WO2020032208A1 - Tire - Google Patents

Tire Download PDF

Info

Publication number
WO2020032208A1
WO2020032208A1 PCT/JP2019/031486 JP2019031486W WO2020032208A1 WO 2020032208 A1 WO2020032208 A1 WO 2020032208A1 JP 2019031486 W JP2019031486 W JP 2019031486W WO 2020032208 A1 WO2020032208 A1 WO 2020032208A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
belt
tire
styrene
Prior art date
Application number
PCT/JP2019/031486
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 尾▲崎▼
光彩 青木
Original Assignee
株式会社ブリヂストン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン filed Critical 株式会社ブリヂストン
Priority to CN201980053627.4A priority Critical patent/CN112566791B/en
Priority to JP2020535887A priority patent/JP7256192B2/en
Publication of WO2020032208A1 publication Critical patent/WO2020032208A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a tire.
  • an object of the present invention is to provide a tire that has excellent dry handling properties and belt durability, and that can reduce rolling resistance.
  • the gist of the present invention for solving the above-mentioned problems is as follows.
  • the tire of the present invention is a tire provided with a belt comprising one or more belt layers disposed on a tread portion.
  • the tread rubber constituting the tread portion has a rubber component and a total styrene content of 30% by mass.
  • the belt-coated rubber preferably has a dynamic storage modulus (E ′) at 25 ° C. at a strain of 1% of more than 12 MPa and less than 30 MPa. This is because grip performance on a dry road surface and a wet road surface can be improved, and a reduction in rolling resistance and an improvement in belt durability can be achieved at a higher level.
  • E ′ dynamic storage modulus
  • the belt coating rubber a rubber composition comprising a rubber component, and carbon black DBP absorption amount is 50 ⁇ 100 cm 3 / 100g, and the phenol resin, a methylene donor Is preferred. This is because the reduction of the rolling resistance and the improvement of the durability of the belt can be achieved at a higher level.
  • the alkylene block of the styrene-alkylene block copolymer has-(CH 2 -CH (C 2 H 5 ))-unit (A) and-(CH 2 -CH 2 ) -unit (B), and the total content of the unit (A) is at least 40% by mass based on the total mass of the alkylene blocks of the unit (A) and the unit (B) (unit (A) + unit (B)). And more preferably 50% by mass or more. This is because it is possible to achieve both a grip performance on a wet road surface and a reduction in rolling resistance while realizing excellent dry handling properties.
  • the rubber component in the rubber composition used for the tread rubber, preferably contains natural rubber, and the content ratio of the natural rubber in the rubber component is preferably 50% by mass or more. . This is because cold resistance and reduction of rolling resistance can be improved.
  • the total styrene content of the styrene-alkylene block copolymer is 50% by mass or more. This is because dry handling can be further improved.
  • FIG. 1 is a diagram schematically showing a cross section of an embodiment of the tire of the present invention.
  • the tire of the present invention is a tire provided with a belt 6 including one or more belt layers 6a and 6b arranged on a tread portion 3, and in FIG. 1, a pair of bead portions 1 and a pair of sidewall portions 2 are provided.
  • a radial carcass 5 extending in a toroidal shape between a tread portion 3, a bead core 4 embedded in the bead portion 1, and a tread portion 3 (more specifically, a tire radius of a crown portion of the radial carcass 5).
  • a belt 6 composed of two belt layers 6a and 6b (disposed outward in the direction of the belt).
  • the radial carcass 5 is composed of a single carcass ply, and further includes a body portion extending in a toroidal shape between a pair of bead cores 4 buried in the bead portion 1,
  • Each bead core 4 includes a folded portion wound outward from the inside in the tire width direction to the outside in the tire width direction.
  • the number of plies and the structure of the radial carcass 5 in the tire of the present invention are not limited thereto. It is not something that can be done.
  • the carcass ply constituting the radial carcass 5 is formed by covering a plurality of reinforcing cords with a covering rubber, and the reinforcing cords include organic fiber cords such as polyethylene terephthalate cords, nylon cords, rayon cords, and steel cords. A code may be used.
  • the belt 6 of the illustrated tire is composed of two belt layers 6a and 6b, and each of the belt layers 6a and 6b is usually a rubberized layer of a cord extending at an angle to the tire equatorial plane.
  • the belt layer is composed of a rubberized layer of a steel cord, and two belt layers 6a and 6b are laminated so that the cords constituting the belt layers 6a and 6b cross each other across the tire equatorial plane.
  • the belt 6 is constituted.
  • the belt 6 in the figure includes two belt layers 6a and 6b, the number of belt layers constituting the belt 6 in the tire of the present invention may be one or more, and is not limited thereto. Not something.
  • the tire of the present embodiment is such that the tread rubber constituting the tread portion 3 is made of a rubber composition containing a rubber component and a styrene-alkylene block copolymer having a total styrene content of 30% by mass or more.
  • the belt layers 6a and 6b have a belt coating rubber covering the reinforcing cord, and the ratio of the 200% modulus M200 (MPa) to the 50% modulus M50 (MPa) of the belt coating rubber is 5.0 or less ( M200 / M50 ⁇ 5.0).
  • the elastic modulus of the tread rubber can be increased, and the rolling resistance of the tire can be reduced, so that excellent dry handling properties can be obtained. And low rolling resistance can be realized.
  • the ratio of the 200% modulus value (MPa) to the 50% modulus value (MPa) of the belt coating rubber to a specific value (specifically, 5.0) or less, deterioration of the rolling resistance of the tire is reduced.
  • the durability of the belt can be greatly improved.
  • the tread rubber is a rubber composition containing a rubber component and a styrene-alkylene block copolymer having a total styrene content of 30% by mass or more (hereinafter, referred to as a “rubber composition for tread”). Sometimes).
  • the styrene-alkylene block copolymer is blended, the styrene block in the styrene-alkylene block copolymer, while acting as a filler in the tread rubber, polystyrene
  • the presence of an alkylene block between the blocks reduces the friction between polystyrene blocks.
  • the elastic modulus of the tread rubber can be increased, and the low-loss property can be improved (the rolling resistance of the tire can be reduced).
  • the rubber component of the rubber composition for a tread is not particularly limited, and a rubber component used in a known rubber composition can be used.
  • the rubber component includes natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile butadiene rubber, chloroprene rubber, polyisoprene rubber, and modified products thereof.
  • the rubber component may be used alone or in combination of two or more.
  • the rubber component preferably contains a natural rubber. This is because by including natural rubber as the rubber component, it is possible to improve the cold resistance and the low loss property (the effect of reducing the rolling resistance of the tire). Furthermore, from the viewpoint of improving durability and low loss property, the content ratio of the natural rubber in the rubber component is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more. More preferably, it is 70% by mass or more.
  • the rubber component preferably contains at least one selected from the group consisting of unmodified SBR and modified SBR. Further, the rubber component more preferably contains at least a modified conjugated diene-based polymer such as modified SBR. This is because it is possible to improve the low rolling resistance of the tire.
  • the modified conjugated diene-based polymer for example, the following modified conjugated diene-based polymer (A) is preferable.
  • the modified conjugated diene polymer (A) has a weight average molecular weight of 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, and has a molecular weight of 200 ⁇ 10 4 or more based on the total amount of the modified conjugated diene polymer (A). It contains a modified conjugated diene-based polymer of 10 4 or more and 500 ⁇ 10 4 or less in an amount of 0.25 mass% or more and 30 mass% or less, and a shrinkage factor (g ′) of less than 0.64. With this modified conjugated diene polymer (A), the low rolling resistance of the tire can be further improved.
  • the modified conjugated diene-based polymer (A) preferably has a branch and a degree of branching of 5 or more. In this case, the WET performance of the tire can be further improved.
  • the modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue, and the branch is composed of 1
  • the coupling residue preferably has a branch to which 5 or more of the conjugated diene-based polymer chains are bonded. In this case, the WET performance of the tire can be further improved.
  • the modified conjugated diene polymer (A) has the following general formula (I):
  • D represents a conjugated diene polymer chain
  • R 1, R 2 and R 3 is independently a single bond or an alkylene group having a carbon number of 1 ⁇ 20
  • R 4 And R 7 each independently represent an alkyl group having 1 to 20 carbon atoms
  • R 5 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • 6 and R 10 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms
  • m and x each independently represent 1 to 3 represents an integer, x ⁇ m, p represents 1 or 2, y represents an integer of 1 to 3, y ⁇ (p + 1), and z represents an integer of 1 or 2.
  • A is preferably represented by any of the following general formulas (II) to (V).
  • B 1 represents a single bond or a hydrocarbon group having a carbon number of 1 ⁇ 20
  • a is an integer of 1 ⁇ 10
  • B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • B 3 represents an alkyl group having 1 to 20 carbon atoms
  • a represents 1 to 10 carbon atoms.
  • B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10
  • B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms
  • a represents an integer of 1 to 10
  • when there are a plurality of B 5 be independent.
  • the modified conjugated diene-based polymer (A) is preferably obtained by reacting a conjugated diene-based polymer with a coupling agent represented by the following general formula (VI).
  • a coupling agent represented by the following general formula (VI) By using the rubber composition containing the modified conjugated diene polymer (A1) reacted with the coupling agent in a tire, the wear resistance of the tire is improved, and the rolling resistance can be reduced.
  • R 12 , R 13 and R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms
  • R 15 , R 16 , R 17 , R 18 and R 20 each independently represents an alkyl group having 1 to 20 carbon atoms
  • R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms
  • R 21 represents an alkyl group having 1 to 20 carbon atoms.
  • An alkyl group or a trialkylsilyl group m represents an integer of 1 to 3
  • p represents an integer of 1 or 2
  • R 11 to R 22 , m and p each represent a plurality of I, j, and k each independently represent an integer of 0 to 6, provided that (i + j + k) is an integer of 3 to 10
  • A is a carbon atom having 1 to 20 carbon atoms.
  • the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
  • the organic group having no active hydrogen include active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH).
  • active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH).
  • the coupling agent represented by the general formula (VI) is tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis ( It is preferably at least one selected from the group consisting of 3-trimethoxysilylpropyl) -1,3-propanediamine and tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane. In this case, the wear resistance of the tire can be further improved.
  • a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight, and the shrinkage factor (g ′) is assumed to be the same.
  • the shrinkage factor (g ') at each absolute molecular weight of the modified conjugated diene-based polymer is calculated, and the average value of the shrinkage factor (g') at an absolute molecular weight of 100 ⁇ 10 4 to 200 ⁇ 10 4 is calculated. It is defined as a shrinkage factor (g ′) of the modified conjugated diene polymer.
  • the “branch” is formed by directly or indirectly bonding one polymer to another polymer.
  • the “degree of branching” is the number of polymers directly or indirectly bonded to one branch. For example, when five conjugated diene-based polymer chains described below are indirectly bonded to each other via a coupling residue described later, the degree of branching is 5.
  • the coupling residue is a structural unit of a modified conjugated diene-based polymer that is bonded to a conjugated diene-based polymer chain, and is, for example, to react a conjugated diene-based polymer described below with a coupling agent. Is a structural unit derived from a coupling agent.
  • the conjugated diene-based polymer chain is a constituent unit of the modified conjugated diene-based polymer, for example, produced by reacting a conjugated diene-based polymer and a coupling agent described below, derived from a conjugated diene-based polymer. It is a structural unit.
  • the shrinkage factor (g ′) is less than 0.64, preferably 0.63 or less, more preferably 0.60 or less, further preferably 0.59 or less, and even more preferably 0.57 or less.
  • the lower limit of the shrinkage factor (g ′) is not particularly limited, and may be equal to or lower than the detection limit, but is preferably 0.30 or more, more preferably 0.33 or more, and still more preferably 0.35 or more. Yes, more preferably 0.45 or more, and even more preferably 0.59 or more.
  • the contraction factor (g ′) tends to depend on the branching degree, for example, the contraction factor (g ′) can be controlled using the branching degree as an index. Specifically, when a modified conjugated diene-based polymer having a degree of branching of 6 is used, its shrinkage factor (g ′) tends to be 0.59 or more and 0.63 or less, and the modified conjugated diene having a degree of branching of 8 is used. In the case of a system polymer, the shrinkage factor (g ') tends to be 0.45 or more and 0.59 or less.
  • the measuring method of the contraction factor (g ′) is as follows. Using a modified conjugated diene polymer as a sample and a light scattering detector using a GPC measuring device (trade name “GPCmax VE-2001” manufactured by Malvern) in which three columns using polystyrene-based gel as a filler are connected. , RI detector, and viscosity detector (trade name “TDA305” manufactured by Malvern) are measured using three detectors connected in this order. Based on standard polystyrene, a light scattering detector and an RI detector are used. The absolute molecular weight is obtained from the result of the above, and the intrinsic viscosity is obtained from the result of the RI detector and the viscosity detector.
  • THF containing 5 mmol / L triethylamine is used as an eluent.
  • the columns are used by connecting Tosoh's trade names “TSKgel G4000HXL”, “TSKgel G5000HXL”, and “TSKgel G6000HXL”.
  • the modified conjugated diene polymer (A) preferably has a branch and a degree of branching of 5 or more.
  • the modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue. It is more preferable to include a branch in which 5 or more of the conjugated diene-based polymer chains are bonded to the coupling residue.
  • the degree of branching is 5 or more, and the structure of the modified conjugated diene polymer is such that the branch contains a branch in which 5 or more conjugated diene polymer chains are bonded to one coupling residue.
  • the shrinkage factor (g ′) can be more reliably reduced to less than 0.64.
  • the number of conjugated diene-based polymer chains bonded to one coupling residue can be confirmed from the value of shrinkage factor (g ′).
  • the modified conjugated diene polymer (A) has a branch, and the degree of branching is more preferably 6 or more.
  • the modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue. It is more preferable to include a branch in which 6 or more of the conjugated diene-based polymer chains are bonded to the coupling residue.
  • the structure of the modified conjugated diene-based polymer is such that the degree of branching is 6 or more, and the branch contains a branch in which 6 or more conjugated diene-based polymer chains are bonded to one coupling residue.
  • the contraction factor (g ′) can be reduced to 0.63 or less.
  • the modified conjugated diene-based polymer (A) has a branch, more preferably has a degree of branching of 7 or more, and still more preferably has a degree of branching of 8 or more.
  • the upper limit of the degree of branching is not particularly limited, but is preferably 18 or less.
  • the modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue. It is even more preferable that the coupling residue includes a branch to which 7 or more of the conjugated diene-based polymer chains are bonded, and 8 or more of the conjugated diene to 1 of the coupling residue. It is particularly preferable to include a branch to which the system polymer chain is bonded. The degree of branching is 8 or more, and the structure of the modified conjugated diene polymer is such that the branch contains a branch in which 8 or more conjugated diene polymer chains are bonded to one coupling residue. By specifying, the contraction factor (g ′) can be reduced to 0.59 or less.
  • the modified conjugated diene polymer (A) preferably has a nitrogen atom and a silicon atom.
  • the processability of the rubber composition is improved, and when applied to a tire, the low rolling resistance of the tire can be further improved while improving the WET performance and wear resistance of the tire.
  • the modified conjugated diene-based polymer (A) has a nitrogen atom if the calculated modification rate is 10% or more according to the modification rate measurement method described below. Judge. It can be confirmed by the presence or absence of adsorption to a specific column.
  • Whether the modified conjugated diene polymer (A) has a silicon atom is determined by the following method. Using a modified conjugated diene-based polymer (0.5 g) as a sample, measurement was performed using an ultraviolet-visible spectrophotometer (trade name “UV-1800” manufactured by Shimadzu Corporation) in accordance with JIS K0101 44.3.1. It is quantified by molybdenum blue absorption spectrophotometry. Thus, when a silicon atom is detected (detection lower limit: 10 mass ppm), it is determined that the silicon atom is present.
  • UV-1800 ultraviolet-visible spectrophotometer
  • At least one terminal of the conjugated diene-based polymer chain is bonded to a silicon atom of a coupling residue.
  • the terminals of the plurality of conjugated diene-based polymer chains may be bonded to one silicon atom.
  • the terminal of the conjugated diene polymer chain and the alkoxy group or hydroxyl group having 1 to 20 carbon atoms are bonded to one silicon atom, and as a result, the one silicon atom is converted to an alkoxysilyl group having 1 to 20 carbon atoms. Or a silanol group.
  • the modified conjugated diene copolymer (A) can be an oil-extended polymer to which an extender oil has been added.
  • the modified conjugated diene-based copolymer (A) may be non-oil-extended or oil-extended, but from the viewpoint of abrasion resistance, the Mooney viscosity measured at 100 ° C is 20 or more and 100 or more. And more preferably 30 to 80.
  • the method for measuring Mooney viscosity is as follows. Using a conjugated diene-based polymer or a modified conjugated diene-based polymer as a sample, Mooney viscosity is measured using an L-shaped rotor according to JIS K6300 using a Mooney viscometer (trade name “VR1132” manufactured by Ueshima Seisakusho Co., Ltd.). I do. The measurement temperature is 110 ° C. when a conjugated diene-based polymer is used as a sample, and 100 ° C. when a modified conjugated diene-based polymer is used as a sample. First, after preheating the sample at the test temperature for 1 minute, the rotor is rotated at 2 rpm, and the torque after 4 minutes is measured to obtain the Mooney viscosity (ML (1 + 4) ).
  • the weight average molecular weight (Mw) of the modified conjugated diene polymer (A) is 20 ⁇ 10 4 or more and 300 ⁇ 10 4 or less, preferably 50 ⁇ 10 4 or more, more preferably 64 ⁇ 10 4 or more. And more preferably 80 ⁇ 10 4 or more.
  • the weight average molecular weight is preferably 250 ⁇ 10 4 or less, more preferably 180 ⁇ 10 4 or less, and even more preferably 150 ⁇ 10 4 or less.
  • the weight-average molecular weight is 20 ⁇ 10 4 or more, both low rolling resistance and wet performance of the tire can be highly compatible.
  • the weight average molecular weight is 300 ⁇ 10 4 or less, the processability of the rubber composition is improved.
  • the number average molecular weight, the weight average molecular weight, the molecular weight distribution, and the content of the specific high molecular weight component with respect to the modified conjugated diene polymer (A) and the conjugated diene polymer described below are measured as follows. Using a conjugated diene-based polymer or a modified conjugated diene-based polymer as a sample, using a GPC measuring device (trade name “HLC-8320GPC” manufactured by Tosoh Corporation) in which three columns using polystyrene-based gel as a filler are connected.
  • a GPC measuring device trade name “HLC-8320GPC” manufactured by Tosoh Corporation
  • An RI detector (trade name “HLC8020” manufactured by Tosoh Corporation) was used to measure the chromatogram, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were determined based on a calibration curve obtained using standard polystyrene. ) and molecular weight distribution (Mw / Mn), a peak top molecular weight of the modified conjugated diene polymer and (Mp 1) and a peak top molecular weight of the conjugated diene polymer (Mp 2) and the ratio (Mp 1 / Mp 2) And a ratio of molecular weight of 200 ⁇ 10 4 or more and 500 ⁇ 104 or less.
  • THF tetrahydrofuran
  • TSKgel SuperMultipore HZ-H trade name, manufactured by Tosoh Corporation
  • a guard column is connected with a brand name, TSKguardcolumn SuperMP (HZ) -H (manufactured by Tosoh Corporation), as a guard column.
  • 10 mg of a sample for measurement is dissolved in 10 mL of THF to make a measurement solution
  • 10 ⁇ L of the measurement solution is poured into a GPC measuring device, and measurement is performed under the conditions of an oven temperature of 40 ° C.
  • the peak top molecular weights are determined as follows. In the GPC curve obtained by the measurement, the peak detected as the component having the highest molecular weight is selected. With respect to the selected peak, the molecular weight corresponding to the maximum value of the peak is calculated, and is set as the peak top molecular weight. In addition, the ratio of the molecular weight of 200 ⁇ 10 4 or more and 500 ⁇ 10 4 or less is calculated by subtracting the ratio of the molecular weight of less than 200 ⁇ 10 4 from the ratio of the total molecular weight of 500 ⁇ 10 4 or less from the integrated molecular weight distribution curve. I do.
  • the modified conjugated diene polymer (A) is a modified conjugated diene polymer having a molecular weight of 200 ⁇ 10 4 or more and 500 ⁇ 10 4 or less with respect to the total amount (100% by mass) of the modified conjugated diene polymer (A). also referred to herein as "specific high molecular weight component.”), and includes 10 4% by weight to 30% by weight. When the content of the specific high molecular weight component is within this range, it is possible to achieve a high level of both low rolling resistance and WET performance of the tire.
  • the modified conjugated diene-based polymer (A) contains a specific high molecular weight component, preferably at least 1.0% by mass, more preferably at least 1.4% by mass, further preferably at least 1.75% by mass, even more preferably at least 2.0% by mass. %, Particularly preferably at least 2.15% by mass, very preferably at least 2.5% by mass. Further, the modified conjugated diene-based polymer (A) preferably contains a specific high molecular weight component of 28% by mass or less, more preferably 25% by mass or less, further preferably 20% by mass or less, and still more preferably Contains 18% by mass or less.
  • a "molecular weight” is a standard polystyrene equivalent molecular weight obtained by GPC (gel permeation chromatography).
  • GPC gel permeation chromatography
  • the amount of an organic monolithium compound to be described later used as a polymerization initiator may be adjusted.
  • a method having a residence time distribution may be used in any of the continuous and batch polymerization modes, that is, the time distribution of the growth reaction may be broadened.
  • the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.6 or more and 3.0 or less. If the molecular weight distribution of the modified conjugated diene polymer (A) is within this range, the processability of the rubber composition will be good.
  • the method for producing the modified conjugated diene-based polymer (A) is not particularly limited, but is a polymerization in which an organic monolithium compound is used as a polymerization initiator and at least the conjugated diene compound is polymerized to obtain a conjugated diene-based polymer. It is preferable to include a step and a reaction step of reacting a reactive compound having five or more functional groups (hereinafter, also referred to as a “coupling agent”) with the active terminal of the conjugated diene polymer. As the coupling agent, it is preferable to react a pentafunctional or more reactive compound having a nitrogen atom and a silicon atom.
  • the modified conjugated diene-based polymer (A) is preferably obtained by reacting a conjugated diene-based polymer with a coupling agent represented by the general formula (VI).
  • a coupling agent represented by the general formula (VI) By using the rubber composition containing the modified conjugated diene polymer (A) obtained by reacting with the coupling agent in a tire, it becomes possible to improve the wear resistance of the tire.
  • the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
  • the organic group having no active hydrogen include active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH).
  • Organic groups having no functional group By using the rubber composition containing the modified conjugated diene polymer (A) obtained by reacting with the coupling agent in a tire, it becomes possible to improve the wear resistance of the tire.
  • the modified conjugated diene-based polymer (A) obtained by reacting the coupling agent represented by the general formula (VI) with a conjugated diene-based polymer is represented by, for example, the general formula (I).
  • D represents a conjugated diene polymer chain
  • the weight average molecular weight of the conjugated diene polymer chain is preferably from 10 ⁇ 10 4 to 100 ⁇ 10 4 .
  • the conjugated diene-based polymer chain is a constituent unit of the modified conjugated diene-based polymer, and is, for example, a structural unit derived from a conjugated diene-based polymer generated by reacting a conjugated diene-based polymer with a coupling agent. is there.
  • the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups.
  • the organic group having no active hydrogen include active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH). And an organic group having no functional group.
  • A is represented by the general formula (II) or (III), and k represents 0. More preferably, in the general formula (I), A is represented by the general formula (II) or (III), k represents 0, and in the general formula (II) or (III), a is , 2 to 10. Still more preferably, in the general formula (I), A is represented by the general formula (II), k represents 0, and in the general formula (II), a is an integer of 2 to 10. Show.
  • the content of the modified conjugated diene polymer (A) in the rubber component is preferably 25 to 40% by mass, more preferably 30 to 35% by mass.
  • the content of the modified conjugated diene polymer (A) in the rubber component is 25% by mass or more, when applied to a tire, the WET performance of the tire can be further improved.
  • the content of the modified conjugated diene polymer (A) in the rubber component is 40% by mass or less, the processability of the rubber composition is improved.
  • a modified SBR other than the modified conjugated diene polymer (A) can be used, or an unmodified SBR can be used.
  • examples of the other modified SBR include a modified (co) polymer as the polymer component P2 of WO2017 / 0777712, and modified polymers C and D described in Examples.
  • the styrene-alkylene block copolymer in the tread rubber composition is a copolymer having a block derived from a styrene-based monomer and an alkylene block.
  • the styrene / alkylene block copolymer in the rubber composition for tread has a total styrene content of the styrene / alkylene block copolymer of 30% by mass or more based on the total mass of the styrene / alkylene block copolymer. . Thereby, the dry handling of the tire can be improved.
  • the styrene-alkylene block copolymer may be used alone or in combination of two or more.
  • the total styrene content of the styrene / alkylene block copolymer may be appropriately adjusted, and is, for example, 30 to 60% by mass.
  • the total styrene content is preferably 50% by mass or more. When the total styrene content is 50% by mass or more, the dry handleability of the tire can be further improved.
  • the styrene content of the styrene-alkylene block copolymer and the content of the alkylene unit described below are determined by 1 H-NMR integration ratio.
  • the styrene block of the styrene-alkylene block copolymer has a unit derived from a styrene monomer (polymerized styrene monomer).
  • a styrene-based monomer include styrene, ⁇ -methylstyrene, p-methylstyrene, and vinyl toluene. Among them, styrene is preferable as the styrene monomer.
  • the alkylene block of the styrene-alkylene block copolymer has an alkylene (divalent saturated hydrocarbon group) unit.
  • alkylene unit examples include an alkylene group having 1 to 20 carbon atoms.
  • the alkylene unit may have a linear structure, a branched structure, or a combination thereof.
  • linear structure alkylene unit examples include a — (CH 2 —CH 2 ) —unit (ethylene unit) and a — (CH 2 —CH 2 —CH 2 —CH 2 ) —unit (butylene unit).
  • Examples of the alkylene unit having a branched structure include a-(CH 2 -CH (C 2 H 5 ))-unit (butylene unit).
  • the alkylene unit preferably has a — (CH 2 —CH (C 2 H 5 )) — unit.
  • the total content of the alkylene units may be appropriately adjusted, and is, for example, 40 to 70% by mass based on the total mass of the styrene / alkylene block copolymer.
  • the alkylene block of the styrene-alkylene block copolymer has-(CH 2 -CH (C 2 H 5 ))-unit (A) and-(CH 2 -CH 2 ) -unit (B), and the total content of the unit (A) is at least 40% by mass based on the total mass of the alkylene blocks of the unit (A) and the unit (B) (unit (A) + unit (B)). Is preferably 50% by mass or more, and more preferably 65% by mass or more. This makes it possible to achieve both wet performance and reduced rolling resistance while having excellent dry handling properties.
  • styrene / alkylene block copolymer examples include styrene / ethylene / butylene / styrene block copolymer (SEBS), styrene / ethylene propylene / styrene block copolymer (SEPS), and styrene / ethylene / ethylene propylene / styrene block.
  • SEBS styrene / ethylene / butylene / styrene block copolymer
  • SEPS styrene / ethylene propylene / styrene block copolymer
  • SEEPS styrene / ethylene / ethylene propylene / styrene block
  • the styrene / alkylene block copolymer is a styrene / ethylene butylene / styrene block copolymer.
  • the ethylene butylene block of the styrene / ethylene butylene / styrene block copolymer is a block having the above-mentioned ethylene unit and butylene unit.
  • the styrene-alkylene block copolymer may contain other structural units other than the styrene block and the alkylene block.
  • the method for preparing the styrene-alkylene block copolymer is not particularly limited, and a known method can be used.
  • a styrene-based monomer such as styrene and a conjugated diene compound such as 1,3-butadiene or an olefin such as butene are copolymerized to obtain a precursor copolymer, and the precursor copolymer is hydrogenated.
  • a styrene-alkylene block copolymer may be a commercially available product.
  • Such commercially available products include, for example, JSR DYNARON (registered trademark) 8903P, 9901P, etc. of JSR Corporation.
  • the blending amount of the styrene-alkylene block copolymer in the rubber composition for a tread is not particularly limited, and may be appropriately adjusted.
  • the amount of the styrene-alkylene block copolymer is 4 to 30 parts by mass based on 100 parts by mass of the rubber component.
  • the blending amount of the styrene-alkylene block copolymer should be 8.5 to 30 parts by mass with respect to 100 parts by mass of the rubber component. Is preferred.
  • the rubber composition for tread in addition to the rubber component and the styrene-alkylene block copolymer, a filler, a vulcanization accelerator, a silane coupling agent, a thermoplastic resin, a vulcanizing agent and a glycerin fatty acid ester And one or more selected from the group consisting of:
  • filler for example, silica, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide , Titanium oxide, potassium titanate, barium sulfate and the like.
  • the filler may be used alone or in combination of two or more.
  • the filler contains at least silica from the viewpoint of reinforcing property and reduction of low rolling resistance of the tire.
  • the silica is not particularly limited and can be appropriately selected depending on the purpose. Examples include wet silica (hydrous silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate and the like.
  • the content of silica in the filler is not particularly limited, and can be appropriately adjusted according to the purpose.
  • the amount is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 90 to 100% by mass based on the total mass of the filler.
  • the carbon black is not particularly limited.
  • carbon black of high, medium or low structure such as SAF, ISAF, ISAF-HS, IISAF, HAF, FEF, GPF, SRF grade and the like can be mentioned.
  • the compounding amount of the filler in the rubber composition for tread is not particularly limited, and may be appropriately adjusted.
  • the amount is preferably 20 to 120 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
  • the tread rubber composition preferably contains a vulcanization accelerator in addition to the rubber component and the styrene-alkylene block copolymer.
  • the vulcanization accelerator is, for example, at least one selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea. Each of these may be used alone or in combination of two or more.
  • the amount of the vulcanization accelerator in the rubber composition for tread is not particularly limited, and can be appropriately adjusted depending on the purpose.
  • the amount is 0.1 to 20 parts by mass based on 100 parts by mass of the rubber component.
  • the amount is 0.1 part by mass or more, the effect of vulcanization is easily obtained, and when the amount is 20 parts by mass or less, excessive progress of vulcanization can be suppressed.
  • the guanidines are not particularly limited, and can be appropriately selected according to the purpose.
  • 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are preferable in terms of high reactivity, and 1,3-diphenylguanidine is more preferable.
  • the sulfenamides are not particularly limited and can be appropriately selected according to the purpose.
  • N- distearyl-2-benzothiazolyl sulfenamide and the like are preferred because of their high reactivity.
  • the thiazoles are not particularly limited and can be appropriately selected according to the purpose.
  • 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, 2- (N, N-diethylthiocarbamoylthio) benzo Thiazole, 2- (4'-morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5-chloro-2-mercaptobenzothiazole, 2-mercapto Sodium benzothiazole, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino-2-mercaptobenzothiazole and the like Can be Among these,
  • the thiourea is a compound represented by NH 2 CSNH 2 .
  • the diethylthiourea is a compound represented by C 2 H 5 NHCSNHC 2 H 5 .
  • the rubber composition for tread contains silica as the filler
  • the rubber composition further includes a silane coupling agent.
  • silane coupling agent By using the silane coupling agent, it is possible to obtain a tire having more excellent workability during rubber processing and more excellent wear resistance.
  • the silane coupling agents may be used alone or in combination of two or more.
  • the silane coupling agent is not particularly limited and can be appropriately selected depending on the purpose.
  • the formula (1) (R 1 O) 3-p (R 2 ) p Si—R 3 —S a Compound represented by —R 3 —Si (OR 1 ) 3-r (R 2 ) r
  • formula (2) (R 4 O) 3-s (R 5 ) s Si—R 6 —S k —R 7 —S k —R 6 —Si (OR 4 ) 3-t (R 5 ) t and the like.
  • R 1 is each independently a straight-chain, cyclic or branched alkyl group having 1 to 8 carbon atoms, a straight-chain or branched alkoxyalkyl group having 2 to 8 carbon atoms, or a hydrogen atom.
  • 2 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms
  • R 3 is each independently a linear or branched alkylene group having 1 to 8 carbon atoms.
  • a is 2 to 6 on average
  • p and r may be the same or different, and each is 0 to 3 on average. However, both p and r are not 3.
  • R 4 is each independently a straight-chain, cyclic or branched alkyl group having 1 to 8 carbon atoms, a straight-chain or branched alkoxyalkyl group having 2 to 8 carbon atoms, or a hydrogen atom.
  • 5 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms
  • R 6 is each independently a linear or branched alkylene group having 1 to 8 carbon atoms.
  • R 7 is the formula (-S-R 8 -S -) , (- R 9 -S m1 -R 10 -) and (-R 11 -S m2 -R 12 -S m3 -R 13 -) either Wherein each of R 8 to R 13 is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent aromatic group, or a divalent organic group containing a hetero element other than sulfur and oxygen. , M1, m2, and m3 may be the same or different and each have an average value of 1 or more and less than 4.), k is independently 1 to 6 as an average value, and s and t are each The average value is 0-3. However, s and t are not both 3.
  • silane coupling agent represented by the formula (1) examples include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (3-methyldimethoxysilylpropyl) tetrasulfide.
  • the silane coupling agent represented by the formula (2) includes, for example, an average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 10 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 3 — (CH 2 ) 6 —S 3 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (CH
  • silane coupling agent examples include Si363 (ethoxy (3-mercaptopropyl) bis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silane manufactured by Evonik Degussa, and [C 13 H 27 O (CH 2 CH 2 O) 5 ] 2 (CH 3 CH 2 O) Si (CH 2 ) 3 SH).
  • the amount of the silane coupling agent in the tread rubber composition may be appropriately adjusted.
  • the amount is 2 parts by mass or more based on 100 parts by mass of the rubber component.
  • the amount is preferably 2 to 20 parts by mass, more preferably 4 to 12 parts by mass, per 100 parts by mass of the rubber component.
  • the ratio of the blending amount (mass) of the silane coupling agent to the blending amount (mass) of the silica is not particularly limited, and is appropriately adjusted depending on the purpose. However, it is preferably 0.01 to 0.20, more preferably 0.03 to 0.20, and particularly preferably 0.04 to 0.10. When this ratio is 0.01 or more, the effect of reducing the heat build-up of the rubber composition can be easily obtained, and when it is 0.20 or less, the production cost of the rubber composition can be reduced and the economic efficiency can be improved.
  • the vulcanizing agent is not particularly limited, and can be appropriately selected depending on the purpose. For example, sulfur and the like can be mentioned.
  • the vulcanizing agents may be used alone or in combination of two or more.
  • the amount of the vulcanizing agent is not particularly limited and can be appropriately adjusted depending on the purpose.
  • the amount is 0.1 to 2.0 parts by mass, and 1.0 to 2.0 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferably, and particularly preferably 1.2 to 1.8 parts by mass.
  • the rubber composition for a tread comprises, in addition to the rubber component and the styrene / alkylene block copolymer, a C5 resin, a C5 to C9 resin, a C9 resin, a terpene resin, a terpene-aromatic. It may further include a thermoplastic resin selected from the group consisting of a compound resin, a rosin resin, a dicyclopentadiene resin, an alkylphenol resin, and a partially hydrogenated resin thereof. Each of these may be used alone or in combination of two or more.
  • the thermoplastic resin does not include the styrene-alkylene block copolymer described above.
  • the blending amount of the thermoplastic resin is not particularly limited and can be appropriately adjusted depending on the purpose. For example, it is 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
  • the C5 resin refers to a C5 synthetic petroleum resin and means a resin obtained by polymerizing a C5 fraction using a Friedel Crafts type catalyst such as AlCl 3 or BF 3 .
  • a Friedel Crafts type catalyst such as AlCl 3 or BF 3 .
  • copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene, 1-pentene and the like as main components copolymers of 2-pentene and dicyclopentadiene, and 1,3-pentadiene as main components And the like.
  • the C5-C9 resin refers to a C5-C9 synthetic petroleum resin, and means a resin obtained by polymerizing a C5-C11 fraction using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 .
  • a copolymer containing styrene, vinyltoluene, ⁇ -methylstyrene, indene, or the like as a main component may be used.
  • C5 to C9 resins having a small amount of C9 or more are preferable because of excellent compatibility with the rubber component.
  • a resin in which the ratio of C9 or more components in the C5 to C9 resin is less than 50% by mass is preferable, and a resin in which the ratio is 40% by mass or less is more preferable.
  • those partially hydrogenated for example, Alcon (registered trademark) of Arakawa Chemical Industry Co., Ltd.
  • Alcon registered trademark of Arakawa Chemical Industry Co., Ltd.
  • C9-based resin refers to C9-based synthetic petroleum resin and means a resin obtained by polymerizing a C9 fraction using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 .
  • a copolymer containing indene, methylindene, ⁇ -methylstyrene, vinyltoluene or the like as a main component can be used.
  • those partially hydrogenated for example, Alcon (registered trademark) of Arakawa Chemical Industry Co., Ltd.) and the like can also be mentioned.
  • the terpene-based resin can be obtained by blending turpentine oil obtained simultaneously with obtaining rosin from a pine tree or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts type catalyst.
  • turpentine oil obtained simultaneously with obtaining rosin from a pine tree or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts type catalyst.
  • ⁇ -pinene resin, ⁇ -pinene resin and the like can be mentioned.
  • the terpene-aromatic compound resin can be obtained by reacting a terpene with various phenols using a Friedel-Crafts type catalyst or further condensing it with formalin.
  • a terpene-phenol resins and the like can be mentioned.
  • a resin in which the phenol component in the terpene-phenol resin is less than 50% by mass is preferable, and a resin in which the phenol component is 40% by mass or less is more preferable.
  • the terpene as a raw material is not particularly limited and can be appropriately selected depending on the purpose.
  • Examples thereof include monoterpene hydrocarbons such as ⁇ -pinene and limonene. Among these, those containing ⁇ -pinene are preferable, and ⁇ -pinene is more preferable.
  • the rosin resin is not particularly limited and can be appropriately selected depending on the purpose.
  • natural resin rosins such as gum rosin, tall oil resin, and wood rosin contained in raw pine tar and tall oil; modified rosin; Rosin derivatives and the like can be mentioned.
  • specific examples of the modified rosin derivative include polymerized rosin, partially hydrogenated rosin; glycerin ester rosin, partially hydrogenated rosin and completely hydrogenated rosin; pentaerythritol ester rosin, partially hydrogenated rosin and completely hydrogenated rosin And the like.
  • the dicyclopentadiene resin can be obtained by polymerizing dicyclopentadiene using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 .
  • a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 .
  • Specific examples of commercially available dicyclopentadiene resins include Quinton 1920 (manufactured by Nippon Zeon), Quinton 1105 (manufactured by Nippon Zeon), and Marcarez M-890A (manufactured by Maruzen Petrochemical).
  • the alkylphenol-based resin is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include an alkylphenol-acetylene resin such as a p-tert-butylphenol-acetylene resin, and an alkylphenol-formaldehyde resin having a low polymerization degree. Can be
  • the tread rubber composition further contains a glycerin fatty acid ester composition
  • the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids.
  • the most fatty acid component is 10 to 90% by mass in the total fatty acid
  • the monoester component is 50 to 100% by mass in the glycerin fatty acid ester.
  • the composition contains a glycerin fatty acid ester composition.
  • the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids.
  • the glycerin fatty acid ester is a compound in which at least one of the three OH groups of glycerin and the COOH group of the fatty acid are ester-bonded.
  • the glycerin fatty acid ester may be a glycerin fatty acid monoester (monoester component) obtained by esterifying one molecule of glycerin and one molecule of fatty acid, or a glycerin fatty acid diester obtained by esterifying one molecule of glycerin and two molecules of fatty acid.
  • glycerin fatty acid triester obtained by esterifying one molecule of glycerin and three molecules of fatty acid, or a mixture thereof, but glycerin fatty acid monoester is preferred.
  • the glycerin fatty acid ester is a mixture of glycerin fatty acid monoester, glycerin fatty acid diester, and glycerin fatty acid triester
  • the content of each ester can be measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the two fatty acids constituting the glycerin fatty acid diester and the three fatty acids constituting the glycerin fatty acid triester may be the same or different.
  • the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids, and may be a glycerin fatty acid diester or a glycerin fatty acid triester obtained by esterifying two or more fatty acids with one molecule of glycerin.
  • the two or more fatty acids that are the raw materials of the glycerin fatty acid ester that is, the constituent fatty acids of the glycerin fatty acid ester
  • Fatty acids having 8 to 22 carbon atoms are preferred
  • fatty acids having 12 to 18 carbon atoms are more preferred
  • fatty acids having 14 to 18 carbon atoms are still more preferred
  • fatty acids having 16 carbon atoms and fatty acids having 18 carbon atoms are preferred. Is even more preferred.
  • one of the most fatty acid component and the second most fatty acid component is a fatty acid having 16 carbon atoms and the other is a fatty acid having 18 carbon atoms. More preferred.
  • the mass ratio of the fatty acid having 16 carbon atoms to the fatty acid having 18 carbon atoms is preferably in the range of 90/10 to 10/90, more preferably in the range of 80/20 to 20/80, and even more preferably in the range of 75/25 to 25/75.
  • the mass ratio of the fatty acid having 16 carbon atoms to the fatty acid having 18 carbon atoms is in this range, the processability of the rubber composition, the reduction in low rolling resistance of the tire, and the breaking characteristics can be further improved.
  • the constituent fatty acids of the glycerin fatty acid ester may be linear or branched, but are preferably linear, and may be either saturated or unsaturated fatty acids, but are preferably saturated fatty acids.
  • constituent fatty acids of the glycerin fatty acid ester specifically, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, araginic acid, Arachidonic acid, behenic acid and the like are mentioned, and among these, lauric acid, myristic acid, palmitic acid and stearic acid are preferable, and palmitic acid and stearic acid are more preferable.
  • glycerin fatty acid ester examples include lauric acid monoglyceride, myristic acid monoglyceride, palmitic acid monoglyceride, and stearic acid monoglyceride, and more preferably palmitic acid monoglyceride and stearic acid monoglyceride.
  • the amount of the glycerin fatty acid ester composition is, from the viewpoint of processability of the rubber composition, based on 100 parts by mass of the silica, preferably 0.5 parts by mass or more, more preferably 1 part by mass. Parts or more, more preferably 1.5 parts by mass or more, and, from the viewpoint of the breaking properties of the rubber composition, based on 100 parts by mass of the silica, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, It is even more preferably at most 5 parts by mass.
  • the rubber composition for treads in addition to the components described above, components commonly used in the rubber industry, for example, an antioxidant, a vulcanization accelerator, an organic acid compound, etc., the purpose of the present invention. Can be appropriately selected and contained within a range not inconsistent with the above.
  • a known method can be used for the method of using the tread rubber composition for the tread rubber.
  • it can be manufactured by molding a green tire using the above rubber composition for a tread rubber and vulcanizing the green tire according to a conventional method.
  • the belt layers 6a and 6b have a belt coating rubber covering the reinforcing cord, and the belt coating rubber has a 200% modulus value M200 (MPa) with respect to a 50% modulus value M50 (MPa).
  • the ratio is not more than 5.0 (M200 / M50 ⁇ 5.0).
  • M50 is a parameter related to the elasticity of the vulcanized rubber in a low strain range. Therefore, with respect to M50, in order to suppress deformation of the belt portion of the tire, for example, while adjusting the type and content of carbon black in the belt coating rubber described later, the phenol resin or methylene donor in the belt coating rubber described later is supplied. It must be as high as possible by incorporating the body.
  • M200 is a parameter related to the elasticity of the vulcanized rubber in a high strain range. Therefore, for M200, from the viewpoint of suppressing crack growth, it is necessary to reduce the concentration of stress at the tip of the crack, for example, by adjusting the type and content of carbon black described later, it is necessary to lower the value .
  • M200 / M50 of the belt coating rubber is preferably 4.8 or less.
  • the 50% modulus is the tensile stress (MPa) at 50% elongation of the vulcanized rubber
  • the 200% modulus is the tensile stress (MPa) at 200% elongation of the vulcanized rubber. That is.
  • the specific numerical range of the belt coating rubber M50 and the M200 is not particularly limited, but from the viewpoint of reducing the rolling resistance at a higher level and realizing the durability of the belt, M50 is 1.8 MPa. As described above, M200 is preferably 10.5 MPa or less.
  • the belt-coated rubber preferably has a dynamic storage modulus (E ′) at 25 ° C. at a strain of 1% of more than 12 MPa and less than 30 MPa, more preferably 13 to 25 MPa. This is because grip performance on a dry road surface and a wet road surface can be further improved, and a reduction in rolling resistance and an improvement in belt durability can be achieved at a higher level.
  • E ′ dynamic storage modulus
  • the belt coating rubber is composed of a rubber composition for belt coating (hereinafter, may be referred to as “rubber composition for belt coating”).
  • rubber composition for belt coating Other conditions are not particularly limited as long as the above-mentioned relationship of M200 / M50 ⁇ 5.0 can be satisfied for the rubber composition for belt coating.
  • the rubber composition for the belt coating includes a rubber component, carbon black, a phenol resin, and a methylene donor. Can be used.
  • the rubber component contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed depending on required performance.
  • natural rubber or a diene-based synthetic rubber is used alone, or natural rubber and a diene-based synthetic rubber are used in combination.
  • the rubber component can be composed of 100% of the diene rubber, but may contain a rubber other than the diene rubber as long as the object of the present invention is not impaired.
  • the content of the diene rubber in the rubber component is preferably 30% by mass or more, and more preferably 40% by mass or more. More preferably, it is even more preferably 50% by mass or more.
  • the diene-based synthetic rubber polybutadiene rubber (BR), isoprene rubber (IR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR) And the like.
  • the non-diene rubber include ethylene propylene diene rubber (EPDM), ethylene propylene rubber (EPM), and butyl rubber (IIR). These synthetic rubbers may be used alone or as a blend of two or more. These rubbers may be modified with a modifying group.
  • the carbon black that can be contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed according to required performance.
  • DBP dibutyl phthalate
  • the DBP absorption exceeds 100 cm 3/100 g, because the structure is high, too high a reinforcing of the belt coating rubber, it is not possible to obtain sufficient durability for flexibility is reduced.
  • the DBP absorption of carbon black is preferably at 90cm 3/100 g or less, more preferably 80 cm 3/100 g or less.
  • the structure of carbon black refers to the size of a structure (aggregate of carbon black particles) formed as a result of fusion and connection of spherical carbon black particles.
  • the DBP absorption of carbon black is the amount of DBP (dibutyl phthalate) absorbed by 100 g of carbon black, and can be measured according to JIS K 6217-4 (2008).
  • the carbon black is preferably a nitrogen adsorption specific surface area (N 2 SA) is 70 ⁇ 90m 2 / g, and more preferably 75 ⁇ 85m 2 / g. Since the structure of the carbon black can be further optimized, the rolling resistance can be reduced and the durability of the belt can be further improved.
  • the nitrogen adsorption specific surface area can be measured by a single point method in accordance with ISO4652-1, for example, after immersing degassed carbon black in liquid nitrogen, adsorbed on the carbon black surface at equilibrium The measured amount of nitrogen is measured, and the specific surface area (m 2 / g) can be calculated from the measured value.
  • the type of the carbon black is not particularly limited.
  • any hard carbon produced by an oil furnace method can be used.
  • the content of the carbon black is preferably 35 to 45 parts by mass with respect to 100 parts by mass of the rubber component.
  • the content of the carbon black is preferably 35 to 45 parts by mass with respect to 100 parts by mass of the rubber component.
  • the phenol resin that can be contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed according to required performance.
  • the rubber composition for belt coating contains a phenolic resin together with a methylene donor described below, thereby improving the 50% modulus value (M50) of the belt coating rubber, reducing the rolling resistance of the tire, and improving the belt coating.
  • M50 50% modulus value
  • the reinforcement of rubber can be improved and excellent belt durability can be realized.
  • the phenol resin is not particularly limited, and can be appropriately selected according to required performance.
  • a phenol such as phenol, cresol, resorcin, or tert-butylphenol or a mixture thereof to formaldehyde to a condensation reaction in the presence of an acid catalyst such as hydrochloric acid and oxalic acid
  • the phenol resin may be a modified phenol resin.
  • the phenol resin may be modified with an oil such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linoleic acid.
  • one kind may be included alone, or a plurality of kinds may be mixed and included.
  • the content of the phenol resin in the rubber composition for belt coating is preferably 2 to 10 parts by mass, more preferably 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component. .
  • the content of the phenol resin is preferably 2 to 10 parts by mass, more preferably 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component.
  • the methylene donor that can be contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed according to required performance.
  • the melamine donor as a curing agent for the phenolic resin, the 50% modulus value (M50) of the belt coating rubber is improved, and the reinforcing property of the rubber composition is improved while maintaining the rolling resistance reduction effect. Can be done.
  • the methylene donor is not particularly limited, and can be appropriately selected depending on required performance.
  • these methylene donors selected from the group consisting of hexamethylenetetramine, hexamethoxymethylmelamine, hexamethoxymethylolmelamine and paraformaldehyde, at least It is preferable that the species. Note that these methylene donors may be used alone or in combination.
  • the ratio of the content of the phenol resin to the content of the methylene donor is preferably 0.6 to 0.6 from the viewpoint of reducing rolling resistance and achieving a higher level of belt durability. It is preferably 7, and more preferably 1 to 5.
  • M50 is sufficiently improved, and durability such as crack propagation resistance can be improved. In the case of 7 or less, the rolling resistance does not deteriorate.
  • the rubber composition for belt coating may contain other components to such an extent that the effects of the invention are not impaired. it can.
  • other components for example, fillers other than the carbon black, antioxidants, crosslinking accelerators, crosslinking agents, crosslinking accelerators, silane coupling agents, stearic acid, antiozonants, surfactants and the like Additives commonly used in the rubber industry can be included as appropriate.
  • the filler examples include silica and other inorganic fillers. Among them, it is preferable that the filler contains silica. This is because the reduction of the rolling resistance and the durability of the belt can both be achieved at a higher level.
  • the silica examples include wet silica, colloidal silica, calcium silicate, and aluminum silicate.
  • the silica is preferably wet silica, and more preferably precipitated silica. This is because these silicas have high dispersibility and can further improve the low rolling resistance and wear resistance of the tire.
  • Precipitated silica means that in the early stage of production, the reaction solution is allowed to react at a relatively high temperature in a neutral to alkaline pH range to grow primary silica particles, and then to the acidic side to aggregate the primary particles. Is the silica obtained as a result.
  • the content of the silica is not particularly limited, but is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of achieving an excellent rolling resistance reduction effect. More preferably, it is 10 parts by mass.
  • an inorganic compound represented by the following formula (3) can be used as the inorganic filler.
  • M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, oxides or hydroxides of these metals, hydrates thereof, and carbonates of these metals
  • N, x, y, and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10.
  • Examples of the inorganic compound of the above formula (3) include alumina (Al 2 O 3 ) such as ⁇ -alumina and ⁇ -alumina; alumina monohydrate (Al 2 O 3 .H 2 O) such as boehmite and diaspore; And aluminum hydroxide [Al (OH) 3 ] such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3) ), talc (3MgO ⁇ 4SiO 2 ⁇ H 2 O), attapulgite (5MgO ⁇ 8SiO 2 ⁇ 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n-1), calcium oxide (CaO), hydroxide Calcium [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 .2SiO 2 ), kaolin (Al 2 O
  • antioxidant As the anti-aging agent, known agents can be used, and there is no particular limitation. For example, a phenolic antioxidant, an imidazole antioxidant, an amine antioxidant and the like can be mentioned. These antioxidants can be used alone or in combination of two or more.
  • a known crosslinking accelerator can be used, and is not particularly limited.
  • thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyldisulfide; N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazylsulfenamide and the like Sulphenamide-based vulcanization accelerators; guanidine-based vulcanization accelerators such as diphenylguanidine; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetradodecylthiuram disulfide, tetraoctylthiuram disulfide, tetrabenzylthiuram disulfide, Thiuram-based vulcanization accelerators such as pentamethylenethiuram tetras
  • the crosslinking agent is not particularly limited.
  • sulfur, bismaleimide compounds and the like can be mentioned.
  • type of the bismaleimide compound for example, N, N'-o-phenylenebismaleimide, N, N'-m-phenylenebismaleimide, N, N'-p-phenylenebismaleimide, N, N '-( 4,4'-diphenylmethane) bismaleimide, 2,2-bis- [4- (4-maleimidophenoxy) phenyl] propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and the like are exemplified. Can be.
  • N, N'-m-phenylenebismaleimide, N, N '-(4,4'-diphenylmethane) bismaleimide and the like can be suitably used.
  • Examples of the cross-linking accelerator include zinc white (ZnO) and fatty acids.
  • the fatty acid may be a saturated or unsaturated, linear or branched fatty acid, and the number of carbon atoms of the fatty acid is not particularly limited.
  • a fatty acid having 1 to 30, preferably 15 to 30 carbon atoms More specifically, naphthenic acids such as cyclohexanoic acid (cyclohexanecarboxylic acid) and alkylcyclopentane having a side chain; hexanoic acid, octanoic acid, decanoic acid (including branched carboxylic acids such as neodecanoic acid), dodecanoic acid, and tetradecane Saturated fatty acids such as acid, hexadecanoic acid and octadecanoic acid (stearic acid); unsaturated fatty acids such as methacrylic acid, oleic acid, linoleic acid and linolenic acid; and resin acids such as rosin, tall oil acid and abietic acid. These may be used alone or in combination of two or more. In the present invention, zinc white and stearic acid can be suitably used.
  • naphthenic acids such as
  • silica when silica is contained as the filler, it is preferable to further contain a silane coupling agent. This is because the reinforcing effect and the low heat generation effect of silica can be further improved.
  • a well-known thing can be used suitably as a silane coupling agent.
  • the preferred content of the silane coupling agent varies depending on the type of the silane coupling agent and the like, but is preferably in the range of 2 to 25% by mass, and more preferably in the range of 2 to 20% by mass based on silica. More preferably, it is particularly preferably 5 to 18% by mass. If the content is less than 2% by mass, the effect as a coupling agent is not sufficiently exhibited, and if it exceeds 25% by mass, gelation of the rubber component may be caused.
  • the method for producing the rubber composition for belt coating is not particularly limited, and each component (rubber component, carbon black, phenol resin, methylene donor and other components) constituting the rubber composition is It can be obtained by blending and kneading. Further, in the production of the rubber composition for belt coating, kneading of each of the components can be kneaded at the same time, or any of the components can be kneaded in advance, and the remaining components can be kneaded. . These conditions can be appropriately changed according to the performance required of the rubber composition.
  • the rubber component and the carbon black are mixed and kneaded, so that the dispersibility and reinforcement of the carbon black are improved, the rolling resistance is reduced, and the belt durability is improved.
  • the rubber component and the carbon black are blended and kneaded, so that the dispersibility and reinforcement of the carbon black are improved, the rolling resistance is reduced, and the belt durability is improved.
  • the tire of the present invention is not particularly limited except that the above-described tread rubber and belt coating rubber are used.
  • the tire of the present invention may be vulcanized after molding using an unvulcanized rubber composition, or molded using semi-vulcanized rubber that has undergone a preliminary vulcanization step, depending on the type of tire to be applied. Thereafter, the vulcanization may be further performed by main vulcanization.
  • the tire of the present invention is preferably a pneumatic tire, and the gas to be filled into the pneumatic tire is not only normal or oxygen-adjusted air, but also inert gas such as nitrogen, argon, helium and the like. Gas can be used.
  • each component is divided and kneaded in two stages (first stage of kneading, last stage of kneading).
  • each component was divided and kneaded in two stages (first stage of kneading, last stage of kneading).
  • the amount of each component is shown as an amount (parts by mass) relative to 100 parts by mass of the rubber component.
  • RSS # 3 * 22 HAF grade carbon black, Asahi Carbon Co., Ltd.
  • Asahi # 70L DBP absorption amount: 75cm 3 / 100g, nitrogen adsorption specific surface area: 81m 2 / g * 23: GPF grade carbon black, Asahi Carbon Co., Ltd.
  • Asahi NPG DBP absorption amount: 89cm 3 / 100g, nitrogen adsorption specific surface area: 28m 2 / g * 24: Sumitomo Bakelite Co., Ltd.
  • a pneumatic tire (size: 195 / 60R15) of each sample is prepared by combining the rubber composition for tread and the rubber composition for belt coating shown in Table 3.
  • the manufacturing conditions other than the tread rubber and the belt coating rubber are all the same.
  • a test piece of 2 mm x 50 mm x 6 mm is cut out from the belt coating rubber of the tire of each sample, and a small hole is made in the center thereof to form an initial crack. Thereafter, a stress is repeatedly applied in the long side direction to the test piece under the conditions of 2.0 MPa, a frequency of 6 Hz, and an ambient temperature of 80 ° C. Then, for each test piece, the number of repetitions from the application of the repeated stress to the breakage of the test piece is measured, and then the common logarithm of the number of repetitions is calculated.
  • the measurement test up to the fracture is performed four times for each test piece to calculate a common logarithm, and an average thereof is defined as an average common logarithm.
  • the evaluation is shown as an index when the average common logarithm of the test piece of Sample 7 is 100, and the larger the average common logarithm of the test piece is, the more excellent the crack growth resistance is. Table 3 shows the evaluation results.
  • each sample of the comparative example shows a value inferior to the example in at least one evaluation item.

Abstract

The purpose of the present invention is to provide a tire that has a good dry handling performance and high belt durability and enables the reduction of rolling resistance. To solve this problem, the present invention pertains to a tire provided with a belt disposed in a tread part and consisting of one or more belt layers, characterized in that: a tread rubber forming the tread part comprises a rubber composition which contains a rubber component and a styrene-alkylene block copolymer having a total styrene content of 30 mass% or more; the belt layer comprises a belt coating rubber which coats a reinforcing cord; and the belt coating rubber has a ratio of 200% modulus M200 (MPa) to 50% modulus M50 (MPa) of 5.0 or less (M200/M50≤5.0).

Description

タイヤtire
 本発明は、タイヤに関するものである。 The present invention relates to a tire.
 車両の安全性を向上させる観点から、乾燥路面のみならず、湿潤路面、氷雪路面等の様々な路面上でのタイヤの制動性や駆動性を向上させるために、種々の検討がなされている。例えば、湿潤路面での性能を向上させるために、天然ゴム(NR)やブタジエンゴム(BR)等のゴム成分と共にアロマオイルを配合したゴム組成物をトレッドゴムに用いる技術が知られている(特許文献1)。 か ら From the viewpoint of improving vehicle safety, various studies have been made to improve the braking performance and drivability of tires on various road surfaces such as wet road surfaces, ice and snow road surfaces as well as dry road surfaces. For example, in order to improve the performance on wet road surfaces, there is known a technique of using a rubber composition in which an aroma oil is blended with a rubber component such as natural rubber (NR) or butadiene rubber (BR) for a tread rubber (Patent Reference 1).
 ただし、特許文献1のようなアロマオイルを配合する技術については、アロマオイルとNRやBRとの相溶性が高くないため、湿潤路面での性能を向上させる効果が小さく、また、乾燥路面における操縦安定性(ドライハンドリング性)が低下する等の問題もあった。 However, in the technique of blending the aroma oil as disclosed in Patent Document 1, since the compatibility between the aroma oil and the NR or BR is not high, the effect of improving the performance on a wet road surface is small, and the steering on a dry road surface is difficult. There were also problems such as a decrease in stability (dry handling).
 また近年、タイヤのトレッド部に配設されたベルトのようなタイヤ荷重を支えるケース部材については、自動車の燃費性能向上の観点から、タイヤの転がり抵抗を低減することが望まれており、ケース部材自体の剛性を低くして、タイヤのトレッドゴムへの入力を低減する技術が知られている。
 しかしながら、ケース部材の剛性を低くする場合には、トレッドゴムが十分に変形できず、トレッドゴムの性能が十分に発揮されない結果、タイヤのグリップ性能を十分に向上させることができなかった。加えて、ベルトの剛性を低くした場合には、ベルトの耐亀裂進展性等が低下することが考えられるため、耐久性の点についてもさらなる改善を図る必要があった。
In recent years, with respect to a case member such as a belt disposed on a tread portion of a tire and supporting a tire load, it is desired to reduce the rolling resistance of the tire from the viewpoint of improving fuel efficiency of an automobile. A technique is known in which the rigidity of the tire itself is reduced to reduce the input to the tread rubber of the tire.
However, when the rigidity of the case member is reduced, the tread rubber cannot be sufficiently deformed, and the performance of the tread rubber cannot be sufficiently exhibited. As a result, the grip performance of the tire cannot be sufficiently improved. In addition, if the rigidity of the belt is reduced, the crack propagation resistance and the like of the belt may be reduced, so that it is necessary to further improve the durability.
特開平5-269884号公報JP-A-5-269888
 そのため、本発明の目的は、優れたドライハンドリング性及びベルトの耐久性を有しつつ、転がり抵抗の低減を可能にする、タイヤを提供することにある。 Therefore, an object of the present invention is to provide a tire that has excellent dry handling properties and belt durability, and that can reduce rolling resistance.
 上述した課題を解決するための、本発明の要旨は以下の通りである。
 本発明のタイヤは、トレッド部に配置した一枚以上のベルト層からなるベルト、を備えたタイヤであって、前記トレッド部を構成するトレッドゴムは、ゴム成分と、合計スチレン含量が30質量%以上であるスチレン・アルキレンブロック共重合体と、を含むゴム組成物からなり、前記ベルト層は、補強コードを被覆するベルトコーティングゴムを有し、該ベルトコーティングゴムは、50%モジュラス値M50(MPa)に対する200%モジュラス値M200(MPa)の比が、5.0以下(M200/M50≦5.0)であることを特徴とする。
 上記構成を具えることによって、優れたドライハンドリング性及びベルトの耐久性を有しつつ、転がり抵抗の低減が可能となる。
The gist of the present invention for solving the above-mentioned problems is as follows.
The tire of the present invention is a tire provided with a belt comprising one or more belt layers disposed on a tread portion. The tread rubber constituting the tread portion has a rubber component and a total styrene content of 30% by mass. And a styrene-alkylene block copolymer as described above, wherein the belt layer has a belt coating rubber covering a reinforcing cord, and the belt coating rubber has a 50% modulus M50 (MPa). ), The ratio of the 200% modulus value M200 (MPa) to 5.0 or less (M200 / M50 ≦ 5.0).
With the above configuration, the rolling resistance can be reduced while having excellent dry handling properties and belt durability.
 また、本発明のタイヤでは、前記ベルトコーティングゴムは、25℃における歪1%での動的貯蔵弾性率(E’)が、12MPaを超え且つ30MPa未満であることが好ましい。乾燥路面及び湿潤路面でのグリップ性能を高めることができ、転がり抵抗の低減及びベルトの耐久性の向上をより高いレベルで両立できるためである。 で は In the tire of the present invention, the belt-coated rubber preferably has a dynamic storage modulus (E ′) at 25 ° C. at a strain of 1% of more than 12 MPa and less than 30 MPa. This is because grip performance on a dry road surface and a wet road surface can be improved, and a reduction in rolling resistance and an improvement in belt durability can be achieved at a higher level.
 また、本発明のタイヤでは、前記ベルトコーティングゴムは、ゴム成分と、DBP吸収量が50~100 cm3/100gであるカーボンブラックと、フェノール樹脂と、メチレン供与体とを含むゴム組成物からなることが好ましい。転がり抵抗の低減及びベルトの耐久性の向上を、より高いレベルで両立できるためである。 Further, in the tire of the present invention, the belt coating rubber, a rubber composition comprising a rubber component, and carbon black DBP absorption amount is 50 ~ 100 cm 3 / 100g, and the phenol resin, a methylene donor Is preferred. This is because the reduction of the rolling resistance and the improvement of the durability of the belt can be achieved at a higher level.
 さらに、本発明のタイヤでは、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、-(CH2-CH(C25))-単位(A)と-(CH2-CH2)-単位(B)を有し、単位(A)の合計含量が、単位(A)及び単位(B)のアルキレンブロックの総質量(単位(A)+単位(B))に対して、40質量%以上であることが好ましく、50質量%以上であることがより好ましい。優れたドライハンドリング性を実現しつつ、湿潤路面でのグリップ性能と転がり抵抗の低減とを両立することができるためである。 Further, in the tire of the present invention, the alkylene block of the styrene-alkylene block copolymer has-(CH 2 -CH (C 2 H 5 ))-unit (A) and-(CH 2 -CH 2 ) -unit (B), and the total content of the unit (A) is at least 40% by mass based on the total mass of the alkylene blocks of the unit (A) and the unit (B) (unit (A) + unit (B)). And more preferably 50% by mass or more. This is because it is possible to achieve both a grip performance on a wet road surface and a reduction in rolling resistance while realizing excellent dry handling properties.
 また、本発明のタイヤでは、前記トレッドゴムに用いられるゴム組成物は、前記ゴム成分が天然ゴムを含有し、前記ゴム成分中の天然ゴムの含有比率が、50質量%以上であることが好ましい。耐寒性と転がり抵抗の低減を改善できるためである。 Further, in the tire of the present invention, in the rubber composition used for the tread rubber, the rubber component preferably contains natural rubber, and the content ratio of the natural rubber in the rubber component is preferably 50% by mass or more. . This is because cold resistance and reduction of rolling resistance can be improved.
 さらにまた、本発明のタイヤでは、前記スチレン・アルキレンブロック共重合体の合計スチレン含量が、50質量%以上であることが好ましい。ドライハンドリング性をより高めることができるためである。 Further, in the tire of the present invention, it is preferable that the total styrene content of the styrene-alkylene block copolymer is 50% by mass or more. This is because dry handling can be further improved.
 本発明によれば、優れたドライハンドリング性及びベルトの耐久性を有しつつ、転がり抵抗の低減を可能にする、タイヤを提供できる。  According to the present invention, it is possible to provide a tire having excellent dry handling properties and belt durability, and capable of reducing rolling resistance.
本発明のタイヤの一実施形態の概略断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic sectional drawing of one Embodiment of the tire of this invention.
 以下に、本発明のタイヤを、その実施形態に基づき、詳細に例示説明する。
 図1は、本発明のタイヤの一実施形態について、断面を模式的に示した図である。本発明のタイヤは、トレッド部3に配置した一枚以上のベルト層6a、6bからなるベルト6を備えたタイヤであって、図1では、一対のビード部1と、一対のサイドウォール部2と、トレッド部3と、ビード部1に埋設されたビードコア4間にトロイド状に延在させたラジアルカーカス5と、トレッド部3に配置した(より詳しくは、ラジアルカーカス5のクラウン部のタイヤ半径方向外側に配置した)2枚のベルト層6a、6bからなるベルト6と、を備える。
Hereinafter, the tire of the present invention will be described in detail based on its embodiments.
FIG. 1 is a diagram schematically showing a cross section of an embodiment of the tire of the present invention. The tire of the present invention is a tire provided with a belt 6 including one or more belt layers 6a and 6b arranged on a tread portion 3, and in FIG. 1, a pair of bead portions 1 and a pair of sidewall portions 2 are provided. A radial carcass 5 extending in a toroidal shape between a tread portion 3, a bead core 4 embedded in the bead portion 1, and a tread portion 3 (more specifically, a tire radius of a crown portion of the radial carcass 5). And a belt 6 composed of two belt layers 6a and 6b (disposed outward in the direction of the belt).
 なお、図示例のタイヤにおいて、ラジアルカーカス5は、一枚のカーカスプライから構成されており、また、ビード部1内に夫々埋設した一対のビードコア4間にトロイド状に延在する本体部と、各ビードコア4の周りでタイヤ幅方向の内側から外側に向けてタイヤ半径方向外方に巻上げた折り返し部とからなるが、本発明のタイヤにおいて、ラジアルカーカス5のプライ数及び構造は、これに限られるものではない。ここで、ラジアルカーカス5を構成するカーカスプライは、複数の補強コードを被覆ゴムで被覆してなり、該補強コードとしては、ポリエチレンテレフタレートコード、ナイロンコード、レーヨンコード等の有機繊維コードの他、スチールコードを用いてもよい。 In the illustrated example tire, the radial carcass 5 is composed of a single carcass ply, and further includes a body portion extending in a toroidal shape between a pair of bead cores 4 buried in the bead portion 1, Each bead core 4 includes a folded portion wound outward from the inside in the tire width direction to the outside in the tire width direction. The number of plies and the structure of the radial carcass 5 in the tire of the present invention are not limited thereto. It is not something that can be done. Here, the carcass ply constituting the radial carcass 5 is formed by covering a plurality of reinforcing cords with a covering rubber, and the reinforcing cords include organic fiber cords such as polyethylene terephthalate cords, nylon cords, rayon cords, and steel cords. A code may be used.
 また、図示例のタイヤのベルト6は、二枚のベルト層6a、6bから構成されており、各ベルト層6a、6bは、通常、タイヤ赤道面に対して傾斜して延びるコードのゴム引き層、好ましくは、スチールコードのゴム引き層からなり、さらに、二枚のベルト層6a、6bが、該ベルト層6a、6bを構成するコードが互いにタイヤ赤道面を挟んで交差するように積層されてベルト6を構成している。
 なお、図中のベルト6は、二枚のベルト層6a、6bからなるが、本発明のタイヤにおいて、ベルト6を構成するベルト層の枚数は、一枚以上であればよく、これに限られるものではない。
The belt 6 of the illustrated tire is composed of two belt layers 6a and 6b, and each of the belt layers 6a and 6b is usually a rubberized layer of a cord extending at an angle to the tire equatorial plane. Preferably, the belt layer is composed of a rubberized layer of a steel cord, and two belt layers 6a and 6b are laminated so that the cords constituting the belt layers 6a and 6b cross each other across the tire equatorial plane. The belt 6 is constituted.
Although the belt 6 in the figure includes two belt layers 6a and 6b, the number of belt layers constituting the belt 6 in the tire of the present invention may be one or more, and is not limited thereto. Not something.
 そして、本実施形態のタイヤは、前記トレッド部3を構成するトレッドゴムが、ゴム成分と、合計スチレン含量が30質量%以上であるスチレン・アルキレンブロック共重合体と、を含むゴム組成物からなり、
 前記ベルト層6a、6bは、補強コードを被覆するベルトコーティングゴムを有し、該ベルトコーティングゴムの、50%モジュラス値M50(MPa)に対する200%モジュラス値M200(MPa)の比が、5.0以下(M200/M50≦5.0)である。
 前記トレッドゴムについて、特定のスチレン・アルキレンブロック共重合体を含有させることによって、トレッドゴムの弾性率を高めることができるとともに、タイヤの転がり抵抗についても低減が可能となるため、優れたドライハンドリング性及び低転がり抵抗性を実現できる。加えて、前記ベルトコーティングゴムについて、50%モジュラス値(MPa)に対する200%モジュラス値(MPa)の比を特定値(具体的には、5.0)以下とすることによって、タイヤの転がり抵抗の悪化を招くことないことに加えて、ベルトの耐久性についても、大きく改善を図ることができる。
The tire of the present embodiment is such that the tread rubber constituting the tread portion 3 is made of a rubber composition containing a rubber component and a styrene-alkylene block copolymer having a total styrene content of 30% by mass or more. ,
The belt layers 6a and 6b have a belt coating rubber covering the reinforcing cord, and the ratio of the 200% modulus M200 (MPa) to the 50% modulus M50 (MPa) of the belt coating rubber is 5.0 or less ( M200 / M50 ≦ 5.0).
With respect to the tread rubber, by including a specific styrene-alkylene block copolymer, the elastic modulus of the tread rubber can be increased, and the rolling resistance of the tire can be reduced, so that excellent dry handling properties can be obtained. And low rolling resistance can be realized. In addition, by setting the ratio of the 200% modulus value (MPa) to the 50% modulus value (MPa) of the belt coating rubber to a specific value (specifically, 5.0) or less, deterioration of the rolling resistance of the tire is reduced. In addition to the above, the durability of the belt can be greatly improved.
(トレッドゴム)
 本発明のタイヤでは、前記トレッドゴムが、ゴム成分と、合計スチレン含量が30質量%以上であるスチレン・アルキレンブロック共重合体と、を含むゴム組成物(以下、「トレッド用ゴム組成物」ということがある。)からなる。
(Tread rubber)
In the tire of the present invention, the tread rubber is a rubber composition containing a rubber component and a styrene-alkylene block copolymer having a total styrene content of 30% by mass or more (hereinafter, referred to as a “rubber composition for tread”). Sometimes).
 前記トレッド用ゴム組成物中に、スチレン・アルキレンブロック共重合体が配合されることによって、スチレン・アルキレンブロック共重合体中のスチレンブロックが、トレッドゴムにおいて充填剤のような働きをする一方、ポリスチレンブロック間にアルキレンブロックが存在し、ポリスチレンブロック同士の擦れあいが低減される結果、トレッドゴムの弾性率を高めることができるとともに、低ロス性についても改善(タイヤの転がり抵抗についても低減)が可能となる。 In the rubber composition for tread, the styrene-alkylene block copolymer is blended, the styrene block in the styrene-alkylene block copolymer, while acting as a filler in the tread rubber, polystyrene The presence of an alkylene block between the blocks reduces the friction between polystyrene blocks. As a result, the elastic modulus of the tread rubber can be increased, and the low-loss property can be improved (the rolling resistance of the tire can be reduced). Becomes
・ゴム成分
 前記トレッド用ゴム組成物のゴム成分については、特に限定されず、公知のゴム組成物において用いられるゴム成分を用いることができる。
 例えば、前記ゴム成分として、天然ゴム(NR)、スチレンブタジエンゴム(SBR)、ブタジエンゴム(BR)、アクリロニトリルブタジエンゴム、クロロプレンゴム、ポリイソプレンゴム、これらの変性体等が挙げられる。ゴム成分は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Rubber component The rubber component of the rubber composition for a tread is not particularly limited, and a rubber component used in a known rubber composition can be used.
For example, the rubber component includes natural rubber (NR), styrene butadiene rubber (SBR), butadiene rubber (BR), acrylonitrile butadiene rubber, chloroprene rubber, polyisoprene rubber, and modified products thereof. The rubber component may be used alone or in combination of two or more.
 その中でも、前記トレッド用ゴム組成物では、前記ゴム成分が天然ゴムを含有することが好ましい。ゴム成分として天然ゴムを含むことで、耐寒性と低ロス性(タイヤの転がり抵抗の低減効果)を向上させることができるためである。
 さらに、耐久性と低ロス性を向上させる観点からは、前記ゴム成分における前記天然ゴムの含有比率が、50質量%以上90質量%以下であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。
Among them, in the tread rubber composition, the rubber component preferably contains a natural rubber. This is because by including natural rubber as the rubber component, it is possible to improve the cold resistance and the low loss property (the effect of reducing the rolling resistance of the tire).
Furthermore, from the viewpoint of improving durability and low loss property, the content ratio of the natural rubber in the rubber component is preferably 50% by mass or more and 90% by mass or less, and more preferably 60% by mass or more. More preferably, it is 70% by mass or more.
 また、前記ゴム成分については、未変性SBRおよび変性SBRからなる群より選択される1種以上を含有することが好ましい。
 さらに、前記ゴム成分については、少なくとも変性SBR等の変性共役ジエン系重合体を含有することがより好ましい。タイヤの低転がり抵抗性について改善を図ることができるためである。
In addition, the rubber component preferably contains at least one selected from the group consisting of unmodified SBR and modified SBR.
Further, the rubber component more preferably contains at least a modified conjugated diene-based polymer such as modified SBR. This is because it is possible to improve the low rolling resistance of the tire.
 ここで、前記変性共役ジエン系重合体としては、例えば、以下の変性共役ジエン系重合体(A)が好ましい。この変性共役ジエン系重合体(A)は、重量平均分子量が20×104以上300×104以下であって、該変性共役ジエン系重合体(A)の総量に対して、分子量が200×104以上500×104以下である変性共役ジエン系重合体を、0.25質量%以上30質量%以下含み、収縮因子(g’)が0.64未満である。この変性共役ジエン系重合体(A)により、タイヤの低転がり抵抗性をより向上させることができる。 Here, as the modified conjugated diene-based polymer, for example, the following modified conjugated diene-based polymer (A) is preferable. The modified conjugated diene polymer (A) has a weight average molecular weight of 20 × 10 4 or more and 300 × 10 4 or less, and has a molecular weight of 200 × 10 4 or more based on the total amount of the modified conjugated diene polymer (A). It contains a modified conjugated diene-based polymer of 10 4 or more and 500 × 10 4 or less in an amount of 0.25 mass% or more and 30 mass% or less, and a shrinkage factor (g ′) of less than 0.64. With this modified conjugated diene polymer (A), the low rolling resistance of the tire can be further improved.
 また、前記変性共役ジエン系重合体(A)は、分岐を有し、分岐度が5以上であることが好ましい。この場合、タイヤのWET性能をより向上させることができるためである。 The modified conjugated diene-based polymer (A) preferably has a branch and a degree of branching of 5 or more. In this case, the WET performance of the tire can be further improved.
 さらに、前記変性共役ジエン系重合体(A)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖と、を有し、前記分岐は、1の前記カップリング残基に対して5以上の前記共役ジエン系重合体鎖が結合している分岐を含むことが好ましい。この場合、タイヤのWET性能をより向上させることができる。 Further, the modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue, and the branch is composed of 1 The coupling residue preferably has a branch to which 5 or more of the conjugated diene-based polymer chains are bonded. In this case, the WET performance of the tire can be further improved.
 前記変性共役ジエン系重合体(A)は、下記一般式(I):
Figure JPOXMLDOC01-appb-I000001
[一般式(I)中、Dは、共役ジエン系重合体鎖を示し、R1、R2及びR3は、それぞれ独立して単結合又は炭素数1~20のアルキレン基を示し、R4及びR7は、それぞれ独立して炭素数1~20のアルキル基を示し、R5、R8、及びR9は、それぞれ独立して水素原子又は炭素数1~20のアルキル基を示し、R6及びR10は、それぞれ独立して炭素数1~20のアルキレン基を示し、R11は、水素原子又は炭素数1~20のアルキル基を示し、m及びxは、それぞれ独立して1~3の整数を示し、x≦mであり、pは、1又は2を示し、yは、1~3の整数を示し、y≦(p+1)であり、zは、1又は2の整数を示し、それぞれ複数存在する場合のD、R1~R11、m、p、x、y、及びzは、それぞれ独立しており、iは、0~6の整数を示し、jは、0~6の整数を示し、kは、0~6の整数を示し、(i+j+k)は、3~10の整数であり、((x×i)+(y×j)+(z×k))は、5~30の整数であり、Aは、炭素数1~20の、炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を示す]で表されるものであることが好ましい。この場合、タイヤの耐摩耗性を向上させることができる。
The modified conjugated diene polymer (A) has the following general formula (I):
Figure JPOXMLDOC01-appb-I000001
[In the general formula (I), D represents a conjugated diene polymer chain, R 1, R 2 and R 3 is independently a single bond or an alkylene group having a carbon number of 1 ~ 20, R 4 And R 7 each independently represent an alkyl group having 1 to 20 carbon atoms; R 5 , R 8 and R 9 each independently represent a hydrogen atom or an alkyl group having 1 to 20 carbon atoms; 6 and R 10 each independently represent an alkylene group having 1 to 20 carbon atoms, R 11 represents a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and m and x each independently represent 1 to 3 represents an integer, x ≦ m, p represents 1 or 2, y represents an integer of 1 to 3, y ≦ (p + 1), and z represents an integer of 1 or 2. D, R 1 to R 11 , m, p, x, y, and z in the case where there are a plurality of groups are independent of each other, i is an integer of 0 to 6, and j is 0 to 6 Set Represents a number, k represents an integer of 0 to 6, (i + j + k) represents an integer of 3 to 10, and ((x × i) + (y × j) + (z × k)) represents 5 A is an integer of from 30 to 30, and A is a hydrocarbon group having 1 to 20 carbon atoms or at least one atom selected from the group consisting of oxygen, nitrogen, silicon, sulfur and phosphorus atoms. And an organic group having no active hydrogen]. In this case, the wear resistance of the tire can be improved.
 ここで、一般式(I)において、Aは、下記一般式(II)~(V)のいずれかで表されるものであることが好ましい。この場合、タイヤに適用することで、タイヤの低転がり抵抗性と、WET性能と、耐摩耗性とを高度にバランスさせることができる。
Figure JPOXMLDOC01-appb-C000002
 ここで、一般式(II)中、B1は、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示し、複数存在する場合のB1は、各々独立している。
 また、一般式(III)中、B2は、単結合又は炭素数1~20の炭化水素基を示し、B3は、炭素数1~20のアルキル基を示し、aは、1~10の整数を示し、それぞれ複数存在する場合のB2及びB3は、各々独立している。
 さらに、一般式(IV)中、B4は、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示し、複数存在する場合のB4は、各々独立している。
 さらにまた、一般式(V)中、B5は、単結合又は炭素数1~20の炭化水素基を示し、aは、1~10の整数を示し、複数存在する場合のB5は、各々独立している。
Here, in the general formula (I), A is preferably represented by any of the following general formulas (II) to (V). In this case, by applying to a tire, low rolling resistance, WET performance, and wear resistance of the tire can be highly balanced.
Figure JPOXMLDOC01-appb-C000002
Here, in the general formula (II), B 1 represents a single bond or a hydrocarbon group having a carbon number of 1 ~ 20, a is an integer of 1 ~ 10, B 1 in the case where there are plural, each be independent.
In the general formula (III), B 2 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, B 3 represents an alkyl group having 1 to 20 carbon atoms, and a represents 1 to 10 carbon atoms. It shows an integer, and B 2 and B 3 when there are a plurality of each are independent of each other.
Further, in the general formula (IV), B 4 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 1 to 10, and when a plurality of B 4 are present, B 4 is each independently are doing.
Furthermore, in the general formula (V), B 5 represents a single bond or a hydrocarbon group having 1 to 20 carbon atoms, a represents an integer of 1 to 10, and when there are a plurality of B 5 , be independent.
 前記変性共役ジエン系重合体(A)は、共役ジエン系重合体を、下記一般式(VI)で表されるカップリング剤と反応させてなることが好ましい。該カップリング剤と反応させてなる変性共役ジエン系重合体(A1)を含むゴム組成物をタイヤに使用することで、タイヤの耐摩耗性を向上させ、転がり抵抗の低減が可能となる。
Figure JPOXMLDOC01-appb-C000003
The modified conjugated diene-based polymer (A) is preferably obtained by reacting a conjugated diene-based polymer with a coupling agent represented by the following general formula (VI). By using the rubber composition containing the modified conjugated diene polymer (A1) reacted with the coupling agent in a tire, the wear resistance of the tire is improved, and the rolling resistance can be reduced.
Figure JPOXMLDOC01-appb-C000003
 なお、一般式(VI)中、R12、R13及びR14は、それぞれ独立して単結合又は炭素数1~20のアルキレン基を示し、R15、R16、R17、R18及びR20は、それぞれ独立して炭素数1~20のアルキル基を示し、R19及びR22は、それぞれ独立して炭素数1~20のアルキレン基を示し、R21は、炭素数1~20の、アルキル基又はトリアルキルシリル基を示し、mは、1~3の整数を示し、pは、1又は2の整数を示し、R11~R22、m及びpは、複数存在する場合、それぞれ独立しており、i、j及びkは、それぞれ独立して0~6の整数を示し、但し、(i+j+k)は、3~10の整数であり、Aは、炭素数1~20の、炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子及びリン原子からなる群から選択される少なくとも一種の原子を有し、活性水素を有しない有機基を示す。
 ここで、一般式(VI)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
In the general formula (VI), R 12 , R 13 and R 14 each independently represent a single bond or an alkylene group having 1 to 20 carbon atoms, and R 15 , R 16 , R 17 , R 18 and R 20 each independently represents an alkyl group having 1 to 20 carbon atoms, R 19 and R 22 each independently represent an alkylene group having 1 to 20 carbon atoms, and R 21 represents an alkyl group having 1 to 20 carbon atoms. , An alkyl group or a trialkylsilyl group, m represents an integer of 1 to 3, p represents an integer of 1 or 2, R 11 to R 22 , m and p each represent a plurality of I, j, and k each independently represent an integer of 0 to 6, provided that (i + j + k) is an integer of 3 to 10, and A is a carbon atom having 1 to 20 carbon atoms. A hydrogen group, or an oxygen atom, a nitrogen atom, a silicon atom, having at least one atom selected from the group consisting of a sulfur atom and a phosphorus atom, It represents an organic group having no oxygen.
Here, in General Formula (VI), the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups. Examples of the organic group having no active hydrogen include active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH). Organic groups having no functional group.
 ここで、一般式(VI)で表されるカップリング剤は、テトラキス[3-(2,2-ジメトキシ-1-アザ-2-シラシクロペンタン)プロピル]-1,3-プロパンジアミン、テトラキス(3-トリメトキシシリルプロピル)-1,3-プロパンジアミン、及びテトラキス(3-トリメトキシシリルプロピル)-1,3-ビスアミノメチルシクロヘキサンからなる群から選択される少なくとも一種であることが好ましい。この場合、タイヤの耐摩耗性をさらに向上させることができる。 Here, the coupling agent represented by the general formula (VI) is tetrakis [3- (2,2-dimethoxy-1-aza-2-silacyclopentane) propyl] -1,3-propanediamine, tetrakis ( It is preferably at least one selected from the group consisting of 3-trimethoxysilylpropyl) -1,3-propanediamine and tetrakis (3-trimethoxysilylpropyl) -1,3-bisaminomethylcyclohexane. In this case, the wear resistance of the tire can be further improved.
 一般に、分岐を有する重合体は、同一の絶対分子量である直鎖状の重合体と比較した場合に、分子の大きさが小さくなる傾向にあり、前記収縮因子(g’)は、想定上同一の絶対分子量である直鎖状重合体に対する、分子の占める大きさの比率の指標である。即ち、重合体の分岐度が大きくなれば、収縮因子(g’)は小さくなる傾向にある。本実施形態では、分子の大きさの指標として固有粘度を用い、直鎖状の重合体は、固有粘度[η]=-3.883M0.771の関係式に従うものとして用いる。変性共役ジエン系重合体の各絶対分子量のときの収縮因子(g’)を算出し、絶対分子量が100×104~200×104のときの収縮因子(g’)の平均値を、その変性共役ジエン系重合体の収縮因子(g’)とする。ここで、「分岐」とは、1つの重合体に対して、他の重合体が直接的又は間接的に結合することにより形成されるものである。また、「分岐度」は、1の分岐に対して、直接的又は間接的に互いに結合している重合体の数である。例えば、後述するカップリング残基を介して間接的に、後述の5つの共役ジエン系重合体鎖が互いに結合している場合には、分岐度は5である。なお、カップリング残基とは、共役ジエン系重合体鎖に結合される、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、カップリング剤由来の構造単位である。また、共役ジエン系重合体鎖は、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体とカップリング剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
 前記収縮因子(g’)は、0.64未満であり、好ましくは0.63以下であり、より好ましくは0.60以下であり、さらに好ましくは0.59以下であり、より一層好ましくは0.57以下である。また、収縮因子(g’)の下限は特に限定されず、検出限界値以下であってもよいが、好ましくは0.30以上であり、より好ましくは0.33以上であり、さらに好ましくは0.35以上であり、より一層好ましくは0.45以上であり、さらには0.59以上である。収縮因子(g’)がこの範囲である変性共役ジエン系重合体(A)を使用することで、ゴム組成物の加工性が向上する。
 収縮因子(g’)は分岐度に依存する傾向にあるため、例えば、分岐度を指標として収縮因子(g’)を制御することができる。具体的には、分岐度が6である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.59以上0.63以下となる傾向にあり、分岐度が8である変性共役ジエン系重合体とした場合には、その収縮因子(g’)は0.45以上0.59以下となる傾向にある。
In general, a polymer having a branch tends to have a smaller molecular size when compared with a linear polymer having the same absolute molecular weight, and the shrinkage factor (g ′) is assumed to be the same. Is an index of the ratio of the size occupied by the molecule to the linear polymer which is the absolute molecular weight of the polymer. That is, as the degree of branching of the polymer increases, the shrinkage factor (g ′) tends to decrease. In the present embodiment, the intrinsic viscosity is used as an index of the size of the molecule, and the linear polymer is used according to the relational expression of intrinsic viscosity [η] = − 3.883M 0.771 . The shrinkage factor (g ') at each absolute molecular weight of the modified conjugated diene-based polymer is calculated, and the average value of the shrinkage factor (g') at an absolute molecular weight of 100 × 10 4 to 200 × 10 4 is calculated. It is defined as a shrinkage factor (g ′) of the modified conjugated diene polymer. Here, the “branch” is formed by directly or indirectly bonding one polymer to another polymer. The “degree of branching” is the number of polymers directly or indirectly bonded to one branch. For example, when five conjugated diene-based polymer chains described below are indirectly bonded to each other via a coupling residue described later, the degree of branching is 5. The coupling residue is a structural unit of a modified conjugated diene-based polymer that is bonded to a conjugated diene-based polymer chain, and is, for example, to react a conjugated diene-based polymer described below with a coupling agent. Is a structural unit derived from a coupling agent. Further, the conjugated diene-based polymer chain is a constituent unit of the modified conjugated diene-based polymer, for example, produced by reacting a conjugated diene-based polymer and a coupling agent described below, derived from a conjugated diene-based polymer. It is a structural unit.
The shrinkage factor (g ′) is less than 0.64, preferably 0.63 or less, more preferably 0.60 or less, further preferably 0.59 or less, and even more preferably 0.57 or less. The lower limit of the shrinkage factor (g ′) is not particularly limited, and may be equal to or lower than the detection limit, but is preferably 0.30 or more, more preferably 0.33 or more, and still more preferably 0.35 or more. Yes, more preferably 0.45 or more, and even more preferably 0.59 or more. By using the modified conjugated diene-based polymer (A) having a shrinkage factor (g ′) within this range, the processability of the rubber composition is improved.
Since the contraction factor (g ′) tends to depend on the branching degree, for example, the contraction factor (g ′) can be controlled using the branching degree as an index. Specifically, when a modified conjugated diene-based polymer having a degree of branching of 6 is used, its shrinkage factor (g ′) tends to be 0.59 or more and 0.63 or less, and the modified conjugated diene having a degree of branching of 8 is used. In the case of a system polymer, the shrinkage factor (g ') tends to be 0.45 or more and 0.59 or less.
 収縮因子(g’)の測定方法は、以下のとおりである。変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(Malvern社製の商品名「GPCmax VE-2001」)を使用して、光散乱検出器、RI検出器、粘度検出器(Malvern社製の商品名「TDA305」)の順番に接続されている3つの検出器を用いて測定し、標準ポリスチレンに基づいて、光散乱検出器とRI検出器の結果から絶対分子量を、RI検出器と粘度検出器の結果から固有粘度を求める。直鎖ポリマーは、固有粘度[η]=-3.883M0.771に従うものとして用い、各分子量に対応する固有粘度の比としての収縮因子(g’)を算出する。溶離液は5mmol/Lのトリエチルアミン入りTHFを使用する。カラムは、東ソー社製の商品名「TSKgel G4000HXL」、「TSKgel G5000HXL」、及び「TSKgel G6000HXL」を接続して使用する。測定用の試料20mgを10mLのTHFに溶解して測定溶液とし、測定溶液100μLをGPC測定装置に注入して、オーブン温度40℃、THF流量1mL/分の条件で測定する。 The measuring method of the contraction factor (g ′) is as follows. Using a modified conjugated diene polymer as a sample and a light scattering detector using a GPC measuring device (trade name “GPCmax VE-2001” manufactured by Malvern) in which three columns using polystyrene-based gel as a filler are connected. , RI detector, and viscosity detector (trade name “TDA305” manufactured by Malvern) are measured using three detectors connected in this order. Based on standard polystyrene, a light scattering detector and an RI detector are used. The absolute molecular weight is obtained from the result of the above, and the intrinsic viscosity is obtained from the result of the RI detector and the viscosity detector. The linear polymer is used according to the intrinsic viscosity [η] = − 3.883M 0.771, and the shrinkage factor (g ′) is calculated as the ratio of the intrinsic viscosity corresponding to each molecular weight. As an eluent, THF containing 5 mmol / L triethylamine is used. The columns are used by connecting Tosoh's trade names “TSKgel G4000HXL”, “TSKgel G5000HXL”, and “TSKgel G6000HXL”. 20 mg of a sample for measurement is dissolved in 10 mL of THF to make a measurement solution, 100 μL of the measurement solution is poured into a GPC measuring device, and measurement is performed under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 1 mL / min.
 変性共役ジエン系重合体(A)は、分岐を有し、分岐度が5以上であることが好ましい。また、変性共役ジエン系重合体(A)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して5以上の当該共役ジエン系重合体鎖が結合している分岐を含むことがより好ましい。分岐度が5以上であること、及び、分岐が、1のカップリング残基に対して5以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、より確実に収縮因子(g’)を0.64未満にすることができる。なお、1のカップリング残基に対して結合している共役ジエン系重合体鎖の数は、収縮因子(g’)の値から確認することができる。
 また、変性共役ジエン系重合体(A)は、分岐を有し、分岐度が6以上であることがより好ましい。また、変性共役ジエン系重合体(A)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して6以上の当該共役ジエン系重合体鎖が結合している分岐を含むことが、さらに好ましい。分岐度が6以上であること、及び、分岐が、1のカップリング残基に対して6以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、収縮因子(g’)を0.63以下にすることができる。
 さらに、変性共役ジエン系重合体(A)は、分岐を有し、分岐度が7以上であることがさらに好ましく、分岐度が8以上であることがより一層好ましい。分岐度の上限は特に限定されないが、18以下であることが好ましい。また、変性共役ジエン系重合体(A)は、1以上のカップリング残基と、該カップリング残基に対して結合する共役ジエン系重合体鎖とを有し、さらに、上記分岐が、1の当該カップリング残基に対して7以上の当該共役ジエン系重合体鎖が結合している分岐を含むことが、より一層好ましく、1の当該カップリング残基に対して8以上の当該共役ジエン系重合体鎖が結合している分岐を含むことが、特に好ましい。分岐度が8以上であること、及び、分岐が、1のカップリング残基に対して8以上の共役ジエン系重合体鎖が結合している分岐を含むよう、変性共役ジエン系重合体の構造を特定することにより、収縮因子(g’)を0.59以下にすることができる。
The modified conjugated diene polymer (A) preferably has a branch and a degree of branching of 5 or more. The modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue. It is more preferable to include a branch in which 5 or more of the conjugated diene-based polymer chains are bonded to the coupling residue. The degree of branching is 5 or more, and the structure of the modified conjugated diene polymer is such that the branch contains a branch in which 5 or more conjugated diene polymer chains are bonded to one coupling residue. By specifying, the shrinkage factor (g ′) can be more reliably reduced to less than 0.64. The number of conjugated diene-based polymer chains bonded to one coupling residue can be confirmed from the value of shrinkage factor (g ′).
Further, the modified conjugated diene polymer (A) has a branch, and the degree of branching is more preferably 6 or more. The modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue. It is more preferable to include a branch in which 6 or more of the conjugated diene-based polymer chains are bonded to the coupling residue. The structure of the modified conjugated diene-based polymer is such that the degree of branching is 6 or more, and the branch contains a branch in which 6 or more conjugated diene-based polymer chains are bonded to one coupling residue. By specifying, the contraction factor (g ′) can be reduced to 0.63 or less.
Furthermore, the modified conjugated diene-based polymer (A) has a branch, more preferably has a degree of branching of 7 or more, and still more preferably has a degree of branching of 8 or more. The upper limit of the degree of branching is not particularly limited, but is preferably 18 or less. The modified conjugated diene-based polymer (A) has one or more coupling residues and a conjugated diene-based polymer chain bonded to the coupling residue. It is even more preferable that the coupling residue includes a branch to which 7 or more of the conjugated diene-based polymer chains are bonded, and 8 or more of the conjugated diene to 1 of the coupling residue. It is particularly preferable to include a branch to which the system polymer chain is bonded. The degree of branching is 8 or more, and the structure of the modified conjugated diene polymer is such that the branch contains a branch in which 8 or more conjugated diene polymer chains are bonded to one coupling residue. By specifying, the contraction factor (g ′) can be reduced to 0.59 or less.
 変性共役ジエン系重合体(A)は、窒素原子と、ケイ素原子とを有することが好ましい。この場合、ゴム組成物の加工性が良好となり、また、タイヤに適用した際に、タイヤのWET性能及び耐摩耗性を向上させつつ、タイヤの低転がり抵抗性をさらに向上することができる。なお、変性共役ジエン系重合体(A)が窒素原子を有することについては、後述する変性率の測定方法で、算出された変性率が10%以上であった場合、窒素原子を有していると判断する。特定のカラムへの吸着の有無によって確認することができる。 The modified conjugated diene polymer (A) preferably has a nitrogen atom and a silicon atom. In this case, the processability of the rubber composition is improved, and when applied to a tire, the low rolling resistance of the tire can be further improved while improving the WET performance and wear resistance of the tire. The modified conjugated diene-based polymer (A) has a nitrogen atom if the calculated modification rate is 10% or more according to the modification rate measurement method described below. Judge. It can be confirmed by the presence or absence of adsorption to a specific column.
 変性共役ジエン系重合体(A)がケイ素原子を有することは、以下の方法により判断する。変性共役ジエン系重合体0.5gを試料として、JIS K 0101 44.3.1に準拠して、紫外可視分光光度計(島津製作所社製の商品名「UV-1800」)を用いて測定し、モリブデン青吸光光度法により定量する。これにより、ケイ素原子が検出された場合(検出下限10質量ppm)、ケイ素原子を有していると判断する。 こ と Whether the modified conjugated diene polymer (A) has a silicon atom is determined by the following method. Using a modified conjugated diene-based polymer (0.5 g) as a sample, measurement was performed using an ultraviolet-visible spectrophotometer (trade name “UV-1800” manufactured by Shimadzu Corporation) in accordance with JIS K0101 44.3.1. It is quantified by molybdenum blue absorption spectrophotometry. Thus, when a silicon atom is detected (detection lower limit: 10 mass ppm), it is determined that the silicon atom is present.
 前記共役ジエン系重合体鎖は、少なくともその1つの末端が、それぞれカップリング残基が有するケイ素原子と結合していることが好ましい。この場合、複数の共役ジエン系重合体鎖の末端が、1のケイ素原子と結合していてもよい。また、共役ジエン系重合体鎖の末端と炭素数1~20のアルコキシ基又は水酸基とが、一つのケイ素原子に結合し、その結果として、その1つのケイ素原子が炭素数1~20のアルコキシシリル基又はシラノール基を構成していてもよい。 It is preferable that at least one terminal of the conjugated diene-based polymer chain is bonded to a silicon atom of a coupling residue. In this case, the terminals of the plurality of conjugated diene-based polymer chains may be bonded to one silicon atom. Further, the terminal of the conjugated diene polymer chain and the alkoxy group or hydroxyl group having 1 to 20 carbon atoms are bonded to one silicon atom, and as a result, the one silicon atom is converted to an alkoxysilyl group having 1 to 20 carbon atoms. Or a silanol group.
 前記変性共役ジエン系共重合体(A)は、伸展油を加えた油展重合体とすることができる。該変性共役ジエン系共重合体(A)は、非油展であっても、油展であってもよいが、耐摩耗性の観点から、100℃で測定されるムーニー粘度が、20以上100位下であることが好ましく、30以上80以下であることがより好ましい。 The modified conjugated diene copolymer (A) can be an oil-extended polymer to which an extender oil has been added. The modified conjugated diene-based copolymer (A) may be non-oil-extended or oil-extended, but from the viewpoint of abrasion resistance, the Mooney viscosity measured at 100 ° C is 20 or more and 100 or more. And more preferably 30 to 80.
 ムーニー粘度の測定方法は、以下のとおりである。共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定する。測定温度は、共役ジエン系重合体を試料とする場合には110℃とし、変性共役ジエン系重合体を試料とする場合には100℃とする。まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とする。 The method for measuring Mooney viscosity is as follows. Using a conjugated diene-based polymer or a modified conjugated diene-based polymer as a sample, Mooney viscosity is measured using an L-shaped rotor according to JIS K6300 using a Mooney viscometer (trade name “VR1132” manufactured by Ueshima Seisakusho Co., Ltd.). I do. The measurement temperature is 110 ° C. when a conjugated diene-based polymer is used as a sample, and 100 ° C. when a modified conjugated diene-based polymer is used as a sample. First, after preheating the sample at the test temperature for 1 minute, the rotor is rotated at 2 rpm, and the torque after 4 minutes is measured to obtain the Mooney viscosity (ML (1 + 4) ).
 変性共役ジエン系重合体(A)の重量平均分子量(Mw)は、20×104以上300×104以下であり、好ましくは50×104以上であり、より好ましくは64×104以上であり、さらに好ましくは80×104以上である。また、上記重量平均分子量は、好ましくは250×104以下であり、さらに好ましくは180×104以下であり、より好ましくは150×104以下である。重量平均分子量が20×104以上であれば、タイヤの低転がり抵抗性とWET性能とを高度に両立することができる。また、重量平均分子量が300×104以下であれば、ゴム組成物の加工性が向上する。 The weight average molecular weight (Mw) of the modified conjugated diene polymer (A) is 20 × 10 4 or more and 300 × 10 4 or less, preferably 50 × 10 4 or more, more preferably 64 × 10 4 or more. And more preferably 80 × 10 4 or more. The weight average molecular weight is preferably 250 × 10 4 or less, more preferably 180 × 10 4 or less, and even more preferably 150 × 10 4 or less. When the weight-average molecular weight is 20 × 10 4 or more, both low rolling resistance and wet performance of the tire can be highly compatible. When the weight average molecular weight is 300 × 10 4 or less, the processability of the rubber composition is improved.
 変性共役ジエン系重合体(A)及び後述する共役ジエン系重合体に対する、数平均分子量、重量平均分子量、分子量分布、特定の高分子量成分の含有量は、以下のように測定する。共役ジエン系重合体又は変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC-8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と、変性共役ジエン系重合体のピークトップ分子量(Mp1)と共役ジエン系重合体のピークトップ分子量(Mp2)とその比率(Mp1/Mp2)と、分子量200×104以上500×104以下の割合と、を求める。溶離液は5mmol/Lのトリエチルアミン入りTHF(テトラヒドロフラン)を使用する。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ-H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)-H」を接続して使用する。測定用の試料10mgを10mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定する。
 上記のピークトップ分子量(Mp1及びMp2)は、次のようにして求める。測定して得られるGPC曲線において、最も高分子量の成分として検出されるピークを選択する。その選択したピークについて、そのピークの極大値に相当する分子量を算出し、ピークトップ分子量とする。
 また、上記の分子量200×104以上500×104以下の割合は、積分分子量分布曲線から分子量500×104以下が全体に占める割合から分子量200×104未満が占める割合を差し引くことで算出する。
The number average molecular weight, the weight average molecular weight, the molecular weight distribution, and the content of the specific high molecular weight component with respect to the modified conjugated diene polymer (A) and the conjugated diene polymer described below are measured as follows. Using a conjugated diene-based polymer or a modified conjugated diene-based polymer as a sample, using a GPC measuring device (trade name “HLC-8320GPC” manufactured by Tosoh Corporation) in which three columns using polystyrene-based gel as a filler are connected. , An RI detector (trade name “HLC8020” manufactured by Tosoh Corporation) was used to measure the chromatogram, and the weight average molecular weight (Mw) and number average molecular weight (Mn) were determined based on a calibration curve obtained using standard polystyrene. ) and molecular weight distribution (Mw / Mn), a peak top molecular weight of the modified conjugated diene polymer and (Mp 1) and a peak top molecular weight of the conjugated diene polymer (Mp 2) and the ratio (Mp 1 / Mp 2) And a ratio of molecular weight of 200 × 10 4 or more and 500 × 104 or less. As an eluent, THF (tetrahydrofuran) containing 5 mmol / L triethylamine is used. As the column, three TSKgel SuperMultipore HZ-H (trade name, manufactured by Tosoh Corporation) are connected, and a guard column is connected with a brand name, TSKguardcolumn SuperMP (HZ) -H (manufactured by Tosoh Corporation), as a guard column. 10 mg of a sample for measurement is dissolved in 10 mL of THF to make a measurement solution, 10 μL of the measurement solution is poured into a GPC measuring device, and measurement is performed under the conditions of an oven temperature of 40 ° C. and a THF flow rate of 0.35 mL / min.
The peak top molecular weights (Mp 1 and Mp 2 ) are determined as follows. In the GPC curve obtained by the measurement, the peak detected as the component having the highest molecular weight is selected. With respect to the selected peak, the molecular weight corresponding to the maximum value of the peak is calculated, and is set as the peak top molecular weight.
In addition, the ratio of the molecular weight of 200 × 10 4 or more and 500 × 10 4 or less is calculated by subtracting the ratio of the molecular weight of less than 200 × 10 4 from the ratio of the total molecular weight of 500 × 10 4 or less from the integrated molecular weight distribution curve. I do.
 変性共役ジエン系重合体(A)は、該変性共役ジエン系重合体の総量(100質量%)に対して、分子量が200×104以上500×104以下である変性共役ジエン系重合体(本明細書において、「特定の高分子量成分」ともいう。)を、104質量%以上30質量%以下含む。該特定の高分子量成分の含有量がこの範囲内であれば、タイヤの低転がり抵抗性とWET性能とを高度に両立することができる。
 変性共役ジエン系重合体(A)は、特定の高分子量成分を、好ましくは1.0質量%以上含み、より好ましくは1.4質量%以上含み、さらに好ましくは1.75質量%以上含み、より一層好ましくは2.0質量%以上含み、特に好ましくは2.15質量%以上含み、極めて好ましくは2.5質量%以上含む。また、変性共役ジエン系重合体(A)は、特定の高分子量成分を、好ましくは28質量%以下含み、より好ましくは25質量%以下含み、さらに好ましくは20質量%以下含み、より一層好ましくは18質量%以下含む。
 なお、本明細書において「分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって得られる、標準ポリスチレン換算分子量である。特定の高分子量成分の含有量がこのような範囲にある変性共役ジエン系重合体(A)を得るためには、後述する重合工程と反応工程とにおける反応条件を制御することが好ましい。例えば、重合工程においては、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよい。また、重合工程において、連続式、及び回分式のいずれの重合様式においても、滞留時間分布を有する方法を用いる、すなわち、成長反応の時間分布を広げるとよい。
The modified conjugated diene polymer (A) is a modified conjugated diene polymer having a molecular weight of 200 × 10 4 or more and 500 × 10 4 or less with respect to the total amount (100% by mass) of the modified conjugated diene polymer (A). also referred to herein as "specific high molecular weight component."), and includes 10 4% by weight to 30% by weight. When the content of the specific high molecular weight component is within this range, it is possible to achieve a high level of both low rolling resistance and WET performance of the tire.
The modified conjugated diene-based polymer (A) contains a specific high molecular weight component, preferably at least 1.0% by mass, more preferably at least 1.4% by mass, further preferably at least 1.75% by mass, even more preferably at least 2.0% by mass. %, Particularly preferably at least 2.15% by mass, very preferably at least 2.5% by mass. Further, the modified conjugated diene-based polymer (A) preferably contains a specific high molecular weight component of 28% by mass or less, more preferably 25% by mass or less, further preferably 20% by mass or less, and still more preferably Contains 18% by mass or less.
In addition, in this specification, a "molecular weight" is a standard polystyrene equivalent molecular weight obtained by GPC (gel permeation chromatography). In order to obtain the modified conjugated diene-based polymer (A) in which the content of the specific high molecular weight component is in such a range, it is preferable to control reaction conditions in a polymerization step and a reaction step described later. For example, in the polymerization step, the amount of an organic monolithium compound to be described later used as a polymerization initiator may be adjusted. In the polymerization step, a method having a residence time distribution may be used in any of the continuous and batch polymerization modes, that is, the time distribution of the growth reaction may be broadened.
 変性共役ジエン系重合体(A)においては、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布(Mw/Mn)は、1.6以上3.0以下が好ましい。変性共役ジエン系重合体(A)の分子量分布がこの範囲であれば、ゴム組成物の加工性が良好となる。 In the modified conjugated diene polymer (A), the molecular weight distribution (Mw / Mn) represented by the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) is preferably 1.6 or more and 3.0 or less. If the molecular weight distribution of the modified conjugated diene polymer (A) is within this range, the processability of the rubber composition will be good.
 変性共役ジエン系重合体(A)の製造方法は、特に限定されるものではないが、有機モノリチウム化合物を重合開始剤として用い、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る重合工程と、該共役ジエン系重合体の活性末端に対して、5官能以上の反応性化合物(以下、「カップリング剤」ともいう。)を反応させる反応工程と、を有することが好ましい。カップリング剤としては、窒素原子とケイ素原子とを有する5官能以上の反応性化合物を反応させるのが好ましい。 The method for producing the modified conjugated diene-based polymer (A) is not particularly limited, but is a polymerization in which an organic monolithium compound is used as a polymerization initiator and at least the conjugated diene compound is polymerized to obtain a conjugated diene-based polymer. It is preferable to include a step and a reaction step of reacting a reactive compound having five or more functional groups (hereinafter, also referred to as a “coupling agent”) with the active terminal of the conjugated diene polymer. As the coupling agent, it is preferable to react a pentafunctional or more reactive compound having a nitrogen atom and a silicon atom.
 変性共役ジエン系重合体(A)は、共役ジエン系重合体を、上記一般式(VI)で表されるカップリング剤と反応させてなることが好ましい。該カップリング剤と反応させてなる変性共役ジエン系重合体(A)を含むゴム組成物をタイヤに使用することで、タイヤの耐摩耗性を向上させることも可能となる。
 ここで、一般式(VI)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
The modified conjugated diene-based polymer (A) is preferably obtained by reacting a conjugated diene-based polymer with a coupling agent represented by the general formula (VI). By using the rubber composition containing the modified conjugated diene polymer (A) obtained by reacting with the coupling agent in a tire, it becomes possible to improve the wear resistance of the tire.
Here, in General Formula (VI), the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups. Examples of the organic group having no active hydrogen include active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH). Organic groups having no functional group.
 上記一般式(VI)で表されるカップリング剤と、共役ジエン系重合体とを反応させてなる変性共役ジエン系重合体(A)は、例えば、上記一般式(I)で表される。
 一般式(I)中、Dは、共役ジエン系重合体鎖を示し、該共役ジエン系重合体鎖の重量平均分子量は、10×104~100×104であることが好ましい。該共役ジエン系重合体鎖は、変性共役ジエン系重合体の構成単位であり、例えば、共役ジエン系重合体とカップリング剤とを反応させることによって生じる、共役ジエン系重合体由来の構造単位である。
 一般式(I)中、Aが示す炭化水素基は、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を包含する。上記活性水素を有しない有機基としては、例えば、水酸基(-OH)、第2級アミノ基(>NH)、第1級アミノ基(-NH2)、スルフヒドリル基(-SH)等の活性水素を有する官能基、を有しない有機基が挙げられる。
The modified conjugated diene-based polymer (A) obtained by reacting the coupling agent represented by the general formula (VI) with a conjugated diene-based polymer is represented by, for example, the general formula (I).
In the general formula (I), D represents a conjugated diene polymer chain, and the weight average molecular weight of the conjugated diene polymer chain is preferably from 10 × 10 4 to 100 × 10 4 . The conjugated diene-based polymer chain is a constituent unit of the modified conjugated diene-based polymer, and is, for example, a structural unit derived from a conjugated diene-based polymer generated by reacting a conjugated diene-based polymer with a coupling agent. is there.
In formula (I), the hydrocarbon group represented by A includes saturated, unsaturated, aliphatic, and aromatic hydrocarbon groups. Examples of the organic group having no active hydrogen include active hydrogen such as a hydroxyl group (—OH), a secondary amino group (> NH), a primary amino group (—NH 2 ), and a sulfhydryl group (—SH). And an organic group having no functional group.
 好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示す。
 より好ましくは、前記一般式(I)において、Aは、前記一般式(II)又は(III)で表され、kは、0を示し、前記一般式(II)又は(III)において、aは、2~10の整数を示す。
 より一層好ましくは、前記一般式(I)において、Aは、前記一般式(II)で表され、kは、0を示し、前記一般式(II)において、aは、2~10の整数を示す。
Preferably, in the general formula (I), A is represented by the general formula (II) or (III), and k represents 0.
More preferably, in the general formula (I), A is represented by the general formula (II) or (III), k represents 0, and in the general formula (II) or (III), a is , 2 to 10.
Still more preferably, in the general formula (I), A is represented by the general formula (II), k represents 0, and in the general formula (II), a is an integer of 2 to 10. Show.
 前記ゴム成分中の、変性共役ジエン系重合体(A)の含有率は、25~40質量%が好ましく、30~35質量%がさらに好ましい。ゴム成分中の変性共役ジエン系重合体(A)の含有率が25質量%以上の場合、タイヤに適用した際に、タイヤのWET性能をさらに向上させることができる。また、ゴム成分中の変性共役ジエン系重合体(A)の含有率が40質量%以下の場合、ゴム組成物の加工性が向上する。 The content of the modified conjugated diene polymer (A) in the rubber component is preferably 25 to 40% by mass, more preferably 30 to 35% by mass. When the content of the modified conjugated diene polymer (A) in the rubber component is 25% by mass or more, when applied to a tire, the WET performance of the tire can be further improved. When the content of the modified conjugated diene polymer (A) in the rubber component is 40% by mass or less, the processability of the rubber composition is improved.
 なお、前記トレッド用ゴム組成物のゴム成分については、上記変性共役ジエン系重合体(A)以外の変性SBRを用いることもできるし、未変性のSBRを用いることもできる。例えば、その他の変性SBRとしては、国際公開第2017/077712号のポリマー成分P2としての変性(共)重合体および実施例に記載の変性重合体C、変性重合体Dなどが挙げられる。 As the rubber component of the rubber composition for a tread, a modified SBR other than the modified conjugated diene polymer (A) can be used, or an unmodified SBR can be used. For example, examples of the other modified SBR include a modified (co) polymer as the polymer component P2 of WO2017 / 0777712, and modified polymers C and D described in Examples.
・スチレン・アルキレンブロック共重合体
 前記トレッド用ゴム組成物中のスチレン・アルキレンブロック共重合体は、スチレン系モノマー由来のブロックと、アルキレンブロックとを有する共重合体である。
 前記トレッド用ゴム組成物におけるスチレン・アルキレンブロック共重合体は、当該スチレン・アルキレンブロック共重合体の総質量に対して、当該スチレン・アルキレンブロック共重合体の合計スチレン含量が30質量%以上である。これにより、タイヤのドライハンドリング性を高めることができる。スチレン・アルキレンブロック共重合体は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Styrene-alkylene block copolymer The styrene-alkylene block copolymer in the tread rubber composition is a copolymer having a block derived from a styrene-based monomer and an alkylene block.
The styrene / alkylene block copolymer in the rubber composition for tread has a total styrene content of the styrene / alkylene block copolymer of 30% by mass or more based on the total mass of the styrene / alkylene block copolymer. . Thereby, the dry handling of the tire can be improved. The styrene-alkylene block copolymer may be used alone or in combination of two or more.
 スチレン・アルキレンブロック共重合体の合計スチレン含量(スチレン系モノマー由来のブロックの合計含量)は、適宜調節すればよいが、例えば、30~60質量%である。
 また、前記トレッド用ゴム組成物では、前記合計スチレン含量が、50質量%以上であることが好ましい。前記合計スチレン含量が、50質量%以上であることより、タイヤのドライハンドリング性をさらに高めることができる。
The total styrene content of the styrene / alkylene block copolymer (total content of blocks derived from the styrene monomer) may be appropriately adjusted, and is, for example, 30 to 60% by mass.
In the rubber composition for a tread, the total styrene content is preferably 50% by mass or more. When the total styrene content is 50% by mass or more, the dry handleability of the tire can be further improved.
 なお、前記スチレン・アルキレンブロック共重合体のスチレン含量と、後述するアルキレン単位の含量については、1H-NMRの積分比により求める。 The styrene content of the styrene-alkylene block copolymer and the content of the alkylene unit described below are determined by 1 H-NMR integration ratio.
 スチレン・アルキレンブロック共重合体のスチレンブロックは、スチレン系モノマーに由来する(スチレン系モノマーを重合した)単位を有する。このようなスチレン系モノマーとしては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、ビニルトルエンなどが挙げられる。この中でも、スチレン系モノマーとしては、スチレンが好ましい。 ス チ レ ン The styrene block of the styrene-alkylene block copolymer has a unit derived from a styrene monomer (polymerized styrene monomer). Examples of such a styrene-based monomer include styrene, α-methylstyrene, p-methylstyrene, and vinyl toluene. Among them, styrene is preferable as the styrene monomer.
 スチレン・アルキレンブロック共重合体のアルキレンブロックは、アルキレン(二価の飽和炭化水素基)単位を有する。このようなアルキレン単位としては、例えば、炭素数1~20のアルキレン基が挙げられる。アルキレン単位は、直鎖構造でもよいし、分岐構造でもよいし、これらの組み合わせでもよい。直鎖構造のアルキレン単位としては、例えば、-(CH2-CH2)-単位(エチレン単位)、-(CH2-CH2-CH2-CH2)-単位(ブチレン単位)などが挙げられる。分岐構造のアルキレン単位としては、例えば、-(CH2-CH(C25))-単位(ブチレン単位)などが挙げられる。これらのうち、アルキレン単位としては、-(CH2-CH(C25))-単位を有することが好ましい。
 なお、前記アルキレン単位の合計含量は適宜調節すればよいが、例えば、スチレン・アルキレンブロック共重合体の総質量に対して、40~70質量%である。
The alkylene block of the styrene-alkylene block copolymer has an alkylene (divalent saturated hydrocarbon group) unit. Examples of such an alkylene unit include an alkylene group having 1 to 20 carbon atoms. The alkylene unit may have a linear structure, a branched structure, or a combination thereof. Examples of the linear structure alkylene unit include a — (CH 2 —CH 2 ) —unit (ethylene unit) and a — (CH 2 —CH 2 —CH 2 —CH 2 ) —unit (butylene unit). . Examples of the alkylene unit having a branched structure include a-(CH 2 -CH (C 2 H 5 ))-unit (butylene unit). Among these, the alkylene unit preferably has a — (CH 2 —CH (C 2 H 5 )) — unit.
The total content of the alkylene units may be appropriately adjusted, and is, for example, 40 to 70% by mass based on the total mass of the styrene / alkylene block copolymer.
 前記トレッド用ゴム組成物では、前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、-(CH2-CH(C25))-単位(A)と-(CH2-CH2)-単位(B)を有し、単位(A)の合計含量が、単位(A)及び単位(B)のアルキレンブロックの総質量(単位(A)+単位(B))に対して、40質量%以上であることが好ましく、50質量%以上がより好ましく、65質量%以上であることがさらに好ましい。これにより、ドライハンドリング性に優れながら、WET性能と転がり抵抗の低減とを両立することができる。 In the rubber composition for a tread, the alkylene block of the styrene-alkylene block copolymer has-(CH 2 -CH (C 2 H 5 ))-unit (A) and-(CH 2 -CH 2 ) -unit (B), and the total content of the unit (A) is at least 40% by mass based on the total mass of the alkylene blocks of the unit (A) and the unit (B) (unit (A) + unit (B)). Is preferably 50% by mass or more, and more preferably 65% by mass or more. This makes it possible to achieve both wet performance and reduced rolling resistance while having excellent dry handling properties.
 前記スチレン・アルキレンブロック共重合体については、例えば、スチレン・エチレンブチレン・スチレンブロック共重合体(SEBS)、スチレン・エチレンプロピレン・スチレンブロック共重合体(SEPS)およびスチレン・エチレン・エチレンプロピレン・スチレンブロック共重合体(SEEPS)からなる群より選択される1種以上が挙げられる。 Examples of the styrene / alkylene block copolymer include styrene / ethylene / butylene / styrene block copolymer (SEBS), styrene / ethylene propylene / styrene block copolymer (SEPS), and styrene / ethylene / ethylene propylene / styrene block. One or more types selected from the group consisting of copolymers (SEEPS) are mentioned.
 前記トレッド用ゴム組成物では、前記スチレン・アルキレンブロック共重合体が、スチレン・エチレンブチレン・スチレンブロック共重合体であることが好ましい。
 これにより、ドライハンドリング性に優れながら、WET性能と転がり抵抗の低減とを両立することができる。なお、このスチレン・エチレンブチレン・スチレンブロック共重合体のエチレンブチレンブロックは、上述したエチレン単位とブチレン単位を有するブロックである。
In the rubber composition for a tread, it is preferable that the styrene / alkylene block copolymer is a styrene / ethylene butylene / styrene block copolymer.
This makes it possible to achieve both wet performance and reduced rolling resistance while having excellent dry handling properties. The ethylene butylene block of the styrene / ethylene butylene / styrene block copolymer is a block having the above-mentioned ethylene unit and butylene unit.
 また、前記スチレン・アルキレンブロック共重合体は、前記スチレンブロックと前記アルキレンブロック以外のその他の構成単位を含んでいてもよい。このようなその他の構成単位としては、例えば、-(CH2-CH(CH=CH2))-単位などの不飽和結合を有する構成単位などが挙げられる。 Further, the styrene-alkylene block copolymer may contain other structural units other than the styrene block and the alkylene block. Such other structural units include, for example, structural units having an unsaturated bond, such as-(CH 2 -CH (CH = CH 2 ))-units.
 なお、前記スチレン・アルキレンブロック共重合体の調製方法は特に限定されず、公知の方法を用いることができる。例えば、スチレンなどのスチレン系モノマーと、1,3-ブタジエンなどの共役ジエン化合物またはブテンなどのオレフィンとを共重合させ、前駆共重合体を得て、この前駆共重合体を水素添加することによって、スチレン・アルキレンブロック共重合体を得ることができる。
 また、前記スチレン・アルキレンブロック共重合体は、市販品を用いてもよい。このような市販品としては、例えば、JSR社のJSR DYNARON(登録商標)8903P、9901Pなどが挙げられる。
The method for preparing the styrene-alkylene block copolymer is not particularly limited, and a known method can be used. For example, a styrene-based monomer such as styrene and a conjugated diene compound such as 1,3-butadiene or an olefin such as butene are copolymerized to obtain a precursor copolymer, and the precursor copolymer is hydrogenated. And a styrene-alkylene block copolymer.
The styrene / alkylene block copolymer may be a commercially available product. Such commercially available products include, for example, JSR DYNARON (registered trademark) 8903P, 9901P, etc. of JSR Corporation.
 前記トレッド用ゴム組成物におけるスチレン・アルキレンブロック共重合体の配合量は、特に限定されず、適宜調節すればよい。
 例えば、スチレン・アルキレンブロック共重合体の配合量は、前記ゴム成分100質量部に対して、4~30質量部である。ドライハンドリング性に優れながら、WET性能と転がり抵抗の低減とを両立させる観点から、スチレン・アルキレンブロック共重合体の配合量は、ゴム成分100質量部に対して、8.5~30質量部であることが好ましい。
The blending amount of the styrene-alkylene block copolymer in the rubber composition for a tread is not particularly limited, and may be appropriately adjusted.
For example, the amount of the styrene-alkylene block copolymer is 4 to 30 parts by mass based on 100 parts by mass of the rubber component. From the viewpoint of achieving both wet performance and reduced rolling resistance while having excellent dry handling properties, the blending amount of the styrene-alkylene block copolymer should be 8.5 to 30 parts by mass with respect to 100 parts by mass of the rubber component. Is preferred.
 また、前記トレッド用ゴム組成物は、前記ゴム成分及び前記スチレン・アルキレンブロック共重合体に加えて、充填剤、加硫促進剤、シランカップリング剤、熱可塑性樹脂、加硫剤及びグリセリン脂肪酸エステルからなる群より選択される1種以上をさらに含むこともできる。 In addition, the rubber composition for tread, in addition to the rubber component and the styrene-alkylene block copolymer, a filler, a vulcanization accelerator, a silane coupling agent, a thermoplastic resin, a vulcanizing agent and a glycerin fatty acid ester And one or more selected from the group consisting of:
・充填剤
 前記充填剤としては、例えば、シリカ、カーボンブラック、酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられる。充填剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Filler As the filler, for example, silica, carbon black, aluminum oxide, clay, alumina, talc, mica, kaolin, glass balloon, glass beads, calcium carbonate, magnesium carbonate, magnesium hydroxide, calcium carbonate, magnesium oxide , Titanium oxide, potassium titanate, barium sulfate and the like. The filler may be used alone or in combination of two or more.
 また、前記充填剤は、補強性とタイヤの低転がり抵抗の低減の観点から、少なくともシリカを含むことが好ましい。
 前記シリカとしては、特に限定されず、目的に応じて適宜選択することができる。例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。
Further, it is preferable that the filler contains at least silica from the viewpoint of reinforcing property and reduction of low rolling resistance of the tire.
The silica is not particularly limited and can be appropriately selected depending on the purpose. Examples include wet silica (hydrous silicic acid), dry silica (silicic anhydride), calcium silicate, aluminum silicate and the like.
 さらに、前記充填剤中のシリカの含有量は、特に限定されず、目的に応じて適宜調節することができる。例えば、前記充填剤の総質量に対して、50~100質量%であることが好ましく、80~100質量%であることがより好ましく、90~100質量%であることが特に好ましい。 Further, the content of silica in the filler is not particularly limited, and can be appropriately adjusted according to the purpose. For example, the amount is preferably 50 to 100% by mass, more preferably 80 to 100% by mass, and particularly preferably 90 to 100% by mass based on the total mass of the filler.
 前記カーボンブラックとしては、特に限定されない。例えば、高、中又は低ストラクチャの、SAF、ISAF、ISAF-HS、IISAF、HAF、FEF、GPF、SRFグレード等のカーボンブラックが挙げられる。 The carbon black is not particularly limited. For example, carbon black of high, medium or low structure, such as SAF, ISAF, ISAF-HS, IISAF, HAF, FEF, GPF, SRF grade and the like can be mentioned.
 なお、前記トレッド用ゴム組成物における前記充填剤の配合量としては、特に限定されず、適宜調節すればよい。例えば、タイヤの低転がり抵抗の低減とWET性能の観点から、前記ゴム成分100質量部に対して、20~120質量部であることが好ましく、50~100質量部であることがより好ましい。 The compounding amount of the filler in the rubber composition for tread is not particularly limited, and may be appropriately adjusted. For example, from the viewpoint of reducing the low rolling resistance of the tire and WET performance, the amount is preferably 20 to 120 parts by mass, more preferably 50 to 100 parts by mass with respect to 100 parts by mass of the rubber component.
・加硫促進剤
 前記トレッド用ゴム組成物は、前記ゴム成分及び前記スチレン・アルキレンブロック共重合体に加えて、加硫促進剤を含むことが好ましい。前記加硫促進剤としては、例えば、グアニジン類、スルフェンアミド類、チアゾール類、チオウレアおよびジエチルチオウレアの中から選ばれる少なくとも1種である。これらは、それぞれ、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Vulcanization Accelerator The tread rubber composition preferably contains a vulcanization accelerator in addition to the rubber component and the styrene-alkylene block copolymer. The vulcanization accelerator is, for example, at least one selected from guanidines, sulfenamides, thiazoles, thiourea and diethylthiourea. Each of these may be used alone or in combination of two or more.
 前記トレッド用ゴム組成物における前記加硫促進剤の配合量としては、特に限定されず、目的に応じて適宜調節することができる。例えば、前記ゴム成分100質量部に対して0.1~20質量部である。0.1質量部以上であると、加硫の効果が得られやすく、20質量部以下であると、加硫の過度の進行を抑制することができる。 配合 The amount of the vulcanization accelerator in the rubber composition for tread is not particularly limited, and can be appropriately adjusted depending on the purpose. For example, the amount is 0.1 to 20 parts by mass based on 100 parts by mass of the rubber component. When the amount is 0.1 part by mass or more, the effect of vulcanization is easily obtained, and when the amount is 20 parts by mass or less, excessive progress of vulcanization can be suppressed.
 前記グアニジン類としては、特に限定されず、目的に応じて適宜選択することができる。例えば、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジンなどが挙げられる。これらの中でも、反応性が高い点で、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンおよび1-o-トリルビグアニドが好ましく、1,3-ジフェニルグアニジンがより好ましい。 The guanidines are not particularly limited, and can be appropriately selected according to the purpose. For example, 1,3-diphenylguanidine, 1,3-di-o-tolyl guanidine, 1-o-tolyl biguanide, di-o-tolyl guanidine salt of dicatechol borate, 1,3-di-o-cumenyl guanidine , 1,3-di-o-biphenylguanidine, 1,3-di-o-cumenyl-2-propionylguanidine and the like. Among them, 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine and 1-o-tolylbiguanide are preferable in terms of high reactivity, and 1,3-diphenylguanidine is more preferable.
 前記スルフェンアミド類としては、特に限定されず、目的に応じて適宜選択することができる。例えば、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド、N-エチル-2-ベンゾチアゾリルスルフェンアミド、N-プロピル-2-ベンゾチアゾリルスルフェンアミド、N-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-ペンチル-2-ベンゾチアゾリルスルフェンアミド、N-ヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-オクチル-2-ベンゾチアゾリルスルフェンアミド、N-2-エチルヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-デシル-2-ベンゾチアゾリルスルフェンアミド、N-ドデシル-2-ベンゾチアゾリルスルフェンアミド、N-ステアリル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジメチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジエチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジプロピル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジブチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジペンチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジオクチル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジ-2-エチルヘキシルベンゾチアゾリルスルフェンアミド、N,N-ジドデシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジステアリル-2-ベンゾチアゾリルスルフェンアミドなどが挙げられる。これらの中でも、反応性が高い点で、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミドおよびN-tert-ブチル-2-ベンゾチアゾリルスルフェンアミドが好ましい。 The sulfenamides are not particularly limited and can be appropriately selected according to the purpose. For example, N-cyclohexyl-2-benzothiazolesulfenamide, N, N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzothiazolylsulfenamide, N-oxydiethylene-2 -Benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide, N-ethyl-2-benzothiazolylsulfenamide, N-propyl-2-benzothiazolylsulfenamide, N-butyl -2-benzothiazolylsulfenamide, N-pentyl-2-benzothiazolylsulfenamide, N-hexyl-2-benzothiazolylsulfenamide, N-octyl-2-benzothiazolylsulfenamide, N -2-ethylhexyl-2-benzothiazolylsulfenami , N-decyl-2-benzothiazolylsulfenamide, N-dodecyl-2-benzothiazolylsulfenamide, N-stearyl-2-benzothiazolylsulfenamide, N, N-dimethyl-2-benzothia Zolylsulfenamide, N, N-diethyl-2-benzothiazolylsulfenamide, N, N-dipropyl-2-benzothiazolylsulfenamide, N, N-dibutyl-2-benzothiazolylsulfenamide, N, N-dipentyl-2-benzothiazolylsulfenamide, N, N-dihexyl-2-benzothiazolylsulfenamide, N, N-dioctyl-2-benzothiazolylsulfenamide, N, N-di -2-ethylhexylbenzothiazolylsulfenamide, N, N-didodecyl-2-benzothiazolyls Fen'amido, N, etc. N- distearyl-2-benzothiazolyl sulfenamide and the like. Among these, N-cyclohexyl-2-benzothiazolylsulfenamide and N-tert-butyl-2-benzothiazolylsulfenamide are preferred because of their high reactivity.
 前記チアゾール類としては、特に限定されず、目的に応じて適宜選択することができる。例えば、2-メルカプトベンゾチアゾール、ジ-2-ベンゾチアゾリルジスルフィド、2-メルカプトベンゾチアゾールの亜鉛塩、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、2-(N,N-ジエチルチオカルバモイルチオ)ベンゾチアゾール、2-(4´-モルホリノジチオ)ベンゾチアゾール、4-メチル-2-メルカプトベンゾチアゾール、ジ-(4-メチル-2-ベンゾチアゾリル)ジスルフィド、5-クロロ-2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールナトリウム、2-メルカプト-6-ニトロベンゾチアゾール、2-メルカプト-ナフト[1,2-d]チアゾール、2-メルカプト-5-メトキシベンゾチアゾール、6-アミノ-2-メルカプトベンゾチアゾールなどが挙げられる。これらの中でも、反応性が高い点で、2-メルカプトベンゾチアゾールおよびジ-2-ベンゾチアゾリルジスルフィドが好ましい。 The thiazoles are not particularly limited and can be appropriately selected according to the purpose. For example, 2-mercaptobenzothiazole, di-2-benzothiazolyl disulfide, zinc salt of 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, 2- (N, N-diethylthiocarbamoylthio) benzo Thiazole, 2- (4'-morpholinodithio) benzothiazole, 4-methyl-2-mercaptobenzothiazole, di- (4-methyl-2-benzothiazolyl) disulfide, 5-chloro-2-mercaptobenzothiazole, 2-mercapto Sodium benzothiazole, 2-mercapto-6-nitrobenzothiazole, 2-mercapto-naphtho [1,2-d] thiazole, 2-mercapto-5-methoxybenzothiazole, 6-amino-2-mercaptobenzothiazole and the like Can be Among these, 2-mercaptobenzothiazole and di-2-benzothiazolyl disulfide are preferable in terms of high reactivity.
 前記チオウレアは、NH2CSNH2で表される化合物である。
 前記ジエチルチオウレアは、C25NHCSNHC25で表される化合物である。
The thiourea is a compound represented by NH 2 CSNH 2 .
The diethylthiourea is a compound represented by C 2 H 5 NHCSNHC 2 H 5 .
・シランカップリング剤
 前記トレッド用ゴム組成物は、前記充填剤としてシリカを含む場合には、シランカップリング剤をさらに含むことが好ましい。シランカップリング剤を用いることによって、ゴム加工時の作業性が更に優れると共に、耐摩耗性がより良好なタイヤを得ることができる。シランカップリング剤は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Silane coupling agent When the rubber composition for tread contains silica as the filler, it is preferable that the rubber composition further includes a silane coupling agent. By using the silane coupling agent, it is possible to obtain a tire having more excellent workability during rubber processing and more excellent wear resistance. The silane coupling agents may be used alone or in combination of two or more.
 シランカップリング剤としては、特に限定されず、目的に応じて適宜選択することができ、例えば、式(1):(R1O)3-p(R2pSi-R3-Sa-R3-Si(OR13-r(R2rで表わされる化合物、式(2):(R4O)3-s(R5sSi-R6-Sk-R7-Sk-R6-Si(OR43-t(R5tで表わされる化合物などが挙げられる。 The silane coupling agent is not particularly limited and can be appropriately selected depending on the purpose. For example, the formula (1): (R 1 O) 3-p (R 2 ) p Si—R 3 —S a Compound represented by —R 3 —Si (OR 1 ) 3-r (R 2 ) r , formula (2): (R 4 O) 3-s (R 5 ) s Si—R 6 —S k —R 7 —S k —R 6 —Si (OR 4 ) 3-t (R 5 ) t and the like.
 式(1)中、R1はそれぞれ独立して炭素数1~8の直鎖、環状もしくは分岐のアルキル基、炭素数2~8の直鎖もしくは分岐のアルコキシアルキル基又は水素原子であり、R2はそれぞれ独立して炭素数1~8の直鎖、環状又は分岐のアルキル基であり、R3はそれぞれ独立して炭素数1~8の直鎖又は分岐のアルキレン基である。aは平均値として2~6であり、p及びrは同一でも異なっていてもよく、各々平均値として0~3である。ただし、p及びrの双方が3であることはない。 In the formula (1), R 1 is each independently a straight-chain, cyclic or branched alkyl group having 1 to 8 carbon atoms, a straight-chain or branched alkoxyalkyl group having 2 to 8 carbon atoms, or a hydrogen atom. 2 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, and R 3 is each independently a linear or branched alkylene group having 1 to 8 carbon atoms. a is 2 to 6 on average, and p and r may be the same or different, and each is 0 to 3 on average. However, both p and r are not 3.
 式(2)中、R4はそれぞれ独立して炭素数1~8の直鎖、環状もしくは分岐のアルキル基、炭素数2~8の直鎖もしくは分岐のアルコキシアルキル基又は水素原子であり、R5はそれぞれ独立して炭素数1~8の直鎖、環状もしくは分岐のアルキル基であり、R6はそれぞれ独立して炭素数1~8の直鎖もしくは分岐のアルキレン基である。R7は一般式(-S-R8-S-)、(-R9-Sm1-R10-)及び(-R11-Sm2-R12-Sm3-R13-)のいずれかの二価の基(R8~R13は各々炭素数1~20の二価の炭化水素基、二価の芳香族基、又は硫黄及び酸素以外のヘテロ元素を含む二価の有機基であり、m1、m2及びm3は同一でも異なっていてもよく、各々平均値として1以上4未満である。)であり、kはそれぞれ独立して平均値として1~6であり、s及びtは各々平均値として0~3である。ただし、s及びtの双方が3であることはない。 In the formula (2), R 4 is each independently a straight-chain, cyclic or branched alkyl group having 1 to 8 carbon atoms, a straight-chain or branched alkoxyalkyl group having 2 to 8 carbon atoms, or a hydrogen atom. 5 is each independently a linear, cyclic or branched alkyl group having 1 to 8 carbon atoms, and R 6 is each independently a linear or branched alkylene group having 1 to 8 carbon atoms. R 7 is the formula (-S-R 8 -S -) , (- R 9 -S m1 -R 10 -) and (-R 11 -S m2 -R 12 -S m3 -R 13 -) either Wherein each of R 8 to R 13 is a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent aromatic group, or a divalent organic group containing a hetero element other than sulfur and oxygen. , M1, m2, and m3 may be the same or different and each have an average value of 1 or more and less than 4.), k is independently 1 to 6 as an average value, and s and t are each The average value is 0-3. However, s and t are not both 3.
 式(1)で表わされるシランカップリング剤としては、例えば、ビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-メチルジメトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド、ビス(3-トリメトキシシリルプロピル)ジスルフィド、ビス(3-メチルジメトキシシリルプロピル)ジスルフィド、ビス(2-トリエトキシシリルエチル)ジスルフィド、ビス(3-トリエトキシシリルプロピル)トリスルフィド、ビス(3-トリメトキシシリルプロピル)トリスルフィド、ビス(3-メチルジメトキシシリルプロピル)トリスルフィド、ビス(2-トリエトキシシリルエチル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノエトキシジメチルシリルプロピル)ジスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)テトラスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)トリスルフィド、ビス(3-モノメトキシジメチルシリルプロピル)ジスルフィド、ビス(2-モノエトキシジメチルシリルエチル)テトラスルフィド、ビス(2-モノエトキシジメチルシリルエチル)トリスルフィド、ビス(2-モノエトキシジメチルシリルエチル)ジスルフィドなどが挙げられる。 Examples of the silane coupling agent represented by the formula (1) include bis (3-triethoxysilylpropyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, and bis (3-methyldimethoxysilylpropyl) tetrasulfide. Sulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-triethoxysilylpropyl) disulfide, bis (3-trimethoxysilylpropyl) disulfide, bis (3-methyldimethoxysilylpropyl) disulfide, bis (2 -Triethoxysilylethyl) disulfide, bis (3-triethoxysilylpropyl) trisulfide, bis (3-trimethoxysilylpropyl) trisulfide, bis (3-methyldimethoxysilylpropyl) trisulfide, bis 2-triethoxysilylethyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) tetrasulfide, bis (3-monoethoxydimethylsilylpropyl) trisulfide, bis (3-monoethoxydimethylsilylpropyl) disulfide, bis ( 3-monomethoxydimethylsilylpropyl) tetrasulfide, bis (3-monomethoxydimethylsilylpropyl) trisulfide, bis (3-monomethoxydimethylsilylpropyl) disulfide, bis (2-monoethoxydimethylsilylethyl) tetrasulfide, bis (2-monoethoxydimethylsilylethyl) trisulfide, bis (2-monoethoxydimethylsilylethyl) disulfide and the like can be mentioned.
 式(2)で表わされるシランカップリング剤としては、例えば、平均組成式(CH3CH2O)3Si-(CH23-S2-(CH26-S2-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S2-(CH210-S2-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S3-(CH26-S3-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S4-(CH26-S4-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S2-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S2.5-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S3-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S4-(CH26-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH210-S2-(CH210-S-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S4-(CH26-S4-(CH26-S4-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S2-(CH26-S2-(CH26-S2-(CH23-Si(OCH2CH33、平均組成式(CH3CH2O)3Si-(CH23-S-(CH26-S2-(CH26-S2-(CH26-S-(CH23-Si(OCH2CH33を有するもの等が挙げられる。 The silane coupling agent represented by the formula (2) includes, for example, an average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 10 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 3 — (CH 2 ) 6 —S 3 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , Average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula ( CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2.5 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average Composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 3 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 4 — (CH 2 ) 6 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 10 —S 2 — (CH 2 ) 10 —S— (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 6 —S 4 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 , average composition formula ( CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 3 —Si (OCH 2 CH 3 ) 3 And the average composition formula (CH 3 CH 2 O) 3 Si— (CH 2 ) 3 —S— (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S 2 — (CH 2 ) 6 —S— (CH 2 ) 3- Si (OCH 2 CH 3 ) 3 .
 シランカップリング剤としては、例えば、エボニック・デグサ社製Si363(エトキシ(3-メルカプトプロピル)ビス(3,6,9,12,15-ペンタオキサオクタコサン-1-イルオキシ)シラン、[C1327O(CH2CH2O)52(CH3CH2O)Si(CH23SH)などが挙げられる。 Examples of the silane coupling agent include Si363 (ethoxy (3-mercaptopropyl) bis (3,6,9,12,15-pentaoxaoctacosan-1-yloxy) silane manufactured by Evonik Degussa, and [C 13 H 27 O (CH 2 CH 2 O) 5 ] 2 (CH 3 CH 2 O) Si (CH 2 ) 3 SH).
 前記トレッド用ゴム組成物における前記シランカップリング剤の配合量としては、適宜調節すればよい。例えば、前記ゴム成分100質量部に対して2質量部以上である。シリカの反応性向上の観点から、ゴム成分100質量部に対して2~20質量部であることが好ましく、4~12質量部であることがより好ましい。 配合 The amount of the silane coupling agent in the tread rubber composition may be appropriately adjusted. For example, the amount is 2 parts by mass or more based on 100 parts by mass of the rubber component. From the viewpoint of improving the reactivity of silica, the amount is preferably 2 to 20 parts by mass, more preferably 4 to 12 parts by mass, per 100 parts by mass of the rubber component.
 前記シリカの配合量(質量)に対する前記シランカップリング剤の配合量(質量)の割合(シランカップリング剤の配合量/シリカの配合量)としては、特に限定されず、目的に応じて適宜調節することができるが、0.01~0.20が好ましく、0.03~0.20がより好ましく、0.04~0.10が特に好ましい。この割合が、0.01以上であると、ゴム組成物の発熱性の低減の効果を得られやすく、0.20以下であると、ゴム組成物の製造コストが低減し、経済性を向上させることができる。 The ratio of the blending amount (mass) of the silane coupling agent to the blending amount (mass) of the silica (the blending amount of the silane coupling agent / the blending amount of silica) is not particularly limited, and is appropriately adjusted depending on the purpose. However, it is preferably 0.01 to 0.20, more preferably 0.03 to 0.20, and particularly preferably 0.04 to 0.10. When this ratio is 0.01 or more, the effect of reducing the heat build-up of the rubber composition can be easily obtained, and when it is 0.20 or less, the production cost of the rubber composition can be reduced and the economic efficiency can be improved.
・加硫剤
 加硫剤としては、特に限定されず、目的に応じて適宜選択することができる。例えば、硫黄などが挙げられる。加硫剤は1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
-Vulcanizing agent The vulcanizing agent is not particularly limited, and can be appropriately selected depending on the purpose. For example, sulfur and the like can be mentioned. The vulcanizing agents may be used alone or in combination of two or more.
 加硫剤の配合量としては、特に限定されず、目的に応じて適宜調節することができ、例えば、ゴム成分100質量部に対して、0.1~2.0質量部であり、1.0~2.0質量部がより好ましく、1.2~1.8質量部が特に好ましい。 The amount of the vulcanizing agent is not particularly limited and can be appropriately adjusted depending on the purpose. For example, the amount is 0.1 to 2.0 parts by mass, and 1.0 to 2.0 parts by mass with respect to 100 parts by mass of the rubber component. It is more preferably, and particularly preferably 1.2 to 1.8 parts by mass.
・熱可塑性樹脂
 前記トレッド用ゴム組成物は、前記ゴム成分及び前記スチレン・アルキレンブロック共重合体に加えて、C5系樹脂、C5~C9系樹脂、C9系樹脂、テルペン系樹脂、テルペン-芳香族化合物系樹脂、ロジン系樹脂、ジシクロペンタジエン樹脂、アルキルフェノール系樹脂及びこれらを一部水素添加したものからなる群より選択される熱可塑性樹脂をさらに含んでもよい。これらは、それぞれ、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、前記熱可塑性樹脂については、上述したスチレン・アルキレンブロック共重合体を含まない。
-Thermoplastic resin The rubber composition for a tread comprises, in addition to the rubber component and the styrene / alkylene block copolymer, a C5 resin, a C5 to C9 resin, a C9 resin, a terpene resin, a terpene-aromatic. It may further include a thermoplastic resin selected from the group consisting of a compound resin, a rosin resin, a dicyclopentadiene resin, an alkylphenol resin, and a partially hydrogenated resin thereof. Each of these may be used alone or in combination of two or more. The thermoplastic resin does not include the styrene-alkylene block copolymer described above.
 前記熱可塑性樹脂の配合量としては、特に限定されず、目的に応じて適宜調節することができ、例えば、ゴム成分100質量部に対して、5~50質量部である。 配合 The blending amount of the thermoplastic resin is not particularly limited and can be appropriately adjusted depending on the purpose. For example, it is 5 to 50 parts by mass with respect to 100 parts by mass of the rubber component.
 C5系樹脂は、C5系合成石油樹脂を指し、C5留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。具体的には、イソプレン、シクロペンタジエン、1,3-ペンタジエン及び1-ペンテンなどを主成分とする共重合体、2-ペンテンとジシクロペンタジエンとの共重合体、1,3-ペンタジエンを主体とする重合体などが挙げられる。 The C5 resin refers to a C5 synthetic petroleum resin and means a resin obtained by polymerizing a C5 fraction using a Friedel Crafts type catalyst such as AlCl 3 or BF 3 . Specifically, copolymers containing isoprene, cyclopentadiene, 1,3-pentadiene, 1-pentene and the like as main components, copolymers of 2-pentene and dicyclopentadiene, and 1,3-pentadiene as main components And the like.
 C5~C9系樹脂は、C5~C9系合成石油樹脂を指し、C5~C11留分を、AlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、スチレン、ビニルトルエン、α-メチルスチレン、インデン等を主成分とする共重合体などが挙げられる。これらの中でも、C9以上の成分の少ないC5~C9系樹脂は、ゴム成分との相溶性が優れるため好ましい。具体的には、C5~C9系樹脂におけるC9以上の成分の割合が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。また、これらを一部水添したもの(例えば、荒川化学工業社のアルコン(登録商標))なども挙げられる。 The C5-C9 resin refers to a C5-C9 synthetic petroleum resin, and means a resin obtained by polymerizing a C5-C11 fraction using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 . For example, a copolymer containing styrene, vinyltoluene, α-methylstyrene, indene, or the like as a main component may be used. Among them, C5 to C9 resins having a small amount of C9 or more are preferable because of excellent compatibility with the rubber component. Specifically, a resin in which the ratio of C9 or more components in the C5 to C9 resin is less than 50% by mass is preferable, and a resin in which the ratio is 40% by mass or less is more preferable. In addition, those partially hydrogenated (for example, Alcon (registered trademark) of Arakawa Chemical Industry Co., Ltd.) are also included.
 C9系樹脂は、C9系合成石油樹脂を指し、C9留分をAlCl3やBF3などのフリーデルクラフツ型触媒を用いて重合して得られる樹脂を意味する。例えば、インデン、メチルインデン、α-メチルスチレン、ビニルトルエンなどを主成分とする共重合体などが挙げられる。また、これらを一部水添したもの(例えば、荒川化学工業社のアルコン(登録商標))なども挙げられる。 C9-based resin refers to C9-based synthetic petroleum resin and means a resin obtained by polymerizing a C9 fraction using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 . For example, a copolymer containing indene, methylindene, α-methylstyrene, vinyltoluene or the like as a main component can be used. In addition, those partially hydrogenated (for example, Alcon (registered trademark) of Arakawa Chemical Industry Co., Ltd.) and the like can also be mentioned.
 テルペン系樹脂は、松属の木からロジンを得る際に同時に得られるテレビン油またはこれから分離した重合成分を配合し、フリーデルクラフツ型触媒を用いて重合して得ることができる。例えば、β-ピネン樹脂、α-ピネン樹脂などが挙げられる。 The terpene-based resin can be obtained by blending turpentine oil obtained simultaneously with obtaining rosin from a pine tree or a polymerization component separated therefrom, and polymerizing using a Friedel-Crafts type catalyst. For example, β-pinene resin, α-pinene resin and the like can be mentioned.
 テルペン-芳香族化合物系樹脂は、テルペン類と種々のフェノール類とを、フリーデルクラフツ型触媒を用いて反応させたり、あるいはさらにホルマリンで縮合することで得ることができる。例えば、テルペン-フェノール樹脂などが挙げられる。前記テルペン-フェノール樹脂のなかでも、テルペン-フェノール樹脂中のフェノール成分が50質量%未満の樹脂が好ましく、40質量%以下の樹脂がより好ましい。 The terpene-aromatic compound resin can be obtained by reacting a terpene with various phenols using a Friedel-Crafts type catalyst or further condensing it with formalin. For example, terpene-phenol resins and the like can be mentioned. Among the terpene-phenol resins, a resin in which the phenol component in the terpene-phenol resin is less than 50% by mass is preferable, and a resin in which the phenol component is 40% by mass or less is more preferable.
 原料のテルペン類としては、特に限定されず、目的に応じて適宜選択することができ、例えば、α-ピネン、リモネンなどのモノテルペン炭化水素などが挙げられる。これらの中でも、α-ピネンを含むものが好ましく、α-ピネンがより好ましい。 テ ル The terpene as a raw material is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include monoterpene hydrocarbons such as α-pinene and limonene. Among these, those containing α-pinene are preferable, and α-pinene is more preferable.
 ロジン系樹脂としては、特に限定されず、目的に応じて適宜選択することができ、例えば、生松ヤニやトール油に含まれるガムロジン、トール油レジン、ウッドロジンなどの天然樹脂ロジン;変性ロジン;変性ロジン誘導体などが挙げられる。前記変性ロジン誘導体は、具体的には、重合ロジン、その部分水添ロジン;グリセリンエステルロジン、その部分水添ロジンや完全水添ロジン;ペンタエリスリトールエステルロジン、その部分水添ロジンや完全水添ロジンなどが挙げられる。 The rosin resin is not particularly limited and can be appropriately selected depending on the purpose. For example, natural resin rosins such as gum rosin, tall oil resin, and wood rosin contained in raw pine tar and tall oil; modified rosin; Rosin derivatives and the like can be mentioned. Specific examples of the modified rosin derivative include polymerized rosin, partially hydrogenated rosin; glycerin ester rosin, partially hydrogenated rosin and completely hydrogenated rosin; pentaerythritol ester rosin, partially hydrogenated rosin and completely hydrogenated rosin And the like.
 ジシクロペンタジエン樹脂は、ジシクロペンタジエンを、AlCl3やBF3などのフリーデルクラフツ型触媒などを用いて重合して得ることができる。ジシクロペンタジエン樹脂の市販品の具体例としては、クイントン1920(日本ゼオン社製)、クイントン1105(日本ゼオン社製)、マルカレッツM-890A(丸善石油化学社製)などが挙げられる。 The dicyclopentadiene resin can be obtained by polymerizing dicyclopentadiene using a Friedel-Crafts type catalyst such as AlCl 3 or BF 3 . Specific examples of commercially available dicyclopentadiene resins include Quinton 1920 (manufactured by Nippon Zeon), Quinton 1105 (manufactured by Nippon Zeon), and Marcarez M-890A (manufactured by Maruzen Petrochemical).
 アルキルフェノール系樹脂としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、p-tert-ブチルフェノール-アセチレン樹脂などのアルキルフェノール-アセチレン樹脂、低重合度のアルキルフェノール-ホルムアルデヒド樹脂などが挙げられる。 The alkylphenol-based resin is not particularly limited and can be appropriately selected depending on the purpose. Examples thereof include an alkylphenol-acetylene resin such as a p-tert-butylphenol-acetylene resin, and an alkylphenol-formaldehyde resin having a low polymerization degree. Can be
・グリセリン脂肪酸エステル
 前記トレッド用ゴム組成物は、充填剤としてシリカを含む場合、さらに、グリセリン脂肪酸エステル組成物を含むことが好ましく、グリセリン脂肪酸エステルが、グリセリンと、2種以上の脂肪酸とのエステルであって、該グリセリン脂肪酸エステルを構成する2種以上の脂肪酸のうち、最も多い脂肪酸成分が全脂肪酸中に10~90質量%であり、さらにモノエステル成分をグリセリン脂肪酸エステル中に50~100質量%含むグリセリン脂肪酸エステル組成物を含むことがより好ましい。
 該グリセリン脂肪酸エステル組成物を含む場合、ゴム組成物の加工性が向上し、また、ゴム組成物をタイヤに適用することで、タイヤの転がり抵抗の低減効果をより改善することができる。
-Glycerin fatty acid ester When the rubber composition for tread contains silica as a filler, it is preferable that the tread rubber composition further contains a glycerin fatty acid ester composition, and the glycerin fatty acid ester is an ester of glycerin and two or more fatty acids. Among the two or more fatty acids constituting the glycerin fatty acid ester, the most fatty acid component is 10 to 90% by mass in the total fatty acid, and the monoester component is 50 to 100% by mass in the glycerin fatty acid ester. More preferably, the composition contains a glycerin fatty acid ester composition.
When the glycerin fatty acid ester composition is included, the processability of the rubber composition is improved, and the effect of reducing the rolling resistance of the tire can be further improved by applying the rubber composition to the tire.
 前記グリセリン脂肪酸エステルは、グリセリンと、2種以上の脂肪酸とのエステルである。なお、グリセリン脂肪酸エステルとは、グリセリンの3つのOH基の少なくとも1つと、脂肪酸のCOOH基とがエステル結合してなる化合物である。
 ここで、前記グリセリン脂肪酸エステルは、グリセリン1分子と脂肪酸1分子とがエステル化してなるグリセリン脂肪酸モノエステル(モノエステル成分)でも、グリセリン1分子と脂肪酸2分子とがエステル化してなるグリセリン脂肪酸ジエステル(ジエステル成分)でも、グリセリン1分子と脂肪酸3分子とがエステル化してなるグリセリン脂肪酸トリエステル(トリエステル成分)でもよいし、これらの混合物でもよいが、グリセリン脂肪酸モノエステルが好ましい。なお、グリセリン脂肪酸エステルがグリセリン脂肪酸モノエステル、グリセリン脂肪酸ジエステル、グリセリン脂肪酸トリエステルの混合物である場合、各エステルの含有率は、ゲルパーミエーションクロマトグラフィー(GPC)で測定することができる。また、グリセリン脂肪酸ジエステルを構成する2つの脂肪酸、並びに、グリセリン脂肪酸トリエステルを構成する3つの脂肪酸は、同一でも、異なってもよい。
The glycerin fatty acid ester is an ester of glycerin and two or more fatty acids. The glycerin fatty acid ester is a compound in which at least one of the three OH groups of glycerin and the COOH group of the fatty acid are ester-bonded.
Here, the glycerin fatty acid ester may be a glycerin fatty acid monoester (monoester component) obtained by esterifying one molecule of glycerin and one molecule of fatty acid, or a glycerin fatty acid diester obtained by esterifying one molecule of glycerin and two molecules of fatty acid. Diester component), glycerin fatty acid triester (ester component) obtained by esterifying one molecule of glycerin and three molecules of fatty acid, or a mixture thereof, but glycerin fatty acid monoester is preferred. When the glycerin fatty acid ester is a mixture of glycerin fatty acid monoester, glycerin fatty acid diester, and glycerin fatty acid triester, the content of each ester can be measured by gel permeation chromatography (GPC). The two fatty acids constituting the glycerin fatty acid diester and the three fatty acids constituting the glycerin fatty acid triester may be the same or different.
 前記グリセリン脂肪酸エステルは、グリセリンと、2種以上の脂肪酸とのエステルであり、2種以上の脂肪酸がグリセリン1分子とエステル化してなるグリセリン脂肪酸ジエステルやグリセリン脂肪酸トリエステルでもよいが、グリセリン1分子と上記2種以上の脂肪酸のうち1種類の脂肪酸1分子とがエステル化してなるグリセリン脂肪酸モノエステルと、グリセリン1分子と他の種類の脂肪酸1分子とがエステル化してなるグリセリン脂肪酸モノエステルとの混合物であることが好ましい。 The glycerin fatty acid ester is an ester of glycerin and two or more fatty acids, and may be a glycerin fatty acid diester or a glycerin fatty acid triester obtained by esterifying two or more fatty acids with one molecule of glycerin. A mixture of a glycerin fatty acid monoester obtained by esterifying one kind of one fatty acid molecule of the two or more kinds of fatty acids and a glycerin fatty acid monoester obtained by esterifying one molecule of glycerin and one kind of other fatty acid molecule. It is preferable that
 前記グリセリン脂肪酸エステルの原料となる2種以上の脂肪酸(即ち、グリセリン脂肪酸エステルの構成脂肪酸)としては、ゴム組成物の加工性、タイヤの低転がり抵抗の低減、破壊特性の向上等の観点から、炭素数が8~22である脂肪酸が好ましく、炭素数12~18である脂肪酸がより好ましく、炭素数が14~18である脂肪酸がさらに好ましく、炭素数が16の脂肪酸と炭素数が18の脂肪酸がよりさらに好ましい。また、前記グリセリン脂肪酸エステルの原料となる2種以上の脂肪酸のうち、最も多い脂肪酸成分と2番目に多い脂肪酸成分は、一方が炭素数16の脂肪酸で他方が炭素数18の脂肪酸であることがより好ましい。 As the two or more fatty acids that are the raw materials of the glycerin fatty acid ester (that is, the constituent fatty acids of the glycerin fatty acid ester), from the viewpoints of processability of the rubber composition, reduction of low rolling resistance of the tire, improvement of breaking characteristics, and the like, Fatty acids having 8 to 22 carbon atoms are preferred, fatty acids having 12 to 18 carbon atoms are more preferred, fatty acids having 14 to 18 carbon atoms are still more preferred, and fatty acids having 16 carbon atoms and fatty acids having 18 carbon atoms are preferred. Is even more preferred. Further, among the two or more fatty acids that are the raw materials of the glycerin fatty acid ester, one of the most fatty acid component and the second most fatty acid component is a fatty acid having 16 carbon atoms and the other is a fatty acid having 18 carbon atoms. More preferred.
 また、前記グリセリン脂肪酸エステルがグリセリンと炭素数が16の脂肪酸及び炭素数が18の脂肪酸とのエステルである場合、炭素数が16の脂肪酸と炭素数が18の脂肪酸との質量比(炭素数16の脂肪酸/炭素数18の脂肪酸)は、90/10~10/90の範囲が好ましく、80/20~20/80の範囲がより好ましく、75/25~25/75の範囲がより一層好ましい。炭素数が16の脂肪酸と炭素数が18の脂肪酸との質量比がこの範囲であれば、ゴム組成物の加工性、タイヤの低転がり抵抗の低減、破壊特性を更に改善させることができる。 Further, when the glycerin fatty acid ester is an ester of glycerin, a fatty acid having 16 carbon atoms, and a fatty acid having 18 carbon atoms, the mass ratio of the fatty acid having 16 carbon atoms to the fatty acid having 18 carbon atoms (carbon number: 16 (A fatty acid / a fatty acid having 18 carbon atoms) is preferably in the range of 90/10 to 10/90, more preferably in the range of 80/20 to 20/80, and even more preferably in the range of 75/25 to 25/75. When the mass ratio of the fatty acid having 16 carbon atoms to the fatty acid having 18 carbon atoms is in this range, the processability of the rubber composition, the reduction in low rolling resistance of the tire, and the breaking characteristics can be further improved.
 前記グリセリン脂肪酸エステルの構成脂肪酸は、直鎖状でも、分岐状でもよいが、直鎖状であることが好ましく、また、飽和脂肪酸でも、不飽和脂肪酸でもよいが、飽和脂肪酸であることが好ましい。 The constituent fatty acids of the glycerin fatty acid ester may be linear or branched, but are preferably linear, and may be either saturated or unsaturated fatty acids, but are preferably saturated fatty acids.
 前記グリセリン脂肪酸エステルの構成脂肪酸として、具体的には、カプリル酸、ペラルゴン酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、リノレン酸、アラギン酸、アラキドン酸、ベヘン酸等が挙げられ、これらの中でも、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸が好ましく、パルミチン酸及びステアリン酸がより好ましい。 As the constituent fatty acids of the glycerin fatty acid ester, specifically, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, isostearic acid, oleic acid, linoleic acid, linolenic acid, araginic acid, Arachidonic acid, behenic acid and the like are mentioned, and among these, lauric acid, myristic acid, palmitic acid and stearic acid are preferable, and palmitic acid and stearic acid are more preferable.
 また、前記グリセリン脂肪酸エステルとして、具体的には、ラウリン酸モノグリセリド、ミリスチン酸モノグリセリド、パルミチン酸モノグリセリド、ステアリン酸モノグリセリドが好ましく、パルミチン酸モノグリセリド及びステアリン酸モノグリセリドがより好ましい。 Specific examples of the glycerin fatty acid ester include lauric acid monoglyceride, myristic acid monoglyceride, palmitic acid monoglyceride, and stearic acid monoglyceride, and more preferably palmitic acid monoglyceride and stearic acid monoglyceride.
 前記トレッド用ゴム組成物において、前記グリセリン脂肪酸エステル組成物の配合量は、ゴム組成物の加工性の観点から、前記シリカ100質量部に対して、好ましくは0.5質量部以上、より好ましくは1質量部以上、より一層好ましくは1.5質量部以上であり、また、ゴム組成物の破壊特性の観点から、前記シリカ100質量部に対して、好ましくは20質量部以下、より好ましくは10質量部以下、より一層好ましくは5質量部以下である。 In the rubber composition for tread, the amount of the glycerin fatty acid ester composition is, from the viewpoint of processability of the rubber composition, based on 100 parts by mass of the silica, preferably 0.5 parts by mass or more, more preferably 1 part by mass. Parts or more, more preferably 1.5 parts by mass or more, and, from the viewpoint of the breaking properties of the rubber composition, based on 100 parts by mass of the silica, preferably 20 parts by mass or less, more preferably 10 parts by mass or less, It is even more preferably at most 5 parts by mass.
・その他の成分
 前記トレッド用ゴム組成物は、上述した成分以外に、ゴム工業界で通常使用される成分、例えば、老化防止剤、加硫促進助剤、有機酸化合物などを、本発明の趣旨に反しない範囲で適宜選択して含有することができる。
-Other components The rubber composition for treads, in addition to the components described above, components commonly used in the rubber industry, for example, an antioxidant, a vulcanization accelerator, an organic acid compound, etc., the purpose of the present invention. Can be appropriately selected and contained within a range not inconsistent with the above.
 なお、前記トレッド用ゴム組成物を、前記トレッドゴムに用いる方法については、公知の方法を採用することができる。例えば、上述のゴム組成物をトレッドゴムに用いて生タイヤを成形し、常法に従って生タイヤを加硫することで製造できる。 A known method can be used for the method of using the tread rubber composition for the tread rubber. For example, it can be manufactured by molding a green tire using the above rubber composition for a tread rubber and vulcanizing the green tire according to a conventional method.
(ベルトコーティングゴム)
 本発明のタイヤでは、前記ベルト層6a、6bが、補強コードを被覆するベルトコーティングゴムを有し、該ベルトコーティングゴムの、50%モジュラス値M50(MPa)に対する200%モジュラス値M200(MPa)の比が、5.0以下(M200/M50≦5.0)であることを特徴とする。
(Belt coating rubber)
In the tire of the present invention, the belt layers 6a and 6b have a belt coating rubber covering the reinforcing cord, and the belt coating rubber has a 200% modulus value M200 (MPa) with respect to a 50% modulus value M50 (MPa). The ratio is not more than 5.0 (M200 / M50 ≦ 5.0).
 前記M50は、加硫ゴムの低歪域での弾性に関連するパラメータである。そのため、M50については、タイヤのベルト部の変形を抑制するため、例えば、後述するベルトコーティングゴム中のカーボンブラックの種類や含有量を調整しつつ、後述するベルトコーティングゴム中のフェノール樹脂やメチレン供与体を含有させることによって、できるだけ高い値にする必要がある。一方、前記M200は、加硫ゴムの高歪域での弾性に関連するパラメータである。そのため、M200については、亀裂進展を抑える観点からは、亀裂先端の応力の集中を緩和させるべく、例えば、後述するカーボンブラックの種類や含有量を調整すること等によって、低い値にする必要がある。
 そして、ベルトコーティングゴムにおける、前記M50の大きさに対する前記M200の大きさの比を、5.0以下(M200/M50≦5.0)に設定することによって、転がり抵抗の低減及びベルトの耐久性の向上を実現できる。また、同様の観点から、前記ベルトコーティングゴムのM200/M50は、4.8以下であることが好ましい。
 なお、前記50%モジュラスとは、加硫ゴムの伸び50%時の引張応力(MPa)のことであり、前記200%モジュラスとは、加硫ゴムの伸び200%時の引張応力(MPa)のことである。これらの値については、JIS K 6251(2010年)に準拠して測定することができる。
M50 is a parameter related to the elasticity of the vulcanized rubber in a low strain range. Therefore, with respect to M50, in order to suppress deformation of the belt portion of the tire, for example, while adjusting the type and content of carbon black in the belt coating rubber described later, the phenol resin or methylene donor in the belt coating rubber described later is supplied. It must be as high as possible by incorporating the body. On the other hand, M200 is a parameter related to the elasticity of the vulcanized rubber in a high strain range. Therefore, for M200, from the viewpoint of suppressing crack growth, it is necessary to reduce the concentration of stress at the tip of the crack, for example, by adjusting the type and content of carbon black described later, it is necessary to lower the value .
By setting the ratio of the size of the M200 to the size of the M50 in the belt coating rubber to 5.0 or less (M200 / M50 ≦ 5.0), reduction in rolling resistance and improvement in belt durability are realized. it can. Further, from the same viewpoint, M200 / M50 of the belt coating rubber is preferably 4.8 or less.
The 50% modulus is the tensile stress (MPa) at 50% elongation of the vulcanized rubber, and the 200% modulus is the tensile stress (MPa) at 200% elongation of the vulcanized rubber. That is. These values can be measured according to JIS K 6251 (2010).
 さらに、前記ベルトコーティングゴムのM50及び前記M200の具体的な数値範囲については、特に限定はされないが、より高いレベルで転がり抵抗の低減及びベルトの耐久性を実現する観点からは、M50が1.8MPa以上、M200が10.5MPa以下であることが好ましい。 Further, the specific numerical range of the belt coating rubber M50 and the M200 is not particularly limited, but from the viewpoint of reducing the rolling resistance at a higher level and realizing the durability of the belt, M50 is 1.8 MPa. As described above, M200 is preferably 10.5 MPa or less.
 また、前記ベルトコーティングゴムは、25℃における歪1%での動的貯蔵弾性率(E')が、12MPaを超え且つ30MPa未満であることが好ましく、13~25MPaであることがより好ましい。乾燥路面及び湿潤路面でのグリップ性能をより高め、転がり抵抗の低減及びベルトの耐久性の向上を、より高いレベルで両立できるためである。
 前記ベルトコーティングゴムの、25℃における歪1%での動的貯蔵弾性率(E’)を、12MPa超えとすることで、ベルトコーティングゴムの強度を高め、ベルトの耐久性をより向上できるとともに、トレッドゴムへの入力が向上するため、乾燥路面及び湿潤路面でのグリップ性能についてもより高めることができる。一方、前記ベルトコーティングゴムの、25℃における歪1%での動的貯蔵弾性率(E')を、30MPa未満とすることで、転がり抵抗の増加を抑えることができる。
The belt-coated rubber preferably has a dynamic storage modulus (E ′) at 25 ° C. at a strain of 1% of more than 12 MPa and less than 30 MPa, more preferably 13 to 25 MPa. This is because grip performance on a dry road surface and a wet road surface can be further improved, and a reduction in rolling resistance and an improvement in belt durability can be achieved at a higher level.
By making the dynamic storage elastic modulus (E ') at a strain of 1% at 25 ° C. of the belt coating rubber more than 12 MPa, the strength of the belt coating rubber can be increased, and the durability of the belt can be further improved. Since the input to the tread rubber is improved, the grip performance on a dry road surface and a wet road surface can be further improved. On the other hand, by setting the dynamic storage elastic modulus (E ′) of the belt-coated rubber at 25 ° C. at a strain of 1% to less than 30 MPa, an increase in rolling resistance can be suppressed.
 ここで、前記ベルトコーティングゴムについては、ベルトコーティング用のゴム組成物(以下、「ベルトコーティング用ゴム組成物」と称することがある。)からなる。
 前記ベルトコーティング用ゴム組成物については、上述したM200/M50≦5.0の関係を満たすことができれば、その他の条件については特に限定はされない。
 例えば、より高いレベルで転がり抵抗の低減及びベルトの耐久性を実現する観点からは、前記ベルトコーティング用ゴム組成物として、ゴム成分と、カーボンブラックと、フェノール樹脂と、メチレン供与体を含むものを用いることができる。
Here, the belt coating rubber is composed of a rubber composition for belt coating (hereinafter, may be referred to as “rubber composition for belt coating”).
Other conditions are not particularly limited as long as the above-mentioned relationship of M200 / M50 ≦ 5.0 can be satisfied for the rubber composition for belt coating.
For example, from the viewpoint of reducing the rolling resistance at a higher level and realizing the durability of the belt, the rubber composition for the belt coating includes a rubber component, carbon black, a phenol resin, and a methylene donor. Can be used.
・ゴム成分
 前記ベルトコーティング用ゴム組成物に含まれるゴム成分については、特に限定はされず、要求される性能に応じて適宜変更することができる。
 例えば、優れた耐亀裂進展性や耐摩耗性を得ることができる観点からは、天然ゴム若しくはジエン系合成ゴムを単独で、又は、天然ゴム及びジエン系合成ゴムを併用した形で、含有することができる。
 また、前記ゴム成分は、前記ジエン系ゴム100%から構成することもできるが、本発明の目的を損なわない範囲であれば、ジエン系以外のゴムを含有することもできる。なお、優れた耐亀裂進展性や耐摩耗性を得ることができる観点から、前記ゴム成分におけるジエン系ゴムの含有量は、30質量%以上であることが好ましく、40質量%以上であることがより好ましく、50質量%以上であることがさらに好ましい。
-Rubber component The rubber component contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed depending on required performance.
For example, from the viewpoint that excellent crack propagation resistance and wear resistance can be obtained, natural rubber or a diene-based synthetic rubber is used alone, or natural rubber and a diene-based synthetic rubber are used in combination. Can be.
The rubber component can be composed of 100% of the diene rubber, but may contain a rubber other than the diene rubber as long as the object of the present invention is not impaired. From the viewpoint that excellent crack propagation resistance and wear resistance can be obtained, the content of the diene rubber in the rubber component is preferably 30% by mass or more, and more preferably 40% by mass or more. More preferably, it is even more preferably 50% by mass or more.
 ここで、前記ジエン系合成ゴムとしては、ポリブタジエンゴム(BR)、イソプレンゴム(IR)、スチレンブタジエンゴム(SBR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等が挙げられる。
 また、非ジエン系ゴムについては、エチレンプロピレンジエンゴム(EPDM)、エチレンプロピレンゴム(EPM)、ブチルゴム(IIR)等が挙げられる。
 なお、これらの合成ゴムについては、1種単独で用いてもよいし、2種以上のブレンドとして用いてもよい。また、これらのゴムは変性基で変性されたものでもよい。
Here, as the diene-based synthetic rubber, polybutadiene rubber (BR), isoprene rubber (IR), styrene butadiene rubber (SBR), styrene isoprene butadiene rubber (SIBR), chloroprene rubber (CR), acrylonitrile butadiene rubber (NBR) And the like.
Examples of the non-diene rubber include ethylene propylene diene rubber (EPDM), ethylene propylene rubber (EPM), and butyl rubber (IIR).
These synthetic rubbers may be used alone or as a blend of two or more. These rubbers may be modified with a modifying group.
・カーボンブラック
 前記ベルトコーティング用ゴム組成物に含まれ得るカーボンブラックについては、特に限定はされず、要求される性能に応じて適宜変更することができる。
 例えば、より優れた耐久性が得られる観点からは、前記カーボンブラックとして、DBP(ジブチルフタレート)吸収量が50~100cm3/100gのもの用いることが好ましい。
 DBP吸収量が50~100cm3/100gであり、ストラクチャの低いカーボンブラックを用いることで、ベルトコーティングゴムの補強性と適度な柔軟性を両立することができ、優れた耐亀裂進展性等のベルト耐久性を得ることができる。前記DBP吸収量が100cm3/100gを超えると、前記ストラクチャが高くなるため、ベルトコーティングゴムの補強性が高くなり過ぎ、柔軟性が低下するため十分な耐久性を得ることができない。前記カーボンブラックのDBP吸収量は、90cm3/100g以下であることが好ましく、80cm3/100g以下であることがより好ましい。
 なお、カーボンブラックのストラクチャとは、球状のカーボンブラック粒子がそれぞれ融着し、繋がった結果、形成された構造体(カーボンブラック粒子の凝集体)の大きさのことである。
 また、前記カーボンブラックのDBP吸収量については、カーボンブラック100gが吸収するDBP(ジブチルフタレート)の量のことであり、JIS K 6217-4(2008年)に準拠して測定することができる。
-Carbon black The carbon black that can be contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed according to required performance.
For example, from the viewpoint of more excellent durability can be obtained, as the carbon black, DBP (dibutyl phthalate) absorption is preferably used as the 50 ~ 100cm 3 / 100g.
A DBP absorption 50 ~ 100cm 3 / 100g, by using the low structure carbon black, it is possible to achieve both adequate flexibility and reinforcement of the belt coating rubber, belt such as excellent crack growth resistance Durability can be obtained. When the DBP absorption exceeds 100 cm 3/100 g, because the structure is high, too high a reinforcing of the belt coating rubber, it is not possible to obtain sufficient durability for flexibility is reduced. The DBP absorption of carbon black is preferably at 90cm 3/100 g or less, more preferably 80 cm 3/100 g or less.
The structure of carbon black refers to the size of a structure (aggregate of carbon black particles) formed as a result of fusion and connection of spherical carbon black particles.
The DBP absorption of carbon black is the amount of DBP (dibutyl phthalate) absorbed by 100 g of carbon black, and can be measured according to JIS K 6217-4 (2008).
 また、前記カーボンブラックについては、窒素吸着比表面積(N2SA)が70~90m2/gであることが好ましく、75~85m2/gであることがより好ましい。カーボンブラックのストラクチャについてさらに適正化を図ることができるため、転がり抵抗の低減及びベルトの耐久性について、さらなる改善が可能となる。
 なお、前記窒素吸着比表面積は、ISO4652-1に準拠して単点法にて測定することができ、例えば脱気したカーボンブラックを液体窒素に浸漬させた後、平衡時においてカーボンブラック表面に吸着した窒素量を測定し、測定値から比表面積(m2/g)を算出できる。
As for the carbon black is preferably a nitrogen adsorption specific surface area (N 2 SA) is 70 ~ 90m 2 / g, and more preferably 75 ~ 85m 2 / g. Since the structure of the carbon black can be further optimized, the rolling resistance can be reduced and the durability of the belt can be further improved.
Incidentally, the nitrogen adsorption specific surface area can be measured by a single point method in accordance with ISO4652-1, for example, after immersing degassed carbon black in liquid nitrogen, adsorbed on the carbon black surface at equilibrium The measured amount of nitrogen is measured, and the specific surface area (m 2 / g) can be calculated from the measured value.
 さらに、前記カーボンブラックの種類については、特に限定はされない。例えば、オイルファーネス法により製造された任意のハードカーボンを用いることができる。これらの中でも、転がり抵抗の低減及びベルトの耐久性をより高いレベルで両立する観点からは、HAFグレードのカーボンブラックを用いることが好ましい。 Further, the type of the carbon black is not particularly limited. For example, any hard carbon produced by an oil furnace method can be used. Among these, it is preferable to use HAF grade carbon black from the viewpoint of achieving a higher level of both the reduction in rolling resistance and the durability of the belt.
 また、前記カーボンブラックの含有量については、前記ゴム成分100質量部に対して、35~45質量部であることが好ましい。前記カーボンブラックの含有量を、前記ゴム成分100質量部に対して、35質量部以上とすることで、より高い補強性及び耐亀裂進展性を得ることができ、45質量部以下とすることで、転がり抵抗のさらなる改善を図ることができる。 The content of the carbon black is preferably 35 to 45 parts by mass with respect to 100 parts by mass of the rubber component. By setting the content of the carbon black to 100 parts by mass of the rubber component and 35 parts by mass or more, higher reinforcing properties and crack propagation resistance can be obtained, and by 45 parts by mass or less. Further, the rolling resistance can be further improved.
・フェノール樹脂
 前記ベルトコーティング用ゴム組成物に含まれ得るフェノール樹脂についても、特に限定はされず、要求される性能に応じて適宜変更することができる。
 前記ベルトコーティング用ゴム組成物が、フェノール樹脂を、後述するメチレン供与体とともに含むことによって、ベルトコーティングゴムの前記50%モジュラス値(M50)を向上させ、タイヤの転がり抵抗を低減させつつ、ベルトコーティングゴムの補強性を向上し、優れたベルトの耐久性を実現できる。
-Phenol resin The phenol resin that can be contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed according to required performance.
The rubber composition for belt coating contains a phenolic resin together with a methylene donor described below, thereby improving the 50% modulus value (M50) of the belt coating rubber, reducing the rolling resistance of the tire, and improving the belt coating. The reinforcement of rubber can be improved and excellent belt durability can be realized.
 ここで、前記フェノール樹脂については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、フェノール、クレゾール、レゾルシン、tert-ブチルフェノール等のフェノール類またはこれらの混合物とホルムアルデヒドとを、塩酸、蓚酸等の酸触媒の存在下において縮合反応させることによって製造したものが挙げられる。
れる。また、前記フェノール樹脂については、変性したものを用いることができ、例えば、ロジン油、トール油、カシュー油、リノール酸、オレイン酸、リノレイン酸等の油によって変性することができる。
 なお、上述したフェノール樹脂については、1種を単独して含むこともできるし、複数種を混合して含むこともできる。
Here, the phenol resin is not particularly limited, and can be appropriately selected according to required performance. For example, those produced by subjecting a phenol such as phenol, cresol, resorcin, or tert-butylphenol or a mixture thereof to formaldehyde to a condensation reaction in the presence of an acid catalyst such as hydrochloric acid and oxalic acid are exemplified.
It is. The phenol resin may be a modified phenol resin. For example, the phenol resin may be modified with an oil such as rosin oil, tall oil, cashew oil, linoleic acid, oleic acid, and linoleic acid.
In addition, about the above-mentioned phenol resin, one kind may be included alone, or a plurality of kinds may be mixed and included.
 また、前記ベルトコーティング用ゴム組成物における前記フェノール樹脂の含有量は、前記ゴム成分100質量部に対して、2~10質量部であることが好ましく、3~7質量部であることがより好ましい。前記フェノール樹脂の含有量を、ゴム成分100質量部に対して、2質量部以上とすることで、ベルトの耐久性をさらに改善でき、10質量部以下とすることで、転がり抵抗の悪化を抑制できる。 Further, the content of the phenol resin in the rubber composition for belt coating is preferably 2 to 10 parts by mass, more preferably 3 to 7 parts by mass with respect to 100 parts by mass of the rubber component. . By setting the content of the phenol resin to 100 parts by mass of the rubber component and 2 parts by mass or more, the durability of the belt can be further improved, and by 10 parts by mass or less, deterioration of the rolling resistance is suppressed. it can.
・メチレン供与体
 前記ベルトコーティング用ゴム組成物に含まれ得るメチレン供与体についても、特に限定はされず、要求される性能に応じて適宜変更することができる。
 前記メラミン供与体を、前記フェノール樹脂の硬化剤として含むことによって、ベルトコーティングゴムの前記50%モジュラス値(M50)を向上させ、転がり抵抗低減効果を維持しつつ、ゴム組成物の補強性を向上させることができる。
-Methylene donor The methylene donor that can be contained in the rubber composition for belt coating is not particularly limited, and can be appropriately changed according to required performance.
By including the melamine donor as a curing agent for the phenolic resin, the 50% modulus value (M50) of the belt coating rubber is improved, and the reinforcing property of the rubber composition is improved while maintaining the rolling resistance reduction effect. Can be done.
 ここで、前記メチレン供与体については、特に限定はされず、要求される性能に応じて適宜選択することができる。例えば、ヘキサメチレンテトラミン、ヘキサメトキシメチロールメラミン、ペンタメトキシメチロールメラミン、ヘキサメトキシメチルメラミン、ペンタメトキシメチルメラミン、ヘキサエトキシメチルメラミン、ヘキサキス-(メトキシメチル)メラミン、N,N',N"-トリメチル-N,N',N"-トリメチロールメラミン、N,N',N"-トリメチロールメラミン、N-メチロールメラミン、N,N'-(メトキシメチル)メラミン、N,N',N"-トリブチル-N,N',N"-トリメチロールメラミン、パラホルムアルデヒド等が挙げられる。これらのメチレン供与体の中でも、ヘキサメチレンテトラミン、ヘキサメトキシメチルメラミン、ヘキサメトキシメチロールメラミン及びパラホルムアルデヒドからなる群より選択される、少なくとも一種であることが好ましい。
 なお、これらのメチレン供与体は、単独で用いても良いし、組み合わせて使用することもできる。
Here, the methylene donor is not particularly limited, and can be appropriately selected depending on required performance. For example, hexamethylenetetramine, hexamethoxymethylolmelamine, pentamethoxymethylolmelamine, hexamethoxymethylmelamine, pentamethoxymethylmelamine, hexaethoxymethylmelamine, hexakis- (methoxymethyl) melamine, N, N ', N "-trimethyl-N , N ', N "-trimethylolmelamine, N, N', N" -trimethylolmelamine, N-methylolmelamine, N, N '-(methoxymethyl) melamine, N, N', N "-tributyl-N , N ', N "-trimethylolmelamine, paraformaldehyde, etc. Among these methylene donors, selected from the group consisting of hexamethylenetetramine, hexamethoxymethylmelamine, hexamethoxymethylolmelamine and paraformaldehyde, at least It is preferable that the species.
Note that these methylene donors may be used alone or in combination.
 また、前記ベルトコーティング用ゴム組成物における、前記メチレン供与体の含有量に対する前記フェノール樹脂の含有量の割合は、転がり抵抗の低減及びベルトの耐久性をより高いレベルで両立させる観点から、0.6~7であることが好ましく、1~5であることがより好ましい。前記メチレン供与体の含有量に対する前記フェノール樹脂の含有量の割合が0.6以上の場合には、M50が十分に向上し、耐亀裂進展性等の耐久性の改善が可能となり、一方、前記割合が7以下の場合には、転がり抵抗が悪化することがない。 Further, in the rubber composition for belt coating, the ratio of the content of the phenol resin to the content of the methylene donor is preferably 0.6 to 0.6 from the viewpoint of reducing rolling resistance and achieving a higher level of belt durability. It is preferably 7, and more preferably 1 to 5. When the ratio of the content of the phenol resin to the content of the methylene donor is 0.6 or more, M50 is sufficiently improved, and durability such as crack propagation resistance can be improved. In the case of 7 or less, the rolling resistance does not deteriorate.
・その他の成分
 なお、前記ベルトコーティング用ゴム組成物は、上述したゴム成分、カーボンブラック、フェノール樹脂及びメチレン供与体の他にも、その他の成分を、発明の効果を損なわない程度に含むことができる。
 その他の成分としては、例えば、前記カーボンブラック以外の充填材、老化防止剤、架橋促進剤、架橋剤、架橋促進助剤、シランカップリング剤、ステアリン酸、オゾン劣化防止剤、界面活性剤等のゴム工業で通常使用されている添加剤を適宜含むことができる。
-Other components In addition, the rubber composition for belt coating, besides the above-mentioned rubber component, carbon black, phenol resin and methylene donor, may contain other components to such an extent that the effects of the invention are not impaired. it can.
As other components, for example, fillers other than the carbon black, antioxidants, crosslinking accelerators, crosslinking agents, crosslinking accelerators, silane coupling agents, stearic acid, antiozonants, surfactants and the like Additives commonly used in the rubber industry can be included as appropriate.
 前記充填材としては、例えば、シリカ、その他の無機充填材等が挙げられる。
 その中でも、前記充填材として、シリカを含むことが好ましい。転がり抵抗の低減及びベルトの耐久性をより高いレベルで両立できるためである。
Examples of the filler include silica and other inorganic fillers.
Among them, it is preferable that the filler contains silica. This is because the reduction of the rolling resistance and the durability of the belt can both be achieved at a higher level.
 前記シリカとしては、例えば、湿式シリカ、コロイダルシリカ、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられる。
 上述した中でも、前記シリカは、湿式シリカであることが好ましく、沈降シリカであることがより好ましい。これらのシリカは、分散性が高く、タイヤの低転がり抵抗性及び耐摩耗性をより向上できるためである。なお、沈降シリカとは、製造初期に、反応溶液を比較的高温、中性~アルカリ性のpH領域で反応を進めてシリカ一次粒子を成長させ、その後酸性側へ制御することで、一次粒子を凝集させる結果得られるシリカのことである。
 前記シリカの含有量については、特に限定はされないが、優れた転がり抵抗の低減効果を実現する観点からは、前記ゴム成分100質量部に対して、1~15質量部であることが好ましく、3~10質量部であることがより好ましい。
Examples of the silica include wet silica, colloidal silica, calcium silicate, and aluminum silicate.
Among the above, the silica is preferably wet silica, and more preferably precipitated silica. This is because these silicas have high dispersibility and can further improve the low rolling resistance and wear resistance of the tire. Precipitated silica means that in the early stage of production, the reaction solution is allowed to react at a relatively high temperature in a neutral to alkaline pH range to grow primary silica particles, and then to the acidic side to aggregate the primary particles. Is the silica obtained as a result.
The content of the silica is not particularly limited, but is preferably 1 to 15 parts by mass with respect to 100 parts by mass of the rubber component from the viewpoint of achieving an excellent rolling resistance reduction effect. More preferably, it is 10 parts by mass.
 なお、前記無機充填材としては、例えば下記式(3)で表される無機化合物を用いることも可能である。
nM・xSiOY・zH2O ・・・ (3)
(式中、Mは、アルミニウム、マグネシウム、チタン、カルシウム及びジルコニウムからなる群から選ばれる金属、これらの金属の酸化物又は水酸化物、及びそれらの水和物、並びに、これらの金属の炭酸塩から選ばれる少なくとも一種であり;n、x、y及びzは、それぞれ1~5の整数、0~10の整数、2~5の整数、及び0~10の整数である。)
In addition, as the inorganic filler, for example, an inorganic compound represented by the following formula (3) can be used.
nM · xSiO Y · zH 2 O (3)
(Wherein M is a metal selected from the group consisting of aluminum, magnesium, titanium, calcium and zirconium, oxides or hydroxides of these metals, hydrates thereof, and carbonates of these metals) N, x, y, and z are each an integer of 1 to 5, an integer of 0 to 10, an integer of 2 to 5, and an integer of 0 to 10.)
 上記式(3)の無機化合物としては、γ-アルミナ、α-アルミナ等のアルミナ(Al2O3);ベーマイト、ダイアスポア等のアルミナ一水和物(Al2O3・H2O);ギブサイト、バイヤライト等の水酸化アルミニウム[Al(OH)3];炭酸アルミニウム[Al2(CO33]、水酸化マグネシウム[Mg(OH)2]、酸化マグネシウム(MgO)、炭酸マグネシウム(MgCO3)、タルク(3MgO・4SiO2・H2O)、アタパルジャイト(5MgO・8SiO2・9H2O)、チタン白(TiO2)、チタン黒(TiO2n-1)、酸化カルシウム(CaO)、水酸化カルシウム[Ca(OH)2]、酸化アルミニウムマグネシウム(MgO・Al2O3)、クレー(Al2O3・2SiO2)、カオリン(Al2O3・2SiO2・2H2O)、パイロフィライト(Al2O3・4SiO2・H2O)、ベントナイト(Al2O3・4SiO2・2H2O)、ケイ酸マグネシウム(Mg2SiO4、MgSiO3等)、ケイ酸アルミニウムカルシウム(Al2O3・CaO・2SiO2等)、ケイ酸マグネシウムカルシウム(CaMgSiO4)、炭酸カルシウム(CaCO3)、酸化ジルコニウム(ZrO2)、水酸化ジルコニウム[ZrO(OH)2・nH2O]、炭酸ジルコニウム[Zr(CO32]、各種ゼオライトのように電荷を補正する水素、アルカリ金属又はアルカリ土類金属を含む結晶性アルミノケイ酸塩等を挙げることができる。 Examples of the inorganic compound of the above formula (3) include alumina (Al 2 O 3 ) such as γ-alumina and α-alumina; alumina monohydrate (Al 2 O 3 .H 2 O) such as boehmite and diaspore; And aluminum hydroxide [Al (OH) 3 ] such as bayerite; aluminum carbonate [Al 2 (CO 3 ) 3 ], magnesium hydroxide [Mg (OH) 2 ], magnesium oxide (MgO), magnesium carbonate (MgCO 3) ), talc (3MgO · 4SiO 2 · H 2 O), attapulgite (5MgO · 8SiO 2 · 9H 2 O), titanium white (TiO 2), titanium black (TiO 2n-1), calcium oxide (CaO), hydroxide Calcium [Ca (OH) 2 ], aluminum magnesium oxide (MgO.Al 2 O 3 ), clay (Al 2 O 3 .2SiO 2 ), kaolin (Al 2 O 3 .2SiO 2 .2H 2 O), pyrophyllite (Al 2 O 3 · 4SiO 2 · H 2 O), bentonite (Al 2 O 3 · 4SiO 2 · 2H 2 O), magnesium silicate (Mg 2 SiO 4 , MgSiO 3 etc.), aluminum calcium silicate (Al 2 O 3・ CaO ・ 2SiO 2 etc.), magnesium calcium silicate (CaMgSiO 4 ), calcium carbonate (CaCO 3 ), zirconium oxide (ZrO 2) ), Zirconium hydroxide [ZrO (OH) 2 .nH 2 O], zirconium carbonate [Zr (CO 3 ) 2 ], various types of zeolites such as hydrogen, alkali- or alkaline-earth metals that correct charge Aluminosilicates and the like can be mentioned.
 前記老化防止剤としては、公知のものを用いることができ、特に制限されない。例えば、フェノール系老化防止剤、イミダゾール系老化防止剤、アミン系老化防止剤等を挙げることができる。これら老化防止剤は、1種又は2種以上を併用することができる。 公 知 As the anti-aging agent, known agents can be used, and there is no particular limitation. For example, a phenolic antioxidant, an imidazole antioxidant, an amine antioxidant and the like can be mentioned. These antioxidants can be used alone or in combination of two or more.
 前記架橋促進剤としては、公知のものを用いることができ、特に制限されるものではない。例えば、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィド等のチアゾール系加硫促進剤;N-シクロヘキシル-2-ベンゾチアジルスルフェンアミド、N-t-ブチル-2-ベンゾチアジルスルフェンアミド等のスルフェンアミド系加硫促進剤;ジフェニルグアニジン等のグアニジン系加硫促進剤;テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、テトラブチルチウラムジスルフィド、テトラドデシルチウラムジスルフィド、テトラオクチルチウラムジスルフィド、テトラベンジルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等のチウラム系加硫促進剤;ジメチルジチオカルバミン酸亜鉛等のジチオカルバミン酸塩系加硫促進剤;ジアルキルジチオリン酸亜鉛等が挙げられる。 公 知 A known crosslinking accelerator can be used, and is not particularly limited. For example, thiazole vulcanization accelerators such as 2-mercaptobenzothiazole and dibenzothiazyldisulfide; N-cyclohexyl-2-benzothiazylsulfenamide, Nt-butyl-2-benzothiazylsulfenamide and the like Sulphenamide-based vulcanization accelerators; guanidine-based vulcanization accelerators such as diphenylguanidine; tetramethylthiuram disulfide, tetraethylthiuram disulfide, tetrabutylthiuram disulfide, tetradodecylthiuram disulfide, tetraoctylthiuram disulfide, tetrabenzylthiuram disulfide, Thiuram-based vulcanization accelerators such as pentamethylenethiuram tetrasulfide; dithiocarbamate-based vulcanization accelerators such as zinc dimethyldithiocarbamate; zinc dialkyldithiophosphate; .
 前記架橋剤についても、特に制限はされない。例えば、硫黄、ビスマレイミド化合物等が挙げられる。
 前記ビスマレイミド化合物の種類については、例えば、N,N'-o-フェニレンビスマレイミド、N,N'-m-フェニレンビスマレイミド、N,N'-p-フェニレンビスマレイミド、N,N'-(4,4'-ジフェニルメタン)ビスマレイミド、2,2-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス(3-エチル-5-メチル-4-マレイミドフェニル)メタンなどを例示することができる。本発明では、N,N'-m-フェニレンビスマレイミド及びN,N'-(4,4'-ジフェニルメタン)ビスマレイミド等を好適に用いることができる。
The crosslinking agent is not particularly limited. For example, sulfur, bismaleimide compounds and the like can be mentioned.
With respect to the type of the bismaleimide compound, for example, N, N'-o-phenylenebismaleimide, N, N'-m-phenylenebismaleimide, N, N'-p-phenylenebismaleimide, N, N '-( 4,4'-diphenylmethane) bismaleimide, 2,2-bis- [4- (4-maleimidophenoxy) phenyl] propane, bis (3-ethyl-5-methyl-4-maleimidophenyl) methane and the like are exemplified. Can be. In the present invention, N, N'-m-phenylenebismaleimide, N, N '-(4,4'-diphenylmethane) bismaleimide and the like can be suitably used.
 前記架橋促進助剤については、例えば、亜鉛華(ZnO)や脂肪酸等が挙げられる。脂肪酸としては、飽和若しくは不飽和、直鎖状若しくは分岐状のいずれの脂肪酸であってもよく、脂肪酸の炭素数も特に制限されないが、例えば炭素数1~30、好ましくは15~30の脂肪酸、より具体的にはシクロヘキサン酸(シクロヘキサンカルボン酸)、側鎖を有するアルキルシクロペンタン等のナフテン酸;ヘキサン酸、オクタン酸、デカン酸(ネオデカン酸等の分岐状カルボン酸を含む)、ドデカン酸、テトラデカン酸、ヘキサデカン酸、オクタデカン酸(ステアリン酸)等の飽和脂肪酸;メタクリル酸、オレイン酸、リノール酸、リノレン酸等の不飽和脂肪酸;ロジン、トール油酸、アビエチン酸等の樹脂酸などが挙げられる。これらは1種単独で用いてもよく、2種以上を併用してもよい。本発明においては、亜鉛華及びステアリン酸を好適に用いることができる。 架橋 Examples of the cross-linking accelerator include zinc white (ZnO) and fatty acids. The fatty acid may be a saturated or unsaturated, linear or branched fatty acid, and the number of carbon atoms of the fatty acid is not particularly limited. For example, a fatty acid having 1 to 30, preferably 15 to 30 carbon atoms, More specifically, naphthenic acids such as cyclohexanoic acid (cyclohexanecarboxylic acid) and alkylcyclopentane having a side chain; hexanoic acid, octanoic acid, decanoic acid (including branched carboxylic acids such as neodecanoic acid), dodecanoic acid, and tetradecane Saturated fatty acids such as acid, hexadecanoic acid and octadecanoic acid (stearic acid); unsaturated fatty acids such as methacrylic acid, oleic acid, linoleic acid and linolenic acid; and resin acids such as rosin, tall oil acid and abietic acid. These may be used alone or in combination of two or more. In the present invention, zinc white and stearic acid can be suitably used.
 また、前記充填材としてシリカを含有する場合には、シランカップリング剤をさらに含有することが好ましい。シリカによる補強性及び低発熱性の効果をさらに向上させることができるからである。なお、シランカップリング剤は、公知のものを適宜使用することができる。好ましいシランカップリング剤の含有量については、シランカップリング剤の種類などにより異なるが、シリカに対して、好ましくは2~25質量%の範囲であることが好ましく、2~20質量%の範囲であることがより好ましく、5~18質量%であることが特に好ましい。含有量が2質量%未満ではカップリング剤としての効果が充分に発揮されにくく、また、25質量%を超えるとゴム成分のゲル化を引き起こすおそれがある。 In addition, when silica is contained as the filler, it is preferable to further contain a silane coupling agent. This is because the reinforcing effect and the low heat generation effect of silica can be further improved. In addition, a well-known thing can be used suitably as a silane coupling agent. The preferred content of the silane coupling agent varies depending on the type of the silane coupling agent and the like, but is preferably in the range of 2 to 25% by mass, and more preferably in the range of 2 to 20% by mass based on silica. More preferably, it is particularly preferably 5 to 18% by mass. If the content is less than 2% by mass, the effect as a coupling agent is not sufficiently exhibited, and if it exceeds 25% by mass, gelation of the rubber component may be caused.
 なお、前記ベルトコーティング用ゴム組成物を製造する方法については、特に限定はされず、ゴム組成物を構成する各成分(ゴム成分、カーボンブラック、フェノール樹脂、メチレン供与体及びその他の成分)を、配合し、混練することによって得ることができる。
 また、前記ベルトコーティング用ゴム組成物の製造では、前記各成分の混練が、同時に混練することもできるし、いずれかの成分を予め混練した上で、残りの成分を混練することも可能である。これらの条件については、ゴム組成物が要求される性能に応じて適宜変更することができる。
The method for producing the rubber composition for belt coating is not particularly limited, and each component (rubber component, carbon black, phenol resin, methylene donor and other components) constituting the rubber composition is It can be obtained by blending and kneading.
Further, in the production of the rubber composition for belt coating, kneading of each of the components can be kneaded at the same time, or any of the components can be kneaded in advance, and the remaining components can be kneaded. . These conditions can be appropriately changed according to the performance required of the rubber composition.
 例えば、転がり抵抗の低減及びベルトの耐久性をより高いレベルで両立する観点からは、前記フェノール樹脂との混練に先立って、前記ゴム成分と前記カーボンブラックを配合し、混練することが好ましい。前記フェノール樹脂は、前記カーボンブラックとの相互作用が強いため、同時投入すると、前記ゴム成分と前記カーボンブラックとの反応が低下するおそれがある。そのため、前記フェノール樹脂との混練に先立って、前記ゴム成分と前記カーボンブラックを配合し、混練することで、前記カーボンブラックの分散性及び補強性が向上し、転がり抵抗の低減及びベルトの耐久性のより高いレベルでの両立が可能となる。 For example, from the viewpoint of reducing the rolling resistance and the durability of the belt at a higher level, it is preferable to mix and knead the rubber component and the carbon black before kneading with the phenol resin. Since the phenolic resin has a strong interaction with the carbon black, the reaction between the rubber component and the carbon black may decrease when the phenolic resin is added simultaneously. Therefore, prior to kneading with the phenol resin, the rubber component and the carbon black are blended and kneaded, so that the dispersibility and reinforcement of the carbon black are improved, the rolling resistance is reduced, and the belt durability is improved. At a higher level.
 なお、本発明のタイヤは、上述したトレッドゴム及びベルトコーティングゴムを用いること以外は、特に限定はされない。
 また、本発明のタイヤは、適用するタイヤの種類に応じ、未加硫のゴム組成物を用いて成形後に加硫してもよく、予備加硫工程等を経た半加硫ゴムを用いて成形後、さらに本加硫して製造してもよい。
 さらに、本発明のタイヤは、空気入りタイヤであることが好ましく、該空気入りタイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
The tire of the present invention is not particularly limited except that the above-described tread rubber and belt coating rubber are used.
In addition, the tire of the present invention may be vulcanized after molding using an unvulcanized rubber composition, or molded using semi-vulcanized rubber that has undergone a preliminary vulcanization step, depending on the type of tire to be applied. Thereafter, the vulcanization may be further performed by main vulcanization.
Further, the tire of the present invention is preferably a pneumatic tire, and the gas to be filled into the pneumatic tire is not only normal or oxygen-adjusted air, but also inert gas such as nitrogen, argon, helium and the like. Gas can be used.
 以下に、実施例を挙げて本発明をさらに詳しく説明するが、本発明は、下記の実施例に何ら限定されるものではない。 本 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples below.
(トレッド用ゴム組成物の調製)
 表1に示す条件で、トレッド用ゴム組成物1~3を調製、組成物4を調整した。なお、トレッド用ゴム組成物1~3の調製については、各成分を二段階(混錬第一段階、混錬最終段階)に分けて、配合・混錬する。トレッド用ゴム組成物4の調製については、各成分を二段階(混錬第一段階、混錬最終段階)に分けて、配合・混錬した。各成分の配合量については、ゴム成分100質量部に対する量(質量部)で示している。
(Preparation of rubber composition for tread)
Under the conditions shown in Table 1, rubber compositions 1 to 3 for tread were prepared, and composition 4 was prepared. For the preparation of the rubber compositions 1 to 3 for the tread, each component is divided and kneaded in two stages (first stage of kneading, last stage of kneading). Regarding the preparation of the rubber composition 4 for tread, each component was divided and kneaded in two stages (first stage of kneading, last stage of kneading). The amount of each component is shown as an amount (parts by mass) relative to 100 parts by mass of the rubber component.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
*11:RSS#3
*12:変性剤としてN,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミンを使用して製造した変性スチレン-ブタジエン共重合体ゴム、Tg=-62℃、合成方法の詳細は以下の通りである。
 乾燥し、窒素置換した800mLの耐圧ガラス容器に、1,3-ブタジエンのシクロヘキサン溶液およびスチレンのシクロヘキサン溶液を、1,3-ブタジエン67.5gおよびスチレン7.5gになるように加え、2,2-ジテトラヒドロフリルプロパン0.6mmolを加え、0.8mmolのn-ブチルリチウムを加えた後、50℃で1.5時間重合を行った。この際の重合転化率がほぼ100%となった重合反応系に対し、変性剤としてN,N-ビス(トリメチルシリル)-3-[ジエトキシ(メチル)シリル]プロピルアミンを0.72mmol添加し、50℃で30分間変性反応を行った。その後、2,6-ジ-t-ブチル-p-クレゾール(BHT)のイソプロパノール5質量%溶液2mLを加えて反応を停止させ、常法に従い乾燥して変性スチレン-ブタジエン共重合体ゴムを得た。得られた変性SBRのミクロ構造を測定した結果、結合スチレン量が10質量%、ブタジエン部分のビニル結合量が40%、ピーク分子量が200,000であった。
*13:旭カーボン(株)製「#80」
*14:東ソー・シリカ工業(株)製 「ニプシルAQ」、BET比表面積=210m2/g
*15:ビス(3-トリエトキシシリルプロピル)テトラスルフィド、エボニックデグッサ社製 「Si69」
*16:C5-C9系樹脂、JXTGエネルギー(株)製 「T-REZ RD104」
*17:合計スチレン含量53質量%のスチレン・アルキレンブロック共重合体、JSR(株)製 「DYNARON(登録商標)9901P」、単位(A)の単位(A)+単位(B)に対する割合70質量%
シリカ:東ソー・シリカ社製の商品名NipSil(登録商標)AQ」
*18:合計スチレン含量35質量%のスチレン・アルキレンブロック共重合体、JSR(株)製 「DYNARON(登録商標)8903P」、単位(A)の単位(A)+単位(B)に対する割合70質量%
*19:合計スチレン含量15質量%のスチレン・アルキレンブロック共重合体、JSR(株)製 「DYNARON(登録商標)8600P」、単位(A)の単位(A)+単位(B)に対する割合68質量%
*20:マイクロクリスタリンワックス、日本精蝋(株)製「オゾエース0701」
*101:大内新興化学工業(株)製「ノクラック 6C」と、精工化学(株)製「ノンフレックス RD-S」との合計量
*102: 1,3-ジフェニルグアニジン(大内新興化学工業(株)製「ノクセラーD」)と、ジ-2-ベンゾチアゾリルジスルフィド(大内新興化学工業(株)製「ノクセラーDM」)と、N-シクロヘキシル-2-ベンゾチアゾールスルフェンアミド(三新化学工業(株)製「サンセラーCM-G」)との合計量
* 11: RSS # 3
* 12: Modified styrene-butadiene copolymer rubber produced using N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine as a modifier, Tg = −62 ° C. Details are as follows.
A 1,3-butadiene cyclohexane solution and a styrene cyclohexane solution were added to a dried and nitrogen-purged 800 mL pressure-resistant glass container so as to obtain 1,3-butadiene 67.5 g and styrene 7.5 g. After 0.6 mmol of tetrahydrofurylpropane was added, and 0.8 mmol of n-butyllithium was added, polymerization was carried out at 50 ° C. for 1.5 hours. At this time, 0.72 mmol of N, N-bis (trimethylsilyl) -3- [diethoxy (methyl) silyl] propylamine as a modifier was added to the polymerization reaction system in which the polymerization conversion rate was almost 100%, and the mixture was added at 50 ° C. For 30 minutes. Thereafter, 2 mL of a 5% by mass solution of 2,6-di-t-butyl-p-cresol (BHT) in isopropanol was added to stop the reaction, followed by drying according to a conventional method to obtain a modified styrene-butadiene copolymer rubber. . As a result of measuring the microstructure of the resulting modified SBR, the amount of bound styrene was 10% by mass, the amount of vinyl bond in the butadiene portion was 40%, and the peak molecular weight was 200,000.
* 13: “# 80” manufactured by Asahi Carbon Co., Ltd.
* 14: “Nipsil AQ” manufactured by Tosoh Silica Industry Co., Ltd., BET specific surface area = 210 m 2 / g
* 15: Bis (3-triethoxysilylpropyl) tetrasulfide, “Si69” manufactured by Evonik Degussa
* 16: C 5 -C 9 resins, JXTG energy Ltd. "T-REZ RD104"
* 17: A styrene-alkylene block copolymer having a total styrene content of 53% by mass, “DYNARON (registered trademark) 9901P” manufactured by JSR Corporation, a ratio of the unit (A) to the unit (A) + the unit (B) 70 mass. %
Silica: NipSil (registered trademark) AQ manufactured by Tosoh Silica Corporation
* 18: Styrene / alkylene block copolymer having a total styrene content of 35% by mass, “DYNARON (registered trademark) 8903P” manufactured by JSR Corporation, ratio of unit (A) to unit (A) + unit (B) 70 mass %
* 19: Styrene / alkylene block copolymer having a total styrene content of 15% by mass, "DYNARON (registered trademark) 8600P" manufactured by JSR Corporation, ratio of unit (A) to unit (A) + unit (B) 68 mass %
* 20: Microcrystalline wax, "Ozoace 0701" manufactured by Nippon Seiro Co., Ltd.
* 101: Total amount of "Nocrack 6C" manufactured by Ouchi Shinko Chemical Industry Co., Ltd. and "Nonflex RD-S" manufactured by Seiko Chemical Co., Ltd. * 102: 1,3-Diphenylguanidine (Ouchi Shinko Chemical Industry Co., Ltd.) “Noxeller D” manufactured by K.K.), di-2-benzothiazolyl disulfide (“Noxeller DM” manufactured by Ouchi Shinko Chemical Co., Ltd.), and N-cyclohexyl-2-benzothiazole sulfenamide (III) Total amount with "Sancellar CM-G" manufactured by Shin Chemical Co., Ltd.)
(ベルトコーティング用ゴム組成物の調製)
 表2に示す条件で、ベルトコーティング用ゴム組成物A~Cを調製した。なお、各成分の配合量については、ゴム成分100質量部に対する量(質量部)で示している。
 また、表2中の、M50、M200及びE’については、ベルトコーティング用ゴム組成物を145℃で33分間加硫して得られた、加硫ゴムについて測定を行った。M50及びM200については、JIS K 6251(2010年)に準拠して測定を行い、E’については、(株)上島製作所製スペクトロメータ-を用いて、初期荷重160mg、周波数52Hzの条件で測定を行った。
(Preparation of rubber composition for belt coating)
Under the conditions shown in Table 2, rubber compositions A to C for belt coating were prepared. In addition, about the compounding quantity of each component, it shows with the quantity (mass part) with respect to 100 mass parts of rubber components.
For M50, M200, and E 'in Table 2, vulcanized rubber obtained by vulcanizing the rubber composition for belt coating at 145 ° C. for 33 minutes was measured. M50 and M200 were measured in accordance with JIS K 6251 (2010), and E 'was measured using a spectrometer manufactured by Ueshima Seisakusho under the conditions of initial load of 160 mg and frequency of 52 Hz. went.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
*21:RSS#3
*22:HAF級カーボンブラック、旭カーボン(株)製 「旭#70L」、DBP吸収量:75cm3/100g、窒素吸着比表面積:81m2/g
*23:GPF級カーボンブラック、旭カーボン(株)製 「旭NPG」、DBP吸収量:89cm3/100g、窒素吸着比表面積:28m2/g
*24:住友ベークライト(株)製 「スミライトレジン PR-50235」
*25:ヘキサメトキシメチルメラミン、ALLNEX製「CYREZ 964」
*26:東ソー・シリカ工業(株)製 「ニプシルAQ」、BET比表面積=210m2/g
*27:2,2’ -メチレンビス(4-メチル-6-tert-ブチルフェノール)、大内新興化学工業(株)製「ノクラック NS-6」
*28:N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン、大内新興化学工業(株)製「ノクラック 6C」
*29:1,3-ジフェニルグアニジン、大内新興化学工業(株)製 「ノクセラーD」
*30:有機酸のコバルト塩中の有機酸の一部をホウ酸で置き換えた複合塩、OMG社「マノボンドC」、コバルト含有量:22.0質量%
*31:大和化成工業(株)製「BMI-RB」
* 21: RSS # 3
* 22: HAF grade carbon black, Asahi Carbon Co., Ltd. "Asahi # 70L", DBP absorption amount: 75cm 3 / 100g, nitrogen adsorption specific surface area: 81m 2 / g
* 23: GPF grade carbon black, Asahi Carbon Co., Ltd. "Asahi NPG", DBP absorption amount: 89cm 3 / 100g, nitrogen adsorption specific surface area: 28m 2 / g
* 24: Sumitomo Bakelite Co., Ltd. “Sumilite Resin PR-50235”
* 25: Hexamethoxymethylmelamine, "CYREZ 964" manufactured by ALLNEX
* 26: “Nipsil AQ” manufactured by Tosoh Silica Industry Co., Ltd., BET specific surface area = 210 m 2 / g
* 27: 2,2′-methylenebis (4-methyl-6-tert-butylphenol), “Nocrack NS-6” manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
* 28: N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine, “Nocrack 6C” manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
* 29: 1,3-Diphenylguanidine, “Noxeller D” manufactured by Ouchi Shinko Chemical Industry Co., Ltd.
* 30: Complex salt in which part of the organic acid in the cobalt salt of the organic acid is replaced with boric acid, "Manobond C" manufactured by OMG, cobalt content: 22.0% by mass
* 31: “BMI-RB” manufactured by Daiwa Chemical Industry Co., Ltd.
<サンプル1~12>
 表3に示す、トレッド用ゴム組成物とベルトコーティング用ゴム組成物の組み合わせで、各サンプルの空気入りタイヤ(サイズ:195/60R15)を作製する。なお、各サンプルの空気入りタイヤについては、トレッドゴム及びベルトコーティングゴム以外の製造条件については、全て同じ条件とする。
<Samples 1 to 12>
A pneumatic tire (size: 195 / 60R15) of each sample is prepared by combining the rubber composition for tread and the rubber composition for belt coating shown in Table 3. In addition, about the pneumatic tire of each sample, the manufacturing conditions other than the tread rubber and the belt coating rubber are all the same.
<評価>
(1)転がり抵抗
 各サンプルのタイヤを、回転ドラムにより80km/hrの速度で回転させ、荷重を4.82kNとして、測定器によって、転がり抵抗係数を測定する。
 評価については、サンプル7のタイヤの転がり抵抗係数を100としたときの指数で表示し、指数値が小さい程、転がり抵抗が低く良好な結果であることを示す。
<Evaluation>
(1) Rolling resistance The tire of each sample is rotated at a speed of 80 km / hr by a rotating drum, the load is set to 4.82 kN, and the rolling resistance coefficient is measured by a measuring instrument.
The evaluation is represented by an index when the rolling resistance coefficient of the tire of Sample 7 is set to 100, and a smaller index value indicates a lower rolling resistance and a better result.
(2)ドライハンドリング性
 各サンプルのタイヤを、試験車に装着し、乾燥路面実車試験にて、走行時におけるハンドリング性について、ドライバーのフィーリングに基づいた評価を行う。
 評価については、サンプル7のタイヤのフィーリング評点を100としたときの指数で表示し、指数値が大きい程、乾燥路面における操縦安定性(ドライハンドリング性)が高いことを示す。
(2) Dry handling The tire of each sample is mounted on a test vehicle, and the actual handling on a dry road is used to evaluate the handling during running based on the driver's feeling.
The evaluation is represented by an index when the feeling score of the tire of Sample 7 is set to 100, and the larger the index value, the higher the steering stability (dry handling property) on a dry road surface.
(3)ベルト耐久性(耐亀裂進展性)
 各サンプルのタイヤのベルトコーティングゴムから、2mm×50mm×6mmの試験片を切り出し、その中心部に微小な穴を空けて初期亀裂とする。その後、試験片に対して、2.0MPa、周波数は6Hz、雰囲気温度80℃の条件で、長辺方向に繰り返し応力を加える。そして、試験片ごとに、繰り返し応力を加えてから、試験片が破断するまでの繰り返し回数を測定した後、その繰り返し回数の常用対数を算出する。なお、破断までの測定試験は、試験片ごとに4度実施して常用対数を算出し、それらの平均を平均常用対数とする。
 評価については、サンプル7の試験片の平均常用対数を100とした場合の指数として示し、試験片の平均常用対数が大きい程、耐亀裂成長性に優れることを示す。評価結果を表3に示す。

(3) belt durability (crack propagation resistance)
A test piece of 2 mm x 50 mm x 6 mm is cut out from the belt coating rubber of the tire of each sample, and a small hole is made in the center thereof to form an initial crack. Thereafter, a stress is repeatedly applied in the long side direction to the test piece under the conditions of 2.0 MPa, a frequency of 6 Hz, and an ambient temperature of 80 ° C. Then, for each test piece, the number of repetitions from the application of the repeated stress to the breakage of the test piece is measured, and then the common logarithm of the number of repetitions is calculated. In addition, the measurement test up to the fracture is performed four times for each test piece to calculate a common logarithm, and an average thereof is defined as an average common logarithm.
The evaluation is shown as an index when the average common logarithm of the test piece of Sample 7 is 100, and the larger the average common logarithm of the test piece is, the more excellent the crack growth resistance is. Table 3 shows the evaluation results.

Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3の結果から、本発明例に該当するサンプル11及び12については、各比較例のサンプルに比べて、転がり抵抗、ドライハンドリング性及びベルト耐久性の、いずれについても高い効果を示す。
 なお、比較例の各サンプルは、少なくとも1つの評価項目で、実施例に比べて劣る値を示している。
From the results in Table 3, the samples 11 and 12 corresponding to the present invention show higher effects in all of the rolling resistance, dry handling properties and belt durability than the samples of the respective comparative examples.
In addition, each sample of the comparative example shows a value inferior to the example in at least one evaluation item.
 本発明によれば、優れたドライハンドリング性及びベルトの耐久性を有しつつ、転がり抵抗の低減を可能にする、タイヤを提供できる。 According to the present invention, it is possible to provide a tire having excellent dry handling properties and belt durability, and capable of reducing rolling resistance.
 1:ビード部
 2:サイドウォール部
 3:トレッド部
 4:ビードコア
 5:ラジアルカーカス
 6:ベルト
 6a、6b:ベルト層
1: bead part 2: side wall part 3: tread part 4: bead core 5: radial carcass 6: belt 6a, 6b: belt layer

Claims (7)

  1.  トレッド部に配置した一枚以上のベルト層からなるベルト、を備えたタイヤであって、
     前記トレッド部を構成するトレッドゴムは、ゴム成分と、合計スチレン含量が30質量%以上であるスチレン・アルキレンブロック共重合体と、を含むゴム組成物からなり、
     前記ベルト層は、補強コードを被覆するベルトコーティングゴムを有し、該ベルトコーティングゴムは、50%モジュラス値M50(MPa)に対する200%モジュラス値M200(MPa)の比が、5.0以下(M200/M50≦5.0)であることを特徴とする、タイヤ。
    A belt comprising at least one belt layer disposed on a tread portion,
    The tread rubber constituting the tread portion is composed of a rubber composition containing a rubber component and a styrene-alkylene block copolymer having a total styrene content of 30% by mass or more,
    The belt layer has a belt coating rubber covering a reinforcing cord, and the belt coating rubber has a ratio of a 200% modulus M200 (MPa) to a 50% modulus M50 (MPa) of 5.0 or less (M200 / M50). ≦ 5.0).
  2.  前記ベルトコーティングゴムは、25℃における歪1%での動的貯蔵弾性率(E’)が、12MPaを超え且つ30MPa未満であることを特徴とする、請求項1に記載のタイヤ。 2. The tire according to claim 1, wherein the belt coating rubber has a dynamic storage modulus (E ′) at a strain of 1% at 25 ° C. of more than 12 MPa and less than 30 MPa.
  3.  前記ベルトコーティングゴムは、ゴム成分と、DBP吸収量が50~100 cm3/100gであるカーボンブラックと、フェノール樹脂と、メチレン供与体とを含むゴム組成物からなることを特徴とする、請求項1又は2に記載のタイヤ。 The belt coating rubber is a rubber component, and carbon black DBP absorption amount is 50 ~ 100 cm 3 / 100g, and a phenol resin, characterized by comprising a rubber composition containing a methylene donor, claim The tire according to 1 or 2.
  4.  前記スチレン・アルキレンブロック共重合体のアルキレンブロックが、-(CH2-CH(C25))-単位(A)と-(CH2-CH2)-単位(B)を有し、単位(A)の合計含量が、単位(A)及び単位(B)のアルキレンブロックの総質量(単位(A)+単位(B))に対して、40質量%以上である、請求項1~3のいずれか1項に記載のタイヤ。 The alkylene block of the styrene-alkylene block copolymer has-(CH 2 -CH (C 2 H 5 ))-unit (A) and-(CH 2 -CH 2 ) -unit (B), 4. The composition according to claim 1, wherein the total content of (A) is at least 40% by mass based on the total mass (unit (A) + unit (B)) of the alkylene blocks of units (A) and (B). A tire according to any one of the preceding claims.
  5.  前記単位(A)の合計含量が、単位(A)及び単位(B)のアルキレンブロックの総質量(単位(A)+単位(B))に対して、50質量%以上である、請求項4に記載のタイヤ。 The total content of the unit (A) is 50% by mass or more based on the total mass of the alkylene blocks of the units (A) and (B) (unit (A) + unit (B)). The tire described in the above.
  6.  前記トレッドゴムに用いられるゴム組成物は、前記ゴム成分が天然ゴムを含有し、前記ゴム成分中の天然ゴムの含有比率が、50質量%以上であることを特徴とする、請求項1~5のいずれか1項に記載のタイヤ。 The rubber composition used in the tread rubber, wherein the rubber component contains a natural rubber, and a content ratio of the natural rubber in the rubber component is 50% by mass or more. A tire according to any one of the preceding claims.
  7.  前記スチレン・アルキレンブロック共重合体の合計スチレン含量が、50質量%以上であることを特徴とする、請求項1~6のいずれか1項に記載のタイヤ。 The tire according to any one of claims 1 to 6, wherein the total styrene content of the styrene-alkylene block copolymer is 50% by mass or more.
PCT/JP2019/031486 2018-08-09 2019-08-08 Tire WO2020032208A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980053627.4A CN112566791B (en) 2018-08-09 2019-08-08 Tyre
JP2020535887A JP7256192B2 (en) 2018-08-09 2019-08-08 tire

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-150729 2018-08-09
JP2018150729 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020032208A1 true WO2020032208A1 (en) 2020-02-13

Family

ID=69413864

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/031486 WO2020032208A1 (en) 2018-08-09 2019-08-08 Tire

Country Status (3)

Country Link
JP (1) JP7256192B2 (en)
CN (1) CN112566791B (en)
WO (1) WO2020032208A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130105A1 (en) * 2018-12-19 2020-06-25 株式会社ブリヂストン Rubber composition and tire
WO2023127489A1 (en) * 2021-12-27 2023-07-06 住友ゴム工業株式会社 Tire

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114133632B (en) * 2021-12-15 2023-05-09 泰凯英(青岛)专用轮胎技术研究开发有限公司 Mining cold-resistant tire tread rubber and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279051A (en) * 2000-03-31 2001-10-10 Kanegafuchi Chem Ind Co Ltd Vulcanized rubber
JP2010174231A (en) * 2009-02-02 2010-08-12 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2012233139A (en) * 2011-05-09 2012-11-29 Toyo Tire & Rubber Co Ltd Rubber composition for bead filler and pneumatic tire
JP2012531486A (en) * 2009-06-29 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with treads containing saturated thermoplastic elastomers
JP2013515795A (en) * 2009-12-23 2013-05-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire having a crown region with a sub-layer comprising a thermoplastic elastomer
JP2015054927A (en) * 2013-09-12 2015-03-23 横浜ゴム株式会社 Rubber composition for tire and pneumatic tire using the same
JP2015206038A (en) * 2014-04-22 2015-11-19 ハンコック タイヤ カンパニー リミテッド Sidewall insert rubber composition for run-flat tire and tire produced using the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6313213B1 (en) * 1999-03-11 2001-11-06 The Yokohama Rubber Co., Ltd. Rubber composition for tire tread
JP4426047B2 (en) * 2000-03-23 2010-03-03 株式会社ブリヂストン Pneumatic tire
MXPA03006214A (en) * 2002-07-22 2004-02-04 Goodyear Tire & Rubber Composite having rubber compound with hydrotalcite.
TWI386419B (en) * 2004-12-20 2013-02-21 Ube Industries Process for producing polybutadiene rubber and rubber composition
JP2007238799A (en) * 2006-03-09 2007-09-20 Toyo Tire & Rubber Co Ltd Rubber composition for tire tread and pneumatic tire
JP2008143484A (en) * 2006-12-13 2008-06-26 Bridgestone Corp Pneumatic tire
FR2910382B1 (en) * 2006-12-22 2009-03-06 Michelin Soc Tech PNEUMATIC WITH SELF-SWITCHING LAYER
JP5947496B2 (en) * 2011-07-07 2016-07-06 株式会社ブリヂストン Pneumatic radial tire
FR2988728B1 (en) * 2012-04-02 2014-04-11 Michelin & Cie PNEUMATIC HAVING THE TOP ZONE PROVIDED WITH A SUB-LAYER COMPRISING A THERMOPLASTIC ELASTOMER
EP2730609B1 (en) * 2012-11-08 2015-09-09 Sumitomo Rubber Industries, Ltd. Rubber compositions for bead apex, sidewall packing, base tread, breaker cushion, steel cord topping, strip adjacent to steel cords, tie gum, and sidewall, and pneumatic tires
FR3016886B1 (en) * 2014-01-28 2016-01-29 Michelin & Cie TIRE COMPRISING A TREAD COMPRISING A THERMOPLASTIC ELASTOMER
JP6999667B2 (en) * 2017-06-14 2022-02-10 株式会社ブリヂストン Rubber composition, belt coated rubber and tires

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001279051A (en) * 2000-03-31 2001-10-10 Kanegafuchi Chem Ind Co Ltd Vulcanized rubber
JP2010174231A (en) * 2009-02-02 2010-08-12 Yokohama Rubber Co Ltd:The Rubber composition for tire
JP2012531486A (en) * 2009-06-29 2012-12-10 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tires with treads containing saturated thermoplastic elastomers
JP2013515795A (en) * 2009-12-23 2013-05-09 コンパニー ゼネラール デ エタブリッスマン ミシュラン Tire having a crown region with a sub-layer comprising a thermoplastic elastomer
JP2012233139A (en) * 2011-05-09 2012-11-29 Toyo Tire & Rubber Co Ltd Rubber composition for bead filler and pneumatic tire
JP2015054927A (en) * 2013-09-12 2015-03-23 横浜ゴム株式会社 Rubber composition for tire and pneumatic tire using the same
JP2015206038A (en) * 2014-04-22 2015-11-19 ハンコック タイヤ カンパニー リミテッド Sidewall insert rubber composition for run-flat tire and tire produced using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020130105A1 (en) * 2018-12-19 2020-06-25 株式会社ブリヂストン Rubber composition and tire
EP3900950A4 (en) * 2018-12-19 2022-10-05 Bridgestone Corporation Rubber composition and tire
JP7383639B2 (en) 2018-12-19 2023-11-20 株式会社ブリヂストン Rubber compositions and tires
WO2023127489A1 (en) * 2021-12-27 2023-07-06 住友ゴム工業株式会社 Tire

Also Published As

Publication number Publication date
CN112566791A (en) 2021-03-26
JP7256192B2 (en) 2023-04-11
JPWO2020032208A1 (en) 2021-08-12
CN112566791B (en) 2022-12-06

Similar Documents

Publication Publication Date Title
JP5873558B2 (en) Tire tread
EP3178877B1 (en) Rubber composition for treads and pneumatic tire
JP5639414B2 (en) Tire with rubber tread containing a combination of resin blend and functionalized elastomer
US10301459B2 (en) Tire with rubber tread containing a combination of styrene/butadiene elastomers and traction resins and pre-hydrophobated precipitated silica reinforcement
EP2452831B1 (en) Tire with tread containing carboxylated styrene/butadiene rubber
JP7119330B2 (en) Rubber composition for tire
WO2020032208A1 (en) Tire
JP2011063714A (en) Copolymer, rubber composition using the same and pneumatic tire
JP7260268B2 (en) tire
JP5658098B2 (en) Rubber composition for tread and pneumatic tire
CN113329891B (en) Rubber composition and tire
JP2011074310A (en) Copolymer, and rubber composition and pneumatic tire, both prepared by using the copolymer
JP2014009300A (en) Rubber composition for tire and pneumatic tire
US20230383101A1 (en) Rubber composition and pneumatic tire
JP6891291B2 (en) Bonded polymer products, fabrication methods and compositions
JP2017101142A (en) Pneumatic tire
JP7392367B2 (en) Heavy load tires
US20220195154A1 (en) A rubber composition
CN112512834A (en) Plasticizer, composition and tire
JP5415813B2 (en) Rubber composition and pneumatic tire using the same
KR20170113322A (en) Rubber Composition for Tire Tread
JP2020169264A (en) Rubber composition for tire tread, and tire
US20230028202A1 (en) Method for producing a rubber composition comprising a rubber crumb
JP2022542498A (en) rubber composition
EP4079536B1 (en) Rubber composition and tire

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846506

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535887

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846506

Country of ref document: EP

Kind code of ref document: A1