WO2020031323A1 - ユーザ端末及び無線通信方法 - Google Patents

ユーザ端末及び無線通信方法 Download PDF

Info

Publication number
WO2020031323A1
WO2020031323A1 PCT/JP2018/029897 JP2018029897W WO2020031323A1 WO 2020031323 A1 WO2020031323 A1 WO 2020031323A1 JP 2018029897 W JP2018029897 W JP 2018029897W WO 2020031323 A1 WO2020031323 A1 WO 2020031323A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
random access
signal
unit
base station
Prior art date
Application number
PCT/JP2018/029897
Other languages
English (en)
French (fr)
Inventor
大輔 村山
浩樹 原田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2018/029897 priority Critical patent/WO2020031323A1/ja
Publication of WO2020031323A1 publication Critical patent/WO2020031323A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a user terminal and a radio communication method in a next generation mobile communication system.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced, also called LTE @ Rel. 10, 11 or 12
  • LTE-A Succession system for example, FRA (Future Radio Access), 5G (5th generation mobile communication system), 5G + (plus), NR (New Radio), NX (New radio access), New RAT (Radio Access Technology), FX ( Future generation radio access), LTE Rel. 13, 14 or 15 or later
  • CA Carrier @ Aggregation
  • CC Component @ Carrier
  • Eight system bands are configured as one unit.
  • eNB eNodeB
  • UE User @ Equipment
  • LTE @ Rel LTE @ Rel.
  • DC Dual Connectivity
  • CG Cell Group
  • Each cell group includes at least one cell (CC).
  • DC since a plurality of CCs of different radio base stations are integrated, DC is also called inter-base station CA (Inter-eNB @ CA) or the like.
  • E-UTRA Evolved Universal Terrestrial Radio Access
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Future wireless communication systems eg, 5G, NR are expected to implement various wireless communication services to satisfy different requirements (eg, ultra-high speed, large capacity, ultra-low delay, etc.). I have.
  • ⁇ LTE >> Rel.
  • eLAA enhanced License-Assisted Access
  • UCI Uplink ⁇ Control ⁇ Information
  • LBT Listen Before Talk
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a user terminal and a radio communication method capable of suitably transmitting a random access preamble even if the carrier requires listening before transmission.
  • the user terminal on a carrier to which listening before transmission is applied, a transmission unit that transmits a random access preamble, and based on a cyclic shift number and an interlace number, transmits the random access preamble. And a control unit for controlling.
  • a random access preamble can be suitably transmitted even if the carrier requires listening before transmission.
  • FIG. 9 is a diagram illustrating an example of a random access procedure. It is a figure which shows an example of the PRACH format for long sequences. It is a figure which shows an example of the PRACH format for short sequences. It is a figure showing an example of a PRACH basic design. It is a figure showing an example of a preamble index corresponding to a combination of a cyclic shift number and an interlace number.
  • FIG. 6 is a diagram illustrating an example of transmission of a random access preamble using a predetermined interlace.
  • FIG. 11 is a diagram illustrating another example of transmission of a random access preamble using a predetermined interlace.
  • FIG. 6 is a diagram illustrating an example of transmission of a random access preamble using a predetermined interlace.
  • FIG. 7 is a diagram illustrating an example of a table in which interlace numbers and beam index candidates are associated with each other.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment of the present invention.
  • FIG. 1 is a diagram illustrating an example of an overall configuration of a wireless base station according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a functional configuration of a wireless base station according to an embodiment of the present invention. It is a figure showing an example of the whole user terminal composition concerning one embodiment of the present invention. It is a figure showing an example of functional composition of a user terminal concerning one embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an example of a hardware configuration of a radio base station and a user terminal according to an embodiment of the present invention.
  • the license carrier is a carrier of a frequency exclusively assigned to one operator.
  • An unlicensed carrier is a carrier of a frequency shared by a plurality of operators, RATs, and the like.
  • LBT Listen Before Talk
  • LBT is a technology that performs listening (sensing) before transmitting a signal and controls transmission based on a listening result.
  • an interference control function is required for coexistence with NR or LTE of another carrier, a wireless LAN (Local Area Network), or another system.
  • a system that operates NR in an unlicensed carrier may be referred to as LAA, NR-U, or the like, regardless of whether the operation mode is DC, CA, DC, or SA.
  • a transmission point for example, a radio base station (gNB, eNB), a user terminal (UE), or the like
  • an unlicensed carrier which may be referred to as an unlicensed cell, an unlicensed CC, or the like
  • another entity for example, another UE communicating with the unlicensed carrier is detected, transmission on the carrier is prohibited.
  • the transmission point performs listening (LBT) at a timing that is a predetermined period before the transmission timing. More specifically, the transmission point for executing the LBT is the entire target carrier band (for example, one component carrier (CC: Component @ Carrier)) at a timing (for example, the immediately preceding subframe) that is a predetermined period before the transmission timing. ) To check whether another device (for example, a radio base station, a UE, a Wi-Fi device, etc.) is communicating in the carrier band.
  • CC Component @ Carrier
  • the term “listening” means that a certain transmission point (for example, a radio base station, a user terminal, etc.) exceeds a predetermined level (for example, predetermined power) from another transmission point before transmitting a signal. It refers to the operation of detecting / measuring whether a signal is being transmitted.
  • the listening performed by the wireless base station and / or the user terminal may be called LBT, CCA (Clear Channel Assessment), carrier sense, or the like.
  • an LBT performed by the radio base station before downlink transmission may be referred to as DL @ LBT
  • an LBT performed by the UE before uplink transmission may be referred to as UL @ LBT.
  • the UE may be notified of information on a carrier on which UL @ LBT is to be performed, and may determine the carrier based on the information and perform UL @ LBT.
  • the transmission point can confirm that no other device is communicating, it transmits using the carrier. For example, when the reception power measured by the LBT (reception signal power during the LBT period) is equal to or less than a predetermined threshold, the transmission point determines that the channel is in the free state (LBTfree) and performs transmission.
  • LBTfree reception signal power during the LBT period
  • the transmission point determines that the channel is in the free state (LBTfree) and performs transmission.
  • “the channel is free” means that the channel is not occupied by a specific system, and that the channel is idle, the channel is clear, the channel is free, and so on.
  • the transmission point stops its transmission process. For example, when the transmission point detects that the reception power of a signal from another device related to the band exceeds a predetermined threshold, the transmission point determines that the channel is in a busy state (LBT busy), and performs transmission. Not performed. In the case of LBT busy, the channel becomes available only after LBT is performed again and it is confirmed that the channel is in the free state. Note that the method of determining the free / busy state of the channel by the LBT is not limited to this.
  • the transmission point can transmit a predetermined signal (for example, a channel reservation signal) according to the LBT result.
  • the LBT result refers to information (for example, LBTfree, LBTbusy) on the channel availability obtained by the LBT in the carrier in which the LBT is set.
  • the transmission point can perform transmission for a predetermined period (for example, 10-13 ms) by omitting the LBT.
  • a predetermined period for example, 10-13 ms
  • Such transmission is also called burst transmission, burst, transmission burst, and the like.
  • interference between the LAA and Wi-Fi, interference between the LAA systems, and the like are avoided by introducing interference control within the same frequency based on the LBT mechanism at the transmission point. be able to. Further, even when the control of the transmission point is independently performed for each operator operating the LAA system, interference can be reduced without grasping the contents of each control by the LBT.
  • the distance between the radio base station forming the secondary cell (SCell: Secondary @ Cell) of the unlicensed carrier and the UE is equal to the distance between the radio base station forming the primary cell (PCell: Primary @ Cell) of the license carrier and the UE.
  • SCell Secondary @ Cell
  • PCell Primary @ Cell
  • the transmission timing for SCell is different from the transmission timing for PCell.
  • the SCell operating on the unlicensed carrier may be called, for example, LAA @ SCell.
  • the radio frame configuration used in the LAA ⁇ SCell may be different from the existing radio resource configuration since transmission availability is changed based on the LBT.
  • the radio frame used in FDD Frequency Division Duplex
  • FS1 Frame Structure type 1
  • TDD Time Division Duplex
  • FS2 Frame Structure type 2
  • FS3 Frame @ structure @ type @ 3
  • Non-CBRA non-contention-based random access
  • Random access is performed by transmitting a physical random access channel (PRACH: Physical @ Random @ Access @ Channel) on the uplink at the time of initial connection, synchronization establishment, and communication restart.
  • PRACH Physical @ Random @ Access @ Channel
  • Random access can be divided into two types: contention-based random access (CBRA) and contention-based random access (non-CBRA).
  • CBRA contention-based random access
  • non-CBRA contention-based random access
  • the non-collision type RA may be called a contention-free RA (CFRA: Contention-Free @ Random @ Access).
  • the user terminal transmits a preamble randomly selected from a plurality of random access preambles (contention preamble) prepared in the cell, on the PRACH.
  • collision may occur by using the same random access preamble between user terminals.
  • the user terminal transmits a UE-specific random access preamble (dedicated preamble) allocated from the network in advance on the PRACH.
  • a UE-specific random access preamble (dedicated preamble) allocated from the network in advance on the PRACH.
  • Collision random access is performed at the time of initial connection, start or restart of uplink communication, and the like.
  • Non-collision random access is performed at the time of handover, start or restart of downlink communication, and the like.
  • FIG. 1 shows an overview of random access.
  • the collision type random access is composed of Step 1 to Step 4
  • the non-collision type random access is composed of Step 0 to Step 2.
  • the user terminal UE transmits a random access preamble (PRACH) using a PRACH resource set in the cell (message (Msg: Message) 1).
  • PRACH random access preamble
  • Msg Message
  • the radio base station Upon detecting the random access preamble, the radio base station transmits a random access response (RAR: Random @ Access @ Response) as a response (message 2).
  • RAR Random @ Access @ Response
  • the user terminal UE attempts to receive the message 2 for a predetermined period.
  • the transmission power of the PRACH is increased and the message 1 is transmitted again (retransmitted). Note that increasing the transmission power at the time of signal retransmission is also referred to as power ramping.
  • the user terminal UE that has received the random access response transmits a data signal on a physical uplink shared channel (PUSCH: Physical Uplink Shared Channel) specified by an uplink grant included in the random access response (message 3).
  • the radio base station that has received the message 3 transmits a collision resolution (Contention @ resolution) message to the user terminal UE (message 4).
  • the user terminal UE secures synchronization by messages 1 to 4 and identifies the radio base station, the user terminal UE completes the collision type random access process and establishes a connection.
  • the radio base station transmits a physical downlink control channel (PDCCH) for instructing the user terminal UE to transmit a PRACH (message 0).
  • the user terminal UE transmits a random access preamble (PRACH) at the timing indicated by the PDCCH (message 1).
  • PRACH random access preamble
  • the radio base station Upon detecting the random access preamble, the radio base station transmits a random access response (RAR), which is the response information (message 2).
  • RAR random access response
  • the user terminal completes the non-collision random access processing upon receiving the message 2.
  • the transmission power of the PRACH is increased and the message 1 is transmitted again.
  • transmission of the random access preamble (message 1) using the PRACH is also referred to as transmission of the PRACH
  • reception of the random access response (message 2) using the PRACH is also referred to as reception of the PRACH.
  • PRACH preamble formats PRACH preamble formats
  • the RA (Random Access) preamble using each PRACH format includes a RACH OFDM symbol. Further, the RA preamble may include at least one of a cyclic prefix (CP) and a guard period (GP).
  • CP cyclic prefix
  • GP guard period
  • PRACH formats 0 to 3 shown in FIG. 2 use a long sequence (long sequence) preamble sequence in a RACH OFDM symbol.
  • the PRACH formats A1 to A3, B1 to B4, C0, and C2 shown in FIG. 3 use a short sequence (short sequence) preamble sequence in a RACH @ OFDM symbol.
  • the frequency of the unlicensed carrier may be within the frequency range of FR (Frequency @ Range) 1 and FR2.
  • FR1 may be a frequency range lower than the predetermined frequency
  • FR2 may be a frequency range higher than the predetermined frequency.
  • the predetermined frequency may be 7 GHz.
  • FR1 may be a 5 GHz band or a 6 GHz band.
  • FR2 may be in the 60 GHz band.
  • the preamble sequence may be a Zadoff-Chu (ZC) sequence.
  • the preamble sequence length may be either 839 (long sequence) or 139.
  • the preamble sequence may be mapped to a frequency resource (eg, a subcarrier) allocated to the PRACH.
  • the RA preamble may use one of a plurality of new melodies.
  • the subcarrier interval (SubCarrier @ Spacing: SCS) for the long sequence of FR1 of NR may be any of 1.25 and 5 kHz.
  • the SCS for the short sequence of FR1 of NR may be either 15, 30 kHz.
  • the SCS for the short sequence of FR2 of NR may be either 60 or 120 kHz.
  • the SCS for the long sequence of LTE may be 1.25 kHz.
  • the SCS for LTE short sequence may be 7.5 kHz.
  • the occupied channel bandwidth containing 99% of the power of the signal (OCB: Occupied ⁇ Channel ⁇ Bandwidth) must be 80% or more of the system bandwidth.
  • PSD Power @ Spectral @ Density
  • the occupied frequency band is narrow, for example, the occupied channel bandwidth (OCB: Occupied @ Channel) in Europe Bandwidth).
  • OCB occupied channel bandwidth
  • the interlace method may be called RB-level multi-cluster transmission, block IFDMA (Block (Interleaved Frequency Division Multiple Access), or the like.
  • One interlace may be defined as a set of frequency units (which may be referred to as an RB set) allocated at a predetermined frequency interval (eg, 10 RB intervals).
  • a predetermined frequency interval eg, 10 RB intervals.
  • one interlace may be defined as a resource set mapped using the same resource (RB or cluster) pattern for each predetermined range (for example, 10 RBs) in the frequency direction.
  • Each frequency unit distributed in the frequency direction included in the # 1 interlace may be called a cluster.
  • One cluster may be composed of one or more continuous RB units, sub RB units (for example, 1/2 RB units), subcarrier units, resource block group units, and the like. Although it is assumed that frequency hopping within a cluster is not applied, the frequency hopping may be applied.
  • a short sequence preamble sequence length (eg, 139) is supported, but a long sequence preamble sequence length (eg, 839) is not supported.
  • a long sequence preamble sequence length (eg, 839) is not supported.
  • capacity may be insufficient (frequent detection failures due to collision of preambles).
  • the band used for PRACH transmission is extended by interlace (Block Interleaved Frequency Division Multiple Access)
  • a transmission method of extending at least one of the information included in the preamble index area and the PRACH by the interlace number is executed. May be.
  • a plurality (for example, exclusively) of preamble indexes corresponding to a cyclic shift number, an interlace number, and a combination thereof are set in advance, and the UE performs random access using the information. Transmit the preamble (PRACH).
  • PRACH preamble
  • the range in which the preamble index corresponding to the cyclic shift number and the interlace number and the combination thereof can be exclusively set may be read as “a combination candidate of the cyclic shift number and the interlace number”.
  • CBRA contention based random access
  • CFRA Contention Free Random Access
  • a range in which a cyclic shift number and an interlace number and a preamble index corresponding to a combination thereof can be exclusively set (a combination of a cyclic shift number and an interlace number)
  • the candidate is designated by the base station (network) to the UE (second aspect).
  • the wireless communication method according to each embodiment may be applied alone or in combination.
  • an unlicensed carrier will be described below as an example, the present invention may be applied to a licensed carrier. Further, more generally, the present invention may be applied to a carrier that requires listening before transmission (a carrier to which listening is set), or a carrier that does not require listening before transmission (a carrier to which listening is not set). ) May be applied.
  • the radio base station may notify the UE of configuration information for specifying a PRACH configuration, such as a PRACH format and a new melology (for example, SCS).
  • Information includes RMSI (Remaining Minimum System Information), higher layer signaling (for example, RRC (Radio Resource Control) signaling, broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.) ), MAC (Medium Access Control) signaling), physical layer signaling (for example, downlink control information (DCI: Downlink Control Information)), other signals, or a combination thereof.
  • RMSI Remaining Minimum System Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • DCI Downlink Control Information
  • a combination of a carrier in which LBT is not set and a carrier in which LBT is set a combination of PCell (primary cell) and SCell (secondary cell), and a combination of MCG (master cell group) and SCG (secondary cell group).
  • the present invention can be applied to a case where a UE connects to a DC of a license carrier and an unlicensed carrier, a stand-alone (SA) to an unlicensed carrier, a case where PCell and SCell are all carriers in which an LBT is set, and the like. Can be applied. That is, the unlicensed carrier may be used for DC with the license carrier or may be used for SA.
  • SA stand-alone
  • a UE supporting NR-U transmits a random access preamble (PRACH) of contention based random access (CBRA) in an unlicensed band (unlicensed carrier), a cyclic shift corresponding to the preamble index is performed. A combination of a number and an interlace number is selected, and a random access preamble (PRACH) is transmitted based on the selected combination.
  • PRACH random access preamble
  • the UE may hold a preamble index corresponding to a combination of the cyclic shift number and the interlace number as a table.
  • the preamble index “1” corresponding to the combination of the interlace number “1” with the cyclic shift number “1” is assigned, and the combination of the interlace number “2” with the cyclic shift number “1”.
  • a preamble index “4” corresponding to the combination of the interlace number “4” with the cyclic shift number “1” is assigned, and the preamble corresponding to the combination of the interlace number “5” with the cyclic shift number “1”.
  • the index “5” is assigned, and the preamble index “6” corresponding to the combination of the interlace number “6” with the cyclic shift number “1” is assigned.
  • the UE actively (spontaneously) selects each of the cyclic shift number and the interlace number and the corresponding preamble index, and transmits a random access preamble (PRACH) based on the selection information.
  • PRACH random access preamble
  • FIGS. 6A to 6C are diagrams showing an example of transmission of a random access preamble using a predetermined interlace.
  • the bandwidth of the unlicensed carrier (system bandwidth) is, for example, 20 MHz (100 RB)
  • the interlace is a set of 10 RBs distributed in the system bandwidth at 10 RB intervals.
  • # 1 to # 10 are set and two sets of interlaces # 1 to # 10 are arranged in the same order will be described as an example, but the bandwidth of the unlicensed carrier and the configuration of the interlace are not limited thereto.
  • the UE that has selected interlace # 2 transmits a random access preamble (PRACH) using resources based on the selection information.
  • a cyclic shift number is selected, and a sequence for transmitting a random access preamble (PRACH) is generated.
  • the UE that has selected interlace # 5 transmits a random access preamble (PRACH) using resources based on the selection information.
  • a cyclic shift number is selected in the resource of interlace # 5, and a sequence for transmitting a random access preamble (PRACH) is generated.
  • the UE that has selected interlace # 10 transmits a random access preamble (PRACH) using resources based on the selection information.
  • a cyclic shift number is selected, and a sequence for transmitting a random access preamble (PRACH) is generated.
  • the UE transmits a random access preamble (PRACH) based on a cyclic shift number and an interlace number (a preamble index corresponding to a combination). Therefore, it is possible to reduce the probability that a random access preamble (PRACH) from a different UE collides and detection fails. For example, if at least one of the cyclic shift number and the interlace number selected by the UE is different, detection will not fail due to collision of the random access preamble (PRACH). In other words, a random access preamble (PRACH) collides and detection fails only when the values of both the cyclic shift number and the interlace number match in different UEs. In consideration of the total number of combinations, a rare case can be obtained.
  • PRACH random access preamble
  • the UE transmits the random access preamble (PRACH) based on the cyclic shift number and the interlace number has been described as an example, but the UE has at least the cyclic shift number and the interlace number.
  • a random access preamble (PRACH) may be transmitted based on one.
  • a UE supporting NR-U transmits a random access preamble (PRACH) of contention free random access (CFRA) in an unlicensed band (unlicensed carrier) from a base station (network), , At least one of a cyclic shift number and an interlace number. Thereby, the UE is designated at least one of the cyclic shift number and the interlace number.
  • PRACH random access preamble
  • CFRA contention free random access
  • the UE selects, for example, a cyclic shift number and an interlace number and a preamble index corresponding to the cyclic shift number and the interlace number with reference to a table as shown in FIG. 5 and, based on the selection information, a random access preamble (PRACH). ).
  • PRACH random access preamble
  • the base station controls a plurality of UEs (different UEs) so that at least one of the cyclic shift number and the interlace number does not overlap, the probability of a random access preamble (PRACH) colliding and causing a detection failure Can be further reduced.
  • PRACH random access preamble
  • FIGS. 6A to 6C illustrate a case where two sets of interlaces # 1 to # 10 are arranged in the same arrangement order.
  • 7A to 7C two sets of interlaces # 1 to # 10 are arranged in reverse order. Specifically, in the first set of interlaces having the lower frequency, interlaces # 1 to # 10 are arranged in order from the lower frequency to the higher one, and in the set of the second interlace having the higher frequency.
  • the interlaces # 10 to # 1 are arranged in order from a lower frequency to a higher frequency.
  • the UE that has selected interlace # 2 transmits a random access preamble (PRACH) using resources based on the selection information.
  • a cyclic shift number is selected, and a sequence for transmitting a random access preamble (PRACH) is generated.
  • the UE that has selected interlace # 5 transmits a random access preamble (PRACH) using resources based on the selection information.
  • a cyclic shift number is selected in the resource of interlace # 5, and a sequence for transmitting a random access preamble (PRACH) is generated.
  • the UE that has selected interlace # 10 transmits a random access preamble (PRACH) using resources based on the selection information.
  • a cyclic shift number is selected, and a sequence for transmitting a random access preamble (PRACH) is generated.
  • the interval between two interlaces # 2 in FIG. 7A, the interval between two interlaces # 5 in FIG. 7B, and the interval between two interlaces # 10 in FIG. Is different.
  • the intervals of the same interlace number of each interlace may be different from each other.
  • random access preambles PRACH can be suitably transmitted by numbering for each pattern based on the interlace number.
  • interlace # 10 of two sets of adjacent interlaces may be allowed to overlap (adjacent).
  • the UE may control the transmission of the random access preamble (PRACH) and the transmission of other information corresponding to the interlace number. That is, another information corresponding to the interlace number may be associated with part or all of the interlace number.
  • PRACH random access preamble
  • the UE may hold in advance a table in which interlace numbers and beam index candidates (Candidate @ beam @ index) are associated with each other.
  • the interlace number “1” is associated with the beam index candidate “1”
  • the interlace number “2” is associated with the beam index candidate “2”
  • the interlace number “3” is associated with the beam index candidate “2”.
  • the beam index candidate “3” is associated.
  • the base station (network) By associating the interlace number with a beam index candidate (Candidate @ beam @ index) when notifying a beam recovery request (Beam @ recovery @ request) from the UE to the base station (network), the base station (network) transmits the notified beam.
  • the next beam index can be selected from the index candidates, and beam selection with higher communication quality can be performed.
  • Wireless communication system Hereinafter, the configuration of the wireless communication system according to the present embodiment will be described.
  • communication is performed using at least one combination of the above-described plurality of aspects.
  • FIG. 9 is a diagram showing an example of a schematic configuration of the wireless communication system according to the present embodiment.
  • carrier aggregation (CA) and / or dual connectivity (DC) in which a plurality of basic frequency blocks (component carriers) each having a unit of a system bandwidth (for example, 20 MHz) of an LTE system are applied. can do.
  • DC dual connectivity
  • the wireless communication system 1 includes LTE (Long Term Evolution), LTE-A (LTE-Advanced), LTE-B (LTE-Beyond), SUPER 3G, IMT-Advanced, 4G (4th generation mobile communication system), and 5G. (5th generation mobile communication system), NR (New Radio), FRA (Future Radio Access), New-RAT (Radio Access Technology), etc., or a system for realizing these.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • NR New Radio
  • FRA Full Radio Access
  • New-RAT Radio Access Technology
  • the wireless communication system 1 may support dual connectivity between a plurality of RATs (Radio Access Technology) (multi-RAT dual connectivity (MR-DC).
  • MR-DC is LTE (LTE)).
  • Dual connectivity E-DC: E-UTRA) between LTE and NR where the base station (eNB) of E-UTRA becomes a master node (MN) and the base station (gNB) of NR becomes a secondary node (SN) -NR Dual Connectivity), dual connectivity (NE-DC: NR-E) between NR and LTE, where the base station (gNB) of NR becomes MN and the base station (eNB) of LTE (E-UTRA) becomes SN -UTRA Dual Connectivity) or the like.
  • the radio communication system 1 includes a radio base station 11 forming a macro cell C1 having relatively wide coverage, and a radio base station 12 (12a to 12c) arranged in the macro cell C1 and forming a small cell C2 smaller than the macro cell C1. , Is provided. Further, user terminals 20 are arranged in the macro cell C1 and each small cell C2. The arrangement, number, and the like of each cell and the user terminals 20 are not limited to the modes shown in the figure.
  • the user terminal 20 can be connected to both the radio base station 11 and the radio base station 12. It is assumed that the user terminal 20 uses the macro cell C1 and the small cell C2 simultaneously using CA or DC. In addition, the user terminal 20 may apply CA or DC using a plurality of cells (CCs) (for example, five or less CCs and six or more CCs).
  • CCs cells
  • Communication between the user terminal 20 and the radio base station 11 can be performed using a carrier having a relatively low frequency band (for example, 2 GHz) and a narrow bandwidth (also referred to as an existing carrier or a legacy carrier).
  • a carrier having a relatively high frequency band for example, 3.5 GHz, 5 GHz or the like
  • a wide bandwidth may be used between the user terminal 20 and the radio base station 12, The same carrier as that between may be used.
  • the configuration of the frequency band used by each wireless base station is not limited to this.
  • the user terminal 20 can perform communication using time division duplex (TDD: Time Division Duplex) and / or frequency division duplex (FDD: Frequency Division Duplex) in each cell.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a single numerology may be applied, or a plurality of different numerologies may be applied.
  • Numerology may be a communication parameter applied to transmission and / or reception of a certain signal and / or channel, for example, subcarrier interval, bandwidth, symbol length, cyclic prefix length, subframe length. , TTI length, number of symbols per TTI, radio frame configuration, filtering process, windowing process, and the like.
  • the wireless base station 11 and the wireless base station 12 are connected by wire (for example, an optical fiber compliant with CPRI (Common Public Radio Interface) or an X2 interface) or wirelessly. May be done.
  • the wireless base station 11 and each wireless base station 12 are connected to the upper station device 30 and are connected to the core network 40 via the upper station device 30.
  • the higher station apparatus 30 includes, for example, an access gateway apparatus, a radio network controller (RNC), a mobility management entity (MME), and the like, but is not limited thereto.
  • RNC radio network controller
  • MME mobility management entity
  • each wireless base station 12 may be connected to the upper station device 30 via the wireless base station 11.
  • the radio base station 11 is a radio base station having relatively wide coverage, and may be called a macro base station, an aggregation node, an eNB (eNodeB), a transmission / reception point, or the like.
  • the radio base station 12 is a radio base station having local coverage, and includes a small base station, a micro base station, a pico base station, a femto base station, a HeNB (Home eNodeB), an RRH (Remote Radio Head), and transmission / reception. It may be called a point.
  • the wireless base stations 11 and 12 are not distinguished, they are collectively referred to as a wireless base station 10.
  • Each user terminal 20 is a terminal corresponding to various communication systems such as LTE and LTE-A, and may include not only mobile communication terminals (mobile stations) but also fixed communication terminals (fixed stations).
  • orthogonal frequency division multiple access Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier
  • Frequency Division Multiple Access Frequency Division Multiple Access
  • / or OFDMA is applied.
  • OFDMA is a multicarrier transmission scheme in which a frequency band is divided into a plurality of narrow frequency bands (subcarriers), and data is mapped to each subcarrier for communication.
  • the SC-FDMA divides a system bandwidth into bands constituted by one or continuous resource blocks for each terminal, and a single carrier transmission that reduces interference between terminals by using different bands for a plurality of terminals. It is a method.
  • the uplink and downlink radio access schemes are not limited to these combinations, and other radio access schemes may be used.
  • a downlink shared channel (PDSCH: Physical Downlink Shared Channel), a broadcast channel (PBCH: Physical Broadcast Channel), a downlink L1 / L2 control channel and the like shared by each user terminal 20 are used. Used.
  • the PDSCH transmits user data, upper layer control information, SIB (System @ Information @ Block), and the like. Also, MIB (Master ⁇ Information ⁇ Block) is transmitted by PBCH.
  • SIB System @ Information @ Block
  • MIB Master ⁇ Information ⁇ Block
  • Downlink L1 / L2 control channels include downlink control channels (PDCCH (Physical Downlink Control Channel) and / or EPDCCH (Enhanced Physical Downlink Control Channel)), PCFICH (Physical Control Format Indicator Channel), and PHICH (Physical Hybrid-ARQ Indicator Channel).
  • PDCH Physical Downlink Control Channel
  • EPDCCH Enhanced Physical Downlink Control Channel
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid-ARQ Indicator Channel
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • the scheduling information may be notified by DCI.
  • a DCI that schedules DL data reception may be called a DL assignment
  • a DCI that schedules UL data transmission may be called an UL grant.
  • PCFICH transmits the number of OFDM symbols used for PDCCH.
  • the PHICH transmits HARQ (Hybrid Automatic Repeat Repeat request) acknowledgment information (for example, retransmission control information, HARQ-ACK, ACK / NACK, etc.) for the PUSCH.
  • HARQ Hybrid Automatic Repeat Repeat request
  • the EPDCCH is frequency-division multiplexed with a PDSCH (Downlink Shared Data Channel) and used for transmission of DCI and the like like the PDCCH.
  • PDSCH Downlink Shared Data Channel
  • an uplink shared channel (PUSCH: Physical Uplink Shared Channel), an uplink control channel (PUCCH: Physical Uplink Control Channel), a random access channel (PRACH: Physical Random Access Channel) or the like is used.
  • PUSCH Physical Uplink Shared Channel
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • the PUCCH transmits downlink radio link quality information (CQI: Channel Quality Indicator), delivery confirmation information, scheduling request (SR: Scheduling Request), and the like.
  • the PRACH transmits a random access preamble for establishing a connection with a cell.
  • a cell-specific reference signal CRS
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS Positioning Reference Signal
  • a reference signal for measurement SRS: Sounding Reference Signal
  • DMRS reference signal for demodulation
  • the DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal). Further, the transmitted reference signal is not limited to these.
  • FIG. 10 is a diagram showing an example of the entire configuration of the radio base station according to the present embodiment.
  • the wireless base station 10 includes a plurality of transmitting / receiving antennas 101, an amplifier unit 102, a transmitting / receiving unit 103, a baseband signal processing unit 104, a call processing unit 105, and a transmission path interface 106.
  • the transmitting / receiving antenna 101, the amplifier unit 102, and the transmitting / receiving unit 103 may be configured to include at least one each.
  • the baseband signal processing unit 104 regarding user data, processing of a PDCP (Packet Data Convergence Protocol) layer, division / combination of user data, transmission processing of an RLC layer such as RLC (Radio Link Control) retransmission control, and MAC (Medium Access) Control) Transmission / reception control (for example, HARQ transmission processing), scheduling, transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc., and transmission / reception processing are performed.
  • RLC Radio Link Control
  • MAC Medium Access
  • Transmission / reception control for example, HARQ transmission processing
  • scheduling transmission format selection, channel coding, inverse fast Fourier transform (IFFT) processing, precoding processing, etc.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 103 converts the baseband signal precoded and output from the baseband signal processing unit 104 for each antenna into a radio frequency band, and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 103 is amplified by the amplifier section 102 and transmitted from the transmitting / receiving antenna 101.
  • the transmission / reception unit 103 can be configured by a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 103 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • a radio frequency signal received by the transmission / reception antenna 101 is amplified by the amplifier unit 102.
  • the transmitting / receiving section 103 receives the upstream signal amplified by the amplifier section 102.
  • Transmitting / receiving section 103 frequency-converts the received signal into a baseband signal and outputs the baseband signal to baseband signal processing section 104.
  • the baseband signal processing unit 104 performs fast Fourier transform (FFT: Fast Fourier Transform), inverse discrete Fourier transform (IDFT), and error correction on user data included in the input uplink signal. Decoding, reception processing of MAC retransmission control, reception processing of the RLC layer and PDCP layer are performed, and the data is transferred to the upper station apparatus 30 via the transmission path interface 106.
  • the call processing unit 105 performs call processing (setting, release, etc.) of a communication channel, state management of the wireless base station 10, management of wireless resources, and the like.
  • the transmission path interface 106 transmits and receives signals to and from the higher-level station device 30 via a predetermined interface.
  • the transmission path interface 106 transmits and receives signals (backhaul signaling) to and from another wireless base station 10 via an interface between base stations (for example, an optical fiber compliant with CPRI (Common Public Radio Interface), an X2 interface). You may.
  • CPRI Common Public Radio Interface
  • the transmitting and receiving unit 103 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, a phase shifter, a phase shift circuit) or an analog beam forming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmitting / receiving antenna 101 can be constituted by, for example, an array antenna.
  • the transmission / reception unit 103 is configured to be able to apply single BF and multi BF.
  • the transmitting / receiving section 103 transmits a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) to the user terminal 20.
  • DL downlink
  • UL uplink
  • the transmitting / receiving section 103 receives the random access preamble on the carrier to which the pre-transmission listening is applied.
  • the transmitting and receiving unit 103 transmits at least one of a cyclic shift number and an interlace number in, for example, non-collision random access (CFRA (Contention Free Random Access)).
  • CFRA Contention Free Random Access
  • FIG. 11 is a diagram showing an example of a functional configuration of the radio base station according to the present embodiment. Note that, in the present example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the wireless base station 10 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 104 includes at least a control unit (scheduler) 301, a transmission signal generation unit 302, a mapping unit 303, a reception signal processing unit 304, and a measurement unit 305. Note that these configurations may be included in the radio base station 10 and some or all of the configurations need not be included in the baseband signal processing unit 104.
  • the control unit (scheduler) 301 controls the entire wireless base station 10.
  • the control unit 301 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 301 controls, for example, signal generation in the transmission signal generation unit 302, signal assignment in the mapping unit 303, and the like. Further, the control unit 301 controls a signal reception process in the reception signal processing unit 304, a signal measurement in the measurement unit 305, and the like.
  • the control unit 301 performs scheduling (for example, resource transmission) of system information, a downlink data signal (for example, a signal transmitted on the PDSCH), and a downlink control signal (for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like). Allocation). Further, control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • scheduling for example, resource transmission
  • a downlink data signal for example, a signal transmitted on the PDSCH
  • a downlink control signal for example, a signal transmitted on the PDCCH and / or the EPDCCH; acknowledgment information and the like. Allocation.
  • control section 301 controls generation of a downlink control signal, a downlink data signal, and the like based on a result of determining whether or not retransmission control is required for an uplink data signal.
  • the control unit 301 controls the reception of the random access preamble by the transmission / reception unit 103, for example.
  • the control unit 301 controls transmission of at least one of a cyclic shift number and an interlace number by the transmission / reception unit 103 in, for example, non-collision random access (CFRA (Contention Free Random Access)).
  • CFRA Contention Free Random Access
  • Transmission signal generation section 302 generates a downlink signal (downlink control signal, downlink data signal, downlink reference signal, etc.) based on an instruction from control section 301, and outputs the generated signal to mapping section 303.
  • the transmission signal generation unit 302 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 302 generates a DL assignment for notifying downlink data allocation information and / or a UL grant for notifying uplink data allocation information, based on an instruction from the control unit 301, for example.
  • the DL assignment and the UL grant are both DCI and follow the DCI format.
  • the downlink data signal is subjected to an encoding process, a modulation process, and the like according to an encoding rate, a modulation scheme, and the like determined based on channel state information (CSI: Channel ⁇ State ⁇ Information) from each user terminal 20 and the like.
  • CSI Channel ⁇ State ⁇ Information
  • Mapping section 303 maps the downlink signal generated by transmission signal generation section 302 to a predetermined radio resource based on an instruction from control section 301, and outputs the result to transmission / reception section 103.
  • the mapping unit 303 can be configured by a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 103.
  • the received signal is, for example, an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) transmitted from the user terminal 20.
  • the reception signal processing unit 304 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 304 outputs the information decoded by the reception processing to the control unit 301. For example, when a PUCCH including HARQ-ACK is received, HARQ-ACK is output to control section 301. Further, the reception signal processing unit 304 outputs the reception signal and / or the signal after the reception processing to the measurement unit 305.
  • the measurement unit 305 performs measurement on the received signal.
  • the measurement unit 305 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 305 may perform RRM (Radio Resource Management) measurement, CSI (Channel State Information) measurement, or the like based on the received signal.
  • Measuring section 305 receives power (for example, RSRP (Reference Signal Received Power)), reception quality (for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)).
  • Power for example, RSRP (Reference Signal Received Power)
  • reception quality for example, RSRQ (Reference Signal Received Quality), SINR (Signal to Interference plus Noise Ratio), SNR (Signal to Noise Ratio)
  • Signal strength for example, RSSI (Received Signal Strength Indicator)
  • channel information for example, CSI
  • the measurement result may be output to the control unit 301.
  • FIG. 12 is a diagram showing an example of the overall configuration of the user terminal according to the present embodiment.
  • the user terminal 20 includes a plurality of transmitting / receiving antennas 201, an amplifier unit 202, a transmitting / receiving unit 203, a baseband signal processing unit 204, and an application unit 205.
  • the transmitting / receiving antenna 201, the amplifier unit 202, and the transmitting / receiving unit 203 may be configured to include at least one each.
  • the radio frequency signal received by the transmitting / receiving antenna 201 is amplified by the amplifier unit 202.
  • the transmission / reception unit 203 receives the downlink signal amplified by the amplifier unit 202.
  • the transmitting / receiving section 203 converts the frequency of the received signal into a baseband signal and outputs the baseband signal to the baseband signal processing section 204.
  • the transmission / reception unit 203 can be configured from a transmitter / receiver, a transmission / reception circuit, or a transmission / reception device described based on common recognition in the technical field according to the present disclosure. Note that the transmission / reception unit 203 may be configured as an integrated transmission / reception unit, or may be configured from a transmission unit and a reception unit.
  • the baseband signal processing unit 204 performs FFT processing, error correction decoding, reception processing for retransmission control, and the like on the input baseband signal.
  • the downlink user data is transferred to the application unit 205.
  • the application unit 205 performs processing related to layers higher than the physical layer and the MAC layer. Also, of the downlink data, broadcast information may be transferred to the application unit 205.
  • uplink user data is input from the application unit 205 to the baseband signal processing unit 204.
  • the baseband signal processor 204 performs retransmission control transmission processing (eg, HARQ transmission processing), channel coding, precoding, discrete Fourier transform (DFT) processing, IFFT processing, and the like, and performs transmission / reception processing. Transferred to 203.
  • the transmission / reception unit 203 converts the baseband signal output from the baseband signal processing unit 204 into a radio frequency band and transmits the radio frequency band.
  • the radio frequency signal frequency-converted by the transmitting / receiving section 203 is amplified by the amplifier section 202 and transmitted from the transmitting / receiving antenna 201.
  • the transmission / reception unit 203 may further include an analog beamforming unit that performs analog beamforming.
  • the analog beam forming unit includes an analog beam forming circuit (for example, a phase shifter, a phase shift circuit) or an analog beam forming device (for example, a phase shifter) described based on common recognition in the technical field according to the present invention. can do.
  • the transmitting / receiving antenna 201 can be configured by, for example, an array antenna.
  • the transmission / reception unit 203 is configured to be able to apply single BF and multi BF.
  • the transmitting / receiving section 203 receives a downlink (DL) signal (including at least one of a DL data signal (downlink shared channel), a DL control signal (downlink control channel), and a DL reference signal) from the radio base station 10,
  • DL downlink
  • DL control signal downlink control channel
  • UL uplink
  • the transmitting / receiving section 203 transmits a random access preamble on a carrier to which listening before transmission is applied.
  • the transmission / reception unit 203 receives at least one of a cyclic shift number and an interlace number in, for example, non-collision random access (CFRA (Contention Free Random Access)).
  • CFRA Contention Free Random Access
  • FIG. 13 is a diagram showing an example of a functional configuration of the user terminal according to the present embodiment. Note that, in this example, functional blocks of characteristic portions in the present embodiment are mainly shown, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication.
  • the baseband signal processing unit 204 of the user terminal 20 includes at least a control unit 401, a transmission signal generation unit 402, a mapping unit 403, a reception signal processing unit 404, and a measurement unit 405. Note that these configurations need only be included in the user terminal 20, and some or all of the configurations need not be included in the baseband signal processing unit 204.
  • the control unit 401 controls the entire user terminal 20.
  • the control unit 401 can be configured from a controller, a control circuit, or a control device described based on common recognition in the technical field according to the present disclosure.
  • the control unit 401 controls, for example, signal generation in the transmission signal generation unit 402, signal assignment in the mapping unit 403, and the like. Further, the control unit 401 controls a signal reception process in the reception signal processing unit 404, a signal measurement in the measurement unit 405, and the like.
  • the control unit 401 acquires the downlink control signal and the downlink data signal transmitted from the wireless base station 10 from the reception signal processing unit 404.
  • the control unit 401 controls generation of an uplink control signal and / or an uplink data signal based on a result of determining whether or not retransmission control is required for a downlink control signal and / or a downlink data signal.
  • the control unit 401 controls the transmission of the random access preamble based on the cyclic shift number and the interlace number.
  • the control unit 401 controls transmission of a random access preamble based on a preamble index corresponding to a combination of a cyclic shift number and an interlace number.
  • the control unit 401 controls the transmission of the random access preamble by selecting a combination of the cyclic shift number and the interlace number from the combination candidates of the cyclic shift number and the interlace number.
  • the control unit 401 controls the transmission of the random access preamble and the transmission of other information corresponding to the interlace number.
  • Transmission signal generation section 402 generates an uplink signal (uplink control signal, uplink data signal, uplink reference signal, etc.) based on an instruction from control section 401 and outputs the generated signal to mapping section 403.
  • the transmission signal generation unit 402 can be configured from a signal generator, a signal generation circuit, or a signal generation device described based on common recognition in the technical field according to the present disclosure.
  • the transmission signal generation unit 402 generates an uplink control signal related to acknowledgment information, channel state information (CSI), and the like based on an instruction from the control unit 401, for example. Further, transmission signal generating section 402 generates an uplink data signal based on an instruction from control section 401. For example, when the UL grant is included in the downlink control signal notified from the radio base station 10, the transmission signal generation unit 402 is instructed by the control unit 401 to generate an uplink data signal.
  • CSI channel state information
  • Mapping section 403 maps the uplink signal generated by transmission signal generation section 402 to a radio resource based on an instruction from control section 401, and outputs the result to transmission / reception section 203.
  • the mapping unit 403 can be configured from a mapper, a mapping circuit, or a mapping device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 performs reception processing (for example, demapping, demodulation, and decoding) on the reception signal input from the transmission / reception unit 203.
  • the received signal is, for example, a downlink signal (a downlink control signal, a downlink data signal, a downlink reference signal, etc.) transmitted from the radio base station 10.
  • the reception signal processing unit 404 can be configured from a signal processor, a signal processing circuit, or a signal processing device described based on common recognition in the technical field according to the present disclosure.
  • the reception signal processing unit 404 can configure a reception unit according to the present disclosure.
  • the reception signal processing unit 404 outputs the information decoded by the reception processing to the control unit 401.
  • the reception signal processing unit 404 outputs, for example, broadcast information, system information, RRC signaling, DCI, and the like to the control unit 401. Further, the reception signal processing unit 404 outputs the reception signal and / or the signal after the reception processing to the measurement unit 405.
  • the measuring unit 405 measures the received signal.
  • the measurement unit 405 can be configured from a measurement device, a measurement circuit, or a measurement device described based on common recognition in the technical field according to the present disclosure.
  • the measurement unit 405 may perform RRM measurement, CSI measurement, and the like based on the received signal.
  • the measurement unit 405 may measure reception power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), and channel information (for example, CSI).
  • the measurement result may be output to the control unit 401.
  • each functional block is realized by an arbitrary combination of at least one of hardware and software.
  • a method of implementing each functional block is not particularly limited. That is, each functional block may be realized using one device physically or logically coupled, or directly or indirectly (for example, two or more devices physically or logically separated). , Wired, wireless, etc.), and may be implemented using these multiple devices.
  • the functional block may be implemented by combining one device or the plurality of devices with software.
  • the functions include judgment, determination, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (configuration unit) that causes transmission to function may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the realization method is not particularly limited.
  • a base station, a user terminal, and the like may function as a computer that performs processing of the wireless communication method according to the present disclosure.
  • FIG. 14 is a diagram illustrating an example of a hardware configuration of the base station and the user terminal according to the embodiment.
  • the above-described base station 10 and user terminal 20 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the term “apparatus” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices illustrated in the drawing, or may be configured to exclude some of the devices.
  • processor 1001 may be implemented by one or more chips.
  • the functions of the base station 10 and the user terminal 20 are performed, for example, by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002 so that the processor 1001 performs an arithmetic operation and communicates via the communication device 1004. And controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 performs an arithmetic operation and communicates via the communication device 1004.
  • the processor 1001 controls the entire computer by operating an operating system, for example.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the above-described baseband signal processing unit 104 (204), call processing unit 105, and the like may be realized by the processor 1001.
  • the processor 1001 reads out a program (program code), a software module, data, and the like from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operation described in the above embodiment is used.
  • the control unit 401 of the user terminal 20 may be implemented by a control program stored in the memory 1002 and operated by the processor 1001, and other functional blocks may be implemented similarly.
  • the memory 1002 is a computer-readable recording medium, for example, at least one of ROM (Read Only Memory), EPROM (Erasable Programmable ROM), EEPROM (Electrically EPROM), RAM (Random Access Memory), and other appropriate storage media. It may be constituted by one.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium such as a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (CD-ROM (Compact Disc) ROM, etc.), a digital versatile disc, At least one of a Blu-ray (registered trademark) disk, a removable disk, a hard disk drive, a smart card, a flash memory device (eg, a card, a stick, a key drive), a magnetic stripe, a database, a server, and other suitable storage media. May be configured.
  • the storage 1003 may be called an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, a duplexer, a filter, a frequency synthesizer, and the like, for example, in order to realize at least one of frequency division duplex (FDD: Frequency Division Duplex) and time division duplex (TDD: Time Division Duplex). May be configured.
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • the transmission / reception antenna 101 (201), the amplifier unit 102 (202), the transmission / reception unit 103 (203), the transmission path interface 106, and the like may be realized by the communication device 1004.
  • the transmission / reception unit 103 may be mounted physically or logically separated between the transmission unit 103a and the reception unit 103b.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an external input.
  • the output device 1006 is an output device that performs output to the outside (for example, a display, a speaker, an LED (Light Emitting Diode) lamp, and the like). Note that the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • the devices such as the processor 1001 and the memory 1002 are connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using a different bus for each device.
  • the base station 10 and the user terminal 20 include hardware such as a microprocessor, a digital signal processor (DSP: Digital Signal Processor), an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), and an FPGA (Field Programmable Gate Array). It may be configured to include hardware, and some or all of the functional blocks may be realized using the hardware. For example, the processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the channel and the symbol may be a signal (signaling).
  • the signal may be a message.
  • the reference signal may be abbreviated as RS (Reference Signal), and may be referred to as a pilot, a pilot signal, or the like according to an applied standard.
  • a component carrier (CC: Component Carrier) may be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may be configured by one or more periods (frames) in the time domain.
  • the one or more respective periods (frames) forming the radio frame may be referred to as a subframe.
  • a subframe may be configured by one or more slots in the time domain.
  • the subframe may be of a fixed length of time (eg, 1 ms) that does not depend on numerology.
  • the new melology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology includes, for example, subcarrier interval (SCS: SubCarrier @ Spacing), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI: Transmission @ Time @ Interval), number of symbols per TTI, radio frame configuration, transmission and reception.
  • SCS SubCarrier @ Spacing
  • TTI Transmission @ Time @ Interval
  • TTI Transmission @ Time @ Interval
  • radio frame configuration transmission and reception.
  • At least one of a specific filtering process performed by the transceiver in the frequency domain and a specific windowing process performed by the transceiver in the time domain may be indicated.
  • the slot may be configured by one or a plurality of symbols (OFDM (Orthogonal Frequency Division Multiplexing) symbol, SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, etc.) in the time domain. Further, the slot may be a time unit based on numerology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • Slots may include multiple mini-slots. Each minislot may be constituted by one or more symbols in the time domain. Also, the mini-slot may be called a sub-slot. A minislot may be made up of a smaller number of symbols than slots.
  • a PDSCH (or PUSCH) transmitted in time units larger than minislots may be referred to as PDSCH (PUSCH) mapping type A.
  • a PDSCH (or PUSCH) transmitted using a minislot may be referred to as a PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots, and symbols all represent time units when transmitting signals.
  • the radio frame, the subframe, the slot, the minislot, and the symbol may have different names corresponding to each. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be interchanged with each other.
  • one subframe may be called a transmission time interval (TTI: Transmission @ Time @ Interval)
  • TTI Transmission @ Time @ Interval
  • TTI Transmission Time interval
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot is called a TTI.
  • You may. That is, at least one of the subframe and the TTI may be a subframe (1 ms) in the existing LTE, a period shorter than 1 ms (for example, 1 to 13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing the TTI may be called a slot, a minislot, or the like instead of a subframe.
  • the TTI refers to, for example, a minimum time unit of scheduling in wireless communication.
  • the base station performs scheduling for allocating radio resources (frequency bandwidth, transmission power, and the like that can be used in each user terminal) to each user terminal in TTI units.
  • radio resources frequency bandwidth, transmission power, and the like that can be used in each user terminal
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, a time section (for example, the number of symbols) in which a transport block, a code block, a codeword, and the like are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (mini-slot number) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in LTE@Rel.8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, and the like.
  • a TTI shorter than the normal TTI may be called a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • a long TTI (for example, a normal TTI, a subframe, etc.) may be read as a TTI having a time length exceeding 1 ms, and a short TTI (for example, a shortened TTI, etc.) may be replaced with a TTI shorter than the long TTI and 1 ms
  • the TTI having the above-described TTI length may be replaced with the TTI.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same irrespective of the numerology, and may be, for example, 12.
  • the number of subcarriers included in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of one slot, one minislot, one subframe, or one TTI.
  • One TTI, one subframe, and the like may each be configured by one or a plurality of resource blocks.
  • one or more RBs include a physical resource block (PRB: Physical @ RB), a subcarrier group (SCG: Sub-Carrier @ Group), a resource element group (REG: Resource @ Element @ Group), a PRB pair, an RB pair, and the like. May be called.
  • PRB Physical @ RB
  • SCG Sub-Carrier @ Group
  • REG Resource @ Element @ Group
  • PRB pair an RB pair, and the like. May be called.
  • a resource block may be composed of one or more resource elements (RE: Resource @ Element).
  • RE Resource @ Element
  • one RE may be a radio resource area of one subcarrier and one symbol.
  • a bandwidth part (which may be referred to as a partial bandwidth or the like) may also represent a subset of consecutive common RBs (common @ resource @ blocks) for a certain numerology in a certain carrier. Good.
  • the common RB may be specified by an index of the RB based on the common reference point of the carrier.
  • a PRB may be defined by a BWP and numbered within the BWP.
  • $ BWP may include a BWP for UL (UL @ BWP) and a BWP for DL (DL @ BWP).
  • BWP for a UE, one or more BWPs may be configured in one carrier.
  • At least one of the configured BWPs may be active, and the UE does not have to assume to transmit and receive a given signal / channel outside the active BWP.
  • “cell”, “carrier”, and the like in the present disclosure may be replaced with “BWP”.
  • the structures of the above-described radio frame, subframe, slot, minislot, symbol, and the like are merely examples.
  • the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, included in an RB The configuration of the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP: Cyclic @ Prefix) length, and the like can be variously changed.
  • the information, parameters, and the like described in the present disclosure may be expressed using an absolute value, may be expressed using a relative value from a predetermined value, or may be expressed using another corresponding information. May be represented.
  • a radio resource may be indicated by a predetermined index.
  • Names used for parameters and the like in the present disclosure are not limited in any respect. Further, the formulas and the like using these parameters may be different from those explicitly disclosed in the present disclosure.
  • the various channels (PUCCH (Physical Uplink Control Channel), PDCCH (Physical Downlink Control Channel), etc.) and information elements can be identified by any suitable name, so the various names assigned to these various channels and information elements Is not a limiting name in any way.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that can be referred to throughout the above description are not limited to voltages, currents, electromagnetic waves, magnetic or magnetic particles, optical or photons, or any of these. May be represented by a combination of
  • information, signals, and the like can be output from the upper layer to at least one of the lower layer and the lower layer to the upper layer.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • Information and signals input and output may be stored in a specific place (for example, a memory) or may be managed using a management table. Information and signals that are input and output can be overwritten, updated, or added. The output information, signal, and the like may be deleted. The input information, signal, and the like may be transmitted to another device.
  • Notification of information is not limited to the aspect / embodiment described in the present disclosure, and may be performed using another method.
  • the information is notified by physical layer signaling (for example, downlink control information (DCI: Downlink Control Information), uplink control information (UCI: Uplink Control Information)), upper layer signaling (for example, RRC (Radio Resource Control) signaling, It may be implemented by broadcast information (master information block (MIB: Master Information Block), system information block (SIB: System Information Block), etc.), MAC (Medium Access Control) signaling), other signals, or a combination thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may be called L1 / L2 (Layer 1 / Layer 2) control information (L1 / L2 control signal), L1 control information (L1 control signal), or the like.
  • the RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRCConnectionSetup) message, an RRC connection reconfiguration (RRCConnectionReconfiguration) message, or the like.
  • the MAC signaling may be notified using, for example, a MAC control element (MAC @ CE (Control @ Element)).
  • the notification of the predetermined information is not limited to an explicit notification, and is implicit (for example, by not performing the notification of the predetermined information or by another information). May be performed).
  • the determination may be made by a value represented by 1 bit (0 or 1), or may be made by a boolean value represented by true or false. , May be performed by comparing numerical values (for example, comparison with a predetermined value).
  • software, instructions, information, and the like may be transmitted and received via a transmission medium.
  • a transmission medium For example, if the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.), the website, When transmitted from a server or other remote source, at least one of these wired and / or wireless technologies is included within the definition of a transmission medium.
  • system and “network” as used in this disclosure may be used interchangeably.
  • precoding In the present disclosure, “precoding”, “precoder”, “weight (precoding weight)”, “pseudo collocation (QCL: Quasi-Co-Location)”, “transmission power”, “phase rotation”, “antenna port” , “Antenna port group”, “layer”, “number of layers”, “rank”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel”, etc. The terms may be used interchangeably.
  • base station (BS: Base @ Station)”, “wireless base station”, “fixed station (fixed @ station)”, “NodeB”, “eNodeB (eNB)”, “gNodeB (gNB)”, “gNodeB (gNB)” "Access point (access @ point)”, “transmission point (TP: Transmission @ Point)”, “reception point (RP: Reception @ Point)”, “transmission / reception point (TRP: Transmission / Reception @ Point)”, “panel”, “cell” , “Sector”, “cell group”, “carrier”, “component carrier” and the like may be used interchangeably.
  • a base station may also be referred to as a macro cell, a small cell, a femto cell, a pico cell, or the like.
  • a base station can accommodate one or more (eg, three) cells. If the base station accommodates multiple cells, the entire coverage area of the base station can be partitioned into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head)).
  • a base station subsystem eg, a small indoor base station (RRH: Communication services can also be provided by Remote Radio Head).
  • RRH small indoor base station
  • the term “cell” or “sector” refers to part or all of the coverage area of at least one of a base station and a base station subsystem that provides communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • a mobile station is a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless terminal, remote terminal. , Handset, user agent, mobile client, client or some other suitable terminology.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • at least one of the base station and the mobile station may be a device mounted on the mobile unit, the mobile unit itself, or the like.
  • the moving object may be a vehicle (for example, a car, an airplane, or the like), may be an unmanned moving object (for example, a drone, an autonomous vehicle), or may be a robot (maned or unmanned). ).
  • at least one of the base station and the mobile station includes a device that does not necessarily move during a communication operation.
  • at least one of the base station and the mobile station may be an IoT (Internet of Things) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be replaced with a user terminal.
  • communication between a base station and a user terminal is replaced with communication between a plurality of user terminals (for example, it may be called D2D (Device-to-Device), V2X (Vehicle-to-Everything), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the configuration may be such that the user terminal 20 has the function of the base station 10 described above.
  • words such as “up” and “down” may be read as words corresponding to communication between terminals (for example, “side”).
  • an uplink channel, a downlink channel, and the like may be replaced with a side channel.
  • a user terminal in the present disclosure may be replaced by a base station.
  • a configuration in which the base station 10 has the function of the user terminal 20 described above may be adopted.
  • the operation performed by the base station may be performed by an upper node (upper node) in some cases.
  • various operations performed for communication with a terminal include a base station, one or more network nodes other than the base station (eg, Obviously, it can be performed by MME (Mobility Management Entity), S-GW (Serving-Gateway) or the like, but not limited thereto, or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • Each aspect / embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching with execution.
  • the order of the processing procedure, sequence, flowchart, and the like of each aspect / embodiment described in the present disclosure may be changed as long as there is no inconsistency.
  • elements of various steps are presented in an exemplary order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication
  • 5G 5th generation mobile communication system
  • FRA Fluture Radio Access
  • New-RAT Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Fluture generation radio access
  • GSM Registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX (registered trademark)
  • IEEE 802.11 Wi-Fi
  • WiMAX registered trademark
  • UWB Ultra-WideBand
  • Bluetooth registered trademark
  • a system using other appropriate wireless communication methods and a next-generation system extended based on these methods.
  • a plurality of systems may be combined (for example, a combination of LTE or LTE-A and 5G) and applied.
  • any reference to elements using designations such as "first,” “second,” etc., as used in this disclosure, does not generally limit the quantity or order of those elements. These designations may be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, reference to a first and second element does not mean that only two elements can be employed or that the first element must precede the second element in any way.
  • determining means judging, calculating, computing, processing, deriving, investigating, searching (upping, searching, inquiry) ( For example, a search in a table, database, or another data structure), ascertaining, etc., may be regarded as "deciding".
  • determining includes receiving (eg, receiving information), transmitting (eg, transmitting information), input (input), output (output), and access ( accessing) (e.g., accessing data in a memory) or the like.
  • judgment (decision) is regarded as “judgment (decision)” of resolving, selecting, selecting, establishing, comparing, and the like. Is also good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of any operation.
  • “judgment (decision)” may be read as “assuming”, “expecting”, “considering”, or the like.
  • connection refers to any direct or indirect connection or coupling between two or more elements. And may include the presence of one or more intermediate elements between two elements “connected” or “coupled” to each other.
  • the coupling or connection between the elements may be physical, logical, or a combination thereof. For example, “connection” may be read as “access”.
  • the radio frequency domain, microwave It can be considered to be “connected” or “coupled” to each other using electromagnetic energy having a wavelength in the region, light (both visible and invisible) regions, and the like.
  • the term “A and B are different” may mean that “A and B are different from each other”.
  • the term may mean that “A and B are different from C”.
  • Terms such as “separate”, “coupled” and the like may be interpreted similarly to "different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

送信前のリスニングが必要なキャリアであっても、ランダムアクセスプリアンブルを好適に送信することを目的とする。本開示の一態様に係るユーザ端末は、送信前のリスニングが適用されるキャリアにおいて、ランダムアクセスプリアンブルを送信する送信部と、サイクリックシフト番号及びインターレース番号に基づいて、前記ランダムアクセスプリアンブルの送信を制御する制御部と、を有する。

Description

ユーザ端末及び無線通信方法
 本発明は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。
 UMTS(Universal Mobile Telecommunications System)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてロングタームエボリューション(LTE:Long Term Evolution)が仕様化された(非特許文献1)。また、LTE(LTE Rel.8又は9ともいう)からの更なる広帯域化及び高速化を目的として、LTE-A(LTEアドバンスト、LTE Rel.10、11又は12ともいう)が仕様化され、LTEの後継システム(例えば、FRA(Future Radio Access)、5G(5th generation mobile communication system)、5G+(plus)、NR(New Radio)、NX(New radio access)、New RAT(Radio Access Technology)、FX(Future generation radio access)、LTE Rel.13、14又は15以降などともいう)も検討されている。
 LTE Rel.10/11では、広帯域化を図るために、複数のコンポーネントキャリア(CC:Component Carrier)を統合するキャリアアグリゲーション(CA:Carrier Aggregation)が導入されている。各CCは、LTE Rel.8のシステム帯域を一単位として構成される。また、CAでは、同一の無線基地局(eNB:eNodeB)の複数のCCがユーザ端末(UE:User Equipment)に設定される。
 一方、LTE Rel.12では、異なる無線基地局の複数のセルグループ(CG:Cell Group)がUEに設定されるデュアルコネクティビティ(DC:Dual Connectivity)も導入されている。各セルグループは、少なくとも一つのセル(CC)で構成される。DCでは、異なる無線基地局の複数のCCが統合されるため、DCは、基地局間CA(Inter-eNB CA)などとも呼ばれる。
 将来の無線通信システム(例えば、5G、NR)は、様々な無線通信サービスを、それぞれ異なる要求条件(例えば、超高速、大容量、超低遅延など)を満たすように実現することが期待されている。
 LTE Rel.14では、上記の多様な通信に対する要求を満たすために、アンライセンスキャリアにおけるUL送信をサポートするeLAA(enhanced License-Assisted Access)が検討されている。例えば、アンライセンスキャリアで上り制御情報(UCI:Uplink Control Information)を送信することが考えられる。
 アンライセンスキャリアは複数の事業者などが共用する帯域であるため、アンライセンスキャリアで信号の送信を行うためにはLBT(Listen Before Talk)を成功させる必要がある。LBTは、信号の送信前にリスニング(センシング)を行い、リスニング結果に基づいて送信を制御する技術である。
 このような送信前のリスニングが必要なキャリアの利用については、LBTなどを考慮して規則(レギュレーション)を定めている国、地域などが存在する。しかしながら、ランダムアクセスプリアンブルの送信方法が、このような規則を満たさない場合、通信を行えないことが考えられる。
 本発明はかかる点に鑑みてなされたものであり、送信前のリスニングが必要なキャリアであっても、ランダムアクセスプリアンブルを好適に送信することができるユーザ端末及び無線通信方法を提供することを目的の1つとする。
 本発明の一態様に係るユーザ端末は、送信前のリスニングが適用されるキャリアにおいて、ランダムアクセスプリアンブルを送信する送信部と、サイクリックシフト番号及びインターレース番号に基づいて、前記ランダムアクセスプリアンブルの送信を制御する制御部と、を有することを特徴とする。
 本発明によれば、送信前のリスニングが必要なキャリアであっても、ランダムアクセスプリアンブルを好適に送信することができる。
ランダムアクセス手順の一例を示す図である。 長系列用PRACHフォーマットの一例を示す図である。 短系列用PRACHフォーマットの一例を示す図である。 PRACH基本設計の一例を示す図である。 サイクリックシフト番号及びインターレース番号の組み合わせに対応するプリアンブルインデックスの一例を示す図である。 所定のインターレースを利用したランダムアクセスプリアンブルの送信の一例を示す図である。 所定のインターレースを利用したランダムアクセスプリアンブルの送信の別の一例を示す図である。 インターレース番号とビームインデックス候補を対応させたテーブルの一例を示す図である。 本発明の一実施形態に係る無線通信システムの概略構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の全体構成の一例を示す図である。 本発明の一実施形態に係る無線基地局の機能構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の全体構成の一例を示す図である。 本発明の一実施形態に係るユーザ端末の機能構成の一例を示す図である。 本発明の一実施形態に係る無線基地局及びユーザ端末のハードウェア構成の一例を示す図である。
 5G/NRでは、ライセンスキャリア(ライセンスバンド内のキャリア)だけでなく、アンライセンスキャリア(アンライセンスバンド内のキャリア)を通信に用いることが検討されている。ライセンスキャリアは、一事業者に専用に割り当てられた周波数のキャリアである。アンライセンスキャリアは、複数の事業者、RAT間などで共用する周波数のキャリアである。
 ライセンスキャリアでは信号を送信するタイミングに特に制限はないが、アンライセンスキャリアでは、信号の送信を行うためにはLBT(Listen Before Talk)を成功させる必要がある。LBTは、信号の送信前にリスニング(センシング)を行い、リスニング結果に基づいて送信を制御する技術である。
 アンライセンスキャリアでNRを運用するシステム(例えば、LAAシステム)においては、他事業者のNR又はLTE、無線LAN(Local Area Network)又はその他のシステムとの共存のため、干渉制御機能が必要になると考えられる。なお、アンライセンスキャリアにおいてNRを運用するシステムは、運用形態がDC、CA、DC又はSAのいずれであるかに関わらず、LAA、NR-Uなどと呼ばれてもよい。
 一般に、アンライセンスキャリア(アンライセンスセル、アンライセンスCCなどと呼ばれてもよい)を用いて通信を行う送信ポイント(例えば、無線基地局(gNB、eNB)、ユーザ端末(UE)など)は、当該アンライセンスキャリアで通信を行っている他のエンティティ(例えば、他のUE)を検出した場合、当該キャリアで送信を行うことが禁止されている。
 このため、送信ポイントは、送信タイミングよりも所定期間前のタイミングで、リスニング(LBT)を実行する。具体的には、LBTを実行する送信ポイントは、送信タイミングよりも所定期間前のタイミング(例えば、直前のサブフレーム)で、対象となるキャリア帯域全体(例えば、1コンポーネントキャリア(CC:Component Carrier))をサーチし、他の装置(例えば、無線基地局、UE、Wi-Fi装置など)が当該キャリア帯域で通信しているか否かを確認する。
 なお、本明細書において、リスニングとは、ある送信ポイント(例えば、無線基地局、ユーザ端末など)が信号の送信を行う前に、他の送信ポイントなどから所定レベル(例えば、所定電力)を超える信号が送信されているか否かを検出/測定する動作を指す。また、無線基地局及び/又はユーザ端末が行うリスニングは、LBT、CCA(Clear Channel Assessment)、キャリアセンスなどと呼ばれてもよい。
 また、例えば無線基地局によって下りリンクの送信前に行われるLBTは、DL LBTと呼ばれてもよく、例えばUEによって上りリンクの送信前に行われるLBTは、UL LBTと呼ばれてもよい。UEは、UL LBTを実施すべきキャリアに関する情報を通知されてもよく、当該情報に基づいて当該キャリアを判断してUL LBTを実施してもよい。
 送信ポイントは、他の装置が通信していないことを確認できた場合、当該キャリアを用いて送信を行う。例えば、送信ポイントは、LBTで測定した受信電力(LBT期間中の受信信号電力)が所定の閾値以下である場合、チャネルがフリー状態(LBTfree)であると判断し送信を行う。「チャネルがフリー状態である」とは、言い換えると、特定のシステムによってチャネルが占有されていないことをいい、チャネルがアイドルである、チャネルがクリアである、チャネルがフリーである、などともいう。
 一方、送信ポイントは、対象となるキャリア帯域のうち、一部の帯域でも他の装置が使用中であることを検出した場合、自らの送信処理を中止する。例えば、送信ポイントは、当該帯域に係る他の装置からの信号の受信電力が、所定の閾値を超過していることを検出した場合、チャネルはビジー状態(LBTbusy)であると判断し、送信を行わない。LBTbusyの場合、当該チャネルは、改めてLBTを行いフリー状態であることが確認できた後に初めて利用可能となる。なお、LBTによるチャネルのフリー状態/ビジー状態の判定方法は、これに限られない。
 送信ポイントは、LBT結果に応じて所定の信号(例えば、チャネル予約(channel reservation)信号)を送信することができる。ここで、LBT結果とは、LBTが設定されるキャリアにおいてLBTにより得られたチャネルの空き状態に関する情報(例えば、LBTfree、LBTbusy)のことをいう。
 また、送信ポイントは、LBT結果がフリー状態(LBTfree)である場合に送信を開始すると、所定期間(例えば、10-13ms)LBTを省略して送信を行うことができる。このような送信は、バースト送信、バースト、送信バーストなどとも呼ばれる。
 以上述べたように、LAAシステムにおいて、送信ポイントに、LBTメカニズムに基づく同一周波数内における干渉制御を導入することにより、LAAとWi-Fiとの間の干渉、LAAシステム間の干渉などを回避することができる。また、LAAシステムを運用するオペレータ毎に、送信ポイントの制御を独立して行う場合であっても、LBTによりそれぞれの制御内容を把握することなく干渉を低減することができる。
 ところで、アンライセンスキャリアのセルであっても、上り送信タイミング調整のためにランダムアクセス(RA:Random Access)手順を行う必要がある場合がある。例えば、アンライセンスキャリアのセカンダリセル(SCell:Secondary Cell)を形成する無線基地局とUEとの距離が、ライセンスキャリアのプライマリセル(PCell:Primary Cell)を形成する無線基地局とUEとの距離と異なる場合には、SCell用の送信タイミングは、PCell用の送信タイミングと異なると想定される。なお、アンライセンスキャリアで動作するSCellは、例えばLAA SCellと呼ばれてもよい。
 なお、LAA SCellで用いられる無線フレーム構成は、LBTに基づいて送信可否が変わることから、既存の無線リソース構成と異なることが考えられる。FDD(Frequency Division Duplex)で用いられる無線フレームがフレーム構成タイプ1(FS1:Frame Structure type 1)と呼ばれ、TDD(Time Division Duplex)で用いられる無線フレームがフレーム構成タイプ2(FS2:Frame Structure type 2)と呼ばれるのに対応して、LAA SCellで用いられる無線フレーム構成は、フレーム構成タイプ3(FS3:Frame Structure type 3)とも呼ばれる。
 LAA SCellでは、非衝突型ランダムアクセス(Non-CBRA:Non-Contention-Based Random Access)に基づく制御を行うことが検討されている。以下で、既存のランダムアクセスチャネル(PRACH:Physical Random Access Channel)の送信制御について説明する。
 既存のLTEシステム(Rel.12以前)では、初期接続や同期確立、通信再開などに際し、上りリンクで物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)を送信してランダムアクセスを行う。ランダムアクセスは、衝突型ランダムアクセス(CBRA:Contention-Based Random Access)と非衝突型ランダムアクセス(Non-CBRA)という2種類のタイプに分けることができる。なお、非衝突型RAは、コンテンションフリーRA(CFRA:Contention-Free Random Access)と呼ばれてもよい。
 衝突型ランダムアクセスにおいて、ユーザ端末は、セル内に用意された複数のランダムアクセスプリアンブル(contention preamble)からランダムに選択したプリアンブルをPRACHで送信する。この場合、ユーザ端末間で同一のランダムアクセスプリアンブルを使用することにより、衝突(Contention)が発生する可能性がある。
 非衝突型ランダムアクセスにおいて、ユーザ端末は、あらかじめネットワークから割り当てられたUE固有のランダムアクセスプリアンブル(dedicated preamble)をPRACHで送信する。この場合、ユーザ端末間で異なるランダムアクセスプリアンブルが割り当てられているため、衝突が発生することはない。
 衝突型ランダムアクセスは、初期接続、上りリンクの通信開始又は再開などに際して行われる。非衝突型ランダムアクセスは、ハンドオーバ、下りリンクの通信開始又は再開などに際して行われる。
 図1は、ランダムアクセスの概要を示している。衝突型ランダムアクセスはStep1からStep4、非衝突型ランダムアクセスはStep0からStep2で構成される。
 衝突型ランダムアクセスの場合、はじめにユーザ端末UEは、ランダムアクセスプリアンブル(PRACH)を当該セルに設定されているPRACHリソースで送信する(メッセージ(Msg:Message)1)。無線基地局は、ランダムアクセスプリアンブルを検出すると、その応答としてランダムアクセスレスポンス(RAR:Random Access Response)を送信する(メッセージ2)。ユーザ端末UEは、ランダムアクセスプリアンブル送信後、所定の区間の間、メッセージ2の受信を試みる。メッセージ2の受信に失敗した場合には、PRACHの送信電力を上げてメッセージ1を再度送信(再送)する。なお、信号の再送時に送信電力を増加させることを、パワーランピングともいう。
 ランダムアクセスレスポンスを受信したユーザ端末UEは、ランダムアクセスレスポンスに含まれる上りグラントによって指定された物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)でデータ信号を送信する(メッセージ3)。メッセージ3を受信した無線基地局は、衝突解決(Contention resolution)メッセージをユーザ端末UEに送信する(メッセージ4)。ユーザ端末UEは、メッセージ1から4によって同期を確保し、無線基地局を識別すると、衝突型ランダムアクセス処理を完了しコネクションを確立する。
 非衝突型ランダムアクセスの場合、はじめに無線基地局は、ユーザ端末UEに対してPRACHの送信を指示する物理下り制御チャネル(PDCCH:Physical Downlink Control Channel)を送信する(メッセージ0)。ユーザ端末UEは、前記PDCCHにより指示されたタイミングでランダムアクセスプリアンブル(PRACH)を送信する(メッセージ1)。無線基地局は、ランダムアクセスプリアンブルを検出すると、その応答情報であるランダムアクセスレスポンス(RAR)を送信する(メッセージ2)。ユーザ端末は、メッセージ2の受信をもって非衝突型ランダムアクセス処理を完了する。なお、衝突型ランダムアクセスと同様、メッセージ2の受信に失敗した場合には、PRACHの送信電力を上げてメッセージ1を再度送信する。
 なお、PRACHを用いたランダムアクセスプリアンブル(メッセージ1)の送信をPRACHの送信ともいい、PRACHを用いたランダムアクセスレスポンス(メッセージ2)の受信をPRACHの受信ともいう。
 NRにおいては、複数のPRACHフォーマット(PRACHプリアンブルフォーマット)が検討されている。
 各PRACHフォーマットを用いるRA(Random Access)プリアンブルは、RACH OFDMシンボルを含む。更に、RAプリアンブルは、サイクリックプレフィックス(CP)、ガード期間(GP)の少なくとも1つを含んでもよい。例えば、図2に示すPRACHフォーマット0~3は、RACH OFDMシンボルにおいて、長系列(long sequence)のプリアンブル系列を用いる。図3に示すPRACHフォーマットA1~A3、B1~B4、C0、C2は、RACH OFDMシンボルにおいて、短系列(short sequence)のプリアンブル系列を用いる。
 アンライセンスキャリアの周波数は、FR(Frequency Range)1及びFR2のいずれかの周波数範囲内であってもよい。FR1は、所定周波数よりも低い周波数範囲であり、FR2は、所定周波数よりも高い周波数範囲であってもよい。NR-Uにおいて、所定周波数は7GHzであってもよい。例えば、FR1は、5GHz帯であってもよいし、6GHz帯であってもよい。FR2は、60GHz帯であってもよい。
 図4に示すように、プリアンブル系列は、Zadoff-Chu(ZC)系列であってもよい。プリアンブル系列長は、839(長系列)、139のいずれかであってもよい。プリアンブル系列は、PRACHに割り当てられた周波数リソース(例えば、サブキャリア)にマップされてもよい。
 RAプリアンブルは、複数のニューメロロジーの1つを用いてもよい。NRのFR1の長系列のためのサブキャリア間隔(SubCarrier Spacing:SCS)は、1.25、5kHzのいずれかであってもよい。NRのFR1の短系列のためのSCSは、15、30kHzのいずれかであってもよい。NRのFR2の短系列のためのSCSは、60、120kHzのいずれかであってもよい。LTEの長系列のためのSCSは、1.25kHzであってもよい。LTEの短系列のためのSCSは、7.5kHzであってもよい。
 また、アンライセンスキャリアを利用するためには、送信波形に対する規則を満たす必要がある。
 例えば、欧州電気通信標準化機構(ETSI:European Telecommunications Standards Institute)の規則(regulation)によれば、アンライセンスキャリアの1つである5GHzの利用に関して、信号の99%の電力を含む占有チャネル帯域幅(OCB:Occupied Channel Bandwidth)が、システム帯域幅の80%以上の帯域幅でなければならない。また、所定の帯域幅(1MHz)あたりの最大送信電力密度(PSD:Power Spectral Density)に関する制約が規定されている。
 しかしながら、現状のNR-PRACHやPUCCHのニューメロロジーをそのままアンライセンスキャリアにおける通信(NR-U)に適用した場合、占有する周波数帯域が狭く、例えば、欧州における占有チャネル帯域幅(OCB:Occupied Channel Bandwidth)を満たさない可能性がある。このため、間欠的にSCSを配置するインターレース方式(インターレース型送信)により、使用する帯域を拡張する方法が検討されている。
 ここで、インターレース方式(インターレース型送信)とは、RBレベルのマルチクラスタ送信、ブロックIFDMA(Block Interleaved Frequency Division Multiple Access)等とも呼ばれてもよい。1つのインターレースは、所定の周波数間隔(例えば、10RB間隔)で割り当てられる複数の周波数ユニットのセット(RBセットと呼ばれてもよい)と定義されてもよい。また、1つのインターレースは、周波数方向の所定範囲(例えば、10RB)毎に同一のリソース(RB、又はクラスタ)パターンを用いてマッピングされるリソースセットと定義されてもよい。
 1インターレースに含まれる周波数方向に分散した各周波数ユニットは、それぞれ、クラスタと呼ばれてもよい。1クラスタは、1以上の連続するRB単位、サブRB単位(例えば1/2RB単位)、サブキャリア単位、リソースブロックグループ単位などで構成されればよい。なお、クラスタ内での周波数ホッピングは適用されないことが想定されているが、当該周波数ホッピングが適用されてもよい。
 NR-U向けのPRACHフォーマットとしては、例えば、短系列のプリアンブル系列長(例えば139)をサポートする一方、長系列のプリアンブル系列長(例えば839)をサポートしないことが検討されている。この場合、例えば、スタジアムなどの稠密環境を考慮すると、キャパシティ不足(プリアンブルの衝突による検出失敗の多発)が懸念される。
 そこで、本開示では、インターレース(Block Interleaved Frequency Division Multiple Access)によってPRACH送信に使用する帯域を拡張する場合に、インターレース番号によってプリアンブルインデックス領域及びPRACHに含む情報の少なくとも1つを拡張する送信方法を実行してもよい。
 具体的に、本開示では、サイクリックシフト番号及びインターレース番号並びにこれらの組み合わせに対応するプリアンブルインデックスを予め複数(例えば、排他的に)設定しておき、UEがこれらの情報を使用してランダムアクセスプリアンブル(PRACH)を送信する。ここで、サイクリックシフト番号及びインターレース番号並びにこれらの組み合わせに対応するプリアンブルインデックスを排他的に設定可能な範囲は、「サイクリックシフト番号及びインターレース番号の組み合わせ候補」と読み替えられてもよい。
 衝突型ランダムアクセス(CBRA:Contention Based Random Access)では、サイクリックシフト番号及びインターレース番号並びにこれらの組み合わせに対応するプリアンブルインデックスを排他的に設定可能な範囲(サイクリックシフト番号及びインターレース番号の組み合わせ候補)をUEが能動的(自発的)に選択する(第1の態様)。
 非衝突型ランダムアクセス(CFRA(Contention Free Random Access))では、サイクリックシフト番号及びインターレース番号並びにこれらの組み合わせに対応するプリアンブルインデックスを排他的に設定可能な範囲(サイクリックシフト番号及びインターレース番号の組み合わせ候補)が基地局(ネットワーク)からUEに指定される(第2の態様)。
 以下、本発明に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。なお、以下ではアンライセンスキャリアを例に説明するが、本発明は、ライセンスキャリアに適用されてもよい。また、より一般的には、本発明は、送信前にリスニングが必要なキャリア(リスニングが設定されるキャリア)に適用されてもよいし、送信前にリスニングが不要なキャリア(リスニングが設定されないキャリア)に適用されてもよい。
 無線基地局は、PRACHフォーマット、ニューメロロジー(例えば、SCS)など、PRACH構成を指定するための設定(configuration)情報をUEへ通知してもよい。情報は、RMSI(Remaining Minimum System Information)、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information))、その他の信号又はこれらの組み合わせによって、通知されてもよい。
 また、LBTが設定されないキャリア及び設定されるキャリアの組み合わせと、PCell(プライマリセル)及びSCell(セカンダリセル)との組み合わせ、MCG(マスタセルグループ)及びSCG(セカンダリセルグループ)の組み合わせについて、限定されない。例えば、ライセンスキャリア及びアンライセンスキャリアのDC、アンライセンスキャリアにスタンドアローン(SA)でUEが接続する場合、PCell及びSCellが、全てLBTが設定されるキャリアである場合、などにも、本発明を適用することができる。すなわち、アンライセンスキャリアは、ライセンスキャリアとのDCに用いられてもよいし、SAに用いられてもよい。
<第1の態様>
 NR-UをサポートするUEは、衝突型ランダムアクセス(CBRA:Contention Based Random Access)のランダムアクセスプリアンブル(PRACH)をアンライセンスバンド(アンライセンスキャリア)で送信する場合、プリアンブルインデックスに対応するサイクリックシフト番号とインターレース番号の組み合わせを選択し、選択した組み合わせに基づいて、ランダムアクセスプリアンブル(PRACH)を送信する。
 図5に示すように、UEは、サイクリックシフト番号及びインターレース番号の組み合わせに対応するプリアンブルインデックスをテーブルとして保持していてもよい。図5の例では、サイクリックシフト番号“1”でインターレース番号“1”の組み合わせに対応するプリアンブルインデックス“1”が割当てられており、サイクリックシフト番号“1”でインターレース番号“2”の組み合わせに対応するプリアンブルインデックス“2”が割当てられており、サイクリックシフト番号“1”でインターレース番号“3”の組み合わせに対応するプリアンブルインデックス“3”が割当てられている。また、サイクリックシフト番号“1”でインターレース番号“4”の組み合わせに対応するプリアンブルインデックス“4”が割当てられており、サイクリックシフト番号“1”でインターレース番号“5”の組み合わせに対応するプリアンブルインデックス“5”が割当てられており、サイクリックシフト番号“1”でインターレース番号“6”の組み合わせに対応するプリアンブルインデックス“6”が割当てられている。
 UEは、サイクリックシフト番号及びインターレース番号並びにこれらに対応するプリアンブルインデックスの各々を能動的(自発的)に選択して、当該選択情報に基づいて、ランダムアクセスプリアンブル(PRACH)を送信する。
 図6A~図6Cは、所定のインターレースを利用したランダムアクセスプリアンブルの送信の一例を示す図である。図6A~図6Cでは、アンライセンスキャリアの帯域幅(システム帯域幅)を、例えば、20MHz(100RB)とし、インターレースをシステム帯域幅において10RB間隔で分散配置される10個のRBのセットであるインターレース#1~#10とし、2セットのインターレース#1~#10を同一の並び順で配置した場合を例示して説明するが、アンライセンスキャリアの帯域幅及びインターレースの構成はこれに限られない。
 図6Aでは、インターレース#2を選択したUEが、当該選択情報に基づくリソースを利用して、ランダムアクセスプリアンブル(PRACH)を送信する。また、インターレース#2のリソースにおいて、サイクリックシフト番号を選択して、ランダムアクセスプリアンブル(PRACH)を送信するためのシーケンスを生成する。
 図6Bでは、インターレース#5を選択したUEが、当該選択情報に基づくリソースを利用して、ランダムアクセスプリアンブル(PRACH)を送信する。また、インターレース#5のリソースにおいて、サイクリックシフト番号を選択して、ランダムアクセスプリアンブル(PRACH)を送信するためのシーケンスを生成する。
 図6Cでは、インターレース#10を選択したUEが、当該選択情報に基づくリソースを利用して、ランダムアクセスプリアンブル(PRACH)を送信する。また、インターレース#10のリソースにおいて、サイクリックシフト番号を選択して、ランダムアクセスプリアンブル(PRACH)を送信するためのシーケンスを生成する。
 このように、衝突型ランダムアクセス(CBRA:Contention Based Random Access)において、UEが、サイクリックシフト番号とインターレース番号(の組み合わせに対応するプリアンブルインデックス)に基づいて、ランダムアクセスプリアンブル(PRACH)を送信するので、異なるUEからのランダムアクセスプリアンブル(PRACH)が衝突して検出失敗となる確率を低減することができる。例えば、UEが選択したサイクリックシフト番号とインターレース番号の少なくとも1つが異なっていれば、ランダムアクセスプリアンブル(PRACH)が衝突して検出失敗となることはない。言い換えれば、ランダムアクセスプリアンブル(PRACH)が衝突して検出失敗となるのは、異なるUEで、サイクリックシフト番号とインターレース番号の両方の値が一致した場合だけであり、サイクリックシフト番号とインターレース番号の組み合わせの総数に鑑みれば、レアケースとすることができる。
 なお、上記では、UEが、サイクリックシフト番号及びインターレース番号に基づいてランダムアクセスプリアンブル(PRACH)を送信する場合を例示して説明しているが、UEは、サイクリックシフト番号及びインターレース番号の少なくとも1つに基づいてランダムアクセスプリアンブル(PRACH)を送信してもよい。
<第2の態様>
 NR-UをサポートするUEは、非衝突型ランダムアクセス(CFRA(Contention Free Random Access))のランダムアクセスプリアンブル(PRACH)をアンライセンスバンド(アンライセンスキャリア)で送信する場合、基地局(ネットワーク)から、サイクリックシフト番号及びインターレース番号の少なくとも1つを受信する。これにより、UEは、サイクリックシフト番号及びインターレース番号の少なくとも1つを指定される。
 UEは、例えば、図5に示すようなテーブルを参照して、サイクリックシフト番号及びインターレース番号並びにこれらに対応するプリアンブルインデックスの各々を選択して、当該選択情報に基づいて、ランダムアクセスプリアンブル(PRACH)を送信する。
 基地局(ネットワーク)は、サイクリックシフト番号及びインターレース番号の少なくとも1つが重複しないように、複数のUE(異なるUE)を制御するので、ランダムアクセスプリアンブル(PRACH)が衝突して検出失敗となる確率をより一層低減することができる。
<第3の態様>
 図6A~図6Cでは、2セットのインターレース#1~#10を同一の並び順で配置した場合を例示した。これに対し、図7A~図7Cでは、2セットのインターレース#1~#10を逆の並び順で配置している。具体的に、周波数が低い1つ目のインターレースのセットでは、周波数が低い方から高い方に向かって順にインターレース#1~#10が配置されており、周波数が高い2つ目のインターレースのセットでは、周波数が低い方から高い方に向かって順にインターレース#10~#1が配置されている。
 図7Aでは、インターレース#2を選択したUEが、当該選択情報に基づくリソースを利用して、ランダムアクセスプリアンブル(PRACH)を送信する。また、インターレース#2のリソースにおいて、サイクリックシフト番号を選択して、ランダムアクセスプリアンブル(PRACH)を送信するためのシーケンスを生成する。
 図7Bでは、インターレース#5を選択したUEが、当該選択情報に基づくリソースを利用して、ランダムアクセスプリアンブル(PRACH)を送信する。また、インターレース#5のリソースにおいて、サイクリックシフト番号を選択して、ランダムアクセスプリアンブル(PRACH)を送信するためのシーケンスを生成する。
 図7Cでは、インターレース#10を選択したUEが、当該選択情報に基づくリソースを利用して、ランダムアクセスプリアンブル(PRACH)を送信する。また、インターレース#10のリソースにおいて、サイクリックシフト番号を選択して、ランダムアクセスプリアンブル(PRACH)を送信するためのシーケンスを生成する。
 隣接する2つのインターレースのセットにおいて、図7Aの2つのインターレース#2の間の間隔、図7Bの2つのインターレース#5の間の間隔、及び図7Cの2つのインターレース#10の間の間隔は互いに異なっている。また、例えば、同一の並び順と逆の並び順が混在した3つ以上のインターレースのセットを想定したとき、各インターレースの同一のインターレース番号の間隔が互いに異なる場合がある。このように、等間隔でないインターレース方式(インターレース型送信)であっても、インターレース番号に基づくパターン毎に採番することで、ランダムアクセスプリアンブル(PRACH)を好適に送信することができる。
 あるいは、複数のインターレースのセットにおけるインターレース番号の一部が重なることを許容してもよい。例えば、図7Cのように、隣接する2つのインターレースのセットのインターレース#10が重なる(隣接する)ことを許容してもよい。
<第4の態様>
 UEは、ランダムアクセスプリアンブル(PRACH)の送信とともに、インターレース番号に対応する別の情報の送信を制御してもよい。つまり、インターレース番号の一部又は全部に、インターレース番号に対応する別の情報を対応づけてもよい。
 例えば、図8に示すように、インターレース番号とビームインデックス候補(Candidate beam index)を対応させたテーブルをUEが予め保持していてもよい。図8の例では、インターレース番号“1”とビームインデックス候補“1”が対応付けられており、インターレース番号“2”とビームインデックス候補“2”が対応付けられており、インターレース番号“3”とビームインデックス候補“3”が対応付けられている。
 インターレース番号を、UEから基地局(ネットワーク)にビーム回復要求(Beam recovery request)を通知する際のビームインデックス候補(Candidate beam index)に対応させることで、基地局(ネットワーク)は、通知されたビームインデックス候補から次のビームインデックスを選択することができ、より通信品質の高いビーム選択を実行することが可能になる。
 なお、インターレース番号に対応する別の情報としては、ビームインデックス候補(Candidate beam index)以外の各種の情報を適用することができる。
(無線通信システム)
 以下、本実施の形態に係る無線通信システムの構成について説明する。この無線通信システムでは、上記複数の態様の少なくとも一つの組み合わせを用いて通信が行われる。
 図9は、本実施の形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1では、LTEシステムのシステム帯域幅(例えば、20MHz)を1単位とする複数の基本周波数ブロック(コンポーネントキャリア)を一体としたキャリアアグリゲーション(CA)及び/又はデュアルコネクティビティ(DC)を適用することができる。
 なお、無線通信システム1は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、NR(New Radio)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)などと呼ばれてもよいし、これらを実現するシステムと呼ばれてもよい。
 また、無線通信システム1は、複数のRAT(Radio Access Technology)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(MR-DC:Multi-RAT Dual Connectivity)をサポートしてもよい。MR-DCは、LTE(E-UTRA)の基地局(eNB)がマスターノード(MN)となり、NRの基地局(gNB)がセカンダリーノード(SN)となるLTEとNRとのデュアルコネクティビィティ(EN-DC:E-UTRA-NR Dual Connectivity)、NRの基地局(gNB)がMNとなり、LTE(E-UTRA)の基地局(eNB)がSNとなるNRとLTEとのデュアルコネクティビィティ(NE-DC:NR-E-UTRA Dual Connectivity)等を含んでもよい。
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する無線基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する無線基地局12(12a-12c)と、を備えている。また、マクロセルC1及び各スモールセルC2には、ユーザ端末20が配置されている。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。
 ユーザ端末20は、無線基地局11及び無線基地局12の双方に接続することができる。ユーザ端末20は、マクロセルC1及びスモールセルC2を、CA又はDCを用いて同時に使用することが想定される。また、ユーザ端末20は、複数のセル(CC)(例えば、5個以下のCC、6個以上のCC)を用いてCA又はDCを適用してもよい。
 ユーザ端末20と無線基地局11との間は、相対的に低い周波数帯域(例えば、2GHz)で帯域幅が狭いキャリア(既存キャリア、legacy carrierなどとも呼ばれる)を用いて通信を行うことができる。一方、ユーザ端末20と無線基地局12との間は、相対的に高い周波数帯域(例えば、3.5GHz、5GHzなど)で帯域幅が広いキャリアが用いられてもよいし、無線基地局11との間と同じキャリアが用いられてもよい。なお、各無線基地局が利用する周波数帯域の構成はこれに限られない。
 また、ユーザ端末20は、各セルで、時分割複信(TDD:Time Division Duplex)及び/又は周波数分割複信(FDD:Frequency Division Duplex)を用いて通信を行うことができる。また、各セル(キャリア)では、単一のニューメロロジーが適用されてもよいし、複数の異なるニューメロロジーが適用されてもよい。
 ニューメロロジーとは、ある信号及び/又はチャネルの送信及び/又は受信に適用される通信パラメータであってもよく、例えば、サブキャリア間隔、帯域幅、シンボル長、サイクリックプレフィックス長、サブフレーム長、TTI長、TTIあたりのシンボル数、無線フレーム構成、フィルタリング処理、ウィンドウイング処理などの少なくとも1つを示してもよい。
 無線基地局11と無線基地局12との間(又は、2つの無線基地局12間)は、有線(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェースなど)又は無線によって接続されてもよい。
 無線基地局11及び各無線基地局12は、それぞれ上位局装置30に接続され、上位局装置30を介してコアネットワーク40に接続される。なお、上位局装置30には、例えば、アクセスゲートウェイ装置、無線ネットワークコントローラ(RNC)、モビリティマネジメントエンティティ(MME)などが含まれるが、これに限定されない。また、各無線基地局12は、無線基地局11を介して上位局装置30に接続されてもよい。
 なお、無線基地局11は、相対的に広いカバレッジを有する無線基地局であり、マクロ基地局、集約ノード、eNB(eNodeB)、送受信ポイント、などと呼ばれてもよい。また、無線基地局12は、局所的なカバレッジを有する無線基地局であり、スモール基地局、マイクロ基地局、ピコ基地局、フェムト基地局、HeNB(Home eNodeB)、RRH(Remote Radio Head)、送受信ポイントなどと呼ばれてもよい。以下、無線基地局11及び12を区別しない場合は、無線基地局10と総称する。
 各ユーザ端末20は、LTE、LTE-Aなどの各種通信方式に対応した端末であり、移動通信端末(移動局)だけでなく固定通信端末(固定局)を含んでもよい。
 無線通信システム1においては、無線アクセス方式として、下りリンクに直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)が適用され、上りリンクにシングルキャリア-周波数分割多元接続(SC-FDMA:Single Carrier Frequency Division Multiple Access)及び/又はOFDMAが適用される。
 OFDMAは、周波数帯域を複数の狭い周波数帯域(サブキャリア)に分割し、各サブキャリアにデータをマッピングして通信を行うマルチキャリア伝送方式である。SC-FDMAは、システム帯域幅を端末毎に1つ又は連続したリソースブロックによって構成される帯域に分割し、複数の端末が互いに異なる帯域を用いることで、端末間の干渉を低減するシングルキャリア伝送方式である。なお、上り及び下りの無線アクセス方式は、これらの組み合わせに限らず、他の無線アクセス方式が用いられてもよい。
 無線通信システム1では、下りリンクのチャネルとして、各ユーザ端末20で共有される下り共有チャネル(PDSCH:Physical Downlink Shared Channel)、ブロードキャストチャネル(PBCH:Physical Broadcast Channel)、下りL1/L2制御チャネルなどが用いられる。PDSCHによって、ユーザデータ、上位レイヤ制御情報、SIB(System Information Block)などが伝送される。また、PBCHによって、MIB(Master Information Block)が伝送される。
 下りL1/L2制御チャネルは、下り制御チャネル(PDCCH(Physical Downlink Control Channel)及び/又はEPDCCH(Enhanced Physical Downlink Control Channel))、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid-ARQ Indicator Channel)の少なくとも一つを含む。PDCCHによって、PDSCH及び/又はPUSCHのスケジューリング情報を含む下り制御情報(DCI:Downlink Control Information)などが伝送される。
 なお、DCIによってスケジューリング情報が通知されてもよい。例えば、DLデータ受信をスケジューリングするDCIは、DLアサインメントと呼ばれてもよいし、ULデータ送信をスケジューリングするDCIは、ULグラントと呼ばれてもよい。
 PCFICHによって、PDCCHに用いるOFDMシンボル数が伝送される。PHICHによって、PUSCHに対するHARQ(Hybrid Automatic Repeat reQuest)の送達確認情報(例えば、再送制御情報、HARQ-ACK、ACK/NACKなどともいう)が伝送される。EPDCCHは、PDSCH(下り共有データチャネル)と周波数分割多重され、PDCCHと同様にDCIなどの伝送に用いられる。
 無線通信システム1では、上りリンクのチャネルとして、各ユーザ端末20で共有される上り共有チャネル(PUSCH:Physical Uplink Shared Channel)、上り制御チャネル(PUCCH:Physical Uplink Control Channel)、ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などが用いられる。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送される。また、PUCCHによって、下りリンクの無線リンク品質情報(CQI:Channel Quality Indicator)、送達確認情報、スケジューリングリクエスト(SR:Scheduling Request)などが伝送される。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送される。
 無線通信システム1では、下り参照信号として、セル固有参照信号(CRS:Cell-specific Reference Signal)、チャネル状態情報参照信号(CSI-RS:Channel State Information-Reference Signal)、復調用参照信号(DMRS:DeModulation Reference Signal)、位置決定参照信号(PRS:Positioning Reference Signal)などが伝送される。また、無線通信システム1では、上り参照信号として、測定用参照信号(SRS:Sounding Reference Signal)、復調用参照信号(DMRS)などが伝送される。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。また、伝送される参照信号は、これらに限られない。
<無線基地局>
 図10は、本実施の形態に係る無線基地局の全体構成の一例を示す図である。無線基地局10は、複数の送受信アンテナ101と、アンプ部102と、送受信部103と、ベースバンド信号処理部104と、呼処理部105と、伝送路インターフェース106と、を備えている。なお、送受信アンテナ101、アンプ部102、送受信部103は、それぞれ1つ以上を含むように構成されればよい。
 下りリンクによって無線基地局10からユーザ端末20に送信されるユーザデータは、上位局装置30から伝送路インターフェース106を介してベースバンド信号処理部104に入力される。
 ベースバンド信号処理部104では、ユーザデータに関して、PDCP(Packet Data Convergence Protocol)レイヤの処理、ユーザデータの分割・結合、RLC(Radio Link Control)再送制御などのRLCレイヤの送信処理、MAC(Medium Access Control)再送制御(例えば、HARQの送信処理)、スケジューリング、伝送フォーマット選択、チャネル符号化、逆高速フーリエ変換(IFFT:Inverse Fast Fourier Transform)処理、プリコーディング処理などの送信処理が行われて送受信部103に転送される。また、下り制御信号に関しても、チャネル符号化、逆高速フーリエ変換などの送信処理が行われて、送受信部103に転送される。
 送受信部103は、ベースバンド信号処理部104からアンテナ毎にプリコーディングして出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部103で周波数変換された無線周波数信号は、アンプ部102によって増幅され、送受信アンテナ101から送信される。送受信部103は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部103は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 一方、上り信号については、送受信アンテナ101で受信された無線周波数信号がアンプ部102で増幅される。送受信部103はアンプ部102で増幅された上り信号を受信する。送受信部103は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部104に出力する。
 ベースバンド信号処理部104では、入力された上り信号に含まれるユーザデータに対して、高速フーリエ変換(FFT:Fast Fourier Transform)処理、逆離散フーリエ変換(IDFT:Inverse Discrete Fourier Transform)処理、誤り訂正復号、MAC再送制御の受信処理、RLCレイヤ及びPDCPレイヤの受信処理がなされ、伝送路インターフェース106を介して上位局装置30に転送される。呼処理部105は、通信チャネルの呼処理(設定、解放など)、無線基地局10の状態管理、無線リソースの管理などを行う。
 伝送路インターフェース106は、所定のインターフェースを介して、上位局装置30と信号を送受信する。また、伝送路インターフェース106は、基地局間インターフェース(例えば、CPRI(Common Public Radio Interface)に準拠した光ファイバ、X2インターフェース)を介して他の無線基地局10と信号を送受信(バックホールシグナリング)してもよい。
 なお、送受信部103は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ101は、例えばアレーアンテナにより構成することができる。また、送受信部103は、シングルBF、マルチBFを適用できるように構成されている。
 また、送受信部103は、ユーザ端末20に対して下り(DL)信号(DLデータ信号(下り共有チャネル)、DL制御信号(下り制御チャネル)、DL参照信号の少なくとも一つを含む)を送信し、当該ユーザ端末20からの上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を受信する。
 また、送受信部103は、送信前のリスニングが適用されるキャリアにおいて、ランダムアクセスプリアンブルを受信する。
 また、送受信部103は、例えば、非衝突型ランダムアクセス(CFRA(Contention Free Random Access))において、サイクリックシフト番号及びインターレース番号の少なくとも1つを送信する。
 図11は、本実施の形態に係る無線基地局の機能構成の一例を示す図である。なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、無線基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ベースバンド信号処理部104は、制御部(スケジューラ)301と、送信信号生成部302と、マッピング部303と、受信信号処理部304と、測定部305と、を少なくとも備えている。なお、これらの構成は、無線基地局10に含まれていればよく、一部又は全部の構成がベースバンド信号処理部104に含まれなくてもよい。
 制御部(スケジューラ)301は、無線基地局10全体の制御を実施する。制御部301は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部301は、例えば、送信信号生成部302における信号の生成、マッピング部303における信号の割り当てなどを制御する。また、制御部301は、受信信号処理部304における信号の受信処理、測定部305における信号の測定などを制御する。
 制御部301は、システム情報、下りデータ信号(例えば、PDSCHで送信される信号)、下り制御信号(例えば、PDCCH及び/又はEPDCCHで送信される信号。送達確認情報など)のスケジューリング(例えば、リソース割り当て)を制御する。また、制御部301は、上りデータ信号に対する再送制御の要否を判定した結果などに基づいて、下り制御信号、下りデータ信号などの生成を制御する。
 制御部301は、例えば、送受信部103によるランダムアクセスプリアンブルの受信を制御する。
 制御部301は、例えば、非衝突型ランダムアクセス(CFRA(Contention Free Random Access))において、送受信部103によるサイクリックシフト番号及びインターレース番号の少なくとも1つの送信を制御する。
 送信信号生成部302は、制御部301からの指示に基づいて、下り信号(下り制御信号、下りデータ信号、下り参照信号など)を生成して、マッピング部303に出力する。送信信号生成部302は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部302は、例えば、制御部301からの指示に基づいて、下りデータの割り当て情報を通知するDLアサインメント及び/又は上りデータの割り当て情報を通知するULグラントを生成する。DLアサインメント及びULグラントは、いずれもDCIであり、DCIフォーマットに従う。また、下りデータ信号には、各ユーザ端末20からのチャネル状態情報(CSI:Channel State Information)などに基づいて決定された符号化率、変調方式などに従って符号化処理、変調処理などが行われる。
 マッピング部303は、制御部301からの指示に基づいて、送信信号生成部302で生成された下り信号を、所定の無線リソースにマッピングして、送受信部103に出力する。マッピング部303は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部304は、送受信部103から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、ユーザ端末20から送信される上り信号(上り制御信号、上りデータ信号、上り参照信号など)である。受信信号処理部304は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。
 受信信号処理部304は、受信処理によって復号された情報を制御部301に出力する。例えば、HARQ-ACKを含むPUCCHを受信した場合、HARQ-ACKを制御部301に出力する。また、受信信号処理部304は、受信信号及び/又は受信処理後の信号を、測定部305に出力する。
 測定部305は、受信した信号に関する測定を実施する。測定部305は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部305は、受信した信号に基づいて、RRM(Radio Resource Management)測定、CSI(Channel State Information)測定などを行ってもよい。測定部305は、受信電力(例えば、RSRP(Reference Signal Received Power))、受信品質(例えば、RSRQ(Reference Signal Received Quality)、SINR(Signal to Interference plus Noise Ratio)、SNR(Signal to Noise Ratio))、信号強度(例えば、RSSI(Received Signal Strength Indicator))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部301に出力されてもよい。
<ユーザ端末>
 図12は、本実施の形態に係るユーザ端末の全体構成の一例を示す図である。ユーザ端末20は、複数の送受信アンテナ201と、アンプ部202と、送受信部203と、ベースバンド信号処理部204と、アプリケーション部205と、を備えている。なお、送受信アンテナ201、アンプ部202、送受信部203は、それぞれ1つ以上を含むように構成されればよい。
 送受信アンテナ201で受信された無線周波数信号は、アンプ部202で増幅される。送受信部203は、アンプ部202で増幅された下り信号を受信する。送受信部203は、受信信号をベースバンド信号に周波数変換して、ベースバンド信号処理部204に出力する。送受信部203は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、送受信回路又は送受信装置から構成することができる。なお、送受信部203は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。
 ベースバンド信号処理部204は、入力されたベースバンド信号に対して、FFT処理、誤り訂正復号、再送制御の受信処理などを行う。下りリンクのユーザデータは、アプリケーション部205に転送される。アプリケーション部205は、物理レイヤ及びMACレイヤより上位のレイヤに関する処理などを行う。また、下りリンクのデータのうち、ブロードキャスト情報もアプリケーション部205に転送されてもよい。
 一方、上りリンクのユーザデータについては、アプリケーション部205からベースバンド信号処理部204に入力される。ベースバンド信号処理部204では、再送制御の送信処理(例えば、HARQの送信処理)、チャネル符号化、プリコーディング、離散フーリエ変換(DFT:Discrete Fourier Transform)処理、IFFT処理などが行われて送受信部203に転送される。
 送受信部203は、ベースバンド信号処理部204から出力されたベースバンド信号を無線周波数帯に変換して送信する。送受信部203で周波数変換された無線周波数信号は、アンプ部202によって増幅され、送受信アンテナ201から送信される。
 なお、送受信部203は、アナログビームフォーミングを実施するアナログビームフォーミング部をさらに有してもよい。アナログビームフォーミング部は、本発明に係る技術分野での共通認識に基づいて説明されるアナログビームフォーミング回路(例えば、位相シフタ、位相シフト回路)又はアナログビームフォーミング装置(例えば、位相シフト器)から構成することができる。また、送受信アンテナ201は、例えばアレーアンテナにより構成することができる。また、送受信部203は、シングルBF、マルチBFを適用できるように構成されている。
 また、送受信部203は、無線基地局10から下り(DL)信号(DLデータ信号(下り共有チャネル)、DL制御信号(下り制御チャネル)、DL参照信号の少なくとも一つを含む)を受信し、無線基地局10に対して上り(UL)信号(ULデータ信号、UL制御信号、UL参照信号の少なくとも一つを含む)を送信する。
 また、送受信部203は、送信前のリスニングが適用されるキャリアにおいて、ランダムアクセスプリアンブルを送信する。
 また、送受信部203は、例えば、非衝突型ランダムアクセス(CFRA(Contention Free Random Access))において、サイクリックシフト番号及びインターレース番号の少なくとも1つを受信する。
 図13は、本実施の形態に係るユーザ端末の機能構成の一例を示す図である。なお、本例においては、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。
 ユーザ端末20が有するベースバンド信号処理部204は、制御部401と、送信信号生成部402と、マッピング部403と、受信信号処理部404と、測定部405と、を少なくとも備えている。なお、これらの構成は、ユーザ端末20に含まれていればよく、一部又は全部の構成がベースバンド信号処理部204に含まれなくてもよい。
 制御部401は、ユーザ端末20全体の制御を実施する。制御部401は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路又は制御装置から構成することができる。
 制御部401は、例えば、送信信号生成部402における信号の生成、マッピング部403における信号の割り当てなどを制御する。また、制御部401は、受信信号処理部404における信号の受信処理、測定部405における信号の測定などを制御する。
 制御部401は、無線基地局10から送信された下り制御信号及び下りデータ信号を、受信信号処理部404から取得する。制御部401は、下り制御信号及び/又は下りデータ信号に対する再送制御の要否を判定した結果などに基づいて、上り制御信号及び/又は上りデータ信号の生成を制御する。
 制御部401は、サイクリックシフト番号及びインターレース番号に基づいて、ランダムアクセスプリアンブルの送信を制御する。
 制御部401は、サイクリックシフト番号及びインターレース番号の組み合わせに対応するプリアンブルインデックスに基づいて、ランダムアクセスプリアンブルの送信を制御する。
 制御部401は、サイクリックシフト番号及びインターレース番号の組み合わせ候補の中から、サイクリックシフト番号及びインターレース番号の組み合わせを選択して、ランダムアクセスプリアンブルの送信を制御する。
 制御部401は、ランダムアクセスプリアンブルの送信とともに、インターレース番号に対応する別の情報の送信を制御する。
 送信信号生成部402は、制御部401からの指示に基づいて、上り信号(上り制御信号、上りデータ信号、上り参照信号など)を生成して、マッピング部403に出力する。送信信号生成部402は、本開示に係る技術分野での共通認識に基づいて説明される信号生成器、信号生成回路又は信号生成装置から構成することができる。
 送信信号生成部402は、例えば、制御部401からの指示に基づいて、送達確認情報、チャネル状態情報(CSI)などに関する上り制御信号を生成する。また、送信信号生成部402は、制御部401からの指示に基づいて上りデータ信号を生成する。例えば、送信信号生成部402は、無線基地局10から通知される下り制御信号にULグラントが含まれている場合に、制御部401から上りデータ信号の生成を指示される。
 マッピング部403は、制御部401からの指示に基づいて、送信信号生成部402で生成された上り信号を無線リソースにマッピングして、送受信部203へ出力する。マッピング部403は、本開示に係る技術分野での共通認識に基づいて説明されるマッパー、マッピング回路又はマッピング装置から構成することができる。
 受信信号処理部404は、送受信部203から入力された受信信号に対して、受信処理(例えば、デマッピング、復調、復号など)を行う。ここで、受信信号は、例えば、無線基地局10から送信される下り信号(下り制御信号、下りデータ信号、下り参照信号など)である。受信信号処理部404は、本開示に係る技術分野での共通認識に基づいて説明される信号処理器、信号処理回路又は信号処理装置から構成することができる。また、受信信号処理部404は、本開示に係る受信部を構成することができる。
 受信信号処理部404は、受信処理によって復号された情報を制御部401に出力する。受信信号処理部404は、例えば、ブロードキャスト情報、システム情報、RRCシグナリング、DCIなどを、制御部401に出力する。また、受信信号処理部404は、受信信号及び/又は受信処理後の信号を、測定部405に出力する。
 測定部405は、受信した信号に関する測定を実施する。測定部405は、本開示に係る技術分野での共通認識に基づいて説明される測定器、測定回路又は測定装置から構成することができる。
 例えば、測定部405は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部405は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部401に出力されてもよい。
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)によって構成されてもよい。例えば、上述のベースバンド信号処理部104(204)、呼処理部105などは、プロセッサ1001によって実現されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、ユーザ端末20の制御部401は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically EPROM)、RAM(Random Access Memory)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(CD-ROM(Compact Disc ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(FDD:Frequency Division Duplex)及び時分割複信(TDD:Time Division Duplex)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信アンテナ101(201)、アンプ部102(202)、送受信部103(203)、伝送路インターフェース106などは、通信装置1004によって実現されてもよい。送受信部103は、送信部103aと受信部103bとで、物理的に又は論理的に分離された実装がなされてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LED(Light Emitting Diode)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。参照信号は、RS(Reference Signal)と略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(CC:Component Carrier)は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SCS:SubCarrier Spacing)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(TTI:Transmission Time Interval)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
 スロットは、時間領域において1つ又は複数のシンボル(OFDM(Orthogonal Frequency Division Multiplexing)シンボル、SC-FDMA(Single Carrier Frequency Division Multiple Access)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
 例えば、1サブフレームは送信時間間隔(TTI:Transmission Time Interval)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
 リソースブロック(RB:Resource Block)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
 なお、1つ又は複数のRBは、物理リソースブロック(PRB:Physical RB)、サブキャリアグループ(SCG:Sub-Carrier Group)、リソースエレメントグループ(REG:Resource Element Group)、PRBペア、RBペアなどと呼ばれてもよい。
 また、リソースブロックは、1つ又は複数のリソースエレメント(RE:Resource Element)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
 帯域幅部分(BWP:Bandwidth Part)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(CP:Cyclic Prefix)長などの構成は、様々に変更することができる。
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH(Physical Uplink Control Channel)、PDCCH(Physical Downlink Control Channel)など)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(DCI:Downlink Control Information)、上り制御情報(UCI:Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、ブロードキャスト情報(マスタ情報ブロック(MIB:Master Information Block)、システム情報ブロック(SIB:System Information Block)など)、MAC(Medium Access Control)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
 なお、物理レイヤシグナリングは、L1/L2(Layer 1/Layer 2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRCConnectionSetup)メッセージ、RRC接続再構成(RRCConnectionReconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC CE(Control Element))を用いて通知されてもよい。
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(DSL:Digital Subscriber Line)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(QCL:Quasi-Co-Location)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
 本開示においては、「基地局(BS:Base Station)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(TP:Transmission Point)」、「受信ポイント(RP:Reception Point)」、「送受信ポイント(TRP:Transmission/Reception Point)」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(RRH:Remote Radio Head))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
 本開示においては、「移動局(MS:Mobile Station)」、「ユーザ端末(user terminal)」、「ユーザ装置(UE:User Equipment)」、「端末」などの用語は、互換的に使用され得る。
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのIoT(Internet of Things)機器であってもよい。
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、D2D(Device-to-Device)、V2X(Vehicle-to-Everything)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、MME(Mobility Management Entity)、S-GW(Serving-Gateway)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本開示において説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(4th generation mobile communication system)、5G(5th generation mobile communication system)、FRA(Future Radio Access)、New-RAT(Radio Access Technology)、NR(New Radio)、NX(New radio access)、FX(Future generation radio access)、GSM(登録商標)(Global System for Mobile communications)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (6)

  1.  送信前のリスニングが適用されるキャリアにおいて、ランダムアクセスプリアンブルを送信する送信部と、
     サイクリックシフト番号及びインターレース番号に基づいて、前記ランダムアクセスプリアンブルの送信を制御する制御部と、を有することを特徴とするユーザ端末。
  2.  前記制御部は、前記サイクリックシフト番号及び前記インターレース番号の組み合わせに対応するプリアンブルインデックスに基づいて、前記ランダムアクセスプリアンブルの送信を制御することを特徴とする請求項1に記載のユーザ端末。
  3.  前記制御部は、前記サイクリックシフト番号及び前記インターレース番号の組み合わせ候補の中から、前記サイクリックシフト番号及び前記インターレース番号の組み合わせを選択して、前記ランダムアクセスプリアンブルの送信を制御することを特徴とする請求項1又は請求項2に記載のユーザ端末。
  4.  前記制御部は、前記ランダムアクセスプリアンブルの送信とともに、前記インターレース番号に対応する別の情報の送信を制御することを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。
  5.  前記サイクリックシフト番号及び前記インターレース番号の少なくとも1つを受信する受信部をさらに有することを特徴とする請求項1から請求項4のいずれかに記載のユーザ端末。
  6.  送信前のリスニングが適用されるキャリアにおいて、ランダムアクセスプリアンブルを送信するステップと、
     サイクリックシフト番号及びインターレース番号に基づいて、前記ランダムアクセスプリアンブルの送信を制御するステップと、を有することを特徴とするユーザ端末の無線通信方法。
PCT/JP2018/029897 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法 WO2020031323A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029897 WO2020031323A1 (ja) 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029897 WO2020031323A1 (ja) 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法

Publications (1)

Publication Number Publication Date
WO2020031323A1 true WO2020031323A1 (ja) 2020-02-13

Family

ID=69413278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029897 WO2020031323A1 (ja) 2018-08-09 2018-08-09 ユーザ端末及び無線通信方法

Country Status (1)

Country Link
WO (1) WO2020031323A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185500A1 (ja) * 2021-03-04 2022-09-09 株式会社Nttドコモ 通信装置及び通信方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3337276A1 (en) * 2015-08-14 2018-06-20 China Academy of Telecommunications Technology Mtc ue random access method and device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3337276A1 (en) * 2015-08-14 2018-06-20 China Academy of Telecommunications Technology Mtc ue random access method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "PRACH Transmission for eLAA", 3GPP TSG-RAN WG1 #85 RL-164131, 23 May 2016 (2016-05-23), XP051090085 *
QUALCOMM INCORPORATED: "UL signals and channels for NR-U", 3GPP TSG RAN WG1 MEETING #93 RL-1807388, 21 May 2018 (2018-05-21), XP051442580 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022185500A1 (ja) * 2021-03-04 2022-09-09 株式会社Nttドコモ 通信装置及び通信方法

Similar Documents

Publication Publication Date Title
JP7429679B2 (ja) 端末、無線通信方法、基地局及びシステム
CN113303001B (zh) 用户终端以及无线通信方法
US11871452B2 (en) User terminal and radio communication method
WO2020031351A1 (ja) ユーザ端末及び無線通信方法
WO2020031350A1 (ja) ユーザ端末及び無線通信方法
US20220150800A1 (en) User terminal and radio communication method
WO2019159291A1 (ja) ユーザ端末及び無線通信方法
WO2020017044A1 (ja) ユーザ端末及び基地局
JP7148607B2 (ja) 端末、無線通信方法、及びシステム
US20220141780A1 (en) Terminal and radio communication method
WO2019150486A1 (ja) ユーザ端末及び無線通信方法
WO2020054077A1 (ja) 無線通信装置及び無線通信方法
WO2020016938A1 (ja) ユーザ端末
US20220201748A1 (en) User terminal and radio communication method
JPWO2020084747A1 (ja) 端末、無線通信方法、基地局及びシステム
US20220095118A1 (en) User terminal and radio communication method
WO2020054074A1 (ja) ユーザ端末及び無線通信方法
WO2017195849A1 (ja) ユーザ端末及び無線通信方法
JP7284157B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7248675B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020016939A1 (ja) 基地局
WO2020003470A1 (ja) 送信装置および受信装置
WO2019215887A1 (ja) 無線基地局及びユーザ端末
WO2020031323A1 (ja) ユーザ端末及び無線通信方法
WO2020031308A1 (ja) ユーザ端末

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP