WO2020031548A1 - Input device - Google Patents

Input device Download PDF

Info

Publication number
WO2020031548A1
WO2020031548A1 PCT/JP2019/026010 JP2019026010W WO2020031548A1 WO 2020031548 A1 WO2020031548 A1 WO 2020031548A1 JP 2019026010 W JP2019026010 W JP 2019026010W WO 2020031548 A1 WO2020031548 A1 WO 2020031548A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction force
unit
circular
input
image
Prior art date
Application number
PCT/JP2019/026010
Other languages
French (fr)
Japanese (ja)
Inventor
慶幸 松原
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2020031548A1 publication Critical patent/WO2020031548A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R16/00Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
    • B60R16/02Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0354Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 2D relative movements between the device, or an operating part thereof, and a plane or surface, e.g. 2D mice, trackballs, pens or pucks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0362Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of 1D translations or rotations of an operating part of the device, e.g. scroll wheels, sliders, knobs, rollers or belts

Definitions

  • the present disclosure relates to an input device for performing an input operation on a device mounted on a vehicle.
  • Patent Literature 1 As an input device, for example, an input device described in Patent Document 1 is known.
  • the input device of Patent Literature 1 is mounted on a vehicle, and includes a display unit provided on a dashboard and an operation unit provided on an upper surface of a center console remote from the display unit.
  • the operation unit has an operation knob provided to be slidable (or movable) on a two-dimensional plane. By sliding the operation knob, the user can perform a screen operation on an icon (or a switch image) or the like displayed on the display unit, and can perform an input operation on a predetermined vehicle device.
  • the reaction force generating unit causes the user's hand (or the user's finger) to feel an operation (for example, a reaction force or a retraction force) according to the trajectory of the input operation. Haptic feedback).
  • control parameters for giving an operational feeling based on the input operation locus can be changed for each individual according to the size of the individual hand so as to reduce this deviation. Is desired.
  • the user for example, keeps using the current status without making any troublesome settings even if he knows that the parameter settings can be changed, or cannot complete the setting action due to unfamiliar settings, or cannot perform optimal settings, There may be situations.
  • the present disclosure has an object to provide an input device that performs an input operation of drawing a circular locus and enables tuning of an operation feeling without trouble for a user.
  • the input device is a display unit that displays an operation switch image for an in-vehicle device, and is provided at a position separated from the display unit, and displays an operation position with respect to the switch image.
  • An operation unit that enables an input operation by moving the pointer image shown, a reaction force generation unit that generates an operation reaction force on the operation unit, and controls the reaction force generation unit based on input data by the input operation;
  • a control unit that performs input operation support for the vehicle-mounted device.
  • the switch image is a circular switch image.
  • the operation unit has an operation knob that moves on a plane, and is provided on the steering wheel of the vehicle, and the operation knob is operated along the circumferential direction of the circular switch image by the thumb of the user holding the steering wheel. ing.
  • the control unit has an operation area in which the operation knob is operated, and a circular trajectory corresponding to the circular switch image in the operation area, and has a reaction force control map for setting an operation reaction force.
  • the control unit stores the input operation trajectory of the user to the operation knob, and updates the center position and the radius of the circular trajectory so as to match the input operation trajectory. Accordingly, an operation reaction force is applied at a position where the user can easily operate, and a plurality of circular trajectories are prepared and stored in advance in order to update the circular trajectory for the user to operate. It is not necessary to perform an operation for updating the circular trajectory, and it is possible to tune the operational feeling without trouble for the user.
  • the input device is a display unit that displays an operation switch image for the in-vehicle device, and is provided at a position separated from the display unit, and operates the switch image to operate the switch image.
  • An operation unit that enables an input operation by moving a pointer image indicating a position, a reaction force generation unit that generates an operation reaction force on the operation unit, and controls the reaction force generation unit based on input data from the input operation.
  • a control unit that supports input operations for the in-vehicle device.
  • the switch image is a circular switch image.
  • the operation unit has an operation knob that moves on a plane, and is provided on the steering wheel of the vehicle, and the operation knob is operated along the circumferential direction of the circular switch image by the thumb of the user holding the steering wheel. ing.
  • the control unit has an operation area in which the operation knob is operated, and a circular trajectory corresponding to the circular switch image in the operation area, and has a reaction force control map for setting an operation reaction force.
  • operability can be improved as compared with the case where the operation range is small, and subsequent erroneous operations are suppressed.
  • FIG. 2 is a block diagram illustrating an entire configuration of the input device, It is an explanatory diagram showing a switch image, a pointer image, and a set speed image on the display unit, It is a perspective view showing an operation unit provided in the steering, It is an explanatory view showing a reaction force control map, It is an explanatory diagram showing an input operation trajectory in the reaction force control map, FIG.
  • FIG. 9 is an explanatory diagram illustrating a state 1 in which the input operation trajectory is shifted with respect to the circular trajectory of the reaction force control map; It is an explanatory diagram showing a state in which the center and radius of the circular locus are automatically updated to match the input operation locus, FIG.
  • 9 is an explanatory diagram showing a state 2 in which the input operation trajectory is shifted with respect to the circular trajectory of the reaction force control map, It is an explanatory diagram showing a state in which the center and radius of the circular locus are automatically updated to match the input operation locus, It is explanatory drawing which shows the state 3 in which the input operation trajectory is shifted with respect to the circular trajectory of the reaction force control map, It is an explanatory view showing a state in which the radius of the circular locus is automatically updated to match the input operation locus, It is a flowchart which shows the control content of 1st Embodiment, It is an explanatory view showing a reaction force control map of the second embodiment, It is an explanatory view showing the contents of the erroneous operation, It is a flowchart which shows the control content of 2nd Embodiment, It is an explanatory view showing the state where the radius of the circular locus was automatically updated in response to an erroneous operation.
  • the input device 100 is a device for performing input operations such as setting of operating conditions for on-vehicle equipment of a vehicle.
  • Examples of the in-vehicle device include an adaptive cruise control (ACC) device, an advanced driver assistance system (ADAS), an air conditioner, and an audio device.
  • ACC adaptive cruise control
  • ADAS advanced driver assistance system
  • the input device 100 includes a display unit 110, an operation unit 120, an input operation support module 130, and the like.
  • the display unit 110 is a display device that displays, for example, the operating state of the vehicle-mounted device and operation items for input operation. As illustrated in FIG. 2, the display unit 110 illustrates an example in which a virtual image such as an operation item is displayed on a front window by a head-up display (HUD) device, for example.
  • the display unit 110 may be a liquid crystal display unit provided in a combination meter, a center display unit for a car navigation device mounted on an instrument panel, or the like.
  • a switch image 111a for speed setting in the ACC device As display contents on the display unit 110, for example, a switch image 111a for speed setting in the ACC device, a pointer image 111b indicating the operation position of the operation knob 121, and a set speed image 111c set by the operator are displayed. It is supposed to be.
  • the display content corresponds to, for example, an operation item, an operation state, and the like.
  • the switch image 111a corresponds to, for example, a switch icon.
  • the pointer image 111b corresponds to, for example, a pointer icon.
  • the set speed image 111c corresponds to, for example, a set speed icon.
  • the switch image 111a is a circular switch image 111a, and is designed to image a circular dial-type switch that is rotated.
  • the pointer image 111b has a design showing circular dots.
  • the speed value is numerically displayed on the set speed image 111c.
  • the operation unit 120 enables an input operation on the circular switch image 111a displayed on the display unit 110.
  • the operation unit 120 is provided at a position distant from the display unit 110, here, as shown in FIG. 3, at a spoke 51 (for example, a right spoke 51) that connects the ring and the boss of the steering wheel 50 of the vehicle.
  • the input operation can be performed by the thumb F of the user holding the steering wheel 50 (for example, the thumb F of the right hand).
  • the operation unit 120 includes an operation knob 121, a reaction force generation unit 122, a position detection sensor 123, a push operation detection sensor 124, a control unit 125, and the like.
  • the operation knob 121 is a part that slides on a virtual plane of the operation unit 120 by a user's finger operation. Since the operation unit 120 is provided on the spokes 51 of the steering 50, the virtual plane is a plane including the periphery of the ring of the steering 50 here. Since the operation knob 121 slides on a virtual plane, the operation unit 120 is a biaxial (for example, x, y axis) slide type remote operation device. In the present embodiment, for example, the x-axis is a left-right axis, and the y-axis is a vertical axis.
  • the pointer image 111b is displayed on the display unit 110 so as to correspond to the slide position of the operation knob 121.
  • the reaction force generator 122 is a part that generates an operation reaction force on the operation knob 121. For example, when the pointer image 111b on the display unit 110 approaches the circular switch image 111a with the sliding movement of the operation knob 121, the reaction force generating unit 122 tries to move away from the circular switch image 111a.
  • the operation knob 121 generates a pulling force that pulls the switch image 111a.
  • the retraction force corresponds to, for example, an operation reaction force.
  • the circular switch image 111a corresponds to, for example, a circular locus of the reaction force control map in FIG.
  • the position detection sensor 123 generates a position signal indicating the current position of the operation knob 121 in an operation area where the operation knob 121 can be operated, and Output part. Specifically, the position detection sensor 123 outputs a position signal of the operation knob 121 based on the x and y coordinates to the control unit 125. Therefore, the position detection of the present embodiment is an absolute coordinate detection using the x and y coordinates.
  • the push operation detection sensor 124 is a part that generates a push signal when the user pushes the operation knob 121 and outputs the signal to the control unit 125. In the operation unit 120, the push operation detection sensor 124 may be omitted.
  • the control unit 125 outputs the position signal from the position detection sensor 123 and the push signal from the push operation detection sensor 124 to the input operation support module 130 as input data.
  • the control unit 125 is a part that controls the state of the operation reaction force generation in the reaction force generation unit 122 based on the position signal from the position detection sensor 123.
  • the control unit 125 stores, for example, a reaction force control map shown in FIG. 4 in advance, and uses this reaction force control map when generating an operation reaction force on the operation knob 121. .
  • the operation knob 121 is operated to draw a circle along the circular switch image 111a, the retraction force is applied from the position of the operation knob 121 toward the circular locus so that a smooth operation can be performed. Is to be granted.
  • an operation area in which the operation knob 121 can be operated (operated) is set. It is a defined map.
  • a circular locus or a circular line corresponding to the circular switch image 221 is defined at the center of the operation area as an initial position.
  • a retraction force control region is defined as a region to which the retraction force is applied when the operation knob 121 is operated.
  • the retraction force control area is a ring-shaped area having a predetermined width and including a circular locus.
  • the circular locus is defined so as to be located at the center position of a predetermined width with respect to the pull-in force control area.
  • the circular locus corresponds to, for example, a circular locus drawn in as tactile feedback or a circular locus assumed by the system.
  • the input operation support module 130 is a part that performs input operation support for the in-vehicle device based on input data by an input operation on the operation unit 120 and updates an operation feeling parameter related to a user's operation feeling on the operation unit 120.
  • the input data corresponds to, for example, a position signal or a pressing signal.
  • the operation feeling parameter corresponds to, for example, the above-described reaction force control map in the present embodiment.
  • the input operation support module 130 includes an input operation receiving unit 131, a control unit 132, an operation feeling parameter updating unit 133, an operation target GUI (Graphical User Interface) 134, an operation feeling parameter transmission unit 135, and the like.
  • the input operation support module 130 forms a control unit of the present disclosure together with the control unit 125 in the operation unit 120 described above.
  • the input operation receiving unit 131 is a unit that receives input data associated with an input operation on the operation unit 120.
  • the input operation receiving unit 131 outputs the received input data to the control unit 132.
  • the input data corresponds to, for example, a position signal and a pressing signal.
  • the control unit 132 is a unit that outputs the input data of the operation unit 120 output from the input operation receiving unit 131 to the operation feeling parameter updating unit 133 and the operation target GUI 134.
  • the operation feeling parameter update unit 133 extracts the actual input operation trajectory of the user based on the input data output from the control unit 132 as shown in FIGS. This is a part that determines the characteristics of the trajectory and updates the reaction force control map in the operation unit 120 to a suitable reaction force control map.
  • the operation sensation parameter updating unit 133 includes an operation trajectory extraction unit 133a, an operation trajectory storage unit 133b, an operation trajectory feature determination unit 133c, an operation sensation parameter calculation unit 133d, and the like.
  • the operation trajectory extraction unit 133a is a part that extracts an input operation trajectory in the operation range of the reaction force control map from the position signal obtained by the position detection sensor 123.
  • the operation trajectory extraction unit 133a will be referred to as an extraction unit 133a.
  • the operation trajectory storage unit 133b stores the input operation trajectory extracted by the extraction unit 133a.
  • the operation trajectory storage unit 133b will be referred to as a storage unit 133b.
  • the operation trajectory feature determination unit 133c is a part that compares the circular trajectory in the operation range with the input operation trajectory stored in the storage unit 133b to determine the feature of the input operation trajectory.
  • the operation trajectory feature determination unit 133c will be referred to as a determination unit 133c.
  • the operation feeling parameter calculation unit 133d calculates a suitable reaction force control map suitable for the user based on the characteristics of the input operation trajectory determined by the determination unit 133c with respect to the reaction force control map in the operation unit 120. It has become.
  • the operation feeling parameter calculation unit 133d is referred to as a calculation unit 133d.
  • the calculation unit 133d outputs the calculated suitable reaction force control map to the operation target GUI 134 and the operation feeling parameter transmission unit 135.
  • Each part 133a, 133b, 133c, 133d in the operation feeling parameter updating unit 133 may be formed as an independent circuit unit, or may be virtually formed by software on a microcomputer. Is also good.
  • the circuit section corresponds to hardware.
  • the operation target GUI 134 is a part that forms an interface unit with the in-vehicle device, and is based on input data output from the control unit 132 and suitable parameter values (for example, a reaction force control map) output from the calculation unit 133d. Then, an operation instruction is issued to the in-vehicle device, and a display instruction is issued to the display unit 110 so that the display content is based on the operation instruction. Further, the operation target GUI 134 outputs the display unit information instructed to the display unit 110 to the determination unit 133c.
  • the display instruction corresponds to, for example, a video output.
  • the operation feeling parameter transmission unit 135 is a unit that transmits the suitable reaction force control map output from the calculation unit 133d to the control unit 125 of the operation unit 120.
  • the configuration of the input device 100 according to the present embodiment is as described above. Hereinafter, the operation and the effect will be described with reference to FIGS.
  • the user when executing the ACC (Adaptive Cruise Control) control, the user mainly operates the operation knob 121 with the thumb F while watching the circular switch image 111a on the display unit 110 to set the traveling speed. Operate. First, the user operates the operation knob 121 left / right, up / down, or obliquely so that the pointer image 111b overlaps (ie, approaches) an arbitrary position in the circumferential direction of the circular switch image 111a. Is moved to the circular switch image 111a.
  • ACC Adaptive Cruise Control
  • the pointer image 111b is moved along the circumferential direction of the circular switch image 111a.
  • the set value of the traveling speed in the ACC control is increased or decreased according to the rotation direction of the pointer image 111b at this time.
  • the set value of the traveling speed increases when the pointer image 111b is rotated clockwise or clockwise), and decreases when the pointer image 111b is rotated counterclockwise or counterclockwise.
  • the set value of the traveling speed that is increased or decreased is displayed in real time as the set speed image 111c.
  • the control unit 125 outputs the above set value (for example, input data) to the input operation support module 130 (for example, instructs ACC control), so that the ACC device starts control of constant speed traveling.
  • the control unit 125 activates the reaction force generation unit 122 to apply a pull-in force to the operation knob 121.
  • the control unit 125 controls the reaction force generation unit 122 such that, for example, the longer the distance between the circular locus and the operation knob 121 in the reaction force control map, the larger the retraction force is set.
  • the circular locus corresponds to the circular switch image 111a.
  • the operation knob 121 corresponds to the pointer image 111b. Thereby, the operation knob 121 is drawn into the circular locus, and the user can operate the operation knob 121 so as to draw a smooth circle on the circular switch image 111a. Due to the retraction force, the input operation trajectory is concentrated on the circular trajectory in the reaction force control map as shown in FIG.
  • the input operation trajectory may be similarly shifted to the right with respect to the circular trajectory.
  • the input operation locus may be shifted inside the circular locus.
  • the retraction force is set according to the distance between the circular trajectory and the operation knob 121 as described above.
  • the operation is performed while feeling a large retraction force, and the operation of drawing a smooth circle cannot be performed. Along with this, the user feels that the operation is difficult due to erroneous operation or finger fatigue.
  • control unit 125 and the input operation support module 130 store the history of the actual input operation trajectory of the thumb F to the operation knob 121 and store the history of the actual input operation trajectory in the reaction force control map.
  • the center position and the radius of the circular locus are automatically updated so as to match.
  • FIG. 12 is a flowchart showing a procedure for automatically updating the reaction force control map.
  • step S100 the control unit 125 and the input operation support module 130 extract the history of the input operation trajectory by the circle operation in the reaction force control map. Then, in step S110, it is determined whether or not the input operation trajectory of the designated number or more (for example, two or more) has been extracted. If a negative determination is made in step S110, the process returns to step S100.
  • control unit 125 and the input operation support module 130 calculate the center position and radius of the circle of the input operation trajectory in the reaction force control map by, for example, the least square method in step S120.
  • step S130 the control unit 125 and the input operation support module 130 set the center position and radius of the circular locus in the reaction force control map to the center position and radius of the circle of the input operation locus calculated above. Automatically update to.
  • FIG. 7 shows the result of automatic updating according to the operation history.
  • the circle locus is automatically updated so as to match the input operation locus (that is, so as to overlap).
  • the center position of the circular locus is moved to the right and automatically updated so as to increase the radius.
  • FIG. 9 shows a result of automatic updating according to an operation history biased to a specific range.
  • FIG. 11 shows the result of reducing the radius of the circular locus.
  • control unit 125 and the input operation support module 130 store the input operation trajectory of the user on the operation knob 121, and the center position of the circular trajectory matches the input operation trajectory. , And the radius is updated. Accordingly, an operation reaction force is applied at a position where the user can easily operate, and a plurality of circular trajectories are prepared and stored in advance in order to update the circular trajectory for the user to operate. It is not necessary to perform an operation for updating the circular trajectory, and it is possible to tune the operational feeling without trouble for the user.
  • the user can perform an input operation with a short stroke, but on the other hand, slides the operation knob 121 slightly.
  • the operation target in the ACC for example, the set value of the traveling speed changes. Therefore, when the slide amount is relatively large, a situation occurs in which the set value greatly changes against the user's intention.
  • the erroneous operation When the speed down operation is performed immediately after the speed up operation (for example, the operation shown in FIG. 14), or The case where the speed-up operation is performed immediately after the speed-down operation (for example, the reverse operation shown in FIG. 14) is defined.
  • the erroneous operation is an operation in which the operation direction of the operation knob 121 is suddenly changed to the opposite side.
  • control unit 125 and the input operation support module 130 automatically update the reaction force control map at the time of erroneous operation based on the flowchart shown in FIG.
  • control unit 125 and the input operation support module 130 extract the history of the input operation trajectory by the circular operation in the reaction force control map.
  • step S210 the control unit 125 and the input operation support module 130 determine whether or not the operation knob 121 has been rotated in the opposite direction within a fixed time after being rotated in the fixed direction. If an affirmative determination is made in step S210, the above-described definition of the erroneous operation is met, and it is determined that there is an erroneous operation, and the process proceeds to step S220. If a negative determination is made in step S210, the process returns to step S200.
  • the determination in step S210 may be such that an erroneous operation is performed when a predetermined number of erroneous operations occur for a single erroneous operation as described above.
  • step S220 the control unit 125 and the input operation support module 130 increase the radius of the circular locus in the reaction force control map by a certain amount as shown in FIG.
  • the radius of the circular locus is updated to be larger, so that the operability can be improved as compared with the case where the operation range is small, and subsequent erroneous operations can be performed. Is suppressed.
  • the center position and radius of the circular trajectory are automatically updated with respect to the actual input operation trajectory.
  • the radius of the circular trajectory is increased if there is an erroneous operation.
  • the operation target device is the ACC device, and the running speed and the like in the ACC control are described.
  • the present invention is not limited to this.
  • the present invention may be applied to adjustment of a volume, adjustment of a set temperature in an air conditioner, and the like.
  • control unit and the technique according to the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or a plurality of functions embodied by a computer program. May be done.
  • control unit and the technique described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits.
  • control unit and the method described in the present disclosure may be implemented by a combination of a processor and a memory programmed to perform one or more functions and a processor configured with one or more hardware logic circuits. It may be realized by one or more dedicated computers configured.
  • the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.
  • each step is expressed as, for example, S100. Further, each step can be divided into multiple sub-steps, while multiple steps can be combined into one step.

Abstract

An input device that comprises: a display unit (110) on which a switch image (111a) that is for operation is displayed; an operation unit (120) that makes it possible to perform input operations by making a pointer image (111b) that indicates an operation position move relative to the switch image; a reaction force generation unit (122) that makes the operation unit generate operation reaction force; and a control unit (125, 130) that, on the basis of input data that is based on input operations, controls the reaction force generation unit and performs input operation assistance for an onboard apparatus. The operation unit is provided to steering (50) of a vehicle and has an operation knob (121) that moves in a plane. The operation knob is operated along the circumferential direction of the switch image by a finger (F) of a user that is gripping the steering. The control unit has a reaction force control map that is for setting the operation reaction force. The reaction force control map has defined thereon an operation area in which the operation knob can be operated and a circular trajectory that is inside the operation area and corresponds to the switch image, which is circular.

Description

入力装置Input device 関連出願の相互参照Cross-reference of related applications
 本出願は、2018年8月7日に出願された日本特許出願番号2018-148763号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Patent Application No. 2018-148763 filed on Aug. 7, 2018, the contents of which are incorporated herein by reference.
 本開示は、車両に搭載される機器に対して入力操作を行うための入力装置に関する。 The present disclosure relates to an input device for performing an input operation on a device mounted on a vehicle.
 入力装置として、例えば特許文献1に記載されたものが知られている。特許文献1の入力装置は、車両に搭載されており、ダッシュボードに設けられた表示部と、表示部から離れたセンターコンソールの上面に設けられた操作部とを備えている。操作部は、2次元平面上をスライド可能(または、移動可能)に設けられた操作ノブを有している。ユーザは、操作ノブをスライド操作することで、表示部に表示されるアイコン(または、スイッチ画像)等に対する画面操作が可能となり、所定の車両機器に対する入力操作が行えるようになっている。尚、ユーザが操作ノブを操作する際には、入力操作の軌跡に応じて、反力発生ユニットによって、ユーザの手(又は、ユーザの指)に操作感(例えば、反力あるいは引込み力等による触覚フィードバック)が与えられるようになっている。 As an input device, for example, an input device described in Patent Document 1 is known. The input device of Patent Literature 1 is mounted on a vehicle, and includes a display unit provided on a dashboard and an operation unit provided on an upper surface of a center console remote from the display unit. The operation unit has an operation knob provided to be slidable (or movable) on a two-dimensional plane. By sliding the operation knob, the user can perform a screen operation on an icon (or a switch image) or the like displayed on the display unit, and can perform an input operation on a predetermined vehicle device. When the user operates the operation knob, the reaction force generating unit causes the user's hand (or the user's finger) to feel an operation (for example, a reaction force or a retraction force) according to the trajectory of the input operation. Haptic feedback).
特開2009-276993号公報JP 2009-276993 A
 特許文献1に記載された入力装置を車両のステアリングに搭載すると、ステアリングを握ったまま、例えば、親指で入力操作することが可能となる。よって、ステアリングから手を離さずに入力操作ができ、より安全な操作が可能となる。 搭載 When the input device described in Patent Document 1 is mounted on the steering of the vehicle, it is possible to perform an input operation with the thumb, for example, while holding the steering wheel. Therefore, the input operation can be performed without releasing the hand from the steering wheel, and a safer operation can be performed.
 操作ノブによる入力操作軌跡を、例えば、円軌跡を描くものと想定したとき、一人ひとりのユーザにおいては、それぞれ、手の大きさによって親指の可動範囲が異なるので、親指による実際の入力操作軌跡が、狙うべき理想の位置(理想の円軌跡)に対してずれてしまう場合がある。よって、このずれを低減できるように個人の手の大きさに合せて、入力操作軌跡に基づいて操作感を与える際の制御パラメータ(または、理想の円軌跡データ)を個人別に変更可能とすることが望まれる。 When assuming that the input operation trajectory by the operation knob draws, for example, a circular trajectory, in each of the users, since the movable range of the thumb is different depending on the size of the hand, the actual input operation trajectory by the thumb is In some cases, the target position deviates from an ideal position to be aimed (ideal circular locus). Therefore, control parameters (or ideal circular locus data) for giving an operational feeling based on the input operation locus can be changed for each individual according to the size of the individual hand so as to reduce this deviation. Is desired.
 しかしながら、例えば、ユーザが個々にパラメータ値を設定する場合であると、ユーザにとって手間がかかるものとなる。また、予め、個人別のパラメータを作成しておき、自分のパラメータを選択して設定する場合であっても、同様に手間がかかる。 However, for example, when the user individually sets the parameter values, it is troublesome for the user. In addition, even when individual parameters are created in advance and their own parameters are selected and set, it takes time and effort similarly.
 ユーザは、例えば、パラメータの設定変更ができることを把握していても面倒な設定をせずに現状のまま使用し続ける、あるいは不慣れな設定のため設定行為を完了できない、あるいは最適な設定ができない、といった状況があり得る。 The user, for example, keeps using the current status without making any troublesome settings even if he knows that the parameter settings can be changed, or cannot complete the setting action due to unfamiliar settings, or cannot perform optimal settings, There may be situations.
 本開示は、円軌跡を描く入力操作を行うものにおいて、ユーザに手間をかけずに操作感のチューニングを可能とする入力装置を提供することを目的とする。 開 示 The present disclosure has an object to provide an input device that performs an input operation of drawing a circular locus and enables tuning of an operation feeling without trouble for a user.
 本開示の第一の態様に係る入力装置は、車載機器に対する操作用のスイッチ画像が表示される表示部と、表示部とは離れた位置に設けられて、スイッチ画像に対して、操作位置を示すポインタ画像を移動させて入力操作を可能とする操作部と、操作部に操作反力を発生させる反力発生部と、入力操作による入力データに基づいて、反力発生部を制御すると共に、車載機器に対する入力操作支援を行う制御部と、を備える。スイッチ画像は、円形のスイッチ画像となっている。操作部は、平面上を移動する操作ノブを有し、車両のステアリングに設けられて、ステアリングを握るユーザの親指によって、操作ノブが円形のスイッチ画像の周方向に沿って操作されるようになっている。制御部は、操作ノブが操作される操作領域、および操作領域内で円形のスイッチ画像と対応する円軌跡が定義され、操作反力を設定するための反力制御マップを有しており、操作ノブによって、ポインタ画像が円形のスイッチ画像の周方向に操作される際に、操作反力として、操作ノブが円軌跡に引かれるように引込み力を発生させると共に、親指による操作ノブへの実際の入力操作軌跡の履歴を記憶して、入力操作軌跡に合うように、円軌跡の中心位置、および半径を更新する。 The input device according to the first aspect of the present disclosure is a display unit that displays an operation switch image for an in-vehicle device, and is provided at a position separated from the display unit, and displays an operation position with respect to the switch image. An operation unit that enables an input operation by moving the pointer image shown, a reaction force generation unit that generates an operation reaction force on the operation unit, and controls the reaction force generation unit based on input data by the input operation; A control unit that performs input operation support for the vehicle-mounted device. The switch image is a circular switch image. The operation unit has an operation knob that moves on a plane, and is provided on the steering wheel of the vehicle, and the operation knob is operated along the circumferential direction of the circular switch image by the thumb of the user holding the steering wheel. ing. The control unit has an operation area in which the operation knob is operated, and a circular trajectory corresponding to the circular switch image in the operation area, and has a reaction force control map for setting an operation reaction force. When the pointer image is operated in the circumferential direction of the circular switch image by the knob, as the operation reaction force, a retraction force is generated so that the operation knob is drawn along a circular locus, and the actual operation of the operation knob by the thumb is performed. The history of the input trajectory is stored, and the center position and radius of the circular trajectory are updated so as to match the input operation trajectory.
 本開示の第一の態様によれば、制御部によって、ユーザによる操作ノブへの入力操作軌跡が記憶され、この入力操作軌跡に合うように、円軌跡の中心位置、および半径が更新される。よって、ユーザの操作しやすい位置で、操作反力が付与されるようになり、ユーザが操作感にかかる円軌跡を更新するために予め複数の円軌跡を準備して記憶させておくことや、円軌跡を更新するための操作を行う必要がなく、ユーザに手間をかけずに操作感のチューニングを行うことが可能となる。 According to the first aspect of the present disclosure, the control unit stores the input operation trajectory of the user to the operation knob, and updates the center position and the radius of the circular trajectory so as to match the input operation trajectory. Accordingly, an operation reaction force is applied at a position where the user can easily operate, and a plurality of circular trajectories are prepared and stored in advance in order to update the circular trajectory for the user to operate. It is not necessary to perform an operation for updating the circular trajectory, and it is possible to tune the operational feeling without trouble for the user.
 また、本開示の第二の態様に係る入力装置は、車載機器に対する操作用のスイッチ画像が表示される表示部と、表示部とは離れた位置に設けられて、スイッチ画像に対して、操作位置を示すポインタ画像を移動させて入力操作を可能とする操作部と、操作部に操作反力を発生させる反力発生部と、入力操作による入力データに基づいて、反力発生部を制御すると共に、車載機器に対する入力操作支援を行う制御部と、を備える。スイッチ画像は、円形のスイッチ画像となっている。操作部は、平面上を移動する操作ノブを有し、車両のステアリングに設けられて、ステアリングを握るユーザの親指によって、操作ノブが円形のスイッチ画像の周方向に沿って操作されるようになっている。制御部は、操作ノブが操作される操作領域、および操作領域内で円形のスイッチ画像と対応する円軌跡が定義され、操作反力を設定するための反力制御マップを有しており、操作ノブによって、ポインタ画像が円形のスイッチ画像の周方向に操作される際に、操作反力として、操作ノブが円軌跡に引かれるように引込み力を発生させると共に、操作ノブに対して誤操作があると、前記円軌跡の半径を大きくなる側に更新する。 Further, the input device according to the second aspect of the present disclosure is a display unit that displays an operation switch image for the in-vehicle device, and is provided at a position separated from the display unit, and operates the switch image to operate the switch image. An operation unit that enables an input operation by moving a pointer image indicating a position, a reaction force generation unit that generates an operation reaction force on the operation unit, and controls the reaction force generation unit based on input data from the input operation. And a control unit that supports input operations for the in-vehicle device. The switch image is a circular switch image. The operation unit has an operation knob that moves on a plane, and is provided on the steering wheel of the vehicle, and the operation knob is operated along the circumferential direction of the circular switch image by the thumb of the user holding the steering wheel. ing. The control unit has an operation area in which the operation knob is operated, and a circular trajectory corresponding to the circular switch image in the operation area, and has a reaction force control map for setting an operation reaction force. When the pointer image is operated in the circumferential direction of the circular switch image by the knob, a retraction force is generated as an operation reaction force so that the operation knob is drawn along a circular locus, and there is an erroneous operation on the operation knob. Then, the radius of the circular locus is updated to the larger side.
 本開示の第二の態様によれば、操作範囲が小さい場合に比べて、操作性を向上させることができ、これ以降の誤操作が抑制される。 According to the second aspect of the present disclosure, operability can be improved as compared with the case where the operation range is small, and subsequent erroneous operations are suppressed.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
入力装置の全体構成を示すブロック図であり、 表示部におけるスイッチ画像、ポインタ画像、および設定速度画像を示す説明図であり、 ステアリングに設けられた操作部を示す斜視図であり、 反力制御マップを示す説明図であり、 反力制御マップにおける入力操作軌跡を示す説明図であり、 反力制御マップの円軌跡に対して、入力操作軌跡がずれている状態1を示す説明図であり、 入力操作軌跡に合うように、円軌跡の中心および半径を自動更新した状態を示す説明図であり、 反力制御マップの円軌跡に対して、入力操作軌跡がずれている状態2を示す説明図であり、 入力操作軌跡に合うように、円軌跡の中心および半径を自動更新した状態を示す説明図であり、 反力制御マップの円軌跡に対して、入力操作軌跡がずれている状態3を示す説明図であり、 入力操作軌跡に合うように、円軌跡の半径を自動更新した状態を示す説明図であり、 第1実施形態の制御内容を示すフローチャートであり、 第2実施形態の反力制御マップを示す説明図であり、 誤操作の内容を示す説明図であり、 第2実施形態の制御内容を示すフローチャートであり、 誤操作に応じて、円軌跡の半径を自動更新した状態を示す説明図である。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. In the drawing,
FIG. 2 is a block diagram illustrating an entire configuration of the input device, It is an explanatory diagram showing a switch image, a pointer image, and a set speed image on the display unit, It is a perspective view showing an operation unit provided in the steering, It is an explanatory view showing a reaction force control map, It is an explanatory diagram showing an input operation trajectory in the reaction force control map, FIG. 9 is an explanatory diagram illustrating a state 1 in which the input operation trajectory is shifted with respect to the circular trajectory of the reaction force control map; It is an explanatory diagram showing a state in which the center and radius of the circular locus are automatically updated to match the input operation locus, FIG. 9 is an explanatory diagram showing a state 2 in which the input operation trajectory is shifted with respect to the circular trajectory of the reaction force control map, It is an explanatory diagram showing a state in which the center and radius of the circular locus are automatically updated to match the input operation locus, It is explanatory drawing which shows the state 3 in which the input operation trajectory is shifted with respect to the circular trajectory of the reaction force control map, It is an explanatory view showing a state in which the radius of the circular locus is automatically updated to match the input operation locus, It is a flowchart which shows the control content of 1st Embodiment, It is an explanatory view showing a reaction force control map of the second embodiment, It is an explanatory view showing the contents of the erroneous operation, It is a flowchart which shows the control content of 2nd Embodiment, It is an explanatory view showing the state where the radius of the circular locus was automatically updated in response to an erroneous operation.
 以下に、図面を参照しながら本開示の複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組み合わせに支障が生じなければ、明示していなくても実施形態同士を部分的に組み合せることも可能である。 Hereinafter, a plurality of embodiments of the present disclosure will be described with reference to the drawings. In each embodiment, portions corresponding to the items described in the preceding embodiment are denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each embodiment, the other embodiments described above can be applied to other parts of the configuration. Not only the combination of the parts that clearly indicate that a combination is possible in each embodiment, but also the embodiments can be partially combined without being specified, unless there is a particular problem with the combination. It is also possible.
 (第1実施形態)
 第1実施形態の入力装置100を図1~図12に示す。入力装置100は、車両の車載機器に対する作動条件設定等の入力操作を行うための装置である。車載機器としては、例えば、アダプティブ・クルーズ・コントロール(ACC)装置、先進運転支援システム(Advanced Driver Assistance Sysutem=ADAS)、空調装置、あるいはオーディオ装置等である。入力装置100は、図1~図4に示すように、表示部110、操作部120、および入力操作支援モジュール130等を備えている。
(1st Embodiment)
The input device 100 according to the first embodiment is shown in FIGS. The input device 100 is a device for performing input operations such as setting of operating conditions for on-vehicle equipment of a vehicle. Examples of the in-vehicle device include an adaptive cruise control (ACC) device, an advanced driver assistance system (ADAS), an air conditioner, and an audio device. As shown in FIGS. 1 to 4, the input device 100 includes a display unit 110, an operation unit 120, an input operation support module 130, and the like.
 表示部110は、例えば、車載機器の作動状態、および入力操作用の操作項目を表示する表示装置である。表示部110は、ここでは、図2に示すように、例えば、ヘッドアップディスプレイ(HUD)装置によって、操作項目等の虚像がフロントウィンドウに映し出されるものを例示している。尚、表示部110としては、その他にも、コンビネーションメータ内に設けられた液晶ディスプレイ部、あるいはインストルメントパネルに装着されたカーナビゲーション装置用のセンタディスプレイ部等としてもよい。 The display unit 110 is a display device that displays, for example, the operating state of the vehicle-mounted device and operation items for input operation. As illustrated in FIG. 2, the display unit 110 illustrates an example in which a virtual image such as an operation item is displayed on a front window by a head-up display (HUD) device, for example. The display unit 110 may be a liquid crystal display unit provided in a combination meter, a center display unit for a car navigation device mounted on an instrument panel, or the like.
 表示部110における表示内容としては、例えば、上記のACC装置における速度設定用のスイッチ画像111a、操作ノブ121の操作位置を示すポインタ画像111b、および操作者によって設定された設定速度画像111c等が表示されるようになっている。表示内容は、例えば、操作項目、作動状態等に対応する。スイッチ画像111aは、例えば、スイッチアイコンに対応する。ポインタ画像111bは、例えば、ポインタアイコンに対応する。設定速度画像111cは、例えば、設定速度アイコンに対応する。 As display contents on the display unit 110, for example, a switch image 111a for speed setting in the ACC device, a pointer image 111b indicating the operation position of the operation knob 121, and a set speed image 111c set by the operator are displayed. It is supposed to be. The display content corresponds to, for example, an operation item, an operation state, and the like. The switch image 111a corresponds to, for example, a switch icon. The pointer image 111b corresponds to, for example, a pointer icon. The set speed image 111c corresponds to, for example, a set speed icon.
 スイッチ画像111aは、円形のスイッチ画像111aとなっており、回転操作される円形のダイヤル式のスイッチをイメージさせるデザインとなっている。また、ポインタ画像111bは、円形のドットを示すデザインとなっている。そして、設定速度画像111cは、速度値が数値表示されるものとなっている。 The switch image 111a is a circular switch image 111a, and is designed to image a circular dial-type switch that is rotated. The pointer image 111b has a design showing circular dots. The speed value is numerically displayed on the set speed image 111c.
 操作部120は、表示部110に表示される円形のスイッチ画像111aに対する入力操作を可能とするものである。操作部120は、表示部110とは離れた位置、ここでは、図3に示すように、車両のステアリング50のリングとボスとを繋ぐスポーク51(例えば、右側のスポーク51)に設けられて、ステアリング50を握るユーザの親指F(例えば、右手の親指F)によって入力操作ができるようになっている。操作部120は、操作ノブ121、反力発生部122、位置検出センサ123、押操作検出センサ124、および制御部125等を有している。 The operation unit 120 enables an input operation on the circular switch image 111a displayed on the display unit 110. The operation unit 120 is provided at a position distant from the display unit 110, here, as shown in FIG. 3, at a spoke 51 (for example, a right spoke 51) that connects the ring and the boss of the steering wheel 50 of the vehicle. The input operation can be performed by the thumb F of the user holding the steering wheel 50 (for example, the thumb F of the right hand). The operation unit 120 includes an operation knob 121, a reaction force generation unit 122, a position detection sensor 123, a push operation detection sensor 124, a control unit 125, and the like.
 操作ノブ121は、ユーザの指操作によって、操作部120における仮想平面上をスライド移動する部位となっている。操作部120がステアリング50のスポーク51に設けられていることから、ここでは、仮想平面は、ステアリング50のリングの周囲を含む平面となっている。操作部120は、操作ノブ121が仮想平面上をスライドすることから、2軸(例えば、x、y軸)スライド式遠隔操作デバイスとなっている。本実施形態では、例えば、x軸を左右方向の軸、y軸を上下方向の軸としている。 The operation knob 121 is a part that slides on a virtual plane of the operation unit 120 by a user's finger operation. Since the operation unit 120 is provided on the spokes 51 of the steering 50, the virtual plane is a plane including the periphery of the ring of the steering 50 here. Since the operation knob 121 slides on a virtual plane, the operation unit 120 is a biaxial (for example, x, y axis) slide type remote operation device. In the present embodiment, for example, the x-axis is a left-right axis, and the y-axis is a vertical axis.
 操作ノブ121を2軸方向にスライド移動させることで、表示部110には、操作ノブ121のスライド位置に対応するように、ポインタ画像111bが表示されるようになっている。 ポ イ ン タ By sliding the operation knob 121 in the two axial directions, the pointer image 111b is displayed on the display unit 110 so as to correspond to the slide position of the operation knob 121.
 反力発生部122は、操作ノブ121に対して、操作反力を発生させる部位となっている。反力発生部122は、操作ノブ121のスライド移動に伴って、例えば、表示部110におけるポインタ画像111bが円形のスイッチ画像111aに近づいたときに、逆に円形のスイッチ画像111aから離れようとすると、そのスイッチ画像111aに引込むような引込み力を操作ノブ121に発生させる部位となっている。引込み力は、例えば、操作反力に対応する。円形のスイッチ画像111aは、例えば、図4の反力制御マップの円軌跡に対応する。 The reaction force generator 122 is a part that generates an operation reaction force on the operation knob 121. For example, when the pointer image 111b on the display unit 110 approaches the circular switch image 111a with the sliding movement of the operation knob 121, the reaction force generating unit 122 tries to move away from the circular switch image 111a. The operation knob 121 generates a pulling force that pulls the switch image 111a. The retraction force corresponds to, for example, an operation reaction force. The circular switch image 111a corresponds to, for example, a circular locus of the reaction force control map in FIG.
 位置検出センサ123は、例えば、図4に示すように、操作ノブ121の操作が可能となる操作領域において、現在、操作ノブ121がどの位置にあるのかという位置信号を生成して、制御部125に出力する部位となっている。具体的には、位置検出センサ123は、x、y座標に基づく操作ノブ121の位置信号を制御部125に出力するようになっている。よって、本実施形態の位置検出は、x、y座標を用いた絶対座標検出となっている。 For example, as shown in FIG. 4, the position detection sensor 123 generates a position signal indicating the current position of the operation knob 121 in an operation area where the operation knob 121 can be operated, and Output part. Specifically, the position detection sensor 123 outputs a position signal of the operation knob 121 based on the x and y coordinates to the control unit 125. Therefore, the position detection of the present embodiment is an absolute coordinate detection using the x and y coordinates.
 押操作検出センサ124は、ユーザが操作ノブ121を押込んだときに押込み信号を生成して、制御部125に出力する部位となっている。尚、操作部120において、押操作検出センサ124は、省略されたものとしてもよい。 The push operation detection sensor 124 is a part that generates a push signal when the user pushes the operation knob 121 and outputs the signal to the control unit 125. In the operation unit 120, the push operation detection sensor 124 may be omitted.
 制御部125は、位置検出センサ123からの位置信号、および押操作検出センサ124からの押込み信号を入力データとして入力操作支援モジュール130に出力する部位となっている。また、制御部125は、位置検出センサ123からの位置信号に基づいて反力発生部122における操作反力の発生状態を制御する部位となっている。 The control unit 125 outputs the position signal from the position detection sensor 123 and the push signal from the push operation detection sensor 124 to the input operation support module 130 as input data. The control unit 125 is a part that controls the state of the operation reaction force generation in the reaction force generation unit 122 based on the position signal from the position detection sensor 123.
 制御部125は、例えば、図4に示す反力制御マップを予め記憶しており、操作ノブ121に対して操作反力を発生させる際に、この反力制御マップを使用するようになっている。ここでは、操作ノブ121が円形のスイッチ画像111aに沿って円を描くように操作される際に、滑らかな操作が可能となるように、操作ノブ121の位置から円軌跡に向けて引込み力が付与されるものになっている。 The control unit 125 stores, for example, a reaction force control map shown in FIG. 4 in advance, and uses this reaction force control map when generating an operation reaction force on the operation knob 121. . Here, when the operation knob 121 is operated to draw a circle along the circular switch image 111a, the retraction force is applied from the position of the operation knob 121 toward the circular locus so that a smooth operation can be performed. Is to be granted.
 反力制御マップは、例えば、x-y座標中の(0、0)から(255、255)の範囲で示されるように、操作ノブ121の操作が可能となる(操作される)操作領域が定義されたマップとなっている。加えて、反力制御マップには、初期位置として操作領域内の中央で、円形のスイッチ画像221に対応する円軌跡、又は、円形ラインが定義されている。そして、操作ノブ121が操作されたときに、引込み力が付与される領域として、引込み力制御領域が定義されている。図4では、引込み力制御領域は、円軌跡を内包する所定幅のリング状の領域となっている。引込み力制御領域に対して円軌跡は、所定幅の中心位置になるように定義されている。また、図4に示すように、円軌跡は、例えば、触覚フィードバックとして引込む円軌跡、または、システムが想定している円軌跡に対応する。 In the reaction force control map, for example, as shown in a range from (0, 0) to (255, 255) in the xy coordinates, an operation area in which the operation knob 121 can be operated (operated) is set. It is a defined map. In addition, in the reaction force control map, a circular locus or a circular line corresponding to the circular switch image 221 is defined at the center of the operation area as an initial position. A retraction force control region is defined as a region to which the retraction force is applied when the operation knob 121 is operated. In FIG. 4, the retraction force control area is a ring-shaped area having a predetermined width and including a circular locus. The circular locus is defined so as to be located at the center position of a predetermined width with respect to the pull-in force control area. In addition, as shown in FIG. 4, the circular locus corresponds to, for example, a circular locus drawn in as tactile feedback or a circular locus assumed by the system.
 入力操作支援モジュール130は、操作部120における入力操作による入力データに基づいて、車載機器に対する入力操作支援を行うと共に、操作部120におけるユーザの操作感にかかる操作感パラメータを更新する部位となっている。入力データは、例えば、位置信号または押込み信号に対応する。操作感パラメータは、例えば、本実施形態では、上記の反力制御マップに対応する。入力操作支援モジュール130は、入力操作受信部131、制御部132、操作感パラメータ更新部133、操作対象GUI(Graphical User Interface)134、および操作感パラメータ送信部135等を有している。入力操作支援モジュール130は、上記の操作部120における制御部125と共に、本開示の制御部を形成している。 The input operation support module 130 is a part that performs input operation support for the in-vehicle device based on input data by an input operation on the operation unit 120 and updates an operation feeling parameter related to a user's operation feeling on the operation unit 120. I have. The input data corresponds to, for example, a position signal or a pressing signal. The operation feeling parameter corresponds to, for example, the above-described reaction force control map in the present embodiment. The input operation support module 130 includes an input operation receiving unit 131, a control unit 132, an operation feeling parameter updating unit 133, an operation target GUI (Graphical User Interface) 134, an operation feeling parameter transmission unit 135, and the like. The input operation support module 130 forms a control unit of the present disclosure together with the control unit 125 in the operation unit 120 described above.
 入力操作受信部131は、操作部120における入力操作に伴う入力データを受信する部位となっている。入力操作受信部131は、受信した入力データを制御部132に出力するようになっている。入力データは、例えば、位置信号および押込み信号に対応する。 The input operation receiving unit 131 is a unit that receives input data associated with an input operation on the operation unit 120. The input operation receiving unit 131 outputs the received input data to the control unit 132. The input data corresponds to, for example, a position signal and a pressing signal.
 制御部132は、入力操作受信部131から出力された操作部120の入力データを、操作感パラメータ更新部133、および操作対象GUI134に出力する部位となっている。 The control unit 132 is a unit that outputs the input data of the operation unit 120 output from the input operation receiving unit 131 to the operation feeling parameter updating unit 133 and the operation target GUI 134.
 操作感パラメータ更新部133は、制御部132から出力された入力データを基に、図5~図11に示すように、ユーザの実際の入力操作軌跡を抽出し、円軌跡との差から入力操作軌跡の特徴を判定して、操作部120における反力制御マップを好適な反力制御マップに更新する部位となっている。操作感パラメータ更新部133は、操作軌跡抽出部133a、操作軌跡記憶部133b、操作軌跡特徴判定部133c、操作感パラメータ算出部133d等を有している。 The operation feeling parameter update unit 133 extracts the actual input operation trajectory of the user based on the input data output from the control unit 132 as shown in FIGS. This is a part that determines the characteristics of the trajectory and updates the reaction force control map in the operation unit 120 to a suitable reaction force control map. The operation sensation parameter updating unit 133 includes an operation trajectory extraction unit 133a, an operation trajectory storage unit 133b, an operation trajectory feature determination unit 133c, an operation sensation parameter calculation unit 133d, and the like.
 操作軌跡抽出部133aは、位置検出センサ123によって得られた位置信号から、反力制御マップの操作範囲における入力操作軌跡を抽出する部位となっている。以下、操作軌跡抽出部133aを抽出部133aと呼ぶことにする。 The operation trajectory extraction unit 133a is a part that extracts an input operation trajectory in the operation range of the reaction force control map from the position signal obtained by the position detection sensor 123. Hereinafter, the operation trajectory extraction unit 133a will be referred to as an extraction unit 133a.
 操作軌跡記憶部133bは、抽出部133aで抽出された入力操作軌跡を記憶する部位となっている。以下、操作軌跡記憶部133bを記憶部133bと呼ぶことにする。 The operation trajectory storage unit 133b stores the input operation trajectory extracted by the extraction unit 133a. Hereinafter, the operation trajectory storage unit 133b will be referred to as a storage unit 133b.
 操作軌跡特徴判定部133cは、操作範囲における円軌跡と、記憶部133bに記憶された入力操作軌跡とを比較して、入力操作軌跡の特徴を判定する部位となっている。以下、操作軌跡特徴判定部133cを判定部133cと呼ぶことにする。 The operation trajectory feature determination unit 133c is a part that compares the circular trajectory in the operation range with the input operation trajectory stored in the storage unit 133b to determine the feature of the input operation trajectory. Hereinafter, the operation trajectory feature determination unit 133c will be referred to as a determination unit 133c.
 操作感パラメータ算出部133dは、操作部120における反力制御マップに対して、判定部133cで判定された入力操作軌跡の特徴に基づいて、ユーザに合った好適な反力制御マップを算出する部位となっている。以下、操作感パラメータ算出部133dを算出部133dと呼ぶことにする。算出部133dは、算出した好適な反力制御マップを操作対象GUI134、および操作感パラメータ送信部135に出力するようになっている。 The operation feeling parameter calculation unit 133d calculates a suitable reaction force control map suitable for the user based on the characteristics of the input operation trajectory determined by the determination unit 133c with respect to the reaction force control map in the operation unit 120. It has become. Hereinafter, the operation feeling parameter calculation unit 133d is referred to as a calculation unit 133d. The calculation unit 133d outputs the calculated suitable reaction force control map to the operation target GUI 134 and the operation feeling parameter transmission unit 135.
 上記操作感パラメータ更新部133における各部位133a、133b、133c、133dは、それぞれ独立した回路部として形成されるものとしてもよいし、あるいはマイクロコンピュータ上でソフトウエアによって仮想的に形成されるものとしてもよい。回路部は、ハードウエアに対応する。 Each part 133a, 133b, 133c, 133d in the operation feeling parameter updating unit 133 may be formed as an independent circuit unit, or may be virtually formed by software on a microcomputer. Is also good. The circuit section corresponds to hardware.
 操作対象GUI134は、車載機器に対するインターフェイス部を形成する部位であり、制御部132から出力された入力データ、および算出部133dから出力された好適なパラメータ値(例えば、反力制御マップ)をもとに、車載機器に対する作動指示を行うと共に、この作動指示に基づく表示内容となるように表示部110に表示指示を行うようになっている。また、操作対象GUI134は、表示部110に対して指示をした表示部情報を判定部133cに出力するようになっている。表示指示は、例えば、映像出力に対応する。 The operation target GUI 134 is a part that forms an interface unit with the in-vehicle device, and is based on input data output from the control unit 132 and suitable parameter values (for example, a reaction force control map) output from the calculation unit 133d. Then, an operation instruction is issued to the in-vehicle device, and a display instruction is issued to the display unit 110 so that the display content is based on the operation instruction. Further, the operation target GUI 134 outputs the display unit information instructed to the display unit 110 to the determination unit 133c. The display instruction corresponds to, for example, a video output.
 操作感パラメータ送信部135は、算出部133dから出力された好適な反力制御マップを操作部120の制御部125に送信する部位となっている。 The operation feeling parameter transmission unit 135 is a unit that transmits the suitable reaction force control map output from the calculation unit 133d to the control unit 125 of the operation unit 120.
 本実施形態の入力装置100の構成は以上のようになっており、以下、図5~図12を加えて、作動および作用効果について説明する。 The configuration of the input device 100 according to the present embodiment is as described above. Hereinafter, the operation and the effect will be described with reference to FIGS.
 ユーザは、例えば、ACC(アダプティブ・クルーズ・コントロール)制御を実行する際に、走行速度を設定するために、主に、表示部110における円形のスイッチ画像111aを見ながら、親指Fで操作ノブ121を操作する。ユーザは、まず、ポインタ画像111bが円形のスイッチ画像111aの周方向の任意の位置に重なる(つまり、近づく)ように、操作ノブ121を左右、上下、あるいは斜め等に操作して、ポインタ画像111bを円形のスイッチ画像111aに移動させる。 For example, when executing the ACC (Adaptive Cruise Control) control, the user mainly operates the operation knob 121 with the thumb F while watching the circular switch image 111a on the display unit 110 to set the traveling speed. Operate. First, the user operates the operation knob 121 left / right, up / down, or obliquely so that the pointer image 111b overlaps (ie, approaches) an arbitrary position in the circumferential direction of the circular switch image 111a. Is moved to the circular switch image 111a.
 更に、ユーザは、円を描くように操作ノブ121を操作すると、ポインタ画像111bは、円形のスイッチ画像111aの周方向に沿うように移動される。このときのポインタ画像111bの回転方向に応じて、ACC制御における走行速度の設定値が増減される。走行速度の設定値は、ポインタ画像111bが右方向、又は、時計方向)に回転されると増加され、左方向、又は、反時計方向に回転されると減少される。 Furthermore, when the user operates the operation knob 121 so as to draw a circle, the pointer image 111b is moved along the circumferential direction of the circular switch image 111a. The set value of the traveling speed in the ACC control is increased or decreased according to the rotation direction of the pointer image 111b at this time. The set value of the traveling speed increases when the pointer image 111b is rotated clockwise or clockwise), and decreases when the pointer image 111b is rotated counterclockwise or counterclockwise.
 そして、増減される走行速度の設定値は、リアルタイムで設定速度画像111cとして表示されてゆき、走行速度の設定値が希望する値となると、ユーザは操作ノブ121を押圧することで、その設定値が決定される。制御部125は、上記の設定値(例えば、入力データ)を入力操作支援モジュール130に出力する(例えば、ACC制御の指示をする)ことで、ACC装置は、定速走行の制御を開始する。 The set value of the traveling speed that is increased or decreased is displayed in real time as the set speed image 111c. When the set value of the traveling speed reaches a desired value, the user presses the operation knob 121 to set the set value. Is determined. The control unit 125 outputs the above set value (for example, input data) to the input operation support module 130 (for example, instructs ACC control), so that the ACC device starts control of constant speed traveling.
 上記のように、操作ノブ121が操作される際に、制御部125は、反力発生部122を作動させて、操作ノブ121に引込み力を付加させる。制御部125は、反力制御マップにおいて、例えば、円軌跡と、操作ノブ121との距離が長い程、引込み力をより大きく設定するように反力発生部122を制御する。円軌跡は、円形のスイッチ画像111aに対応する。操作ノブ121は、ポインタ画像111bに対応する。これにより、操作ノブ121は、円軌跡に引込まれる形となり、ユーザは、円形のスイッチ画像111aに対して滑らかな円を描くように、操作ノブ121を操作することが可能となっている。上記の引込み力によって、図5に示すように、反力制御マップにおいては、入力操作軌跡は、円軌跡に集中するようになる。 制 御 As described above, when the operation knob 121 is operated, the control unit 125 activates the reaction force generation unit 122 to apply a pull-in force to the operation knob 121. The control unit 125 controls the reaction force generation unit 122 such that, for example, the longer the distance between the circular locus and the operation knob 121 in the reaction force control map, the larger the retraction force is set. The circular locus corresponds to the circular switch image 111a. The operation knob 121 corresponds to the pointer image 111b. Thereby, the operation knob 121 is drawn into the circular locus, and the user can operate the operation knob 121 so as to draw a smooth circle on the circular switch image 111a. Due to the retraction force, the input operation trajectory is concentrated on the circular trajectory in the reaction force control map as shown in FIG.
 ここで、例えば、ユーザが標準的な体格の人よりも小柄な人であり、手が小さく親指Fが短い場合であると、図6に示すように、反力制御マップにおいて、入力操作軌跡は、円軌跡に対して右側にずれる可能性がある。あるいは、図8に示すように、特定の範囲に偏った入力操作軌跡を描く場合に、入力操作軌跡は、円軌跡に対して同様に右側にずれる可能性がある。更に、標準的な体格の人であっても、ショートストローク(つまり、小さい円軌跡)で操作したい人であると、図10に示すように、入力操作軌跡は、円軌跡の内側にずれる可能性がある。 Here, for example, if the user is a smaller person than a person with a standard physique, his hand is small, and his thumb F is short, as shown in FIG. May be shifted to the right with respect to the circular locus. Alternatively, as shown in FIG. 8, when drawing an input operation trajectory deviated to a specific range, the input operation trajectory may be similarly shifted to the right with respect to the circular trajectory. Further, even if the person has a standard physique, he / she wants to operate with a short stroke (that is, a small circular locus). As shown in FIG. 10, the input operation locus may be shifted inside the circular locus. There is.
 このように、実際の入力操作軌跡が円軌跡に対してずれると、引込み力は、上記で説明したように、円軌跡と操作ノブ121との距離に応じて設定されることから、ユーザは常に大きな引込み力を感じながら操作することになり、滑らかな円を描く操作ができなくなる。これに伴って、ユーザは、誤操作をしたり、指が疲れたりして、操作がしにくいものであると感じてしまう。 As described above, when the actual input operation trajectory deviates from the circular trajectory, the retraction force is set according to the distance between the circular trajectory and the operation knob 121 as described above. The operation is performed while feeling a large retraction force, and the operation of drawing a smooth circle cannot be performed. Along with this, the user feels that the operation is difficult due to erroneous operation or finger fatigue.
 よって、本実施形態では、制御部125および入力操作支援モジュール130は、親指Fによる操作ノブ121への実際の入力操作軌跡の履歴を記憶して、反力制御マップにおいて、実際の入力操作軌跡に合うように、円軌跡の中心位置、および半径を自動更新するようにしている。図12は、反力制御マップを自動更新する際の要領を示すフローチャートである。 Therefore, in the present embodiment, the control unit 125 and the input operation support module 130 store the history of the actual input operation trajectory of the thumb F to the operation knob 121 and store the history of the actual input operation trajectory in the reaction force control map. The center position and the radius of the circular locus are automatically updated so as to match. FIG. 12 is a flowchart showing a procedure for automatically updating the reaction force control map.
 まず、制御部125および入力操作支援モジュール130は、ステップS100で、反力制御マップにおいて、円操作による入力操作軌跡の履歴を抽出する。そして、ステップS110で、指定点数以上(例えば、2~3以上)の入力操作軌跡を抽出できたかを判定する。ステップS110で否定判定した場合は、ステップS100に戻る。 First, in step S100, the control unit 125 and the input operation support module 130 extract the history of the input operation trajectory by the circle operation in the reaction force control map. Then, in step S110, it is determined whether or not the input operation trajectory of the designated number or more (for example, two or more) has been extracted. If a negative determination is made in step S110, the process returns to step S100.
 ステップS110で肯定判定すると、制御部125および入力操作支援モジュール130は、ステップS120で、例えば最小二乗法によって、反力制御マップにおける入力操作軌跡の円の中心位置、および半径を算出する。 If the determination is affirmative in step S110, the control unit 125 and the input operation support module 130 calculate the center position and radius of the circle of the input operation trajectory in the reaction force control map by, for example, the least square method in step S120.
 そして、ステップS130で、制御部125および入力操作支援モジュール130は、反力制御マップにおける円軌跡の中心位置、および半径を、上記で算出した入力操作軌跡の円の中心位置、および半径となるように自動更新する。 Then, in step S130, the control unit 125 and the input operation support module 130 set the center position and radius of the circular locus in the reaction force control map to the center position and radius of the circle of the input operation locus calculated above. Automatically update to.
 この制御により、例えば、図6で説明した場合では、図7に示すように、円軌跡が入力操作軌跡に合うように(つまり、重なるように)自動更新される。具体的には、円軌跡の中心位置が右側に移動され、半径が大きくなるように自動更新される。図7は、操作履歴に合わせて自動更新した結果を示す。また、図8で説明した場合では、図9に示すように、円軌跡が入力操作軌跡に合うように(つまり、重なるように)自動更新される。具体的には、円軌跡の中心位置が右側に移動され、半径が大きくなるように自動更新される。図9は、特定の範囲に偏った操作履歴に合わせて自動更新した結果を示す。更に、図10で説明した場合では、図11に示すように、円軌跡が入力操作軌跡に合うように(つまり、重なるように)自動更新される。具体的には、円軌跡の中心位置は同一のまま、半径が小さくなるように自動更新される。図11は、円軌跡の半径を小さくした結果を示す。 制 御 By this control, for example, in the case described with reference to FIG. 6, as shown in FIG. 7, the circular locus is automatically updated so as to match the input operation locus (that is, to overlap). Specifically, the center position of the circular locus is moved to the right and automatically updated so as to increase the radius. FIG. 7 shows the result of automatic updating according to the operation history. In addition, in the case described with reference to FIG. 8, as shown in FIG. 9, the circle locus is automatically updated so as to match the input operation locus (that is, so as to overlap). Specifically, the center position of the circular locus is moved to the right and automatically updated so as to increase the radius. FIG. 9 shows a result of automatic updating according to an operation history biased to a specific range. Further, in the case described with reference to FIG. 10, as shown in FIG. 11, automatic updating is performed so that the circular locus matches the input operation locus (ie, overlaps). Specifically, while the center position of the circular trajectory remains the same, it is automatically updated so that the radius becomes smaller. FIG. 11 shows the result of reducing the radius of the circular locus.
 以上のように本実施形態によれば、制御部125および入力操作支援モジュール130によって、ユーザによる操作ノブ121への入力操作軌跡が記憶され、この入力操作軌跡に合うように、円軌跡の中心位置、および半径が更新される。よって、ユーザの操作しやすい位置で、操作反力が付与されるようになり、ユーザが操作感にかかる円軌跡を更新するために予め複数の円軌跡を準備して記憶させておくことや、円軌跡を更新するための操作を行う必要がなく、ユーザに手間をかけずに操作感のチューニングを行うことが可能となる。 As described above, according to the present embodiment, the control unit 125 and the input operation support module 130 store the input operation trajectory of the user on the operation knob 121, and the center position of the circular trajectory matches the input operation trajectory. , And the radius is updated. Accordingly, an operation reaction force is applied at a position where the user can easily operate, and a plurality of circular trajectories are prepared and stored in advance in order to update the circular trajectory for the user to operate. It is not necessary to perform an operation for updating the circular trajectory, and it is possible to tune the operational feeling without trouble for the user.
 (第2実施形態)
 第2実施形態を図13~図16に示す。第2実施形態は、ユーザの操作ノブ121に対する誤操作があったときに、反力制御マップを自動更新するものとしている。
(2nd Embodiment)
A second embodiment is shown in FIGS. In the second embodiment, when a user makes an erroneous operation on the operation knob 121, the reaction force control map is automatically updated.
 例えば、図13に示すように、反力制御マップにおける円軌跡が相対的に小さく設定されている場合であると、ユーザは、ショートストロークで入力操作が可能となる反面、操作ノブ121を少しスライドするだけで、ACCにおける操作対象、例えば、走行速度の設定値が変化することになる。よって、スライド量が相対的に大きいと、ユーザの意思に反して設定値が大きく変わってしまうといった状況が発生する。 For example, as shown in FIG. 13, when the circular locus in the reaction force control map is set to be relatively small, the user can perform an input operation with a short stroke, but on the other hand, slides the operation knob 121 slightly. Just by doing, the operation target in the ACC, for example, the set value of the traveling speed changes. Therefore, when the slide amount is relatively large, a situation occurs in which the set value greatly changes against the user's intention.
 このように設定値がオーバーシュートしてしまうような状況下では、ユーザは、得てして操作ノブ121に対する操作方向を逆側に急変更する傾向にある。よって、本実施形態では、上記の誤操作として、
 ・速度アップ操作した直後に速度ダウン操作をした場合(例えば、図14に示した操作)、あるいは、
 ・速度ダウン操作した直後に速度アップ操作をした場合(例えば、図14に示した逆の操作)、と定義することにする。誤操作は、操作ノブ121に対する操作方向が逆側に急変更される操作である。
In such a situation where the set value overshoots, the user tends to suddenly change the operation direction of the operation knob 121 to the opposite side. Therefore, in the present embodiment, as the erroneous operation,
When the speed down operation is performed immediately after the speed up operation (for example, the operation shown in FIG. 14), or
The case where the speed-up operation is performed immediately after the speed-down operation (for example, the reverse operation shown in FIG. 14) is defined. The erroneous operation is an operation in which the operation direction of the operation knob 121 is suddenly changed to the opposite side.
 そして、制御部125および入力操作支援モジュール130は、図15に示すフローチャートに基づいて、誤操作時における反力制御マップの自動更新を行う。まず、制御部125および入力操作支援モジュール130は、ステップS200で、反力制御マップにおいて、円操作による入力操作軌跡の履歴を抽出する。 Then, the control unit 125 and the input operation support module 130 automatically update the reaction force control map at the time of erroneous operation based on the flowchart shown in FIG. First, in step S200, the control unit 125 and the input operation support module 130 extract the history of the input operation trajectory by the circular operation in the reaction force control map.
 次に、ステップS210で、制御部125および入力操作支援モジュール130は、操作ノブ121が一定方向へ回転操作された後に、一定時間以内に逆方向へ回転操作されたか否かを判定する。ステップS210で肯定判定すると、上記で説明した誤操作の定義に合致し、誤操作ありと判定して、ステップS220に移行する。ステップS210で、否定判定すると、ステップS200に戻る。 Next, in step S210, the control unit 125 and the input operation support module 130 determine whether or not the operation knob 121 has been rotated in the opposite direction within a fixed time after being rotated in the fixed direction. If an affirmative determination is made in step S210, the above-described definition of the erroneous operation is met, and it is determined that there is an erroneous operation, and the process proceeds to step S220. If a negative determination is made in step S210, the process returns to step S200.
 尚、ステップS210における判定は、上記のように、誤操作が1回発生した場合に対して、予め定めた一定回数以上発生した場合に、誤操作ありと判定するようにしてもよい。 The determination in step S210 may be such that an erroneous operation is performed when a predetermined number of erroneous operations occur for a single erroneous operation as described above.
 そして、ステップS220では、制御部125および入力操作支援モジュール130は、反力制御マップにおける円軌跡の半径を、図16に示すように、一定量大きくする。 Then, in step S220, the control unit 125 and the input operation support module 130 increase the radius of the circular locus in the reaction force control map by a certain amount as shown in FIG.
 これにより、操作ノブ121に対して誤操作があると、円軌跡の半径を大きくなる側に更新するので、操作範囲が小さい場合に比べて、操作性を向上させることができ、これ以降の誤操作が抑制される。 Accordingly, if there is an erroneous operation on the operation knob 121, the radius of the circular locus is updated to be larger, so that the operability can be improved as compared with the case where the operation range is small, and subsequent erroneous operations can be performed. Is suppressed.
 (その他の実施形態)
 上記第1実施形態では、実際の入力操作軌跡に対して円軌跡の中心位置、および半径を自動更新するものとし、また上記第2実施形態では、誤操作があると円軌跡の半径を大きくするように自動更新するものとしたが、両実施形態を組合せたものとしてもよい。
(Other embodiments)
In the first embodiment, the center position and radius of the circular trajectory are automatically updated with respect to the actual input operation trajectory. In the second embodiment, the radius of the circular trajectory is increased if there is an erroneous operation. Although the automatic update is performed in the first embodiment, a combination of the two embodiments may be used.
 また、上記各実施形態では、操作の対象機器をACC装置として、ACC制御における走行速度等を調整するものとして説明したが、これに限定されるものではなく、その他にも、例えば、オーディオ装置におけるボリュームの調整、空調装置における設定温度の調整等に適用したものとしてもよい。 Further, in each of the above embodiments, the operation target device is the ACC device, and the running speed and the like in the ACC control are described. However, the present invention is not limited to this. The present invention may be applied to adjustment of a volume, adjustment of a set temperature in an air conditioner, and the like.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリーと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The control unit and the technique according to the present disclosure are realized by a dedicated computer provided by configuring a processor and a memory programmed to execute one or a plurality of functions embodied by a computer program. May be done. Alternatively, the control unit and the technique described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor with one or more dedicated hardware logic circuits. Alternatively, the control unit and the method described in the present disclosure may be implemented by a combination of a processor and a memory programmed to perform one or more functions and a processor configured with one or more hardware logic circuits. It may be realized by one or more dedicated computers configured. Further, the computer program may be stored in a computer-readable non-transitional tangible recording medium as instructions to be executed by a computer.
 ここで本願に記載されるフローチャート、あるいは、フローチャートの処理は、複数のステップ(あるいはセクションと言及される)から構成され、各ステップは、たとえば、S100と表現される。さらに、各ステップは、複数のサブステップに分割されることができる、一方、複数のステップが合わさって一つのステップにすることも可能である。 The flowchart described herein or the processing of the flowchart is composed of a plurality of steps (or referred to as sections), and each step is expressed as, for example, S100. Further, each step can be divided into multiple sub-steps, while multiple steps can be combined into one step.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described based on the embodiments, it is understood that the present disclosure is not limited to the embodiments and the structure. The present disclosure also encompasses various modifications and variations within an equivalent range. In addition, various combinations and forms, and other combinations and forms including only one element, more or less, are also included in the scope and spirit of the present disclosure.

Claims (3)

  1.  車載機器に対する操作用のスイッチ画像(111a)が表示される表示部(110)と、
     前記表示部とは離れた位置に設けられて、前記スイッチ画像に対して、操作位置を示すポインタ画像(111b)を移動させて入力操作を可能とする操作部(120)と、
     前記操作部に操作反力を発生させる反力発生部(122)と、
     前記入力操作による入力データに基づいて、前記反力発生部を制御すると共に、前記車載機器に対する入力操作支援を行う制御部(125、130)と、を備える入力装置において、
     前記スイッチ画像は、円形のスイッチ画像となっており、
     前記操作部は、平面上を移動する操作ノブ(121)を有し、車両のステアリング(50)に設けられて、前記ステアリングを握るユーザの親指(F)によって、前記操作ノブが前記円形のスイッチ画像の周方向に沿って操作されるようになっており、
     前記制御部は、
     前記操作ノブが操作される操作領域、および前記操作領域内で前記円形のスイッチ画像と対応する円軌跡が定義され、前記操作反力を設定するための反力制御マップを有しており、
     前記操作ノブによって、前記ポインタ画像が前記円形のスイッチ画像の周方向に操作される際に、前記操作反力として、前記操作ノブが前記円軌跡に引かれるように引込み力を発生させると共に、
     前記親指による前記操作ノブへの実際の入力操作軌跡の履歴を記憶して、前記入力操作軌跡に合うように、前記円軌跡の中心位置、および半径を更新する入力装置。
    A display unit (110) on which an operation switch image (111a) for the in-vehicle device is displayed;
    An operation unit (120) that is provided at a position away from the display unit and that enables an input operation by moving a pointer image (111b) indicating an operation position with respect to the switch image;
    A reaction force generator (122) for generating an operation reaction force on the operation unit;
    A control unit (125, 130) for controlling the reaction force generation unit based on the input data by the input operation and performing input operation support for the vehicle-mounted device;
    The switch image is a circular switch image,
    The operation unit has an operation knob (121) that moves on a plane, and is provided on a steering wheel (50) of the vehicle, and the operation knob is moved by the thumb (F) of the user holding the steering wheel so that the circular switch is turned. It is designed to be operated along the circumferential direction of the image,
    The control unit includes:
    An operation area where the operation knob is operated, and a circular locus corresponding to the circular switch image in the operation area are defined, and a reaction force control map for setting the operation reaction force is provided.
    When the pointer image is operated in the circumferential direction of the circular switch image by the operation knob, a pulling force is generated as the operation reaction force so that the operation knob is drawn along the circular locus,
    An input device that stores a history of an actual input operation trajectory to the operation knob by the thumb and updates a center position and a radius of the circular trajectory so as to match the input operation trajectory.
  2.  車載機器に対する操作用のスイッチ画像(111a)が表示される表示部(110)と、
     前記表示部とは離れた位置に設けられて、前記スイッチ画像に対して、操作位置を示すポインタ画像(111b)を移動させて入力操作を可能とする操作部(120)と、
     前記操作部に操作反力を発生させる反力発生部(122)と、
     前記入力操作による入力データに基づいて、前記反力発生部を制御すると共に、前記車載機器に対する入力操作支援を行う制御部(125、130)と、を備える入力装置において、
     前記スイッチ画像は、円形のスイッチ画像となっており、
     前記操作部は、平面上を移動する操作ノブ(121)を有し、車両のステアリング(50)に設けられて、前記ステアリングを握るユーザの親指(F)によって、前記操作ノブが前記円形のスイッチ画像の周方向に沿って操作されるようになっており、
     前記制御部は、
     前記操作ノブが操作される操作領域、および前記操作領域内で前記円形のスイッチ画像と対応する円軌跡が定義され、前記操作反力を設定するための反力制御マップを有しており、
     前記操作ノブによって、前記ポインタ画像が前記円形のスイッチ画像の周方向に操作される際に、前記操作反力として、前記操作ノブが前記円軌跡に引かれるように引込み力を発生させると共に、
     前記操作ノブに対して誤操作があると、前記円軌跡の半径を大きくなる側に更新する入力装置。
    A display unit (110) on which an operation switch image (111a) for an in-vehicle device is displayed;
    An operation unit (120) that is provided at a position away from the display unit and that enables an input operation by moving a pointer image (111b) indicating an operation position with respect to the switch image;
    A reaction force generating unit (122) for generating an operation reaction force on the operation unit;
    A control unit (125, 130) for controlling the reaction force generation unit based on the input data by the input operation and performing input operation support for the vehicle-mounted device;
    The switch image is a circular switch image,
    The operation unit has an operation knob (121) that moves on a plane, and is provided on a steering wheel (50) of the vehicle, and the operation knob is moved by the thumb (F) of the user holding the steering wheel so that the circular switch is turned. It is designed to be operated along the circumferential direction of the image,
    The control unit includes:
    An operation area where the operation knob is operated, and a circular locus corresponding to the circular switch image in the operation area are defined, and a reaction force control map for setting the operation reaction force is provided.
    When the pointer image is operated in the circumferential direction of the circular switch image by the operation knob, a pulling force is generated as the operation reaction force so that the operation knob is drawn along the circular locus,
    An input device for updating the radius of the circular locus to a larger side when there is an erroneous operation on the operation knob.
  3.  前記誤操作は、前記操作ノブに対する操作方向が逆側に急変更される操作である請求項2に記載の入力装置。 The input device according to claim 2, wherein the erroneous operation is an operation in which the operation direction of the operation knob is suddenly changed to the opposite side.
PCT/JP2019/026010 2018-08-07 2019-07-01 Input device WO2020031548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018148763A JP6888590B2 (en) 2018-08-07 2018-08-07 Input device
JP2018-148763 2018-08-07

Publications (1)

Publication Number Publication Date
WO2020031548A1 true WO2020031548A1 (en) 2020-02-13

Family

ID=69414717

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026010 WO2020031548A1 (en) 2018-08-07 2019-07-01 Input device

Country Status (2)

Country Link
JP (1) JP6888590B2 (en)
WO (1) WO2020031548A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171157A (en) * 2002-11-18 2004-06-17 Fuji Xerox Co Ltd Tactical interface device
JP2009252096A (en) * 2008-04-09 2009-10-29 Autonetworks Technologies Ltd Operation device
JP2017049699A (en) * 2015-08-31 2017-03-09 富士通テン株式会社 Input device, integrated input system, method for controlling input device, and program
JP2018081564A (en) * 2016-11-17 2018-05-24 株式会社デンソー Input apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004171157A (en) * 2002-11-18 2004-06-17 Fuji Xerox Co Ltd Tactical interface device
JP2009252096A (en) * 2008-04-09 2009-10-29 Autonetworks Technologies Ltd Operation device
JP2017049699A (en) * 2015-08-31 2017-03-09 富士通テン株式会社 Input device, integrated input system, method for controlling input device, and program
JP2018081564A (en) * 2016-11-17 2018-05-24 株式会社デンソー Input apparatus

Also Published As

Publication number Publication date
JP2020024575A (en) 2020-02-13
JP6888590B2 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
EP3487280B1 (en) Haptic driving guidance system
US9975427B2 (en) Vehicle user interface system indicating operations of an operation part of a vehicle
US8538756B2 (en) In-vehicle device and method for modifying display mode of icon indicated on the same
JP6299162B2 (en) In-vehicle device operation system and operation device
US9063569B2 (en) Vehicular device
JP4968321B2 (en) Vehicle operation input device
JP2007310496A (en) Touch operation input device
KR20180031607A (en) User interface for accessing a set of functions, method and computer readable storage medium for providing a user interface for accessing a set of functions
US20150324006A1 (en) Display control device
US20170147080A1 (en) Operation apparatus for vehicle
JP2011201497A (en) Operation accepting device, method and program
CN112799499A (en) Motor vehicle man-machine interaction system and method
JP5754438B2 (en) User interface device and program
WO2018025517A1 (en) Display manipulation apparatus
US20170131792A1 (en) Remote operation device
JP6375715B2 (en) Line-of-sight input device
WO2020031548A1 (en) Input device
JP6018775B2 (en) Display control device for in-vehicle equipment
CN111602102B (en) Method and system for visual human-machine interaction
CN108693981B (en) Input device for vehicle
JP4840332B2 (en) Remote control device
US11110798B2 (en) Multi-function vehicle input apparatuses with operational buttons for vehicle systems control and methods incorporating the same
JP6610512B2 (en) Input device
WO2020031547A1 (en) Input device
JP6489253B2 (en) Display device and in-vehicle device operation system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846662

Country of ref document: EP

Kind code of ref document: A1