WO2020031933A1 - Bone repair implant and method for manufacturing same - Google Patents

Bone repair implant and method for manufacturing same Download PDF

Info

Publication number
WO2020031933A1
WO2020031933A1 PCT/JP2019/030631 JP2019030631W WO2020031933A1 WO 2020031933 A1 WO2020031933 A1 WO 2020031933A1 JP 2019030631 W JP2019030631 W JP 2019030631W WO 2020031933 A1 WO2020031933 A1 WO 2020031933A1
Authority
WO
WIPO (PCT)
Prior art keywords
bone
plate
implant
repair implant
damaged
Prior art date
Application number
PCT/JP2019/030631
Other languages
French (fr)
Japanese (ja)
Inventor
高章 植野
世市郎 中島
山口 誠二
松下 富春
壽 北垣
重雄 森
Original Assignee
学校法人大阪医科薬科大学
学校法人中部大学
大阪冶金興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人大阪医科薬科大学, 学校法人中部大学, 大阪冶金興業株式会社 filed Critical 学校法人大阪医科薬科大学
Priority to JP2020535746A priority Critical patent/JPWO2020031933A1/en
Publication of WO2020031933A1 publication Critical patent/WO2020031933A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones

Definitions

  • the present invention relates to a bone repair implant to be installed at a bone damage site.
  • a bone 101 obtained from another site is implanted into a bone defect A of the jaw bone 100, and a metal fixing tool 102 processed so as to conform to the shape of the jaw bone 100.
  • the jawbone 100 and the transplant bone 101 are connected.
  • the metal fixture 102 is provided with a plurality of holes 103 along the longitudinal direction, and the metal fixture 102 is connected to the jaw bone 100 and the transplanted bone by a fastener such as a screw passing through the hole 103. It is fastened to 101.
  • the implanted bone 101 is fixed to the jawbone 100.
  • Patent Literature 1 achieves bone formation induction by compounding a bone formation factor (BMP) with a three-dimensional mesh structure formed by using an electron beam using titanium as a material. Since the implant is manufactured based on the three-dimensional coordinate data of the shape of the bone defect, it is easy to control the shape, and further includes BMP, so that bone formation can be induced by placing the implant in the bone defect. it can.
  • BMP bone formation factor
  • Patent Document 2 discloses a technique for producing a bone repair material by osteoconduction by performing a simple bioactivation treatment on a titanium material without using an osteogenesis-inducing factor such as the BMP. .
  • Patent Literature 2 discloses that an apatite layer that is advantageous for bonding with living bone can be formed on the surface of a titanium substrate by performing an acid treatment and a heat treatment on the substrate. .
  • T Kawai M Takemoto, S Fujibayashi, H Akiyama, S Yamaguchi, D K Pattanayak, K Doi, T Matsushita, T Nakamura, T Kokubo, S Matsuda, Osteoconduction of Med, 24-7 (2013), 1707-15.
  • T Kawai, M Takemoto, S Fujibayashi, M Neo, H Akiyama, S Yamaguchi, DK Pattanayak, T Matsushita, T Nakamura, Kokubo T Bone-bonding properties of Ti metal subjected To acid ter J 23-12 (2012), 2981-92.
  • BMP is used to add the ability to induce bone formation.
  • surface treatment of the base material is performed.
  • various processes are performed, such as applying a dextrin solution after BMP is attached. For this reason, the manufacturing process becomes complicated, and even if the above-described treatment is performed, there is a possibility that an amount of BMP capable of exhibiting sufficient osteogenesis-inducing ability cannot be provided to the implant.
  • BMP itself is presently inexpensive and cannot be mass-produced, so that there remains a problem in clinical use.
  • Patent Literature 1 is manufactured based on three-dimensional coordinate data of the shape of the bone defect, but the shape is merely a prosthesis for the bone defect, and the bone defect is It is not configured to be able to fix and support the bone itself where the part has formed. Therefore, actually, the above-mentioned fixing tool is separately required.
  • Patent Document 2 does not require the treatment as in Patent Document 1, and provides simple treatment such as acid treatment and heat treatment for the base material.
  • none of the above-mentioned patent documents and non-patent documents discloses a method of utilizing the method for repairing a bone defect.
  • Patent Document 2 does not disclose an implant having a configuration capable of fixing the bone itself in which a bone defect has occurred, similarly to Patent Document 1.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a bone repair implant capable of supporting and fixing a bone itself having a bone damaged portion by a simple method, and having excellent bone forming ability. To get.
  • a bone repair implant according to the present invention is a bone repair implant made of titanium or a titanium alloy for installation at a bone damaged part of a patient, and has at least a part of a surface shape corresponding to the surface shape of the bone having the bone damaged part.
  • the plate-shaped part is provided with a through-hole through which a fastener for fastening the plate-shaped part to a bone part around the bone damaged part can pass. It is characterized by.
  • the bone repair implant since the bone shape is formed in a surface shape corresponding to the surface shape of the bone having the bone damaged portion, it is not necessary to mold the implant to fit the bone during the operation, which is relatively easy.
  • Can be installed in In particular, by placing the surface shape of the surface of the implant of the present invention in contact with the bone at least partially so as to correspond to the surface shape of the bone, placing the implant at least partially in close contact with the bone.
  • the implant of the present invention is provided with a through hole through which the fastener passes, so that the fastener is used to fasten to the bone portion around the bone damaged portion, so that the periphery of the bone damaged portion is The located bone can be easily fixed integrally. As a result, it is not necessary to perform processing by the operator as in the related art, and the burden can be reduced.
  • the plate-shaped portion may be formed in a shape having a tissue setting portion forming a space for setting a transplanted tissue.
  • an important transplant tissue for bone repair can be installed on the plate-like portion in the tissue installation section, that is, a tissue installation as a space in which tissues such as blood vessels and skin necessary for promoting bone repair can be arranged. Since the parts are formed, they can be easily arranged, and the burden on the operator can be reduced.
  • the plate-shaped portion is configured to be installed at a position capable of supporting the bone having the bone damaged portion, and has a surface shape corresponding to the surface shape of the bone at the installation site. It is preferable to have For example, the plate portion has a surface shape corresponding to a surface shape of a lower portion of the bone having the bone damaged portion, and the plate portion covers a lower portion of the bone damaged portion and has the bone damaged portion. It may be configured to be installed on a bone having the bone damaged portion so as to support the bone from below.
  • the plate-shaped portion covers the lower portion of the bone damaged portion and supports the bone having the bone damaged portion from below, so that the stability when the bone having the bone damaged portion is fixed by the implant can be improved. .
  • the bone having the damaged bone can be supported from below even during the installation operation before fixation, the operation for installing the implant can be facilitated, and the burden on the operator can be reduced.
  • the plate-shaped portion may be integrally formed with an artificial bone portion for at least partially filling the bone damaged portion in the bone damaged portion.
  • the plate-like portion and the artificial bone portion have mechanical properties corresponding to a bone portion around the bone damaged portion.
  • the discontinuity of the mechanical properties between the bone damage and the surrounding bone can be reduced, and the plate-like portion normally cooperates with the movement of the bone around the bone damage.
  • the burden on the patient can be reduced, and functional failure of the relevant portion can be prevented.
  • the surface in contact with the bone damaged portion has bioactivity.
  • the portion provided with the bioactivity may be composed of titanium oxide.
  • it is preferable that at least a part of the implant has a porous structure.
  • the bioactivity of the surface in contact with the bone damage promotes the bonding with the bone, so that the integration of the bone and the implant is promoted after the operation.
  • the implant of the present invention is made of a biocompatible metal such as titanium or a titanium alloy, and has a porous structure that easily fuses with the bone around the bone damage, so that it is not necessary to remove the implant from the patient after installation. Therefore, according to the bone repair implant according to the present invention, the burden on the patient and the operator can be reduced.
  • the bone repair implant according to the present invention it is preferable that at least a part of the plate-shaped portion and the artificial bone portion have antibacterial properties. In this way, it is possible to prevent an infection or the like from occurring in the patient due to the installation of the bone repair implant.
  • the method for manufacturing a bone repair implant according to the present invention includes the steps of obtaining three-dimensional coordinate data of a bone having a bone damaged part of a patient, and using the titanium or titanium alloy as a material based on the three-dimensional coordinate data, Shaping a plate-like portion having a surface shape corresponding to the surface shape of the bone having the portion at least partially and having a through hole.
  • the manufacturing method of the bone repair implant according to the present invention since it is manufactured based on the three-dimensional coordinate data of the bone having the bone damaged part of the patient, according to the shape of various bones having the bone damaged part of the patient, Implants of various shapes can be easily manufactured. In particular, the implant according to the present invention having the above characteristics can be easily manufactured.
  • the shaping step uses an additive manufacturing technique. In this way, it is possible to accurately and easily form the shape corresponding to the shape of various bones having a bone damaged portion, and to make the internal structure a porous structure.
  • the plate-shaped portion in the forming step, may be formed into a shape having a tissue setting portion forming a space for setting a transplanted tissue.
  • the surface shape corresponding to the surface shape of the bone at a position suitable for setting the plate-shaped portion capable of supporting the bone having the bone damaged portion is provided. It is preferable to shape the plate-shaped portion, and for example, the plate-shaped portion having a surface shape corresponding to the surface shape of the lower part of the bone having the above-mentioned bone damaged portion may be formed.
  • an artificial bone part for at least partially filling a bone defect part in the bone damaged part may be formed integrally with the plate-shaped part.
  • the method further comprises a step of subjecting at least a part of the surface of the plate-shaped part and the artificial bone part to a bioactive treatment. And heat treating the implant.
  • a surface layer that promotes osteogenic ability can be formed on the implant, so that excellent osteogenic ability can be imparted to the implant.
  • the method for manufacturing a bone repair implant according to the present invention further includes a step of performing an antimicrobial treatment on at least a part of the plate-like portion and the artificial bone portion after the shaping step.
  • a bone repair implant capable of supporting and fixing surrounding bone by a simple method and having excellent bone formation inducing ability can be obtained.
  • FIGS. 3A and 3B are views showing a cross section taken along line III-III of FIG.
  • FIG. 4 shows a bone repair implant according to another modified example of the embodiment of the present invention, in which (a) shows a state in which the bone repair implant is installed on a jawbone having a bone damage part, and (b) to (d) show the state.
  • FIG. 4 is a diagram showing a right side surface, a front side, and a left side surface of the bone repair implant, respectively.
  • FIG. 9 is a photograph showing a bone repair implant manufactured by an additive manufacturing technique according to another modified example of the embodiment of the present invention.
  • (A)-(d) is a figure which shows the bone repair implant manufactured by the additive manufacturing technology which concerns on another modification of one Embodiment of this invention, (a) shows a side surface, (b) It is a sectional view showing the state where the front was shown, (c) showed the lower surface, and the implant was fastened to the bone with the fastener.
  • (A) to (d) are photographs for explaining a method for installing a bone repair implant in a bone defect part of a rat in Example 1 of the present invention.
  • FIG. 2 is a photograph of a micro-CT and a photograph of a non-demineralized polished specimen at a bone defect part two weeks after installation of a rat on which a bone repair implant is installed in Example 1 of the present invention.
  • 4 is a graph showing the amount of new bone 2 weeks and 7 weeks after the rat in which the bone repair implant was placed in Example 1 of the present invention.
  • FIG. 9 is a diagram for explaining conditions for stress simulation according to a third embodiment of the present invention.
  • FIG. 9 is a diagram for explaining conditions for stress simulation according to a third embodiment of the present invention.
  • FIG. 14 is a diagram illustrating a part of the result of the stress simulation of the third embodiment of the present invention.
  • FIG. 2 is a view showing a conventional bone repair implant.
  • the bone repair implant according to the present invention is a bone repair implant made of titanium or a titanium alloy to be installed on a bone damaged part of a patient. Titanium is a biocompatible metal, which is extremely advantageous for use as an implant material.
  • the bone damaged part is a part where a part of the bone is lost or broken due to surgery or the like, or a bone part where various morphological abnormalities have occurred, and includes a bone part that is not in perfect condition.
  • the surface of the bone repair implant of the present invention has been subjected to a bioactive treatment.
  • the bioactive treatment is not particularly limited as long as it is a treatment capable of strengthening the bond between the implant surface and the bone.
  • the surface layer is formed by oxidizing titanium on the surface of the implant by performing the heat treatment.
  • the surface layer has an osteogenic ability by being subjected to an acid treatment before being subjected to the heat treatment.
  • the bone repair implant of the present invention exhibits excellent bone formation ability by the acid treatment and the heat treatment.
  • a mixed acid solution containing at least two or more of hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid in order to impart excellent osteogenic ability to the implant.
  • the temperature in the heat treatment is preferably from 500 ° C. to 750 ° C.
  • the bone repair implant of the present invention is preferably subjected to an antibacterial treatment in addition to the bioactive treatment.
  • the antibacterial treatment is not particularly limited as long as it is a treatment capable of imparting antibacterial properties to the surface of the implant. .
  • ions such as silver, gallium, or iodine having an antibacterial action can be released from the surface of the implant.
  • a treatment of immersing the implant in an aqueous solution containing calcium ions may be performed in order to improve the apatite-forming ability, which is known to improve osteointegration.
  • a treatment may be performed in which the implants are immersed in an aqueous alkali solution such as sodium hydroxide in order to keep the ions at a high concentration in the implants.
  • This antibacterial treatment can also be performed together with the above-mentioned bioactivity treatment.
  • the above-mentioned treatment with an aqueous alkali solution such as sodium hydroxide and the treatment with an aqueous solution containing calcium ions, and then an aqueous silver nitrate solution Or an aqueous solution containing iodine ions such as an aqueous solution containing silver ions such as iodine or an aqueous solution of iodine trichloride.
  • an aqueous alkali solution such as sodium hydroxide
  • an aqueous solution containing calcium ions and then an aqueous silver nitrate solution
  • an aqueous solution containing iodine ions such as an aqueous solution containing silver ions such as iodine or an aqueous solution of iodine trichloride.
  • the bone repair implant according to the present invention is constituted by a plate-like portion having at least partially a shape corresponding to a surface shape of a bone having a bone damaged portion of a patient, and has a structure having a through hole. It is characterized by the following.
  • the plate-shaped portion is not limited to a flat plate, and may be a curved plate having a curved portion, and is preferably curved so as to conform to the shape of the portion to be installed.
  • the bone repair implant according to the present invention provides the bone damaged portion of the patient with the bone damaged portion. It is formed based on the three-dimensional coordinate data of the bone having.
  • the forming method is not particularly limited, but, for example, a lamination molding technique can be used.
  • a lamination pitch is, for example, 0.01 mm to 0.05 mm.
  • the weight of the implant can be reduced, and the structure can be easily fused with bone.
  • the porous structure is, for example, a spongy structure.
  • the implant of the present invention will be described later. From the viewpoint of reducing stress generated in the implant after installation and preventing damage, the implant of the present invention is formed in such a form as to cover the widest possible area of the bone having the bone damaged part of the patient. Preferably, there is.
  • the bone repair implant according to the present invention is formed by using, for example, a 3D printer, it can be formed into various shapes according to the installation site on the patient, and has various design properties, and further has various designs. It can correspond to the usage form.
  • the implant when an implant having a cross-sectional shape such as a substantially U-shape or a substantially J-shape is employed as described above, the implant can be used in a form such as a tray for supporting a bone damaged portion from below. Then, a material that promotes bone repair, such as crushed cancellous bone, can be placed on the tray-shaped implant, which is preferable. However, it is naturally possible to use without placing anything on the implant. .
  • an osteomuscular flap with a vascular handle may be fixed to one surface of the implant, and the implant may be used in such a manner as to be placed at a bone injury site.
  • the implanted bone such as the fibula may be fixed to the implant and placed on the damaged bone of the patient. In this case, the implanted bone may be divided and fixed according to the shape of the implant.
  • the bone repair implant according to the present invention is configured of a plate-shaped portion having at least partially a shape corresponding to the surface shape of the bone having the bone damaged portion of the patient.
  • a tissue setting part which forms a space for setting the transplanted tissue may be formed.
  • the shape portion corresponding to the surface shape of the bone having the patient's bone damaged portion in the plate-shaped portion comes into contact with the tissue such as the patient's bone, and the plate-shaped portion and the patient's bone are connected to the tissue such as the screw in this portion. While the connection can be made with the fastener, the transplanted tissue such as a blood vessel or skin important for bone repair can be set in the plate-shaped portion in the tissue setting portion.
  • the tissue setting section is formed in such a manner that the transplanted tissue can be set on the plate-like portion, and is not limited to the following configuration.
  • a slight depression is provided in the plate-like portion, or a transplanted tissue is provided. It may be configured to be slightly curved to the side opposite to the side so that the implanted tissue can be easily installed. Since the space for placing the transplanted tissue on the plate-like portion is sufficiently obtained by the tissue setting section, the work load on the operator for arranging the blood vessels and the like can be reduced.
  • FIG. 1A shows a state in which a bone repair implant 10 according to the present invention is installed in a bone defect A in which a part of the mandible is lost
  • FIGS. 1B and 1C respectively.
  • FIG. 3 is a perspective view showing another direction of the bone repair implant 10.
  • the bone repair implant 10 is formed in a curved plate shape so as to correspond to the surface shape of a bone (mandible) having a bone defect A.
  • the bone repair implant 10 is composed of a plate-like portion 11 placed on a bone having a bone defect A, and the plate-like portion 11 penetrates through connection portions 13 located on both sides of the central portion 12.
  • a hole 14 is provided.
  • the bone repair implant 10 is installed so that the central part 12 covers a part of the bone defect part A.
  • the bone repair implant 10 is mounted so that the central portion 12 covers the lower part of the bone defect A, and the bone repair implant 10 supports the bone having the bone defect A from below.
  • the connecting portions 13 are arranged on both sides of the central portion 12, and the connecting portion 13 has a surface shape corresponding to the surface shape of the bone portion B located on both sides of the bone defect portion A.
  • the bone repair implant 10 is formed to be in contact with, preferably close to, that portion. Also, as described above, since the through-hole 14 is provided in the connection portion 13, a fastener such as a screw is passed through the through-hole 14 when the bone repair implant 10 is installed, and both sides of the connection portion 13 and the bone defect portion A are provided. And the bone part B located at As a result, the bone repair implant 10 is installed on the bone having the bone defect A, and the bone having the bone defect A is supported and fixed.
  • the surface of the plate-like portion 11 on the side in contact with the bone is subjected to a bioactive treatment for strengthening the bond with the bone.
  • the biological activity treatment is not particularly limited as long as the treatment can impart the above-mentioned effect, but a mixed acid heating treatment is particularly preferable.
  • this modified example is characterized in that an artificial bone portion 25 is protruded from a central portion 22 of a plate-shaped portion 21 as compared with the bone repair implant according to the above embodiment.
  • the artificial bone part 25 is formed in a shape that matches the shape of the bone defect part A. Therefore, by installing the bone repair implant 20, the bone defect A can be filled with the artificial bone 25.
  • an artificial bone portion 25 can be formed based on three-dimensional coordinate data of a patient's bone, and for example, an additive manufacturing technique can be used. For this reason, the artificial bone part 25 can be formed integrally with the plate-shaped part 21.
  • the artificial bone portion 25 has a porous structure, and a surface in contact with the bone is subjected to a bioactive treatment for strengthening the bond with the bone, similarly to the plate-like portion 21.
  • the bioactivity treatment is not particularly limited as long as it can impart the above-mentioned effect, but a mixed acid heating treatment is particularly preferable. With such a configuration, it becomes possible to promote the integration of the artificial bone portion 25 and the surrounding bone, and it is possible to promote the bone repair at the bone defect portion.
  • the artificial bone portion 25 may be formed separately from the plate-like portion 21 as described above, or may be formed as a separate body.
  • the artificial bone portion 25 and the plate-like portion 21 are connected to each other by a fastener such as a screw.
  • a fastener such as a screw.
  • titanium or a titanium alloy can be used as the material of the artificial bone portion 25 as in the case of the plate-like portion 21, and it is preferable that the surface of the artificial bone portion 25 be subjected to bioactivity treatment.
  • a portion of the surface of the artificial bone portion 25 that comes into contact with the patient's bone is preferably made of porous titanium or roughened titanium, and the other surface may be smooth.
  • the internal structure of the artificial bone portion 25 is not particularly limited, but may be hollow or porous.
  • a bioactive ceramic such as hydroxyapatite may be used in addition to titanium as described above.
  • the bonding of the artificial bone part 25 to the bone part B around the bone defect part A in which the artificial bone part 25 is implanted can be promoted.
  • the plate-like portion 21 and the artificial bone portion 25 preferably have mechanical properties corresponding to the bone portion B around the bone defect portion A. In this way, it is possible to reduce the discontinuity of the mechanical properties between the bone defect B and the surrounding bone B, and the plate-like portion can prevent the movement of the bone B around the bone defect A. It is possible to cooperate normally and reduce the burden on the patient.
  • the artificial bone portion 25 may be provided directly on, for example, a substantially J-shaped (inverted J-shaped) plate-like portion 21 as shown in FIG.
  • a substantially J-shaped (inverted J-shaped) plate-like portion 21 as shown in FIG.
  • it may be provided on a pedestal portion 21 a provided on the plate portion 21 and made of, for example, the same material as the plate portion 21.
  • the plate-shaped portion 31 has a mesh-shaped portion 36 in addition to at least a part, for example, a portion provided with a through hole into which a fastener is inserted. Is also good.
  • the transplanted bone 40 is placed on the plate-shaped portion 31 as shown in FIG. There are cases. In this case, when the rigidity of the plate-shaped portion 31 is high, the load applied to the bone around the bone defect portion A is supported by the plate-shaped portion 31, and stress shielding in which no load acts on the transplant bone 40 occurs.
  • the stress shielding is a phenomenon in which a load is concentrated on the implant side instead of the implanted bone, so that the implanted bone is not loaded and causes the implanted bone to atrophy due to bone resorption.
  • the implant provided in the mandible is illustrated, but as shown in FIG. 5, the implant may extend to the mandibular branch.
  • a through hole is also provided in a portion of the implant that extends to the mandibular branch, so that the implant can be fastened to the mandibular branch with a fastener.
  • the bone repair implant may have an outer shape having a plurality of through holes.
  • Such an implant is not limited to a configuration in which the implant is installed from above the mandible as shown in FIG. 6, but may be a configuration in which it is installed from below the mandible as shown in FIG.
  • the degree of freedom of the position where the implant can be fastened to the bone by the fastener can be improved, and even when the implant is installed in the bone defect, the bone defect can be removed through the plurality of through holes. Since the part can be easily observed, the work load on the operator can be reduced.
  • the bone repair implant according to the present invention is formed based on the three-dimensional coordinate data of the bone damaged part of the patient using, for example, an additive manufacturing technique. It can be applied to the bone damage part of the bone.
  • the method for manufacturing a bone repair implant according to the present invention includes a step of obtaining three-dimensional coordinate data of a bone having a bone damaged part of a patient, and a technique such as an additive manufacturing technique or a cutting method based on the three-dimensional coordinate data.
  • the method includes a step of shaping a plate-like portion having a surface shape corresponding to the surface shape of the bone having the bone damage portion at least partially and having a through hole.
  • the bone having the bone damaged part of the patient is photographed by using an X-ray imaging technique such as an X-ray CT scan. Then, three-dimensional data is designed on the photographed image by a computer using image analysis software, and the three-dimensional data is sliced at a fixed pitch to obtain three-dimensional coordinate data such as STL data.
  • an X-ray imaging technique such as an X-ray CT scan.
  • three-dimensional data is designed on the photographed image by a computer using image analysis software, and the three-dimensional data is sliced at a fixed pitch to obtain three-dimensional coordinate data such as STL data.
  • an implant is formed using a titanium or titanium alloy particle as a material by using a layered manufacturing apparatus or the like.
  • a 3D printer it is preferable to use a small laminating pitch using an SLM (selective laser melting) method.
  • the pitch is 0.01 mm to 0.05 mm, and particularly the pitch is 0.02 mm to 0.03 mm. It is preferred that By doing so, an implant having a surface shape corresponding to the surface shape of the bone having the bone damaged portion of the patient can be accurately and easily manufactured.
  • the implant can be formed into a porous structure by being formed with a small pitch, so that the bone and the implant can be integrally fused, and the bonding between them can be strengthened.
  • the implant obtained thereafter to a bioactive treatment, particularly to the surface in contact with the patient's bone.
  • the bioactive treatment is not particularly limited as long as it can strengthen the bond between the implant and the patient's bone, but it is particularly preferable to perform a mixed acid heating treatment as the bioactive treatment.
  • the acid to be used it is preferable to use a mixed acid solution containing at least two of hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid. By using these mixed acid solutions, it is possible to form a surface layer capable of exhibiting excellent bone forming ability on the implant.
  • the immersion time is preferably about 1 hour.
  • the method is not limited to the above method as long as the mixed acid solution can be brought into contact with the implant. Further, it is more preferable to perform the acid treatment only on a part of the implant where bone formation is desired.
  • the temperature is preferably from 500 ° C. to 750 ° C., and the time is preferably about 1 hour.
  • the manufacturing method according to the present invention may include a step of subjecting the implant to an antibacterial treatment as described above.
  • the treatment method is not particularly limited, and examples thereof include a method of immersing the implant in an aqueous solution containing ions such as silver, gallium, or iodine.
  • a bone repair implant according to the present invention having excellent bone formation ability can be obtained by a simple method.
  • the bone repair implant according to the present invention and a method for manufacturing the same will be described below in detail.
  • the bone repair implant obtained by the above method has more excellent bone formation ability by being subjected to an acid treatment or a heat treatment.
  • Example 1 Five titanium implants obtained by the above method were prepared, and each of them was subjected to acid treatment and heat treatment under different conditions. Specifically, in Group 1, an acid treatment was performed using a mixed acid solution of hydrochloric acid and sulfuric acid, and a heat treatment was performed at 600 ° C. for 1 hour. In Group 2, alkali treatment with NaOH was performed, and heat treatment was performed at 600 ° C. for 1 hour. In Group 3, a treatment with NaOH ⁇ 50 mM HCl was performed, and a heat treatment was performed at 600 ° C. for 1 hour. In Group 4, a treatment with NaOH.CaCl 2 was performed, followed by a heat treatment at 600 ° C. for 1 hour and a hot water treatment at 80 ° C. for 24 hours. Group 5 was untreated.
  • FIG. 8 first, the head of an anesthetized rat was incised, the periosteum was opened, and a bone defect was created using a round bar (photograph in FIG. 8 (a)). Subsequently, the implant (SLM mesh) prepared as described above was fitted to a bone defect and fixed with a KLs Martin 1.0 ⁇ 8 mm micro screw (FIGS. 8B and 8C). Thereafter, the incision was sutured (photograph (d) of FIG. 8).
  • FIG. 9 shows the result.
  • two weeks after the placement of the implant in all of Groups 1 to 5, although varying in degree, a new portion was formed below the implant placed in the bone defect (the area surrounded by the broken line in the figure). Bone formation was observed. In particular, excellent ability to form new bone was observed in Group 1 (the dark gray part indicated by the arrow in the non-demineralized polished sample). The same thing was observed 7 weeks after the placement of the implant. In Group 1, particularly excellent new bone formation ability was observed.
  • FIG. 10 shows the results of measuring the amount of new bone 2 weeks and 7 weeks after placing the implant in each Group.
  • the amount of new bone was calculated based on the area ratio in the CT photograph.
  • the amount of new bone was increased at 2 weeks and 7 weeks after the installation in all the Groups.
  • the amount of new bone was increased. It was found to be higher than rats with Group implants.
  • Example 2 Next, it will be described that excellent antibacterial properties can be imparted by performing antibacterial treatment on an implant made of titanium.
  • an antibacterial treatment by iodine treatment will be described as an example of the antibacterial treatment.
  • a substrate made of pure titanium is polished using a # 400 diamond pad, ultrasonically washed with acetone, 2-propanol and ultrapure water for 30 minutes each, and then added to 5 ml of a 5M aqueous sodium hydroxide solution at 60 ° C. It was immersed for 24 hours (alkali treatment) and washed with ultrapure water for 30 seconds.
  • This titanium plate was immersed in 10 ml of a 100 mM calcium chloride aqueous solution at 40 ° C. for 24 hours (calcium treatment), and washed with ultrapure water for 30 seconds.
  • the temperature of the titanium plate was raised from room temperature to 600 ° C.
  • Sample A was manufactured by immersing in 10 ml of a 10 mM aqueous solution of iodine trichloride at 80 ° C. for 24 hours (treatment with iodine) and washing with ultrapure water for 30 seconds.
  • a 100 mM aqueous solution of iodine trichloride was used instead of the 10 mM aqueous solution of iodine trichloride, the immersion temperature was changed to 60 ° C., and the other conditions were the same as in the case of sample A above. Was manufactured.
  • a titanium plate which was not subjected to any of the above processes was used as Sample C.
  • the sample A showed a strong antibacterial property, further showed a strong antibacterial property even after the moisture resistance test and the water resistance test, and was excellent in antibacterial stability. I understood that.
  • the load carrying capacity when the shape (the installation range with respect to the bone) was changed was compared and examined using existing numerical simulation software.
  • the mandible model was a U-shape in plan view having a diameter of 20 mm and had a partially defective portion, and a plate-like implant was placed in the defective portion.
  • the implant was made of pure titanium, had a thickness of 1.8 mm, and had two through holes with a diameter of 3.1 mm at both ends.
  • the bolts for fastening the implant were also made of pure titanium, the nominal length was 12 mm, the nominal diameter was 3.0 mm, and four bolts were used. As shown in FIG.
  • a hard sphere was used to apply a load to the mandible. Further, as the constraint conditions at the time of the simulation, the constraint conditions shown in FIG. 11 were employed. Furthermore, in this simulation, we compared the model where the part where the implant and the bone are in contact with each other is combined with the model where the part is not combined, and examined the superiority of applying the bioactive treatment to the implant. did. In addition, the range of the implant covering the bone was changed, and the increase and decrease of the generated stress were examined. Specifically, as shown in FIG. 12, the ranges where the implant covers the bone were set to 40 °, 90 °, 135 °, and 180 °, and the respective stresses were compared and examined. FIG.
  • FIG. 13 shows a stress simulation result when the range where the implant covers the bone is 40 ° and the implant and the bone are not connected. As shown in FIG. 13, in this case, a maximum stress of 301 MPa was generated on the front side (opposite to the bone) of the implant, a maximum of 300 MPa on the inner side (bone side) of the implant, and a maximum of 290 MPa on the bolt. Similarly, in a stress simulation performed under other conditions, the generated maximum stress is shown in Table 3 below.
  • the stress generated in the implant can be reduced as the range of the implant covering the bone is increased. Furthermore, it has been clarified that the stress generated in the implant can be reduced by bonding the implant surface and the bone surface. This stress is significantly reduced by increasing the area covered. From this result, it is preferable that the implant has a form that covers the bone as much as possible. By applying bioactive treatment to the surface of the implant that contacts the bone, it is possible to promote the connection between the implant and the bone. Also proved beneficial.

Abstract

The bone repair implant 10 according to the present invention is a bone repair implant, comprising titanium or a titanium alloy, for being installed at a bone injury site A of a patient, wherein the implant is characterized by: comprising a plate-shaped part 11 at least partially having a surface morphology that corresponds to the surface morphology of the bone having the bone injury site A; and the plate-shaped part 11 being provided with a through-hole 14 through which a fastener, for fastening the plate-shaped part 11 to a section of bone at the periphery of the bone injury site A, can pass.

Description

骨修復インプラント及びその製造方法Bone repair implant and method of manufacturing the same
 本発明は、骨損傷部に設置される骨修復インプラントに関する。 The present invention relates to a bone repair implant to be installed at a bone damage site.
 従来、種々の疾病や事故等で骨を部分的に欠損した場合、欠損した骨の代わりに自己の当該骨欠損部以外の骨を移植し、さらに金属等からなる固定具により固定することが行われている。 Conventionally, when a bone is partially lost due to various diseases or accidents, bone other than the own bone defect is transplanted in place of the lost bone, and further fixed with a metal fixture or the like. Have been done.
 例えば、顎骨の場合、図14に示すように、顎骨100の骨欠損部Aに、他の部位から取得した骨101を移植し、顎骨100の形状に沿うように加工された金属製固定具102によって顎骨100と移植骨101とをつなぐ。具体的には金属製固定具102には長手方向に沿って複数の孔部103が設けられており、金属性固定具102はその孔部103を通るスクリュー等の締結具により顎骨100及び移植骨101に締結される。これにより、移植骨101は顎骨100に固定されることとなる。このような従来の方法を採用する場合、患者は骨欠損部A以外の骨を喪失することとなり、また、術者にとっても骨欠損部A以外からの骨採取、固定具102を顎骨形状に沿わせるための成形が必要となり、手術時間が長時間に亘ることとなり負担が大きい。 For example, in the case of a jaw bone, as shown in FIG. 14, a bone 101 obtained from another site is implanted into a bone defect A of the jaw bone 100, and a metal fixing tool 102 processed so as to conform to the shape of the jaw bone 100. Thus, the jawbone 100 and the transplant bone 101 are connected. Specifically, the metal fixture 102 is provided with a plurality of holes 103 along the longitudinal direction, and the metal fixture 102 is connected to the jaw bone 100 and the transplanted bone by a fastener such as a screw passing through the hole 103. It is fastened to 101. Thus, the implanted bone 101 is fixed to the jawbone 100. When such a conventional method is adopted, the patient loses bones other than the bone defect A, and the surgeon removes the bone from the bone defect A and fixes the fixture 102 along the jaw bone shape. In order to perform the operation, the operation time is long and the burden is large.
 そこで、近年、骨形成誘導能を有するインプラントを骨欠損部に設置することが検討されている。このような方法を用いると、他の部位の骨を骨欠損部に移植する必要がなく、患者及び術者の負担を軽減することができる。このようなインプラントは、例えば特許文献1等に開示されている。特許文献1のインプラントは、チタンを材料として電子ビームを用いて造形された三次元メッシュ構造物に、骨形成因子(BMP)を複合化させることにより骨形成誘導を達成するものである。当該インプラントは、骨欠損部の形状の三次元座標データに基づいて製造されるため、形状制御が容易であり、さらにBMPを含むため、骨欠損部に設置することにより骨形成を誘導することができる。 Therefore, in recent years, it has been studied to install an implant having an ability to induce osteogenesis in a bone defect. By using such a method, it is not necessary to transplant bone at another site to the bone defect, and the burden on the patient and the operator can be reduced. Such an implant is disclosed, for example, in Patent Document 1. The implant of Patent Literature 1 achieves bone formation induction by compounding a bone formation factor (BMP) with a three-dimensional mesh structure formed by using an electron beam using titanium as a material. Since the implant is manufactured based on the three-dimensional coordinate data of the shape of the bone defect, it is easy to control the shape, and further includes BMP, so that bone formation can be induced by placing the implant in the bone defect. it can.
 また、上記BMPのような骨形成誘導因子を用いることなく、チタン材料に簡便な生体活性化処理を行うことにより、骨伝導による骨修復材料を製造する技術が特許文献2等に開示されている。具体的に、特許文献2では、チタンからなる基材に酸処理及び加熱処理をすることにより、当該基材の表面に生体骨との結合に有利なアパタイト層を形成できる旨が開示されている。 Patent Document 2 discloses a technique for producing a bone repair material by osteoconduction by performing a simple bioactivation treatment on a titanium material without using an osteogenesis-inducing factor such as the BMP. . Specifically, Patent Literature 2 discloses that an apatite layer that is advantageous for bonding with living bone can be formed on the surface of a titanium substrate by performing an acid treatment and a heat treatment on the substrate. .
特開2013-188419号公報JP 2013-188419 A 国際公開2010/087427号International Publication No. 2010/087427
 特許文献1のインプラントでは、骨形成誘導能を付加するためにBMPを用いているが、通常、基材となるチタンに直接BMPを付着させることは困難であるため、基材の表面処理を行ったり、BMPの付着後にデキストリン溶液を塗布したり、種々の処理が行われている。このため、製造工程が煩雑となるし、また、上記処理を行ったとしても十分な骨形成誘導能を発揮できる量のBMPをインプラントに付与できないおそれもある。加えて、BMPそのものが現在では、安価で大量生産不可能なことから臨床での使用には問題が残されている。さらに、特許文献1のインプラントは、骨欠損部の形状の三次元座標データに基づいて製造されているが、その形状は、単に骨欠損部に補綴する形状となっているだけであり、骨欠損部が生じた骨自体を固定・支持できるような構成とはなっていない。従って、実際には上述するような固定具が別途必要となる。 In the implant of Patent Literature 1, BMP is used to add the ability to induce bone formation. However, since it is usually difficult to directly attach BMP to titanium as a base material, surface treatment of the base material is performed. In addition, various processes are performed, such as applying a dextrin solution after BMP is attached. For this reason, the manufacturing process becomes complicated, and even if the above-described treatment is performed, there is a possibility that an amount of BMP capable of exhibiting sufficient osteogenesis-inducing ability cannot be provided to the implant. In addition, BMP itself is presently inexpensive and cannot be mass-produced, so that there remains a problem in clinical use. Furthermore, the implant of Patent Literature 1 is manufactured based on three-dimensional coordinate data of the shape of the bone defect, but the shape is merely a prosthesis for the bone defect, and the bone defect is It is not configured to be able to fix and support the bone itself where the part has formed. Therefore, actually, the above-mentioned fixing tool is separately required.
 また、特許文献2に開示の技術(さらに、非特許文献1~3も参照。)では、特許文献1のような処理を要せず、基材に対して酸処理および加熱処理といった簡便な処理のみでチタン板材やチタン多孔体に骨結合能(骨伝導能)や周囲に骨が存在しない環境下においても新生骨が誘導されることに関する動物実験の報告例がある。しかしながら、上記特許文献および非特許文献において、骨欠損部の修復に活用する方法を開示するものはない。さらに、特許文献2において、特許文献1と同様に、骨欠損部が生じた骨自体を固定できるような構成のインプラントについての開示は無い。 Further, the technology disclosed in Patent Document 2 (see also Non-Patent Documents 1 to 3) does not require the treatment as in Patent Document 1, and provides simple treatment such as acid treatment and heat treatment for the base material. There have been reports of animal experiments on the possibility of osteointegration (osteoconductivity) in titanium plates and porous titanium bodies and the induction of new bone even in an environment where there is no surrounding bone. However, none of the above-mentioned patent documents and non-patent documents discloses a method of utilizing the method for repairing a bone defect. Furthermore, Patent Document 2 does not disclose an implant having a configuration capable of fixing the bone itself in which a bone defect has occurred, similarly to Patent Document 1.
 本発明は、前記の問題に鑑みてなされたものであり、その目的は、簡便な方法で骨損傷部を有する骨自体を支持及び固定でき、且つ、優れた骨形成能を有する骨修復インプラントを得ることにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a bone repair implant capable of supporting and fixing a bone itself having a bone damaged portion by a simple method, and having excellent bone forming ability. To get.
 前記の目的を達成するために、患者の骨損傷部を有する骨の三次元座標データを利用して骨欠損部を有する骨の表面形状に対応する表面形状を有するインプラントを造形することで、従来のような手術者による形状加工を必要とせず、簡便に骨損傷部を有する骨に設置でき、当該骨を支持及び固定できる骨修復インプラントを完成した。 In order to achieve the above-mentioned object, conventionally, by forming an implant having a surface shape corresponding to the surface shape of the bone having the bone defect using three-dimensional coordinate data of the bone having the bone damaged part of the patient, Thus, a bone repair implant that can be easily installed on a bone having a bone damaged portion and that can support and fix the bone without the need for an operator to perform shape processing has been completed.
 本発明に係る骨修復インプラントは、患者の骨損傷部に設置するためのチタン又はチタン合金からなる骨修復インプラントであって、前記骨損傷部を有する骨の表面形状に対応する表面形状を少なくとも部分的に有する板状部を備え、前記板状部には、該板状部を前記骨損傷部の周囲の骨部分に締結するための締結具が通ることができる貫通孔が設けられていることを特徴とする。 A bone repair implant according to the present invention is a bone repair implant made of titanium or a titanium alloy for installation at a bone damaged part of a patient, and has at least a part of a surface shape corresponding to the surface shape of the bone having the bone damaged part. The plate-shaped part is provided with a through-hole through which a fastener for fastening the plate-shaped part to a bone part around the bone damaged part can pass. It is characterized by.
 本発明に係る骨修復インプラントによると、骨損傷部を有する骨の表面形状に対応する表面形状で形成されているため、術中にインプラントを骨に適合するように成形する必要もなく、比較的容易に設置することができる。特に、本発明のインプラントにおける骨と接触する面の表面形状を少なくとも部分的に当該骨の表面形状に対応するように形成することで、少なくとも部分的にインプラントを当該骨と密接して設置することができる。これに加えて、本発明のインプラントには、締結具が通る貫通孔が設けられているため、締結具により、骨損傷部の周囲の骨部分に締結することにより、当該骨損傷部の周囲に位置する骨を一体的に容易に固定することができる。その結果、従来のような手術者による加工等を不要とすることができ、その負担を軽減できる。 According to the bone repair implant according to the present invention, since the bone shape is formed in a surface shape corresponding to the surface shape of the bone having the bone damaged portion, it is not necessary to mold the implant to fit the bone during the operation, which is relatively easy. Can be installed in In particular, by placing the surface shape of the surface of the implant of the present invention in contact with the bone at least partially so as to correspond to the surface shape of the bone, placing the implant at least partially in close contact with the bone. Can be. In addition to this, the implant of the present invention is provided with a through hole through which the fastener passes, so that the fastener is used to fasten to the bone portion around the bone damaged portion, so that the periphery of the bone damaged portion is The located bone can be easily fixed integrally. As a result, it is not necessary to perform processing by the operator as in the related art, and the burden can be reduced.
 本発明に係る骨修復インプラントにおいて、前記板状部は、移植組織を設置するための空間をなす組織設置部を有するような形状に形成されていてもよい。 に お い て In the bone repair implant according to the present invention, the plate-shaped portion may be formed in a shape having a tissue setting portion forming a space for setting a transplanted tissue.
 このようにすると、上記組織設置部において板状部に骨修復のために重要な移植組織を設置でき、すなわち骨修復の促進に必要な血管や皮膚等の組織を配設できるスペースとしての組織設置部が形成されているため、それらの配設が容易となり、術者の作業負担を軽減することができる。 In this way, an important transplant tissue for bone repair can be installed on the plate-like portion in the tissue installation section, that is, a tissue installation as a space in which tissues such as blood vessels and skin necessary for promoting bone repair can be arranged. Since the parts are formed, they can be easily arranged, and the burden on the operator can be reduced.
 本発明に係る骨修復インプラントにおいて、前記板状部は、前記骨損傷部を有する骨を支持できる位置に設置されるように構成されており、当該設置部位の骨の表面形状に対応する表面形状を有していることが好ましい。例えば、前記板状部は、前記骨損傷部を有する骨の下部の表面形状に対応する表面形状を有し、前記板状部が前記骨損傷部の下部を覆って、前記骨損傷部を有する骨を下方から支持するように該骨損傷部を有する骨に設置される構成であってもよい。 In the bone repair implant according to the present invention, the plate-shaped portion is configured to be installed at a position capable of supporting the bone having the bone damaged portion, and has a surface shape corresponding to the surface shape of the bone at the installation site. It is preferable to have For example, the plate portion has a surface shape corresponding to a surface shape of a lower portion of the bone having the bone damaged portion, and the plate portion covers a lower portion of the bone damaged portion and has the bone damaged portion. It may be configured to be installed on a bone having the bone damaged portion so as to support the bone from below.
 このようにすると、板状部が骨損傷部の下部を覆って、該骨損傷部を有する骨を下方から支持するため、骨損傷部を有する骨をインプラントにより固定した際の安定性を向上できる。また、固定前の設置手術中においても骨損傷部を有する骨を下方から支持できるため、インプラントの設置手術を容易にでき、術者の負担を軽減することができる。 With this configuration, the plate-shaped portion covers the lower portion of the bone damaged portion and supports the bone having the bone damaged portion from below, so that the stability when the bone having the bone damaged portion is fixed by the implant can be improved. . In addition, since the bone having the damaged bone can be supported from below even during the installation operation before fixation, the operation for installing the implant can be facilitated, and the burden on the operator can be reduced.
 本発明に係る骨修復インプラントにおいて、前記板状部には、前記骨損傷部における骨損傷部分を少なくとも部分的に埋めるための人工骨部が一体形成されていてもよい。 In the bone repair implant according to the present invention, the plate-shaped portion may be integrally formed with an artificial bone portion for at least partially filling the bone damaged portion in the bone damaged portion.
 本発明に係る骨修復インプラントにおいて、前記板状部及び人工骨部は、前記骨損傷部の周囲の骨部分に相当する力学特性を有することが好ましい。 に お い て In the bone repair implant according to the present invention, it is preferable that the plate-like portion and the artificial bone portion have mechanical properties corresponding to a bone portion around the bone damaged portion.
 このようにすると、骨損傷部とその周囲の骨との間の力学特性の不連続性を低減することができ、板状部が骨損傷部の周囲の骨の動きに対して正常に共動できて、患者への負担を低減でき、当該部分の機能障害を防止できる。 In this way, the discontinuity of the mechanical properties between the bone damage and the surrounding bone can be reduced, and the plate-like portion normally cooperates with the movement of the bone around the bone damage. As a result, the burden on the patient can be reduced, and functional failure of the relevant portion can be prevented.
 また、本発明に係る骨修復インプラントにおいて、前記骨損傷部に接する表面には生体活性能が付与されていることが好ましい。生体活性能が付与された部分は、チタン酸化物で構成されていてもよい。また、本発明に係る骨修復インプラントにおいて、少なくとも一部に多孔質構造を有していることが好ましい。 In addition, in the bone repair implant according to the present invention, it is preferable that the surface in contact with the bone damaged portion has bioactivity. The portion provided with the bioactivity may be composed of titanium oxide. In the bone repair implant according to the present invention, it is preferable that at least a part of the implant has a porous structure.
 上記のようにすると、骨損傷部に接する表面の生体活性能により、骨との結合が促進されるため、骨とインプラントの一体化が術後に促進される。特に、上記骨損傷部分を埋めることができる人工骨部を設けて生体活性処理を施しておくと、術後数か月で骨損傷部を修復できる。したがって、自己の他部位の骨を移植したり、別途金属製固定具を用いたりする必要が無い。さらに、本発明のインプラントは生体適合性の金属であるチタン又はチタン合金からなり、骨損傷部の周囲の骨とも融合しやすい多孔構造とすることにより、設置後に患者から取り出す必要もない。従って、本発明に係る骨修復インプラントによると、患者及び術者の負担を軽減することが可能となる。 す る と In the above manner, the bioactivity of the surface in contact with the bone damage promotes the bonding with the bone, so that the integration of the bone and the implant is promoted after the operation. In particular, if an artificial bone part capable of filling the above bone damaged part is provided and subjected to bioactivity treatment, the bone damaged part can be repaired several months after the operation. Therefore, there is no need to implant bones at other parts of the patient or to use a separate metal fixture. Furthermore, the implant of the present invention is made of a biocompatible metal such as titanium or a titanium alloy, and has a porous structure that easily fuses with the bone around the bone damage, so that it is not necessary to remove the implant from the patient after installation. Therefore, according to the bone repair implant according to the present invention, the burden on the patient and the operator can be reduced.
 また、本発明に係る骨修復インプラントにおいて、前記板状部及び人工骨部の少なくとも一部には、抗菌性が付与されていることが好ましい。このようにすると、骨修復インプラントの設置によって、患者に感染症等を引き起こすことを防止できる。 In addition, in the bone repair implant according to the present invention, it is preferable that at least a part of the plate-shaped portion and the artificial bone portion have antibacterial properties. In this way, it is possible to prevent an infection or the like from occurring in the patient due to the installation of the bone repair implant.
 本発明に係る骨修復インプラントの製造方法は、患者の骨損傷部を有する骨の三次元座標データを得るステップと、前記三次元座標データに基づいて、チタン又はチタン合金を材料として、前記骨損傷部を有する骨の表面形状に対応する表面形状を少なくとも部分的に有し、且つ貫通孔を有する板状部を造形するステップとを備えていることを特徴とする。 The method for manufacturing a bone repair implant according to the present invention includes the steps of obtaining three-dimensional coordinate data of a bone having a bone damaged part of a patient, and using the titanium or titanium alloy as a material based on the three-dimensional coordinate data, Shaping a plate-like portion having a surface shape corresponding to the surface shape of the bone having the portion at least partially and having a through hole.
 本発明に係る骨修復インプラントの製造方法によると、患者の骨損傷部を有する骨の三次元座標データに基づいて製造されるため、患者の骨損傷部を有する種々の骨の形状に合わせて、種々の形状のインプラントを容易に製造することができる。特に、上記特徴を有する本発明に係るインプラントを容易に製造することができる。 According to the manufacturing method of the bone repair implant according to the present invention, since it is manufactured based on the three-dimensional coordinate data of the bone having the bone damaged part of the patient, according to the shape of various bones having the bone damaged part of the patient, Implants of various shapes can be easily manufactured. In particular, the implant according to the present invention having the above characteristics can be easily manufactured.
 本発明に係る骨修復インプラントの製造方法において、前記造形するステップは、積層造形技術を用いることが好ましい。このようにすると、骨損傷部を有する種々の骨の形状に対応するように正確且つ簡便に造形でき、またその内部構造を多孔質構造にすることもできる。 に お い て In the method for manufacturing a bone repair implant according to the present invention, it is preferable that the shaping step uses an additive manufacturing technique. In this way, it is possible to accurately and easily form the shape corresponding to the shape of various bones having a bone damaged portion, and to make the internal structure a porous structure.
 本発明に係る骨修復インプラントの製造方法は、前記造形するステップにおいて、移植組織を設置するための空間をなす組織設置部を有するような形状に前記板状部を造形してもよい。 は In the method of manufacturing a bone repair implant according to the present invention, in the forming step, the plate-shaped portion may be formed into a shape having a tissue setting portion forming a space for setting a transplanted tissue.
 本発明に係る骨修復インプラントの製造方法は、前記造形するステップにおいて、前記骨損傷部を有する骨を支持できる前記板状部の設置に適する位置の骨の表面形状に対応する表面形状を有する前記板状部を造形することが好ましく、例えば上記のような骨損傷部を有する骨の下部の表面形状に対応する表面形状を有する前記板状部を造形してもよい。 In the method of manufacturing a bone repair implant according to the present invention, in the shaping step, the surface shape corresponding to the surface shape of the bone at a position suitable for setting the plate-shaped portion capable of supporting the bone having the bone damaged portion is provided. It is preferable to shape the plate-shaped portion, and for example, the plate-shaped portion having a surface shape corresponding to the surface shape of the lower part of the bone having the above-mentioned bone damaged portion may be formed.
 本発明に係る骨修復インプラントの製造方法において、前記骨損傷部における骨欠損部分を少なくとも部分的に埋めるための人工骨部を前記板状部と一体形成してもよい。また、前記造形するステップの後に、前記板状部及び人工骨部の表面の少なくとも一部に生体活性処理を施すステップをさらに含むことが好ましく、該ステップは、前記インプラントに酸処理をするステップと、前記インプラントに加熱処理をするステップとを含むことが好ましい。 In the method for manufacturing a bone repair implant according to the present invention, an artificial bone part for at least partially filling a bone defect part in the bone damaged part may be formed integrally with the plate-shaped part. Preferably, after the step of shaping, the method further comprises a step of subjecting at least a part of the surface of the plate-shaped part and the artificial bone part to a bioactive treatment. And heat treating the implant.
 このようにすると、インプラントに骨形成能を促す表面層を形成できるため、インプラントにおいて優れた骨形成能を付与できる。 す る と In this way, a surface layer that promotes osteogenic ability can be formed on the implant, so that excellent osteogenic ability can be imparted to the implant.
 本発明に係る骨修復インプラントの製造方法は、前記造形するステップの後に、前記板状部及び人工骨部の少なくとも一部に抗菌処理を施すステップをさらに含むことが好ましい。 骨 Preferably, the method for manufacturing a bone repair implant according to the present invention further includes a step of performing an antimicrobial treatment on at least a part of the plate-like portion and the artificial bone portion after the shaping step.
 本発明に係る骨修復インプラント及びその製造方法によると、簡便な方法で周囲の骨を支持及び固定でき、且つ、優れた骨形成誘導能を有する骨修復インプラントを得ることができる。 According to the bone repair implant and the method for manufacturing the same according to the present invention, a bone repair implant capable of supporting and fixing surrounding bone by a simple method and having excellent bone formation inducing ability can be obtained.
(a)~(c)は本発明の一実施形態に係る骨修復インプラントを示す図であり、(a)は骨修復インプラントを骨損傷部を有する顎骨に設置した状態を示し、(b)は骨修復インプラントの斜視図であり、(c)は別方向の斜視図である。(A)-(c) is a figure which shows the bone repair implant which concerns on one Embodiment of this invention, (a) shows the state which installed the bone repair implant in the jawbone which has a bone damage part, (b) It is a perspective view of a bone repair implant, (c) is a perspective view of another direction. (a)~(c)は本発明の一実施形態の一変形例に係る骨修復インプラントを示す図であり、(a)は骨修復インプラントを骨損傷部を有する顎骨に設置した状態を示し、(b)は骨修復インプラントの斜視図であり、(c)は別方向の斜視図である。(A)-(c) is a figure which shows the bone repair implant which concerns on one modification of one Embodiment of this invention, (a) shows the state which installed the bone repair implant in the jawbone which has a bone damage part, (B) is a perspective view of the bone repair implant, and (c) is a perspective view in another direction. (a)及び(b)は、図2(a)のIII-III線における断面を示す図である。FIGS. 3A and 3B are views showing a cross section taken along line III-III of FIG. (a)~(c)は本発明の一実施形態の他の変形例に係る骨修復インプラントを示す図であり、(a)は骨修復インプラントを骨損傷部を有する顎骨に設置した状態を示し、(b)は骨修復インプラントの斜視図であり、(c)は別態様の斜視図である。(A)-(c) is a figure which shows the bone repair implant which concerns on another modification of one Embodiment of this invention, and shows the state which installed the bone repair implant in the jawbone which has a bone damage part. (B) is a perspective view of a bone repair implant, and (c) is a perspective view of another embodiment. 本発明の一実施形態の他の変形例に係る骨修復インプラントを示し、(a)骨修復インプラントを骨損傷部を有する顎骨に設置した状態を示す図であり、(b)~(d)はそれぞれ骨修復インプラントの右側面、正面及び左側面を示す図である。FIG. 4 shows a bone repair implant according to another modified example of the embodiment of the present invention, in which (a) shows a state in which the bone repair implant is installed on a jawbone having a bone damage part, and (b) to (d) show the state. FIG. 4 is a diagram showing a right side surface, a front side, and a left side surface of the bone repair implant, respectively. 本発明の一実施形態の他の変形例に係る、積層造形技術で作製された骨修復インプラントを示す写真である。9 is a photograph showing a bone repair implant manufactured by an additive manufacturing technique according to another modified example of the embodiment of the present invention. (a)~(d)は本発明の一実施形態の他の変形例に係る、積層造形技術で作製された骨修復インプラントを示す図であり、(a)は側面を示し、(b)は正面を示し、(c)は下面を示し、(d)はインプラントが締結具により骨に締結された状態を示す断面図である。(A)-(d) is a figure which shows the bone repair implant manufactured by the additive manufacturing technology which concerns on another modification of one Embodiment of this invention, (a) shows a side surface, (b) It is a sectional view showing the state where the front was shown, (c) showed the lower surface, and the implant was fastened to the bone with the fastener. (a)~(d)は本発明の実施例1におけるラットの骨欠損部への骨修復インプラントの設置方法を説明するための写真である。(A) to (d) are photographs for explaining a method for installing a bone repair implant in a bone defect part of a rat in Example 1 of the present invention. 本発明の実施例1における骨修復インプラントが設置されたラットの設置後2週間時点の骨欠損部におけるマイクロCTの写真及び非脱灰研磨標本の写真である。2 is a photograph of a micro-CT and a photograph of a non-demineralized polished specimen at a bone defect part two weeks after installation of a rat on which a bone repair implant is installed in Example 1 of the present invention. 本発明の実施例1における骨修復インプラントが設置されたラットの設置後2週間及び7週間の新生骨量を示すグラフである。4 is a graph showing the amount of new bone 2 weeks and 7 weeks after the rat in which the bone repair implant was placed in Example 1 of the present invention. 本発明の実施例3の応力シミュレーションの条件を説明するための図である。FIG. 9 is a diagram for explaining conditions for stress simulation according to a third embodiment of the present invention. 本発明の実施例3の応力シミュレーションの条件を説明するための図である。FIG. 9 is a diagram for explaining conditions for stress simulation according to a third embodiment of the present invention. 本発明の実施例3の応力シミュレーションの結果の一部を示す図である。FIG. 14 is a diagram illustrating a part of the result of the stress simulation of the third embodiment of the present invention. 従来の骨修復インプラントを示す図である。FIG. 2 is a view showing a conventional bone repair implant.
 以下、本発明を実施するための形態を図面に基づいて説明する。以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用方法或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. The description of the preferred embodiments below is merely exemplary in nature and is not intended to limit the invention, its application, or uses.
 本発明に係る骨修復インプラントは、患者の骨損傷部に設置するためのチタン又はチタン合金からなる骨修復インプラントである。チタンは、生体適合性の金属であり、インプラントの材料として用いるのに極めて有利である。本発明において、骨損傷部とは、手術等により骨の一部が欠損した部分や骨折した部分、その他種々の形態異常が生じた骨部分であり、完全な状態でない骨部分を含むものである。 骨 The bone repair implant according to the present invention is a bone repair implant made of titanium or a titanium alloy to be installed on a bone damaged part of a patient. Titanium is a biocompatible metal, which is extremely advantageous for use as an implant material. In the present invention, the bone damaged part is a part where a part of the bone is lost or broken due to surgery or the like, or a bone part where various morphological abnormalities have occurred, and includes a bone part that is not in perfect condition.
 本発明の骨修復インプラントの表面には生体活性処理が施されていることが好ましい。生体活性処理は、インプラント表面と骨との結合を強固にできる処理であれば、特に限定されないが、例えばインプラント表面において、チタン酸化物で構成された骨形成を促す表面層を形成することが好ましい。当該表面層は、加熱処理を施されることによりインプラントの表面のチタンが酸化して形成される。さらに、当該表面層は、加熱処理される前に酸処理を施されることで骨形成能が付与されていることが好ましい。本発明の骨修復インプラントでは、当該酸処理及び加熱処理によって優れた骨形成能を発揮する。特に、インプラントに優れた骨形成能を付与するために、塩酸、硫酸、硝酸及びフッ酸のうちの少なくとも2つ以上を含む混酸溶液を用いることが好ましい。また、加熱処理における温度は、500℃~750℃であることが好ましい。 生 体 It is preferable that the surface of the bone repair implant of the present invention has been subjected to a bioactive treatment. The bioactive treatment is not particularly limited as long as it is a treatment capable of strengthening the bond between the implant surface and the bone. For example, it is preferable to form a surface layer made of titanium oxide that promotes bone formation composed of titanium oxide on the implant surface. . The surface layer is formed by oxidizing titanium on the surface of the implant by performing the heat treatment. Further, it is preferable that the surface layer has an osteogenic ability by being subjected to an acid treatment before being subjected to the heat treatment. The bone repair implant of the present invention exhibits excellent bone formation ability by the acid treatment and the heat treatment. In particular, it is preferable to use a mixed acid solution containing at least two or more of hydrochloric acid, sulfuric acid, nitric acid, and hydrofluoric acid in order to impart excellent osteogenic ability to the implant. The temperature in the heat treatment is preferably from 500 ° C. to 750 ° C.
 また、本発明の骨修復インプラントは、上記生体活性処理の他に、抗菌処理が施されていることが好ましい。抗菌処理は、インプラント表面に抗菌性を付与できる処理であれば、特に限定されないが、例えば、インプラントを銀、ガリウム、又はヨウ素等の抗菌作用を示すイオン含有水溶液にインプラントを浸漬する処理が挙げられる。これにより、インプラントの表面から抗菌作用を有する銀、ガリウム、又はヨウ素等のイオンを放出することができる。さらに、上記抗菌処理の前に、骨結合性を向上できることが知られているアパタイトの形成能を向上するために、カルシウムイオンを含む水溶液にインプラントを浸漬する処理を行ってもよい。なお、これらの処理をする前に、上記各イオンをインプラントに高濃度で保持させるために、水酸化ナトリウム等のアルカリ水溶液にインプラントを浸漬する処理を行ってもよい。また、この抗菌処理は、上記生体活性処理と共に行うこともでき、例えば上記混酸処理及び加熱処理の後に、上記水酸化ナトリウム等のアルカリ水溶液による処理、及びカルシウムイオンを含む水溶液による処理後、硝酸銀水溶液等の銀イオン含有水溶液や三塩化ヨウ素水溶液等のヨウ素イオン含有水溶液に浸漬することにより行われてもよい。 骨 In addition, the bone repair implant of the present invention is preferably subjected to an antibacterial treatment in addition to the bioactive treatment. The antibacterial treatment is not particularly limited as long as it is a treatment capable of imparting antibacterial properties to the surface of the implant. . Thereby, ions such as silver, gallium, or iodine having an antibacterial action can be released from the surface of the implant. Further, before the antibacterial treatment, a treatment of immersing the implant in an aqueous solution containing calcium ions may be performed in order to improve the apatite-forming ability, which is known to improve osteointegration. Before performing these treatments, a treatment may be performed in which the implants are immersed in an aqueous alkali solution such as sodium hydroxide in order to keep the ions at a high concentration in the implants. This antibacterial treatment can also be performed together with the above-mentioned bioactivity treatment. For example, after the above-mentioned mixed acid treatment and heat treatment, the above-mentioned treatment with an aqueous alkali solution such as sodium hydroxide, and the treatment with an aqueous solution containing calcium ions, and then an aqueous silver nitrate solution Or an aqueous solution containing iodine ions such as an aqueous solution containing silver ions such as iodine or an aqueous solution of iodine trichloride.
 また、本発明に係る骨修復インプラントは、患者の骨損傷部を有する骨の表面形状に対応する形状を少なくとも部分的に有する板状部で構成されており、また、貫通孔を有する構造であることを特徴とする。本発明において、板状部は、平板に限らず、湾曲部を有する湾曲板であってもよく、設置する部分の形状に適合するように湾曲していることが好ましい。特に曲げ強度の観点から略U字状又は略J字状等の断面形状を有することが好ましい。また、上記板状部の表面形状は、少なくとも部分的に患者の骨損傷部を有する骨の表面形状に対応する形状とするために、本発明に係る骨修復インプラントは、患者の骨損傷部を有する骨の三次元座標データに基づいて形成される。形成方法は、特に限定されないが、例えば積層造形技術を用いることができる。特に、積層ピッチが小さいSLM法を利用した3Dプリンタを用いることで、骨損傷部を有する種々の骨の形状に対応するように正確且つ簡便に造形でき、またその内部構造を多孔質構造にすることもできる。積層ピッチは、例えば0.01mm~0.05mmである。多孔質構造にすることで、インプラントを軽量にすることができ、また、骨とも融合しやすい構造とすることができる。多孔質構造としては例えば海綿状構造である。また、本発明のインプラントは、後に説明するが、設置後のインプラントに発生する応力を低減し、破損を防止する観点から、患者の骨損傷部を有する骨のできるだけ広い範囲を覆うような形態であることが好ましい。 Further, the bone repair implant according to the present invention is constituted by a plate-like portion having at least partially a shape corresponding to a surface shape of a bone having a bone damaged portion of a patient, and has a structure having a through hole. It is characterized by the following. In the present invention, the plate-shaped portion is not limited to a flat plate, and may be a curved plate having a curved portion, and is preferably curved so as to conform to the shape of the portion to be installed. In particular, it is preferable to have a cross-sectional shape such as a substantially U shape or a substantially J shape from the viewpoint of bending strength. In addition, in order that the surface shape of the plate-like portion is at least partially a shape corresponding to the surface shape of the bone having the bone damaged portion of the patient, the bone repair implant according to the present invention provides the bone damaged portion of the patient with the bone damaged portion. It is formed based on the three-dimensional coordinate data of the bone having. The forming method is not particularly limited, but, for example, a lamination molding technique can be used. In particular, by using a 3D printer using an SLM method with a small lamination pitch, it is possible to accurately and easily form a shape corresponding to various bone shapes having a bone damaged portion, and to make the internal structure a porous structure. You can also. The lamination pitch is, for example, 0.01 mm to 0.05 mm. By using a porous structure, the weight of the implant can be reduced, and the structure can be easily fused with bone. The porous structure is, for example, a spongy structure. Further, the implant of the present invention will be described later. From the viewpoint of reducing stress generated in the implant after installation and preventing damage, the implant of the present invention is formed in such a form as to cover the widest possible area of the bone having the bone damaged part of the patient. Preferably, there is.
 本発明に係る骨修復インプラントは、上記の通り、例えば3Dプリンタを用いて形成されるため、患者への設置部位に合わせて種々の形状に形成できて多様なデザイン性を有し、さらに種々の使用形態に対応することができる。例えば、上記のように略U字状又は略J字状等の断面形状を有するインプラントを採用すると、骨損傷部を下方から支持するトレイのような形態で用いることができる。そうすると、当該トレイ状のインプラント上に粉砕した海綿骨等の骨修復を促進する材料を載置することも可能となって好ましいが、当然にインプラント上に何も載置せずに用いることもできる。また、トレイ状ではなく平板状のインプラントを採用した場合、インプラントの一方の面に例えば血管柄付きの骨筋皮弁を固定し、それを骨損傷部に設置するような態様で用いることもできる。また、腓骨等の移植骨を当該インプラントに固定した状態で患者の骨損傷部に設置することもでき、この場合、インプラント形状に合わせて移植骨を分割して固定して用いることもできる。 As described above, since the bone repair implant according to the present invention is formed by using, for example, a 3D printer, it can be formed into various shapes according to the installation site on the patient, and has various design properties, and further has various designs. It can correspond to the usage form. For example, when an implant having a cross-sectional shape such as a substantially U-shape or a substantially J-shape is employed as described above, the implant can be used in a form such as a tray for supporting a bone damaged portion from below. Then, a material that promotes bone repair, such as crushed cancellous bone, can be placed on the tray-shaped implant, which is preferable. However, it is naturally possible to use without placing anything on the implant. . In addition, when a plate-shaped implant instead of a tray-shaped implant is employed, for example, an osteomuscular flap with a vascular handle may be fixed to one surface of the implant, and the implant may be used in such a manner as to be placed at a bone injury site. . In addition, the implanted bone such as the fibula may be fixed to the implant and placed on the damaged bone of the patient. In this case, the implanted bone may be divided and fixed according to the shape of the implant.
 本発明に係る骨修復インプラントは、上記の通り、患者の骨損傷部を有する骨の表面形状に対応する形状を少なくとも部分的に有する板状部で構成されるが、当該板状部には、移植組織を設置するための空間をなす組織設置部が形成されていてもよい。このようにすると、板状部における患者の骨損傷部を有する骨の表面形状に対応する形状部分が患者の骨等の組織と接し、この部分において板状部と患者の骨とをスクリュー等の締結具で接続できる一方で、上記組織設置部において板状部に骨修復のために重要な血管や皮膚等の移植組織を設置できる。上記組織設置部は、板状部に上記移植組織を設置できるような形態で形成されており、以下の構成に限定はされないが、例えば板状部に僅かな窪みを設けたり、移植組織を設ける側と反対側に僅かに湾曲させたりして、移植組織を容易に設置できる形状に構成されていてもよい。組織設置部によって、板状部に移植組織を配設できるスペースが十分に得られるので、上記血管等の配設にかかる術者の作業負担を軽減することができる。 The bone repair implant according to the present invention, as described above, is configured of a plate-shaped portion having at least partially a shape corresponding to the surface shape of the bone having the bone damaged portion of the patient. A tissue setting part which forms a space for setting the transplanted tissue may be formed. In this way, the shape portion corresponding to the surface shape of the bone having the patient's bone damaged portion in the plate-shaped portion comes into contact with the tissue such as the patient's bone, and the plate-shaped portion and the patient's bone are connected to the tissue such as the screw in this portion. While the connection can be made with the fastener, the transplanted tissue such as a blood vessel or skin important for bone repair can be set in the plate-shaped portion in the tissue setting portion. The tissue setting section is formed in such a manner that the transplanted tissue can be set on the plate-like portion, and is not limited to the following configuration. For example, a slight depression is provided in the plate-like portion, or a transplanted tissue is provided. It may be configured to be slightly curved to the side opposite to the side so that the implanted tissue can be easily installed. Since the space for placing the transplanted tissue on the plate-like portion is sufficiently obtained by the tissue setting section, the work load on the operator for arranging the blood vessels and the like can be reduced.
 以下に、本発明の一実施形態として下顎骨の骨損傷部としての骨欠損部を有する部位に本発明に係る骨修復インプラントを設置する場合について図1を参照しながら説明する。具体的に、図1(a)は、下顎骨の一部が欠損した骨欠損部Aに本発明に係る骨修復インプラント10を設置した状態を示し、図1(b)、(c)はそれぞれ骨修復インプラント10の別方向を示す斜視図である。図1に示すように、骨修復インプラント10は、骨欠損部Aを有する骨(下顎骨)の表面形状に対応するように湾曲した板状に形成されている。具体的に、骨修復インプラント10は、骨欠損部Aを有する骨に設置される板状部11で構成されており、板状部11はその中央部12の両側に位置する接続部13に貫通孔14が設けられている。骨修復インプラント10は、中央部12が骨欠損部Aの一部を覆うように設置される。特に、本実施形態において、骨修復インプラント10は、中央部12が骨欠損部Aの下部を覆うように装着され、下方からその骨欠損部Aを有する骨を骨修復インプラント10が支持する。また、上述の通り、中央部12の両側に接続部13が配置されており、特に接続部13は骨欠損部Aの両側に位置する骨部分Bの表面形状に対応する表面形状を有しており、その部分に接する、好ましくは密接するように形成されている。また、上述の通り接続部13には貫通孔14が設けられているため、骨修復インプラント10の設置時にはスクリュー等の締結具をその貫通孔14に通し、接続部13と骨欠損部Aの両側に位置する骨部分Bとを締結する。これにより、骨修復インプラント10は、骨欠損部Aを有する骨に設置され、骨欠損部Aを有する骨が支持・固定されることとなる。なお、本実施形態に係る骨修復インプラント10において、板状部11の骨と接する側の面には、骨との結合を強固にするための生体活性処理が施されている。上述の通り、生体活性処理は、上記作用を付与できる処理であれば特に限定されないが、特に混酸加熱処理が好ましい。 Hereinafter, as one embodiment of the present invention, a case where the bone repair implant according to the present invention is installed at a site having a bone defect as a bone damaged portion of the mandible will be described with reference to FIG. Specifically, FIG. 1A shows a state in which a bone repair implant 10 according to the present invention is installed in a bone defect A in which a part of the mandible is lost, and FIGS. 1B and 1C respectively. FIG. 3 is a perspective view showing another direction of the bone repair implant 10. As shown in FIG. 1, the bone repair implant 10 is formed in a curved plate shape so as to correspond to the surface shape of a bone (mandible) having a bone defect A. Specifically, the bone repair implant 10 is composed of a plate-like portion 11 placed on a bone having a bone defect A, and the plate-like portion 11 penetrates through connection portions 13 located on both sides of the central portion 12. A hole 14 is provided. The bone repair implant 10 is installed so that the central part 12 covers a part of the bone defect part A. In particular, in the present embodiment, the bone repair implant 10 is mounted so that the central portion 12 covers the lower part of the bone defect A, and the bone repair implant 10 supports the bone having the bone defect A from below. As described above, the connecting portions 13 are arranged on both sides of the central portion 12, and the connecting portion 13 has a surface shape corresponding to the surface shape of the bone portion B located on both sides of the bone defect portion A. And is formed to be in contact with, preferably close to, that portion. Also, as described above, since the through-hole 14 is provided in the connection portion 13, a fastener such as a screw is passed through the through-hole 14 when the bone repair implant 10 is installed, and both sides of the connection portion 13 and the bone defect portion A are provided. And the bone part B located at As a result, the bone repair implant 10 is installed on the bone having the bone defect A, and the bone having the bone defect A is supported and fixed. In the bone repair implant 10 according to the present embodiment, the surface of the plate-like portion 11 on the side in contact with the bone is subjected to a bioactive treatment for strengthening the bond with the bone. As described above, the biological activity treatment is not particularly limited as long as the treatment can impart the above-mentioned effect, but a mixed acid heating treatment is particularly preferable.
 また、上記実施形態の一変形例について図2を参照しながら説明する。図2に示すように、本変形例は上記実施形態に係る骨修復インプラントと比較して、板状部21の中央部22に人工骨部25が突設されていることを特徴とする。人工骨部25は、骨欠損部Aの形状に適合する形状に形成されている。従って、骨修復インプラント20を設置することにより、骨欠損部Aを人工骨部25により埋めることが可能となる。このような人工骨部25は、板状部21と同様に、患者の骨の三次元座標データに基づいて形成でき、例えば積層造形技術を用いることができる。このため、人工骨部25は板状部21と一体に形成することができる。また、人工骨部25は、多孔質構造であり、骨と接する面には、板状部21と同様に、骨との結合を強固にするための生体活性処理が施されている。上記実施形態と同様に、生体活性処理は、上記作用を付与できる処理であれば特に限定されないが、特に混酸加熱処理が好ましい。このような構成により、人工骨部25とその周囲の骨との一体化を促進することが可能となり、骨欠損部における骨修復を促進することができる。 の 一 Further, a modified example of the above embodiment will be described with reference to FIG. As shown in FIG. 2, this modified example is characterized in that an artificial bone portion 25 is protruded from a central portion 22 of a plate-shaped portion 21 as compared with the bone repair implant according to the above embodiment. The artificial bone part 25 is formed in a shape that matches the shape of the bone defect part A. Therefore, by installing the bone repair implant 20, the bone defect A can be filled with the artificial bone 25. Like the plate-like portion 21, such an artificial bone portion 25 can be formed based on three-dimensional coordinate data of a patient's bone, and for example, an additive manufacturing technique can be used. For this reason, the artificial bone part 25 can be formed integrally with the plate-shaped part 21. Further, the artificial bone portion 25 has a porous structure, and a surface in contact with the bone is subjected to a bioactive treatment for strengthening the bond with the bone, similarly to the plate-like portion 21. As in the above embodiment, the bioactivity treatment is not particularly limited as long as it can impart the above-mentioned effect, but a mixed acid heating treatment is particularly preferable. With such a configuration, it becomes possible to promote the integration of the artificial bone portion 25 and the surrounding bone, and it is possible to promote the bone repair at the bone defect portion.
 人工骨部25は、上記の通り板状部21と一体に形成できる他に、別体として形成されてもよく、その場合、人工骨部25と板状部21とは例えばスクリュー等の締結具によって接続される。この場合、人工骨部25は板状部21と同様にチタン又はチタン合金を材料として用いることができ、人工骨部25の表面に生体活性処理が施されていることが好ましい。また、人工骨部25の表面のうち患者の骨と接触する部分については多孔チタンや粗面チタンからなることが好ましく、他の表面は平滑状であってよい。人工骨部25の内部構造については特に限定されないが、空洞であってもよいし、多孔構造であってもよい。人工骨部25の材料としては、上記のようなチタンの他に、例えばハイドロキシアパタイト等の生体活性セラミックを用いてもよい。表面に生体活性能を有する人工骨部25を用いることによって、人工骨部25が移植された骨欠損部Aの周囲の骨部分Bとの結合を促進できる。 The artificial bone portion 25 may be formed separately from the plate-like portion 21 as described above, or may be formed as a separate body. In this case, the artificial bone portion 25 and the plate-like portion 21 are connected to each other by a fastener such as a screw. Connected by In this case, titanium or a titanium alloy can be used as the material of the artificial bone portion 25 as in the case of the plate-like portion 21, and it is preferable that the surface of the artificial bone portion 25 be subjected to bioactivity treatment. In addition, a portion of the surface of the artificial bone portion 25 that comes into contact with the patient's bone is preferably made of porous titanium or roughened titanium, and the other surface may be smooth. The internal structure of the artificial bone portion 25 is not particularly limited, but may be hollow or porous. As a material of the artificial bone portion 25, for example, a bioactive ceramic such as hydroxyapatite may be used in addition to titanium as described above. By using the artificial bone part 25 having a bioactive ability on the surface, the bonding of the artificial bone part 25 to the bone part B around the bone defect part A in which the artificial bone part 25 is implanted can be promoted.
 本実施形態において、上記板状部21及び人工骨部25は、骨欠損部Aの周囲の骨部分Bに相当する力学特性を有することが好ましい。このようにすると、骨欠損部Bとその周囲の骨部分Bとの間の力学特性の不連続性を低減することができ、板状部が骨欠損部Aの周囲の骨部分Bの動きに対して正常に共動できて、患者への負担を低減できる。 In the present embodiment, the plate-like portion 21 and the artificial bone portion 25 preferably have mechanical properties corresponding to the bone portion B around the bone defect portion A. In this way, it is possible to reduce the discontinuity of the mechanical properties between the bone defect B and the surrounding bone B, and the plate-like portion can prevent the movement of the bone B around the bone defect A. It is possible to cooperate normally and reduce the burden on the patient.
 本実施形態において、人工骨部25は、図3(a)に示すように例えば略J字状(逆J字状)の板状部21の上に直接に設けられていてもよいし、この他に、図3(b)に示すように、板状部21の上に設けられた例えば板状部21と同等の材料からなる台座部21aの上に設けられてもよい。 In the present embodiment, the artificial bone portion 25 may be provided directly on, for example, a substantially J-shaped (inverted J-shaped) plate-like portion 21 as shown in FIG. Alternatively, as shown in FIG. 3B, it may be provided on a pedestal portion 21 a provided on the plate portion 21 and made of, for example, the same material as the plate portion 21.
 本実施形態の他の変形例として、図4に示すように板状部31は、少なくとも一部、例えば締結具が挿入される貫通孔が設けられる部分以外にメッシュ形状部分36を有していてもよい。患者の骨欠損部に板状部31を設置する際に、図4(c)に示すように板状部31に移植骨40を載置し、当該移植骨40により骨欠損部Aを補填する場合がある。この場合、板状部31の剛性が高いと、骨欠損部Aの周囲の骨にかかる負荷は板状部31に支持されて、移植骨40には負荷が作用しない応力遮蔽が生じてしまう。応力遮蔽とは、移植骨ではなくインプラント側に荷重が集中することで、移植骨に負荷がかからず、移植骨が骨吸収によって萎縮することを引き起こす原因となる現象である。図4に示すように、板状部31における移植骨40を載置する部分をメッシュ状にすることは、板状部31の剛性を低減できるため、上記応力遮蔽を防止できて好ましい。 As another modified example of the present embodiment, as shown in FIG. 4, the plate-shaped portion 31 has a mesh-shaped portion 36 in addition to at least a part, for example, a portion provided with a through hole into which a fastener is inserted. Is also good. When setting the plate-shaped portion 31 in the bone defect portion of the patient, the transplanted bone 40 is placed on the plate-shaped portion 31 as shown in FIG. There are cases. In this case, when the rigidity of the plate-shaped portion 31 is high, the load applied to the bone around the bone defect portion A is supported by the plate-shaped portion 31, and stress shielding in which no load acts on the transplant bone 40 occurs. The stress shielding is a phenomenon in which a load is concentrated on the implant side instead of the implanted bone, so that the implanted bone is not loaded and causes the implanted bone to atrophy due to bone resorption. As shown in FIG. 4, it is preferable to form a mesh-shaped portion of the plate-shaped portion 31 on which the transplant bone 40 is placed, since the rigidity of the plate-shaped portion 31 can be reduced and the above-mentioned stress shielding can be prevented.
 また、上記実施形態及び変形例では、下顎骨に設けられるインプラントを例示したが、図5に示すように、インプラントが下顎枝にまで及んでもよい。この場合、インプラントにおける下顎枝に及ぶ部分にも貫通孔が設けられており、下顎枝において締結具により締結できるように構成されていることが好ましい。 Further, in the above embodiments and modifications, the implant provided in the mandible is illustrated, but as shown in FIG. 5, the implant may extend to the mandibular branch. In this case, it is preferable that a through hole is also provided in a portion of the implant that extends to the mandibular branch, so that the implant can be fastened to the mandibular branch with a fastener.
 さらに、本実施形態の他の変形例として、図6に示すように、骨修復インプラントは、複数の貫通孔を有する外形を有していてもよい。このようなインプラントについて、図6のように下顎骨の上方から設置する形態のものに限らず、図7に示すように、下顎骨の下方から設置する形態であってもよい。これらのような形状の場合、当該インプラントを締結具により骨に締結できる位置の自由度を向上でき、また、当該インプラントを骨欠損部に設置した状態においても、複数の貫通孔を介して骨欠損部を目視し易くなるため、術者の作業負担を低減できる。特に、図7に示す下顎骨の下方から設置されるインプラント50の場合、インプラント50の表面の全体にわたって複数の貫通孔54が形成されているため、上方を除く、下方、側方及び斜め方向等の最適な方向からスクリュー等の締結具60により骨に固定可能であるので、固定力の確保に極めて有利である。なお、本発明に係る骨修復インプラントは、上述の通り、患者の骨損傷部の三次元座標データに基づいて、例えば積層造形技術を用いて形成されるため、下顎骨に限らず、その他の種々の骨の骨損傷部に適用可能である。 Further, as another modified example of the present embodiment, as shown in FIG. 6, the bone repair implant may have an outer shape having a plurality of through holes. Such an implant is not limited to a configuration in which the implant is installed from above the mandible as shown in FIG. 6, but may be a configuration in which it is installed from below the mandible as shown in FIG. In the case of these shapes, the degree of freedom of the position where the implant can be fastened to the bone by the fastener can be improved, and even when the implant is installed in the bone defect, the bone defect can be removed through the plurality of through holes. Since the part can be easily observed, the work load on the operator can be reduced. In particular, in the case of the implant 50 installed from below the mandible shown in FIG. 7, since a plurality of through holes 54 are formed over the entire surface of the implant 50, the upper, lower, side, oblique, and the like are excluded. Can be fixed to the bone with the fastener 60 such as a screw from the optimal direction, and it is extremely advantageous for securing the fixing force. Note that, as described above, the bone repair implant according to the present invention is formed based on the three-dimensional coordinate data of the bone damaged part of the patient using, for example, an additive manufacturing technique. It can be applied to the bone damage part of the bone.
 次に、本発明に係る骨修復インプラントの製造方法について説明する。本発明に係る骨修復インプラントの製造方法は、患者の骨損傷部を有する骨の三次元座標データを得るステップと、当該三次元座標データに基づいて、例えば積層造形技術や切削法等の技術を用いて、骨損傷部を有する骨の表面形状に対応する表面形状を少なくとも部分的に有し、且つ貫通孔を有する板状部を造形するステップを備えている。 Next, a method for manufacturing the bone repair implant according to the present invention will be described. The method for manufacturing a bone repair implant according to the present invention includes a step of obtaining three-dimensional coordinate data of a bone having a bone damaged part of a patient, and a technique such as an additive manufacturing technique or a cutting method based on the three-dimensional coordinate data. The method includes a step of shaping a plate-like portion having a surface shape corresponding to the surface shape of the bone having the bone damage portion at least partially and having a through hole.
 患者の骨損傷部を有する骨の三次元座標データを得るステップでは、まず、患者の骨損傷部を有する骨を例えばX線CTスキャン等のX線撮像技術を用いて撮影する。そして、その撮影画像をコンピュータにより画像解析ソフトを用いて三次元データを設計し、該三次元データが一定のピッチにスライスされて例えばSTLデータ等の三次元座標データを得る。 In the step of obtaining the three-dimensional coordinate data of the bone having the bone damaged part of the patient, first, the bone having the bone damaged part of the patient is photographed by using an X-ray imaging technique such as an X-ray CT scan. Then, three-dimensional data is designed on the photographed image by a computer using image analysis software, and the three-dimensional data is sliced at a fixed pitch to obtain three-dimensional coordinate data such as STL data.
 次に、得られた三次元座標データに基づいて、積層造形装置等を用い、チタン又はチタン合金粒子を材料としてインプラントを造形する。3Dプリンタを用いる場合、SLM(selective laser melting)法を利用した積層ピッチが小さいものを用いることが好ましく、例えばピッチは0.01mm~0.05mmであり、特にピッチが0.02mm~0.03mmであることが好ましい。このようにすることで、患者の骨損傷部を有する骨の表面形状に対応する表面形状を有するインプラントを正確且つ容易に製造することができる。また、小さいピッチで造形されることによりインプラントに多孔質構造にすることができ、このため、骨とインプラントが一体的に融合することができて互いの結合を強固にすることができる。 Next, based on the obtained three-dimensional coordinate data, an implant is formed using a titanium or titanium alloy particle as a material by using a layered manufacturing apparatus or the like. When a 3D printer is used, it is preferable to use a small laminating pitch using an SLM (selective laser melting) method. For example, the pitch is 0.01 mm to 0.05 mm, and particularly the pitch is 0.02 mm to 0.03 mm. It is preferred that By doing so, an implant having a surface shape corresponding to the surface shape of the bone having the bone damaged portion of the patient can be accurately and easily manufactured. In addition, the implant can be formed into a porous structure by being formed with a small pitch, so that the bone and the implant can be integrally fused, and the bonding between them can be strengthened.
 この後に得られたインプラントに対して、特に患者の骨に接する面に対して生体活性処理を施すことが好ましい。生体活性処理は、当該インプラントと患者の骨との結合を強固にできるような処理であれば特に限定されないが、生体活性処理として混酸加熱処理を行うことが特に好ましい。用いる酸としては、塩酸、硫酸、硝酸及びフッ酸のうちの少なくとも2つ以上を含む混酸溶液を用いることが好ましい。これらの混酸溶液を用いることによって、当該インプラントに優れた骨形成能を発揮できる表面層を形成することができる。酸処理の方法は、上記混酸溶液にインプラントを浸漬するのが簡便でよく、浸漬時間は約1時間が好ましい。しかしながら、当然に混酸溶液をインプラントに接触できれば上記方法に限られない。また、酸処理は、インプラントのうち骨形成を促したい部位にのみ行うことがより好ましい。 イ ン プ ラ ン ト It is preferable to subject the implant obtained thereafter to a bioactive treatment, particularly to the surface in contact with the patient's bone. The bioactive treatment is not particularly limited as long as it can strengthen the bond between the implant and the patient's bone, but it is particularly preferable to perform a mixed acid heating treatment as the bioactive treatment. As the acid to be used, it is preferable to use a mixed acid solution containing at least two of hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid. By using these mixed acid solutions, it is possible to form a surface layer capable of exhibiting excellent bone forming ability on the implant. In the acid treatment method, it is convenient and convenient to immerse the implant in the mixed acid solution, and the immersion time is preferably about 1 hour. However, the method is not limited to the above method as long as the mixed acid solution can be brought into contact with the implant. Further, it is more preferable to perform the acid treatment only on a part of the implant where bone formation is desired.
 次に、インプラントに加熱処理を施す。その温度は、500℃~750℃が好ましく、その時間は1時間程度が好ましい。 Next, heat treatment is applied to the implant. The temperature is preferably from 500 ° C. to 750 ° C., and the time is preferably about 1 hour.
 さらに、本発明に係る製造方法において、上記の通り、当該インプラントに対して抗菌処理を施すステップを備えていてもよい。その処理方法については、特に限定されないが、上述したようなインプラントを銀、ガリウム、又はヨウ素等のイオン含有水溶液にインプラントを浸漬する方法等が挙げられる。 Furthermore, the manufacturing method according to the present invention may include a step of subjecting the implant to an antibacterial treatment as described above. The treatment method is not particularly limited, and examples thereof include a method of immersing the implant in an aqueous solution containing ions such as silver, gallium, or iodine.
 上記工程により、簡便な方法で優れた骨形成能を有する本発明に係る骨修復インプラントを得ることができる。 に よ り By the above steps, a bone repair implant according to the present invention having excellent bone formation ability can be obtained by a simple method.
 以下に、本発明に係る骨修復インプラント及びその製造方法を詳細に説明するための実施例を示す。本実施例では、上記方法により得られた骨修復インプラントが、酸処理や加熱処理が施されることにより、さらに優れた骨形成能を有することを説明する。 Examples of the bone repair implant according to the present invention and a method for manufacturing the same will be described below in detail. In this example, it is described that the bone repair implant obtained by the above method has more excellent bone formation ability by being subjected to an acid treatment or a heat treatment.
 (実施例1)
 まず、上記方法により得られたチタン製インプラントを5つ準備し、それぞれに異なる条件の酸処理及び加熱処理を施した。具体的に、Group1では、塩酸と硫酸との混酸溶液を用いて酸処理を行い、600℃で1時間の加熱処理を施した。Group2では、NaOHによるアルカリ処理を行い、600℃で1時間の加熱処理を施した。Group3では、NaOH・50mM HClによる処理を行い、600℃で 1時間の加熱処理を施した。Group4では、NaOH・CaCl2による処理を行い、600℃で1時間の加熱処理及び80℃で24時間の温水処理を施した。Group5は無処理とした。
(Example 1)
First, five titanium implants obtained by the above method were prepared, and each of them was subjected to acid treatment and heat treatment under different conditions. Specifically, in Group 1, an acid treatment was performed using a mixed acid solution of hydrochloric acid and sulfuric acid, and a heat treatment was performed at 600 ° C. for 1 hour. In Group 2, alkali treatment with NaOH was performed, and heat treatment was performed at 600 ° C. for 1 hour. In Group 3, a treatment with NaOH · 50 mM HCl was performed, and a heat treatment was performed at 600 ° C. for 1 hour. In Group 4, a treatment with NaOH.CaCl 2 was performed, followed by a heat treatment at 600 ° C. for 1 hour and a hot water treatment at 80 ° C. for 24 hours. Group 5 was untreated.
 次に、骨欠損ラットを作成した。その方法は、図8に示すように、まず、麻酔を施したラットの頭部を切開し、骨膜を開けてラウンドバーにより骨欠損を作製した(図8(a)の写真)。続いて、上記のように作製されたインプラント(SLMメッシュ)を骨欠損部に適合させ、KLsマーチン1.0×8mmマイクロスクリューによって固定した(図8の(b)、(c)の写真)。その後、切開部を縫合した(図8の(d)の写真)。 Next, bone-deficient rats were created. In this method, as shown in FIG. 8, first, the head of an anesthetized rat was incised, the periosteum was opened, and a bone defect was created using a round bar (photograph in FIG. 8 (a)). Subsequently, the implant (SLM mesh) prepared as described above was fitted to a bone defect and fixed with a KLs Martin 1.0 × 8 mm micro screw (FIGS. 8B and 8C). Thereafter, the incision was sutured (photograph (d) of FIG. 8).
 インプラントを設置して2週間後及び7週間後に、X線マイクロCTスキャナを用いて設置部位のX線写真を撮り、また、設置部位の非脱灰研磨標本を作製して、トリジンブルーで染色し、当該標本の写真を撮った。その結果を図9に示す。図9に示すように、インプラントを設置して2週間後、Group1~5のいずれにおいても、程度に差異はあるものの骨欠損部において設置されたインプラントの下部(図の破線で囲う領域)に新生骨の形成が認められた。特に、Group1において優れた新生骨の形成能が認められた(非脱灰研磨標本における矢印で示す濃いグレーで示す部分)。また、同様のことはインプラントを設置して7週間後においても認められ、また、Group1では、特に優れた新生骨の形成能が認められた。 Two weeks and seven weeks after placing the implant, an X-ray photograph of the installation site was taken using an X-ray micro-CT scanner, and a non-decalcified polished specimen of the installation site was prepared and stained with Trizine blue. A photograph of the specimen was taken. FIG. 9 shows the result. As shown in FIG. 9, two weeks after the placement of the implant, in all of Groups 1 to 5, although varying in degree, a new portion was formed below the implant placed in the bone defect (the area surrounded by the broken line in the figure). Bone formation was observed. In particular, excellent ability to form new bone was observed in Group 1 (the dark gray part indicated by the arrow in the non-demineralized polished sample). The same thing was observed 7 weeks after the placement of the implant. In Group 1, particularly excellent new bone formation ability was observed.
 また、図10に各Groupにおけるインプラントを設置して2週間後及び7週間後の新生骨量を測定した結果を示す。新生骨量は、CT写真における面積比に基づいて算出した。図10に示すように、いずれのGroupにおいても設置から2週間後及び7週間後において、新生骨量が増加していたが、特にGroup1のインプラントが設置されたラットでは、新生骨量が他のGroupのインプラント設置されたラットよりも多いことが認められた。 FIG. 10 shows the results of measuring the amount of new bone 2 weeks and 7 weeks after placing the implant in each Group. The amount of new bone was calculated based on the area ratio in the CT photograph. As shown in FIG. 10, the amount of new bone was increased at 2 weeks and 7 weeks after the installation in all the Groups. In particular, in the rat in which the Group 1 implant was installed, the amount of new bone was increased. It was found to be higher than rats with Group implants.
 以上の結果から本発明に係るインプラントを用いることで、骨形成を促進することができ、特に、上記酸処理及び加熱処理を施したインプラントは、優れた骨形成能を示すことが明らかとなった。 From the above results, it is clear that bone formation can be promoted by using the implant according to the present invention, and in particular, the implants subjected to the acid treatment and the heat treatment show excellent bone forming ability. .
 (実施例2)
 次に、チタンからなるインプラントに抗菌処理が施されることにより、優れた抗菌性を付与できることを説明する。本実施例では、抗菌処理の一例として特にヨウ素処理による抗菌処理について説明する。
(Example 2)
Next, it will be described that excellent antibacterial properties can be imparted by performing antibacterial treatment on an implant made of titanium. In this embodiment, an antibacterial treatment by iodine treatment will be described as an example of the antibacterial treatment.
 まず、純チタンからなる基材を#400のダイヤモンドパッドを用いて研磨し、アセトン、2-プロパノール及び超純水で各30分間超音波洗浄した後、5Mの水酸化ナトリウム水溶液5mlに60℃で24時間浸漬し(アルカリ処理)、超純水で30秒間洗浄した。このチタン板を100mMの塩化カルシウム水溶液10mlに40℃で24時間浸漬し(カルシウム処理)、超純水で30秒間洗浄した。次いで、チタン板を電気炉中で常温から600℃まで5℃/minの速度で昇温し、大気中600℃で1時間保持して、炉内で放冷した。その後、10mMの三塩化ヨウ素水溶液10mlに80℃で24時間浸漬し(ヨウ素処理)、超純水で30秒間洗浄することにより、試料Aを製造した。また、ヨウ素処理において、10mMの三塩化ヨウ素水溶液に代えて100mMの三塩化ヨウ素水溶液を用い、浸漬温度を60℃に変更して、その他の条件を上記試料Aの場合と同様にして、試料Bを製造した。また、上記処理のいずれも行わないチタン板を試料Cとした。 First, a substrate made of pure titanium is polished using a # 400 diamond pad, ultrasonically washed with acetone, 2-propanol and ultrapure water for 30 minutes each, and then added to 5 ml of a 5M aqueous sodium hydroxide solution at 60 ° C. It was immersed for 24 hours (alkali treatment) and washed with ultrapure water for 30 seconds. This titanium plate was immersed in 10 ml of a 100 mM calcium chloride aqueous solution at 40 ° C. for 24 hours (calcium treatment), and washed with ultrapure water for 30 seconds. Next, the temperature of the titanium plate was raised from room temperature to 600 ° C. at a rate of 5 ° C./min in an electric furnace, kept at 600 ° C. in the atmosphere for 1 hour, and allowed to cool in the furnace. Thereafter, Sample A was manufactured by immersing in 10 ml of a 10 mM aqueous solution of iodine trichloride at 80 ° C. for 24 hours (treatment with iodine) and washing with ultrapure water for 30 seconds. In the iodine treatment, a 100 mM aqueous solution of iodine trichloride was used instead of the 10 mM aqueous solution of iodine trichloride, the immersion temperature was changed to 60 ° C., and the other conditions were the same as in the case of sample A above. Was manufactured. In addition, a titanium plate which was not subjected to any of the above processes was used as Sample C.
 上記試料A~Cに対して、JIS Z 2801:2012の規定に準拠してメチシリン耐性黄色ブドウ球菌に対する抗菌性試験を行った。試験回数は繰り返し各2回とし、2回の平均コロニー数を算出した。なお、当初平均コロニー数は4.2×104個/cm2であった。結果を表1に示す。また、抗菌効果の安定性を調べるために、試料A及び試料Bに対しては、80℃、相対湿度95%の環境下で1週間保持する耐湿試験と、リン酸緩衝生理食塩水中に36.5℃で50ストローク/分の速度で揺らしながら1週間保持する耐水試験を行った。それらの結果を表1に示す。 抗菌 The samples A to C were subjected to an antibacterial test against methicillin-resistant Staphylococcus aureus in accordance with JIS Z 2801: 2012. The test was repeated twice each, and the average number of colonies was calculated twice. The initial average number of colonies was 4.2 × 104 / cm 2. Table 1 shows the results. In addition, in order to examine the stability of the antibacterial effect, the samples A and B were subjected to a humidity resistance test in which the samples were kept at 80 ° C. and a relative humidity of 95% for one week, and 36. A water resistance test was performed in which the sample was held at 5 ° C. for one week while rocking at a speed of 50 strokes / minute. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、未処理の試料Cと比較して、上記ヨウ素処理による抗菌処理が施された試料A及び試料Bでは、生菌数が0となり、強い抗菌性を示した。特に試料Aでは、耐湿試験及び耐水試験後でも強い抗菌性を示し、抗菌安定性に優れていることがわかった。 示 す As shown in Table 1, the viable cell count of sample A and sample B which had been subjected to the antibacterial treatment by iodine treatment was 0 as compared with untreated sample C, indicating strong antibacterial activity. In particular, Sample A exhibited strong antibacterial properties even after the moisture resistance test and the water resistance test, and was found to be excellent in antibacterial stability.
 次に、上記試料A及び試料Cに対して、JIS Z 2801:2012の規定に準拠して大腸菌に対する抗菌性試験を行った。なお、当初平均コロニー数は4.1×103個/cm2であった。また、試料Aに対しては、上記耐湿試験及び耐水試験も行った。結果を表2に示す。 (4) Next, the antibacterial test against Escherichia coli was carried out on the samples A and C in accordance with JIS Z 2801: 2012. The initial average number of colonies was 4.1 × 10 3 / cm 2. For the sample A, the above moisture resistance test and water resistance test were also performed. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、当該試験においても未処理の試料Cと比較して、試料Aは強い抗菌性を示し、さらに、耐湿試験及び耐水試験後でも強い抗菌性を示し、抗菌安定性に優れていることがわかった。 As shown in Table 2, in this test, as compared with the untreated sample C, the sample A showed a strong antibacterial property, further showed a strong antibacterial property even after the moisture resistance test and the water resistance test, and was excellent in antibacterial stability. I understood that.
 (実施例3)
 次に、本発明に係るインプラントにおいて、その形状(骨に対する設置範囲)を変化させた場合の荷重支持能力を、既存の数値シミュレーションソフトを用いて比較検討した。図11に示すように、下顎骨モデルとして直径20mmの平面視U字状で且つ一部に欠損部を有する形態とし、欠損部に板状インプラントを設置した状態とした。インプラントは、純チタン製であり厚み1.8mmとし、両端に直径3.1mmの2つの貫通孔をそれぞれに有するものとした。また、インプラントを締結するためのボルトも純チタン製とし呼び長さを12mm、呼び径を3.0mmとし、4本使用した。また、図11に示すように、下顎骨に荷重を与えるために剛球を採用した。また、シミュレーション時の拘束条件は、図11に示す拘束条件を採用した。さらに、本シミュレーションでは、インプラントと骨とが接している部分が結合している場合のモデルと結合していない場合のモデルとを比較して、インプラントに生体活性処理を施すことによる優位性について検討した。これに加えて、インプラントが骨を覆う範囲を変えて、発生する応力の増減について検討した。具体的には、図12に示すように、インプラントが骨を覆う範囲を40°、90°、135°、180°として、それぞれの応力を比較検討した。インプラントが骨を覆う範囲を40°とし、インプラントと骨とが結合していない場合の応力シミュレーション結果を図13に示す。図13に示すように、この場合では、インプラントの表側(骨と反対側)に最大で301MPa、インプラントの内側(骨側)に最大で300MPa、ボルトに最大で290MPaの応力がそれぞれ発生した。これと同様に他の条件で行った応力シミュレーションにおいて、発生した最大応力を以下の表3に示す。 
(Example 3)
Next, with respect to the implant according to the present invention, the load carrying capacity when the shape (the installation range with respect to the bone) was changed was compared and examined using existing numerical simulation software. As shown in FIG. 11, the mandible model was a U-shape in plan view having a diameter of 20 mm and had a partially defective portion, and a plate-like implant was placed in the defective portion. The implant was made of pure titanium, had a thickness of 1.8 mm, and had two through holes with a diameter of 3.1 mm at both ends. The bolts for fastening the implant were also made of pure titanium, the nominal length was 12 mm, the nominal diameter was 3.0 mm, and four bolts were used. As shown in FIG. 11, a hard sphere was used to apply a load to the mandible. Further, as the constraint conditions at the time of the simulation, the constraint conditions shown in FIG. 11 were employed. Furthermore, in this simulation, we compared the model where the part where the implant and the bone are in contact with each other is combined with the model where the part is not combined, and examined the superiority of applying the bioactive treatment to the implant. did. In addition, the range of the implant covering the bone was changed, and the increase and decrease of the generated stress were examined. Specifically, as shown in FIG. 12, the ranges where the implant covers the bone were set to 40 °, 90 °, 135 °, and 180 °, and the respective stresses were compared and examined. FIG. 13 shows a stress simulation result when the range where the implant covers the bone is 40 ° and the implant and the bone are not connected. As shown in FIG. 13, in this case, a maximum stress of 301 MPa was generated on the front side (opposite to the bone) of the implant, a maximum of 300 MPa on the inner side (bone side) of the implant, and a maximum of 290 MPa on the bolt. Similarly, in a stress simulation performed under other conditions, the generated maximum stress is shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、数値シミュレーションの結果、インプラントについて骨を覆う範囲を大きくするに従って、インプラントに発生する応力を低減できることが明らかとなった。さらに、インプラント表面と骨表面とを結合させることにより、インプラントに発生する応力を低減できることが明らかとなった。この応力は覆う範囲を広くすることにより顕著に低くなる。この結果から、インプラントは、できるだけ骨を覆うような形態であることが好ましく、インプラントの骨と接する面に生体活性処理を施すことで、インプラントと骨との結合を促進させることが応力発生の観点からも有益であることが明らかとなった。 As shown in Table 3, as a result of the numerical simulation, it was revealed that the stress generated in the implant can be reduced as the range of the implant covering the bone is increased. Furthermore, it has been clarified that the stress generated in the implant can be reduced by bonding the implant surface and the bone surface. This stress is significantly reduced by increasing the area covered. From this result, it is preferable that the implant has a form that covers the bone as much as possible. By applying bioactive treatment to the surface of the implant that contacts the bone, it is possible to promote the connection between the implant and the bone. Also proved beneficial.

Claims (19)

  1.  患者の骨損傷部に設置するためのチタン又はチタン合金からなる骨修復インプラントであって、
     前記骨損傷部を有する骨の表面形状に対応する表面形状を少なくとも部分的に有する板状部を備え、
     前記板状部には、該板状部を前記骨損傷部の周囲の骨部分に締結するための締結具が通ることができる貫通孔が設けられていることを特徴とする骨修復インプラント。
    A bone repair implant comprising titanium or a titanium alloy for installation at a bone injury site of a patient,
    A plate-like portion having at least partially a surface shape corresponding to the surface shape of the bone having the bone damaged portion,
    The plate-shaped portion is provided with a through hole through which a fastener for fastening the plate-shaped portion to a bone portion around the bone-damaged portion is provided.
  2.  前記板状部は、移植組織を設置するための空間をなす組織設置部を有することを特徴とする請求項1に記載の骨修復インプラント。 The bone repair implant according to claim 1, wherein the plate-shaped portion has a tissue setting portion forming a space for setting a transplanted tissue.
  3.  前記板状部は、前記骨損傷部を有する骨を支持できる位置に設置されるように構成されており、当該設置部位の骨の表面形状に対応する表面形状を有していることを特徴とする請求項1に記載の骨修復インプラント。 The plate-shaped portion is configured to be installed at a position that can support the bone having the bone damaged portion, and has a surface shape corresponding to the surface shape of the bone at the installation site. The bone repair implant according to claim 1, wherein
  4.  前記板状部は、前記骨損傷部を有する骨の下部の表面形状に対応する表面形状を有し、
     前記板状部が前記骨損傷部の下部を覆って、前記骨損傷部を有する骨を下方から支持するように該骨損傷部を有する骨に設置されるように構成されていることを特徴とする請求項3に記載の骨修復インプラント。
    The plate-shaped portion has a surface shape corresponding to a surface shape of a lower portion of the bone having the bone damaged portion,
    The plate-shaped portion covers a lower portion of the bone damaged portion, and is configured to be installed on the bone having the bone damaged portion so as to support the bone having the bone damaged portion from below. The bone repair implant according to claim 3, wherein
  5.  前記板状部には、前記骨損傷部における骨欠損部分を少なくとも部分的に埋めるための人工骨部が一体形成されていることを特徴とする請求項1~4のいずれか1項に記載の骨修復インプラント。 5. The plate-like portion according to claim 1, wherein an artificial bone portion for at least partially filling a bone defect portion in the bone damaged portion is integrally formed. Bone repair implant.
  6.  前記板状部及び人工骨部は、前記骨損傷部の周囲の骨部分に相当する力学特性を有することを特徴とする請求項1~5のいずれか1項に記載の骨修復インプラント。 The bone repair implant according to any one of claims 1 to 5, wherein the plate-shaped portion and the artificial bone portion have mechanical characteristics corresponding to a bone portion around the bone damaged portion.
  7.  前記骨損傷部に接する表面には生体活性能が付与されていることを特徴とする請求項1~6のいずれか1項に記載の骨修復インプラント。 The bone repair implant according to any one of claims 1 to 6, wherein the surface in contact with the bone damaged portion has bioactivity.
  8.  前記生体活性能が付与された部分は、チタン酸化物で構成されていることを特徴とする請求項7に記載の骨修復インプラント。 The bone restoration implant according to claim 7, wherein the portion provided with the bioactivity has titanium oxide.
  9.  前記板状部及び人工骨部の少なくとも一部には、抗菌性が付与されていることを特徴とする請求項1~8のいずれか1項に記載の骨修復インプラント。 The bone repair implant according to any one of claims 1 to 8, wherein at least a part of the plate-like portion and the artificial bone portion is provided with an antibacterial property.
  10.  少なくとも一部に多孔質構造を有していることを特徴とする請求項1~9のいずれか1項に記載の骨修復インプラント。 The bone repair implant according to any one of claims 1 to 9, wherein the bone repair implant has a porous structure at least in part.
  11.  患者の骨損傷部を有する骨の三次元座標データを得るステップと、
     前記三次元座標データに基づいて、チタン又はチタン合金を材料として、前記骨損傷部を有する骨の表面形状に対応する表面形状を少なくとも部分的に有し、且つ貫通孔を有する板状部を造形するステップとを備えていることを特徴とする骨修復インプラントの製造方法。
    Obtaining three-dimensional coordinate data of a bone having a bone lesion of the patient;
    Based on the three-dimensional coordinate data, using titanium or a titanium alloy as a material, at least partially having a surface shape corresponding to the surface shape of the bone having the bone damaged portion, and forming a plate-shaped portion having a through hole. And a method for producing a bone repair implant.
  12.  前記造形するステップは、積層造形技術を用いることを特徴とする請求項11に記載の骨修復インプラントの製造方法。 The method according to claim 11, wherein the shaping step uses an additive manufacturing technique.
  13.  前記造形するステップにおいて、移植組織を設置するための空間をなす組織設置部を有する形状に前記板状部を造形することを特徴とする請求項11又は12に記載の骨修復インプラントの製造方法。 The method for manufacturing a bone repair implant according to claim 11 or 12, wherein in the shaping step, the plate-shaped portion is shaped into a shape having a tissue setting portion forming a space for setting a transplanted tissue.
  14.  前記造形するステップにおいて、前記骨損傷部を有する骨を支持できる前記板状部の設置に適する位置の骨の表面形状に対応する表面形状を有する前記板状部を造形することを特徴とする請求項11又は12に記載の骨修復インプラントの製造方法。 The method according to claim 1, wherein, in the forming step, the plate-shaped portion having a surface shape corresponding to a surface shape of the bone at a position suitable for setting the plate-shaped portion capable of supporting the bone having the bone damaged portion is formed. Item 13. The method for producing a bone repair implant according to item 11 or 12.
  15.  前記造形するステップにおいて、前記骨損傷部を有する骨の下部の表面形状に対応する表面形状を有する前記板状部を造形することを特徴とする請求項14に記載の骨修復インプラントの製造方法。 The method for manufacturing a bone repair implant according to claim 14, wherein, in the shaping step, the plate-shaped portion having a surface shape corresponding to a surface shape of a lower portion of the bone having the bone damaged portion is shaped.
  16.  前記骨損傷部における前記骨損傷部における骨欠損部分を少なくとも部分的に埋めるための人工骨部を前記板状部と一体形成することを特徴とする請求項11~15のいずれか1項に記載の骨修復インプラントの製造方法。 The artificial bone part for at least partially filling a bone defect part in the bone damaged part in the bone damaged part is integrally formed with the plate-shaped part. Method of manufacturing bone repair implant.
  17.  前記造形するステップの後に、前記板状部及び人工骨部の表面の少なくとも一部に生体活性処理を施すステップをさらに含むことを特徴とする請求項11~16のいずれか1項に記載の骨修復インプラントの製造方法。 The bone according to any one of claims 11 to 16, further comprising a step of subjecting at least a part of the surface of the plate-like portion and the artificial bone portion to a bioactive treatment after the modeling step. How to make a restoration implant.
  18.  前記生体活性処理を施すステップは、前記インプラントに酸処理をするステップと、前記インプラントに加熱処理をするステップとを含むことを特徴とする請求項17に記載の骨修復インプラントの製造方法。 18. The method for manufacturing a bone repair implant according to claim 17, wherein the step of performing the bioactive treatment includes a step of performing an acid treatment on the implant and a step of performing a heat treatment on the implant.
  19.  前記造形するステップの後に、前記板状部及び人工骨部の少なくとも一部に抗菌処理を施すステップをさらに含むことを特徴とする請求項11~18のいずれか1項に記載の骨修復インプラントの製造方法。 The bone repair implant according to any one of claims 11 to 18, further comprising a step of performing an antibacterial treatment on at least a part of the plate-like portion and the artificial bone portion after the shaping step. Production method.
PCT/JP2019/030631 2018-08-08 2019-08-05 Bone repair implant and method for manufacturing same WO2020031933A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020535746A JPWO2020031933A1 (en) 2018-08-08 2019-08-05 Bone repair implant and its manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-149414 2018-08-08
JP2018149414 2018-08-08

Publications (1)

Publication Number Publication Date
WO2020031933A1 true WO2020031933A1 (en) 2020-02-13

Family

ID=69415009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030631 WO2020031933A1 (en) 2018-08-08 2019-08-05 Bone repair implant and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2020031933A1 (en)
WO (1) WO2020031933A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501575A (en) * 2005-07-13 2009-01-22 アキュームド・エルエルシー Bone plate with movable locking element
JP2017536160A (en) * 2014-10-22 2017-12-07 バイオメット シー.ブイ. Bone fixation device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501575A (en) * 2005-07-13 2009-01-22 アキュームド・エルエルシー Bone plate with movable locking element
JP2017536160A (en) * 2014-10-22 2017-12-07 バイオメット シー.ブイ. Bone fixation device

Also Published As

Publication number Publication date
JPWO2020031933A1 (en) 2021-08-26

Similar Documents

Publication Publication Date Title
US20230380877A1 (en) Methods, devices, and manufacture of the devices for musculoskeletal reconstructive surgery
Shayesteh Moghaddam et al. Metals for bone implants: Safety, design, and efficacy
Wang et al. " Sandwich" bone augmentation technique: rationale and report of pilot cases.
US7186267B2 (en) Porous and/or polycrystalline silicon orthopaedic implant
US5306304A (en) Flexible membranes produced from organic bone matrix for skeletal repair and reconstruction
Avila et al. Additive manufacturing of titanium and titanium alloys for biomedical applications
US20100256773A1 (en) Surgical implant composed of a porous core and a dense surface layer
Tu et al. 3D laser-printed porous Ti6Al4V dental implants for compromised bone support
CN106676356B (en) Magnesium alloy bone based on laser fusion forming technique fixes implantation material preparation method
Kanno et al. Computed tomographic evaluation of novel custom-made artificial bones,“CT-bone”, applied for maxillofacial reconstruction
KR20100130178A (en) Implant pellets and methods for performing bone augmentation and preservation
Ahn et al. Effect of guided bone regeneration with or without pericardium bioabsorbable membrane on bone formation
Shi et al. Customized barrier membrane (titanium alloy, poly ether-ether ketone and Unsintered hydroxyapatite/poly-l-Lactide) for guided bone regeneration
Papacharalambous et al. Natural coral skeleton used as on lay graft for contour augmentation of the face. A preliminary report
CN115697253A (en) Osseointegrated implants and screws comprising a structurally porous surface, process for preparing implants and screws and use thereof
WO2018076003A1 (en) Degradable bulk metallic magnesium/polymer composite barrier membranes for dental, craniomaxillofacial and orthopedic applications and manufacturing methods
Sercombe et al. Additive manufacturing of cp-Ti, Ti-6Al-4V and Ti2448
RU2218895C1 (en) Contour plasty method and implant for restoring, correcting and removing or substituting defects, injuries or deformities of bone or cartilage tissue
WO2020031933A1 (en) Bone repair implant and method for manufacturing same
Von Wilmonsky et al. In vivo evaluation of ß-TCP containing 3D laser sintered poly (ether ether ketone) composites in pigs
Ivanovski et al. 3D printing for bone regeneration: Challenges and opportunities for achieving predictability
US20180228513A1 (en) Method for producing an occlusive barrier for bone regeneration and an occlusive barrier obtained by means of said method
Kijartorn et al. The use of three dimensional printed hydroxyapatite granules in alveolar ridge preservation
Ayoub et al. Biomaterials in the Reconstruction of the Oral and Maxillofacial Region
RU25996U1 (en) IMPLANT FOR CONTOUR PLASTIC, RESTORATION, CORRECTION, ELIMINATION OR REPLACEMENT OF DEFECTS, DAMAGES OR DEFORMATIONS OF BONE OR CARTILAGE TISSUE

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535746

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846088

Country of ref document: EP

Kind code of ref document: A1