WO2020031815A1 - Novel allyl compound and composition for optical material - Google Patents
Novel allyl compound and composition for optical material Download PDFInfo
- Publication number
- WO2020031815A1 WO2020031815A1 PCT/JP2019/030111 JP2019030111W WO2020031815A1 WO 2020031815 A1 WO2020031815 A1 WO 2020031815A1 JP 2019030111 W JP2019030111 W JP 2019030111W WO 2020031815 A1 WO2020031815 A1 WO 2020031815A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- ppm
- optical material
- composition
- compound
- Prior art date
Links
- OVJUCRJBAJGOEE-UHFFFAOYSA-N C(C1NC1)NCC(CNCC1NC1)(CNCC1NC1)CNCC1NC1 Chemical compound C(C1NC1)NCC(CNCC1NC1)(CNCC1NC1)CNCC1NC1 OVJUCRJBAJGOEE-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D331/00—Heterocyclic compounds containing rings of less than five members, having one sulfur atom as the only ring hetero atom
- C07D331/02—Three-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C321/00—Thiols, sulfides, hydropolysulfides or polysulfides
- C07C321/12—Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms
- C07C321/18—Sulfides, hydropolysulfides, or polysulfides having thio groups bound to acyclic carbon atoms of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/04—Polythioethers from mercapto compounds or metallic derivatives thereof
- C08G75/045—Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/06—Polythioethers from cyclic thioethers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G75/00—Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
- C08G75/02—Polythioethers
- C08G75/06—Polythioethers from cyclic thioethers
- C08G75/08—Polythioethers from cyclic thioethers from thiiranes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/04—Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
- G02B1/041—Lenses
Definitions
- the present invention relates to an allyl compound, and is suitably used for optical materials such as plastic lenses, prisms, optical fibers, information recording substrates, and filters, especially plastic lenses.
- Plastic lenses are lightweight, rich in toughness, and easy to dye. Performances particularly required for plastic lenses include low specific gravity, high transparency and low yellowness, and high optical performance such as high refractive index and high Abbe number, high heat resistance, and high strength. A high refractive index allows for a thinner lens, and a high Abbe number reduces chromatic aberration of the lens.
- One of the most widely used resins for plastic lens applications is diethylene glycol bis (allyl carbonate). Although this resin has good dyeing properties and workability, it has a low refractive index of 1.50 and a thick lens, so a material having a higher refractive index has been required. In recent years, many organic compounds having a sulfur atom have been reported for the purpose of high refractive index and high Abbe number.
- Patent Document 1 a linear polyepisulfide compound having a sulfur atom not only has a refractive index exceeding 1.7 but also has a good balance of Abbe number.
- plastic lenses produced from this episulfide compound have poor dyeing properties, so that the lens productivity may decrease.
- Addition of a compound having an active hydrogen group (Patent Literature 2), allyl compound (Patent Literature 3), and the like have been proposed to improve dyeing properties. In some cases, the heat resistance of the resin is reduced and the secondary workability of a coat or the like is deteriorated.
- An object of the present invention is to provide an optical material having a high refractive index that improves dyeability without causing a decrease in heat resistance.
- the present inventors have conducted intensive studies in view of such a situation, and as a result, have solved the present problem with an allyl compound having a specific structure having an episulfide group and a composition for an optical material containing the same, and have accomplished the present invention. That is, the present invention is as follows.
- ⁇ 2> Including a compound represented by the following formula (1) and an episulfide compound other than the compound represented by the following formula (1), the ratio of the compound represented by the following formula (1) is 0.001 to
- the composition for an optical material is 5.0% by mass.
- ⁇ 3> A method for producing an optical material, comprising a step of adding 0.0001 to 10 parts by mass of a polymerization catalyst to 100 parts by mass of the composition for an optical material as described in the above ⁇ 2>, and polymerizing and curing. .
- the present invention is a compound represented by the following formula (1) and a composition for an optical material containing the compound.
- the compound represented by the formula (1) is obtained by reacting an epoxy compound represented by the following formula (2) with a thiazant such as thiourea to form a reaction solution containing the compound represented by the following formula (3). After being obtained, it is obtained by treating with silica gel.
- the thiocyanating agent such as thiourea is used in a molar number corresponding to the epoxy of the epoxy compound represented by the formula (2), that is, The stoichiometric amount is used, but if the reaction rate and the purity are important, the stoichiometric amount to 2.5 times the molar amount of the stoichiometric amount is used. It is preferably from 1.3 times the stoichiometric amount to 2.0 times the stoichiometric amount, more preferably from 1.5 times the stoichiometric amount to 2.0 times the stoichiometric amount.
- polar organic solvent in which thiourea can be dissolved examples include alcohols such as methanol and ethanol, ethers such as diethyl ether, tetrahydrofuran and dioxane, and hydroxyethers such as methylcellosolve, ethylcellosolve and butylcellosolve. , Preferably alcohols, and most preferably methanol.
- Non-polar organic solvents in which the epoxy compound represented by the formula (2) can be dissolved include aliphatic hydrocarbons such as pentane, hexane and heptane, aromatic hydrocarbons such as benzene and toluene, dichloromethane, chloroform, chlorobenzene and the like.
- the solvent ratio is a polar organic solvent / non-polar organic solvent in a volume ratio of 0.1 to 10.0, preferably a polar organic solvent / non-polar organic solvent in a volume ratio of 0.2 to 5.0. use.
- the volume ratio is less than 0.1, thiourea is insufficiently dissolved and the reaction does not proceed sufficiently.
- the volume ratio exceeds 10.0 the production of the polymer becomes remarkable.
- the reaction is carried out at a temperature of 10 ° C to 30 ° C. If the temperature is lower than 10 ° C., in addition to the reduction of the reaction rate, the thiourea is insufficiently dissolved and the reaction does not proceed sufficiently. If the temperature is higher than 30 ° C., the production of the polymer becomes remarkable.
- an acid or an acid anhydride Preferably acetic acid, propionic acid, butyric acid, succinic acid, maleic acid, benzoic acid, phthalic acid, pyromellitic acid, trimellitic acid, trifluoroacetic acid and its anhydrides, most preferably acetic acid and its anhydrides is there.
- the addition amount is usually used in the range of 0.001% by mass to 10% by mass with respect to the total amount of the reaction solution, but is preferably 0.01% by mass to 5% by mass. When the addition amount is less than 0.001% by mass, the production of the polymer becomes remarkable and the reaction yield decreases, and when it exceeds 10% by mass, the yield decreases remarkably.
- the compound represented by the formula (1) is obtained.
- the mixture is stirred with silica gel while heating in a solvent such as toluene.
- the compound represented by the formula (1) of the present invention can improve the dyeability while suppressing the decrease in the heat resistance of the high refractive index resin. It is preferable to use a composition for an optical material with an episulfide compound other than the compound represented by the formula (1), and the optical material obtained by polymerizing and curing these compounds has improved dyeability.
- the episulfide compound other than the compound represented by the formula (1) include a compound represented by the formula (3) and a compound represented by the following formula (4). (In the formula, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.) (4) Specific examples of the compound represented by the formula include the following, but are not limited thereto.
- the proportion of the compound represented by the formula (1) in the composition for an optical material of the present invention is preferably 0.001 to 5.0% by mass, more preferably 0.005 to 3.0% by mass. %, Particularly preferably 0.01 to 1.0% by mass. If the amount of the compound represented by the formula (1) is less than 0.001% by mass, a sufficient effect may not be obtained. If the amount exceeds 5.0% by mass, the refractive index may decrease.
- the composition for an optical material of the present invention may contain a polythiol as needed.
- Polythiol is a thiol compound having two or more mercapto groups per molecule.
- Polythiol has the effect of improving the color tone of the resin obtained from the composition for an optical material of the present invention when heated.
- the polythiol used in the present invention is not particularly limited.
- the proportion of the polythiol in the composition for optical materials is preferably 0 to 25% by mass (eg, 0.1 to 25% by mass), more preferably 0 to 20% by mass (eg, 0.5 to 20% by mass), more preferably 0 to 10% by mass (eg, 0.5 to 10% by mass), and particularly preferably 0 to 5% by mass (eg, 0.5 to 5% by mass).
- the composition for optical materials may contain sulfur and / or 1,2,3,5,6-pentathiepane as necessary.
- Sulfur and / or 1,2,3,5,6-pentathiepane have an effect of improving the refractive index of an optical material (resin) obtained from the composition for an optical material of the present invention.
- the shape of sulfur used in the present invention may be any shape. Specifically, examples of the sulfur include fine powder sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimation sulfur, and the like. From the viewpoint of dissolution rate, fine powder sulfur is preferable.
- the particle size (diameter) of sulfur used in the present invention is preferably smaller than 10 mesh. If the particle size of sulfur is larger than 10 mesh, it is difficult to completely dissolve the sulfur.
- the particle size of the sulfur is less than 30 mesh, most preferably less than 60 mesh.
- the purity of the sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, further preferably 99.5% or more, and most preferably 99.9% or more.
- the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where the purity of sulfur is less than 98%.
- a commercially available product can be easily obtained, and can be suitably used.
- the method of obtaining 1,2,3,5,6-pentathiepane is not particularly limited.
- a commercially available product may be used, and may be collected and extracted from natural products such as crude oil and animals and plants, or may be synthesized by a known method.
- synthesis method N.I. Takeda et al., Bull. Chem. Soc. Jpn. , 68, 2775 (1995); Feher et al., Angew. Chem. Int. Ed. , 7, 301 (1968); W. Kutney et al., Can. J. Chem, 58, 1233 (1980).
- the proportion of sulfur and / or 1,2,3,5,6-pentathiepane in the composition for an optical material is 0 to 40% by mass (for example, 1 to 40% by mass), preferably 1 to 40% by mass, based on the total amount of the composition. 0 to 30% by mass (eg, 5 to 30% by mass, 10 to 30% by mass), more preferably 0 to 25% by mass (eg, 5 to 25% by mass), and particularly preferably 0 to 20% by mass (eg, 5 to 5% by mass). 2020% by mass).
- the composition for an optical material of the present invention is polymerized and cured to obtain an optical material
- a polymerization catalyst As the polymerization catalyst, amines, phosphines, and onium salts are used.
- onium salts particularly quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, and secondary iodonium salts are preferable, and especially for optical materials. Quaternary ammonium salts and quaternary phosphonium salts having good compatibility with the composition are more preferred, and quaternary phosphonium salts are even more preferred.
- More preferred polymerization catalysts include quaternary ammonium salts such as tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, And quaternary phosphonium salts such as phenylphosphonium bromide.
- more preferred polymerization catalysts are tetra-n-butylammonium bromide, triethylbenzylammonium chloride and tetra-n-butylphosphonium bromide.
- the amount of the polymerization catalyst to be added can vary depending on the components of the composition, the mixing ratio and the polymerization curing method, but cannot be unconditionally determined. Usually, the amount is 0.0001 parts by mass relative to 100 parts by mass of the total composition for optical materials. To 10 parts by mass, preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass, and most preferably 0.01 to 0.5 part by mass. . If the amount of the polymerization catalyst is more than 10 parts by mass, the polymerization may occur rapidly. On the other hand, if the amount of the polymerization catalyst is less than 0.0001 parts by mass, the composition for an optical material may not be sufficiently cured and may have poor heat resistance.
- an additive such as an ultraviolet absorber, a bluing agent, or a pigment is added to the composition for an optical material to improve the practicality of the obtained optical material.
- an additive such as an ultraviolet absorber, a bluing agent, or a pigment is added to the composition for an optical material to improve the practicality of the obtained optical material.
- Preferred examples of the ultraviolet absorber are benzotriazole compounds, and particularly preferred compounds are 2- (2-hydroxy-5-methylphenyl) -2H-benzotriazole and 5-chloro-2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-methoxyphenyl) -2H-benzo Triazole, 2- (2-hydroxy-4-ethoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-butoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyloxyphenyl ) -2H-benzotriazole, 2- (2-hydroxy-5-t-octylphenyi) ) Is -2H- benzotriazole.
- the amount of the ultraviolet absorber to be added is usually 0.01 to 5 parts by mass based
- a polymerization regulator can be added as needed for the purpose of extending the pot life and dispersing the heat generated by the polymerization.
- the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. Of these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group.
- dibutyltin dichloride butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride, and the most preferred compound is dibutyltin dichloride.
- Dichloride The polymerization modifiers may be used alone or as a mixture of two or more.
- the amount of the polymerization modifier to be added is 0.0001 to 5.0 parts by mass, preferably 0.0005 to 3.0 parts by mass, more preferably 100 parts by mass based on 100 parts by mass of the total composition for optical materials. Is 0.001 to 2.0 parts by mass.
- the addition amount of the polymerization modifier is less than 0.0001 parts by mass, a sufficient pot life cannot be secured in the obtained optical material, and when the addition amount of the polymerization modifier is more than 5.0 parts by mass, In some cases, the material composition is not sufficiently cured, and the heat resistance of the obtained optical material is reduced.
- the composition for optical material thus obtained is cast into a mold such as a mold and polymerized to obtain an optical material.
- a filter having a pore size of about 0.1 to 5 ⁇ m from the viewpoint of improving the quality of the optical material of the present invention.
- the polymerization of the composition for an optical material of the present invention is usually carried out as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually -10 ° C to 140 ° C.
- the polymerization is carried out by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature of 0.1 ° C.
- the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistance coating, antireflection, or imparting antifogging property, if necessary.
- the optical material of the present invention can be suitably used as an optical lens.
- optical materials obtained by the methods of the following Examples and Comparative Examples were evaluated by the following methods.
- Refractive index The refractive index at e-line was measured at 25 ° C. using an Abbe refractometer NAR-4T manufactured by Atago.
- Heat resistance A sample was cut into a thickness of 3 mm, a load of 50 g was applied to a 0.5 mm ⁇ pin, the temperature was increased at 10 ° C./min, and TMA measurement (manufactured by Seiko Instruments, TMA / SS6100) was performed.
- the evaluation was performed based on the DTMA peak temperature and the DTMA peak value, which are the temperature differential curves of the TMA curve. It is evaluated that the smaller the DTMA peak value is, the less heat-induced softening occurs and the higher the heat resistance. In particular, when the peak value was negative or there was no peak, it was determined that there was no softening point.
- a sample having a DTMA peak value of 1.0 or less was designated as A
- B having a DTMA peak value exceeding 1.0 and 1.5 or less was designated as B
- C having a DTMA peak value exceeding 1.5 was designated as C. “C” is the reject level.
- Stainability 2 g of Seiko Plux Diamond Coat Brown D, 3 g of Seiko Plux dyeing aid and 20 g of benzyl alcohol were added to 1 L of water, heated to 90 ° C., immersed there for 15 minutes, and measured for total light transmittance.
- "A” indicates a transmittance of less than 30%
- "B” indicates a transmittance of 30% or more and less than 70%
- “C” indicates a transmittance of 70% or more. The lower the transmittance, the better the dyeability, and “A” and “B” pass and “A” is more preferable.
- “C” is the reject level.
- Example 1 To 20.1 g (0.047 mol) of tetrakis ( ⁇ -epoxypropylthiomethyl) methane, 100 mL of toluene, 100 mL of methanol, 1.24 g (0.012 mol) of acetic anhydride, and 30.5 g (0.40 mol) of thiourea were added. At 30 ° C. for 24 hours. Thereafter, 400 mL of toluene and 400 mL of 5% sulfuric acid were added, and the toluene layer was washed three times with water to obtain a toluene layer containing tetrakis ( ⁇ -epithiopropylthiomethyl) methane.
- Example 2 99.99 parts by mass of tetrakis ( ⁇ -epithiopropylthiomethyl) methane (the compound represented by the formula (3)) is added to 0.01 parts by mass of the compound represented by the formula (1) (a, b, c, d)
- Examples 3 to 9, Comparative Examples 1 and 2 A molded plate was obtained in the same manner as in Example 2 except that the composition was as shown in Table 1. Table 1 shows the evaluation results.
- Example 10 In the same manner as in Example 1, a toluene layer containing tetrakis ( ⁇ -epithiopropylthiomethyl) methane was obtained. 100 g of silica gel was added to the obtained toluene layer, and the mixture was stirred at 40 ° C. for 48 hours.
- the compounds represented by the formula (1) used in Examples 11 to 14 were synthesized in Example 10.
- Example 12 to 14 Comparative Example 3
- Example 12 to 14 Comparative Example 3
- Table 2 shows the evaluation results.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
The present invention makes it possible to provide a compound represented by formula (1) and a composition for an optical material containing this compound. (Where m + n = 4, m represents an integer of from 0 to 3, and n represents an integer of from 1 to 4.) In addition, the present invention makes it possible to provide a method for producing an optical material, the method including a step for adding 0.0001-10 parts by mass of a polymerization catalyst per 100 parts by mass of the composition for an optical material, polymerizing, and curing.
Description
本発明はアリル化合物に関し、プラスチックレンズ、プリズム、光ファイバー、情報記録基盤、フィルター等の光学材料、中でもプラスチックレンズに好適に使用される。
(4) The present invention relates to an allyl compound, and is suitably used for optical materials such as plastic lenses, prisms, optical fibers, information recording substrates, and filters, especially plastic lenses.
プラスチックレンズは軽量かつ靭性に富み、染色も容易である。プラスチックレンズに特に要求される性能は、低比重、高透明性および低黄色度、光学性能として高屈折率と高アッベ数、高耐熱性、高強度などである。高屈折率はレンズの薄肉化を可能とし、高アッベ数はレンズの色収差を低減する。
プラスチックレンズ用途して最も広く用いられている樹脂の1つとして、ジエチレングリコールビス(アリルカーボネート)がある。この樹脂は染色性や加工性が良好であるが、屈折率が1.50と低く、レンズが厚くなるため、より屈折率の高い材料が求められていた。
近年、高屈折率と高アッベ数を目的として、硫黄原子を有する有機化合物が数多く報告されている。中でも硫黄原子を有する直鎖ポリエピスルフィド化合物は屈折率が1.7を超えるばかりでなく、アッベ数のバランスが良いことが知られている(特許文献1)。
しかしながら、このエピスルフィド化合物から生産されるプラスチックレンズは染色性が悪いため、レンズの生産性が低下する場合があった。染色性を改善するために活性水素基を有する化合物の添加(特許文献2)、アリル化合物(特許文献3)等が提案されたが、これら化合物を加えて十分な染色性を得ようとした場合、樹脂の耐熱性が低下しコート等の二次加工性が悪化する場合があった。 Plastic lenses are lightweight, rich in toughness, and easy to dye. Performances particularly required for plastic lenses include low specific gravity, high transparency and low yellowness, and high optical performance such as high refractive index and high Abbe number, high heat resistance, and high strength. A high refractive index allows for a thinner lens, and a high Abbe number reduces chromatic aberration of the lens.
One of the most widely used resins for plastic lens applications is diethylene glycol bis (allyl carbonate). Although this resin has good dyeing properties and workability, it has a low refractive index of 1.50 and a thick lens, so a material having a higher refractive index has been required.
In recent years, many organic compounds having a sulfur atom have been reported for the purpose of high refractive index and high Abbe number. Among them, it is known that a linear polyepisulfide compound having a sulfur atom not only has a refractive index exceeding 1.7 but also has a good balance of Abbe number (Patent Document 1).
However, plastic lenses produced from this episulfide compound have poor dyeing properties, so that the lens productivity may decrease. Addition of a compound having an active hydrogen group (Patent Literature 2), allyl compound (Patent Literature 3), and the like have been proposed to improve dyeing properties. In some cases, the heat resistance of the resin is reduced and the secondary workability of a coat or the like is deteriorated.
プラスチックレンズ用途して最も広く用いられている樹脂の1つとして、ジエチレングリコールビス(アリルカーボネート)がある。この樹脂は染色性や加工性が良好であるが、屈折率が1.50と低く、レンズが厚くなるため、より屈折率の高い材料が求められていた。
近年、高屈折率と高アッベ数を目的として、硫黄原子を有する有機化合物が数多く報告されている。中でも硫黄原子を有する直鎖ポリエピスルフィド化合物は屈折率が1.7を超えるばかりでなく、アッベ数のバランスが良いことが知られている(特許文献1)。
しかしながら、このエピスルフィド化合物から生産されるプラスチックレンズは染色性が悪いため、レンズの生産性が低下する場合があった。染色性を改善するために活性水素基を有する化合物の添加(特許文献2)、アリル化合物(特許文献3)等が提案されたが、これら化合物を加えて十分な染色性を得ようとした場合、樹脂の耐熱性が低下しコート等の二次加工性が悪化する場合があった。 Plastic lenses are lightweight, rich in toughness, and easy to dye. Performances particularly required for plastic lenses include low specific gravity, high transparency and low yellowness, and high optical performance such as high refractive index and high Abbe number, high heat resistance, and high strength. A high refractive index allows for a thinner lens, and a high Abbe number reduces chromatic aberration of the lens.
One of the most widely used resins for plastic lens applications is diethylene glycol bis (allyl carbonate). Although this resin has good dyeing properties and workability, it has a low refractive index of 1.50 and a thick lens, so a material having a higher refractive index has been required.
In recent years, many organic compounds having a sulfur atom have been reported for the purpose of high refractive index and high Abbe number. Among them, it is known that a linear polyepisulfide compound having a sulfur atom not only has a refractive index exceeding 1.7 but also has a good balance of Abbe number (Patent Document 1).
However, plastic lenses produced from this episulfide compound have poor dyeing properties, so that the lens productivity may decrease. Addition of a compound having an active hydrogen group (Patent Literature 2), allyl compound (Patent Literature 3), and the like have been proposed to improve dyeing properties. In some cases, the heat resistance of the resin is reduced and the secondary workability of a coat or the like is deteriorated.
本発明の課題は、耐熱性の低下を招くことなく染色性を向上させる高屈折率の光学材料を提供することである。
課題 An object of the present invention is to provide an optical material having a high refractive index that improves dyeability without causing a decrease in heat resistance.
本発明者らは、このような状況に鑑み鋭意研究を重ねた結果、エピスルフィド基を有する特定構造のアリル化合物およびそれを含む光学材料用組成物により本課題を解決し、本発明に至った。
即ち、本発明は以下の通りである。
<1> 下記(1)式で表される化合物である。
(ただし、m+n=4であり、mは0から3の整数を示し、nは1から4の整数を示す。)
<2> 下記(1)式で表される化合物と下記(1)式で表される化合物以外のエピスルフィド化合物とを含み、下記(1)式で表される化合物の割合が、0.001~5.0質量%である光学材料用組成物である。
(ただし、m+n=4であり、mは0から3の整数を示し、nは1から4の整数を示す。)
<3> 重合触媒を上記<2>に記載の光学材料用組成物100質量部に対して0.0001質量部~10質量部添加し、重合硬化する工程を含む、光学材料の製造方法である。
<4> 上記<2>に記載の光学材料用組成物を重合硬化してなる光学材料である。
<5> 上記<4>に記載の光学材料を含む光学レンズである。 The present inventors have conducted intensive studies in view of such a situation, and as a result, have solved the present problem with an allyl compound having a specific structure having an episulfide group and a composition for an optical material containing the same, and have accomplished the present invention.
That is, the present invention is as follows.
<1> A compound represented by the following formula (1).
(However, m + n = 4, m represents an integer of 0 to 3, and n represents an integer of 1 to 4.)
<2> Including a compound represented by the following formula (1) and an episulfide compound other than the compound represented by the following formula (1), the ratio of the compound represented by the following formula (1) is 0.001 to The composition for an optical material is 5.0% by mass.
(However, m + n = 4, m represents an integer of 0 to 3, and n represents an integer of 1 to 4.)
<3> A method for producing an optical material, comprising a step of adding 0.0001 to 10 parts by mass of a polymerization catalyst to 100 parts by mass of the composition for an optical material as described in the above <2>, and polymerizing and curing. .
<4> An optical material obtained by polymerizing and curing the composition for an optical material according to <2>.
<5> An optical lens including the optical material according to <4>.
即ち、本発明は以下の通りである。
<1> 下記(1)式で表される化合物である。
<2> 下記(1)式で表される化合物と下記(1)式で表される化合物以外のエピスルフィド化合物とを含み、下記(1)式で表される化合物の割合が、0.001~5.0質量%である光学材料用組成物である。
<3> 重合触媒を上記<2>に記載の光学材料用組成物100質量部に対して0.0001質量部~10質量部添加し、重合硬化する工程を含む、光学材料の製造方法である。
<4> 上記<2>に記載の光学材料用組成物を重合硬化してなる光学材料である。
<5> 上記<4>に記載の光学材料を含む光学レンズである。 The present inventors have conducted intensive studies in view of such a situation, and as a result, have solved the present problem with an allyl compound having a specific structure having an episulfide group and a composition for an optical material containing the same, and have accomplished the present invention.
That is, the present invention is as follows.
<1> A compound represented by the following formula (1).
<2> Including a compound represented by the following formula (1) and an episulfide compound other than the compound represented by the following formula (1), the ratio of the compound represented by the following formula (1) is 0.001 to The composition for an optical material is 5.0% by mass.
<3> A method for producing an optical material, comprising a step of adding 0.0001 to 10 parts by mass of a polymerization catalyst to 100 parts by mass of the composition for an optical material as described in the above <2>, and polymerizing and curing. .
<4> An optical material obtained by polymerizing and curing the composition for an optical material according to <2>.
<5> An optical lens including the optical material according to <4>.
本発明により、耐熱性の低下を招くことなく染色性を向上させる高屈折率の光学材料を提供することが可能となった。
According to the present invention, it has become possible to provide a high-refractive-index optical material that improves dyeing properties without reducing heat resistance.
本発明は、下記(1)式で表される化合物およびそれを含む光学材料用組成物である。
(ただし、m+n=4であり、mは0から3の整数を示し、nは1から4の整数を示す。)
また、前記(1)式はm=0かつn=4、m=1かつn=3、m=2かつn=2、m=3かつn=1の4種の化合物を包含するが、これらは単独でも任意の割合での混合物でも構わない。屈折率の観点から好ましくはm=1かつn=3、m=2かつn=2、m=3かつn=1であり、より好ましくはm=2かつn=2、m=3かつn=1であり、最も好ましくはm=3かつn=1である。 The present invention is a compound represented by the following formula (1) and a composition for an optical material containing the compound.
(However, m + n = 4, m represents an integer of 0 to 3, and n represents an integer of 1 to 4.)
The above formula (1) includes four types of compounds wherein m = 0 and n = 4, m = 1 and n = 3, m = 2 and n = 2, m = 3 and n = 1. May be used alone or in a mixture at an arbitrary ratio. From the viewpoint of the refractive index, preferably m = 1 and n = 3, m = 2 and n = 2, m = 3 and n = 1, and more preferably m = 2 and n = 2, m = 3 and n = 1, most preferably m = 3 and n = 1.
また、前記(1)式はm=0かつn=4、m=1かつn=3、m=2かつn=2、m=3かつn=1の4種の化合物を包含するが、これらは単独でも任意の割合での混合物でも構わない。屈折率の観点から好ましくはm=1かつn=3、m=2かつn=2、m=3かつn=1であり、より好ましくはm=2かつn=2、m=3かつn=1であり、最も好ましくはm=3かつn=1である。 The present invention is a compound represented by the following formula (1) and a composition for an optical material containing the compound.
The above formula (1) includes four types of compounds wherein m = 0 and n = 4, m = 1 and n = 3, m = 2 and n = 2, m = 3 and n = 1. May be used alone or in a mixture at an arbitrary ratio. From the viewpoint of the refractive index, preferably m = 1 and n = 3, m = 2 and n = 2, m = 3 and n = 1, and more preferably m = 2 and n = 2, m = 3 and n = 1, most preferably m = 3 and n = 1.
以下、本発明の(1)式で表される化合物の製造方法について説明するが、製造方法は特に限定されない。(1)式で表される化合物は、下記(2)式で表されるエポキシ化合物を、チオ尿素等のチア化剤と反応させて下記(3)式で表される化合物を含む反応液を得た後、シリカゲルで処理することで得られる。
Hereinafter, the method for producing the compound represented by formula (1) of the present invention will be described, but the production method is not particularly limited. The compound represented by the formula (1) is obtained by reacting an epoxy compound represented by the following formula (2) with a thiazant such as thiourea to form a reaction solution containing the compound represented by the following formula (3). After being obtained, it is obtained by treating with silica gel.
前記反応により(1)式および(3)式で表される化合物を得る方法において、チオ尿素等のチア化剤は、(2)式で表されるエポキシ化合物のエポキシに対応するモル数、すなわち理論量を使用するが、反応速度、純度を重視するのであれば理論量~理論量の2.5倍モルを使用する。好ましくは理論量の1.3倍モル~理論量の2.0倍モルであり、より好ましくは理論量の1.5倍モル~理論量の2.0倍モルである。チオ尿素が溶解可能な極性有機溶媒は、メタノール、エタノール等のアルコール類、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類、メチルセルソルブ、エチルセルソルブ、ブチルセルソルブ等のヒドロキシエーテル類が挙げられるが、好ましくはアルコール類であり、最も好ましくはメタノールである。(2)式で表されるエポキシ化合物が溶解可能な非極性有機溶媒は、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素類、ベンゼン、トルエン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、クロロベンゼン等のハロゲン化炭化水素類が挙げられるが、好ましくは芳香族炭化水素であり、最も好ましくはトルエンである。溶媒比は、極性有機溶媒/非極性有機溶媒=0.1~10.0の体積比で使用するが、好ましくは極性有機溶媒/非極性有機溶媒=0.2~5.0の体積比で使用する。体積比が0.1未満の場合はチオ尿素が溶解不十分となり反応が十分に進行せず、10.0を超えるとポリマーの生成が顕著となる。反応温度は、10℃~30℃で実施する。10℃未満の場合、反応速度の低下に加え、チオ尿素が溶解不十分となり反応が十分に進行せず、30℃を超える場合、ポリマーの生成が顕著となる。
In the method for obtaining the compounds represented by the formulas (1) and (3) by the above reaction, the thiocyanating agent such as thiourea is used in a molar number corresponding to the epoxy of the epoxy compound represented by the formula (2), that is, The stoichiometric amount is used, but if the reaction rate and the purity are important, the stoichiometric amount to 2.5 times the molar amount of the stoichiometric amount is used. It is preferably from 1.3 times the stoichiometric amount to 2.0 times the stoichiometric amount, more preferably from 1.5 times the stoichiometric amount to 2.0 times the stoichiometric amount. Examples of the polar organic solvent in which thiourea can be dissolved include alcohols such as methanol and ethanol, ethers such as diethyl ether, tetrahydrofuran and dioxane, and hydroxyethers such as methylcellosolve, ethylcellosolve and butylcellosolve. , Preferably alcohols, and most preferably methanol. Non-polar organic solvents in which the epoxy compound represented by the formula (2) can be dissolved include aliphatic hydrocarbons such as pentane, hexane and heptane, aromatic hydrocarbons such as benzene and toluene, dichloromethane, chloroform, chlorobenzene and the like. Of these, preferred are aromatic hydrocarbons, and most preferred is toluene. The solvent ratio is a polar organic solvent / non-polar organic solvent in a volume ratio of 0.1 to 10.0, preferably a polar organic solvent / non-polar organic solvent in a volume ratio of 0.2 to 5.0. use. When the volume ratio is less than 0.1, thiourea is insufficiently dissolved and the reaction does not proceed sufficiently. When the volume ratio exceeds 10.0, the production of the polymer becomes remarkable. The reaction is carried out at a temperature of 10 ° C to 30 ° C. If the temperature is lower than 10 ° C., in addition to the reduction of the reaction rate, the thiourea is insufficiently dissolved and the reaction does not proceed sufficiently. If the temperature is higher than 30 ° C., the production of the polymer becomes remarkable.
反応に際し、酸もしくは酸無水物を添加することは好ましい。好ましくは酢酸、プロピオン酸、酪酸、コハク酸、マレイン酸、安息香酸、フタル酸、ピロメリット酸、トリメリット酸、トリフルオロ酢酸およびその酸無水物であり、最も好ましくは酢酸およびその酸無水物である。添加量は通常反応液総量に対して0.001質量%~10質量%の範囲で用いられるが、好ましくは0.01質量%~5質量%である。添加量が0.001質量%未満ではポリマーの生成が顕著となって反応収率が低下し、10質量%を超えると収率が著しく低下する。
際 In the reaction, it is preferable to add an acid or an acid anhydride. Preferably acetic acid, propionic acid, butyric acid, succinic acid, maleic acid, benzoic acid, phthalic acid, pyromellitic acid, trimellitic acid, trifluoroacetic acid and its anhydrides, most preferably acetic acid and its anhydrides is there. The addition amount is usually used in the range of 0.001% by mass to 10% by mass with respect to the total amount of the reaction solution, but is preferably 0.01% by mass to 5% by mass. When the addition amount is less than 0.001% by mass, the production of the polymer becomes remarkable and the reaction yield decreases, and when it exceeds 10% by mass, the yield decreases remarkably.
こうして得られた上記(3)式で表される化合物を含む反応液をシリカゲルで処理することで、(1)式で表される化合物が得られる。好ましくは、トルエン等の溶媒中で加温しながらシリカゲルとともに攪拌する。
処理 By treating the thus obtained reaction solution containing the compound represented by the above formula (3) with silica gel, the compound represented by the formula (1) is obtained. Preferably, the mixture is stirred with silica gel while heating in a solvent such as toluene.
本発明の(1)式で表される化合物は、高屈折率樹脂の耐熱性の低下を抑制しつつ染色性を向上させることが出来る。好ましくは(1)式で表される化合物以外のエピスルフィド化合物との光学材料用組成物にすることであり、これらを重合硬化させることにより得られる光学材料は染色性が向上する。
(1)式で表される化合物以外のエピスルフィド化合物の例として、前記(3)式で表される化合物及び下記(4)式で表される化合物が挙げられる。
(式中、mは0~4の整数を示し、nは0~2の整数を示す。)
(4)式で表される化合物の具体例としては次のものが挙げられるが、これらに限定されるものではない。
ビス(β-エピチオプロピル)スルフィド(上記(4)式でn=0)、ビス(β-エピチオプロピル)ジスルフィド(上記(4)式でm=0、n=1)、ビス(β-エピチオプロピルチオ)メタン(上記(4)式でm=1、n=1)、1,2-ビス(β-エピチオプロピルチオ)エタン(上記(4)式でm=2、n=1)、1,3-ビス(β-エピチオプロピルチオ)プロパン(上記(4)式でm=3、n=1)、1,4-ビス(β-エピチオプロピルチオ)ブタン(上記(4)式でm=4、n=1)、ビス(β-エピチオプロピルチオエチル)スルフィド(上記(4)式でm=2、n=2)を挙げることができる。
中でも好ましい化合物は、ビス(β-エピチオプロピル)スルフィド((4)式でn=0)、ビス(β-エピチオプロピル)ジスルフィド((4)式でm=0、n=1)であり、最も好ましい化合物は、ビス(β-エピチオプロピル)スルフィド((4)式でn=0)である。 The compound represented by the formula (1) of the present invention can improve the dyeability while suppressing the decrease in the heat resistance of the high refractive index resin. It is preferable to use a composition for an optical material with an episulfide compound other than the compound represented by the formula (1), and the optical material obtained by polymerizing and curing these compounds has improved dyeability.
Examples of the episulfide compound other than the compound represented by the formula (1) include a compound represented by the formula (3) and a compound represented by the following formula (4).
(In the formula, m represents an integer of 0 to 4, and n represents an integer of 0 to 2.)
(4) Specific examples of the compound represented by the formula include the following, but are not limited thereto.
Bis (β-epithiopropyl) sulfide (n = 0 in the above formula (4)), bis (β-epithiopropyl) disulfide (m = 0, n = 1 in the above formula (4)), bis (β- Epithiopropylthio) methane (m = 1, n = 1 in the above formula (4), 1,2-bis (β-epithiopropylthio) ethane (m = 2, n = 1 in the above formula (4) ), 1,3-bis (β-epithiopropylthio) propane (m = 3, n = 1 in the above formula (4)), 1,4-bis (β-epithiopropylthio) butane ((4) ), M = 4, n = 1) and bis (β-epithiopropylthioethyl) sulfide (m = 2, n = 2 in the above formula (4)).
Among them, preferred compounds are bis (β-epithiopropyl) sulfide (n = 0 in the formula (4)) and bis (β-epithiopropyl) disulfide (m = 0, n = 1 in the formula (4)). The most preferred compound is bis (β-epithiopropyl) sulfide (n = 0 in the formula (4)).
(1)式で表される化合物以外のエピスルフィド化合物の例として、前記(3)式で表される化合物及び下記(4)式で表される化合物が挙げられる。
(4)式で表される化合物の具体例としては次のものが挙げられるが、これらに限定されるものではない。
ビス(β-エピチオプロピル)スルフィド(上記(4)式でn=0)、ビス(β-エピチオプロピル)ジスルフィド(上記(4)式でm=0、n=1)、ビス(β-エピチオプロピルチオ)メタン(上記(4)式でm=1、n=1)、1,2-ビス(β-エピチオプロピルチオ)エタン(上記(4)式でm=2、n=1)、1,3-ビス(β-エピチオプロピルチオ)プロパン(上記(4)式でm=3、n=1)、1,4-ビス(β-エピチオプロピルチオ)ブタン(上記(4)式でm=4、n=1)、ビス(β-エピチオプロピルチオエチル)スルフィド(上記(4)式でm=2、n=2)を挙げることができる。
中でも好ましい化合物は、ビス(β-エピチオプロピル)スルフィド((4)式でn=0)、ビス(β-エピチオプロピル)ジスルフィド((4)式でm=0、n=1)であり、最も好ましい化合物は、ビス(β-エピチオプロピル)スルフィド((4)式でn=0)である。 The compound represented by the formula (1) of the present invention can improve the dyeability while suppressing the decrease in the heat resistance of the high refractive index resin. It is preferable to use a composition for an optical material with an episulfide compound other than the compound represented by the formula (1), and the optical material obtained by polymerizing and curing these compounds has improved dyeability.
Examples of the episulfide compound other than the compound represented by the formula (1) include a compound represented by the formula (3) and a compound represented by the following formula (4).
(4) Specific examples of the compound represented by the formula include the following, but are not limited thereto.
Bis (β-epithiopropyl) sulfide (n = 0 in the above formula (4)), bis (β-epithiopropyl) disulfide (m = 0, n = 1 in the above formula (4)), bis (β- Epithiopropylthio) methane (m = 1, n = 1 in the above formula (4), 1,2-bis (β-epithiopropylthio) ethane (m = 2, n = 1 in the above formula (4) ), 1,3-bis (β-epithiopropylthio) propane (m = 3, n = 1 in the above formula (4)), 1,4-bis (β-epithiopropylthio) butane ((4) ), M = 4, n = 1) and bis (β-epithiopropylthioethyl) sulfide (m = 2, n = 2 in the above formula (4)).
Among them, preferred compounds are bis (β-epithiopropyl) sulfide (n = 0 in the formula (4)) and bis (β-epithiopropyl) disulfide (m = 0, n = 1 in the formula (4)). The most preferred compound is bis (β-epithiopropyl) sulfide (n = 0 in the formula (4)).
本発明の光学材料用組成物中の前記(1)式で表される化合物の割合は、0.001~5.0質量%であることが好ましく、より好ましくは0.005~3.0質量%、特に好ましくは0.01~1.0質量%である。(1)式で表される化合物が0.001質量%を下回ると十分な効果が得られない場合があり、5.0質量%を超えると屈折率が低下する場合がある。
The proportion of the compound represented by the formula (1) in the composition for an optical material of the present invention is preferably 0.001 to 5.0% by mass, more preferably 0.005 to 3.0% by mass. %, Particularly preferably 0.01 to 1.0% by mass. If the amount of the compound represented by the formula (1) is less than 0.001% by mass, a sufficient effect may not be obtained. If the amount exceeds 5.0% by mass, the refractive index may decrease.
本発明の光学材料用組成物は、必要に応じてポリチオールを含んでもよい。ポリチオールは、1分子あたりメルカプト基を2つ以上有するチオール化合物である。ポリチオールは本発明の光学材料用組成物から得られる樹脂の加熱時の色調を改善させる効果がある。
本発明において使用されるポリチオールは特に限定されないが、色調改善効果が高いことから、好ましい具体例として、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールが挙げられ、特にビス(2-メルカプトエチル)スルフィド、1,2,6,7-テトラメルカプト-4-チアへプタン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、1,3-ビス(メルカプトメチル)ベンゼンが好ましく、1,2,6,7-テトラメルカプト-4-チアへプタンが最も好ましい。これらは市販品や公知の方法により合成した物が使用可能であり、また2種以上を併用することができる。 The composition for an optical material of the present invention may contain a polythiol as needed. Polythiol is a thiol compound having two or more mercapto groups per molecule. Polythiol has the effect of improving the color tone of the resin obtained from the composition for an optical material of the present invention when heated.
The polythiol used in the present invention is not particularly limited. However, since the color tone improving effect is high, preferred specific examples thereof include 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldithiol) Sulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2,5-bis (mercaptomethyl) -1,4-dithiane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4, 8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7- Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis Mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, and thiiranemethanethiol, especially bis (2-mercaptoethyl) sulfide; 1,2,6,7-tetramercapto-4-thiaheptane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane and 1,3-bis (mercaptomethyl) benzene are preferred, 2,6,7-tetramercapto-4-thiaheptane is most preferred. These can be used as a commercial product or a product synthesized by a known method, and two or more kinds can be used in combination.
本発明において使用されるポリチオールは特に限定されないが、色調改善効果が高いことから、好ましい具体例として、1,2,6,7-テトラメルカプト-4-チアへプタン、メタンジチオール、(スルファニルメチルジスルファニル)メタンチオール、ビス(2-メルカプトエチル)スルフィド、2,5-ビス(メルカプトメチル)-1,4-ジチアン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、4,8-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、4,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、5,7-ジメルカプトメチル-1,11-ジメルカプト-3,6,9-トリチアウンデカン、1,1,3,3-テトラキス(メルカプトメチルチオ)プロパン、テトラメルカプトペンタエリスリトール、1,3-ビス(メルカプトメチル)ベンゼン、1,4-ビス(メルカプトメチル)ベンゼン、及びチイランメタンチオールが挙げられ、特にビス(2-メルカプトエチル)スルフィド、1,2,6,7-テトラメルカプト-4-チアへプタン、1,2-ビス(2-メルカプトエチルチオ)-3-メルカプトプロパン、1,3-ビス(メルカプトメチル)ベンゼンが好ましく、1,2,6,7-テトラメルカプト-4-チアへプタンが最も好ましい。これらは市販品や公知の方法により合成した物が使用可能であり、また2種以上を併用することができる。 The composition for an optical material of the present invention may contain a polythiol as needed. Polythiol is a thiol compound having two or more mercapto groups per molecule. Polythiol has the effect of improving the color tone of the resin obtained from the composition for an optical material of the present invention when heated.
The polythiol used in the present invention is not particularly limited. However, since the color tone improving effect is high, preferred specific examples thereof include 1,2,6,7-tetramercapto-4-thiaheptane, methanedithiol, (sulfanylmethyldithiol) Sulfanyl) methanethiol, bis (2-mercaptoethyl) sulfide, 2,5-bis (mercaptomethyl) -1,4-dithiane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane, 4, 8-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 4,7-dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 5,7- Dimercaptomethyl-1,11-dimercapto-3,6,9-trithiaundecane, 1,1,3,3-tetrakis Mercaptomethylthio) propane, tetramercaptopentaerythritol, 1,3-bis (mercaptomethyl) benzene, 1,4-bis (mercaptomethyl) benzene, and thiiranemethanethiol, especially bis (2-mercaptoethyl) sulfide; 1,2,6,7-tetramercapto-4-thiaheptane, 1,2-bis (2-mercaptoethylthio) -3-mercaptopropane and 1,3-bis (mercaptomethyl) benzene are preferred, 2,6,7-tetramercapto-4-thiaheptane is most preferred. These can be used as a commercial product or a product synthesized by a known method, and two or more kinds can be used in combination.
光学材料用組成物においてポリチオールの割合は、組成物総量に対して、好ましくは0~25質量%(例えば0.1~25質量%)、より好ましくは0~20質量%(例えば0.5~20質量%)であり、さらに好ましくは0~10質量%(例えば0.5~10質量%)であり、特に好ましくは0~5質量%(例えば0.5~5質量%)である。
The proportion of the polythiol in the composition for optical materials is preferably 0 to 25% by mass (eg, 0.1 to 25% by mass), more preferably 0 to 20% by mass (eg, 0.5 to 20% by mass), more preferably 0 to 10% by mass (eg, 0.5 to 10% by mass), and particularly preferably 0 to 5% by mass (eg, 0.5 to 5% by mass).
光学材料用組成物は必要に応じて硫黄および/または1,2,3,5,6-ペンタチエパンを含んでもよい。硫黄および/または1,2,3,5,6-ペンタチエパンは本発明の光学材料用組成物から得られる光学材料(樹脂)の屈折率を向上させる効果がある。
本発明で用いる硫黄の形状はいかなる形状でもかまわない。具体的には、硫黄としては、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等が挙げられ、溶解速度の観点から好ましくは、粒子の細かい微粉硫黄である。
本発明に用いる硫黄の粒径(直径)は10メッシュより小さいことが好ましい。硫黄の粒径が10メッシュより大きい場合、硫黄が完全に溶解しにくい。硫黄の粒径は、30メッシュより小さいことがより好ましく、60メッシュより小さいことが最も好ましい。
本発明に用いる硫黄の純度は、好ましくは98%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.5%以上であり、最も好ましくは99.9%以上である。硫黄の純度が98%以上であると、98%未満である場合に比べて、得られる光学材料の色調がより改善する。
上記条件を満たす硫黄は、市販品を容易に入手可能であり、好適に用いることができる。
1,2,3,5,6-ペンタチエパンの入手方法は特に制限されない。市販品を用いてもよく、原油や動植物等の天然物から採取抽出しても、又公知の方法で合成してもかまわない。
合成法の一例としては、N. Takeda等,Bull.Chem.Soc.Jpn.,68,2757(1995)、F.Feherら,Angew.Chem.Int.Ed.,7,301(1968)、G.W.Kutneyら,Can.J.Chem,58,1233(1980)等に記載の方法が挙げられる。 The composition for optical materials may contain sulfur and / or 1,2,3,5,6-pentathiepane as necessary. Sulfur and / or 1,2,3,5,6-pentathiepane have an effect of improving the refractive index of an optical material (resin) obtained from the composition for an optical material of the present invention.
The shape of sulfur used in the present invention may be any shape. Specifically, examples of the sulfur include fine powder sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimation sulfur, and the like. From the viewpoint of dissolution rate, fine powder sulfur is preferable.
The particle size (diameter) of sulfur used in the present invention is preferably smaller than 10 mesh. If the particle size of sulfur is larger than 10 mesh, it is difficult to completely dissolve the sulfur. More preferably, the particle size of the sulfur is less than 30 mesh, most preferably less than 60 mesh.
The purity of the sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, further preferably 99.5% or more, and most preferably 99.9% or more. When the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where the purity of sulfur is less than 98%.
As the sulfur satisfying the above conditions, a commercially available product can be easily obtained, and can be suitably used.
The method of obtaining 1,2,3,5,6-pentathiepane is not particularly limited. A commercially available product may be used, and may be collected and extracted from natural products such as crude oil and animals and plants, or may be synthesized by a known method.
As an example of the synthesis method, N.I. Takeda et al., Bull. Chem. Soc. Jpn. , 68, 2775 (1995); Feher et al., Angew. Chem. Int. Ed. , 7, 301 (1968); W. Kutney et al., Can. J. Chem, 58, 1233 (1980).
本発明で用いる硫黄の形状はいかなる形状でもかまわない。具体的には、硫黄としては、微粉硫黄、コロイド硫黄、沈降硫黄、結晶硫黄、昇華硫黄等が挙げられ、溶解速度の観点から好ましくは、粒子の細かい微粉硫黄である。
本発明に用いる硫黄の粒径(直径)は10メッシュより小さいことが好ましい。硫黄の粒径が10メッシュより大きい場合、硫黄が完全に溶解しにくい。硫黄の粒径は、30メッシュより小さいことがより好ましく、60メッシュより小さいことが最も好ましい。
本発明に用いる硫黄の純度は、好ましくは98%以上であり、より好ましくは99.0%以上であり、さらに好ましくは99.5%以上であり、最も好ましくは99.9%以上である。硫黄の純度が98%以上であると、98%未満である場合に比べて、得られる光学材料の色調がより改善する。
上記条件を満たす硫黄は、市販品を容易に入手可能であり、好適に用いることができる。
1,2,3,5,6-ペンタチエパンの入手方法は特に制限されない。市販品を用いてもよく、原油や動植物等の天然物から採取抽出しても、又公知の方法で合成してもかまわない。
合成法の一例としては、N. Takeda等,Bull.Chem.Soc.Jpn.,68,2757(1995)、F.Feherら,Angew.Chem.Int.Ed.,7,301(1968)、G.W.Kutneyら,Can.J.Chem,58,1233(1980)等に記載の方法が挙げられる。 The composition for optical materials may contain sulfur and / or 1,2,3,5,6-pentathiepane as necessary. Sulfur and / or 1,2,3,5,6-pentathiepane have an effect of improving the refractive index of an optical material (resin) obtained from the composition for an optical material of the present invention.
The shape of sulfur used in the present invention may be any shape. Specifically, examples of the sulfur include fine powder sulfur, colloidal sulfur, precipitated sulfur, crystalline sulfur, sublimation sulfur, and the like. From the viewpoint of dissolution rate, fine powder sulfur is preferable.
The particle size (diameter) of sulfur used in the present invention is preferably smaller than 10 mesh. If the particle size of sulfur is larger than 10 mesh, it is difficult to completely dissolve the sulfur. More preferably, the particle size of the sulfur is less than 30 mesh, most preferably less than 60 mesh.
The purity of the sulfur used in the present invention is preferably 98% or more, more preferably 99.0% or more, further preferably 99.5% or more, and most preferably 99.9% or more. When the purity of sulfur is 98% or more, the color tone of the obtained optical material is further improved as compared with the case where the purity of sulfur is less than 98%.
As the sulfur satisfying the above conditions, a commercially available product can be easily obtained, and can be suitably used.
The method of obtaining 1,2,3,5,6-pentathiepane is not particularly limited. A commercially available product may be used, and may be collected and extracted from natural products such as crude oil and animals and plants, or may be synthesized by a known method.
As an example of the synthesis method, N.I. Takeda et al., Bull. Chem. Soc. Jpn. , 68, 2775 (1995); Feher et al., Angew. Chem. Int. Ed. , 7, 301 (1968); W. Kutney et al., Can. J. Chem, 58, 1233 (1980).
光学材料用組成物において硫黄および/または1,2,3,5,6-ペンタチエパンの割合は、組成物総量に対して、0~40質量%(例えば1~40質量%)であり、好ましくは0~30質量%(例えば5~30質量%、10~30質量%)、より好ましくは0~25質量%(例えば5~25質量%)であり、特に好ましくは0~20質量%(例えば5~20質量%)である。
The proportion of sulfur and / or 1,2,3,5,6-pentathiepane in the composition for an optical material is 0 to 40% by mass (for example, 1 to 40% by mass), preferably 1 to 40% by mass, based on the total amount of the composition. 0 to 30% by mass (eg, 5 to 30% by mass, 10 to 30% by mass), more preferably 0 to 25% by mass (eg, 5 to 25% by mass), and particularly preferably 0 to 20% by mass (eg, 5 to 5% by mass). 2020% by mass).
本発明の光学材料用組成物を重合硬化して光学材料を得るに際して、重合触媒を添加することが好ましい。重合触媒としてはアミン、ホスフィン、オニウム塩が用いられるが、特にオニウム塩、中でも第4級アンモニウム塩、第4級ホスホニウム塩、第3級スルホニウム塩、第2級ヨードニウム塩が好ましく、中でも光学材料用組成物との相溶性の良好な第4級アンモニウム塩および第4級ホスホニウム塩がより好ましく、第4級ホスホニウム塩がさらに好ましい。より好ましい重合触媒としては、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、セチルジメチルベンジルアンモニウムクロライド、1-n-ドデシルピリジニウムクロライド等の第4級アンモニウム塩、テトラ-n-ブチルホスホニウムブロマイド、テトラフェニルホスホニウムブロマイド等の第4級ホスホニウム塩が挙げられる。これらの中で、さらに好ましい重合触媒は、テトラ-n-ブチルアンモニウムブロマイド、トリエチルベンジルアンモニウムクロライド、テトラ-n-ブチルホスホニウムブロマイドである。
重合触媒の添加量は、組成物の成分、混合比および重合硬化方法によって変化するため一概には決められないが、通常は光学材料用組成物の合計100質量部に対して、0.0001質量部~10質量部、好ましくは、0.001質量部~5質量部、より好ましくは、0.01質量部~1質量部、最も好ましくは、0.01質量部~0.5質量部である。重合触媒の添加量が10質量部より多いと急速に重合する場合がある。また、重合触媒の添加量が0.0001質量部より少ないと光学材料用組成物が十分に硬化せず耐熱性が不良となる場合がある。 When the composition for an optical material of the present invention is polymerized and cured to obtain an optical material, it is preferable to add a polymerization catalyst. As the polymerization catalyst, amines, phosphines, and onium salts are used. In particular, onium salts, particularly quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, and secondary iodonium salts are preferable, and especially for optical materials. Quaternary ammonium salts and quaternary phosphonium salts having good compatibility with the composition are more preferred, and quaternary phosphonium salts are even more preferred. More preferred polymerization catalysts include quaternary ammonium salts such as tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, And quaternary phosphonium salts such as phenylphosphonium bromide. Among these, more preferred polymerization catalysts are tetra-n-butylammonium bromide, triethylbenzylammonium chloride and tetra-n-butylphosphonium bromide.
The amount of the polymerization catalyst to be added can vary depending on the components of the composition, the mixing ratio and the polymerization curing method, but cannot be unconditionally determined. Usually, the amount is 0.0001 parts by mass relative to 100 parts by mass of the total composition for optical materials. To 10 parts by mass, preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass, and most preferably 0.01 to 0.5 part by mass. . If the amount of the polymerization catalyst is more than 10 parts by mass, the polymerization may occur rapidly. On the other hand, if the amount of the polymerization catalyst is less than 0.0001 parts by mass, the composition for an optical material may not be sufficiently cured and may have poor heat resistance.
重合触媒の添加量は、組成物の成分、混合比および重合硬化方法によって変化するため一概には決められないが、通常は光学材料用組成物の合計100質量部に対して、0.0001質量部~10質量部、好ましくは、0.001質量部~5質量部、より好ましくは、0.01質量部~1質量部、最も好ましくは、0.01質量部~0.5質量部である。重合触媒の添加量が10質量部より多いと急速に重合する場合がある。また、重合触媒の添加量が0.0001質量部より少ないと光学材料用組成物が十分に硬化せず耐熱性が不良となる場合がある。 When the composition for an optical material of the present invention is polymerized and cured to obtain an optical material, it is preferable to add a polymerization catalyst. As the polymerization catalyst, amines, phosphines, and onium salts are used. In particular, onium salts, particularly quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, and secondary iodonium salts are preferable, and especially for optical materials. Quaternary ammonium salts and quaternary phosphonium salts having good compatibility with the composition are more preferred, and quaternary phosphonium salts are even more preferred. More preferred polymerization catalysts include quaternary ammonium salts such as tetra-n-butylammonium bromide, triethylbenzylammonium chloride, cetyldimethylbenzylammonium chloride, 1-n-dodecylpyridinium chloride, tetra-n-butylphosphonium bromide, And quaternary phosphonium salts such as phenylphosphonium bromide. Among these, more preferred polymerization catalysts are tetra-n-butylammonium bromide, triethylbenzylammonium chloride and tetra-n-butylphosphonium bromide.
The amount of the polymerization catalyst to be added can vary depending on the components of the composition, the mixing ratio and the polymerization curing method, but cannot be unconditionally determined. Usually, the amount is 0.0001 parts by mass relative to 100 parts by mass of the total composition for optical materials. To 10 parts by mass, preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass, and most preferably 0.01 to 0.5 part by mass. . If the amount of the polymerization catalyst is more than 10 parts by mass, the polymerization may occur rapidly. On the other hand, if the amount of the polymerization catalyst is less than 0.0001 parts by mass, the composition for an optical material may not be sufficiently cured and may have poor heat resistance.
また、本発明の製造方法で光学材料を製造する際、光学材料用組成物に紫外線吸収剤、ブルーイング剤、顔料等の添加剤を加え、得られる光学材料の実用性をより向上せしめることはもちろん可能である。
紫外線吸収剤の好ましい例としてはベンゾトリアゾール系化合物であり、特に好ましい化合物は、2-(2-ヒドロキシ-5-メチルフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3、5-ジ-tert-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-メトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-エトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-ブトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾールである。
これら紫外線吸収剤の添加量は、通常、光学材料用組成物の合計100質量部に対して0.01~5質量部である。 In addition, when an optical material is produced by the production method of the present invention, an additive such as an ultraviolet absorber, a bluing agent, or a pigment is added to the composition for an optical material to improve the practicality of the obtained optical material. Of course it is possible.
Preferred examples of the ultraviolet absorber are benzotriazole compounds, and particularly preferred compounds are 2- (2-hydroxy-5-methylphenyl) -2H-benzotriazole and 5-chloro-2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-methoxyphenyl) -2H-benzo Triazole, 2- (2-hydroxy-4-ethoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-butoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyloxyphenyl ) -2H-benzotriazole, 2- (2-hydroxy-5-t-octylphenyi) ) Is -2H- benzotriazole.
The amount of the ultraviolet absorber to be added is usually 0.01 to 5 parts by mass based on 100 parts by mass of the total composition for optical materials.
紫外線吸収剤の好ましい例としてはベンゾトリアゾール系化合物であり、特に好ましい化合物は、2-(2-ヒドロキシ-5-メチルフェニル)-2H-ベンゾトリアゾール、5-クロロ-2-(3、5-ジ-tert-ブチル-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチルフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-メトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-エトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-ブトキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-4-オクチロキシフェニル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-t-オクチルフェニル)-2H-ベンゾトリアゾールである。
これら紫外線吸収剤の添加量は、通常、光学材料用組成物の合計100質量部に対して0.01~5質量部である。 In addition, when an optical material is produced by the production method of the present invention, an additive such as an ultraviolet absorber, a bluing agent, or a pigment is added to the composition for an optical material to improve the practicality of the obtained optical material. Of course it is possible.
Preferred examples of the ultraviolet absorber are benzotriazole compounds, and particularly preferred compounds are 2- (2-hydroxy-5-methylphenyl) -2H-benzotriazole and 5-chloro-2- (3,5-di -Tert-butyl-2-hydroxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octylphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-methoxyphenyl) -2H-benzo Triazole, 2- (2-hydroxy-4-ethoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-butoxyphenyl) -2H-benzotriazole, 2- (2-hydroxy-4-octyloxyphenyl ) -2H-benzotriazole, 2- (2-hydroxy-5-t-octylphenyi) ) Is -2H- benzotriazole.
The amount of the ultraviolet absorber to be added is usually 0.01 to 5 parts by mass based on 100 parts by mass of the total composition for optical materials.
光学材料用組成物を重合硬化させる際に、ポットライフの延長や重合発熱の分散化などを目的として、必要に応じて重合調整剤を添加することができる。重合調整剤は、長期周期律表における第13~16族のハロゲン化物を挙げることができる。これらのうち好ましいものは、ケイ素、ゲルマニウム、スズ、アンチモンのハロゲン化物であり、より好ましいものはアルキル基を有するゲルマニウム、スズ、アンチモンの塩化物である。さらに好ましい化合物は、ジブチルスズジクロライド、ブチルスズトリクロライド、ジオクチルスズジクロライド、オクチルスズトリクロライド、ジブチルジクロロゲルマニウム、ブチルトリクロロゲルマニウム、ジフェニルジクロロゲルマニウム、フェニルトリクロロゲルマニウム、トリフェニルアンチモンジクロライドであり、最も好ましい化合物は、ジブチルスズジクロライドである。重合調整剤は単独でも2種類以上を混合して使用してもかまわない。
重合調整剤の添加量は、光学材料用組成物の総計100質量部に対して、0.0001~5.0質量部であり、好ましくは0.0005~3.0質量部であり、より好ましくは0.001~2.0質量部である。重合調整剤の添加量が0.0001質量部よりも少ない場合、得られる光学材料において充分なポットライフが確保できず、重合調整剤の添加量が5.0質量部よりも多い場合は、光学材料用組成物が充分に硬化せず、得られる光学材料の耐熱性が低下する場合がある。 When the composition for an optical material is polymerized and cured, a polymerization regulator can be added as needed for the purpose of extending the pot life and dispersing the heat generated by the polymerization. Examples of the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. Of these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group. Further preferred compounds are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride, and the most preferred compound is dibutyltin dichloride. Dichloride. The polymerization modifiers may be used alone or as a mixture of two or more.
The amount of the polymerization modifier to be added is 0.0001 to 5.0 parts by mass, preferably 0.0005 to 3.0 parts by mass, more preferably 100 parts by mass based on 100 parts by mass of the total composition for optical materials. Is 0.001 to 2.0 parts by mass. When the addition amount of the polymerization modifier is less than 0.0001 parts by mass, a sufficient pot life cannot be secured in the obtained optical material, and when the addition amount of the polymerization modifier is more than 5.0 parts by mass, In some cases, the material composition is not sufficiently cured, and the heat resistance of the obtained optical material is reduced.
重合調整剤の添加量は、光学材料用組成物の総計100質量部に対して、0.0001~5.0質量部であり、好ましくは0.0005~3.0質量部であり、より好ましくは0.001~2.0質量部である。重合調整剤の添加量が0.0001質量部よりも少ない場合、得られる光学材料において充分なポットライフが確保できず、重合調整剤の添加量が5.0質量部よりも多い場合は、光学材料用組成物が充分に硬化せず、得られる光学材料の耐熱性が低下する場合がある。 When the composition for an optical material is polymerized and cured, a polymerization regulator can be added as needed for the purpose of extending the pot life and dispersing the heat generated by the polymerization. Examples of the polymerization regulator include halides of Groups 13 to 16 in the long-term periodic table. Of these, preferred are halides of silicon, germanium, tin and antimony, and more preferred are chlorides of germanium, tin and antimony having an alkyl group. Further preferred compounds are dibutyltin dichloride, butyltin trichloride, dioctyltin dichloride, octyltin trichloride, dibutyldichlorogermanium, butyltrichlorogermanium, diphenyldichlorogermanium, phenyltrichlorogermanium, triphenylantimony dichloride, and the most preferred compound is dibutyltin dichloride. Dichloride. The polymerization modifiers may be used alone or as a mixture of two or more.
The amount of the polymerization modifier to be added is 0.0001 to 5.0 parts by mass, preferably 0.0005 to 3.0 parts by mass, more preferably 100 parts by mass based on 100 parts by mass of the total composition for optical materials. Is 0.001 to 2.0 parts by mass. When the addition amount of the polymerization modifier is less than 0.0001 parts by mass, a sufficient pot life cannot be secured in the obtained optical material, and when the addition amount of the polymerization modifier is more than 5.0 parts by mass, In some cases, the material composition is not sufficiently cured, and the heat resistance of the obtained optical material is reduced.
このようにして得られた光学材料用組成物はモールド等の型に注型し、重合させて光学材料とする。
本発明の光学材料用組成物の注型に際し、0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することは、本発明の光学材料の品質を高める上からも好ましい。
本発明の光学材料用組成物の重合は通常、以下のようにして行われる。即ち、硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、又はこれらの工程を組み合わせて行う。
また、硬化終了後、得られた光学材料を50~150℃の温度で10分~5時間程度アニール処理を行うことは、本発明の光学材料の歪を除くために好ましい処理である。さらに得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
本発明の光学材料は光学レンズとして好適に用いることができる。 The composition for optical material thus obtained is cast into a mold such as a mold and polymerized to obtain an optical material.
When casting the composition for an optical material of the present invention, it is preferable to filter and remove impurities with a filter having a pore size of about 0.1 to 5 μm from the viewpoint of improving the quality of the optical material of the present invention.
The polymerization of the composition for an optical material of the present invention is usually carried out as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually -10 ° C to 140 ° C. The polymerization is carried out by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature of 0.1 ° C. to 100 ° C./h, a step of lowering the temperature of 0.1 ° C. to 100 ° C./h, or Perform in combination.
After the curing is completed, annealing the obtained optical material at a temperature of 50 to 150 ° C. for about 10 minutes to 5 hours is a preferable treatment for removing the distortion of the optical material of the present invention. Further, the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistance coating, antireflection, or imparting antifogging property, if necessary.
The optical material of the present invention can be suitably used as an optical lens.
本発明の光学材料用組成物の注型に際し、0.1~5μm程度の孔径のフィルター等で不純物を濾過し除去することは、本発明の光学材料の品質を高める上からも好ましい。
本発明の光学材料用組成物の重合は通常、以下のようにして行われる。即ち、硬化時間は通常1~100時間であり、硬化温度は通常-10℃~140℃である。重合は所定の重合温度で所定時間保持する工程、0.1℃~100℃/hの昇温を行う工程、0.1℃~100℃/hの降温を行う工程によって、又はこれらの工程を組み合わせて行う。
また、硬化終了後、得られた光学材料を50~150℃の温度で10分~5時間程度アニール処理を行うことは、本発明の光学材料の歪を除くために好ましい処理である。さらに得られた光学材料に対して、必要に応じて染色、ハードコート、耐衝撃性コート、反射防止、防曇性付与等の表面処理を行ってもよい。
本発明の光学材料は光学レンズとして好適に用いることができる。 The composition for optical material thus obtained is cast into a mold such as a mold and polymerized to obtain an optical material.
When casting the composition for an optical material of the present invention, it is preferable to filter and remove impurities with a filter having a pore size of about 0.1 to 5 μm from the viewpoint of improving the quality of the optical material of the present invention.
The polymerization of the composition for an optical material of the present invention is usually carried out as follows. That is, the curing time is usually 1 to 100 hours, and the curing temperature is usually -10 ° C to 140 ° C. The polymerization is carried out by a step of holding at a predetermined polymerization temperature for a predetermined time, a step of raising the temperature of 0.1 ° C. to 100 ° C./h, a step of lowering the temperature of 0.1 ° C. to 100 ° C./h, or Perform in combination.
After the curing is completed, annealing the obtained optical material at a temperature of 50 to 150 ° C. for about 10 minutes to 5 hours is a preferable treatment for removing the distortion of the optical material of the present invention. Further, the obtained optical material may be subjected to a surface treatment such as dyeing, hard coating, impact resistance coating, antireflection, or imparting antifogging property, if necessary.
The optical material of the present invention can be suitably used as an optical lens.
以下、本発明の内容を、実施例及び比較例を挙げて説明するが、本発明は以下の実施例に限定されるものではない。なお、以下の実施例及び比較例の方法により得られた光学材料を以下の方法により評価した。
屈折率:アタゴ社製アッベ屈折計NAR-4Tを用い、e線での屈折率を25℃で測定した。
耐熱性:サンプルを厚さ3mmに切り出し、0.5mmφのピンに50gの荷重を与え、10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行って、得られたTMA曲線の温度微分曲線であるDTMAのピーク温度、及びDTMAピーク値により評価を行った。
このDTMAピーク値が小さいほど熱による軟化が起こりにくく耐熱性が高いと評価される。特にピーク値が負、またはピークが無い場合は軟化点無しとした。DTMAピーク値が1.0以下のものをA、1.0を超えて1.5以下であるものをB、1.5を超えるものCとした。「C」は不合格レベルである。
染色性:水1LにセイコープラックスダイヤコートブラウンD2g、セイコープラックス染色助剤3g、ベンジルアルコール20gを加え90℃に加温し、そこへ15分浸漬して全光線透過率を測定した。透過率が30%未満を「A」、30%以上70%未満を「B」、70%以上を「C」とした。透過率が低いほど染色性が良好となり、「A」、「B」が合格で「A」がより好ましい。「C」は不合格レベルである。 Hereinafter, the content of the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to the following examples. The optical materials obtained by the methods of the following Examples and Comparative Examples were evaluated by the following methods.
Refractive index: The refractive index at e-line was measured at 25 ° C. using an Abbe refractometer NAR-4T manufactured by Atago.
Heat resistance: A sample was cut into a thickness of 3 mm, a load of 50 g was applied to a 0.5 mmφ pin, the temperature was increased at 10 ° C./min, and TMA measurement (manufactured by Seiko Instruments, TMA / SS6100) was performed. The evaluation was performed based on the DTMA peak temperature and the DTMA peak value, which are the temperature differential curves of the TMA curve.
It is evaluated that the smaller the DTMA peak value is, the less heat-induced softening occurs and the higher the heat resistance. In particular, when the peak value was negative or there was no peak, it was determined that there was no softening point. A sample having a DTMA peak value of 1.0 or less was designated as A, B having a DTMA peak value exceeding 1.0 and 1.5 or less was designated as B, and C having a DTMA peak value exceeding 1.5 was designated as C. “C” is the reject level.
Stainability: 2 g of Seiko Plux Diamond Coat Brown D, 3 g of Seiko Plux dyeing aid and 20 g of benzyl alcohol were added to 1 L of water, heated to 90 ° C., immersed there for 15 minutes, and measured for total light transmittance. "A" indicates a transmittance of less than 30%, "B" indicates a transmittance of 30% or more and less than 70%, and "C" indicates a transmittance of 70% or more. The lower the transmittance, the better the dyeability, and “A” and “B” pass and “A” is more preferable. “C” is the reject level.
屈折率:アタゴ社製アッベ屈折計NAR-4Tを用い、e線での屈折率を25℃で測定した。
耐熱性:サンプルを厚さ3mmに切り出し、0.5mmφのピンに50gの荷重を与え、10℃/分で昇温してTMA測定(セイコーインスツルメンツ製、TMA/SS6100)を行って、得られたTMA曲線の温度微分曲線であるDTMAのピーク温度、及びDTMAピーク値により評価を行った。
このDTMAピーク値が小さいほど熱による軟化が起こりにくく耐熱性が高いと評価される。特にピーク値が負、またはピークが無い場合は軟化点無しとした。DTMAピーク値が1.0以下のものをA、1.0を超えて1.5以下であるものをB、1.5を超えるものCとした。「C」は不合格レベルである。
染色性:水1LにセイコープラックスダイヤコートブラウンD2g、セイコープラックス染色助剤3g、ベンジルアルコール20gを加え90℃に加温し、そこへ15分浸漬して全光線透過率を測定した。透過率が30%未満を「A」、30%以上70%未満を「B」、70%以上を「C」とした。透過率が低いほど染色性が良好となり、「A」、「B」が合格で「A」がより好ましい。「C」は不合格レベルである。 Hereinafter, the content of the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to the following examples. The optical materials obtained by the methods of the following Examples and Comparative Examples were evaluated by the following methods.
Refractive index: The refractive index at e-line was measured at 25 ° C. using an Abbe refractometer NAR-4T manufactured by Atago.
Heat resistance: A sample was cut into a thickness of 3 mm, a load of 50 g was applied to a 0.5 mmφ pin, the temperature was increased at 10 ° C./min, and TMA measurement (manufactured by Seiko Instruments, TMA / SS6100) was performed. The evaluation was performed based on the DTMA peak temperature and the DTMA peak value, which are the temperature differential curves of the TMA curve.
It is evaluated that the smaller the DTMA peak value is, the less heat-induced softening occurs and the higher the heat resistance. In particular, when the peak value was negative or there was no peak, it was determined that there was no softening point. A sample having a DTMA peak value of 1.0 or less was designated as A, B having a DTMA peak value exceeding 1.0 and 1.5 or less was designated as B, and C having a DTMA peak value exceeding 1.5 was designated as C. “C” is the reject level.
Stainability: 2 g of Seiko Plux Diamond Coat Brown D, 3 g of Seiko Plux dyeing aid and 20 g of benzyl alcohol were added to 1 L of water, heated to 90 ° C., immersed there for 15 minutes, and measured for total light transmittance. "A" indicates a transmittance of less than 30%, "B" indicates a transmittance of 30% or more and less than 70%, and "C" indicates a transmittance of 70% or more. The lower the transmittance, the better the dyeability, and “A” and “B” pass and “A” is more preferable. “C” is the reject level.
(実施例1)
テトラキス(β-エポキシプロピルチオメチル)メタン20.1g(0.047mol)にトルエン100mL、メタノール100mL、無水酢酸1.24g(0.012mol)、およびチオ尿素30.5g(0.40mol)を加えて、30℃で24時間撹拌を行った。その後、トルエン400mLおよび5%硫酸400mLを加えてトルエン層を3回水洗し、テトラキス(β-エピチオプロピルチオメチル)メタンを含有するトルエン層を得た。得られたトルエン層にシリカゲル100gを投入し、24時間40℃にて攪拌した。ろ過でシリカゲルを除き、トルエンを留去した、トルエン留去後の残渣をクロロホルム、トルエン、ヘキサンを展開溶媒とするシリカゲルカラムで分離し、(1)式で表される化合物(以下のa化合物、b化合物、c化合物、d化合物の割合がa:b:c:d=2:3:3:2)を得た。
以下、実施例2~9で用いた(1)式で表される化合物はこの実施例1で合成したものである。
m=0かつn=4(以下、「a化合物」)
1H-NMR(CDCl3):2.36ppm(8H)、3.11ppm(8H)、5.03ppm(4H)、5.12ppm(4H)、5.96ppm(4H)
13C-NMR(CDCl3):36.9ppm(4C)、38.3ppm(4C)、39.3ppm(1C)、115.9ppm(4C)、132.7ppm(4C)
m=1かつn=3(以下、「b化合物」)
1H-NMR(CDCl3):2.23ppm(2H)、2.36ppm(8H)、2.77ppm(2H)、2.54ppm(1H)、3.11ppm(6H)、5.03ppm(3H)、5.12ppm(3H)、5.96ppm(3H)
13C-NMR(CDCl3):24.8ppm(1C)、33.0ppm(1C)、36.9ppm(3C)、37.8ppm(1C)、38.3ppm(3C)、39.2ppm(1C)、44.8ppm(1C)、115.9ppm(3C)、132.7ppm(3C)
m=2かつn=2(以下、「c化合物」)
1H-NMR(CDCl3):2.23ppm(4H)、2.36ppm(8H)、2.77ppm(4H)、2.54ppm(2H)、3.11ppm(4H)、5.03ppm(2H)、5.12ppm(2H)、5.96ppm(2H)
13C-NMR(CDCl3):24.8ppm(2C)、33.0ppm(2C)、36.9ppm(2C)、37.8ppm(2C)、38.3ppm(2C)、39.1ppm(1C)、44.8ppm(2C)、115.9ppm(2C)、132.7ppm(2C)
m=3かつn=1(以下、「d化合物」)
1H-NMR(CDCl3):2.23ppm(6H)、2.36ppm(8H)、2.77ppm(6H)、2.54ppm(3H)、3.11ppm(2H)、5.03ppm(1H)、5.12ppm(1H)、5.96ppm(1H)
13C-NMR(CDCl3):24.8ppm(3C)、33.0ppm(3C)、36.9ppm(1C)、37.8ppm(3C)、38.3ppm(2C)、39.0ppm(1C)、44.8ppm(3C)、115.9ppm(1C)、132.7ppm(1C) (Example 1)
To 20.1 g (0.047 mol) of tetrakis (β-epoxypropylthiomethyl) methane, 100 mL of toluene, 100 mL of methanol, 1.24 g (0.012 mol) of acetic anhydride, and 30.5 g (0.40 mol) of thiourea were added. At 30 ° C. for 24 hours. Thereafter, 400 mL of toluene and 400 mL of 5% sulfuric acid were added, and the toluene layer was washed three times with water to obtain a toluene layer containing tetrakis (β-epithiopropylthiomethyl) methane. 100 g of silica gel was added to the obtained toluene layer, and the mixture was stirred at 40 ° C. for 24 hours. The silica gel was removed by filtration, the toluene was distilled off, and the residue after the toluene was distilled off was separated through a silica gel column using chloroform, toluene and hexane as a developing solvent, and the compound represented by the formula (1) (the following a compound, The ratio of the b compound, the c compound, and the d compound was a: b: c: d = 2: 3: 3: 2).
Hereinafter, the compounds represented by the formula (1) used in Examples 2 to 9 are those synthesized in Example 1.
m = 0 and n = 4 (hereinafter, “a compound”)
1 H-NMR (CDCl 3 ): 2.36 ppm (8H), 3.11 ppm (8H), 5.03 ppm (4H), 5.12 ppm (4H), 5.96 ppm (4H)
13 C-NMR (CDCl 3 ): 36.9 ppm (4C), 38.3 ppm (4C), 39.3 ppm (1C), 115.9 ppm (4C), 132.7 ppm (4C)
m = 1 and n = 3 (hereinafter, “b compound”)
1 H-NMR (CDCl 3 ): 2.23 ppm (2H), 2.36 ppm (8H), 2.77 ppm (2H), 2.54 ppm (1H), 3.11 ppm (6H), 5.03 ppm (3H) , 5.12 ppm (3H), 5.96 ppm (3H)
13 C-NMR (CDCl 3 ): 24.8 ppm (1C), 33.0 ppm (1C), 36.9 ppm (3C), 37.8 ppm (1C), 38.3 ppm (3C), 39.2 ppm (1C) , 44.8 ppm (1C), 115.9 ppm (3C), 132.7 ppm (3C)
m = 2 and n = 2 (hereinafter, “c compound”)
1 H-NMR (CDCl 3 ): 2.23 ppm (4H), 2.36 ppm (8H), 2.77 ppm (4H), 2.54 ppm (2H), 3.11 ppm (4H), 5.03 ppm (2H) , 5.12 ppm (2H), 5.96 ppm (2H)
13 C-NMR (CDCl 3 ): 24.8 ppm (2C), 33.0 ppm (2C), 36.9 ppm (2C), 37.8 ppm (2C), 38.3 ppm (2C), 39.1 ppm (1C) , 44.8 ppm (2C), 115.9 ppm (2C), 132.7 ppm (2C)
m = 3 and n = 1 (hereinafter, “d compound”)
1 H-NMR (CDCl 3 ): 2.23 ppm (6H), 2.36 ppm (8H), 2.77 ppm (6H), 2.54 ppm (3H), 3.11 ppm (2H), 5.03 ppm (1H) , 5.12 ppm (1H), 5.96 ppm (1H)
13 C-NMR (CDCl 3 ): 24.8 ppm (3C), 33.0 ppm (3C), 36.9 ppm (1C), 37.8 ppm (3C), 38.3 ppm (2C), 39.0 ppm (1C) , 44.8 ppm (3C), 115.9 ppm (1C), 132.7 ppm (1C)
テトラキス(β-エポキシプロピルチオメチル)メタン20.1g(0.047mol)にトルエン100mL、メタノール100mL、無水酢酸1.24g(0.012mol)、およびチオ尿素30.5g(0.40mol)を加えて、30℃で24時間撹拌を行った。その後、トルエン400mLおよび5%硫酸400mLを加えてトルエン層を3回水洗し、テトラキス(β-エピチオプロピルチオメチル)メタンを含有するトルエン層を得た。得られたトルエン層にシリカゲル100gを投入し、24時間40℃にて攪拌した。ろ過でシリカゲルを除き、トルエンを留去した、トルエン留去後の残渣をクロロホルム、トルエン、ヘキサンを展開溶媒とするシリカゲルカラムで分離し、(1)式で表される化合物(以下のa化合物、b化合物、c化合物、d化合物の割合がa:b:c:d=2:3:3:2)を得た。
以下、実施例2~9で用いた(1)式で表される化合物はこの実施例1で合成したものである。
m=0かつn=4(以下、「a化合物」)
1H-NMR(CDCl3):2.36ppm(8H)、3.11ppm(8H)、5.03ppm(4H)、5.12ppm(4H)、5.96ppm(4H)
13C-NMR(CDCl3):36.9ppm(4C)、38.3ppm(4C)、39.3ppm(1C)、115.9ppm(4C)、132.7ppm(4C)
m=1かつn=3(以下、「b化合物」)
1H-NMR(CDCl3):2.23ppm(2H)、2.36ppm(8H)、2.77ppm(2H)、2.54ppm(1H)、3.11ppm(6H)、5.03ppm(3H)、5.12ppm(3H)、5.96ppm(3H)
13C-NMR(CDCl3):24.8ppm(1C)、33.0ppm(1C)、36.9ppm(3C)、37.8ppm(1C)、38.3ppm(3C)、39.2ppm(1C)、44.8ppm(1C)、115.9ppm(3C)、132.7ppm(3C)
m=2かつn=2(以下、「c化合物」)
1H-NMR(CDCl3):2.23ppm(4H)、2.36ppm(8H)、2.77ppm(4H)、2.54ppm(2H)、3.11ppm(4H)、5.03ppm(2H)、5.12ppm(2H)、5.96ppm(2H)
13C-NMR(CDCl3):24.8ppm(2C)、33.0ppm(2C)、36.9ppm(2C)、37.8ppm(2C)、38.3ppm(2C)、39.1ppm(1C)、44.8ppm(2C)、115.9ppm(2C)、132.7ppm(2C)
m=3かつn=1(以下、「d化合物」)
1H-NMR(CDCl3):2.23ppm(6H)、2.36ppm(8H)、2.77ppm(6H)、2.54ppm(3H)、3.11ppm(2H)、5.03ppm(1H)、5.12ppm(1H)、5.96ppm(1H)
13C-NMR(CDCl3):24.8ppm(3C)、33.0ppm(3C)、36.9ppm(1C)、37.8ppm(3C)、38.3ppm(2C)、39.0ppm(1C)、44.8ppm(3C)、115.9ppm(1C)、132.7ppm(1C) (Example 1)
To 20.1 g (0.047 mol) of tetrakis (β-epoxypropylthiomethyl) methane, 100 mL of toluene, 100 mL of methanol, 1.24 g (0.012 mol) of acetic anhydride, and 30.5 g (0.40 mol) of thiourea were added. At 30 ° C. for 24 hours. Thereafter, 400 mL of toluene and 400 mL of 5% sulfuric acid were added, and the toluene layer was washed three times with water to obtain a toluene layer containing tetrakis (β-epithiopropylthiomethyl) methane. 100 g of silica gel was added to the obtained toluene layer, and the mixture was stirred at 40 ° C. for 24 hours. The silica gel was removed by filtration, the toluene was distilled off, and the residue after the toluene was distilled off was separated through a silica gel column using chloroform, toluene and hexane as a developing solvent, and the compound represented by the formula (1) (the following a compound, The ratio of the b compound, the c compound, and the d compound was a: b: c: d = 2: 3: 3: 2).
Hereinafter, the compounds represented by the formula (1) used in Examples 2 to 9 are those synthesized in Example 1.
m = 0 and n = 4 (hereinafter, “a compound”)
1 H-NMR (CDCl 3 ): 2.36 ppm (8H), 3.11 ppm (8H), 5.03 ppm (4H), 5.12 ppm (4H), 5.96 ppm (4H)
13 C-NMR (CDCl 3 ): 36.9 ppm (4C), 38.3 ppm (4C), 39.3 ppm (1C), 115.9 ppm (4C), 132.7 ppm (4C)
m = 1 and n = 3 (hereinafter, “b compound”)
1 H-NMR (CDCl 3 ): 2.23 ppm (2H), 2.36 ppm (8H), 2.77 ppm (2H), 2.54 ppm (1H), 3.11 ppm (6H), 5.03 ppm (3H) , 5.12 ppm (3H), 5.96 ppm (3H)
13 C-NMR (CDCl 3 ): 24.8 ppm (1C), 33.0 ppm (1C), 36.9 ppm (3C), 37.8 ppm (1C), 38.3 ppm (3C), 39.2 ppm (1C) , 44.8 ppm (1C), 115.9 ppm (3C), 132.7 ppm (3C)
m = 2 and n = 2 (hereinafter, “c compound”)
1 H-NMR (CDCl 3 ): 2.23 ppm (4H), 2.36 ppm (8H), 2.77 ppm (4H), 2.54 ppm (2H), 3.11 ppm (4H), 5.03 ppm (2H) , 5.12 ppm (2H), 5.96 ppm (2H)
13 C-NMR (CDCl 3 ): 24.8 ppm (2C), 33.0 ppm (2C), 36.9 ppm (2C), 37.8 ppm (2C), 38.3 ppm (2C), 39.1 ppm (1C) , 44.8 ppm (2C), 115.9 ppm (2C), 132.7 ppm (2C)
m = 3 and n = 1 (hereinafter, “d compound”)
1 H-NMR (CDCl 3 ): 2.23 ppm (6H), 2.36 ppm (8H), 2.77 ppm (6H), 2.54 ppm (3H), 3.11 ppm (2H), 5.03 ppm (1H) , 5.12 ppm (1H), 5.96 ppm (1H)
13 C-NMR (CDCl 3 ): 24.8 ppm (3C), 33.0 ppm (3C), 36.9 ppm (1C), 37.8 ppm (3C), 38.3 ppm (2C), 39.0 ppm (1C) , 44.8 ppm (3C), 115.9 ppm (1C), 132.7 ppm (1C)
(実施例2)
テトラキス(β-エピチオプロピルチオメチル)メタン((3)式で表される化合物)99.99質量部に(1)式で表される化合物0.01質量部(a、b、c、d化合物の割合はa:b:c:d=2:3:3:2)および重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.05質量部を添加後、よく混合し均一とした。ついで1.3kPaの真空度で脱気を行い、2枚のガラス板とテープから構成されるモールドへ注入し、30℃で10時間加熱し、100℃まで10時間かけて一定速度で昇温させ、最後に100℃で1時間加熱し、重合硬化させた。放冷後、モールドから離型し、120℃で30分アニール処理して成型板を得た。得られた光学材料の屈折率および染色性の評価を行った。評価結果を表1に示す。 (Example 2)
99.99 parts by mass of tetrakis (β-epithiopropylthiomethyl) methane (the compound represented by the formula (3)) is added to 0.01 parts by mass of the compound represented by the formula (1) (a, b, c, d) The ratio of the compounds was a: b: c: d = 2: 3: 3: 2) and 0.05 parts by mass of tetra-n-butylphosphonium bromide as a polymerization catalyst was added, followed by thorough mixing and uniformity. Then, degassing was performed at a degree of vacuum of 1.3 kPa, the mixture was poured into a mold composed of two glass plates and a tape, heated at 30 ° C. for 10 hours, and heated to 100 ° C. at a constant rate over 10 hours. Finally, the mixture was heated at 100 ° C. for 1 hour to polymerize and cure. After cooling, the mold was released from the mold and annealed at 120 ° C. for 30 minutes to obtain a molded plate. The refractive index and dyeability of the obtained optical material were evaluated. Table 1 shows the evaluation results.
テトラキス(β-エピチオプロピルチオメチル)メタン((3)式で表される化合物)99.99質量部に(1)式で表される化合物0.01質量部(a、b、c、d化合物の割合はa:b:c:d=2:3:3:2)および重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.05質量部を添加後、よく混合し均一とした。ついで1.3kPaの真空度で脱気を行い、2枚のガラス板とテープから構成されるモールドへ注入し、30℃で10時間加熱し、100℃まで10時間かけて一定速度で昇温させ、最後に100℃で1時間加熱し、重合硬化させた。放冷後、モールドから離型し、120℃で30分アニール処理して成型板を得た。得られた光学材料の屈折率および染色性の評価を行った。評価結果を表1に示す。 (Example 2)
99.99 parts by mass of tetrakis (β-epithiopropylthiomethyl) methane (the compound represented by the formula (3)) is added to 0.01 parts by mass of the compound represented by the formula (1) (a, b, c, d) The ratio of the compounds was a: b: c: d = 2: 3: 3: 2) and 0.05 parts by mass of tetra-n-butylphosphonium bromide as a polymerization catalyst was added, followed by thorough mixing and uniformity. Then, degassing was performed at a degree of vacuum of 1.3 kPa, the mixture was poured into a mold composed of two glass plates and a tape, heated at 30 ° C. for 10 hours, and heated to 100 ° C. at a constant rate over 10 hours. Finally, the mixture was heated at 100 ° C. for 1 hour to polymerize and cure. After cooling, the mold was released from the mold and annealed at 120 ° C. for 30 minutes to obtain a molded plate. The refractive index and dyeability of the obtained optical material were evaluated. Table 1 shows the evaluation results.
(実施例3~9、比較例1、2)
表1に示す組成とした以外は実施例2と同様に行い、成型板を得た。評価結果を表1に示す。 (Examples 3 to 9, Comparative Examples 1 and 2)
A molded plate was obtained in the same manner as in Example 2 except that the composition was as shown in Table 1. Table 1 shows the evaluation results.
表1に示す組成とした以外は実施例2と同様に行い、成型板を得た。評価結果を表1に示す。 (Examples 3 to 9, Comparative Examples 1 and 2)
A molded plate was obtained in the same manner as in Example 2 except that the composition was as shown in Table 1. Table 1 shows the evaluation results.
(実施例10)
実施例1と同様の操作でテトラキス(β-エピチオプロピルチオメチル)メタンを含有するトルエン層を得た。得られたトルエン層にシリカゲル100gを投入し、48時間40℃にて攪拌した。ろ過でシリカゲルを除き、トルエンを留去した、トルエン留去後の残渣をクロロホルム、トルエン、ヘキサンを展開溶媒とするシリカゲルカラムで分離し、(1)式で表される化合物(上記のa化合物、b化合物、c化合物、d化合物の割合がa:b:c:d=0:1:3:6)を得た。
以下、実施例11~14で用いた(1)式で表される化合物は、この実施例10で合成したものである。 (Example 10)
In the same manner as in Example 1, a toluene layer containing tetrakis (β-epithiopropylthiomethyl) methane was obtained. 100 g of silica gel was added to the obtained toluene layer, and the mixture was stirred at 40 ° C. for 48 hours. The silica gel was removed by filtration, the toluene was distilled off, and the residue after the toluene was distilled off was separated through a silica gel column using chloroform, toluene and hexane as a developing solvent, and the compound represented by the formula (1) (compound a described above, The ratio of the b compound, the c compound, and the d compound was a: b: c: d = 0: 1: 3: 6).
Hereinafter, the compounds represented by the formula (1) used in Examples 11 to 14 were synthesized in Example 10.
実施例1と同様の操作でテトラキス(β-エピチオプロピルチオメチル)メタンを含有するトルエン層を得た。得られたトルエン層にシリカゲル100gを投入し、48時間40℃にて攪拌した。ろ過でシリカゲルを除き、トルエンを留去した、トルエン留去後の残渣をクロロホルム、トルエン、ヘキサンを展開溶媒とするシリカゲルカラムで分離し、(1)式で表される化合物(上記のa化合物、b化合物、c化合物、d化合物の割合がa:b:c:d=0:1:3:6)を得た。
以下、実施例11~14で用いた(1)式で表される化合物は、この実施例10で合成したものである。 (Example 10)
In the same manner as in Example 1, a toluene layer containing tetrakis (β-epithiopropylthiomethyl) methane was obtained. 100 g of silica gel was added to the obtained toluene layer, and the mixture was stirred at 40 ° C. for 48 hours. The silica gel was removed by filtration, the toluene was distilled off, and the residue after the toluene was distilled off was separated through a silica gel column using chloroform, toluene and hexane as a developing solvent, and the compound represented by the formula (1) (compound a described above, The ratio of the b compound, the c compound, and the d compound was a: b: c: d = 0: 1: 3: 6).
Hereinafter, the compounds represented by the formula (1) used in Examples 11 to 14 were synthesized in Example 10.
(実施例11)
ビス(β-エピチオプロピル)スルフィド((4)式でn=0で表される化合物)99.99質量部に(1)式で表される化合物0.01質量部(a、b、c、d化合物の割合はa:b:c:d=0:1:3:6)および重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.05質量部を添加後、よく混合し均一とした。ついで1.3kPaの真空度で脱気を行い、2枚のガラス板とテープから構成されるモールドへ注入し、30℃で10時間加熱し、100℃まで10時間かけて一定速度で昇温させ、最後に100℃で1時間加熱し、重合硬化させた。放冷後、モールドから離型し、120℃で30分アニール処理して成型板を得た。得られた光学材料の屈折率および染色性の評価を行った。評価結果を表2に示す。 (Example 11)
Bis (β-epithiopropyl) sulfide (compound represented by n = 0 in formula (4)) is added to 99.99 parts by mass to 0.01 part by mass of compound represented by formula (1) (a, b, c) The ratio of the d compound was a: b: c: d = 0: 1: 3: 6) and 0.05 parts by mass of tetra-n-butylphosphonium bromide as a polymerization catalyst was added, followed by thorough mixing and uniformity. Then, degassing was performed at a degree of vacuum of 1.3 kPa, the mixture was poured into a mold composed of two glass plates and a tape, heated at 30 ° C. for 10 hours, and heated to 100 ° C. at a constant rate over 10 hours. Finally, the mixture was heated at 100 ° C. for 1 hour to polymerize and cure. After cooling, the mold was released from the mold and annealed at 120 ° C. for 30 minutes to obtain a molded plate. The refractive index and dyeability of the obtained optical material were evaluated. Table 2 shows the evaluation results.
ビス(β-エピチオプロピル)スルフィド((4)式でn=0で表される化合物)99.99質量部に(1)式で表される化合物0.01質量部(a、b、c、d化合物の割合はa:b:c:d=0:1:3:6)および重合触媒としてテトラ-n-ブチルホスホニウムブロマイド0.05質量部を添加後、よく混合し均一とした。ついで1.3kPaの真空度で脱気を行い、2枚のガラス板とテープから構成されるモールドへ注入し、30℃で10時間加熱し、100℃まで10時間かけて一定速度で昇温させ、最後に100℃で1時間加熱し、重合硬化させた。放冷後、モールドから離型し、120℃で30分アニール処理して成型板を得た。得られた光学材料の屈折率および染色性の評価を行った。評価結果を表2に示す。 (Example 11)
Bis (β-epithiopropyl) sulfide (compound represented by n = 0 in formula (4)) is added to 99.99 parts by mass to 0.01 part by mass of compound represented by formula (1) (a, b, c) The ratio of the d compound was a: b: c: d = 0: 1: 3: 6) and 0.05 parts by mass of tetra-n-butylphosphonium bromide as a polymerization catalyst was added, followed by thorough mixing and uniformity. Then, degassing was performed at a degree of vacuum of 1.3 kPa, the mixture was poured into a mold composed of two glass plates and a tape, heated at 30 ° C. for 10 hours, and heated to 100 ° C. at a constant rate over 10 hours. Finally, the mixture was heated at 100 ° C. for 1 hour to polymerize and cure. After cooling, the mold was released from the mold and annealed at 120 ° C. for 30 minutes to obtain a molded plate. The refractive index and dyeability of the obtained optical material were evaluated. Table 2 shows the evaluation results.
(実施例12~14、比較例3)
表2に示す組成とした以外は実施例11と同様に行い、成型板を得た。評価結果を表2に示す。 (Examples 12 to 14, Comparative Example 3)
A molded plate was obtained in the same manner as in Example 11 except that the composition was as shown in Table 2. Table 2 shows the evaluation results.
表2に示す組成とした以外は実施例11と同様に行い、成型板を得た。評価結果を表2に示す。 (Examples 12 to 14, Comparative Example 3)
A molded plate was obtained in the same manner as in Example 11 except that the composition was as shown in Table 2. Table 2 shows the evaluation results.
Claims (5)
- 下記(1)式で表される化合物と下記(1)式で表される化合物以外のエピスルフィド化合物とを含み、下記(1)式で表される化合物の割合が、0.001~5.0質量%である光学材料用組成物。
- 重合触媒を請求項2に記載の光学材料用組成物100質量部に対して0.0001質量部~10質量部添加し、重合硬化する工程を含む、光学材料の製造方法。 (4) A method for producing an optical material, comprising a step of adding 0.0001 to 10 parts by mass of a polymerization catalyst to 100 parts by mass of the composition for an optical material according to (2) and polymerizing and curing.
- 請求項2に記載の光学材料用組成物を重合硬化してなる光学材料。 An optical material obtained by polymerizing and curing the composition for an optical material according to claim 2.
- 請求項4に記載の光学材料を含む光学レンズ。
An optical lens comprising the optical material according to claim 4.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020207037545A KR20210042047A (en) | 2018-08-08 | 2019-08-01 | New allyl compound and composition for optical materials |
JP2020535701A JP7322885B2 (en) | 2018-08-08 | 2019-08-01 | Novel allyl compound and composition for optical materials |
CN201980050364.1A CN112513012B (en) | 2018-08-08 | 2019-08-01 | Novel allyl compound and composition for optical material |
US17/264,018 US11945791B2 (en) | 2018-08-08 | 2019-08-01 | Allyl compound and composition for optical material |
EP19847478.5A EP3835288B1 (en) | 2018-08-08 | 2019-08-01 | Novel allyl compound and composition for optical material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018149374 | 2018-08-08 | ||
JP2018-149374 | 2018-08-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031815A1 true WO2020031815A1 (en) | 2020-02-13 |
Family
ID=69414204
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/030111 WO2020031815A1 (en) | 2018-08-08 | 2019-08-01 | Novel allyl compound and composition for optical material |
Country Status (7)
Country | Link |
---|---|
US (1) | US11945791B2 (en) |
EP (1) | EP3835288B1 (en) |
JP (1) | JP7322885B2 (en) |
KR (1) | KR20210042047A (en) |
CN (1) | CN112513012B (en) |
TW (1) | TWI811417B (en) |
WO (1) | WO2020031815A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171591A1 (en) | 2022-03-08 | 2023-09-14 | 三菱瓦斯化学株式会社 | Production method for episulfide compound |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0971580A (en) * | 1995-09-08 | 1997-03-18 | Mitsubishi Gas Chem Co Inc | New branched alkyl sulfide type episulfide compound |
JPH09110979A (en) | 1995-08-16 | 1997-04-28 | Mitsubishi Gas Chem Co Inc | New linear alkyl sulfide type episulfide compound |
JPH11166037A (en) | 1997-12-03 | 1999-06-22 | Mitsubishi Gas Chem Co Inc | New composition for resin |
JP2001163878A (en) | 1999-12-10 | 2001-06-19 | Mitsui Chemicals Inc | Thioepoxy-based compound |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5807975A (en) | 1995-08-16 | 1998-09-15 | Mitsubishi Gas Chemical Company,Inc. | Alkyl sulfide type episulfide compound |
US6180753B1 (en) * | 1998-08-17 | 2001-01-30 | Mitsubishi Gas Chemical Company, Inc. | Process for treating a compound having epithio structures for disposal |
TWI482814B (en) * | 2007-03-16 | 2015-05-01 | Mitsubishi Gas Chemical Co | Resin composition for optical material and optical material comprising the composition |
JP5487976B2 (en) * | 2008-02-13 | 2014-05-14 | 三菱瓦斯化学株式会社 | Resin composition and optical lens containing the same |
-
2019
- 2019-08-01 JP JP2020535701A patent/JP7322885B2/en active Active
- 2019-08-01 CN CN201980050364.1A patent/CN112513012B/en active Active
- 2019-08-01 EP EP19847478.5A patent/EP3835288B1/en active Active
- 2019-08-01 KR KR1020207037545A patent/KR20210042047A/en unknown
- 2019-08-01 WO PCT/JP2019/030111 patent/WO2020031815A1/en unknown
- 2019-08-01 TW TW108127324A patent/TWI811417B/en active
- 2019-08-01 US US17/264,018 patent/US11945791B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09110979A (en) | 1995-08-16 | 1997-04-28 | Mitsubishi Gas Chem Co Inc | New linear alkyl sulfide type episulfide compound |
JPH0971580A (en) * | 1995-09-08 | 1997-03-18 | Mitsubishi Gas Chem Co Inc | New branched alkyl sulfide type episulfide compound |
JPH11166037A (en) | 1997-12-03 | 1999-06-22 | Mitsubishi Gas Chem Co Inc | New composition for resin |
JP2001163878A (en) | 1999-12-10 | 2001-06-19 | Mitsui Chemicals Inc | Thioepoxy-based compound |
Non-Patent Citations (4)
Title |
---|
BACKER, H. J. ET AL.: "LES THIOETHERS DU PENTAERYTHRITOL", RECUELLDES TRAVAUX CHIMIQUES DES PAYS-BAS ET DE LA BELGIQUE, vol. 51, 1932, pages 289 - 293, XP055775805 * |
F. FEHER ET AL., ANGEW. CHEM. INT. ED., vol. 7, 1968, pages 301 |
G. W. KUTNEY ET AL., CAN. J. CHEM, vol. 58, 1980, pages 1233 |
N. TAKEDA ET AL., BULL. CHEM. SOC. JPN., vol. 68, 1995, pages 2757 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023171591A1 (en) | 2022-03-08 | 2023-09-14 | 三菱瓦斯化学株式会社 | Production method for episulfide compound |
Also Published As
Publication number | Publication date |
---|---|
CN112513012B (en) | 2022-09-20 |
EP3835288A4 (en) | 2021-10-20 |
JPWO2020031815A1 (en) | 2021-08-26 |
US20210292297A1 (en) | 2021-09-23 |
KR20210042047A (en) | 2021-04-16 |
EP3835288B1 (en) | 2024-01-31 |
CN112513012A (en) | 2021-03-16 |
TWI811417B (en) | 2023-08-11 |
JP7322885B2 (en) | 2023-08-08 |
US11945791B2 (en) | 2024-04-02 |
TW202017915A (en) | 2020-05-16 |
EP3835288A1 (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110198969B (en) | Composition for optical material | |
KR20180061429A (en) | Novel episulfide compound and optical material composition containing same | |
KR101815951B1 (en) | Novel sulfur compound and composition for optical materials containing same | |
JP2007321072A (en) | Method for producing high-refractive index resin | |
JP7322885B2 (en) | Novel allyl compound and composition for optical materials | |
WO2022137715A1 (en) | Composition, and optical material and lens using same | |
CN112424193B (en) | Episulfide compound and composition for optical material | |
JP6089747B2 (en) | Polymerizable composition for optical material | |
JP7367683B2 (en) | Compositions for optical materials and optical materials | |
WO2021241441A1 (en) | Composition for optical material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19847478 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020535701 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019847478 Country of ref document: EP Effective date: 20210309 |