TWI821360B (en) | 2023-11-11 |
JPWO2020032255A1 (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Ferroelectret nanogenerator with large transverse piezoelectric activity | |
JP6696885B2 (en) | Piezoelectric sensor | |
US10429255B2 (en) | Piezoelectric sensor and detecting device | |
US9929679B2 (en) | Electrostatic induction-type vibration power generation device and method of manufacturing the same | |
CN108370483B (en) | System and method for determining absolute sensitivity of a MEMS microphone having capacitive and piezoelectric electrodes | |
JP2006226858A (en) | Fluctuation load sensor, and tactile sensor using the same | |
WO2018047878A1 (en) | Piezoelectric sensor | |
CN100365402C (en) | Force sensor based on micro-nano combined structure | |
TW201236514A (en) | Static electricity removing apparatus and method thereof | |
JP6279330B2 (en) | Object detection sheet and living body detection system using the same | |
JP2015154926A (en) | Living body detection system | |
WO2018008572A1 (en) | Piezoelectric sensor | |
WO2020032255A1 (en) | Sensor system, and measuring device employing same | |
JP6168891B2 (en) | Biological signal sensor system | |
TWI445224B (en) | Electronic device and adjustment method thereof | |
JP2007101338A (en) | Pressure sensor device | |
JP2016224020A (en) | Load measurement apparatus and load measurement sensor | |
Marinov et al. | Application of charge amplifiers with Polyvinylidene Fluoride materials | |
JP2006080366A (en) | Cable-like piezo-electric element and oscillation detection sensor using it | |
Biswal et al. | Development and performance analysis of a low cost experimental set up for piezoelectric based energy harvester using loudspeaker | |
JP2015068643A (en) | Rainfall detection system | |
JP6126388B2 (en) | Biological signal sensor and biological signal sensor system using the same | |
JP2009265056A (en) | Pressure detection element and pressure detection method | |
JP2018159708A (en) | Load detector | |
JP2017083331A (en) | Capacitance detection device and sensor system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019552310 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19846608 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19846608 Country of ref document: EP Kind code of ref document: A1 |