WO2020031277A1 - Transmission device, receiving device, wireless communication system and communication method - Google Patents

Transmission device, receiving device, wireless communication system and communication method Download PDF

Info

Publication number
WO2020031277A1
WO2020031277A1 PCT/JP2018/029689 JP2018029689W WO2020031277A1 WO 2020031277 A1 WO2020031277 A1 WO 2020031277A1 JP 2018029689 W JP2018029689 W JP 2018029689W WO 2020031277 A1 WO2020031277 A1 WO 2020031277A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
data
slot
transmitting
control signal
Prior art date
Application number
PCT/JP2018/029689
Other languages
French (fr)
Japanese (ja)
Inventor
下村剛史
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2018/029689 priority Critical patent/WO2020031277A1/en
Priority to EP18929086.9A priority patent/EP3826418A4/en
Priority to CN201880096430.4A priority patent/CN112544117B/en
Priority to KR1020217006669A priority patent/KR20210040421A/en
Priority to JP2020535382A priority patent/JPWO2020031277A1/en
Priority to CN202311289427.3A priority patent/CN117202401A/en
Publication of WO2020031277A1 publication Critical patent/WO2020031277A1/en
Priority to US17/167,798 priority patent/US11956820B2/en
Priority to JP2022079385A priority patent/JP7288223B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/535Allocation or scheduling criteria for wireless resources based on resource usage policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • H04W74/0816Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA carrier sensing with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0006Assessment of spectral gaps suitable for allocating digitally modulated signals, e.g. for carrier allocation in cognitive radio
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • H04W74/008Transmission of channel access control information with additional processing of random access related information at receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0808Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using carrier sensing, e.g. as in CSMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK

Definitions

  • the present invention relates to a transmitting device, a receiving device, a wireless communication system, and a communication method.
  • Non-Patent Documents 12 to 39 are being conducted by working groups of the 3GPP (Third Generation Partnership Project) (for example, TSG-RAN WG1, TSG-RAN WG2, etc.) (Non-Patent Documents 12 to 39). .
  • 5G is classified into eMBB (Enhanced Mobile Broadband), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is intended to support many use cases.
  • eMBB Enhanced Mobile Broadband
  • Massive MTC Machine Type Communications
  • URLLC Ultra-Reliable and Low Latency Communication
  • LTE-LAA Long Term Evolution-Licensed Assisted Access
  • LTE-LAA Long Term Evolution-Licensed Assisted Access
  • LTE-LAA is, for example, a technology in which a frequency band of Unlicensed @ spectrum and a frequency band of Licensed @ spectrum are bundled and used simultaneously.
  • LTE-LAA for example, it is possible to realize high speed and large capacity.
  • LBT Listen-Before-Talk
  • the transmitting side performs carrier @ sensing (or carrier sense) before starting signal transmission, and confirms that the wireless channel is in the "Idle" state (no other communication is being performed). Start data transmission.
  • carrier @ sensing or carrier sense
  • start data transmission for example, fair coexistence between different networks such as Wi-Fi and LTE can be realized.
  • FIGS. 30A and 30B show an example thereof.
  • the base station determines (or schedules) radio resource allocation, an error correction coding rate, a modulation scheme, and the like, and transmits the scheduling result to the terminal.
  • the base station transmits DCI (Downlink Control Information) including the scheduling result to the terminal using PDCCH (Physical Downlink Control CHannel).
  • DCI Downlink Control Information
  • PDCCH Physical Downlink Control CHannel
  • the terminal uses PDSCH (Physical Downlink Shared CHannel) to extract data addressed to the own station from the received signal, or uses PUSCH (Physical Uplink Shared CHannel) to transmit data. Can be transmitted to the base station.
  • PDSCH Physical Downlink Shared CHannel
  • PUSCH Physical Uplink Shared CHannel
  • FIGS. 31 (A) and 31 (B) are diagrams showing resource allocation in the time direction by DCI specified in 5G.
  • FIG. 31A shows resource allocation in the PDSCH and
  • FIG. 31B shows resource allocation in the PUSCH in the time direction.
  • S represents the start symbol of a slot
  • L represents the number of consecutive symbols (or length) counted from the start symbol S, respectively.
  • FIG. 31C illustrates an example of resource allocation (or mapping in the time direction; hereinafter, allocation and mapping may be used without distinction).
  • radio resources can be allocated in the time direction in symbol units, and flexible radio resources can be allocated.
  • the disclosed technology has been made in view of the above, and aims to improve the throughput.
  • a transmitting device capable of wireless communication with a receiving device using a first frequency band that does not require a license, it is confirmed that the first frequency band is not used by another transmitting device.
  • a first symbol including a first control channel and a first shared channel in a first communication direction, or a second shared channel in a second communication direction different from the first communication direction.
  • a control unit that shifts a second symbol in a time direction; and a first control signal and a first data assigned to the first symbol are transmitted to the first control channel and the first shared channel.
  • a transmission unit that transmits the second data allocated to the second symbol to the receiving device using the second shared channel.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2A is a diagram illustrating a configuration example of one slot
  • FIGS. 2B and 2C are diagrams illustrating a transmission example of a TB.
  • FIG. 3 is a diagram illustrating an example of a protocol stack.
  • FIGS. 4A and 4B are diagrams illustrating transmission examples of PDCCCH and PDSCH.
  • FIG. 5A is a diagram illustrating an example of an RRC message exchange sequence
  • FIG. 5B is a diagram illustrating a configuration example of an RRCConfiguration message.
  • FIG. 6 is a diagram illustrating an example of the IE included in the PDSCH-Config or the PUSCH-Config.
  • FIGS. 7A and 7B are diagrams illustrating transmission examples of the PUSCH.
  • FIGS. 8A and 8B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
  • FIG. 9 is a diagram illustrating an example of information included in the PDCCH.
  • FIGS. 10A to 10C are diagrams illustrating examples of information included in the PDCCH.
  • FIG. 11 is a diagram illustrating an example of the NDI.
  • FIGS. 12A to 12C are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
  • FIG. 13 is a diagram illustrating an example of the IE included in the PDSCH-Config.
  • FIG. 14 is a diagram illustrating an example of information included in the PDCCH.
  • FIGS. 10A to 10C are diagrams illustrating examples of information included in the PDCCH.
  • FIG. 11 is a diagram illustrating an example of the NDI.
  • FIGS. 12A to 12C are diagrams illustrating transmission examples of
  • FIG. 15A and 15B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
  • FIG. 16A is a diagram illustrating a configuration example of a base station
  • FIG. 16B is a diagram illustrating a configuration example of a baseband signal processing unit.
  • FIG. 17A is a diagram illustrating a configuration example of a terminal
  • FIG. 17B is a diagram illustrating a configuration example of a baseband signal processing unit.
  • FIG. 18 is a flowchart illustrating an operation example of the base station.
  • FIG. 19 is a flowchart illustrating an operation example of the terminal.
  • FIG. 20 is a flowchart illustrating an operation example of the terminal.
  • FIG. 21 is a flowchart illustrating an operation example of the base station.
  • FIG. 22 is a flowchart illustrating an operation example of the base station.
  • FIG. 23 is a flowchart illustrating an operation example of the terminal.
  • FIGS. 24A and 24B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
  • FIG. 25 is a diagram illustrating a setting example of monitoringSymbolsWithinSlot.
  • FIG. 26 is a diagram illustrating an example of the IE included in the PDSCH-Config or the PUSCH-Config.
  • FIGS. 27A and 27B are diagrams illustrating monitoring examples.
  • FIG. 28A illustrates a hardware configuration example of a base station
  • FIG. 29B illustrates a hardware configuration example of a terminal.
  • FIGS. 29A and 29B are diagrams illustrating transmission examples of the PUCCH and the PUSCH.
  • FIGS. 30A and 30B are diagrams illustrating transmission examples of TB.
  • FIGS. 31A and 31B are diagrams showing specifications of the start symbol and length
  • 3GPP specifications are updated as needed. Therefore, the latest specification at the time of filing the present application may be used as the above specification. Then, terms and technical contents described in the latest specification may be appropriately used in this specification.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment.
  • the wireless communication system 10 includes a base station device (hereinafter, may be referred to as a “base station”) 100 and a plurality of terminal devices (hereinafter, may be referred to as “terminals”) 200-1 and 200-2. Prepare.
  • the base station 100 performs wireless communication with the terminals 200-1 and 200-2 located in the service provision range (or cell range) of the base station 100, and provides various services such as a call service and a Web browsing service. Wireless communication device.
  • the base station 100 performs the scheduling as described above, and determines the allocation of radio resources, the coding rate, the modulation scheme, and the like to each of the terminals 200-1 and 200-2. Then, base station 100 includes the scheduling result in the control signal and transmits the control signal to terminals 200-1 and 200-2 using the PDCCH. Each of the terminals 200-1 and 200-2 extracts data addressed to itself from the signal received using the PDSCH or transmits data to the base station 100 using the PUSCH according to the scheduling result included in the control signal. Can be sent.
  • the communication direction from the base station 100 to the terminals 200-1 and 200-2 may be referred to as the down direction, and the communication direction from the terminals 200-1 and 200-2 to the base station 100 may be referred to as the up direction.
  • the base station 100 is a transmitting device, and the terminals 200-1 and 200-2 are receiving devices.
  • the terminals 200-1 and 200-2 are transmitting devices and the base station 100 is a receiving device.
  • the terminals 200-1 and 200-2 can also transmit a control signal in the uplink direction.
  • the terminals 200-1 and 200-2 transmit the uplink control signal using PUCCH (Physical Uplink Control CHannel).
  • PUCCH Physical Uplink Control CHannel
  • ACK Acknowledgement: acknowledgment
  • NACK Negative @ Acknowledgement
  • the terminals 200-1 and 200-2 are wireless communication devices capable of wireless communication, such as a feature phone, a smartphone, a personal computer, a tablet terminal, and a game device. Each of the terminals 200-1 and 200-2 can receive the various services described above via the base station 100.
  • the base station 100 performs wireless communication with two terminals 200-1 and 200-2.
  • the base station 100 may perform wireless communication with one terminal 200-1 or may perform wireless communication with three or more terminals.
  • the number of terminals 200-1 and 200-2 may be one or a plurality.
  • the base station 100 and the terminals 200-1 and 200-2 can perform wireless communication using the Unlicensed @ band.
  • each country gives a license to a specific operator and allocates the frequency used in the wireless communication.
  • the operator can perform a mobile communication business (or a wireless communication business) by occupying a licensed frequency.
  • the frequency band to which the operator is licensed and assigned may be referred to as, for example, Licensed @ band.
  • Unlimited @ band is a frequency band that can be used without a license by a plurality of operators, for example.
  • Unlicensed @ band is, for example, a frequency band that does not require a license
  • Licensed @ band is, for example, a frequency band that requires a license. Examples of the Unlicensed band include an ISM band (Industry Science Medical band) and a 5 GHz band.
  • the base station 100 and the terminals 200-1 and 200-2 confirm whether or not the frequency band can be used by using the LBT method when performing wireless communication using the Unlicensed @ band.
  • base station 100 and terminals 200-1 and 200-2 perform the following processing.
  • the base station 100 and the terminals 200-1 and 200-2 perform carrier sense in a usable frequency band of the unlicensed band.
  • the base station 100 and the terminals 200-1 and 200-2 perform wireless communication using the frequency band.
  • the “Idle” state is, for example, a state where the signal strength of the received signal is smaller than a threshold.
  • the base station 100 and the terminals 200-1 and 200-2 confirm that the frequency band is not used by another base station or terminal, and the frequency band can be used. .
  • the base station 100 and the terminals 200-1 and 200-2 do not use the frequency band.
  • the “Busy” state is, for example, a state when the signal strength of the received signal is equal to or higher than a threshold.
  • the base station 100 and the terminals 200-1 and 200-2 perform carrier sense again for the frequency band when a predetermined time has elapsed after confirming the "Busy" state.
  • the detailed operation of the carrier sense follows the method described in, for example, 3GPP TS 37.213 V15.0.0 (2018-06). Depending on the content of a signal to be transmitted, etc., a case where transmission is possible in the “Idle” state with one carrier sense and a case where transmission is possible only after the “Idle” state has passed a specified number of times are defined. In any case, the result of one carrier sense immediately before transmitting a signal must be in the “Idle” state.
  • the base station 100 and the terminals 200-1 and 200-2 can perform wireless communication using not only the Licensed band but also the Licensed band.
  • the Unlimited @ band may be described as, for example, an unlicensed band
  • the Licensed @ band may be described as, for example, a license band.
  • terminals 200-1 and 200-2 may be referred to as the terminal 200 in some cases.
  • the downlink control signal may be referred to as, for example, PDCCH. Therefore, transmitting a downlink control signal may be referred to as, for example, transmitting a PDCCH.
  • the downlink data may be referred to as, for example, PDSCH.
  • the uplink control signal may be referred to as PUCCH, and the uplink data may be referred to as PUSCH.
  • control signal and DCI may be used without distinction.
  • LBT and carrier sense may be used without distinction.
  • FIG. 2A is a diagram illustrating a configuration example of one slot defined by 5G. As described above, in LTE, 14 symbols are one subframe. However, in 5G, as shown in FIG. 2A, one symbol is one slot with 14 symbols. FIG. 2A shows one slot in a certain frequency band having an unlicensed band, for example.
  • FIG. 2B is a diagram illustrating an example of transmission of a TB in a time direction in a frequency band having an unlicensed band.
  • the base station 100 performs carrier sense on this frequency band and confirms that the frequency band is in the “Idle” state. Therefore, the base station 100 transmits data included in TB # a using all symbols from the first slot. ing. Then, for example, the base station 100 also transmits data of TB # b allocated to the next slot using all symbols of the next slot.
  • FIG. 2B illustrates an example in which data included in each TB is transmitted as assigned to each slot.
  • transmitting data included in TB for example, transmitting TB may be referred to as transmitting.
  • the TTI is, for example, an arrival time interval of a TB set, and represents a minimum period of a scheduling period (or cycle) allocated by one control signal transmitted using the PDCCH. Therefore, the TTI is allowed to include a plurality of TTIs by one PDCCH, for example.
  • FIG. 7A shows an example in which two TTIs are scheduled by one PDCCH.
  • TB # a is allocated to the first slot by one PDCCH
  • TB # b is allocated to the slot next to the first slot by another PDCCH. Therefore, the first slot is one TTI, and the next slot is another TTI. For example, when two PDCCHs are assigned to different symbols in one slot, two TTIs exist in one slot.
  • FIG. 2 (C) is a diagram showing a transmission example of TB in the time direction, similarly to FIG. 2 (B). However, the example of FIG. 2C shows an example in which the transmission start timing is shifted due to carrier sense with respect to the example of FIG. 2B.
  • the first symbol of the first slot is in the “Busy” state.
  • carrier sense is performed, and the third symbol is in the “Busy” state.
  • carrier sense is performed, and the state becomes “Idle”, so that signal transmission is started from the fifth symbol.
  • the fifth symbol of the first slot (symbol 4 when symbol 0 is the first symbol) is the data transmission start timing.
  • FIG. 2 (B) and FIG. 2 (C) show an example of transmission in the downlink direction
  • the first symbol at the transmission start timing (the first symbol in the example of FIG. 2 (B), the first symbol in FIG. 2 (C))
  • the PDCCH and the PDSCH are transmitted using the fifth symbol in the example).
  • PDCCH and PDSCH can be assigned to one symbol.
  • the transmission illustrated in FIGS. 2B and 2C is performed by, for example, the base station 100.
  • FIGS. 2B and 2C show an example of transmission in the uplink direction
  • the PUCCH and PUSCH are transmitted using the first symbol at the transmission start timing.
  • the transmission illustrated in FIGS. 2B and 2C is performed by, for example, the terminal 200.
  • TB # a a total of 14 symbols in one slot are allocated to TB # a.
  • transmission starts from the fifth symbol. Therefore, in the first slot, data for 10 symbols included in TB # a can be transmitted, but data for the remaining 4 symbols is transmitted. Data cannot be sent. In this case, in the example of FIG. 2C, data of the remaining four symbols included in TB # a, which could not be transmitted in the first slot, is transmitted using the first four symbols of the next slot. .
  • the data of 14 symbols included in TB # a is transmitted using 10 symbols of the first slot and 4 symbols of the next slot.
  • the first slot and the next slot are, for example, resources in the time direction allocated by different PDCCHs.
  • the data of TB # a is allocated resources in the time direction across two slots allocated by different PDCCHs. For example, since the scheduling period assigned by one PDCCH is one TTI, data of TB # a is transmitted to the same terminal 200 across two TTIs.
  • the transmission of the data part that could not be transmitted in the next TTI is performed by, for example, “Cross @ TTI” (or cross TTI). ).
  • the cross TTI means, for example, that the same data is transmitted across a plurality of TTIs. For example, in FIG. 2C, since TB # a could not be transmitted in the first TTI, it is transmitted in the next TTI and is transmitted in the cross TTI.
  • the cross TTI can be set by, for example, an RRC (Radio Resource Control) message or PDCCH. Details will be described later.
  • RRC Radio Resource Control
  • a symbol including the PDCCH and the PDSCH or a symbol including the PUCCH and the PUSCH can be shifted in the time direction.
  • FIG. 2 (C) not only the first symbol (first symbol) and its intermediate symbol (eighth symbol from the first symbol) in the slot as in LTE-LAA, but also other symbols as shown in FIG. Data transmission is possible even from symbols. Therefore, in the first embodiment, the transmission opportunity is increased as compared with the case where data is transmitted from the first symbol in the slot and its intermediate symbol, so that the throughput can be improved.
  • data addressed to the same terminal 200 is transmitted by the cross TTI.
  • the transmission side does not wait for ACK or NACK, and in the next TTI (or next slot) after the first TTI (or slot), the transmission side uses The remaining data of TB # a that could not be transmitted is being transmitted. Therefore, since the transmission device can transmit data without waiting for ACK or NACK, it is possible to improve the throughput as compared with a case where transmission is performed after waiting for ACK or NACK.
  • the transmitting side transmits a signal that could not be transmitted in the first slot due to carrier sense in the next slot as it is.
  • the first embodiment transmits the signal as it is, so that it is possible to reduce the complexity of the transmission process on the transmission side and the reception process on the reception side. Become.
  • the first embodiment will be described in different cases.
  • the relationship between the RRC message and the PDCCH will be described.
  • 1) a case where a cross TTI is set by an RRC message when the PDCCH and the PDSCH are shifted will be described.
  • 2) a case where a cross TTI is set from the RRC message when the PUSCH is shifted will be described.
  • 3) a case where a cross TTI is set by the PDCCH when the PDCCH and the PDSCH are shifted will be described.
  • the transmitting apparatus cannot transmit data for four symbols of TB # b in the slot next to the first slot due to the cross TTI of TB # a. In this case, the transmitting apparatus can further transmit the data for four symbols that could not be transmitted using the next slot (the next slot following the first slot). The transmitting apparatus can also transmit TB # b in the cross TTI.
  • FIG. 3 is a diagram illustrating an example of a protocol stack between the base station 100 and the terminal 200 in 5G. As shown in FIG. 3, the PDCCH is included in the lowest physical layer (PHY), and the RRC message is included in an RRC layer higher than the physical layer.
  • PHY physical layer
  • RRC message is included in an RRC layer higher than the physical layer.
  • the PDCCH is transmitted, for example, for each TTI. Therefore, the PDCCH has a larger overhead than the RRC message, but can change the control in real time and has flexibility.
  • the RRC message is transmitted, for example, every several hundred ms. Therefore, the RRC message has less overhead than the PDCCH, but it is difficult to change the control in real time, and the RRC message is less flexible.
  • the PDCCH and the RRC message have a trade-off relationship with respect to overbed and flexibility, for example.
  • FIGS. 4A and 4B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
  • the base station 100 allocates data included in TB # a to all symbols in the first slot in the downlink direction by scheduling, and assigns data to all symbols in the slot next to the first slot.
  • data of TB # b is allocated.
  • the PDCCH is allocated to the first and second symbols at the head. In 5G, PDCCH is allowed from 1 symbol length to 3 symbol length. Therefore, the PDCCH may be included only in the first symbol, or may be included in the first to third symbols.
  • the base station 100 performs carrier sense in the unlicensed band and confirms that the base station 100 is in the “Idle” state at the time of the first symbol of the first slot.
  • the PDCCH #a and the PDSCH (TB #a) assigned to each symbol are transmitted in order.
  • the base station 100 also transmits PDCCH # b and PDSCH (TB # b) assigned to each symbol in the slot next to the first slot in order from the first symbol.
  • the base station 100 performs carrier sense in the unlicensed band, and confirms that it is in the “Busy” state at the time of the first symbol of the first slot. Therefore, base station 100 also does not transmit PDCCH #a and PDSCH (TB #a), and also subsequent PDCCH #b and PDSCH (TB #b) at this timing.
  • the base station 100 performs the carrier sense again after a lapse of a predetermined time after the first carrier sense (after a lapse of two symbol times in the example of FIG. 4A), and at the time of the third symbol of the first slot. , "Busy" state. Therefore, the base station 100 does not perform transmission at this point.
  • the base station 100 After a lapse of a predetermined time after performing the second carrier sensing, the base station 100 performs the carrier sensing again and confirms the “Idle” state at the time of the fifth symbol of the first slot. Therefore, base station 100 transmits PDCCH # a and PDSCH (TB # a) with the timing of the fifth symbol as the transmission start timing. In this case, the base station 100 transmits, for TB # a, data allocated to ten symbols from the fifth symbol to the fourteenth symbol in the first slot. Therefore, of the TB # a allocated to all symbols in the first slot, the remaining four symbols of TB # a allocated to the eleventh to fourteenth symbols are not transmitted in the first slot.
  • base station 100 transmits TB # a for the remaining four symbols using the cross TTI. That is, in the example of FIG. 4 (B), base station 100 uses the last four symbols (the eleventh to fourteenth symbols) of the next slot to transmit TB # a for the remaining four symbols that have not been transmitted. Send In this case, base station 100 transmits the data of the remaining four symbols using the last four symbols of the next slot without receiving ACK or NACK from terminal 200.
  • a start symbol S and a continuous length from the start symbol (hereinafter, sometimes referred to as “length”) are used as resource allocation in the time direction of the PDSCH. L.
  • the start symbol S is defined as, for example, a symbol that can actually start transmission of a transmission burst.
  • transmission of a transmission burst starts from the first symbol (symbol 0) in one slot
  • the transmission burst starts from the fifth symbol (symbol 4). Transmission of transmission burst has started.
  • FIG. 5A is a diagram illustrating an example of exchange of RRC messages.
  • UE User @ Equipment
  • Network corresponds to the base station 100.
  • the base station 100 transmits an RRCReconfiguration message to the terminal 200 (S10).
  • the terminal 200 upon receiving the RRCReconfiguration message, transmits an RRCReconfigurationComplete message to the base station 100 (S11).
  • FIG. 5B is a diagram illustrating a configuration example of the RRCReconfiguration message.
  • the RRCReconfiguration message includes various contents in a hierarchical structure, and a part of the message includes a PDSCH-Config and a PUSCH-Config.
  • PDSCH-Config is used, for example, to set UE-specific PDSCH parameters. Further, the PUSCH-Config is used, for example, to set PUSCH parameters for each UE. Details of the information element (IE: Information @ Element) included in each of PDSCH-Config and PUSCH-Config are described in 3GPP ⁇ TS ⁇ 38.331 ⁇ V15.1.0 (2018-03).
  • IE Information @ Element
  • the base station 100 transmits the PDSCH-Config further including the IE for implementing the cross TTI.
  • FIG. 6 is a diagram illustrating an example of the IE included in the PDSCH-Config.
  • the IE includes (1) whether or not to perform a cross TTI, (2) a slot number for transmitting an untransmitted portion, (3) a symbol number for starting transmission, and (4) an end symbol of a slot next to the first slot. Further, whether or not to shift in the next slot is included.
  • Whether or not to perform cross TTI indicates, for example, whether or not to transmit data across TTIs (or using a plurality of TTIs) and can be expressed by 1 bit.
  • ⁇ (2)“ slot number for transmitting untransmitted portion ” indicates, for example, when transmitting the PDSCH of the untransmitted portion by cross TTI, the slot number of the slot used for the transmission.
  • the slot number of the slot used for the transmission.
  • symbol number to start transmission in (3) represents, for example, the symbol number of the symbol to start transmission in the slot of the slot number to transmit the untransmitted part in (2).
  • transmission starts from the eleventh symbol, and thus the symbol number for starting transmission is “10”.
  • the symbol number for starting the transmission in (3) is divided into cases as shown in FIG. This is because, for example, when the base station 100 performs the carrier sense, the timing at which transmission can be started may not be known without actually performing the transmission.
  • the terminal 200 can interpret the PDSCH of the untransmitted portion as “untransmitted” from the start symbol S and the length L, the actually received data, and the like. It is possible to grasp whether or not there is a shortage. Then, terminal 200, according to (2) “slot number for transmitting untransmitted portion” and (3) “symbol number for starting transmission” included in PDSCH-Config, displays the symbol in the slot. , It is possible to receive the data of the untransmitted portion.
  • ⁇ (4)“ Whether or not to shift the end symbol of the slot next to the first slot to the next slot ” represents, for example, the following. That is, the base station 100 transmits an untransmitted portion in the next slot (or TTI) at the head by the cross TTI. However, this reduces the number of symbols to which data to be transmitted is allocated in the next slot at the head, and prevents base station 100 from transmitting this data.
  • a portion where data of TB # b allocated to all symbols of the slot next to the first slot cannot be transmitted due to the cross TTI of TB # a occurs. Therefore, according to (4), an IE indicating whether to shift to the next slot is further added to the PDSCH-Config. In the example of FIG.
  • the end symbol of the untransmitted portion of TB # b is not further shifted to the next slot (the third slot from the head).
  • this IE is “1”.
  • symbol number for starting transmission is an example.
  • the “symbol number to start transmission” may be “1”, when two symbols are insufficient, “2”, and the like.
  • FIGS. 7A and 7B are diagrams illustrating transmission examples of the PUSCH.
  • base station 100 allocates TB # a to all symbols of the first slot in the uplink direction and allocates TB # b to all symbols of the next slot by scheduling. Sending the assignment result.
  • terminal 200 performs carrier sense in the unlicensed band and confirms the “Idle” state at the time of the first symbol in the first slot, so that PDCCH is sequentially performed from the first symbol.
  • the PUSCH (TB # a) is transmitted.
  • terminal 200 transmits PUSCH (TB # b) in order from the first symbol.
  • the terminal 200 performs carrier sense in the unlicensed band and confirms that the terminal 200 is in the “Busy” state at the time of the first symbol of the first slot. Therefore, after a predetermined period has elapsed, terminal 200 again performs carrier sense in the unlicensed band, and confirms that the terminal is in the “Busy” state even at the time of the third symbol. Further, after a predetermined period has elapsed, terminal 200 performs carrier sense again in the unlicensed band, and confirms the “Idle” state this time. Terminal 200 transmits the PUSCH (TB # a) with the start time of the fifth symbol as the transmission start timing. Terminal 200 transmits the transmission start timing of TB # a by shifting it.
  • terminal 200 transmits data allocated to ten symbols from the fifth symbol to the fourteenth symbol in the first slot in the first slot. Therefore, terminal 200 cannot transmit, in the first slot, TB # a of the remaining four symbols allocated to eleventh to fourteenth symbols among TB # a allocated to all symbols in the first slot. .
  • terminal 200 transmits TB # a for the remaining four symbols using the cross TTI. That is, in the example of FIG. 7 (B), terminal 200 uses the first four symbols (first to fourth symbols) of the next slot to transmit TB # a for the remaining four symbols that have not been transmitted. Send.
  • FIG. 6 shows an example of the IE of the PUSCH-Config included in the RRCReconfiguration message.
  • each IE is specified in 3GPP TS 38.3GPP TS 38.331 V15.1.0 (2018-03).
  • the IE shown in FIG. 6 is further included in the PUSCH-Config in order to set the cross TTI.
  • the IE is the same as the IE of PDSCH-Config, and the content thereof is also the same.
  • Terminal 200 receives the RRCReconfiguration message from base station 100, as shown in FIG. 5 (A) (S10, S11). Then, the RRCReconfiguration message includes the IE related to the cross TTI as shown in FIG. According to this IE, terminal 200 transmits data for the remaining four symbols of TB # a using the first to fourth symbols of the slot next to the first slot, as shown in FIG. 7B. . In this case, with respect to the data of TB # b, the data assigned to the eleventh to fourteenth symbols is “not transmitted”. The terminal 200 shifts the data of the “untransmitted” portion to the next slot (next slot after the first slot) according to IE (4) shown in FIG. 6 and transmits the data by the cross TTI.
  • FIG. 29 (A) and FIG. 29 (B) show an example in the case of transmitting PUCCH and PUSCH.
  • FIGS. 29A and 29B show examples in which PUCCH is added to the examples in FIGS. 7A and 7B, respectively.
  • the PUCCH is added to the PUSCH or not added to the PUSCH, for example, by DCI.
  • FIGS. 29A and 29B can be implemented, for example, as in the cases of FIGS. 7A and 7B, respectively.
  • terminal 200 transmits the PUCCH and PUSCH in the time direction with the fifth symbol as the transmission start timing, compared to the case of FIG. 29A. Will do.
  • FIGS. 8A and 8B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
  • the base station 100 since the unlicensed band is in the “Idle” state at the time of the first symbol of one slot, the base station 100 sequentially assigns TB # a allocated to all symbols of the first symbol. Send. Also, base station 100 sequentially transmits TB # b allocated to all symbols in the slot next to the first slot.
  • the base station 100 is in the “Busy” state at the time of the first symbol and the third symbol of the first slot, so the base station 100 suspends transmission of Tb # a. Since the base station 100 is in the “Idle” state at the time of the fifth symbol, it starts transmitting TB # a. In this case, base station 100 could not transmit the last four symbols in the first slot among TB # a transmitted in the first slot. Therefore, the base station 100 uses the fifth to eighth symbols in the next slot (or TTI) in the next slot (or TTI) by using the cross TTI, for the remaining four symbols of “untransmitted” TB # a. Transmitting data.
  • the cross TTI is set by the PDCCH.
  • FIG. 9 is a diagram illustrating an example of an area (field) included in DCI transmitted using the PDCCH.
  • DCI includes TDRA (Time @ Domain @ Resource @ Assignment), NDI (New @ Data @ Indicator), HARQ (Hybrid @ Automatic @ Repeat @ reQuest) process number (HARQ @ Process @ number).
  • the new PDCCH includes RV (Redundancy Version), MCS (Modulation and Coding Scheme), and FDRA (Frequency Domain Resource Assignment).
  • TDRA indicates, for example, resource specification in the time direction, and includes a start symbol S and a length L in a slot.
  • the start symbol S is defined as, for example, a symbol that can actually start transmission of a transmission burst, similarly to the above ⁇ 4.1>.
  • base station 100 sets start symbol S and length L to the same value.
  • the NDI is used, for example, in the same retransmission process (HARQ) as the current NDI to identify retransmission data or new data by comparing with the previous NDI.
  • HARQ retransmission process
  • FIG. 11 is a diagram illustrating an example of using NDI.
  • base station 100 Focusing on TB # a, base station 100 first transmits “0” as NDI, and retransmits TB # a because NACK is returned from terminal 200. In this case, the base station 100 transmits “0” represented as NDI again without performing Toggle (or bit inversion) as NDI. The terminal 200 can recognize that the received TB # a is retransmission data because the NDI bit is not toggled.
  • base station 100 transmits TB # a ′ different from TB # a as new data. In this case, the base station 100 toggles the bit “0” of the NDI and transmits “1”. Since the terminal 200 has received “1” as the NDI, it can recognize that TB # a ′ is new data.
  • the HARQ process number indicates, for example, an identification number of a buffer for each TB that stores the TB.
  • the HARQ process numbers are the same, they represent the same TB, and when they are different, they represent different TBs.
  • RV represents, for example, the version of the encoded data.
  • base station 100 transmits an RV different from the previously transmitted RV, so that terminal 200 can improve the coding gain for the retransmission data.
  • a new PDCCH (PDCCH # n in the example of FIG. 8B) is used for setting a cross TTI, and an “untransmitted” portion of the PDSCH is determined by the NDI, HARQ process number, and RV. Is transmitted.
  • FIG. 10B is a diagram showing an example of DCI included in PDCCH # n which is a new PDCCH in the example of FIG. 8B. Note that in the example of FIG. 8B, TB # a for the remaining four symbols is the fourth symbol in the slot next to the first slot as the transmission start symbol and its length is four symbols.
  • NAs shown in FIG. 10B, the NDI included in PDCCH #n and the NDI included in PDCCH #m shown in FIG. 10A are the same “0”. Also, the HARQ process number included in PDCCH #n and the HARQ process number included in PDCCH #m are the same “5”.
  • the same TB (TB # a) is transmitted in the same retransmission process because the HARQ process numbers of PDCCH #n and PDCCH #m are the same. It represents that it is. Also, although the NDIs of PDCCH #n and PDCCH #m are the same, the RVs of PDCCH #n and PDCCH #m are the same, indicating that, for example, retransmission is not performed.
  • the transmission of the “untransmitted” portion is represented by the DCI by changing the usage without changing the definitions of the NDI, the HARQ process number, and the RV. Is possible.
  • the DCI of PDCCH # m1 instructing transmission of TB #b is represented, for example, by FIG. 10C.
  • the HARQ process number is different from PDCCH # m transmitted in the first slot (FIG. 10 (A)). Therefore, it indicates that the base station 100 is transmitting a TB (TB # b in FIG. 8A) different from the TB transmitted in the first slot (TB # a in FIG. 8A).
  • FIG. 12 (A) is a diagram illustrating a transmission example of the PDCCH and the PDSCH.
  • FIG. 12A shows an example of a minislot specified in 5G.
  • FIG. 12B shows that the unlicensed band is in the “Busy” state at the time of the first symbol and the third symbol of the first slot, so transmission is suspended, and at the time of the fifth symbol, “Idle” This shows an example of a state. Therefore, base station 100 transmits PDCCH #n, PDCCH # n1, and TB #a with the fifth symbol as the transmission start position.
  • Ending @ Symbol represents, for example, an end symbol in a slot.
  • how to count Ending @ Symbol is, for example, by setting the symbol at the beginning of the slot to “0” and counting in order from the beginning.
  • Ending @ Symbol is, for example, “6” when S ⁇ 6, “13” otherwise, and determines whether to shift the “untransmitted” portion of data to another TTI and transmit it. It can be said that it represents.
  • Symbol may also be set by the RRCReconfiguration message or may be set by the PDCCH.
  • FIG. 13 shows an example of setting Ending @ Symbol by an RRC message.
  • the IE of “Ending @ Symbol” is newly included in the PDCH-Config included in the RRCReconfiguration message.
  • the base station 100 inserts an end symbol into this IE and transmits it to the terminal 200 (for example, FIG. 5A).
  • FIG. 14 shows an example in which Ending @ Symbol is set by the PDCCH.
  • an “Ending @ Symbol” area is newly included, and base station 100 inserts an end symbol in this area and transmits the PDCCH.
  • the PDCCH may be allocated to the eighth to tenth symbols of the first slot.
  • base station 100 uses this PDCCH to determine whether or not to receive data for four “untransmitted” symbols of TB # a in the eighth to fourteenth symbols (or whether to permit shifting). ) May be transmitted.
  • the base station 100 may insert such information into the PDSDH-Config and set the information in the RRC message.
  • Symbol can also be used in transmission of PUCCH and PUSCH.
  • the base station 100 can set Ending @ Symbol using, for example, the PUSCH-Config illustrated in FIG.
  • FIGS. 15A and 15B show transmission examples of PDCCH and PDSCH.
  • FIG. 15A shows an example in which base station 100 transmits PDCCH #m and TB #a in the first slot, and transmits PDCCH # m1 and TB #b in the next slot.
  • TB # a uses the first slot (or the first TTI) and the next slot (or the next TTI) by the cross TTI.
  • base station 100 allocates two PDCCH # m1 and PDCCH #n to the first and second symbols of the slot next to the first slot, and further allocates PDSCH to these two symbols.
  • the area of the radio resource to which the PDSCH is allocated may include the area of the radio resource to which the PDCCH (PDCCH # m1 and PDCCH #n) is allocated.
  • the base station 100 punctures coded bits to be mapped to the PDCCH region in the PDSCH including the PDCCH region. That is, when the PDCCH is included in the PDSCH area, the base station 100 transmits the PDCCH with priority over the PDSCH. Furthermore, the base station 100 does not transmit (or punctures) the coded bits in the area of the radio resource where the PDCCH and the PDSCH overlap. Thereby, for example, the receiving-side terminal 200 can avoid receiving data and control signals at the same timing using the same frequency, and can normally receive data and control signals. It becomes possible.
  • FIG. 16A is a diagram illustrating a configuration example of the base station 100.
  • the base station 100 includes a transmission path interface 110, a baseband signal processing unit 120, an RF (Radio Frequency) transmitting / receiving unit (or a transmitting unit or a receiving unit) 130, and an antenna 140.
  • the base station 100 may be, for example, a gNB (Next generation Node B) defined in 5G.
  • the transmission line interface 110 receives packet data transmitted from an upper station or another base station, and extracts data and the like from the received packet data.
  • the transmission line interface 110 outputs the extracted data to the baseband signal processing unit 120. Further, the transmission line interface 110 receives data output from the baseband signal processing unit 120, generates packet data including the input data, and transmits the generated packet data to an upper station or another base station. I do.
  • the baseband signal processing unit 120 performs, for example, processing on data in a baseband.
  • FIG. 16B is a diagram illustrating a configuration example of the baseband signal processing unit 120.
  • the baseband signal processing unit 120 includes a reception signal processing unit 121, a control unit 122, a PDCCH generation unit 123, a PDSCH generation unit 124, and a mapping unit 125.
  • the received signal processing unit 121 receives, for example, data (PUSCH) transmitted from a certain terminal 200 and control based on the baseband signal output from the RF transmitting / receiving unit 130 according to the uplink scheduling result output from the control unit 122.
  • a signal (PUCCH) is extracted.
  • the reception signal processing unit 121 outputs the extracted data, control signal, and the like to the control unit 122.
  • the control unit 122 performs scheduling when performing wireless communication with the terminal 200, for example, and outputs the scheduling result to the PDCCH generation unit 123.
  • the scheduling result output to PDCCH generating section 123 includes the respective scheduling results in the downlink and uplink directions.
  • Control section 122 outputs the downlink scheduling result to mapping section 125 and the uplink scheduling result to reception signal processing section 121, respectively.
  • the control unit 122 outputs the data output from the transmission line interface 110 to the PDSCH generation unit 124.
  • the control unit 122 generates an RRC message and outputs the generated RRC message to the PDSCH generation unit 124.
  • the RRC message includes, for example, an RRCReconfiguration message, and also includes a PDSCH-Config and a PUSCH-Config shown in FIGS.
  • PDCCH generating section 123 generates DCI including the scheduling result from the scheduling result output from control section 122.
  • the PDCCH generation unit 123 generates, for example, the DCI shown in FIG. 9 and FIG. However, the information included in each IE of the DCI may be generated in, for example, the control unit 122. In this case, the PDCCH generation unit 123 collects the information and collects the information of one DCI shown in FIG. 9 or FIG. The DCI may be generated to be in the form.
  • PDCCH generating section 123 outputs the generated DCI to mapping section 125.
  • PDSCH generating section 124 outputs the data output from control section 122 to mapping section 125.
  • the PDSCH generation unit 124 may output this data as a PDSCH, for example.
  • PDSCH generating section 124 outputs the RRC message output from control section 122 to mapping section 125.
  • the mapping unit 125 maps the control signal output from the PDCCH generation unit 123 and the data output from the PDSCH generation unit 124 to a predetermined area on the radio resource according to the downlink scheduling result output from the control unit 122. Map. Mapping section 125 outputs the mapped control signal and data to RF transmitting / receiving section 130.
  • ⁇ Mapper 125 maps the RRC message output from PDSCH generator 124 to a predetermined area on the radio resource, and outputs the mapped RRC message to RF transceiver 130.
  • the RF transmitting / receiving section 130 performs frequency conversion of the control signal and data output from the baseband signal processing section 120 and the RRC message into a radio signal of a radio band, and performs frequency conversion.
  • the wireless signal is output to antenna 140.
  • the RF transmitting / receiving unit 130 performs frequency conversion of the radio signal output from the antenna 140 to a baseband signal of a baseband, and outputs the baseband signal after the frequency conversion to the baseband signal processing unit 120.
  • Antenna 140 transmits the radio signal output from RF transmitting / receiving section 130 to terminal 200.
  • antenna 140 receives a wireless signal transmitted from terminal 200 and outputs the received wireless signal to RF transmitting / receiving section 130.
  • FIG. 17A is a diagram illustrating a configuration example of the terminal 200.
  • the terminal 200 includes an antenna 210, an RF transmitting / receiving unit (or a transmitting unit or a receiving unit) 220, a baseband signal processing unit 230, and an application unit 240.
  • Antenna 210 receives a radio signal transmitted from base station 100 and outputs the received radio signal to RF transmitting / receiving section 220. Further, antenna 210 transmits the radio signal output from RF transmitting / receiving section 220 to base station 100.
  • RF transmitting / receiving section 220 performs frequency conversion on the radio signal output from antenna 210 to convert the signal into a baseband signal, and outputs the converted baseband signal to baseband signal processing section 230. Further, RF transmitting / receiving section 220 performs frequency conversion of the baseband signal output from baseband signal processing section 230 to a wireless signal in a wireless band, and outputs the converted wireless signal to antenna 210.
  • the baseband signal processing unit 230 performs, for example, processing on a baseband signal.
  • FIG. 17B is a diagram illustrating a configuration example of the baseband signal processing unit 230.
  • the baseband signal processing unit 230 includes a PDCCH reception processing unit 231, a PDSCH reception processing unit 232, a control unit 234, a PUSCH generation unit 235, a PUCCH generation unit 236, and a mapping unit 237.
  • PDCCH reception processing section 231 extracts a control signal from the baseband signal output from RF transmission / reception section 220. PDCCH reception processing section 231 outputs the downlink scheduling result among the extracted control signals to PDSCH reception processing section 232, and outputs the uplink scheduling result to control section 234.
  • PDSCH reception processing section 232 extracts data and RRC messages assigned to its own station from the baseband signal output from RF transmission / reception section 220 according to the downlink scheduling result output from PDCCH reception processing section 231.
  • the PDSCH reception processing unit 232 confirms whether or not data has been received according to Ending @ Symbol instead of the start symbol S and the length L included in the DCI or the length L, for example. Further, the PDSCH reception processing unit 232 checks whether or not the cross TTI is set by the PDCCH based on, for example, the NDI and the HARQ process number included in the DCI and the RV (for example, FIG. 9). In this case, when the cross TTI is set by the PDCCH, the PDSCH reception processing unit 232 sets the cross TTI based on the start symbol S, length L or Ending @ Symbol, NDI, HARQ process number, RV, and the like. The extracted data is extracted from the baseband signal. The processing for the cross TTI set by the PDCCH may be performed by the PDSCH reception processing unit 232 instead of the control unit 234.
  • the PDSCH reception processing unit 232 converts the subsequent part of the PDSCH into the baseband according to the PDSCH-Config (for example, FIG. 6) included in the extracted RRC message. Extract from signal.
  • the PDSCH reception processing unit 232 outputs the extracted data and the RRC message to the control unit 234.
  • the control unit 234 performs reception processing and transmission processing according to, for example, the RRC message output from the PDSCH reception processing unit 232.
  • the control unit 234 outputs the data output from the PDSCH reception processing unit 232 to the application unit 240.
  • control section 234 outputs the uplink scheduling result output from PDCCH reception processing section 231 to mapping section 237.
  • control unit 234 outputs the data output from the application unit 240 to the PUSCH generation unit 235. Further, control section 234 generates an uplink control signal, and outputs the generated control signal to PUCCH generation section 236.
  • PUSCH generating section 235 outputs the data output from control section 234 to mapping section 237.
  • PUCCH generating section 236 outputs the control signal output from control section 234 to mapping section 237.
  • Mapping section 237 maps data and control signals to radio resources according to the uplink scheduling result output from control section 234. Mapping section 237 outputs the mapped data and the control signal to RF transmitting / receiving section 220 as a baseband signal.
  • the application unit 240 performs a process related to the application on the data output from the baseband signal processing unit 230. Further, the application unit 240 generates data by performing a process related to the application, for example, and outputs the generated data to the control unit 234.
  • FIG. 18 is a flowchart illustrating an operation example of base station 100 in the case where a cross TTI is set by an RRC message when PDCCH and PDSCH are shifted.
  • the base station 100 and the terminal 200 complete the exchange of the RRC message, for example, according to the sequence shown in FIG. 5A, and the PDSCH-Config shown in FIG. 6 is held between the base station 100 and the terminal 200. Shall be.
  • the control unit 122 generates the PDSCH-Config shown in FIG. 6, and transmits the generated PDSCH-Config to the terminal 200 via the PDSCH generation unit 124.
  • the base station 100 executes the LBT (S21). For example, the base station 100 performs the following processing.
  • the received signal processing unit 121 measures the intensity of the received signal in a predetermined frequency band of the unlicensed frequency band, and outputs the result to the control unit 122.
  • the control unit 122 determines that the state is “Idle”.
  • the base station 100 determines whether or not the predetermined frequency band of the unlicensed frequency band is in the “Idle” state (S22). When in the “Busy” state (No in S22), the base station 100 executes the LBT again after a predetermined period has elapsed (S21), and repeatedly executes the LBT until the predetermined frequency band becomes the “Idle” state (No in S22). Loop).
  • the base station 100 transmits the PDCCH and the PDSCH using the predetermined frequency band (S23). For example, the base station 100 performs the following processing.
  • the control unit 122 instructs the mapping unit 125 to output the signal of the head slot (or head TTI).
  • the control unit 122 detects that there is data to be transmitted, and instructs to generate a signal of the first slot before starting the LBT.
  • data received from the transmission line interface 110 is output to the PDSCH generation unit 124.
  • the control unit 122 performs scheduling and outputs the result to the PDCCH generation unit 123.
  • PDCCH generating section 123 outputs DCI to mapping section 125
  • PDSCH generating section 124 outputs data to mapping section 125
  • mapping section 125 maps DCI and data on radio resources according to the downlink scheduling result. I do.
  • Mapping section 125 transmits the mapped DCI and data to terminal 200 via RF transmitting / receiving section 130.
  • the base station 100 shifts the symbol including the PDCCH and the PDSCU until the state changes to the “Idle” state after the “Busy” state and then to the “Idle” state. Let it. Further, base station 100 transmits the portion of PDSCH that could not be transmitted in the first slot (or first TTI) in the next slot (or next TTI) using the cross TTI. For example, the base station 100 performs the following processing.
  • control unit 122 instructs the mapping unit 125 not to transmit the PDCCH and the PDSCH when the signal strength of the predetermined frequency band is equal to or more than the threshold, and the mapping unit 125 stops the transmission of the mapped PDCCH and the PDSCH. I do. Meanwhile, the mapping unit 125 may store the PDCCH and the PDSCH in the internal memory. After that, when the signal strength becomes smaller than the threshold value, the control unit 122 confirms that the unlicensed frequency band is not used by another device. Then, in this case, control section 122 shifts the symbols including the PDCCH and PDSCH in the downlink direction in the time direction until the transmission start timing at which the state becomes “Idle”.
  • the control unit 122 also shifts the subsequent PDCCH and PDSCH in the time direction. In the example of FIG. 4B, the control unit 122 shifts by four symbols. Control unit 122 outputs the shifted result to mapping unit 125. Mapping section 125 reads the mapped PDCCH and PDSCH from the internal memory according to the shift result, and outputs the read PDCCH and PDSCH to RF transmitting / receiving section 130. After shifting, mapping section 125 or RF transmitting / receiving section 130 transmits the control signal and data to terminal 200 using PDCCH and PDSCH, respectively. Then, when performing the cross TTI according to the PDSCH-Config (for example, FIGS.
  • mapping section 125 reads out the untransmitted portion of TB # a stored in the internal memory or the like, and transmits it at the indicated symbol in the indicated slot. Thereby, for example, a cross TTI can be realized.
  • control unit 122 determines the start symbol S and the length L included in the PDCCH from the start symbol included in the PDCCH when transmitting from the first symbol in the slot. S and length L are set to be the same.
  • the base station 100 upon ending the transmission of the PDCCH and PDSCH, the base station 100 ends this processing (S24).
  • FIG. 19 is a flowchart illustrating an example of processing on the terminal 200 side in this operation example.
  • the terminal 200 receives the PDCCH and the PDSCH portion in the slot including the PDCCH.
  • the PDCCH reception processing unit 231 receives the PDCCH
  • the PDSCH reception processing unit 232 receives the DCI from the PDCCH reception processing unit 231, and receives the PDSCH portion according to the DCI.
  • the terminal 200 determines whether or not the actually received PDSCH length is shorter than the PDSCH length indicated by the DCI (S32).
  • the DCI includes the start symbol S and the length L as described above. For example, the terminal 200 performs the following processing.
  • control unit 234 receives the data output from the PDSCH reception processing unit 232, counts the data amount of the data, and calculates the length of the PDSCH based on the counted data. Then, the control unit 234 determines whether the calculated length is shorter than the length L indicated by the DCI. The control section 234 checks whether or not the base station 100 has shifted and transmitted the PDCCH and the PDSCH included in the first symbol based on the DCI and the length of the actually received PDSCH.
  • terminal 200 determines whether or not cross TTI setting is set in the RRC message (S33). ). For example, when the control unit 234 determines that the calculated length is shorter than the length L indicated by the DCI, the control unit 234 determines whether or not a cross TTI is set in the RRC message received from the PDSCH reception processing unit 232 (for example, FIG. (1)) is determined.
  • the terminal 200 receives the subsequent part of the PDSCH according to the RRC setting (S34). For example, when confirming the setting of the cross TTI, the control unit 234 receives a subsequent portion of the PDSCH at a timing such as the next TTI according to the IE included in the PDSCH-Config (for example, FIG. 6).
  • the terminal 200 feeds back ACK or NACK according to the reception result (S35).
  • the control unit 234 when the PDSCH including the continuation of the PDSCH can be normally received by the cross TTI, the control unit 234 generates an ACK and feeds back the ACK via the PUSCH generation unit 235 or the PUCCH generation unit 236.
  • the control unit 234 when the PDSCH including the PDSCH continuation part cannot be normally received due to, for example, the cross TTI, the control unit 234 generates a NACK and feeds back the NACK via the PUSCH generation unit 235 or the PUCCH generation unit 236. .
  • the terminal 200 proceeds to S35 without performing the cross TTI processing. In this case, terminal 200 feeds back ACK or NACK to the received PDSCH without performing cross TTI.
  • terminal 200 proceeds to S35.
  • the terminal 200 has received the PDSCH having the length L indicated by the DCI, and for example, has the same situation as that of FIG. 4A, and thus has received the PDSCH without performing the cross TTI processing. ACK or NACK is fed back.
  • FIG. 20 is a flowchart illustrating an operation example on the terminal 200 side when the cross TTI is set by the RRC message when the PUSCH shifts.
  • the base station 100 and the terminal 200 end the exchange of the RRC message (for example, FIG. 5A) and hold the PUSCH-Config (for example, FIG. 6) with each other.
  • the control unit 122 generates the PUSCH-Config illustrated in FIG. 6 and transmits the PUSCH-Config to the terminal 200 via the PDSCH generation unit 124 and the like.
  • the terminal 200 executes the LBT (S41). For example, the terminal 200 performs the following processing.
  • the PDCCH reception processing unit 231 or the PDSCH reception processing unit 232 measures the signal strength of the received signal in a predetermined frequency band of the unlicensed frequency band, and outputs the result to the control unit 234.
  • the control unit 234 determines the “Idle” state or the “Busy” state based on the result, similarly to the control unit 122 of the base station 100.
  • the terminal 200 executes the LBT again after the predetermined time has elapsed (S41), and repeats until the state becomes the “Idle” state (No loop in S42). .
  • the terminal 200 transmits the PUCCH and the PUSCH to the base station 100 using the predetermined frequency band (S43).
  • the terminal 200 performs, for example, the following processing.
  • the control unit 234 outputs the data received from the application unit 240 to the mapping unit 237 via the PUSCH generation unit 235.
  • the control unit 234 outputs the uplink scheduling result received from the PDSCH reception processing unit 232 to the mapping unit 237, generates a control signal, and outputs the control signal to the mapping unit 237 via the PUCCH generation unit 236.
  • Mapping section 237 maps the control signal and the data onto the radio resource according to the uplink scheduling result. Mapping section 237 transmits the mapped control signal (PUCCH) and data (PUSCH) to base station 100 via RF transmitting / receiving section 220.
  • the terminal 200 when the terminal 200 goes to the “Idle” state after the “Busy” state, the terminal 200 shifts the symbols including the PUCCH and the PUSCH until the “Idle” state. .
  • the terminal 200 transmits the portion of the PUSCH that could not be transmitted in the first slot (or the first TTI) in the next slot (or the next TTI) using the cross TTI. For example, the terminal 200 performs the following processing.
  • control section 234 instructs mapping section 237 not to transmit the PUCCH and PUSCH when the signal strength of the predetermined frequency band is equal to or higher than the threshold, and mapping section 237 stops transmission of the mapped PUCCH and PUSCH.
  • mapping section 237 may store the PUCCH and the PUSCH in the internal memory.
  • the control unit 234 confirms that the unlicensed frequency band is not used by another device.
  • control section 234 shifts the symbols including the PUCCH and PUSCH in the uplink direction in the time direction until the transmission start timing at which the state becomes “Idle”.
  • the control unit 234 also shifts the subsequent PUCCH and PUSCH in the time direction.
  • the shift is performed by four symbols.
  • the control unit 234 outputs the shifted result to the mapping unit 237.
  • Mapping section 237 reads the PUCCH and PUSCH from the internal memory according to the shift result, and outputs them to RF transmitting / receiving section 220.
  • Mapping section 237 or RF transmitting / receiving section 220 transmits the control signal and data assigned to the shifted symbol to base station 100 using the PUCCH and PUSCH, respectively.
  • the control unit 234 transmits a slot number for transmitting an untransmitted portion, a transmission start symbol number, and the like to the mapping unit. 237.
  • the mapping unit 237 reads an untransmitted portion (for example, TB # a in FIG. 7A) stored in an internal memory or the like, and transmits the read portion using the indicated symbol in the indicated slot. .
  • an untransmitted portion for example, TB # a in FIG. 7A
  • the mapping unit 237 transmits the read portion using the indicated symbol in the indicated slot.
  • terminal 200 ends this processing (S44).
  • the process of S43 is a process of transmitting the PUSCH without transmitting the PUCCH.
  • FIG. 21 is a flowchart illustrating an example of processing on the base station 100 side in this operation example.
  • the base station 100 When the base station 100 starts the processing (S50), it receives the PUCCH and the PUSCH portion in the slot including the PUCCH (S51). For example, the received signal processing unit 121 extracts the PUCCH and PUSCH transmitted from the terminal 200 from the baseband signal according to the uplink scheduling result output from the control unit 122, and controls the extracted PUCCH and PUSCH. Output to the unit 122.
  • the base station 100 determines whether or not the length of the PUSCH actually received is shorter than the length of the PUSCH indicated by DCI (S52). For example, the base station 100 performs the following processing.
  • control unit 122 counts the data amount of the data received from the reception signal processing unit 121, and calculates the length of the PUSCH based on the counted data amount. Based on start symbol S and length L included in DCI, control section 122 checks whether PUSCH has been started from start symbol S and whether the calculated length is shorter than length L. Similarly to control section 122 of terminal 200, control section 122 determines whether or not terminal 200 shifts and transmits the PUCCH and PDSCH included in the first symbol in terminal 200 based on the DCI and the length of the actually received PUSCH. To make sure.
  • the base station 100 determines whether or not a cross TTI is set in the RRC message (S53). .
  • the control unit 122 makes a determination by confirming whether or not a cross TTI setting has been made (for example, 1 in FIG. 6) in the RRC message generated by itself.
  • the base station 100 receives the subsequent part of the PUSCH according to the RRC setting (S54).
  • the control unit 122 receives the subsequent part of the PUSCH in the next TTI or the like according to the IE included in the PUSCH-Config (for example, FIG. 6).
  • the base station 100 instructs retransmission or transmission of new data by PDCCH according to the reception result (S55). For example, when the PUSCH including the succeeding part of the PUSCH has been normally received by the cross TTI, the control unit 122 transmits the PDCCH instructing the transmission of the new data to the terminal 200 via the PDCCH generation unit 123. On the other hand, for example, when the PUSCH including the PUSCH continuation part cannot be normally received due to the cross TTI, the control unit 122 transmits a PDCCH instructing retransmission to the terminal 200 via the PDCCH generation unit 123.
  • the base station 100 ends a series of processing (S56).
  • the base station 100 proceeds to S55 without performing the cross TTI processing.
  • terminal 200 feeds back ACK or NACK to the received PUSCU without performing cross TTI.
  • the base station 100 proceeds to S55.
  • the base station 100 has received the PUSCH having the length L indicated by the DCI.
  • the received PUSCH is not processed without performing the cross TTI processing. ACK or NACK is fed back.
  • the base station 100 receives the PUSCH without receiving the PUCCH.
  • FIG. 22 is a flowchart illustrating an operation example on the base station 100 side when a cross TTI is set by the PDCCH when the PDCCH and the PDSCH shift.
  • the base station 100 and the terminal 200 have finished exchanging RRC messages (for example, FIG. 5A) and mutually hold PDSCH-Config in a memory or the like.
  • RRC messages for example, FIG. 5A
  • PDSCH-Config for example, a memory or the like.
  • (1) in FIG. 6 is set in PDSCH-Config, and (2) to (4) are not set. That is, base station 100 and terminal 200 share whether or not to perform a cross TTI by exchanging RRC messages, and details of the cross TTI are set by the PDCCH.
  • S60 to S62 are the same as S20 to S22 in FIG. 18 of ⁇ 7.1> described above.
  • the base station 100 transmits the PDCCH and the PDSCH (S23).
  • the base station 100 performs, for example, the following processing.
  • control unit 122 determines the TDRA, NDI, HARQ process number, RV, MCS and the like shown in FIG. 9 and outputs the determined information to the PDCCH generation unit 123.
  • the PDCCH generation unit 123 collects these pieces of information and generates, for example, PDCCH #m illustrated in FIG. PDCCH generating section 123 transmits the generated PDCCH #m to terminal 200 via mapping section 125. Further, control section 122 sets a cross TTI for a PDSCH that could not be transmitted in the first slot due to the shift of the symbol including the PDCCH (PDCCH #m in the example of FIG. 10A) and PDSCH in the first slot.
  • a new PDCCH (PDCCH #n in the example of FIG. 10A) is generated.
  • the control unit 122 generates the same NDI, HARQ process number, and RV as the NDI, HARQ process number, and RV included in the PDCCH (PDCCH # m) of the first slot.
  • PDCCH generating section 123 generates a PDCCH (PDCCH # n) for setting a cross TTI including these pieces of information, and transmits the generated PDCCH to terminal 200 via mapping section 125 or the like.
  • PDCCH # m1 may be generated when PDCCH #m is generated.
  • the transmission of the PDSCH by the cross TTI is the same as the above ⁇ 7.1>.
  • FIG. 23 is a flowchart illustrating an operation example on the terminal 200 side when a cross TTI is set by the PDCCH when the PDCCH and the PDSCH shift.
  • S70 to S72 are the same as S30 to S32 in FIG. 19 described in ⁇ 7.1> above.
  • the DCI used in determining whether the length of the PDSCH actually received is shorter than the length of the PDSCH indicated by the DCI is, for example, the DCI included in the PDCCH of the first slot. In the example of FIG. 8B, this corresponds to DCI included in PDCCH #m.
  • terminal 200 determines whether or not a cross TTI has been set in the RRC setting (S73). .
  • the terminal 200 performs the following processing.
  • the control unit 234 calculates the length of the data from the data amount of the data output from the PDSCH reception processing unit 232, and determines that the length is shorter than the length L indicated by the DCI. Then, the control unit 234 checks the cross TTI setting ((1) in FIG. 6) in the PDSCH-Config included in the RRC message output from the PDSCH reception processing unit 232 to determine whether the cross TTI is set. judge.
  • the terminal 200 receives the new PDCCH and receives the subsequent part of the PDSCH according to the resource assignment (S74). For example, the terminal 200 performs the following processing.
  • the PDSCH reception processing unit 232 receives a new PDCCH from the PDCCH reception processing unit 231 and refers to each field shown in FIG. Then, the PDSCH reception processing unit 232 confirms the PDSCH of the “untransmitted” portion addressed to the own station according to the information indicated in each field, and determines the PDSCH portion following the PDSCH allocated by the PDCCH of the previous TTI. Receive.
  • the terminal 200 feeds back ACK or NACK according to the reception result (S75).
  • the control unit 234 determines whether or not the data received from the PDSCH reception processing unit 232 is normal, generates ACK or NACK according to the determination result, and outputs the ACK or NACK via the PUSCH generation unit 235 or the PUCCH generation unit 236. This is fed back to the base station 100.
  • CORESET ControlResourceSet
  • An IE included in CORESET is frequencyDomainResources.
  • frequencyDomainResources represents, for example, frequency resources for DCI search.
  • 5G has a SearchSpace (search space) as an RRC message.
  • the SearchSpace indicates, for example, how to search for a PDCCH candidate, or where to search for a PDCCH candidate.
  • Both the RESET and the SearchSpace are, for example, information elements or messages included in the RRCReconfiguration message.
  • FIG. 24A is a diagram illustrating an example of transmission of a PDCCH and a PDSCH including a search space, for example.
  • One or more PDCCHs are included in the search space.
  • terminal 200 searches for a region to which the PDCCH is allocated on the radio resource according to the SearchSpace that is an RRC message.
  • Some PDCCHs notify the individual terminals 200 and others notify the system common or multiple terminals.
  • the terminal 200 searches for a PDCCH that transmits information common to the system such as counting.
  • SearchSpace includes each of the following: IE of monitoringSlotPeriodicityAndOffset, monitoringSymbolsWithinSlot, and duration.
  • the $ monitoringSlotPeriodicityAndOffset is, for example, an IE indicating in which slot the search space is once. For example, when the monitoringSlotPeriodicityAndOffset is “all slots”, search slots are included in all slots.
  • MonitoringSymbolsWithSinSlot is, for example, an IE indicating a symbol to which a PDCCH may be transmitted (or a PDCCH can be transmitted) in a slot.
  • MonitoringSymbolsWithinSlot is defined by, for example, an absolute position in a slot. For example, when monitoringSymbolsWithSinSlot is “1000000010000000”, as shown in FIG. 24A, it indicates that the PDCCH is allocated to the first and eighth symbols in the slot.
  • Duration is, for example, an IE indicating a length in the time direction. For example, when the duration is “2”, it indicates that the PDCCH has a length of “2” symbols, as shown in FIG.
  • the resource specification in the time direction of the PDCCH can be performed by each of the IE of monitoringSlotPeriodicityAndOffset, monitoringSymbolsWithinSlot, and duration. Then, the terminal 200 that has received such an RRC message can monitor the area on the radio resource and receive the PDCCCH according to each of these IEs.
  • a symbol including the PDCCH and the PDSCH can be shifted in the time direction according to the result of carrier sense. There will be a transmission opportunity.
  • the problem is how to define the resources in the search space in the time direction.
  • monitoringSymbolsWithinSlot defines a symbol at an absolute position in a slot, for example, how to handle it becomes a problem.
  • the position of the search space is the same as the position of the search space in the license frequency band. Therefore, the search space in the subsequent slot of the unlicensed frequency band and the search space of the licensed frequency band can be monitored in common.
  • the monitoring method for the search space in the first slot is performed in a different manner from the monitoring method for the search space in the license frequency band.
  • a search space monitoring method is defined by two options.
  • the first option (Option 1) defines two monitoring Symbols With Slot with a subsequent slot and a leading slot.
  • the second option (Option 2) is a method of changing the interpretation and processing in the terminal 200 with the same definition for monitoringSymbolsWithSinSlot in the subsequent slot and the leading slot.
  • FIG. 25 is a diagram illustrating a definition example of two options (Option 1 and Option 2).
  • “Slot after 2 slots of transmission burst” represents a succeeding slot (for example, a slot from the first slot to the next slot), and “slots other than those described on the left” represent a top slot, respectively.
  • the “slots other than those described in the left” include, for example, slots in a data non-transmission section before the first slot.
  • monitoring Symbols WithoutSlot is defined by a method different from “1000000000000” in the succeeding slot and “101010101010” in the leading slot. That is, in Option 1, for example, the content included in monitoringSymbolsWithinSlot is different between “Slot after 2slot of transmission burst” and “slot other than those described on the left”.
  • terminal 200 may search for the leading slot in the subsequent slot.
  • the first symbol (Symbol # 0), the third symbol (Symbol # 2), the fifth symbol (Symbol # 4), and the like are monitored seven times every other symbol from the beginning. . Therefore, terminal 200 only needs to monitor the head slot seven times with the specified symbol.
  • the RRC message includes, for example, two definitions as shown in FIG. 25 for monitoringSymbolsWithinSlot, and the terminal 200 can perform such processing by receiving the RRC message.
  • the monitoring Symbols WithoutSlot is “100000000000000000” for both the succeeding slot and the leading slot.
  • terminal 200 interprets the parameter indicated by monitoringSymbolsWithSlot as the relative position of each transmission opportunity from the actual transmission start symbol. For example, in the example of FIG. 24B, in the first slot, transmission is actually started from the fifth symbol, so that the terminal 200 determines that the fifth symbol is the first “1” -th in “1000000000000”. Interpret as a symbol.
  • monitoringSymbolsWithSinSlot is included in the RRC message, so that the terminal 200 can receive the RRC message and perform such processing.
  • FIG. 26 is a diagram illustrating an example of an RRC message including a transmission start pattern.
  • the example illustrated in FIG. 26 is an example in which the IE of “PDCCH transmission available timing” is included in the PDSCH-Config.
  • the terminal 200 may monitor the PDCCH at this timing.
  • the “PDCCH transmittable timing” may be included in the PDCCH-Config, or may be included in another Config or the like.
  • the “PDCCH transmission available timing” may be any timing included in, for example, the RRCReconfiguration message.
  • control unit 122 of the base station 100 may generate an RRC message including monitoringSymbolsWithinSlot, and transmit the generated RRC message to the terminal 200 via the PDSCH generation unit 124.
  • FIG. 27A and FIG. 27B are diagrams illustrating an example of monitoring of the terminal 200 when Option 1 and Option 2 illustrated in FIG. 25 are set.
  • the terminal 200 performs monitoring every other symbol from the first symbol in the slot by the monitoringSymbolsWithinSlot in Option1 and the RRC message in Option2.
  • Terminal 200 monitors the first symbol of the first slot of the transmission burst, receives the PDCCH, and thereafter also receives the PDSCH.
  • the terminal 200 can receive the PDCCH by monitoring the first symbol based on the “transmission start timing” of the RRC message. In this case, terminal 200 interprets “1” of “1000000000000” in monitoringSymbolsWithinSlot as the first symbol as the transmission start symbol.
  • the terminal 200 only needs to monitor the first slot in the slots for both Option 1 and Option 2 as subsequent slots.
  • terminal 200 receives the PDCCH from the fifth symbol by monitoring every other symbol from the first symbol by monitoringSymbolsWithinSlot.
  • the terminal 200 monitors every other symbol from the first symbol and receives the PDCCH from the fifth symbol according to the “transmission start timing” of the RRC message.
  • the terminal 200 interprets the fifth symbol (symbol 4) as "1" of "1000000000000” in monitoringSymbolsWithSinSlot.
  • FIG. 28A is a diagram illustrating a hardware configuration example of the base station 100.
  • the base station 100 includes a processor 160, a main storage device 161, a network interface 162, an auxiliary storage device 163, a wireless device 164, and an antenna 140.
  • the processor 160 reads out the program stored in the main storage device 161 and loads it into the auxiliary storage device 163, and executes the loaded program to realize the function of the baseband signal processing unit 120.
  • the processor 160 corresponds to, for example, the baseband signal processing unit 120 according to the first embodiment.
  • the network interface 162 corresponds to, for example, the transmission line interface 110 in the first embodiment.
  • the wireless device 164 corresponds to, for example, the RF transmitting / receiving unit 130 in the first embodiment.
  • FIG. 28B is a diagram illustrating an example of a hardware configuration of the terminal 200.
  • the terminal 200 includes a processor 260, a main storage device 261, a screen display device 262, an auxiliary storage device 263, a wireless device 264, and an antenna 210.
  • the processor 260 reads the program stored in the main storage device 261, loads the program into the auxiliary storage device 263, and executes the loaded program to realize the functions of the baseband signal processing unit 230 and the application unit 240.
  • the processor 260 corresponds to, for example, the baseband signal processing unit 230 and the application unit 240 in the first embodiment.
  • the wireless device 264 corresponds to, for example, the RF transmitting / receiving unit 220 in the first embodiment.
  • the screen display device 262 displays an image by executing an application under the control of the processor 260, for example.
  • the processors 160 and 260 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field-Programmable Gate Array), a DSP (Digital Processing Unit), or the like.
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • FPGA Field-Programmable Gate Array
  • DSP Digital Processing Unit
  • the example has been described in which the base station 100 and the terminal 200 perform carrier sensing in units of two symbols, for example, and there are seven transmission opportunities in one slot.
  • the base station 100 and the terminal 200 perform carrier sensing in units of one symbol, transmission opportunities exist 14 times in one slot.
  • base station 100 and terminal 200 shift, for example, in symbol period units.
  • the base station 100 or the terminal 200 may shift the first symbol by a period unit (or time unit) shorter than the symbol period.
  • the shift unit may be an integral multiple of the symbol
  • the transmission start timing may be in the middle of the symbol period.
  • control unit 122 of the base station 100 or the control unit 234 of the terminal 200 for example, copies data or a signal included in the head symbol and shifts the copied data or signal to the head symbol when shifting the head symbol.
  • the control unit 122 of the base station 100 or the control unit 234 of the terminal 200 for example, copies data or a signal included in the head symbol and shifts the copied data or signal to the head symbol when shifting the head symbol.
  • transmission from the middle of the symbol period becomes possible.
  • transmission may be started from the middle of the first symbol in synchronization with the transmission start timing.
  • the wireless system 10 communicates using both the licensed frequency band and the unlicensed frequency band, and transmits some or all of DCI, RRC messages, and HARQ-ACK related to data transmission in the unlicensed frequency band using the licensed frequency band. May be sent.
  • Wireless communication system 100 Base station device (base station) 110: Transmission path interface 120: Baseband signal processing unit 121: Received signal processing unit 122: Control unit 123: PDCCH generation unit 124: PDSCH generation unit 125: Mapping unit 130: RF transmission / reception unit 140: Antenna 160: Processor 200 (200) -1,200-2): Terminal device (terminal) 210: antenna 220: RF transmitting / receiving unit 230: baseband signal processing unit 231: PDCCH reception processing unit 232: PDSCH reception processing unit 234: control unit 235: PUSCH generation unit 236: PUCCH generation unit 237: mapping unit 240: application unit 260 : Processor

Abstract

A transmission device capable of wirelessly communicating with a receiving device by using a first frequency band which does not require a license, the transmission device being equipped with: a control unit for verifying that the first frequency band is not being used by another transmission device, and shifting, in the time direction, a first symbol which includes a first control channel and a first shared channel in a first communication direction, or a second symbol which includes a second shared channel in a second communication direction which differs from the first communication direction; and a transmission unit for transmitting a first control signal and first data which are assigned to the first symbol to the receiving device by using both the first control channel and the first shared channel, or transmitting second data assigned to the second symbol to the receiving device by using the second shared channel.

Description

送信装置、受信装置、無線通信システム、及び通信方法Transmitting device, receiving device, wireless communication system, and communication method
 本発明は、送信装置、受信装置、無線通信システム、及び通信方法に関する。 << The present invention relates to a transmitting device, a receiving device, a wireless communication system, and a communication method.
 現在のネットワークは、モバイル端末(スマートフォンやフューチャーホン)のトラフィックがネットワークのリソースの大半を占めている。また、モバイル端末が使うトラフィックは、今後も拡大していく傾向にある。 In the current network, traffic from mobile terminals (smartphones and future phones) occupies most of the network resources. In addition, the traffic used by mobile terminals tends to increase in the future.
 一方で、IoT(Internet of things)サービス(例えば、交通システム、スマートメータ、装置等の監視システム)の展開にあわせて、多様な要求条件を持つサービスに対応することが求められている。そのため、第5世代移動体通信(5Gまたは、NR(New Radio))の通信規格では、4G(第4世代移動体通信)の標準技術(例えば、非特許文献1~11)に加えて、さらなる高データレート化、大容量化、低遅延化を実現する技術が求められている。 On the other hand, in line with the development of IoT (Internet of things) services (for example, monitoring systems for traffic systems, smart meters, devices, and the like), it is required to support services having various requirements. Therefore, in the communication standard of the fifth generation mobile communication (5G or NR (New @ Radio)), in addition to the standard technology of 4G (fourth generation mobile communication) (for example, Non-Patent Documents 1 to 11), There is a need for a technology that achieves high data rates, large capacity, and low delay.
 なお、第5世代通信規格については、3GPP(Third Generation Partnership Project)の作業部会(例えば、TSG-RAN WG1、TSG-RAN WG2等)で技術検討が進められている(非特許文献12~39)。 Technical studies on the fifth generation communication standard are being conducted by working groups of the 3GPP (Third Generation Partnership Project) (for example, TSG-RAN WG1, TSG-RAN WG2, etc.) (Non-Patent Documents 12 to 39). .
 上記で述べたように、多種多様なサービスに対応するために、5Gでは、eMBB(Enhanced Mobile Broad Band)、Massive MTC(Machine Type Communications)、およびURLLC(Ultra-Reliable and Low Latency Communication)に分類される多くのユースケースのサポートを想定している。 As described above, in order to support a wide variety of services, 5G is classified into eMBB (Enhanced Mobile Broadband), Massive MTC (Machine Type Communications), and URLLC (Ultra-Reliable and Low Latency Communication). It is intended to support many use cases.
 一方、4Gでは、低周波帯(5GHz帯)であるUnlicensed spectrum(又はUnlicensed band)での通信を行なうための機能が導入されている。そのような機能としては、例えば、LTE-LAA(Long Term Evolution-Licensed Assisted Access)がある。LTE-LAAは、例えば、Unlicensed spectrumの周波数帯域とLicensed spectrumの周波数帯域とを束ねて同時に使用する技術である。LTE-LAAにより、例えば、高速大容量化を実現することが可能となる。 On the other hand, in 4G, a function for performing communication in the Unlimited spectrum (or Unlimited band) which is a low frequency band (5 GHz band) is introduced. As such a function, for example, there is LTE-LAA (Long Term Evolution-Licensed Assisted Access). LTE-LAA is, for example, a technology in which a frequency band of Unlicensed @ spectrum and a frequency band of Licensed @ spectrum are bundled and used simultaneously. With LTE-LAA, for example, it is possible to realize high speed and large capacity.
 LTE-LAAでは、低周波帯(5GHz帯)のUnlicensed spectrumでの通信を行なうために、Listen-Before-Talk(LBT)方式が採用される。LBT方式では、例えば、送信側は、信号送信開始前にcarrier sensing(又はキャリアセンス)を行い、無線チャネルが“Idle”状態(他の通信が行なわれていない)であることを確認してからデータ送信を開始する。LBT方式により、例えば、WifiとLTEなど、異なるネットワーク間において公平な共存が実現可能である。 In LTE-LAA, a Listen-Before-Talk (LBT) system is adopted in order to perform communication in the Unlicensed spectrum of the low frequency band (5 GHz band). In the LBT method, for example, the transmitting side performs carrier @ sensing (or carrier sense) before starting signal transmission, and confirms that the wireless channel is in the "Idle" state (no other communication is being performed). Start data transmission. By the LBT method, for example, fair coexistence between different networks such as Wi-Fi and LTE can be realized.
 ただし、LTEでは、サブフレーム(subframe)タイミングに基づく送受信が基本である。LBT方式をサブフレームタイミングで用いると、サブフレームタイミングで送信機会が与えられるため、送信機会が限定される場合がある。 However, in LTE, transmission and reception based on subframe timing are fundamental. When the LBT method is used at the subframe timing, a transmission opportunity is given at the subframe timing, so that the transmission opportunity may be limited.
 そこで、LTE-LAAでは、サブフレームの先頭タイミング(又は先頭シンボル)と、サブフレームの半分のタイミング(又は先頭シンボルから8番目のシンボル)とで送信可能な方式も仕様化されている。図30(A)と図30(B)はその例を表している。これにより、例えば、送信側で送信機会を増やし、送信側と受信側の双方で送受信処理の複雑度を極端に増大しないようにすることが可能となる。 Therefore, in LTE-LAA, a method that allows transmission at the head timing (or head symbol) of a subframe and half the timing of a subframe (or the eighth symbol from the head symbol) is also specified. FIGS. 30A and 30B show an example thereof. Thus, for example, it is possible to increase transmission opportunities on the transmission side and prevent the transmission side and the reception side from extremely increasing the complexity of transmission / reception processing.
 なお、図30(B)に示すように、サブフレームの半分のタイミングの場合、TB(Transport Block)#0に含まれるデータは、図30(A)に示すサブフレームの先頭シンボルのタイミングから送信される場合と比較して、半分になる。そのため、送信側は、TB#0に含まれる符号化前のデータを半分にして、送信することも、3GPPでは仕様化されている。 Note that, as shown in FIG. 30B, in the case of half the timing of the subframe, data included in TB (Transport @ Block) # 0 is transmitted from the timing of the first symbol of the subframe shown in FIG. Halved compared to when it is done. Therefore, it is also specified in 3GPP that the transmitting side halves the data before encoding included in TB # 0 and transmits the data.
 他方、5Gでは、4Gと同様に、基地局は、無線リソースの割り当てや誤り訂正符号化の符号化率、変調方式などを決定(又はスケジューリング)し、そのスケジューリング結果を、端末へ送信する。この場合、基地局は、スケジューリング結果を含むDCI(Downlink Control Information)を、PDCCH(Physical Downlink Control CHannel)を利用して、端末へ送信する。端末は、DCIに含まれるスケジューリング結果に従って、PDSCH(Physical Downlink Shared CHannel)を利用して、受信した信号から自局宛てのデータを抽出したり、PUSCH(Physical Uplink Shared CHannel)を利用して、データを基地局へ送信したりすることが可能となる。 On the other hand, in 5G, as in 4G, the base station determines (or schedules) radio resource allocation, an error correction coding rate, a modulation scheme, and the like, and transmits the scheduling result to the terminal. In this case, the base station transmits DCI (Downlink Control Information) including the scheduling result to the terminal using PDCCH (Physical Downlink Control CHannel). According to the scheduling result included in the DCI, the terminal uses PDSCH (Physical Downlink Shared CHannel) to extract data addressed to the own station from the received signal, or uses PUSCH (Physical Uplink Shared CHannel) to transmit data. Can be transmitted to the base station.
 図31(A)と図31(B)は、5Gにおいて仕様化されたDCIによる時間方向のリソース割り当てを表す図である。図31(A)はPDSCH、図31(B)はPUSCHにおける、時間方向のリソース割り当てをそれぞれ表している。図31(A)と図31(B)において、例えば、“S”はスロットの開始シンボル、“L”は開始シンボルSからカウントした連続したシンボル数(又は長さ)をそれぞれ表す。 FIGS. 31 (A) and 31 (B) are diagrams showing resource allocation in the time direction by DCI specified in 5G. FIG. 31A shows resource allocation in the PDSCH and FIG. 31B shows resource allocation in the PUSCH in the time direction. In FIGS. 31A and 31B, for example, “S” represents the start symbol of a slot, and “L” represents the number of consecutive symbols (or length) counted from the start symbol S, respectively.
 図31(C)は、時間方向におけるリソースの割り当て(又はマッピング。以下では、割り当てとマッピングとを区別しないで用いる場合がある。)例を表す。例えば、S=2、L=4の場合、1スロット内において、開始シンボルは、先頭シンボル(S=0)から3番目のシンボル、その長さは、S=2から連続して4シンボルであることを表す。このような時間方向のリソース割り当てが行われた場合、端末は、PDSCHの場合、S=2から始まる4つのシンボルを利用して、自局宛てのデータを抽出する。 FIG. 31C illustrates an example of resource allocation (or mapping in the time direction; hereinafter, allocation and mapping may be used without distinction). For example, when S = 2 and L = 4, in one slot, the start symbol is the third symbol from the first symbol (S = 0), and the length is four symbols continuously from S = 2. It represents that. When resource allocation in the time direction is performed, in the case of PDSCH, a terminal extracts data addressed to itself using four symbols starting from S = 2.
 なお、図31(C)に示すように、4Gでは、1サブフレーム=14シンボル(=1ms)であったが、5Gでは、1スロット=14シンボルとなる。また、5Gでは、複数のサブキャリア間隔を利用可能で、サブキャリア間隔が15kHzの場合、1スロット=1msで、サブキャリア間隔が30kHzの場合、1スロット=0.5msなど、サブキャリア間隔に応じてスロット長が変化する。 As shown in FIG. 31 (C), in 4G, one subframe = 14 symbols (= 1 ms), but in 5G, one slot = 14 symbols. In 5G, a plurality of subcarrier intervals can be used. When the subcarrier interval is 15 kHz, 1 slot = 1 ms, and when the subcarrier interval is 30 kHz, 1 slot = 0.5 ms. The slot length changes.
 5Gでは、図31(A)と図31(B)に示すように、シンボル単位で時間方向の無線リソースの割り当てが可能となっており、柔軟な無線リソースの割り当てが可能となっている。 In # 5G, as shown in FIG. 31A and FIG. 31B, radio resources can be allocated in the time direction in symbol units, and flexible radio resources can be allocated.
 しかし、上述したように、Unlicensed bandに関し、LTE-LAAでは、送信機会は、1サブフレーム(=1ms)あたり最大2回である。1サブフレームあたり最大2回の送信機会では、スループットが低下する場合がある。 However, as described above, regarding the Unlimited band, in LTE-LAA, the transmission opportunity is a maximum of two times per subframe (= 1 ms). With a maximum of two transmission opportunities per subframe, the throughput may decrease.
 開示の技術は、上記に鑑みてなされたものであって、スループットを向上させることを目的とする。 技術 The disclosed technology has been made in view of the above, and aims to improve the throughput.
 1つの側面では、免許が不要な第1の周波数帯を用いて、受信装置と無線通信が可能な送信装置において、前記第1の周波数帯が他の送信装置により使用されていないことを確認し、第1の通信方向における第1の制御チャネルと第1の共有チャネルとを含む第1のシンボル、又は、前記第1の通信方向と異なる第2の通信方向における第2の共有チャネルとを含む第2のシンボルを、時間方向にシフトさせる制御部と、前記第1のシンボルに割り当てられた第1の制御信号と第1のデータとを前記第1の制御チャネルと前記第1の共有チャネルとを夫々用いて、又は前記第2のシンボルに割り当てられた第2のデータを前記第2の共有チャネルを用いて、前記受信装置へ送信する送信部とを備える。 In one aspect, in a transmitting device capable of wireless communication with a receiving device using a first frequency band that does not require a license, it is confirmed that the first frequency band is not used by another transmitting device. , A first symbol including a first control channel and a first shared channel in a first communication direction, or a second shared channel in a second communication direction different from the first communication direction. A control unit that shifts a second symbol in a time direction; and a first control signal and a first data assigned to the first symbol are transmitted to the first control channel and the first shared channel. And a transmission unit that transmits the second data allocated to the second symbol to the receiving device using the second shared channel.
 スループットを向上させることができる。 Throughput can be improved.
図1は無線通信システムの構成例を表す図である。FIG. 1 is a diagram illustrating a configuration example of a wireless communication system. 図2(A)は1スロットの構成例、図2(B)と図2(C)は、TBの送信例を表す図である。FIG. 2A is a diagram illustrating a configuration example of one slot, and FIGS. 2B and 2C are diagrams illustrating a transmission example of a TB. 図3はプロトコルスタックの例を表す図である。FIG. 3 is a diagram illustrating an example of a protocol stack. 図4(A)と図4(B)はPDCCCHとPDSCHの送信例を表す図である。FIGS. 4A and 4B are diagrams illustrating transmission examples of PDCCCH and PDSCH. 図5(A)はRRCメッセージの交換シーケンス例、図5(B)はRRCConfigurationメッセージの構成例を夫々表す図である。FIG. 5A is a diagram illustrating an example of an RRC message exchange sequence, and FIG. 5B is a diagram illustrating a configuration example of an RRCConfiguration message. 図6はPDSCH-Config又はPUSCH-Configに含まれるIEの例を表す図である。FIG. 6 is a diagram illustrating an example of the IE included in the PDSCH-Config or the PUSCH-Config. 図7(A)と図7(B)はPUSCHの送信例を表す図である。FIGS. 7A and 7B are diagrams illustrating transmission examples of the PUSCH. 図8(A)と図8(B)はPDCCHとPDSCHの送信例を表す図である。FIGS. 8A and 8B are diagrams illustrating transmission examples of the PDCCH and the PDSCH. 図9は、PDCCHに含まれる情報の例を表す図である。FIG. 9 is a diagram illustrating an example of information included in the PDCCH. 図10(A)から図10(C)はPDCCHに含まれる情報の例を表す図である。FIGS. 10A to 10C are diagrams illustrating examples of information included in the PDCCH. 図11はNDIの例を表す図である。FIG. 11 is a diagram illustrating an example of the NDI. 図12(A)から図12(C)はPDCCHとPDSCHの送信例を表す図である。FIGS. 12A to 12C are diagrams illustrating transmission examples of the PDCCH and the PDSCH. 図13はPDSCH-Configに含まれるIEの例を表す図である。FIG. 13 is a diagram illustrating an example of the IE included in the PDSCH-Config. 図14はPDCCHに含まれる情報の例を表す図である。FIG. 14 is a diagram illustrating an example of information included in the PDCCH. 図15(A)と図15(B)はPDCCHとPDSCHの送信例を表す図である。FIGS. 15A and 15B are diagrams illustrating transmission examples of the PDCCH and the PDSCH. 図16(A)は基地局の構成例、図16(B)はベースバンド信号処理部の構成例を夫々表す図である。FIG. 16A is a diagram illustrating a configuration example of a base station, and FIG. 16B is a diagram illustrating a configuration example of a baseband signal processing unit. 図17(A)は端末の構成例、図17(B)はベースバンド信号処理部の構成例を夫々表す図である。FIG. 17A is a diagram illustrating a configuration example of a terminal, and FIG. 17B is a diagram illustrating a configuration example of a baseband signal processing unit. 図18は基地局の動作例を表すフローチャートである。FIG. 18 is a flowchart illustrating an operation example of the base station. 図19は端末の動作例を表すフローチャートである。FIG. 19 is a flowchart illustrating an operation example of the terminal. 図20は端末の動作例を表すフローチャートである。FIG. 20 is a flowchart illustrating an operation example of the terminal. 図21は基地局の動作例を表すフローチャートである。FIG. 21 is a flowchart illustrating an operation example of the base station. 図22は基地局の動作例を表すフローチャートである。FIG. 22 is a flowchart illustrating an operation example of the base station. 図23は端末の動作例を表すフローチャートである。FIG. 23 is a flowchart illustrating an operation example of the terminal. 図24(A)と図24(B)はPDCCHとPDSCHの送信例を表す図である。FIGS. 24A and 24B are diagrams illustrating transmission examples of the PDCCH and the PDSCH. 図25はmonitoringSymbolsWithinSlotの設定例を表す図である。FIG. 25 is a diagram illustrating a setting example of monitoringSymbolsWithinSlot. 図26はPDSCH-Config又はPUSCH-Configに含まれるIEの例を表す図である。FIG. 26 is a diagram illustrating an example of the IE included in the PDSCH-Config or the PUSCH-Config. 図27(A)と図27(B)はモニタリング例を表す図である。FIGS. 27A and 27B are diagrams illustrating monitoring examples. 図28(A)は基地局、図29(B)は端末のハードウェア構成例を夫々表す図である。FIG. 28A illustrates a hardware configuration example of a base station, and FIG. 29B illustrates a hardware configuration example of a terminal. 図29(A)と図29(B)はPUCCHとPUSCHの送信例を表す図である。FIGS. 29A and 29B are diagrams illustrating transmission examples of the PUCCH and the PUSCH. 図30(A)と図30(B)はTBの送信例を表す図である。FIGS. 30A and 30B are diagrams illustrating transmission examples of TB. 図31(A)と図31(B)は開始シンボルと長さの仕様、図31(C)は開始シンボルと長さの設定例を夫々表す図である。FIGS. 31A and 31B are diagrams showing specifications of the start symbol and length, and FIG. 31C is a diagram showing an example of setting the start symbol and length.
 以下、本実施の形態について図面を参照して詳細に説明する。本明細書における課題及び実施例は一例であり、本願の権利範囲を限定するものではない。特に、記載の表現が異なっていたとしても技術的に同等であれば、異なる表現であっても本願の技術を適用可能であり、権利範囲を限定するものではない。そして、各実施の形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。 Hereinafter, this embodiment will be described in detail with reference to the drawings. The problems and examples in this specification are merely examples, and do not limit the scope of the present application. In particular, even if the expressions described are different, as long as they are technically equivalent, the technology of the present application can be applied to different expressions, and the scope of rights is not limited. The embodiments can be appropriately combined within a range that does not contradict processing contents.
 また、本明細書で使用している用語や記載した技術的内容は、3GPPなど通信に関する規格として仕様書や寄書に記載された用語や技術的内容が適宜用いられてもよい。このような仕様書としては、例えば、3GPP TS 38.211 V15.1.0(2018-03)などがある。 The terms and technical contents described in this specification may be the terms and technical contents described in specifications and contributions as communication standards such as 3GPP as appropriate. Such specifications include, for example, 3GPP {TS} 38.211@V15.1.0 (2018-03).
 なお、3GPPの仕様書は、随時、更新される。従って、上述した仕様書は、本願出願時における最新の仕様書が用いられてよい。そして、最新の仕様書に記載された用語や技術的内容が、本明細書において適語用いられてよい。 3GPP specifications are updated as needed. Therefore, the latest specification at the time of filing the present application may be used as the above specification. Then, terms and technical contents described in the latest specification may be appropriately used in this specification.
 以下に、本願の開示する基地局、端末、無線通信システム、及び通信方法の実施例を、図面に基づいて詳細に説明する。なお、以下の実施の形態は、開示の技術を限定するものではない。 Hereinafter, embodiments of a base station, a terminal, a wireless communication system, and a communication method disclosed in the present application will be described in detail with reference to the drawings. Note that the following embodiments do not limit the disclosed technology.
 [第1の実施の形態]
 <1.無線通信システムの構成例>
 図1は、第1の実施の形態における無線通信システム10の構成例を表す図である。
[First Embodiment]
<1. Configuration example of wireless communication system>
FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment.
 無線通信システム10は、基地局装置(以下、「基地局」と称する場合がある。)100と複数の端末装置(以下、「端末」と称する場合がある。)200-1,200-2を備える。 The wireless communication system 10 includes a base station device (hereinafter, may be referred to as a “base station”) 100 and a plurality of terminal devices (hereinafter, may be referred to as “terminals”) 200-1 and 200-2. Prepare.
 基地局100は、自局のサービス提供可能範囲(又はセル範囲)に在圏する端末200-1,200-2に対して無線通信を行い、通話サービスやWeb閲覧サービスなど、種々のサービスを提供する無線通信装置である。 The base station 100 performs wireless communication with the terminals 200-1 and 200-2 located in the service provision range (or cell range) of the base station 100, and provides various services such as a call service and a Web browsing service. Wireless communication device.
 また、基地局100は、上述したようにスケジューリングを行い、各端末200-1,200-2に対して、無線リソースの割り当てや、符号化率、変調方式などを決定する。そして、基地局100は、そのスケジューリング結果を制御信号に含めて、PDCCHを利用して、端末200-1,200-2へ送信する。各端末200-1,200-2は、制御信号に含まれるスケジューリング結果に従って、PDSCHを利用して受信した信号から自局宛てのデータを抽出したり、PUSCHを利用してデータを基地局100へ送信したりすることができる。 {Circle around (2)} The base station 100 performs the scheduling as described above, and determines the allocation of radio resources, the coding rate, the modulation scheme, and the like to each of the terminals 200-1 and 200-2. Then, base station 100 includes the scheduling result in the control signal and transmits the control signal to terminals 200-1 and 200-2 using the PDCCH. Each of the terminals 200-1 and 200-2 extracts data addressed to itself from the signal received using the PDSCH or transmits data to the base station 100 using the PUSCH according to the scheduling result included in the control signal. Can be sent.
 基地局100から端末200-1,200-2への通信方向を、下り方向、端末200-1,200-2から基地局100への通信方向を、上り方向とそれぞれ称する場合がある。 通信 The communication direction from the base station 100 to the terminals 200-1 and 200-2 may be referred to as the down direction, and the communication direction from the terminals 200-1 and 200-2 to the base station 100 may be referred to as the up direction.
 例えば、下り方向においては、基地局100が送信装置、端末200-1,200-2が受信装置となり、上り方向においては、端末200-1,200-2が送信装置、基地局100が受信装置となり得る。 For example, in the downlink direction, the base station 100 is a transmitting device, and the terminals 200-1 and 200-2 are receiving devices. In the uplink direction, the terminals 200-1 and 200-2 are transmitting devices and the base station 100 is a receiving device. Can be
 なお、端末200-1,200-2は、上り方向においても、制御信号を送信することが可能であり、この場合、PUCCH(Physical Uplink Control CHannel)を用いて、上り制御信号を送信する。上り制御信号の例として、例えば、データを正常に受信したか否かを示すACK(Acknowledgement:肯定応答)信号又はNACK(Negative Acknowledgement)信号(以下では、「ACK」又は「NACK」と称する場合がある。)がある。 Note that the terminals 200-1 and 200-2 can also transmit a control signal in the uplink direction. In this case, the terminals 200-1 and 200-2 transmit the uplink control signal using PUCCH (Physical Uplink Control CHannel). As an example of the uplink control signal, for example, an ACK (Acknowledgement: acknowledgment) signal indicating whether or not data has been normally received or a NACK (Negative @ Acknowledgement) signal (hereinafter referred to as “ACK” or “NACK”) There is.)
 端末200-1,200-2は、例えば、フィーチャーフォン、スマートフォン、パーソナルコンピュータ、タブレット端末、ゲーム装置など、無線通信が可能な無線通信装置である。各端末200-1,200-2は、基地局100を介して、上述した種々のサービスの提供を受けることが可能である。 The terminals 200-1 and 200-2 are wireless communication devices capable of wireless communication, such as a feature phone, a smartphone, a personal computer, a tablet terminal, and a game device. Each of the terminals 200-1 and 200-2 can receive the various services described above via the base station 100.
 図1の例では、基地局100は、2つの端末200-1,200-2と無線通信を行っている例を表している。例えば、無線通信システム10においては、基地局100は、1台の端末200-1と無線通信を行ってもよいし、3台以上の端末と無線通信を行ってもよい。端末200-1,200-2の台数は、1台でもよいし、複数台でもよい。 1 shows an example in which the base station 100 performs wireless communication with two terminals 200-1 and 200-2. For example, in the wireless communication system 10, the base station 100 may perform wireless communication with one terminal 200-1 or may perform wireless communication with three or more terminals. The number of terminals 200-1 and 200-2 may be one or a plurality.
 本第1の実施の形態では、基地局100と端末200-1,200-2は、Unlicensed bandを用いて無線通信が可能である。 In the first embodiment, the base station 100 and the terminals 200-1 and 200-2 can perform wireless communication using the Unlicensed @ band.
 無線通信で使用する周波数は、ITU-R(International Telecommunication Radio communications Sector)が策定した周波数の割り当てと各国の事情などを考慮して、各国が特定のオペレータに対して使用免許を与えて割り当てている。オペレータは、免許が与えられた周波数を占有して移動通信事業(又は無線通信事業)を行うことが可能である。オペレータに免許が与えられて割り当てられた周波数帯を、例えば、Licensed bandと称する場合がある。他方、Unlicensed bandは、例えば、複数のオペレータなどが免許なしに使用可能な周波数帯のことである。Unlicensed bandは、例えば、免許が不要な周波数帯であり、Licensed bandは、例えば、免許が必要な周波数帯でもある。Unlicensed bandとしては、例えば、ISM帯(Industry Science Medical band)や5GHz帯などがある。 In consideration of the frequency allocation formulated by the ITU-R (International Telecommunications Radio Communications Sector) and the circumstances of each country, each country gives a license to a specific operator and allocates the frequency used in the wireless communication. . The operator can perform a mobile communication business (or a wireless communication business) by occupying a licensed frequency. The frequency band to which the operator is licensed and assigned may be referred to as, for example, Licensed @ band. On the other hand, Unlimited @ band is a frequency band that can be used without a license by a plurality of operators, for example. Unlicensed @ band is, for example, a frequency band that does not require a license, and Licensed @ band is, for example, a frequency band that requires a license. Examples of the Unlicensed band include an ISM band (Industry Science Medical band) and a 5 GHz band.
 そして、基地局100と端末200-1,200-2は、Unlicensed bandを用いて無線通信を行う際に、LBT方式を利用して、その周波数帯域が利用可能であるか否かを確認する。例えば、基地局100と端末200-1,200-2は、以下の処理を行う。 {The base station 100 and the terminals 200-1 and 200-2 confirm whether or not the frequency band can be used by using the LBT method when performing wireless communication using the Unlicensed @ band. For example, base station 100 and terminals 200-1 and 200-2 perform the following processing.
 すなわち、基地局100と端末200-1,200-2は、アンライセンスバンドの利用可能な周波数帯域において、キャリアセンスを行う。基地局100と端末200-1,200-2は、その周波数帯域が“Idle”状態のとき、その周波数帯域を利用して、無線通信を行う。“Idle”状態とは、例えば、受信信号の信号強度が閾値より小さい場合の状態である。この場合は、基地局100と端末200-1,200-2は、その周波数帯域が他の基地局や端末で利用されていないことを確認することになり、その周波数帯域の利用が可能となる。一方、基地局100と端末200-1,200-2は、その周波数帯域が“Busy”状態のとき、その周波数帯域を利用しないようにする。“Busy”状態とは、例えば、受信信号の信号強度が閾値以上のときの状態である。この場合、基地局100と端末200-1,200-2は、“Busy”状態を確認後、所定時間経過すると、再び、その周波数帯域についてキャリアセンスを行う。 {That is, the base station 100 and the terminals 200-1 and 200-2 perform carrier sense in a usable frequency band of the unlicensed band. When the frequency band is in the “Idle” state, the base station 100 and the terminals 200-1 and 200-2 perform wireless communication using the frequency band. The “Idle” state is, for example, a state where the signal strength of the received signal is smaller than a threshold. In this case, the base station 100 and the terminals 200-1 and 200-2 confirm that the frequency band is not used by another base station or terminal, and the frequency band can be used. . On the other hand, when the frequency band is in the “Busy” state, the base station 100 and the terminals 200-1 and 200-2 do not use the frequency band. The “Busy” state is, for example, a state when the signal strength of the received signal is equal to or higher than a threshold. In this case, the base station 100 and the terminals 200-1 and 200-2 perform carrier sense again for the frequency band when a predetermined time has elapsed after confirming the "Busy" state.
 キャリアセンスの詳細動作は、例えば、3GPP TS 37.213 V15.0.0(2018-06)に記載されている方式に従う。送信する信号の内容などにより、1回のキャリアセンスで“Idle”状態であれば送信できる場合と、規定された回数だけ“Idle”状態が経過して初めて送信できる場合とが定義されている。いずれの場合についても、信号を送信する直前の1回のキャリアセンスの結果は、“Idle”状態でなければならない。 The detailed operation of the carrier sense follows the method described in, for example, 3GPP TS 37.213 V15.0.0 (2018-06). Depending on the content of a signal to be transmitted, etc., a case where transmission is possible in the “Idle” state with one carrier sense and a case where transmission is possible only after the “Idle” state has passed a specified number of times are defined. In any case, the result of one carrier sense immediately before transmitting a signal must be in the “Idle” state.
 基地局100と端末200-1,200-2は、Unlicensed bandだけではなく、Licensed bandを用いて無線通信が可能である。 The base station 100 and the terminals 200-1 and 200-2 can perform wireless communication using not only the Licensed band but also the Licensed band.
 なお、以下では、Unlicensed bandを、例えば、アンライセンスバンド、Licensed bandを、例えば、ラインセスバンドと表記する場合がある。 In the following, the Unlimited @ band may be described as, for example, an unlicensed band, and the Licensed @ band may be described as, for example, a license band.
 また、端末200-1,200-2を、端末200と表記する場合がある。 端末 Also, the terminals 200-1 and 200-2 may be referred to as the terminal 200 in some cases.
 さらに、下り方向の制御信号を、例えば、PDCCHと称する場合がある。従って、下り方向の制御信号を送信することを、例えば、PDCCHを送信する、と称する場合がある。また、下り方向のデータを、例えば、PDSCHと称する場合がある。さらに、例えば、上り方向の制御信号をPUCCH、上り方向のデータをPUSCHとそれぞれ称する場合がある。 Furthermore, the downlink control signal may be referred to as, for example, PDCCH. Therefore, transmitting a downlink control signal may be referred to as, for example, transmitting a PDCCH. Also, the downlink data may be referred to as, for example, PDSCH. Furthermore, for example, the uplink control signal may be referred to as PUCCH, and the uplink data may be referred to as PUSCH.
 さらに、以下においては、制御信号とDCIとを区別しないで用いる場合がある。 Further, in the following, the control signal and DCI may be used without distinction.
 さらに、以下においては、LBTとキャリアセンスとを区別しないで用いる場合がある。 In the following, LBT and carrier sense may be used without distinction.
 <2.時間方向の無線リソースについて>
 図2(A)は、5Gで規定される1スロットの構成例を表す図である。上述したように、LTEでは、14シンボルで1サブフレームである。しかし、5Gでは、図2(A)に示すように、14シンボルで1スロットとなっている。図2(A)は、例えば、アンライセンスバンドのある周波数帯域における1スロットを表している。
<2. About radio resources in the time direction>
FIG. 2A is a diagram illustrating a configuration example of one slot defined by 5G. As described above, in LTE, 14 symbols are one subframe. However, in 5G, as shown in FIG. 2A, one symbol is one slot with 14 symbols. FIG. 2A shows one slot in a certain frequency band having an unlicensed band, for example.
 図2(B)は、アンライセンスバンドのある周波数帯域において、時間方向におけるTBの送信例を表す図である。 FIG. 2B is a diagram illustrating an example of transmission of a TB in a time direction in a frequency band having an unlicensed band.
 例えば、基地局100は、この周波数帯域に対して、キャリアセンスを行い、“Idle”状態であることを確認したため、先頭スロットから全シンボルを利用して、TB#aに含まれるデータを送信している。そして、例えば、基地局100は、次のスロットに割り当てられたTB#bのデータも次のスロットの全シンボルを利用して送信している。図2(B)に示す例では、各スロットに割り当てられた通りに、各TBに含まれるデータが送信される例を表している。 For example, the base station 100 performs carrier sense on this frequency band and confirms that the frequency band is in the “Idle” state. Therefore, the base station 100 transmits data included in TB # a using all symbols from the first slot. ing. Then, for example, the base station 100 also transmits data of TB # b allocated to the next slot using all symbols of the next slot. The example illustrated in FIG. 2B illustrates an example in which data included in each TB is transmitted as assigned to each slot.
 なお、以下では、TBに含まれるデータを送信すること、例えば、TBを送信する、と称する場合がある。 In the following, transmitting data included in TB, for example, transmitting TB may be referred to as transmitting.
 図2(B)においては、TTIも示されている。TTIとは、例えば、TBセットの到着時間間隔であり、PDCCHを利用して送信される1つの制御信号により割り当てられたスケジューリング期間(又は周期)の最小期間を表す。従って、TTIは、例えば、1つのPDCCHにより複数のTTIを含むことも許容される。詳細は後述するが、図7(A)の例では、1つのPDCCHにより2つのTTIがスケジューリングされている例を表している。 T In FIG. 2B, the TTI is also shown. The TTI is, for example, an arrival time interval of a TB set, and represents a minimum period of a scheduling period (or cycle) allocated by one control signal transmitted using the PDCCH. Therefore, the TTI is allowed to include a plurality of TTIs by one PDCCH, for example. Although details will be described later, the example of FIG. 7A shows an example in which two TTIs are scheduled by one PDCCH.
 例えば、図2(B)の例では、1つのPDCCHにより、先頭スロットにTB#aが割り当てられ、他のPDCCHにより、先頭スロットの次のスロットにTB#bが割り当てられている。従って、先頭スロットが1つのTTIとなり、次のスロットが他の1つのTTIとなる。例えば、1つのスロット内に、2つのPDCCHが別々のシンボルに割り当てられたとき、1つのスロット内に、2つのTTIが存在することになる。 {For example, in the example of FIG. 2B, TB # a is allocated to the first slot by one PDCCH, and TB # b is allocated to the slot next to the first slot by another PDCCH. Therefore, the first slot is one TTI, and the next slot is another TTI. For example, when two PDCCHs are assigned to different symbols in one slot, two TTIs exist in one slot.
 図2(C)も、図2(B)と同様に、時間方向におけるTBの送信例を表す図である。ただし、図2(C)の例は、図2(B)の例に対して、キャリアセンスにより、送信開始タイミングがシフトする例を表している。 2 (C) is a diagram showing a transmission example of TB in the time direction, similarly to FIG. 2 (B). However, the example of FIG. 2C shows an example in which the transmission start timing is shifted due to carrier sense with respect to the example of FIG. 2B.
 図2(C)の例では、キャリアセンスの結果、先頭スロットの1シンボル目において、“Busy”状態となっている。また、その後、キャリアセンスを行い、3シンボル目においても、“Busy”状態となっている。さらに、その後、キャリアセンスを行い、“Idle”状態となったため、5シンボル目から信号の送信が開始される。図2(C)の例では、先頭スロットの5シンボル目(シンボル0が先頭シンボルとすると、シンボル4)がデータ送信開始タイミングとなっている。 In the example of FIG. 2C, as a result of the carrier sense, the first symbol of the first slot is in the “Busy” state. After that, carrier sense is performed, and the third symbol is in the “Busy” state. Further, thereafter, carrier sense is performed, and the state becomes “Idle”, so that signal transmission is started from the fifth symbol. In the example of FIG. 2C, the fifth symbol of the first slot (symbol 4 when symbol 0 is the first symbol) is the data transmission start timing.
 なお、図2(B)と図2(C)が下り方向の送信例を表す場合、送信開始タイミングにある先頭シンボル(図2(B)の例では1番目のシンボル、図2(C)の例では5番目のシンボル)を利用して、PDCCHとPDSCHとが送信される。5Gでは、4Gとは異なり、1つのシンボルにPDCCHとPDSCHとが割り当て可能となっている。この場合、図2(B)と図2(C)に示す送信は、例えば、基地局100により行われる。 When FIG. 2 (B) and FIG. 2 (C) show an example of transmission in the downlink direction, the first symbol at the transmission start timing (the first symbol in the example of FIG. 2 (B), the first symbol in FIG. 2 (C)) The PDCCH and the PDSCH are transmitted using the fifth symbol in the example). In 5G, unlike 4G, PDCCH and PDSCH can be assigned to one symbol. In this case, the transmission illustrated in FIGS. 2B and 2C is performed by, for example, the base station 100.
 また、図2(B)と図2(C)が上り方向の送信例を表す場合、送信開始タイミングにある先頭シンボルを利用して、PUCCHとPUSCHとが送信される。この場合、図2(B)と図2(C)に示す送信は、例えば、端末200により行われる。 2) In addition, when FIGS. 2B and 2C show an example of transmission in the uplink direction, the PUCCH and PUSCH are transmitted using the first symbol at the transmission start timing. In this case, the transmission illustrated in FIGS. 2B and 2C is performed by, for example, the terminal 200.
 一方、図2(B)に示すように、TB#aには、1スロットの全14シンボルが割り当てられている。図2(C)に示す例では、5シンボル目から送信が開始されるため、先頭スロットにおいては、TB#aに含まれる10シンボル分のデータが送信可能であるものの、残りの4シンボル分のデータは送信できない。この場合、図2(C)の例では、先頭スロットで送信できなかった、TB#aに含まれる残り4シンボル分のデータは、次のスロットの先頭の4シンボルを利用して、送信される。 On the other hand, as shown in FIG. 2B, a total of 14 symbols in one slot are allocated to TB # a. In the example shown in FIG. 2 (C), transmission starts from the fifth symbol. Therefore, in the first slot, data for 10 symbols included in TB # a can be transmitted, but data for the remaining 4 symbols is transmitted. Data cannot be sent. In this case, in the example of FIG. 2C, data of the remaining four symbols included in TB # a, which could not be transmitted in the first slot, is transmitted using the first four symbols of the next slot. .
 従って、TB#aに含まれる14シンボル分のデータは、先頭スロットの10シンボルと、次のスロットの先頭の4シンボルを利用して送信される。この場合、先頭スロットと、次のスロットとは、例えば、異なるPDCCHにより割り当てられた時間方向のリソースとなっている。この場合、TB#aのデータは、異なるPDCCHによって割り当てられた2つのスロットを跨いで、時間方向のリソースの割り当てが行われている。例えば、1つのPDCCHにより割り当てられたスケジューリング期間が1つのTTIであるため、TB#aのデータは、2つのTTIを跨いで同一の端末200へ送信される。 Therefore, the data of 14 symbols included in TB # a is transmitted using 10 symbols of the first slot and 4 symbols of the next slot. In this case, the first slot and the next slot are, for example, resources in the time direction allocated by different PDCCHs. In this case, the data of TB # a is allocated resources in the time direction across two slots allocated by different PDCCHs. For example, since the scheduling period assigned by one PDCCH is one TTI, data of TB # a is transmitted to the same terminal 200 across two TTIs.
 キャリアセンスにより、先頭スロット(又は先頭TTI)でデータの全てを送信しきれなかった場合、送信できなかったデータ部分を、次のTTIで送信することを、例えば、「Cross TTI」(又はクロスTTI)と称する場合がある。或いは、クロスTTIとは、例えば、同一のデータが、複数のTTIを跨いで送信されることである。例えば、図2(C)では、TB#aは、先頭のTTIで送信しきれなかったため、次のTTIで送信されており、クロスTTIで送信されている。 If all the data cannot be transmitted in the first slot (or the first TTI) due to the carrier sense, the transmission of the data part that could not be transmitted in the next TTI is performed by, for example, “Cross @ TTI” (or cross TTI). ). Alternatively, the cross TTI means, for example, that the same data is transmitted across a plurality of TTIs. For example, in FIG. 2C, since TB # a could not be transmitted in the first TTI, it is transmitted in the next TTI and is transmitted in the cross TTI.
 なお、クロスTTIは、例えば、RRC(Radio Resource Control)メッセージやPDCCHにより設定可能である。詳細は後述する。 The cross TTI can be set by, for example, an RRC (Radio Resource Control) message or PDCCH. Details will be described later.
 このように、本第1の実施の形態では、例えば、図2(C)に示すように、PDCCHとPDSCHを含むシンボル、或いは、PUCCHとPUSCHとを含むシンボルを時間方向にシフトさせることができる。従って、LTE-LAAのように、スロット内の先頭シンボル(1番目のシンボル)とその中間シンボル(先頭シンボルから8番目のシンボル)だけではなく、図2(C)に示すように、それ以外のシンボルからでもデータ送信が可能となっている。そのため、本第1の実施の形態では、スロット内の先頭シンボルとその中間シンボルからデータを送信する場合と比較して、送信機会が増加するため、スループットを向上させることが可能となる。 As described above, in the first embodiment, for example, as shown in FIG. 2C, a symbol including the PDCCH and the PDSCH or a symbol including the PUCCH and the PUSCH can be shifted in the time direction. . Accordingly, as shown in FIG. 2 (C), not only the first symbol (first symbol) and its intermediate symbol (eighth symbol from the first symbol) in the slot as in LTE-LAA, but also other symbols as shown in FIG. Data transmission is possible even from symbols. Therefore, in the first embodiment, the transmission opportunity is increased as compared with the case where data is transmitted from the first symbol in the slot and its intermediate symbol, so that the throughput can be improved.
 また、本第1の実施の形態では、クロスTTIにより同一の端末200宛てのデータを送信する。この場合、図2(C)の例に示すように、送信側は、ACKやNACKを待つことなく、先頭のTTI(又はスロット)の次のTTI(又は次のスロット)において、先頭のTTIで送信できなかったTB#aの残りのデータを送信している。従って、送信装置は、ACKやNACKを待つことなくデータ送信が可能となっているため、ACKやNACKを待ってから送信する場合と比較して、スループットを向上させることが可能となる。 In the first embodiment, data addressed to the same terminal 200 is transmitted by the cross TTI. In this case, as shown in the example of FIG. 2 (C), the transmission side does not wait for ACK or NACK, and in the next TTI (or next slot) after the first TTI (or slot), the transmission side uses The remaining data of TB # a that could not be transmitted is being transmitted. Therefore, since the transmission device can transmit data without waiting for ACK or NACK, it is possible to improve the throughput as compared with a case where transmission is performed after waiting for ACK or NACK.
 さらに、本第1の実施の形態では、送信側は、キャリアセンスにより、先頭スロットで送信できなかった信号を、そのまま、次のスロットで送信する。その信号に対してある処理を施す場合と比較して、本第1の実施の形態では、そのまま送信するため、送信側の送信処理や受信側の受信処理の複雑度を低減させることも可能となる。 In the first embodiment, the transmitting side transmits a signal that could not be transmitted in the first slot due to carrier sense in the next slot as it is. Compared to the case where a certain process is performed on the signal, the first embodiment transmits the signal as it is, so that it is possible to reduce the complexity of the transmission process on the transmission side and the reception process on the reception side. Become.
 以下では、本第1の実施の形態について、場合を分けて説明する。最初に、RRCメッセージとPDCCHとの関係について説明する。次に、具体的な例として、1)PDCCHとPDSCHとがシフトする場合において、RRCメッセージによりクロスTTIを設定する場合、を説明する。次に、2)PUSCHがシフトする場合において、RRCメッセージよりクロスTTIを設定する場合、を説明する。そして、次に、3)PDCCHとPDSCHとがシフトする場合において、PDCCHによりクロスTTIを設定する場合、を説明する。 Hereinafter, the first embodiment will be described in different cases. First, the relationship between the RRC message and the PDCCH will be described. Next, as a specific example, 1) a case where a cross TTI is set by an RRC message when the PDCCH and the PDSCH are shifted will be described. Next, 2) a case where a cross TTI is set from the RRC message when the PUSCH is shifted will be described. Next, 3) a case where a cross TTI is set by the PDCCH when the PDCCH and the PDSCH are shifted will be described.
 なお、図2(B)に示すように、TB#bに対しては、先頭スロットの次のスロットにおいて、スロット内の全シンボルが割り当てられている。この場合、図2(C)に示すように、TB#aのクロスTTIにより、先頭スロットの次スロットにおいて、TB#bの4シンボル分のデータを送信装置は送信することができない。この場合、送信装置は、送信できなかった4シンボル分のデータを、更に、次のスロット(先頭スロットの次の次のスロット)を用いて送信することも可能である。送信装置は、TB#bも、クロスTTIで送信することが可能である。 As shown in FIG. 2B, all symbols in the slot are allocated to TB # b in the slot next to the first slot. In this case, as shown in FIG. 2C, the transmitting apparatus cannot transmit data for four symbols of TB # b in the slot next to the first slot due to the cross TTI of TB # a. In this case, the transmitting apparatus can further transmit the data for four symbols that could not be transmitted using the next slot (the next slot following the first slot). The transmitting apparatus can also transmit TB # b in the cross TTI.
 また、図2(C)に示す例では、2シンボル毎に、キャリアセンスが行われる例について説明しているが、1シンボル毎でもよいし、3シンボル毎以上でもよい。 {Circle around (2)} In the example shown in FIG. 2 (C), an example in which carrier sense is performed every two symbols is described, but it may be performed every one symbol or every three or more symbols.
 <3.RRCメッセージとPDCCHとの関係>
 図3は、5Gにおける、基地局100と端末200と間のプロトコルスタックの例を表す図である。図3に示すように、PDCCHは、最下層の物理レイヤ(PHY)に含まれ、RRCメッセージは、物理レイヤよりも上位のRRCレイヤに含まれる。
<3. Relationship between RRC message and PDCCH>
FIG. 3 is a diagram illustrating an example of a protocol stack between the base station 100 and the terminal 200 in 5G. As shown in FIG. 3, the PDCCH is included in the lowest physical layer (PHY), and the RRC message is included in an RRC layer higher than the physical layer.
 PDCCHは、例えば、TTI毎に送信される。そのため、PDCCHは、RRCメッセージと比較して、オーバーヘッドが大きい反面、リアルタイムに制御を変更することができ、柔軟性がある。 The PDCCH is transmitted, for example, for each TTI. Therefore, the PDCCH has a larger overhead than the RRC message, but can change the control in real time and has flexibility.
 一方、RRCメッセージは、例えば、数百ms毎に送信される。そのため、RRCメッセージは、PDCCHと比較して、オーバーヘッドが少ない反面、リアルタイムに制御を変更することが難しく、柔軟性に乏しい。 On the other hand, the RRC message is transmitted, for example, every several hundred ms. Therefore, the RRC message has less overhead than the PDCCH, but it is difficult to change the control in real time, and the RRC message is less flexible.
 PDCCHとRRCメッセージは、例えば、オーバーベッドや柔軟性に関して、トレードオフの関係にある、と言える。 It can be said that the PDCCH and the RRC message have a trade-off relationship with respect to overbed and flexibility, for example.
 <4.1 PDCCHとPDSCHとがシフトする場合において、RRCメッセージによりクロスTTIを設定する場合>
 図4(A)と図4(B)は、PDCCHとPDSCHの送信例を表す図である。
<4.1 When Cross PTI is Set by RRC Message when PDCCH and PDSCH Shift>
FIGS. 4A and 4B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
 なお、図4(A)の例では、基地局100は、スケジューリングにより、下り方向の先頭スロットの全シンボルに対してTB#aに含まれるデータを割り当て、先頭スロットの次のスロットの全シンボルに対してTB#bのデータを割り当てている。また、図4(A)の例では、先頭の1番目と2番目のシンボルにPDCCHが割り当てられている例となっている。5Gでは、PDCCHについては、1シンボル長から3シンボル長まで許容される。そのため、PDCCHは、1番目のシンボルだけに含まれてもよいし、1~3番目のシンボルに含まれてもよい。 In the example of FIG. 4A, the base station 100 allocates data included in TB # a to all symbols in the first slot in the downlink direction by scheduling, and assigns data to all symbols in the slot next to the first slot. On the other hand, data of TB # b is allocated. Further, in the example of FIG. 4A, the PDCCH is allocated to the first and second symbols at the head. In 5G, PDCCH is allowed from 1 symbol length to 3 symbol length. Therefore, the PDCCH may be included only in the first symbol, or may be included in the first to third symbols.
 図4(A)の例では、基地局100は、アンライセンスバンドにおいてキャリアセンスを行い、先頭スロットの1番目のシンボルの時点で、“Idle”状態であることを確認したため、1番目のシンボルから順番に、各シンボルに割り当てたPDCCH#aとPDSCH(TB#a)とを送信している。そして、基地局100は、先頭スロットの次のスロットにおいても、1番目のシンボルから順番に、各シンボルに割り当てたPDCCH#bとPDSCH(TB#b)とを送信している。 In the example of FIG. 4A, the base station 100 performs carrier sense in the unlicensed band and confirms that the base station 100 is in the “Idle” state at the time of the first symbol of the first slot. The PDCCH #a and the PDSCH (TB #a) assigned to each symbol are transmitted in order. The base station 100 also transmits PDCCH # b and PDSCH (TB # b) assigned to each symbol in the slot next to the first slot in order from the first symbol.
 一方、図4(B)の例では、基地局100は、アンライセンスバンドにおいてキャリアセンスを行い、先頭スロットの1番目のシンボルの時点で、“Busy”状態であることを確認している。そのため、基地局100は、PDCCH#aとPDSCH(TB#a)、さらに、その後に続く、PDCCH#bとPDSCH(TB#b)も、このタイミングでは送信しない。 4 On the other hand, in the example of FIG. 4B, the base station 100 performs carrier sense in the unlicensed band, and confirms that it is in the “Busy” state at the time of the first symbol of the first slot. Therefore, base station 100 also does not transmit PDCCH #a and PDSCH (TB #a), and also subsequent PDCCH #b and PDSCH (TB #b) at this timing.
 基地局100は、最初のキャリアセンスを行ってから所定時間経過後(図4(A)の例では2シンボル時間経過後)、再度、キャリアセンスを行い、先頭スロットの3番目のシンボルの時点で、“Busy”状態であることを確認している。そのため、基地局100は、この時点でも、送信を行わない。 The base station 100 performs the carrier sense again after a lapse of a predetermined time after the first carrier sense (after a lapse of two symbol times in the example of FIG. 4A), and at the time of the third symbol of the first slot. , "Busy" state. Therefore, the base station 100 does not perform transmission at this point.
 そして、基地局100は、2番目のキャリアセンスを行ってから所定時間経過後、再度、キャリアセンスを行い、先頭スロットの5番目のシンボルの時点で、“Idle”状態を確認する。そのため、基地局100は、5番目のシンボルの時点が送信開始タイミングとなって、PDCCH#aとPDSCH(TB#a)とを送信する。この場合、基地局100は、TB#aについて、先頭スロットの5番目のシンボルから14番目のシンボルまでの10シンボル分に割り当てたデータを送信する。従って、先頭スロットの全シンボルに割り当てたTB#aのうち、11番目のシンボルから14番目のシンボル目に割り当てた、残りの4シンボル分のTB#aは、先頭スロットでは送信されないことになる。 {Circle around (2)} After a lapse of a predetermined time after performing the second carrier sensing, the base station 100 performs the carrier sensing again and confirms the “Idle” state at the time of the fifth symbol of the first slot. Therefore, base station 100 transmits PDCCH # a and PDSCH (TB # a) with the timing of the fifth symbol as the transmission start timing. In this case, the base station 100 transmits, for TB # a, data allocated to ten symbols from the fifth symbol to the fourteenth symbol in the first slot. Therefore, of the TB # a allocated to all symbols in the first slot, the remaining four symbols of TB # a allocated to the eleventh to fourteenth symbols are not transmitted in the first slot.
 そして、基地局100は、クロスTTIを利用して、残りの4シンボル分のTB#aを送信する。すなわち、基地局100は、図4(B)の例では、次のスロットの最後の4シンボル(11番目から14番目のシンボル)を利用して、送信されなかった残り4シンボル分のTB#aを送信する。この場合、基地局100は、端末200からACKやNACKを受信することなく、残りの4シンボル分のデータを、次のスロットの最後の4シンボルを利用して送信する。 基地 Then, base station 100 transmits TB # a for the remaining four symbols using the cross TTI. That is, in the example of FIG. 4 (B), base station 100 uses the last four symbols (the eleventh to fourteenth symbols) of the next slot to transmit TB # a for the remaining four symbols that have not been transmitted. Send In this case, base station 100 transmits the data of the remaining four symbols using the last four symbols of the next slot without receiving ACK or NACK from terminal 200.
 なお、PDCCHを利用して送信されるDCIには、PDSCHの時間方向のリソース割り当てとして、開始シンボルSと、開始シンボルからの連続した長さ(以下、「長さ」と称する場合がある。)Lとが含まれる。図4(A)の例では、S=0,L=14を含むDCIがPDCCHを利用して送信されることになる。 In the DCI transmitted using the PDCCH, a start symbol S and a continuous length from the start symbol (hereinafter, sometimes referred to as “length”) are used as resource allocation in the time direction of the PDSCH. L. In the example of FIG. 4A, DCI including S = 0 and L = 14 is transmitted using the PDCCH.
 本第1の実施の形態では、基地局100は、キャリアセンスにより複数の送信機会がある場合でも、DCIに含まれる開始シンボルSと長さLとはその内容を同じにする。従って、基地局100は、図4(A)に示すように、1番目のシンボルから送信するPDCCH#aと、図4(B)に示すように、5番目のシンボルから送信するPDCCH#aとにおいて、開始シンボルSと長さLは、ともに、S=0,L=14を含むDCIを送信する。 In the first embodiment, even when there are a plurality of transmission opportunities due to carrier sense, the base station 100 makes the contents of the start symbol S and length L included in DCI the same. Accordingly, base station 100 transmits PDCCH #a from the first symbol as shown in FIG. 4A, and PDCCH #a from the fifth symbol as shown in FIG. 4B. , The start symbol S and the length L both transmit DCI including S = 0 and L = 14.
 この場合、図4(A)の例では、端末200は、S=0,L=14のPDCCHとPDSCHの全てを受信することができる。しかし、図4(B)の例では、端末200は、S=0の時点で、PDDCHとPDSCHとを受信していない。また、端末200は、1スロット時間が終了するとき、L=14の長さ分のPDSCHを受信していない。すなわち、端末200は、開始シンボルSと長さLとを利用して、不足分のPDSCHがあることを把握することが可能となる。この場合、端末200は、不足分のPDSCHを「未送信」と解釈する。詳細は動作例で説明する。 In this case, in the example of FIG. 4A, the terminal 200 can receive all of the PDCCH and PDSCH of S = 0 and L = 14. However, in the example of FIG. 4B, terminal 200 has not received PDDCH and PDSCH at the time of S = 0. In addition, when one slot time ends, terminal 200 has not received PDSCH for a length of L = 14. That is, terminal 200 can use the start symbol S and length L to know that there is an insufficient PDSCH. In this case, terminal 200 interprets the insufficient PDSCH as “untransmitted”. Details will be described in an operation example.
 なお、本第1の実施の形態においては、開始シンボルSは、例えば、送信バーストを実際に送信開始できたシンボル、と定義する。例えば、図4(A)の例では、1スロット内の1番目のシンボル(シンボル0)から送信バーストの送信が開始され、図4(B)の例では、5番目のシンボル(シンボル4)から送信バーストの送信が開始されている。この場合、いずれも、開始シンボルSは、S=0となる。 In the first embodiment, the start symbol S is defined as, for example, a symbol that can actually start transmission of a transmission burst. For example, in the example of FIG. 4A, transmission of a transmission burst starts from the first symbol (symbol 0) in one slot, and in the example of FIG. 4B, the transmission burst starts from the fifth symbol (symbol 4). Transmission of transmission burst has started. In this case, in each case, the start symbol S is S = 0.
 次に、RRCメッセージにより、クロスTTIを設定する例について説明する。 Next, an example of setting a cross TTI using an RRC message will be described.
 図5(A)は、RRCメッセージの交換例を表す図である。図5(A)において、例えば、UE(User Equipment)は端末200に対応し、Networkは基地局100に対応する。 FIG. 5A is a diagram illustrating an example of exchange of RRC messages. In FIG. 5A, for example, UE (User @ Equipment) corresponds to the terminal 200, and Network corresponds to the base station 100.
 基地局100は、RRCReconfigurationメッセージを端末200へ送信する(S10)。一方、端末200は、RRCReconfigurationメッセージを受信すると、RRCReconfigurationCompleteメッセージを基地局100へ送信する(S11)。 The base station 100 transmits an RRCReconfiguration message to the terminal 200 (S10). On the other hand, upon receiving the RRCReconfiguration message, the terminal 200 transmits an RRCReconfigurationComplete message to the base station 100 (S11).
 図5(B)は、RRCReconfigurationメッセージの構成例を表す図である。RRCReconfigurationメッセージには、種々の内容が階層構造で含まれており、その一部に、PDSCH-ConfigとPUSCH-Configが含まれる。 FIG. 5B is a diagram illustrating a configuration example of the RRCReconfiguration message. The RRCReconfiguration message includes various contents in a hierarchical structure, and a part of the message includes a PDSCH-Config and a PUSCH-Config.
 PDSCH-Configは、例えば、UE個別のPDSCHパラメータを設定するために用いられる。また、PUSCH-Configは、例えば、UE個別のPUSCHパラメータを設定するために用いられる。PDSCH-ConfigとPUSCH-Configにそれぞれ含まれる情報要素(IE:Information Element)の詳細は、3GPP TS 38.331 V15.1.0(2018-03)に記載されている。 PDSCH-Config is used, for example, to set UE-specific PDSCH parameters. Further, the PUSCH-Config is used, for example, to set PUSCH parameters for each UE. Details of the information element (IE: Information @ Element) included in each of PDSCH-Config and PUSCH-Config are described in 3GPP \ TS \ 38.331 \ V15.1.0 (2018-03).
 本第1の実施の形態では、基地局100は、PDSCH-Configに、クロスTTIを実現するためのIEを更に含めて送信するようにしている。 In the first embodiment, the base station 100 transmits the PDSCH-Config further including the IE for implementing the cross TTI.
 図6は、PDSCH―Configに含まれるIEの例を表す図である。IEとして、(1)クロスTTIを行うか否か、(2)未送信部分を送信するスロット番号、(3)送信を開始するシンボル番号、(4)先頭スロットの次のスロットの終了シンボルは、更に、次のスロットでシフトさせるか否か、が含まれる。 FIG. 6 is a diagram illustrating an example of the IE included in the PDSCH-Config. The IE includes (1) whether or not to perform a cross TTI, (2) a slot number for transmitting an untransmitted portion, (3) a symbol number for starting transmission, and (4) an end symbol of a slot next to the first slot. Further, whether or not to shift in the next slot is included.
 (1)の「クロスTTIを行うか否か」は、例えば、TTIを跨いで(又は複数のTTIを用いて)データの送信を行うか否かを表し、1ビットで表現可能である。 (1) “Whether or not to perform cross TTI” indicates, for example, whether or not to transmit data across TTIs (or using a plurality of TTIs) and can be expressed by 1 bit.
 (2)の「未送信部分を送信するスロット番号」は、例えば、クロスTTIにより未送信部分のPDSCHを送信する場合、その送信に利用するスロットのスロット番号を表す。図4(B)の例では、TB#aの未送信部分(残りの4シンボル分のデータ)は、先頭スロットの次のスロットで送信するため、先頭スロットのスロット番号を「0」とすると、「未送信部分を送信するスロット番号」は「1」となる。 「(2)“ slot number for transmitting untransmitted portion ”indicates, for example, when transmitting the PDSCH of the untransmitted portion by cross TTI, the slot number of the slot used for the transmission. In the example of FIG. 4B, since the untransmitted portion of TB # a (data for the remaining four symbols) is transmitted in the slot next to the first slot, if the slot number of the first slot is “0”, The “slot number for transmitting the untransmitted portion” is “1”.
 (3)の「送信を開始するシンボル番号」は、例えば、(2)の未送信部分を送信するスロット番号のスロット内において、送信を開始するシンボルのシンボル番号を表している。例えば、図4(B)の例では、11番目のシンボルから送信を開始するため、送信を開始するシンボル番号は「10」となる。 The “symbol number to start transmission” in (3) represents, for example, the symbol number of the symbol to start transmission in the slot of the slot number to transmit the untransmitted part in (2). For example, in the example of FIG. 4B, transmission starts from the eleventh symbol, and thus the symbol number for starting transmission is “10”.
 なお、(3)の送信を開始するシンボル番号は、図6に示すように場合分けされている。これは、例えば、基地局100は、キャリアセンスを行うと、送信開始できるタイミングは、実際に行わないとわからない場合があるためである。端末200では、上述したように、開始シンボルSと長さL、及び実際に受信したデータなどから、未送信部分のPDSCHについて「未送信」と解釈することができ、さらに、何シンボル分のデータが不足しているかを把握することが可能である。そして、端末200は、PDSCH-Configに含まれる、(2)の「未送信部分を送信するスロット番号」と、(3)の「送信を開始するシンボル番号」とに従って、そのスロット内におけるそのシンボルから未送信部分のデータを受信することが可能となる。 The symbol number for starting the transmission in (3) is divided into cases as shown in FIG. This is because, for example, when the base station 100 performs the carrier sense, the timing at which transmission can be started may not be known without actually performing the transmission. As described above, the terminal 200 can interpret the PDSCH of the untransmitted portion as “untransmitted” from the start symbol S and the length L, the actually received data, and the like. It is possible to grasp whether or not there is a shortage. Then, terminal 200, according to (2) “slot number for transmitting untransmitted portion” and (3) “symbol number for starting transmission” included in PDSCH-Config, displays the symbol in the slot. , It is possible to receive the data of the untransmitted portion.
 (4)の「先頭スロットの次のスロットの終了シンボルは、更に次のスロットへシフトさせるか否か」は、例えば、以下を表す。すなわち、基地局100は、クロスTTIにより先頭の次のスロット(又はTTI)において、未送信部分を送信することになる。しかし、これにより、先頭の次のスロットにおいて、送信されるべきデータを割り当てたシンボルが少なくなり、基地局100は、このデータを送信することができなくなる。図4(B)の例では、先頭スロットの次のスロットの全シンボルに割り当てたTB#bのデータが、TB#aのクロスTTIにより、送信できない部分が発生する。そのため、(4)によって、更に、次のスロットにシフトさせるか否かを表すIEを、PDSCH-Configに付加している。なお、図4(B)の例では、TB#bの未送信部分の終了シンボルは、更に、次のスロット(先頭から3番目のスロット)へシフトさせていない例を表している。この場合、「先頭スロットの次のスロットの終了シンボルは、更に次のスロットへシフトさせるか否か」は「0」(=シフトさせない)となる。シフトさせる場合は、例えば、このIEは「1」となる。 「(4)“ Whether or not to shift the end symbol of the slot next to the first slot to the next slot ”represents, for example, the following. That is, the base station 100 transmits an untransmitted portion in the next slot (or TTI) at the head by the cross TTI. However, this reduces the number of symbols to which data to be transmitted is allocated in the next slot at the head, and prevents base station 100 from transmitting this data. In the example of FIG. 4B, a portion where data of TB # b allocated to all symbols of the slot next to the first slot cannot be transmitted due to the cross TTI of TB # a occurs. Therefore, according to (4), an IE indicating whether to shift to the next slot is further added to the PDSCH-Config. In the example of FIG. 4B, the end symbol of the untransmitted portion of TB # b is not further shifted to the next slot (the third slot from the head). In this case, “whether the end symbol of the slot next to the first slot is shifted to the next slot” is “0” (= not shifted). When shifting, for example, this IE is “1”.
 なお、図6に示す(3)の「送信を開始するシンボル番号」の場合分けの例は一例である。場合分けとしては、例えば、1シンボル不足した場合は、「送信を開始するシンボル番号」は「1」、2シンボル不足した場合は、「2」、などとしてもよい。 Note that the example of (3) “symbol number for starting transmission” shown in FIG. 6 is an example. For example, when one symbol is insufficient, the “symbol number to start transmission” may be “1”, when two symbols are insufficient, “2”, and the like.
 <4.2 PUSCHがシフトする場合において、RRCメッセージによりクロスTTIを設定する場合>
 図7(A)と図7(B)は、PUSCHの送信例を表す図である。
<4.2 When PUSCH is shifted, cross TTI is set by RRC message>
FIGS. 7A and 7B are diagrams illustrating transmission examples of the PUSCH.
 なお、図7(A)に示すように、基地局100は、スケジューリングにより、上り方向における先頭スロットの全シンボルにTB#aを割り当て、その次のスロットの全シンボルにTB#bを割り当て、その割り当て結果を送信している。 As shown in FIG. 7 (A), base station 100 allocates TB # a to all symbols of the first slot in the uplink direction and allocates TB # b to all symbols of the next slot by scheduling. Sending the assignment result.
 図7(A)の例では、端末200は、アンライセンスバンドにおいてキャリアセンスを行い、先頭スロットの1番目のシンボルの時点で、“Idle”状態を確認したため、1番目のシンボルから順番に、PDCCHに従って、PUSCH(TB#a)を送信する。そして、端末200は、次のスロットにおいても、1番目のシンボルから順番に、PUSCH(TB#b)を送信する。 In the example of FIG. 7A, terminal 200 performs carrier sense in the unlicensed band and confirms the “Idle” state at the time of the first symbol in the first slot, so that PDCCH is sequentially performed from the first symbol. In accordance with the above, the PUSCH (TB # a) is transmitted. Then, even in the next slot, terminal 200 transmits PUSCH (TB # b) in order from the first symbol.
 一方、図7(B)の例では、端末200は、アンライセンスバンドにおいてキャリアセンスを行い、先頭スロットの1番目のシンボルの時点で、“Busy”状態であることを確認する。そのため、端末200は、所定期間経過後、再度、アンライセンスバンドにおいてキャリアセンスを行い、3番目のシンボルの時点でも、“Busy”状態であることを確認する。さらに、端末200は、所定期間経過後、再度、アンライセンスバンドにおいてキャリアセンスを行い、今度は、“Idle”状態を確認する。端末200は、5番目のシンボルの開始時点が送信開始タイミングとなって、PUSCH(TB#a)とを送信する。端末200は、TB#aの送信開始タイミングをシフトして送信する。 {On the other hand, in the example of FIG. 7B, the terminal 200 performs carrier sense in the unlicensed band and confirms that the terminal 200 is in the “Busy” state at the time of the first symbol of the first slot. Therefore, after a predetermined period has elapsed, terminal 200 again performs carrier sense in the unlicensed band, and confirms that the terminal is in the “Busy” state even at the time of the third symbol. Further, after a predetermined period has elapsed, terminal 200 performs carrier sense again in the unlicensed band, and confirms the “Idle” state this time. Terminal 200 transmits the PUSCH (TB # a) with the start time of the fifth symbol as the transmission start timing. Terminal 200 transmits the transmission start timing of TB # a by shifting it.
 この場合、端末200は、TB#aについては、先頭スロットの5番目のシンボルから14番目のシンボルまでの10シンボルに割り当てたデータを、先頭スロットにおいて送信する。従って、端末200は、先頭スロットの全シンボルに割り当てられたTB#aのうち、11番目のシンボルから14番目のシンボルに割り当てられた、残り4シンボル分のTB#aを、先頭スロットでは送信できない。 In this case, for terminal TB # a, terminal 200 transmits data allocated to ten symbols from the fifth symbol to the fourteenth symbol in the first slot in the first slot. Therefore, terminal 200 cannot transmit, in the first slot, TB # a of the remaining four symbols allocated to eleventh to fourteenth symbols among TB # a allocated to all symbols in the first slot. .
 そこで、端末200は、クロスTTIを利用して、残り4シンボル分のTB#aを送信する。すなわち、端末200は、図7(B)の例では、次のスロットの先頭の4シンボル(1番目から4番目のシンボル)を利用して、送信されなかった残り4シンボル分のTB#aを送信する。 {Then, terminal 200 transmits TB # a for the remaining four symbols using the cross TTI. That is, in the example of FIG. 7 (B), terminal 200 uses the first four symbols (first to fourth symbols) of the next slot to transmit TB # a for the remaining four symbols that have not been transmitted. Send.
 そして、基地局100は、下り方向における端末200と同様に、開始シンボルSと長さLに基づいて、不足分のPUSCHがあることを把握することが可能である。例えば、図7(B)の例では、基地局100は、PUCCHにより、S=0,L=14を送信したにも拘わらず、端末200から受信したデータ量が、10シンボル分のデータしか受信しないことを検出すると、不足分のPUSCHがあることを把握できる。この場合、基地局100は、不足分のPUSCHは「未送信」と解釈する。 Then, similarly to the terminal 200 in the downlink direction, the base station 100 can grasp that there is an insufficient PUSCH based on the start symbol S and the length L. For example, in the example of FIG. 7B, the base station 100 receives only 10 symbols of data from the terminal 200 despite transmitting S = 0 and L = 14 by PUCCH. If it is detected that there is no PUSCH, it is possible to grasp that there is an insufficient PUSCH. In this case, the base station 100 interprets the insufficient PUSCH as “untransmitted”.
 次に、RRCメッセージにより、クロスTTIを設定する例について説明する。 Next, an example of setting a cross TTI using an RRC message will be described.
 図6は、RRCReconfigurationメッセージに含まれるPUSCH-ConfigのIEの例を表す。PUSCH-Configも、PDSCH-Configと同様に、3GPP TS 38.3GPP TS 38.331 V15.1.0(2018-03)に各IEが仕様化されている。本第1の実施の形態では、クロスTTIを設定するために、更に、図6に示すIEをPUSCH-Configに含めている。 FIG. 6 shows an example of the IE of the PUSCH-Config included in the RRCReconfiguration message. In the PUSCH-Config as well as the PDSCH-Config, each IE is specified in 3GPP TS 38.3GPP TS 38.331 V15.1.0 (2018-03). In the first embodiment, the IE shown in FIG. 6 is further included in the PUSCH-Config in order to set the cross TTI.
 図6に示すように、IEは、PDSCH-ConfigのIEと同一であり、その内容も同一である。 よ う As shown in FIG. 6, the IE is the same as the IE of PDSCH-Config, and the content thereof is also the same.
 例えば、図7(B)の例では、(1)の「クロスTTIを行うか否か」は「1」(=クロスTTIを行う)、(2)の「未送信部分の送信スロット番号」は「1」(先頭スロットを「0」とするとその次のスロット)となる。また、(3)の「送信を開始するシンボル番号」は「0」、(4)の「次のスロットへシフトさせるか」は「1」(=シフトさせる)となる。 For example, in the example of FIG. 7B, “1” (= cross TTI is performed) is “1” (= cross TTI is performed), and “2. "1" (the next slot if the first slot is "0"). Further, the “symbol number to start transmission” in (3) is “0”, and the “shift to next slot” in (4) is “1” (= shifted).
 端末200は、図5(A)に示すように、RRCReconfigurationメッセージを基地局100から受信する(S10,S11)。そして、RRCReconfigurationメッセージには、図6に示すように、クロスTTIに関するIEが含まれる。端末200は、このIEに従って、図7(B)に示すように、TB#aの残り4シンボル分のデータを、先頭スロットの次のスロットの1番目から4番目のシンボルを利用して送信する。この場合、TB#bのデータについて、11番目のシンボルから14番目のシンボルに割り当てたデータが「未送信」となる。端末200は、図6に示すIEの(4)に従って、次のスロット(先頭スロットの次の次のスロット)に「未送信」部分のデータをシフトさせ、クロスTTIにより送信する。 Terminal 200 receives the RRCReconfiguration message from base station 100, as shown in FIG. 5 (A) (S10, S11). Then, the RRCReconfiguration message includes the IE related to the cross TTI as shown in FIG. According to this IE, terminal 200 transmits data for the remaining four symbols of TB # a using the first to fourth symbols of the slot next to the first slot, as shown in FIG. 7B. . In this case, with respect to the data of TB # b, the data assigned to the eleventh to fourteenth symbols is “not transmitted”. The terminal 200 shifts the data of the “untransmitted” portion to the next slot (next slot after the first slot) according to IE (4) shown in FIG. 6 and transmits the data by the cross TTI.
 なお、図29(A)と図29(B)は、PUCCHとPUSCHとを送信する場合の例を表している。図29(A)と図29(B)は、図7(A)と図7(B)の例に対して、PUCCHが付加されている例を夫々表している。PUCCHは、例えば、DCIにより、PUSCHに付加されたり、PUSCHに付加されてなかったりする。 FIG. 29 (A) and FIG. 29 (B) show an example in the case of transmitting PUCCH and PUSCH. FIGS. 29A and 29B show examples in which PUCCH is added to the examples in FIGS. 7A and 7B, respectively. The PUCCH is added to the PUSCH or not added to the PUSCH, for example, by DCI.
 図29(A)と図29(B)の送信例は、例えば、図7(A)と図7(B)の場合と同様に夫々実施可能である。この場合、図29(B)に示すように、端末200は、5シンボル目を送信開始タイミングとして、図29(A)の場合と比較して、PUCCHとPUSCHとを時間方向にシフトして送信することになる。 送信 The transmission examples of FIGS. 29A and 29B can be implemented, for example, as in the cases of FIGS. 7A and 7B, respectively. In this case, as shown in FIG. 29B, terminal 200 transmits the PUCCH and PUSCH in the time direction with the fifth symbol as the transmission start timing, compared to the case of FIG. 29A. Will do.
 <4.3 PDCCHとPDSCHとがシフトする場合において、PDCCHによりクロスTTIを設定する場合>
 図8(A)と図8(B)は、PDCCHとPDSCHの送信例を表す図である。
<4.3 When Cross TTI is Set by PDCCH when PDCCH and PDSCH Shift>
FIGS. 8A and 8B are diagrams illustrating transmission examples of the PDCCH and the PDSCH.
 図8(A)の例は、基地局100は、1スロットの1番目のシンボル時点において、アンライセンスバンドが“Idle”状態であったため、先頭シンボルの全シンボルに割り当てたTB#aを順番に送信する。また、基地局100は、先頭スロットの次のスロットにおいても全シンボルに割り当てたTB#bを順番に送信する。 In the example of FIG. 8A, since the unlicensed band is in the “Idle” state at the time of the first symbol of one slot, the base station 100 sequentially assigns TB # a allocated to all symbols of the first symbol. Send. Also, base station 100 sequentially transmits TB # b allocated to all symbols in the slot next to the first slot.
 一方、図8(B)の例では、先頭スロットの1番目のシンボルと3番目のシンボルの時点で、“Busy”状態であったため、基地局100は、Tb#aの送信を見合わせている。基地局100は、5番目のシンボル時点で“Idle”状態となったため、TB#aの送信を開始する。この場合、基地局100は、先頭スロットで送信されるTB#aのうち、最後の4シンボルが先頭スロットで送信することができなかった。そのため、基地局100は、クロスTTIにより、次のスロット(又はTTI)で、5番目のシンボルから8番目のシンボルを利用して、「未送信」であるTB#aの残りの4シンボル分のデータを送信している。 On the other hand, in the example of FIG. 8 (B), the base station 100 is in the “Busy” state at the time of the first symbol and the third symbol of the first slot, so the base station 100 suspends transmission of Tb # a. Since the base station 100 is in the “Idle” state at the time of the fifth symbol, it starts transmitting TB # a. In this case, base station 100 could not transmit the last four symbols in the first slot among TB # a transmitted in the first slot. Therefore, the base station 100 uses the fifth to eighth symbols in the next slot (or TTI) in the next slot (or TTI) by using the cross TTI, for the remaining four symbols of “untransmitted” TB # a. Transmitting data.
 本例では、PDCCHによりクロスTTIを設定する。 で は In this example, the cross TTI is set by the PDCCH.
 図9は、PDCCHを利用して送信されるDCIに含まれる領域(フィールド)の例を表す図である。 FIG. 9 is a diagram illustrating an example of an area (field) included in DCI transmitted using the PDCCH.
 図9に示すように、DCIは、TDRA(Time Domain Resource Assignment)、NDI(New Data Indicator)、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号(HARQ Process number)を含む。また、新しいPDCCHは、RV(Redundancy Version)、MCS(Modulation and Coding Scheme)、FDRA(Frequency Domain Resource Assignment)を含む。 As shown in FIG. 9, DCI includes TDRA (Time @ Domain @ Resource @ Assignment), NDI (New @ Data @ Indicator), HARQ (Hybrid @ Automatic @ Repeat @ reQuest) process number (HARQ @ Process @ number). Further, the new PDCCH includes RV (Redundancy Version), MCS (Modulation and Coding Scheme), and FDRA (Frequency Domain Resource Assignment).
 TDRAは、例えば、時間方向のリソース指定を表し、スロット内における開始シンボルSと長さLを含む。開始シンボルSは、上記<4.1>と同様に、例えば、送信バーストを実際に送信開始できたシンボル、と定義する。また、複数の送信機会がある場合、基地局100は、開始シンボルSと長さLは同じ値に設定する。 TDRA indicates, for example, resource specification in the time direction, and includes a start symbol S and a length L in a slot. The start symbol S is defined as, for example, a symbol that can actually start transmission of a transmission burst, similarly to the above <4.1>. When there are a plurality of transmission opportunities, base station 100 sets start symbol S and length L to the same value.
 図10(A)は、図8(A)と図8(B)の例における、PDCCH#mに含まれるDCIの例を表す図である。図10(A)に示すように、図8(A)のPDCCH#mに含まれる開始シンボルSと長さLと、図8(B)のPDCCH#mに含まれる開始シンボルSと長さLとは、ともに、S=0、L=14となる。 FIG. 10A is a diagram illustrating an example of DCI included in PDCCH #m in the examples of FIGS. 8A and 8B. As shown in FIG. 10A, start symbol S and length L included in PDCCH #m in FIG. 8A, and start symbol S and length L included in PDCCH #m in FIG. Are both S = 0 and L = 14.
 図9に戻り、NDIは、例えば、今回のNDIと同一の再送プロセス(HARQ)において、前回のNDIとの比較により、再送データか新規データかを識別するために用いられる。 Returning to FIG. 9, the NDI is used, for example, in the same retransmission process (HARQ) as the current NDI to identify retransmission data or new data by comparing with the previous NDI.
 図11は、NDIの使用例を表す図である。 FIG. 11 is a diagram illustrating an example of using NDI.
 TB#aに着目すると、基地局100は、最初はNDIとして、“0”を送信し、端末200からNACKが返送されたため、TB#aを再送する。この場合、基地局100は、NDIとして表された“0”を、Toggle(又はビット反転)しないで、再び、NDIとして“0”を送信する。端末200は、NDIのビットがToggleしていないため、受信したTB#aが再送データであると認識することができる。 Focusing on TB # a, base station 100 first transmits “0” as NDI, and retransmits TB # a because NACK is returned from terminal 200. In this case, the base station 100 transmits “0” represented as NDI again without performing Toggle (or bit inversion) as NDI. The terminal 200 can recognize that the received TB # a is retransmission data because the NDI bit is not toggled.
 そして、端末200が、TB#aを正常に受信したことでACKを返送すると、基地局100は、TB#aとは異なるTB#a’を新規データとして送信する。この場合、基地局100は、NDIのビット“0”をToggleし、 “1”を送信する。端末200は、NDIとして“1”を受信したため、TB#a’が新規データであることを認識できる。 {Circle around (2)} When terminal 200 returns ACK due to normal reception of TB # a, base station 100 transmits TB # a ′ different from TB # a as new data. In this case, the base station 100 toggles the bit “0” of the NDI and transmits “1”. Since the terminal 200 has received “1” as the NDI, it can recognize that TB # a ′ is new data.
 図9に戻り、HARQプロセス番号は、例えば、TBを記憶するTB毎のバッファの識別番号を表す。例えば、同一の再送プロセスにおいて、HARQプロセス番号が同一の場合、同一のTBを表し、異なる場合、異なるTBを表す。 Returning to FIG. 9, the HARQ process number indicates, for example, an identification number of a buffer for each TB that stores the TB. For example, in the same retransmission process, when the HARQ process numbers are the same, they represent the same TB, and when they are different, they represent different TBs.
 RVは、例えば、符号化データのバージョンを表す。再送毎に符号化データのバージョンを変えることで、受信側の符号化利得を向上させることができる。基地局100は、同一再送プロセスにおいて再送データを送信するときは、前回送信したRVとは異なるRVを送信することで、端末200においては、再送データに対する符号化利得を向上させることが可能である。 RV represents, for example, the version of the encoded data. By changing the version of the coded data for each retransmission, the coding gain on the receiving side can be improved. When transmitting retransmission data in the same retransmission process, base station 100 transmits an RV different from the previously transmitted RV, so that terminal 200 can improve the coding gain for the retransmission data. .
 本第1の実施の形態では、クロスTTIの設定用に新しいPDCCH(図8(B)の例ではPDCCH#n)を用い、NDI、HARQプロセス番号、及びRVにより、PDSCHの「未送信」部分を送信することを表すようにしている。 In the first embodiment, a new PDCCH (PDCCH # n in the example of FIG. 8B) is used for setting a cross TTI, and an “untransmitted” portion of the PDSCH is determined by the NDI, HARQ process number, and RV. Is transmitted.
 図10(B)は、図8(B)の例で、新しいPDCCHであるPDCCH#nに含まれるDCIの例を表す図である。なお、図8(B)の例では、残りの4シンボル分のTB#aを、先頭スロットの次のスロットにおける4番目のシンボルを送信開始シンボルとし、その長さを4シンボルとしているため、図10(B)に示すPDCCH#nのTDRAは、S=4,L=4となっている。 FIG. 10B is a diagram showing an example of DCI included in PDCCH # n which is a new PDCCH in the example of FIG. 8B. Note that in the example of FIG. 8B, TB # a for the remaining four symbols is the fourth symbol in the slot next to the first slot as the transmission start symbol and its length is four symbols. The TDRA of PDCCH #n shown in FIG. 10 (B) is S = 4, L = 4.
 図10(B)に示すように、PDCCH#nに含まれるNDIと、図10(A)に示すPDCCH#mに含まれるNDIは同じ“0”となっている。また、PDCCH#nに含まれるHARQプロセス番号と、PDCCH#mに含まれるHARQプロセス番号は、同じ“5”となっている。 NAs shown in FIG. 10B, the NDI included in PDCCH #n and the NDI included in PDCCH #m shown in FIG. 10A are the same “0”. Also, the HARQ process number included in PDCCH #n and the HARQ process number included in PDCCH #m are the same “5”.
 図10(A)と図10(B)に示すように、PDCCH#nとPDCCH#mのHARQプロセス番号が同じであるため、同一再送プロセスにおいては、同一のTB(TB#a)を送信していることを表している。また、PDCCH#nとPDCCH#mのNDIが同じであるものの、PDCCH#nとPDCCH#mのRVがともに同一であるため、例えば、再送ではないことを表している。 As shown in FIG. 10 (A) and FIG. 10 (B), the same TB (TB # a) is transmitted in the same retransmission process because the HARQ process numbers of PDCCH #n and PDCCH #m are the same. It represents that it is. Also, although the NDIs of PDCCH #n and PDCCH #m are the same, the RVs of PDCCH #n and PDCCH #m are the same, indicating that, for example, retransmission is not performed.
 すなわち、PDCCN#nとPDCCH#mのNDI、HARQプロセス番号、及びRVを同じにすることで、同一のPDSCHの「未送信」部分の送信を表することが可能である。 That is, by making the NDI, HARQ process number, and RV of PDCCN #n and PDCCH #m the same, it is possible to represent the transmission of the "untransmitted" portion of the same PDSCH.
 本第1の実施の形態では、このように、NDI、HARQプロセス番号、及びRVの定義を変更することなく、利用の仕方を変えることで、DCIにより、「未送信」部分の送信を表すことが可能となっている。 In the first embodiment, the transmission of the “untransmitted” portion is represented by the DCI by changing the usage without changing the definitions of the NDI, the HARQ process number, and the RV. Is possible.
 なお、図8(A)と図8(B)の例で、TB#bの送信を指示するPDCCH#m1のDCIは、例えば、図10(C)で表される。図10(C)に示すように、HARQプロセス番号は、先頭スロットで送信されるPDCCH#m(図10(A))と比較して、異なっている。そのため、先頭スロットで送信されるTB(図8(A)ではTB#a)とは異なるTB(図8(A)ではTB#b)を基地局100が送信していることを表している。 In the examples of FIGS. 8A and 8B, the DCI of PDCCH # m1 instructing transmission of TB #b is represented, for example, by FIG. 10C. As shown in FIG. 10 (C), the HARQ process number is different from PDCCH # m transmitted in the first slot (FIG. 10 (A)). Therefore, it indicates that the base station 100 is transmitting a TB (TB # b in FIG. 8A) different from the TB transmitted in the first slot (TB # a in FIG. 8A).
 以上、3つの送信例について説明した。 Three transmission examples have been described above.
 <5.その他>
 次に、その他の例について説明する。
<5. Others>
Next, other examples will be described.
 <5.1 Ending Symbolを通知する例>
 次に、Ending Symbolを通知する例について説明する。
<5.1 Example of Notifying Ending Symbol>
Next, an example of notifying the Ending Symbol will be described.
 図12(A)は、PDCCHとPDSCHの送信例を表す図である。 FIG. 12 (A) is a diagram illustrating a transmission example of the PDCCH and the PDSCH.
 図12(A)は、先頭スロットの先頭シンボルにおいて、“Idle”状態であったため、TB#aを先頭から4シンボル利用して送信し、5シンボル目以降を利用してTB#bを送信する例を表している。図12(A)は、5Gで仕様化されたミニスロットの例を表している。 In FIG. 12A, since the head symbol of the head slot is in the “Idle” state, TB # a is transmitted using four symbols from the head, and TB # b is transmitted using the fifth and subsequent symbols. An example is shown. FIG. 12A shows an example of a minislot specified in 5G.
 PDCCH#nのTDRAは、例えば、開始シンボルS=0、長さL=7、PDCCH#m1のTDRAは、例えば、開始シンボルS=0、長さ=14となっている。 T The TDRA of PDCCH #n has, for example, a start symbol S = 0 and a length L = 7, and the TDRA of PDCCH # m1 has, for example, a start symbol S = 0 and a length = 14.
 図12(B)は、先頭スロットの1番目のシンボルと3番目のシンボルの時点では、アンライセンスバンドは“Busy”状態であったため、送信を見合わせ、5番目のシンボルの時点では、“Idle”状態となった例を表している。そのため、基地局100は、5番目のシンボルを送信開始位置として、PDCCH#nとPDCCH#n1、及びTB#aを送信する。 FIG. 12B shows that the unlicensed band is in the “Busy” state at the time of the first symbol and the third symbol of the first slot, so transmission is suspended, and at the time of the fifth symbol, “Idle” This shows an example of a state. Therefore, base station 100 transmits PDCCH #n, PDCCH # n1, and TB #a with the fifth symbol as the transmission start position.
 この場合、先頭スロットの1番目のシンボルから7番目のシンボルに割り当てられたTB#aは、その一部である3シンボル分のデータが先頭スロットで送信される。そのため、TB#aの4番目のシンボルから7番目のシンボルに割り当てられたTB#aの4シンボル分のデータが、先頭スロットの5番目から7番目のシンボルを利用して送信できないことになる。 In this case, in TB # a assigned to the first to seventh symbols of the first slot in the first slot, data for three symbols, which are part of TB # a, is transmitted in the first slot. Therefore, data for four symbols of TB # a allocated to the fourth to seventh symbols of TB # a cannot be transmitted using the fifth to seventh symbols of the first slot.
 このような場合、先頭スロットの8番目のシンボルから11番目のシンボルは、「未送信」部分であるTB#aの4シンボル分のデータの送信に利用されるのか、或いは、PDCCH#m1により指示された通り、TB#bの送信に利用されるのか、把握することができない。しかも、PDCCH#nでは、開始シンボルS=0、長さL=7、PDCCH#m1では、開始シンボルS=0、長さL=14となっており、基地局100と端末200では、開始シンボルSと長さLだけでは、このような場合どのように処理するのか把握することができない。 In such a case, the eighth to eleventh symbols in the first slot are used for transmitting data of four symbols of TB # a, which is an “untransmitted” portion, or are indicated by PDCCH # m1. As described above, it cannot be grasped whether or not it is used for transmitting TB # b. Moreover, in PDCCH # n, start symbol S = 0 and length L = 7, and in PDCCH # m1, start symbol S = 0 and length L = 14. With only S and length L, it is not possible to grasp how to handle such a case.
 そこで、本第1の実施の形態では、Ending Symbolを新たに規定する。Ending Symbolは、例えば、スロット内における終了シンボルを表す。ただし、Ending Symbolの数え方は、例えば、スロットの先頭のシンボルを“0”として、先頭から順番に数える。 Therefore, in the first embodiment, “Ending @ Symbol” is newly defined. Ending @ Symbol represents, for example, an end symbol in a slot. However, how to count Ending @ Symbol is, for example, by setting the symbol at the beginning of the slot to “0” and counting in order from the beginning.
 例えば、Ending Symbol=6のとき、スロットの先頭の1番目のシンボルから数えて7シンボル目までに、そのPDSCHの送信を終了させることを表す。図12(B)の例で、TB#aに対して、Ending Sybol=6のとき、TB#aのデータは、先頭スロットの7番目のシンボルまでに送信が終了することになる。そのため、図12(B)の例では、8番目から14番目のシンボルは、TB#bの送信に利用される。一方、図12(B)の例で、Ending Symbol=13のとき、TB#aの「未送信」のデータは、先頭スロットの8番目から14番目のシンボルまでに送信を終了させることを表している。そのため、図12(B)の例では、TB#aの未送信のデータは、先頭スロットの8番目から14番目のシンボルを利用して送信されることを表している。図12(B)の例では、8番目から11番目のシンボルを利用して、TB#aの未送信のデータが送信される。 {For example, when Ending @ Symbol = 6, it indicates that the transmission of the PDSCH is terminated by the seventh symbol counted from the first symbol at the beginning of the slot. In the example of FIG. 12B, when Ending @ Sybol = 6 with respect to TB # a, the transmission of the data of TB # a ends by the seventh symbol in the first slot. Therefore, in the example of FIG. 12B, the eighth to fourteenth symbols are used for transmission of TB # b. On the other hand, in the example of FIG. 12B, when “Ending @ Symbol = 13”, “untransmitted” data of TB # a indicates that transmission is to be completed from the 8th to 14th symbol of the first slot. I have. Therefore, the example of FIG. 12B indicates that untransmitted data of TB # a is transmitted using the eighth to fourteenth symbols of the first slot. In the example of FIG. 12B, untransmitted data of TB # a is transmitted using the eighth to eleventh symbols.
 Ending Symbolは、例えば、S<6のときは「6」、それ以外では「13」などとすることで、「未送信」部分のデータを、他のTTIへシフトさせて送信するか否かを表している、と言える。 Ending @ Symbol is, for example, “6” when S <6, “13” otherwise, and determines whether to shift the “untransmitted” portion of data to another TTI and transmit it. It can be said that it represents.
 このEnding Symbolも、RRCReconfigurationメッセージにより設定してもよいし、PDCCHにより設定してもよい。 << Ending >> Symbol may also be set by the RRCReconfiguration message or may be set by the PDCCH.
 図13は、RRCメッセージにより、Ending Symbolを設定する例を表している。 FIG. 13 shows an example of setting Ending @ Symbol by an RRC message.
 図13に示すように、RRCReconfigurationメッセージに含まれるPDCH-Configに、「Ending Symbol」のIEが新たに含まれる。基地局100は、このIEに、終了シンボルを挿入して、端末200へ送信する(例えば図5(A))。 示 す As shown in FIG. 13, the IE of “Ending @ Symbol” is newly included in the PDCH-Config included in the RRCReconfiguration message. The base station 100 inserts an end symbol into this IE and transmits it to the terminal 200 (for example, FIG. 5A).
 図13に示す例では、開始シンボルS<6のとき、Ending Symbol=6、それ以外のとき、Ending Symbol=13と設定する例を表している。すなわち、開始シンボルSが、キャリアセンスにより、1番目から7番目のシンボルとなったとき、7番目のシンボルまでに、これらのシンボルに割り当てたTB#aの送信を終了させることを表す。また、開始シンボルSが、キャリアセンスにより、8番目から14番目のシンボルとなったとき、14番目のシンボルまでに、TB#aの送信を終了させることを表している。 例 The example shown in FIG. 13 shows an example in which Ending @ Symbol = 6 when the start symbol S <6, and Ending @ Symbol = 13 in other cases. That is, when the start symbol S becomes the first to seventh symbols due to the carrier sense, the transmission of the TB # a assigned to these symbols is finished by the seventh symbol. Also, when the start symbol S changes from the eighth to the fourteenth symbol due to the carrier sense, the transmission of TB # a is ended by the fourteenth symbol.
 図14は、PDCCHにより、Ending Symbolを設定する例を表している。 FIG. 14 shows an example in which Ending @ Symbol is set by the PDCCH.
 図14に示すように、「Ending Symbol」の領域が新たに含まれ、基地局100は、この領域に終了シンボルを挿入してPDCCHを送信する。この場合、TDRAに含まれる長さLについては、L=E-S+1と計算可能であるため、TDRAに長さLを含めなくてよい。また、「Ending Symbol」の情報をTDRAの領域の中に含めてもよい。 領域 As shown in FIG. 14, an “Ending @ Symbol” area is newly included, and base station 100 inserts an end symbol in this area and transmits the PDCCH. In this case, since the length L included in the TDRA can be calculated as L = ES + 1, the length L need not be included in the TDRA. Further, information of “Ending @ Symbol” may be included in the TDRA area.
 なお、図12(C)に示すように、先頭スロットの8番目から10番目のシンボルにPDCCHが割り当てられてもよい。この場合、基地局100は、このPDCCHにより、TB#aの「未送信」の4シンボル分のデータを、8番目から14番目のシンボルで受信するか否か(又はシフトを許容するか否か)を決定する情報を含むDCIを送信してもよい。或いは、基地局100は、PDSDH-Config内に、このような情報を挿入して、RRCメッセージで設定するようにしてもよい。 As shown in FIG. 12 (C), the PDCCH may be allocated to the eighth to tenth symbols of the first slot. In this case, base station 100 uses this PDCCH to determine whether or not to receive data for four “untransmitted” symbols of TB # a in the eighth to fourteenth symbols (or whether to permit shifting). ) May be transmitted. Alternatively, the base station 100 may insert such information into the PDSDH-Config and set the information in the RRC message.
 なお、Ending Symbolは、PUCCHとPUSCHの送信においても利用可能である。この場合、基地局100は、例えば、図13に示すPUSCH-Configを利用して、Ending Symbolの設定が可能である。 << Ending >> Symbol can also be used in transmission of PUCCH and PUSCH. In this case, the base station 100 can set Ending @ Symbol using, for example, the PUSCH-Config illustrated in FIG.
 <5.2 PDCCHのマッピング領域にPDSCHがマッピングできない場合の例>
 5Gでは、例えば、あるシンボルを利用してPDCCHを送信し、そのシンボルを利用してPDSCHを送信することが可能である。或いは、例えば、PDCCHがマッピングされたシンボルに対して、PDSCHをマッピングして送信することが可能である。
<5.2 Example when PDSCH cannot be mapped in PDCCH mapping area>
In 5G, for example, it is possible to transmit a PDCCH using a certain symbol and transmit a PDSCH using the symbol. Alternatively, for example, it is possible to map and transmit the PDSCH to the symbol to which the PDCCH is mapped.
 図15(A)と図15(B)はPDCCHとPDSCHの送信例を表す。 FIGS. 15A and 15B show transmission examples of PDCCH and PDSCH.
 図15(A)は、基地局100が、先頭スロットでPDCCH#mとTB#aを送信し、次のスロットで、PDCCH#m1とTB#bとを送信する例を表している。 FIG. 15A shows an example in which base station 100 transmits PDCCH #m and TB #a in the first slot, and transmits PDCCH # m1 and TB #b in the next slot.
 一方、図15(B)では、先頭スロットでは、5番目のシンボルから送信開始となり、TB#aが、クロスTTIにより、先頭スロット(又は先頭TTI)と次のスロット(又は次のTTI)を利用して送信される例を表している。この場合、基地局100は、先頭スロットの次のスロットの1番目と2番目のシンボルに、2つのPDCCH#m1とPDCCH#nを割り当て、さらに、この2つのシンボルにPDSCHを割り当てている。 On the other hand, in FIG. 15B, in the first slot, transmission starts from the fifth symbol, and TB # a uses the first slot (or the first TTI) and the next slot (or the next TTI) by the cross TTI. This is an example of transmission. In this case, base station 100 allocates two PDCCH # m1 and PDCCH #n to the first and second symbols of the slot next to the first slot, and further allocates PDSCH to these two symbols.
 この場合、この2つのシンボルの領域においては、PDSCHが割り当てられた無線リソースの領域に、PDCCH(PDCCH#m1及びPDCCH#n)が割り当てられた無線リソースの領域が含まれる場合がある。 In this case, in the area of the two symbols, the area of the radio resource to which the PDSCH is allocated may include the area of the radio resource to which the PDCCH (PDCCH # m1 and PDCCH #n) is allocated.
 本第1の実施の形態では、基地局100は、PDCCHの領域を含むPDSCHにおいて、PDCCHの領域にマッピングする予定であった符号化ビットをパンクチャする。すなわち、基地局100は、PDSCHの領域内にPDCCHが含まれるとき、PDSCHよりもPDCCHを優先して送信する。さらに、基地局100は、PDCCHとPDSCHとが重複した無線リソースの領域では、符号化ビットを送信しないようにする(又はパンクチャする)。これにより、例えば、受信側の端末200では、データと制御信号とを同一の周波数を利用して同一のタイミングで受信することを回避することができ、データや制御信号を正常に受信することが可能となる。 In the first embodiment, the base station 100 punctures coded bits to be mapped to the PDCCH region in the PDSCH including the PDCCH region. That is, when the PDCCH is included in the PDSCH area, the base station 100 transmits the PDCCH with priority over the PDSCH. Furthermore, the base station 100 does not transmit (or punctures) the coded bits in the area of the radio resource where the PDCCH and the PDSCH overlap. Thereby, for example, the receiving-side terminal 200 can avoid receiving data and control signals at the same timing using the same frequency, and can normally receive data and control signals. It becomes possible.
 <6.基地局と端末の構成例>
 図16(A)は基地局100の構成例を表す図である。基地局100は、伝送路インタフェース110と、ベースバンド信号処理部120、RF(Radio Frequency)送受信部(又は送信部、或いは受信部)130、及びアンテナ140を備える。基地局100は、例えば、5Gで規定されたgNB(Next generation Node B)であってもよい。
<6. Configuration example of base station and terminal>
FIG. 16A is a diagram illustrating a configuration example of the base station 100. The base station 100 includes a transmission path interface 110, a baseband signal processing unit 120, an RF (Radio Frequency) transmitting / receiving unit (or a transmitting unit or a receiving unit) 130, and an antenna 140. The base station 100 may be, for example, a gNB (Next generation Node B) defined in 5G.
 伝送路インタフェース110は、上位局や他の基地局から送信されたパケットデータを受信し、受信したパケットデータからデータなどを抽出する。伝送路インタフェース110は、抽出したデータをベースバンド信号処理部120へ出力する。また、伝送路インタフェース110は、ベースバンド信号処理部120から出力されたデータなどを入力し、入力したデータなどを含むパケットデータを生成し、生成したパケットデータを上位局や他の基地局へ送信する。 (4) The transmission line interface 110 receives packet data transmitted from an upper station or another base station, and extracts data and the like from the received packet data. The transmission line interface 110 outputs the extracted data to the baseband signal processing unit 120. Further, the transmission line interface 110 receives data output from the baseband signal processing unit 120, generates packet data including the input data, and transmits the generated packet data to an upper station or another base station. I do.
 ベースバンド信号処理部120は、例えば、ベースバンド帯域のデータに対する処理を行う。 The baseband signal processing unit 120 performs, for example, processing on data in a baseband.
 図16(B)はベースバンド信号処理部120の構成例を表す図である。ベースバンド信号処理部120は、受信信号処理部121、制御部122、PDCCH生成部123、PDSCH生成部124、及びマッピング部125を備える。 FIG. 16B is a diagram illustrating a configuration example of the baseband signal processing unit 120. The baseband signal processing unit 120 includes a reception signal processing unit 121, a control unit 122, a PDCCH generation unit 123, a PDSCH generation unit 124, and a mapping unit 125.
 受信信号処理部121は、例えば、制御部122から出力された、上り方向のスケジューリング結果に従って、RF送受信部130から出力されたベースバンド信号から、ある端末200から送信されたデータ(PUSCH)や制御信号(PUCCH)などを抽出する。受信信号処理部121は、抽出したデータや制御信号などを制御部122へ出力する。 The received signal processing unit 121 receives, for example, data (PUSCH) transmitted from a certain terminal 200 and control based on the baseband signal output from the RF transmitting / receiving unit 130 according to the uplink scheduling result output from the control unit 122. A signal (PUCCH) is extracted. The reception signal processing unit 121 outputs the extracted data, control signal, and the like to the control unit 122.
 制御部122は、例えば、端末200と無線通信を行う際のスケジューリングを行い、スケジューリング結果を、PDCCH生成部123へ出力する。この場合、PDCCH生成部123へ出力するスケジューリング結果には、下り方向と上り方向の各スケジューリング結果が含まれる。制御部122は、下り方向のスケジューリング結果をマッピング部125へ、上り方向のスケジューリング結果を受信信号処理部121へそれぞれ出力する。 The control unit 122 performs scheduling when performing wireless communication with the terminal 200, for example, and outputs the scheduling result to the PDCCH generation unit 123. In this case, the scheduling result output to PDCCH generating section 123 includes the respective scheduling results in the downlink and uplink directions. Control section 122 outputs the downlink scheduling result to mapping section 125 and the uplink scheduling result to reception signal processing section 121, respectively.
 また、制御部122は、伝送路インタフェース110から出力されたデータをPDSCH生成部124へ出力する。 (4) The control unit 122 outputs the data output from the transmission line interface 110 to the PDSCH generation unit 124.
 さらに、制御部122は、RRCメッセージを生成し、生成したRRCメッセージをPDSCH生成部124へ出力する。RRCメッセージは、例えば、RRCReconfigurationメッセージが含まれ、図6や図13などに示すPDSCH-ConfigやPUSCH-Configも含まれる。 (4) Further, the control unit 122 generates an RRC message and outputs the generated RRC message to the PDSCH generation unit 124. The RRC message includes, for example, an RRCReconfiguration message, and also includes a PDSCH-Config and a PUSCH-Config shown in FIGS.
 PDCCH生成部123は、制御部122から出力されたスケジューリング結果に対し、このスケジューリング結果を含むDCIを生成する。PDCCH生成部123は、例えば、図9や図14に示すDCIを生成する。ただし、DCIの各IEに含まれる情報は、例えば、制御部122において生成されてもよく、この場合、PDCCH生成部123は、各情報をまとめて、図9や図14に示す1つのDCIの形式となるように、DCIを生成してもよい。PDCCH生成部123は、生成したDCIをマッピング部125へ出力する。 PDCCH generating section 123 generates DCI including the scheduling result from the scheduling result output from control section 122. The PDCCH generation unit 123 generates, for example, the DCI shown in FIG. 9 and FIG. However, the information included in each IE of the DCI may be generated in, for example, the control unit 122. In this case, the PDCCH generation unit 123 collects the information and collects the information of one DCI shown in FIG. 9 or FIG. The DCI may be generated to be in the form. PDCCH generating section 123 outputs the generated DCI to mapping section 125.
 PDSCH生成部124は、制御部122から出力されたデータを、マッピング部125へ出力する。この場合、PDSCH生成部124は、例えば、このデータをPDSCHとして出力してもよい。また、PDSCH生成部124は、制御部122から出力されたRRCメッセージを、マッピング部125へ出力する。 PDSCH generating section 124 outputs the data output from control section 122 to mapping section 125. In this case, the PDSCH generation unit 124 may output this data as a PDSCH, for example. Further, PDSCH generating section 124 outputs the RRC message output from control section 122 to mapping section 125.
 マッピング部125は、制御部122から出力された下り方向のスケジューリング結果に従って、PDCCH生成部123から出力された制御信号と、PDSCH生成部124から出力されたデータを、無線リソース上の所定の領域にマッピングする。マッピング部125は、マッピングした制御信号とデータとをRF送受信部130へ出力する。 The mapping unit 125 maps the control signal output from the PDCCH generation unit 123 and the data output from the PDSCH generation unit 124 to a predetermined area on the radio resource according to the downlink scheduling result output from the control unit 122. Map. Mapping section 125 outputs the mapped control signal and data to RF transmitting / receiving section 130.
 また、マッピング部125は、例えば、PDSCH生成部124から出力されたRRCメッセージを、無線リソース上の所定の領域にマッピングし、マッピングしたRRCメッセージをRF送受信部130へ出力する。 {Mapper 125, for example, maps the RRC message output from PDSCH generator 124 to a predetermined area on the radio resource, and outputs the mapped RRC message to RF transceiver 130.
 図16(A)に戻り、RF送受信部130は、ベースバンド信号処理部120から出力された制御信号とデータ、及びRRCメッセージとを、無線帯域の無線信号へ周波数変換を行い、周波数変換後の無線信号をアンテナ140へ出力する。 Returning to FIG. 16A, the RF transmitting / receiving section 130 performs frequency conversion of the control signal and data output from the baseband signal processing section 120 and the RRC message into a radio signal of a radio band, and performs frequency conversion. The wireless signal is output to antenna 140.
 また、RF送受信部130は、アンテナ140から出力された無線信号を、ベースバンド帯域のベースバンド信号へ周波数変換を行い、周波数変換後のベースバンド信号を、ベースバンド信号処理部120へ出力する。 (4) The RF transmitting / receiving unit 130 performs frequency conversion of the radio signal output from the antenna 140 to a baseband signal of a baseband, and outputs the baseband signal after the frequency conversion to the baseband signal processing unit 120.
 アンテナ140は、RF送受信部130から出力された無線信号を、端末200へ送信する。また、アンテナ140は、端末200から送信された無線信号を受信し、受信した無線信号をRF送受信部130へ出力する。 Antenna 140 transmits the radio signal output from RF transmitting / receiving section 130 to terminal 200. In addition, antenna 140 receives a wireless signal transmitted from terminal 200 and outputs the received wireless signal to RF transmitting / receiving section 130.
 図17(A)は端末200の構成例を表す図である。 FIG. 17A is a diagram illustrating a configuration example of the terminal 200.
 端末200は、アンテナ210、RF送受信部(又は送信部、或いは受信部)220、ベースバンド信号処理部230、アプリケーション部240を備える。 The terminal 200 includes an antenna 210, an RF transmitting / receiving unit (or a transmitting unit or a receiving unit) 220, a baseband signal processing unit 230, and an application unit 240.
 アンテナ210は、基地局100から送信された無線信号を受信し、受信した無線信号をRF送受信部220へ出力する。また、アンテナ210は、RF送受信部220から出力された無線信号を、基地局100へ送信する。 Antenna 210 receives a radio signal transmitted from base station 100 and outputs the received radio signal to RF transmitting / receiving section 220. Further, antenna 210 transmits the radio signal output from RF transmitting / receiving section 220 to base station 100.
 RF送受信部220は、アンテナ210から出力された無線信号に対して周波数変換を行って、ベースバンド帯域の信号に変換し、変換後のベースバンド信号をベースバンド信号処理部230へ出力する。また、RF送受信部220は、ベースバンド信号処理部230から出力されたベースバンド信号を、無線帯域の無線信号へ周波数変換を行い、変換後の無線信号をアンテナ210へ出力する。 RF transmitting / receiving section 220 performs frequency conversion on the radio signal output from antenna 210 to convert the signal into a baseband signal, and outputs the converted baseband signal to baseband signal processing section 230. Further, RF transmitting / receiving section 220 performs frequency conversion of the baseband signal output from baseband signal processing section 230 to a wireless signal in a wireless band, and outputs the converted wireless signal to antenna 210.
 ベースバンド信号処理部230は、例えば、ベースバンド信号に対する処理を行う。 The baseband signal processing unit 230 performs, for example, processing on a baseband signal.
 図17(B)はベースバンド信号処理部230の構成例を表す図である。 FIG. 17B is a diagram illustrating a configuration example of the baseband signal processing unit 230.
 ベースバンド信号処理部230は、PDCCH受信処理部231、PDSCH受信処理部232、制御部234、PUSCH生成部235、PUCCH生成部236、及びマッピング部237を備える。 The baseband signal processing unit 230 includes a PDCCH reception processing unit 231, a PDSCH reception processing unit 232, a control unit 234, a PUSCH generation unit 235, a PUCCH generation unit 236, and a mapping unit 237.
 PDCCH受信処理部231は、RF送受信部220から出力されたベースバンド信号から制御信号を抽出する。PDCCH受信処理部231は、抽出した制御信号のうち、下り方向のスケジューリング結果をPDSCH受信処理部232へ出力し、上り方向のスケジューリング結果を制御部234へ出力する。 PDCCH reception processing section 231 extracts a control signal from the baseband signal output from RF transmission / reception section 220. PDCCH reception processing section 231 outputs the downlink scheduling result among the extracted control signals to PDSCH reception processing section 232, and outputs the uplink scheduling result to control section 234.
 PDSCH受信処理部232は、PDCCH受信処理部231から出力された下り方向のスケジューリング結果に従って、RF送受信部220から出力されたベースバンド信号から、自局に割り当てられたデータやRRCメッセージを抽出する。 PDSCH reception processing section 232 extracts data and RRC messages assigned to its own station from the baseband signal output from RF transmission / reception section 220 according to the downlink scheduling result output from PDCCH reception processing section 231.
 この際、PDSCH受信処理部232は、例えば、DCIに含まれる開始シンボルSと長さL、或いは長さLに代えてEnding Symbolに従って、データを受け取っているか否かを確認する。また、PDSCH受信処理部232は、例えば、DCIに含まれるNDIとHARQプロセス番号、及びRV(例えば図9)に基づいて、クロスTTIがPDCCHにより設定されているか否かを確認する。この場合、PDSCH受信処理部232は、PDCCHによりクロスTTIが設定されているときは、開始シンボルS、長さL又はEnding Symbol、NDI、HARQプロセス番号、RVなどに基づいて、クロスTTIが設定されたデータを、ベースバンド信号から抽出する。PDCCHにより設定されたクロスTTIに対する処理は、制御部234ではなく、PDSCH受信処理部232で行われてもよい。 At this time, for example, the PDSCH reception processing unit 232 confirms whether or not data has been received according to Ending @ Symbol instead of the start symbol S and the length L included in the DCI or the length L, for example. Further, the PDSCH reception processing unit 232 checks whether or not the cross TTI is set by the PDCCH based on, for example, the NDI and the HARQ process number included in the DCI and the RV (for example, FIG. 9). In this case, when the cross TTI is set by the PDCCH, the PDSCH reception processing unit 232 sets the cross TTI based on the start symbol S, length L or Ending @ Symbol, NDI, HARQ process number, RV, and the like. The extracted data is extracted from the baseband signal. The processing for the cross TTI set by the PDCCH may be performed by the PDSCH reception processing unit 232 instead of the control unit 234.
 また、PDSCH受信処理部232は、例えば、RRCメッセージによりクロスTTIが設定されているときは、抽出したRRCメッセージに含まれるPDSCH-Config(例えば図6)に従って、PDSCHの続きの部分を、ベースバンド信号から抽出する。 Further, for example, when the cross TTI is set by the RRC message, the PDSCH reception processing unit 232 converts the subsequent part of the PDSCH into the baseband according to the PDSCH-Config (for example, FIG. 6) included in the extracted RRC message. Extract from signal.
 PDSCH受信処理部232は、抽出したデータやRRCメッセージを制御部234へ出力する。 The PDSCH reception processing unit 232 outputs the extracted data and the RRC message to the control unit 234.
 制御部234は、例えば、PDSCH受信処理部232から出力されたRRCメッセージに従って、受信処理や送信処理を行う。 The control unit 234 performs reception processing and transmission processing according to, for example, the RRC message output from the PDSCH reception processing unit 232.
 また、制御部234は、PDSCH受信処理部232から出力されたデータを、アプリケーション部240へ出力する。 (4) The control unit 234 outputs the data output from the PDSCH reception processing unit 232 to the application unit 240.
 さらに、制御部234は、PDCCH受信処理部231から出力された上り方向のスケジューリング結果を、マッピング部237へ出力する。 {Further, control section 234 outputs the uplink scheduling result output from PDCCH reception processing section 231 to mapping section 237.
 さらに、制御部234は、アプリケーション部240から出力されたデータを、PUSCH生成部235へ出力する。さらに、制御部234は、上り方向の制御信号を生成し、生成した制御信号をPUCCH生成部236へ出力する。 {Furthermore, the control unit 234 outputs the data output from the application unit 240 to the PUSCH generation unit 235. Further, control section 234 generates an uplink control signal, and outputs the generated control signal to PUCCH generation section 236.
 PUSCH生成部235は、制御部234から出力されたデータを、マッピング部237へ出力する。 PUSCH generating section 235 outputs the data output from control section 234 to mapping section 237.
 PUCCH生成部236は、制御部234から出力された制御信号をマッピング部237へ出力する。 PUCCH generating section 236 outputs the control signal output from control section 234 to mapping section 237.
 マッピング部237は、制御部234から出力された上り方向のスケジューリング結果に従って、データと制御信号を無線リソースにマッピングする。マッピング部237は、マッピングしたデータと制御信号とを、ベースバンド信号としてRF送受信部220へ出力する。 Mapping section 237 maps data and control signals to radio resources according to the uplink scheduling result output from control section 234. Mapping section 237 outputs the mapped data and the control signal to RF transmitting / receiving section 220 as a baseband signal.
 図17(A)に戻り、アプリケーション部240は、例えば、ベースバンド信号処理部230から出力されたデータに対してアプリケーションに関する処理を行う。また、アプリケーション部240は、例えば、アプリケーションに関する処理を行ってデータを生成し、生成したデータを制御部234へ出力する。 Returning to FIG. 17A, for example, the application unit 240 performs a process related to the application on the data output from the baseband signal processing unit 230. Further, the application unit 240 generates data by performing a process related to the application, for example, and outputs the generated data to the control unit 234.
 <7.動作例>
 次に、動作例を説明する。動作例は、上述した<4.1>の動作例を最初に説明する。次に、上述した<4.2>の動作例を説明する。最後に、<4.3>の動作例について説明する。
<7. Operation example>
Next, an operation example will be described. As the operation example, the operation example of <4.1> described above will be described first. Next, an operation example of <4.2> will be described. Finally, an operation example of <4.3> will be described.
 <7.1 PDCCHとPDSCHとをシフトする場合において、RRCメッセージによりクロスTTIを設定する場合の動作例>
 図18は、PDCCHとPDSCHとをシフトする場合において、RRCメッセージによりクロスTTIを設定する場合の基地局100における動作例を表すフローチャートである。
<7.1 Operation example of setting cross TTI by RRC message when shifting PDCCH and PDSCH>
FIG. 18 is a flowchart illustrating an operation example of base station 100 in the case where a cross TTI is set by an RRC message when PDCCH and PDSCH are shifted.
 なお、基地局100と端末200は、例えば、図5(A)に示すシーケンスにより、RRCメッセージの交換を終了し、図6に示すPDSCH-Configを、基地局100と端末200で保持しているものとする。例えば、制御部122は、図6に示すPDSCH-Configを生成し、生成したPDSCH-Configを、PDSCH生成部124を経由して、端末200へ送信する。 The base station 100 and the terminal 200 complete the exchange of the RRC message, for example, according to the sequence shown in FIG. 5A, and the PDSCH-Config shown in FIG. 6 is held between the base station 100 and the terminal 200. Shall be. For example, the control unit 122 generates the PDSCH-Config shown in FIG. 6, and transmits the generated PDSCH-Config to the terminal 200 via the PDSCH generation unit 124.
 図18に示すように、基地局100は、処理を開始すると(S20)、LBTを実行する(S21)。例えば、基地局100は、以下の処理を行う。 As shown in FIG. 18, when starting the processing (S20), the base station 100 executes the LBT (S21). For example, the base station 100 performs the following processing.
 すなわち、受信信号処理部121は、アンライセンス周波数帯の所定周波数帯域における受信信号の強度を測定して、その結果を制御部122へ出力する。制御部122は、その結果が閾値より小さいとき、“Idle”状態、その結果が閾値以上のとき、“Busy”状態と判定する。 That is, the received signal processing unit 121 measures the intensity of the received signal in a predetermined frequency band of the unlicensed frequency band, and outputs the result to the control unit 122. When the result is smaller than the threshold value, the control unit 122 determines that the state is “Idle”.
 次に、基地局100は、アンライセンス周波数帯の所定周波数帯域が“Idle”状態か否かを判定する(S22)。基地局100は、 “Busy”状態のとき(S22でNo)、所定期間経過すると、再び、LBTを実行し(S21)、所定周波数帯域が“Idle”状態となるまで繰り返し実行する(S22でNoのループ)。 Next, the base station 100 determines whether or not the predetermined frequency band of the unlicensed frequency band is in the “Idle” state (S22). When in the “Busy” state (No in S22), the base station 100 executes the LBT again after a predetermined period has elapsed (S21), and repeatedly executes the LBT until the predetermined frequency band becomes the “Idle” state (No in S22). Loop).
 基地局100は、所定周波数帯域が “Idle状態”となったとき(S22でYes)、その所定周波数帯域を利用して、PDCCHとPDSCHを送信する(S23)。例えば、基地局100は、以下の処理を行う。 When the predetermined frequency band becomes “Idle state” (Yes in S22), the base station 100 transmits the PDCCH and the PDSCH using the predetermined frequency band (S23). For example, the base station 100 performs the following processing.
 すなわち、制御部122は、“Idle”状態であることを判定すると、先頭スロット(又は先頭TTI)の信号の出力をマッピング部125に指示する。制御部122は、送信すべきデータがあることを検出してLBTを開始する前に先頭スロットの信号の生成を指示する。まず、伝送路インタフェース110から受け取ったデータをPDSCH生成部124へ出力する。その際、制御部122は、スケジューリングを行い、その結果を、PDCCH生成部123へ出力する。PDCCH生成部123は、DCIをマッピング部125へ出力し、PDSCH生成部124は、データをマッピング部125へ出力し、マッピング部125は、下りスケジューリング結果に従って、DCIとデータとを無線リソース上にマッピングする。マッピング部125は、マッピングしたDCIとデータとを、RF送受信部130を介して端末200へ送信する。 {That is, when determining that the state is the “Idle” state, the control unit 122 instructs the mapping unit 125 to output the signal of the head slot (or head TTI). The control unit 122 detects that there is data to be transmitted, and instructs to generate a signal of the first slot before starting the LBT. First, data received from the transmission line interface 110 is output to the PDSCH generation unit 124. At that time, the control unit 122 performs scheduling and outputs the result to the PDCCH generation unit 123. PDCCH generating section 123 outputs DCI to mapping section 125, PDSCH generating section 124 outputs data to mapping section 125, and mapping section 125 maps DCI and data on radio resources according to the downlink scheduling result. I do. Mapping section 125 transmits the mapped DCI and data to terminal 200 via RF transmitting / receiving section 130.
 ただし、基地局100は、例えば、図4(B)に示すように、“Busy”状態後、 “Idle”状態となったとき、“Idle”状態となるまで、PDCCHとPDSCUを含むシンボルをシフトさせる。また、基地局100は、先頭スロット(又は先頭TTI)で送信できなかったPDSCHの部分を、クロスTTIを利用して、次のスロット(又は次のTTI)で送信する。例えば、基地局100は、以下の処理を行う。 However, for example, as shown in FIG. 4B, the base station 100 shifts the symbol including the PDCCH and the PDSCU until the state changes to the “Idle” state after the “Busy” state and then to the “Idle” state. Let it. Further, base station 100 transmits the portion of PDSCH that could not be transmitted in the first slot (or first TTI) in the next slot (or next TTI) using the cross TTI. For example, the base station 100 performs the following processing.
 すなわち、制御部122は、所定周波数帯域の信号強度が閾値以上のとき、PDCCHとPDSCHの送信をしないように、マッピング部125に指示し、マッピング部125は、マッピングしたPDCCHとPDSCHの送信を停止する。その間、マッピング部125は、内部メモリにPDCCHとPDSCHとを記憶してもよい。制御部122は、その後、信号強度が閾値より小さくなったとき、アンライセス周波数帯が他の装置により使用されていないことを確認する。そして、この場合、制御部122は、下り方向におけるPDCCHとPDSCHとを含むシンボルを、“Idle”状態となる送信開始タイミングまで、時間方向にシフトさせる。制御部122は、以降に続く、PDCCHとPDSCHについても時間方向にシフトさせる。図4(B)の例では、制御部122は、4シンボル分シフトさせる。制御部122は、シフトした結果を、マッピング部125へ出力する。マッピング部125は、シフト結果に従って、マッピングしたPDCCHとPDSCHとを内部メモリから読み出して、RF送受信部130へ出力する。マッピング部125又はRF送受信部130は、シフト後、制御信号とデータとをPDCCHとPDSCHとを夫々用いて、端末200へ送信する。そして、制御部122は、PDSCH-Config(例えば図5(A)、図6)に従ってクロスTTIを行う場合は、未送信部分を送信するスロット番号や送信を開始するシンボル番号などを、マッピング部125へ出力する。マッピング部125は、その指示に従って、内部メモリなどに記憶した未送信部分のTB#aを読み出して、指示されたスロットの指示されたシンボルにおいて送信する。これにより、例えば、クロスTTIを実現することが可能となる。 That is, the control unit 122 instructs the mapping unit 125 not to transmit the PDCCH and the PDSCH when the signal strength of the predetermined frequency band is equal to or more than the threshold, and the mapping unit 125 stops the transmission of the mapped PDCCH and the PDSCH. I do. Meanwhile, the mapping unit 125 may store the PDCCH and the PDSCH in the internal memory. After that, when the signal strength becomes smaller than the threshold value, the control unit 122 confirms that the unlicensed frequency band is not used by another device. Then, in this case, control section 122 shifts the symbols including the PDCCH and PDSCH in the downlink direction in the time direction until the transmission start timing at which the state becomes “Idle”. The control unit 122 also shifts the subsequent PDCCH and PDSCH in the time direction. In the example of FIG. 4B, the control unit 122 shifts by four symbols. Control unit 122 outputs the shifted result to mapping unit 125. Mapping section 125 reads the mapped PDCCH and PDSCH from the internal memory according to the shift result, and outputs the read PDCCH and PDSCH to RF transmitting / receiving section 130. After shifting, mapping section 125 or RF transmitting / receiving section 130 transmits the control signal and data to terminal 200 using PDCCH and PDSCH, respectively. Then, when performing the cross TTI according to the PDSCH-Config (for example, FIGS. 5A and 6), the control unit 122 maps the slot number for transmitting the untransmitted portion, the symbol number for starting the transmission, and the like to the mapping unit 125. Output to In accordance with the instruction, mapping section 125 reads out the untransmitted portion of TB # a stored in the internal memory or the like, and transmits it at the indicated symbol in the indicated slot. Thereby, for example, a cross TTI can be realized.
 なお、制御部122は、例えば、PDCCHとPDSCHとを時間方向にシフトする場合、PDCCHに含まれる開始シンボルSと長さLを、スロット内の先頭シンボルから送信する場合のPDCCHに含まれる開始シンボルSと長さLとそれぞれ同じに設定する。 For example, when shifting the PDCCH and the PDSCH in the time direction, the control unit 122 determines the start symbol S and the length L included in the PDCCH from the start symbol included in the PDCCH when transmitting from the first symbol in the slot. S and length L are set to be the same.
 図18に戻り、基地局100は、PDCCHとPDSCHの送信を終了すると、本処理を終了する(S24)。 << Returning to FIG. 18, upon ending the transmission of the PDCCH and PDSCH, the base station 100 ends this processing (S24).
 図19は、本動作例における端末200側の処理の例を表すフローチャートである。 FIG. 19 is a flowchart illustrating an example of processing on the terminal 200 side in this operation example.
 端末200は、処理を開始すると(S30)、PDCCHと、PDCCHを含むスロット内のPDSCH部分とを受信する。例えば、PDCCH受信処理部231がPDCCHを受信し、PDSCH受信処理部232は、PDCCH受信処理部231からDCIを受け取り、DCIに従って、PDSCH部分を受信する。 When the terminal 200 starts the process (S30), the terminal 200 receives the PDCCH and the PDSCH portion in the slot including the PDCCH. For example, the PDCCH reception processing unit 231 receives the PDCCH, and the PDSCH reception processing unit 232 receives the DCI from the PDCCH reception processing unit 231, and receives the PDSCH portion according to the DCI.
 次に、端末200は、実際に受信したPDSCHの長さは、DCIで指示されたPDSCHの長さより短いか否かを判定する(S32)。DCIには、上述したように、開始シンボルSと長さLとが含まれる。例えば、端末200は、以下の処理を行う。 Next, the terminal 200 determines whether or not the actually received PDSCH length is shorter than the PDSCH length indicated by the DCI (S32). The DCI includes the start symbol S and the length L as described above. For example, the terminal 200 performs the following processing.
 すなわち、制御部234は、PDSCH受信処理部232から出力されたデータを受け取り、そのデータのデータ量をカウントし、カウントしたデータに基づいて、PDSCHの長さを計算する。そして、制御部234は、計算した長さがDCIで指示された長さLより短いか否かを判定する。制御部234では、DCIと実際に受信したPDSCHの長さとに基づいて、基地局100において、先頭シンボルに含まれるPDCCHとPDSCH以降がシフトして送信したか否かを確認するようにしている。 That is, the control unit 234 receives the data output from the PDSCH reception processing unit 232, counts the data amount of the data, and calculates the length of the PDSCH based on the counted data. Then, the control unit 234 determines whether the calculated length is shorter than the length L indicated by the DCI. The control section 234 checks whether or not the base station 100 has shifted and transmitted the PDCCH and the PDSCH included in the first symbol based on the DCI and the length of the actually received PDSCH.
 端末200は、実際に受信したPDSCHの長さが、DCIで指示されたPDSCHの長さより短いとき(S32でYes)、RRCメッセージにおいて、クロスTTI設定が設定されているか否かを判定する(S33)。例えば、制御部234は、計算した長さが、DCIで指示された長さLより短いと判定すると、PDSCH受信処理部232から受け取ったRRCメッセージにおいて、クロスTTIの設定の有無(例えば、図6の(1))を確認することで判定する。 When the length of the actually received PDSCH is shorter than the length of the PDSCH indicated by DCI (Yes in S32), terminal 200 determines whether or not cross TTI setting is set in the RRC message (S33). ). For example, when the control unit 234 determines that the calculated length is shorter than the length L indicated by the DCI, the control unit 234 determines whether or not a cross TTI is set in the RRC message received from the PDSCH reception processing unit 232 (for example, FIG. (1)) is determined.
 端末200は、クロスTTIの設定があるとき(S33でYes)、RRC設定に従い、PDSCHの続き部分を受信する(S34)。例えば、制御部234は、クロスTTIの設定を確認すると、PDSCH-Config(例えば図6)に含まれるIEに従って、PDSCHの続き部分を、次のTTIなどのタイミングで受信する。 If the terminal 200 has a cross TTI setting (Yes in S33), the terminal 200 receives the subsequent part of the PDSCH according to the RRC setting (S34). For example, when confirming the setting of the cross TTI, the control unit 234 receives a subsequent portion of the PDSCH at a timing such as the next TTI according to the IE included in the PDSCH-Config (for example, FIG. 6).
 次に、端末200は、受信結果に応じて、ACK又はNACKをフィードバックする(S35)。例えば、制御部234は、クロスTTIにより、PDSCHの続き部分を含むPDSCHを正常に受信できたときは、ACKを生成し、PUSCH生成部235又はPUCCH生成部236を介して、ACKをフィードバックする。一方、制御部234は、例えば、クロスTTIにより、PDSCH続き部分を含むPDSCHを正常に受信できなかったとき、NACKを生成し、PUSCH生成部235又はPUCCH生成部236を介して、NACKをフィードバックする。 Next, the terminal 200 feeds back ACK or NACK according to the reception result (S35). For example, when the PDSCH including the continuation of the PDSCH can be normally received by the cross TTI, the control unit 234 generates an ACK and feeds back the ACK via the PUSCH generation unit 235 or the PUCCH generation unit 236. On the other hand, when the PDSCH including the PDSCH continuation part cannot be normally received due to, for example, the cross TTI, the control unit 234 generates a NACK and feeds back the NACK via the PUSCH generation unit 235 or the PUCCH generation unit 236. .
 そして、端末200は一連の処理を終了する(S36)。 端末 Then, the terminal 200 ends a series of processes (S36).
 一方、RRC設定として、クロスTTIが設定されていないとき(S33でNo)、端末200は、クロスTTIの処理を行うことなく、S35へ移行する。この場合、端末200は、クロスTTIを行うことなく、受信したPDSCHに対して、ACK又はNACKをフィードバックする。 On the other hand, when the cross TTI is not set as the RRC setting (No in S33), the terminal 200 proceeds to S35 without performing the cross TTI processing. In this case, terminal 200 feeds back ACK or NACK to the received PDSCH without performing cross TTI.
 一方、端末200は、実際に受信したPDSCHの長さが、DCIで指示されたPDSCHの長さと同じとき(S32でNo)、S35へ移行する。この場合、端末200は、DCIで指示された長さLのPDSCHを受信したことになり、例えば、図4(A)と同じ状況となるため、クロスTTIの処理を行うことなく、受信したPDSCHに対して、ACK又はNACKをフィードバックする。 On the other hand, if the length of the PDSCH actually received is the same as the length of the PDSCH indicated by DCI (No in S32), terminal 200 proceeds to S35. In this case, the terminal 200 has received the PDSCH having the length L indicated by the DCI, and for example, has the same situation as that of FIG. 4A, and thus has received the PDSCH without performing the cross TTI processing. ACK or NACK is fed back.
 <7.2 PUSCHがシフトする場合において、RRCメッセージによりクロスTTIを設定する場合の動作例>
 図20は、PUSCHがシフトする場合において、RRCメッセージによりクロスTTIを設定する場合の端末200側の動作例を表すフローチャートである。この場合も、上記<7.1>と同様に、基地局100と端末200は、RRCメッセージの交換を終了し(例えば、図5(A))、PUSCH-Config(例えば図6)を互いに保持しているものとする。例えば、制御部122が、図6に示すPUSCH-Configを生成し、PDSCH生成部124などを介して端末200へ送信する。
<7.2 Operation example of setting cross TTI by RRC message when PUSCH shifts>
FIG. 20 is a flowchart illustrating an operation example on the terminal 200 side when the cross TTI is set by the RRC message when the PUSCH shifts. Also in this case, similarly to the above <7.1>, the base station 100 and the terminal 200 end the exchange of the RRC message (for example, FIG. 5A) and hold the PUSCH-Config (for example, FIG. 6) with each other. It is assumed that For example, the control unit 122 generates the PUSCH-Config illustrated in FIG. 6 and transmits the PUSCH-Config to the terminal 200 via the PDSCH generation unit 124 and the like.
 端末200は、処理を開始すると(S40)、LBTを実行する(S41)。例えば、端末200は、以下の処理を行う。 When the terminal 200 starts the processing (S40), the terminal 200 executes the LBT (S41). For example, the terminal 200 performs the following processing.
 すなわち、PDCCH受信処理部231又はPDSCH受信処理部232は、アンライセンス周波数帯の所定周波数帯域において、受信した信号の信号強度を測定し、その結果を制御部234へ出力する。制御部234は、基地局100の制御部122と同様に、その結果に基づいて、“Idle”状態又は“Busy”状態を判定する。 That is, the PDCCH reception processing unit 231 or the PDSCH reception processing unit 232 measures the signal strength of the received signal in a predetermined frequency band of the unlicensed frequency band, and outputs the result to the control unit 234. The control unit 234 determines the “Idle” state or the “Busy” state based on the result, similarly to the control unit 122 of the base station 100.
 端末200は、所定周波数帯域が“Busy”状態のとき(S42でNo)、所定時間経過後、再び、LBTを実行し(S41)、“Idle”状態となるまで繰り返す(S42でNoのループ)。 When the predetermined frequency band is in the “Busy” state (No in S42), the terminal 200 executes the LBT again after the predetermined time has elapsed (S41), and repeats until the state becomes the “Idle” state (No loop in S42). .
 端末200は、所定周波数帯域が“Idle”状態となったとき(S42でYes)、その所定周波数帯域を利用して、PUCCHとPUSCHとを、基地局100へ送信する(S43)。端末200は、例えば、以下の処理を行う。 When the predetermined frequency band is in the “Idle” state (Yes in S42), the terminal 200 transmits the PUCCH and the PUSCH to the base station 100 using the predetermined frequency band (S43). The terminal 200 performs, for example, the following processing.
 すなわち、制御部234は、“Idle”状態であることを判定すると、アプリケーション部240から受け取ったデータを、PUSCH生成部235を介してマッピング部237へ出力する。制御部234は、PDSCH受信処理部232から受け取った上り方向のスケジューリング結果を、マッピング部237へ出力し、また、制御信号を生成し、PUCCH生成部236を介して、マッピング部237へ出力する。マッピング部237は、上り方向のスケジューリング結果に従って、制御信号とデータとを無線リソース上にマッピングする。マッピング部237は、マッピングした制御信号(PUCCH)とデータ(PUSCH)とをRF送受信部220を介して基地局100へ送信する。 {That is, when determining that the control unit 234 is in the “Idle” state, the control unit 234 outputs the data received from the application unit 240 to the mapping unit 237 via the PUSCH generation unit 235. The control unit 234 outputs the uplink scheduling result received from the PDSCH reception processing unit 232 to the mapping unit 237, generates a control signal, and outputs the control signal to the mapping unit 237 via the PUCCH generation unit 236. Mapping section 237 maps the control signal and the data onto the radio resource according to the uplink scheduling result. Mapping section 237 transmits the mapped control signal (PUCCH) and data (PUSCH) to base station 100 via RF transmitting / receiving section 220.
 ただし、端末200は、例えば、図7(B)に示すように、“Busy”状態後、“Idle”状態となったとき、“Idle”状態となるまでPUCCHとPUSCHとを含むシンボルをシフトさせる。また、端末200は、先頭スロット(又は先頭TTI)で送信できかったPUSCHの部分を、クロスTTIを利用して、次のスロット(又は次のTTI)で送信する。例えば、端末200は、以下の処理を行う。 However, for example, as shown in FIG. 7B, when the terminal 200 goes to the “Idle” state after the “Busy” state, the terminal 200 shifts the symbols including the PUCCH and the PUSCH until the “Idle” state. . The terminal 200 transmits the portion of the PUSCH that could not be transmitted in the first slot (or the first TTI) in the next slot (or the next TTI) using the cross TTI. For example, the terminal 200 performs the following processing.
 すなわち、制御部234は、所定周波数帯域の信号強度が閾値以上のとき、PUCCHとPUSCHを送信しないように、マッピング部237に指示し、マッピング部237は、マッピングしたPUCCHとPUSCHの送信を停止する。この場合、マッピング部237は、内部メモリにPUCCHとPUSCHとを記憶してもよい。制御部234は、その後、信号強度が閾値より小さくなったとき、アンライセンス周波数帯が他の装置に使用されていないことを確認する。そして、制御部234は、上り方向におけるPUCCHとPUSCHとを含むシンボルを、“Idle”状態となる送信開始タイミングまで、時間方向にシフトさせる。制御部234は、以降に続く、PUCCHとPUSCHについても時間方向にシフトさせる。図7(B)の例では、4シンボル分シフトさせる。制御部234は、シフトした結果を、マッピング部237へ出力する。マッピング部237は、シフト結果に従って、PUCCHとPUSCHとを内部メモリから読み出して、RF送受信部220へ出力する。マッピング部237又はRF送受信部220は、シフト後のシンボルに割り当てられた制御信号とデータをPUCCHとPUSCHと夫々用いて、基地局100へ送信する。そして、制御部234は、PUSCH-Config(例えば、図5(A)、図6)に従って、クロスTTIを行う場合は、未送信部分を送信するスロット番号や送信開始シンボルの番号などを、マッピング部237へ出力する。マッピング部237は、その指示に従って、内部メモリなどに記憶した未送信部分(例えば、図7(A)のTB#a)を読み出して、指示されたスロットの指示されたシンボルを利用して送信する。これにより、例えば、上り方向において、クロスTTIを実現することが可能となる。 That is, control section 234 instructs mapping section 237 not to transmit the PUCCH and PUSCH when the signal strength of the predetermined frequency band is equal to or higher than the threshold, and mapping section 237 stops transmission of the mapped PUCCH and PUSCH. . In this case, mapping section 237 may store the PUCCH and the PUSCH in the internal memory. After that, when the signal strength becomes smaller than the threshold value, the control unit 234 confirms that the unlicensed frequency band is not used by another device. Then, control section 234 shifts the symbols including the PUCCH and PUSCH in the uplink direction in the time direction until the transmission start timing at which the state becomes “Idle”. The control unit 234 also shifts the subsequent PUCCH and PUSCH in the time direction. In the example of FIG. 7B, the shift is performed by four symbols. The control unit 234 outputs the shifted result to the mapping unit 237. Mapping section 237 reads the PUCCH and PUSCH from the internal memory according to the shift result, and outputs them to RF transmitting / receiving section 220. Mapping section 237 or RF transmitting / receiving section 220 transmits the control signal and data assigned to the shifted symbol to base station 100 using the PUCCH and PUSCH, respectively. Then, when performing a cross TTI according to the PUSCH-Config (for example, FIGS. 5A and 6), the control unit 234 transmits a slot number for transmitting an untransmitted portion, a transmission start symbol number, and the like to the mapping unit. 237. In accordance with the instruction, the mapping unit 237 reads an untransmitted portion (for example, TB # a in FIG. 7A) stored in an internal memory or the like, and transmits the read portion using the indicated symbol in the indicated slot. . Thereby, for example, it is possible to realize a cross TTI in the up direction.
 図20に戻り、端末200は、PUCCHとPUSCHの送信が終了すると、本処理を終了する(S44)。 Returning to FIG. 20, when the transmission of PUCCH and PUSCH ends, terminal 200 ends this processing (S44).
 なお、端末200は、PUCCHを送信しない場合(例えば図7(B))、S43の処理は、PUCCHを送信しないでPUSCHを送信する処理となる。 Note that when the terminal 200 does not transmit the PUCCH (for example, FIG. 7B), the process of S43 is a process of transmitting the PUSCH without transmitting the PUCCH.
 図21は、本動作例における基地局100側の処理の例を表すフローチャートである。 FIG. 21 is a flowchart illustrating an example of processing on the base station 100 side in this operation example.
 基地局100は、処理を開始すると(S50)、PUCCHと、PUCCHを含むスロット内のPUSCH部分とを受信する(S51)。例えば、受信信号処理部121は、制御部122から出力された上り方向のスケジューリング結果に従って、ベースバンド信号から、端末200から送信されたPUCCHとPUSCHとを抽出し、抽出したPUCCHとPUSCHとを制御部122へ出力する。 When the base station 100 starts the processing (S50), it receives the PUCCH and the PUSCH portion in the slot including the PUCCH (S51). For example, the received signal processing unit 121 extracts the PUCCH and PUSCH transmitted from the terminal 200 from the baseband signal according to the uplink scheduling result output from the control unit 122, and controls the extracted PUCCH and PUSCH. Output to the unit 122.
 次に、基地局100は、実際に受信したPUSCHの長さは、DCIで指示したPUSCHの長さより短いか否かを判定する(S52)。例えば、基地局100は以下の処理を行う。 Next, the base station 100 determines whether or not the length of the PUSCH actually received is shorter than the length of the PUSCH indicated by DCI (S52). For example, the base station 100 performs the following processing.
 すなわち、制御部122は、受信信号処理部121から受け取ったデータのデータ量をカウントし、カウントしたデータ量に基づいて、PUSCHの長さを計算する。制御部122は、DCIに含まれる開始シンボルSと長さLとに基づいて、開始シンボルSからPUSCHが開始されたか否か、計算した長さが長さLより短いか否かを確認する。制御部122も、端末200の制御部122と同様に、DCIと実際に受信したPUSCHの長さとに基づいて、端末200において、先頭シンボルに含まれるPUCCHとPDSCH以降がシフトして送信したか否かを確認するようにしている。 {That is, the control unit 122 counts the data amount of the data received from the reception signal processing unit 121, and calculates the length of the PUSCH based on the counted data amount. Based on start symbol S and length L included in DCI, control section 122 checks whether PUSCH has been started from start symbol S and whether the calculated length is shorter than length L. Similarly to control section 122 of terminal 200, control section 122 determines whether or not terminal 200 shifts and transmits the PUCCH and PDSCH included in the first symbol in terminal 200 based on the DCI and the length of the actually received PUSCH. To make sure.
 基地局100は、実際に受信したPUSCHの長さが、DCIで指示したPUSCHの長さより短いとき(S52でYes)、RRCメッセージにおいて、クロスTTIが設定されているか否かを判定する(S53)。例えば、制御部122は、自身で生成したRRCメッセージにおいて、クロスTTI設定の有無(例えば、図6の1))を確認することで判定する。 When the length of the actually received PUSCH is shorter than the length of the PUSCH indicated by DCI (Yes in S52), the base station 100 determines whether or not a cross TTI is set in the RRC message (S53). . For example, the control unit 122 makes a determination by confirming whether or not a cross TTI setting has been made (for example, 1 in FIG. 6) in the RRC message generated by itself.
 基地局100は、クロスTTIの設定があるとき(S53でYes)、RRC設定に従い、PUSCHの続き部分を受信する(S54)。例えば、制御部122は、クロスTTIの設定を確認すると、PUSCH-Config(例えば図6)に含まれるIEに従って、PUSCHの続き部分を次のTTIなどで受信する。 When the cross TTI is set (Yes in S53), the base station 100 receives the subsequent part of the PUSCH according to the RRC setting (S54). For example, when confirming the setting of the cross TTI, the control unit 122 receives the subsequent part of the PUSCH in the next TTI or the like according to the IE included in the PUSCH-Config (for example, FIG. 6).
 次に、基地局100は、受信結果に応じて、PDCCHにより、再送あるいは新規データの送信を指示する(S55)。例えば、制御部122は、クロスTTIにより、PUSCHの続き部分を含むPUSCHを正常に受信できたときは、PDCCH生成部123を介して、新規データの送信を指示するPDCCHを端末200へ送信する。一方、制御部122は、例えば、クロスTTIにより、PUSCH続き部分を含むPUSCHを正常に受信できなかったとき、PDCCH生成部123を介して、再送を指示するPDCCHを端末200へ送信する。 Next, the base station 100 instructs retransmission or transmission of new data by PDCCH according to the reception result (S55). For example, when the PUSCH including the succeeding part of the PUSCH has been normally received by the cross TTI, the control unit 122 transmits the PDCCH instructing the transmission of the new data to the terminal 200 via the PDCCH generation unit 123. On the other hand, for example, when the PUSCH including the PUSCH continuation part cannot be normally received due to the cross TTI, the control unit 122 transmits a PDCCH instructing retransmission to the terminal 200 via the PDCCH generation unit 123.
 そして、基地局100は、一連の処理を終了する(S56)。 Then, the base station 100 ends a series of processing (S56).
 一方、RRC設定として、クロスTTIが設定されていないとき(S53でNo)、基地局100は、クロスTTIの処理を行うことなく、S55へ移行する。この場合、端末200は、クロスTTIを行うことなく、受信したPUSCUに対して、ACK又はNACKをフィードバックする。 On the other hand, when the cross TTI is not set as the RRC setting (No in S53), the base station 100 proceeds to S55 without performing the cross TTI processing. In this case, terminal 200 feeds back ACK or NACK to the received PUSCU without performing cross TTI.
 一方、基地局100は、実際に受信したPUSCHの長さが、DCIで指示したPUSCHの長さと同じとき(S52でNo)、S55へ移行する。この場合、基地局100は、DCIで指示した長さLのPUSCHを受信したことになり、例えば、図7(A)と同じ状況となるため、クロスTTIの処理を行うことなく、受信したPUSCHに対して、ACK又はNACKをフィードバックする。 On the other hand, when the length of the actually received PUSCH is the same as the length of the PUSCH indicated by the DCI (No in S52), the base station 100 proceeds to S55. In this case, the base station 100 has received the PUSCH having the length L indicated by the DCI. For example, since the situation is the same as that of FIG. 7A, the received PUSCH is not processed without performing the cross TTI processing. ACK or NACK is fed back.
 なお、図21において、端末200がPUCCHを送信しない場合、S51の処理では、基地局100は、PUCCHを受信することなく、PUSCHを受信することになる。 In FIG. 21, when the terminal 200 does not transmit the PUCCH, in the process of S51, the base station 100 receives the PUSCH without receiving the PUCCH.
 <7.3 PDCCHとPDSCHとがシフトする場合において、PDCCHによりクロスTTIを設定する場合の動作例>
 図22は、PDCCHとPDSCHとがシフトする場合においてPDCCHによりクロスTTIを設定する場合の基地局100側の動作例を表すフローチャートである。
<7.3 Operation example of setting cross TTI by PDCCH when PDCCH and PDSCH shift>
FIG. 22 is a flowchart illustrating an operation example on the base station 100 side when a cross TTI is set by the PDCCH when the PDCCH and the PDSCH shift.
 また、本動作例を行うに際して、基地局100と端末200は、RRCメッセージの交換を終了し(例えば、図5(A))、PDSCH-Configを互いにメモリなどに保持しているものとする。ただし、PDSCH-Configには図6の(1)が設定され、(2)から(4)は設定されていないものとする。すなわち、基地局100と端末200は、RRCメッセージの交換により、クロスTTIを行うか否かについて、共有しているものとし、クロスTTIの詳細は、PDCCHにより設定される。 In performing this operation example, it is assumed that the base station 100 and the terminal 200 have finished exchanging RRC messages (for example, FIG. 5A) and mutually hold PDSCH-Config in a memory or the like. However, it is assumed that (1) in FIG. 6 is set in PDSCH-Config, and (2) to (4) are not set. That is, base station 100 and terminal 200 share whether or not to perform a cross TTI by exchanging RRC messages, and details of the cross TTI are set by the PDCCH.
 図22に示す処理において、S60からS62は、上述した<7.1>の図18に示すS20からS22と同様である。 In the process shown in FIG. 22, S60 to S62 are the same as S20 to S22 in FIG. 18 of <7.1> described above.
 基地局100は、アンライセンス周波数帯が“Idle”状態となったとき(S62でYes)、PDCCHとPDSCHとを送信する(S23)。上述した<7.1>の場合と同様に、先頭スロットにおいて、PDCCHとPDSCHのシフトが行われた場合、基地局100は、例えば、以下の処理を行う。 (4) When the unlicensed frequency band is in the “Idle” state (Yes in S62), the base station 100 transmits the PDCCH and the PDSCH (S23). As in the case of <7.1> described above, when the PDCCH and the PDSCH are shifted in the first slot, the base station 100 performs, for example, the following processing.
 すなわち、制御部122は、先頭スロットのスケジューリングを行う際に、図9に示すTDRA、NDI、HARQプロセス番号、RV、MCSなどを決定し、決定したこれらの情報をPDCCH生成部123へ出力する。PDCCH生成部123は、これらの情報をまとめて、例えば、図10(A)に示すPDCCH#mを生成する。PDCCH生成部123は、生成したPDCCH#mを、マッピング部125を介して、端末200へ送信する。また、制御部122は、先頭スロットでPDCCH(図10(A)の例ではPDCCH#m)とPDSCHとを含むシンボルがシフトしたことで、先頭スロットで送信できなかったPDSCHに対するクロスTTIを設定するために、新たなPDCCH(図10(A)の例では、PDCCH#n)を生成する。制御部122は、先頭スロットのPDCCH(PDCCH#m)に含まれるNDI、HARQプロセス番号、及びRVと同じNDI、HARQプロセス番号、及びRVを、生成する。PDCCH生成部123は、これらの情報を含むクロスTTI設定用のPDCCH(PDCCH#n)を生成し、マッピング部125などを介して端末200へ送信する。なお、PDCCH#m1は、PDCCH#mを生成するときに生成するようにしてもよい。また、クロスTTIによるPDSCHの送信については、上述した<7.1>と同様である。 That is, when scheduling the first slot, the control unit 122 determines the TDRA, NDI, HARQ process number, RV, MCS and the like shown in FIG. 9 and outputs the determined information to the PDCCH generation unit 123. The PDCCH generation unit 123 collects these pieces of information and generates, for example, PDCCH #m illustrated in FIG. PDCCH generating section 123 transmits the generated PDCCH #m to terminal 200 via mapping section 125. Further, control section 122 sets a cross TTI for a PDSCH that could not be transmitted in the first slot due to the shift of the symbol including the PDCCH (PDCCH #m in the example of FIG. 10A) and PDSCH in the first slot. Therefore, a new PDCCH (PDCCH #n in the example of FIG. 10A) is generated. The control unit 122 generates the same NDI, HARQ process number, and RV as the NDI, HARQ process number, and RV included in the PDCCH (PDCCH # m) of the first slot. PDCCH generating section 123 generates a PDCCH (PDCCH # n) for setting a cross TTI including these pieces of information, and transmits the generated PDCCH to terminal 200 via mapping section 125 or the like. Note that PDCCH # m1 may be generated when PDCCH #m is generated. The transmission of the PDSCH by the cross TTI is the same as the above <7.1>.
 図23は、PDCCHとPDSCHとがシフトする場合においてPDCCHによりクロスTTIを設定する場合の端末200側の動作例を表すフローチャートである。 FIG. 23 is a flowchart illustrating an operation example on the terminal 200 side when a cross TTI is set by the PDCCH when the PDCCH and the PDSCH shift.
 図23において、S70からS72は、上述した<7.1>で説明した図19のS30からS32とそれぞれ同じである。ただし、S72では、実際に受信したPDSCHの長さは、DCIで指示されたPDSCHの長さより短いか否かを判定する際に用いられるDCIは、例えば、先頭スロットのPDCCHに含まれるDCIであり、図8(B)の例では、PDCCH#mに含まれるDCIに相当する。 23. In FIG. 23, S70 to S72 are the same as S30 to S32 in FIG. 19 described in <7.1> above. However, in S72, the DCI used in determining whether the length of the PDSCH actually received is shorter than the length of the PDSCH indicated by the DCI is, for example, the DCI included in the PDCCH of the first slot. In the example of FIG. 8B, this corresponds to DCI included in PDCCH #m.
 端末200は、実際に受信したPDSCHの長さが、DCIで指示されたPDSCHの長さより短いとき(S72でYes)、RRC設定においてクロスTTIの設定がされているか否かを判定する(S73)。例えば、端末200は、以下の処理を行う。 When the length of the PDSCH actually received is shorter than the length of the PDSCH indicated by DCI (Yes in S72), terminal 200 determines whether or not a cross TTI has been set in the RRC setting (S73). . For example, the terminal 200 performs the following processing.
 すなわち、制御部234は、PDSCH受信処理部232から出力されたデータのデータ量からデータの長さを計算し、その長さがDCIで指示された長さLより短いと判定する。そして、制御部234は、PDSCH受信処理部232から出力されたRRCメッセージに含まれるPDSCH-Configにおいて、クロスTTI設定(図6の(1))を確認することで、クロスTTIの設定の有無を判定する。 {That is, the control unit 234 calculates the length of the data from the data amount of the data output from the PDSCH reception processing unit 232, and determines that the length is shorter than the length L indicated by the DCI. Then, the control unit 234 checks the cross TTI setting ((1) in FIG. 6) in the PDSCH-Config included in the RRC message output from the PDSCH reception processing unit 232 to determine whether the cross TTI is set. judge.
 端末200は、クロスTTIが設定されているとき(S73でYes)、新しいPDCCHを受信し、リソースの割り当て内容に従って、PDSCHの続き部分を受信する(S74)。例えば、端末200は、以下の処理を行う。 When the cross TTI is set (Yes in S73), the terminal 200 receives the new PDCCH and receives the subsequent part of the PDSCH according to the resource assignment (S74). For example, the terminal 200 performs the following processing.
 すなわち、PDSCH受信処理部232は、PDCCH受信処理部231から新しいPDCCHを受け取り、図9に示す各フィールドを参照する。そして、PDSCH受信処理部232は、各フィールドに示された情報に従って、自局宛ての、「未送信」部分のPDSCHを確認し、前TTIのPDCCHにより割り当てられたPDSCHに続く、PDSCHの部分を受信する。 That is, the PDSCH reception processing unit 232 receives a new PDCCH from the PDCCH reception processing unit 231 and refers to each field shown in FIG. Then, the PDSCH reception processing unit 232 confirms the PDSCH of the “untransmitted” portion addressed to the own station according to the information indicated in each field, and determines the PDSCH portion following the PDSCH allocated by the PDCCH of the previous TTI. Receive.
 次に、端末200は、受信結果に応じて、ACK又はNACKをフィードバックする(S75)。例えば、制御部234は、PDSCH受信処理部232から受け取ったデータが正常か否かを判定し、その判定結果に従って、ACK又はNACKを生成し、PUSCH生成部235又はPUCCH生成部236を介して、基地局100へフィードバックする。 Next, the terminal 200 feeds back ACK or NACK according to the reception result (S75). For example, the control unit 234 determines whether or not the data received from the PDSCH reception processing unit 232 is normal, generates ACK or NACK according to the determination result, and outputs the ACK or NACK via the PUSCH generation unit 235 or the PUCCH generation unit 236. This is fed back to the base station 100.
 そして、端末200は、一連の処理を終了する(S76)。 {Terminal 200} ends the series of processing (S76).
 一方、端末200は、実際に受信したPDSCHの長さがDCIで指示されたPDSCHの長さと同じとき(S72でNo)、又は、RRC設定でクロスTTIを行わないことが設定されているとき(S73でNo)、S75へ移行して、上述した処理を行う。 On the other hand, when the length of the PDSCH actually received is equal to the length of the PDSCH indicated by the DCI (No in S72), or when the terminal 200 is set not to perform the cross TTI in the RRC setting ( (No in S73), the process proceeds to S75 and performs the above-described processing.
 <8.Search Spaceについて>
 本第1の実施の形態における補足説明をする。
<8. About Search Space>
A supplementary description of the first embodiment will be given.
 5Gには、RRCメッセージとして、ControlResourceSet(CORESET)がある。CORESETは、例えば、DCIを探索するために、時間と周波数の制御リソースを設定するために用いられる。CORESETに含まれるIEとして、frequecyDomainResourcesがある。frequecyDomainResourcesは、例えば、DCI探索のための周波数リソースを表す。 $ 5G has a ControlResourceSet (CORESET) as an RRC message. CORESET is used to set time and frequency control resources, for example, to search for DCI. An IE included in CORESET is frequencyDomainResources. frequencyDomainResources represents, for example, frequency resources for DCI search.
 また、5Gには、RRCメッセージとして、SearchSpace(サーチスペース)がある。SearchSpaceは、例えば、PDCCH候補をどのように探索するか、或いはどこからPDCCH候補を探索するかを表す。CORESETもSearchSpaceも、例えば、RRCReconfigurationメッセージに含まれる情報要素又はメッセージである。 Also, 5G has a SearchSpace (search space) as an RRC message. The SearchSpace indicates, for example, how to search for a PDCCH candidate, or where to search for a PDCCH candidate. Both the RESET and the SearchSpace are, for example, information elements or messages included in the RRCReconfiguration message.
 図24(A)は、例えば、サーチスペースを含むPDCCHとPDSCHの送信例を表す図である。サーチスペース内に、1又は複数のPDCCHが含まれる。例えば、端末200は、RRCメッセージであるSearchSpaceに従って、無線リソース上でPDCCHが割り当てられた領域を探索する。PDCCHには、個々の端末200に通知するものに加えて、システム共通或いは複数端末に通知するものもある。例えば、送信バーストの長さや次のスロットの長さなどフォーマットに関する情報、または上り送信区間に関する情報、送信バーストの中における当該PDCCHが位置するスロットのスロット番号(例えば、先頭スロットを0番として番号をカウントする)などシステム共通の情報を送信するPDCCHについても端末200はサーチを行う。 FIG. 24A is a diagram illustrating an example of transmission of a PDCCH and a PDSCH including a search space, for example. One or more PDCCHs are included in the search space. For example, terminal 200 searches for a region to which the PDCCH is allocated on the radio resource according to the SearchSpace that is an RRC message. Some PDCCHs notify the individual terminals 200 and others notify the system common or multiple terminals. For example, information on a format such as the length of a transmission burst or the length of the next slot, or information on an uplink transmission section, the slot number of the slot in which the PDCCH is located in a transmission burst (for example, the number is set to 0 for the first slot, The terminal 200 also searches for a PDCCH that transmits information common to the system such as counting.
 SearchSpaceには、monitoringSlotPeriodicityAndOffsetと、monitoringSymbolsWithinSlot、及びdurationの各IEが含まれる。 SearchSpace includes each of the following: IE of monitoringSlotPeriodicityAndOffset, monitoringSymbolsWithinSlot, and duration.
 monitoringSlotPeriodicityAndOffsetは、例えば、サーチスペースが何スロットに1回あるかを表すIEである。例えば、monitoringSlotPeriodicityAndOffsetが「全スロット」のとき、全スロットにサーチスペースが含まれる。 The $ monitoringSlotPeriodicityAndOffset is, for example, an IE indicating in which slot the search space is once. For example, when the monitoringSlotPeriodicityAndOffset is “all slots”, search slots are included in all slots.
 monitoringSymbolsWithinSlotは、例えば、スロット内でPDCCHが送信される可能性がある(又はPDCCHの送信が可能な)シンボルを表すIEである。monitoringSymbolsWithinSlotは、例えば、スロット内の絶対位置で定義される。例えば、monitoringSymbolsWithinSlotが「10000001000000」のとき、図24(A)に示すように、PDCCHはスロット内の1番目のシンボルと8番目のシンボルに割り当てられることを表している。 MonitoringSymbolsWithSinSlot is, for example, an IE indicating a symbol to which a PDCCH may be transmitted (or a PDCCH can be transmitted) in a slot. monitoringSymbolsWithinSlot is defined by, for example, an absolute position in a slot. For example, when monitoringSymbolsWithSinSlot is “1000000010000000”, as shown in FIG. 24A, it indicates that the PDCCH is allocated to the first and eighth symbols in the slot.
 durationは、例えば、時間方向における長さを表すIEである。例えば、durationが「2」のとき、図24(A)に示すように、PDCCHは「2」シンボルの長さを有していることを表している。 Duration is, for example, an IE indicating a length in the time direction. For example, when the duration is “2”, it indicates that the PDCCH has a length of “2” symbols, as shown in FIG.
 サーチスペースの領域については、例えば、monitoringSlotPeriodicityAndOffsetと、monitoringSymbolsWithinSlot、及びdurationの各IEにより、PDCCHの時間方向でのリソース指定が可能となる。そして、このようなRRCメッセージを受信した端末200は、これらの各IEに従って、無線リソース上の領域をモニタリングして、PDCCCHを受信することが可能となる。 For the search space area, for example, the resource specification in the time direction of the PDCCH can be performed by each of the IE of monitoringSlotPeriodicityAndOffset, monitoringSymbolsWithinSlot, and duration. Then, the terminal 200 that has received such an RRC message can monitor the area on the radio resource and receive the PDCCCH according to each of these IEs.
 本第1の実施の形態では、例えば、図24(B)に示すように、PDCCHとPDSCHを含むシンボルを、キャリアセンスの結果により、時間方向にシフトさせることが可能で、これにより、複数の送信機会が存在することになる。この場合、サーチスペースの時間方向のリソースをどのように定義するかが問題となる。とくに、monitoringSymbolsWithinSlotは、例えば、スロット内の絶対的な位置でシンボルを定義しているため、どのように取り扱うかが問題となる。 In the first embodiment, for example, as shown in FIG. 24B, a symbol including the PDCCH and the PDSCH can be shifted in the time direction according to the result of carrier sense. There will be a transmission opportunity. In this case, the problem is how to define the resources in the search space in the time direction. In particular, since monitoringSymbolsWithinSlot defines a symbol at an absolute position in a slot, for example, how to handle it becomes a problem.
 ここで、図24(B)の先頭スロット以外の後続スロットに着目すると、サーチスペースの位置は、ライセンス周波数帯におけるサーチスペースの位置と同じである。従って、アンライセンス周波数帯の後続スロットにおけるサーチスペースと、ライセンス周波数帯のサーチスペースとは、モニタリングを共通にさせることが可能である。一方、先頭スロットのサーチスペースに対するモニタリング方法は、ライセンス周波数帯におけるサーチスペースに対するモニタリング方法とは異なる方法で行われる。 Here, focusing on the subsequent slots other than the first slot in FIG. 24B, the position of the search space is the same as the position of the search space in the license frequency band. Therefore, the search space in the subsequent slot of the unlicensed frequency band and the search space of the licensed frequency band can be monitored in common. On the other hand, the monitoring method for the search space in the first slot is performed in a different manner from the monitoring method for the search space in the license frequency band.
 そこで、本第1の実施の形態では、2つのオプションにより、サーチスペースのモニタリング方法を定義する。1つ目のオプション(Option1)は、後続スロットと先頭スロットとで、2つのmonitoringSymbolsWithinSlotを定義する。2つ目のオプション(Option2)は、後続スロットと先頭スロットで、monitoringSymbolsWithinSlotを同一の定義とし、端末200において解釈と処理を変更する方法である。 Therefore, in the first embodiment, a search space monitoring method is defined by two options. The first option (Option 1) defines two monitoring Symbols With Slot with a subsequent slot and a leading slot. The second option (Option 2) is a method of changing the interpretation and processing in the terminal 200 with the same definition for monitoringSymbolsWithSinSlot in the subsequent slot and the leading slot.
 図25は、2つのオプション(Option1とOption2)の定義例を表す図である。図25において、例えば、「送信バーストの2slot以降のSlot」が後続スロット(例えば、先頭スロットから次のスロット以降のスロット)、「左記以外のslot」が先頭スロットを夫々表す。なお、「左記以外のslot」には、例えば、先頭スロット前の、データの未送信区間におけるスロットも含まれる。 FIG. 25 is a diagram illustrating a definition example of two options (Option 1 and Option 2). In FIG. 25, for example, “Slot after 2 slots of transmission burst” represents a succeeding slot (for example, a slot from the first slot to the next slot), and “slots other than those described on the left” represent a top slot, respectively. The “slots other than those described in the left” include, for example, slots in a data non-transmission section before the first slot.
 図25に示す例において、Option1では、monitoringSymbolsWithinSlotは、後続スロットでは「1000000000000」、先頭スロットでは「10101010101010」とそれぞれ異なる方法で定義している。すなわち、Option1では、例えば、monitoringSymbolsWithinSlotに含まれる内容を、「送信バーストの2slot以降のSlot」と「左記以外のslot」とで異なる内容としている。 In the example shown in FIG. 25, in Option 1, monitoring Symbols WithoutSlot is defined by a method different from “1000000000000” in the succeeding slot and “10101010101010” in the leading slot. That is, in Option 1, for example, the content included in monitoringSymbolsWithinSlot is different between “Slot after 2slot of transmission burst” and “slot other than those described on the left”.
 この例では、後続スロットでは、先頭のシンボル(1番目のシンボル)でサーチスペースがあることを示す。従って、端末200は、後続スロットについては、スロット内の先頭スロットを探索すればよい。 で は In this example, in the succeeding slot, it indicates that there is a search space at the first symbol (first symbol). Therefore, terminal 200 may search for the leading slot in the subsequent slot.
 また、先頭スロットでは、先頭から1番目のシンボル(Symbol#0)、3番目のシンボル(Symbol#2)、5番目のシンボル(Symbol#4)など、1シンボルおきに7回モニタすることを示す。従って、端末200は、先頭スロットについては、指定されたシンボルで7回のモニタリングを行えばよい。 In the first slot, the first symbol (Symbol # 0), the third symbol (Symbol # 2), the fifth symbol (Symbol # 4), and the like are monitored seven times every other symbol from the beginning. . Therefore, terminal 200 only needs to monitor the head slot seven times with the specified symbol.
 なお、Option1の場合、RRCメッセージ内では、例えば、monitoringSymbolsWithinSlotについて、図25に示すような2つの定義が含まれ、端末200は、RRCメッセージを受信することで、このような処理が可能となる。 In the case of Option 1, the RRC message includes, for example, two definitions as shown in FIG. 25 for monitoringSymbolsWithinSlot, and the terminal 200 can perform such processing by receiving the RRC message.
 一方、図25に示す例において、Option2では、monitoringSymbolsWithinSlotが後続スロットも先頭スロットもいずれも「10000000000000」となる。この場合、端末200は、各送信機会の実際の送信開始シンボルからの相対位置として、monitoringSymbolsWithinSlotにより示されたパラメータを解釈する。例えば、図24(B)の例では、先頭スロットでは、5番目のシンボルから実際に送信が開始されるため、端末200は、5番目のシンボルが、「10000000000000」における最初の「1」番目のシンボルとして解釈する。 On the other hand, in the example shown in FIG. 25, in Option 2, the monitoring Symbols WithoutSlot is “100000000000000000” for both the succeeding slot and the leading slot. In this case, terminal 200 interprets the parameter indicated by monitoringSymbolsWithSlot as the relative position of each transmission opportunity from the actual transmission start symbol. For example, in the example of FIG. 24B, in the first slot, transmission is actually started from the fifth symbol, so that the terminal 200 determines that the fifth symbol is the first “1” -th in “1000000000000”. Interpret as a symbol.
 図25のOption2も、Option1の場合と同様に、monitoringSymbolsWithinSlotがRRCメッセージに含まれるため、端末200はRRCメッセージを受信することで、このような処理が可能となる。 OIn Option 2 in FIG. 25, similarly to Option 1, monitoringSymbolsWithSinSlot is included in the RRC message, so that the terminal 200 can receive the RRC message and perform such processing.
 なお、Option2では、RRCメッセージにより、送信開始パターンとして、「Symbol#0,#2,#4,#6,#8,#10,#12」を設定してもよい。 In Option 2, “Symbol # 0, # 2, # 4, # 6, # 8, # 10, # 12” may be set as the transmission start pattern by the RRC message.
 図26は、送信開始パターンを含むRRCメッセージの例を表す図である。図26に示す例は、PDSCH-Configにおいて、「PDCCH送信可能タイミング」のIEが含まれる例である。「PDCCH送信可能タイミング」に設定するパラメータとして、例えば、「10101010101010」とすることで、先頭スロットの「Symbol#0,#2,#4,#6,#8,#10,#12」が送信機会となり、端末200はこのタイミングでPDCCHをモニタリングすればよい。 FIG. 26 is a diagram illustrating an example of an RRC message including a transmission start pattern. The example illustrated in FIG. 26 is an example in which the IE of “PDCCH transmission available timing” is included in the PDSCH-Config. By setting, for example, “1010101010101010” as a parameter to be set in “PDCCH transmission available timing”, “Symbol # 0, # 2, # 4, # 6, # 8, # 10, # 12” of the first slot is transmitted. At this time, the terminal 200 may monitor the PDCCH at this timing.
 なお、「PDCCH送信可能タイミング」は、PDCCH-Configに含まれてもよいし、他のConfigなどに含まれてもよい。「PDCCH送信可能タイミング」は、例えば、RRCReconfigurationメッセージに含まれるものであればよい。 The “PDCCH transmittable timing” may be included in the PDCCH-Config, or may be included in another Config or the like. The “PDCCH transmission available timing” may be any timing included in, for example, the RRCReconfiguration message.
 Option1とOption2については、例えば、基地局100の制御部122において、monitoringSymbolsWithinSlotを含むRRCメッセージを生成し、PDSCH生成部124経由で、端末200へ送信すればよい。 For Option1 and Option2, for example, the control unit 122 of the base station 100 may generate an RRC message including monitoringSymbolsWithinSlot, and transmit the generated RRC message to the terminal 200 via the PDSCH generation unit 124.
 図27(A)と図27(B)は、図25に示すOption1とOption2とが設定された場合において、端末200のモニタリング例を表す図である。 FIG. 27A and FIG. 27B are diagrams illustrating an example of monitoring of the terminal 200 when Option 1 and Option 2 illustrated in FIG. 25 are set.
 図27(A)に示すように、端末200は、未送信区間では、Option1では、monitoringSymbolsWithinSlot、Option2では、RRCメッセージにより、スロット内の先頭シンボルから1シンボルおきにモニタリングを夫々行っている。 As shown in FIG. 27A, in the untransmitted section, the terminal 200 performs monitoring every other symbol from the first symbol in the slot by the monitoringSymbolsWithinSlot in Option1 and the RRC message in Option2.
 そして、端末200は、送信バーストの先頭スロットの先頭シンボルでモニタリングして、PDCCHを受信し、その後、PDSCHも受信する。 Terminal 200 monitors the first symbol of the first slot of the transmission burst, receives the PDCCH, and thereafter also receives the PDSCH.
 Option1の場合、端末200は、monitoringSymbolsWithinSlot(=「10101010101010」)により、先頭スロットをモニタリングすることでPDCCHを受信できる。 In the case of Option 1, the terminal 200 can receive the PDCCH by monitoring the leading slot by monitoringSymbolsWithSinSlot (= “10101010101010”).
 Option2の場合、端末200は、RRCメッセージの「送信開始タイミング」により、先頭シンボルをモニタリングすることで、PDCCHを受信できる。この場合、端末200は、先頭シンボルが送信開始シンボルとして、monitoringSymbolsWithinSlotにおける「10000000000000」の「1」を解釈する。 In the case of Option 2, the terminal 200 can receive the PDCCH by monitoring the first symbol based on the “transmission start timing” of the RRC message. In this case, terminal 200 interprets “1” of “1000000000000” in monitoringSymbolsWithinSlot as the first symbol as the transmission start symbol.
 なお、送信バーストの2スロット目以降は、後続スロットとして、Option1もOption2も、端末200は、スロット内の先頭スロットをモニタリングすればよい。 Note that, for the second and subsequent slots of the transmission burst, the terminal 200 only needs to monitor the first slot in the slots for both Option 1 and Option 2 as subsequent slots.
 一方、図27(B)の例では、送信バーストの先頭スロットでは、5番目のシンボルからPDCCHとPDSCHを受信し始める。Option1では、端末200は、monitoringSymbolsWithinSlotにより、先頭シンボルから1シンボルおきにモニタリングすることで、5番目のシンボルからPDCCHを受信する。Option2では、端末200は、RRCメッセージの「送信開始タイミング」により、先頭シンボルから1シンボルおきにモニタリングして、5番目のシンボルからPDCCHを受信する。この際、端末200は、5番目のシンボル(シンボル4)を、monitoringSymbolsWithinSlotの「10000000000000」の「1」と解釈する。 On the other hand, in the example of FIG. 27B, in the first slot of the transmission burst, reception of the PDCCH and PDSCH starts from the fifth symbol. In Option 1, terminal 200 receives the PDCCH from the fifth symbol by monitoring every other symbol from the first symbol by monitoringSymbolsWithinSlot. In Option 2, the terminal 200 monitors every other symbol from the first symbol and receives the PDCCH from the fifth symbol according to the “transmission start timing” of the RRC message. At this time, the terminal 200 interprets the fifth symbol (symbol 4) as "1" of "1000000000000" in monitoringSymbolsWithSinSlot.
 [他の実施の形態]
 図28(A)は基地局100のハードウェア構成例を表す図である。
[Other embodiments]
FIG. 28A is a diagram illustrating a hardware configuration example of the base station 100.
 基地局100は、プロセッサ160、主記憶装置161、ネットワークインタフェース162、補助記憶装置163、無線機164、及びアンテナ140を備える。 The base station 100 includes a processor 160, a main storage device 161, a network interface 162, an auxiliary storage device 163, a wireless device 164, and an antenna 140.
 プロセッサ160は、主記憶装置161に記憶されたプログラムを読み出して補助記憶装置163にロードし、ロードしたプログラムを実行することで、ベースバンド信号処理部120の機能を実現する。プロセッサ160は、例えば、第1の実施の形態におけるベースバンド信号処理部120に対応する。 The processor 160 reads out the program stored in the main storage device 161 and loads it into the auxiliary storage device 163, and executes the loaded program to realize the function of the baseband signal processing unit 120. The processor 160 corresponds to, for example, the baseband signal processing unit 120 according to the first embodiment.
 また、ネットワークインタフェース162は、例えば、第1の実施の形態における伝送路インタフェース110に対応する。さらに、無線機164は、例えば、第1の実施の形態におけるRF送受信部130に対応する。 The network interface 162 corresponds to, for example, the transmission line interface 110 in the first embodiment. Further, the wireless device 164 corresponds to, for example, the RF transmitting / receiving unit 130 in the first embodiment.
 図28(B)は端末200のハードウェア構成例を表す図である。 FIG. 28B is a diagram illustrating an example of a hardware configuration of the terminal 200.
 端末200は、プロセッサ260、主記憶装置261、画面表示装置262、補助記憶装置263、無線機264、及びアンテナ210を備える。 The terminal 200 includes a processor 260, a main storage device 261, a screen display device 262, an auxiliary storage device 263, a wireless device 264, and an antenna 210.
 プロセッサ260は、主記憶装置261に記憶されたプログラムを読み出して、補助記憶装置263にロードし、ロードしたプログラムを実行することで、ベースバンド信号処理部230とアプリケーション部240の機能を実現する、プロセッサ260は、例えば、第1の実施の形態におけるベースバンド信号処理部230とアプリケーション部240に対応する。 The processor 260 reads the program stored in the main storage device 261, loads the program into the auxiliary storage device 263, and executes the loaded program to realize the functions of the baseband signal processing unit 230 and the application unit 240. The processor 260 corresponds to, for example, the baseband signal processing unit 230 and the application unit 240 in the first embodiment.
 また、無線機264は、例えば、第1の実施の形態におけるRF送受信部220に対応する。 The wireless device 264 corresponds to, for example, the RF transmitting / receiving unit 220 in the first embodiment.
 画面表示装置262は、例えば、プロセッサ260の制御により、アプリケーションを実行することで画像を表示する。 The screen display device 262 displays an image by executing an application under the control of the processor 260, for example.
 なお、プロセッサ160,260は、例えば、CPU(Central Processing Unit)やMPU(Micro Processing Unit)、FPGA(Field-Programmable Gate Array)、DSP(Digital Processing Unit)などであってもよい。 The processors 160 and 260 may be, for example, a CPU (Central Processing Unit), an MPU (Micro Processing Unit), an FPGA (Field-Programmable Gate Array), a DSP (Digital Processing Unit), or the like.
 また、第1の実施の形態では、基地局100や端末200は、例えば、2シンボル単位でキャリアセンスを行い、1スロット内において全部で7回の送信機会がある例について説明した。例えば、基地局100や端末200は、1シンボル単位でキャリアセンスを行う場合、送信機会は、1つのスロット内において14回存在することになる。そして、基地局100や端末200は、例えば、シンボル期間単位でシフトする例について説明した。例えば、基地局100や端末200は、シンボル期間よりも短い期間単位(又は時間単位)で、先頭シンボルをシフトさせるようにしてもよい。あるいは、シフトする単位がシンボルの整数倍で、送信開始タイミングがシンボル期間の途中であってもよい。この場合、基地局100の制御部122や端末200の制御部234は、例えば、先頭シンボルに含まれるデータや信号をコピーし、先頭シンボルをシフトさせる際、コピーしたデータや信号を、先頭シンボルに対して時間的に前方向に付加することで、シンボル期間の途中からの送信が可能となる。なお、基地局100からの下り送信でサーチスペースがスロットの先頭シンボルにない設定の場合、あるいは端末200からの上り送信の場合、送信開始タイミングに合わせて先頭シンボルの途中から送信し始めてもよい。 In the first embodiment, the example has been described in which the base station 100 and the terminal 200 perform carrier sensing in units of two symbols, for example, and there are seven transmission opportunities in one slot. For example, when the base station 100 and the terminal 200 perform carrier sensing in units of one symbol, transmission opportunities exist 14 times in one slot. Then, an example has been described in which base station 100 and terminal 200 shift, for example, in symbol period units. For example, the base station 100 or the terminal 200 may shift the first symbol by a period unit (or time unit) shorter than the symbol period. Alternatively, the shift unit may be an integral multiple of the symbol, and the transmission start timing may be in the middle of the symbol period. In this case, the control unit 122 of the base station 100 or the control unit 234 of the terminal 200, for example, copies data or a signal included in the head symbol and shifts the copied data or signal to the head symbol when shifting the head symbol. On the other hand, by adding the information forward in time, transmission from the middle of the symbol period becomes possible. In a case where the search space is not set at the first symbol of the slot in downlink transmission from base station 100, or in the case of uplink transmission from terminal 200, transmission may be started from the middle of the first symbol in synchronization with the transmission start timing.
 また、第1の実施の形態では、データ、DCI、RRCメッセージ、HARQ-ACKを全てアンライセンス周波数帯の所定周波数帯域を使って送信する例について説明した。無線システム10として、ライセンス周波数帯とアンライセンス周波数帯の両方を使って通信し、アンライセンス周波数帯におけるデータ伝送に関するDCI、RRCメッセージ、HARQ-ACKの一部又は全部を、ライセンス周波数帯を使って送信してもよい。 In the first embodiment, an example has been described in which data, DCI, RRC message, and HARQ-ACK are all transmitted using a predetermined frequency band of the unlicensed frequency band. The wireless system 10 communicates using both the licensed frequency band and the unlicensed frequency band, and transmits some or all of DCI, RRC messages, and HARQ-ACK related to data transmission in the unlicensed frequency band using the licensed frequency band. May be sent.
10:無線通信システム        100:基地局装置(基地局)
110:伝送路インタフェース     120:ベースバンド信号処理部
121:受信信号処理部        122:制御部
123:PDCCH生成部       124:PDSCH生成部
125:マッピング部         130:RF送受信部
140:アンテナ           160:プロセッサ
200(200-1,200-2):端末装置(端末)
210:アンテナ           220:RF送受信部
230:ベースバンド信号処理部    231:PDCCH受信処理部
232:PDSCH受信処理部     234:制御部
235:PUSCH生成部       236:PUCCH生成部
237:マッピング部         240:アプリケーション部
260:プロセッサ
10: Wireless communication system 100: Base station device (base station)
110: Transmission path interface 120: Baseband signal processing unit 121: Received signal processing unit 122: Control unit 123: PDCCH generation unit 124: PDSCH generation unit 125: Mapping unit 130: RF transmission / reception unit 140: Antenna 160: Processor 200 (200) -1,200-2): Terminal device (terminal)
210: antenna 220: RF transmitting / receiving unit 230: baseband signal processing unit 231: PDCCH reception processing unit 232: PDSCH reception processing unit 234: control unit 235: PUSCH generation unit 236: PUCCH generation unit 237: mapping unit 240: application unit 260 : Processor

Claims (33)

  1.  免許が不要な第1の周波数帯を用いて、受信装置と無線通信が可能な送信装置において、
     前記第1の周波数帯が他の送信装置により使用されていないことを確認し、第1の通信方向における第1の制御チャネルと第1の共有チャネルとを含む第1のシンボル、又は、前記第1の通信方向と異なる第2の通信方向における第2の共有チャネルとを含む第2のシンボルを、時間方向にシフトさせる制御部と、
     前記第1のシンボルに割り当てられた第1の制御信号と第1のデータとを前記第1の制御チャネルと前記第1の共有チャネルとを夫々用いて、又は前記第2のシンボルに割り当てられた第2のデータを前記第2の共有チャネルを用いて、前記受信装置へ送信する送信部と
     を備えることを特徴とする送信装置。
    In the transmitting device capable of wireless communication with the receiving device using the first frequency band which does not require a license,
    Confirm that the first frequency band is not used by another transmitting device, and a first symbol including a first control channel and a first shared channel in a first communication direction, or the first symbol A control unit configured to shift a second symbol including a second shared channel in a second communication direction different from the one communication direction in a time direction;
    The first control signal and the first data assigned to the first symbol are assigned using the first control channel and the first shared channel, respectively, or assigned to the second symbol. A transmitting unit that transmits second data to the receiving device using the second shared channel.
  2.  前記制御部は、前記第1の周波数帯が前記他の送信装置により使用され、前記第1の制御信号と前記第1のデータ又は前記第2のデータを、スロット内の先頭シンボルから送信することができないとき、前記第1又は第2のシンボルを前記先頭シンボルから時間方向にシフトさせることを特徴とする請求項1記載の送信装置。 The control unit, wherein the first frequency band is used by the other transmission device, and the first control signal and the first data or the second data are transmitted from a first symbol in a slot. The transmitting apparatus according to claim 1, wherein when the first symbol or the second symbol cannot be obtained, the first or second symbol is shifted in the time direction from the first symbol.
  3.  前記制御部は、前記第1の制御信号と前記第1のデータとをスロット内の先頭シンボルからシフトして送信する場合に前記第1の制御信号に含まれる前記第1のデータのスロットにおける開始シンボルと前記開始シンボルからの長さとを、前記第1の制御信号と前記第1のデータとを前記先頭シンボルから送信する場合に前記第1の制御信号に含まれる前記第1のデータのスロットにおける開始シンボルと前記開始シンボルからの長さにそれぞれ設定することを特徴とする請求項1記載の送信装置。 The control unit, when shifting the first control signal and the first data from the first symbol in the slot and transmitting the first control signal and the first data, starts the first data included in the first control signal in the slot. A symbol and a length from the start symbol in a slot of the first data included in the first control signal when the first control signal and the first data are transmitted from the first symbol. The transmission apparatus according to claim 1, wherein the transmission symbol is set to a start symbol and a length from the start symbol.
  4.  前記第1の制御信号には、開始シンボルと前記開始シンボルからの長さとを含み、
     前記開始シンボルは、前記第1のデータの送信を実際に開始したシンボルであることを特徴とする請求項1記載の送信装置。
    The first control signal includes a start symbol and a length from the start symbol,
    The transmitting apparatus according to claim 1, wherein the start symbol is a symbol that has actually started transmission of the first data.
  5.  前記制御部は、前記第1又は第2のシンボルを、シンボル期間単位又は前記シンボル期間よりも短い期間で、時間方向にシフトさせることを特徴とする請求項1記載の送信装置。 The transmission apparatus according to claim 1, wherein the control unit shifts the first or second symbol in a time direction by a unit of a symbol period or by a period shorter than the symbol period.
  6.  前記送信部は、
     前記第1の制御信号により割り当てられた第1の期間において送信することができなかった前記第1のデータの一部を、第3の制御信号により割り当てられた第2の期間で送信し、又は、
     前記第1の制御信号により割り当てられた第3の期間において送信することができなかった前記第2のデータの一部を、第4の制御信号により割り当てられた第4の期間で送信する
     ことを特徴とする請求項1記載の送信装置。
    The transmission unit,
    Transmitting a part of the first data that cannot be transmitted in the first period allocated by the first control signal in a second period allocated by the third control signal; or ,
    Transmitting a part of the second data that could not be transmitted in the third period allocated by the first control signal in a fourth period allocated by the fourth control signal. The transmitting device according to claim 1, wherein
  7.  前記制御部は、前記第1の周波数帯が前記他の送信装置により使用され、前記第1の制御信号と前記第1のデータ又は前記第2のデータを、スロット内の先頭シンボルから送信することができないことで、前記第1の制御信号により割り当てられた前記第1又は第2の期間において前記第1又は第2のデータの全部をそれぞれ送信することができなかったとき、前記第1又は第2のデータの一部を前記第2又は第4の期間でそれぞれ送信することを指示し、
     前記送信部は、前記指示に従って、前記第1又は第2のデータの一部を前記第2又は第4の期間でそれぞれ送信する
     ことを特徴とする請求項6記載の送信装置。
    The control unit, wherein the first frequency band is used by the other transmission device, and the first control signal and the first data or the second data are transmitted from a first symbol in a slot. Is not possible, when it is not possible to transmit all of the first or second data in the first or second period allocated by the first control signal, respectively, 2 to transmit a part of the data in the second or fourth period, respectively.
    The transmission device according to claim 6, wherein the transmission unit transmits a part of the first or second data in the second or fourth period, respectively, in accordance with the instruction.
  8.  前記送信部は、第1のスロット期間に含まれる前記第1又は第3の期間でそれぞれ送信することができなかった前記第1又は第2のデータの一部を、前記第1のスロット期間の次のスロット期間である第2のスロット期間に含まれる前記第2又は第4の期間でそれぞれ送信することを特徴とする請求項6記載の送信装置。 The transmitting unit transmits a part of the first or second data that could not be transmitted in the first or third period included in the first slot period, respectively, in the first slot period. 7. The transmitting apparatus according to claim 6, wherein transmission is performed in each of the second and fourth periods included in a second slot period that is a next slot period.
  9.  前記送信部は、前記第1又は第2のデータの一部を前記第2又は第4の期間で送信することを指示する第1のメッセージを前記第1の共有チャネルを用いて送信することを特徴とする請求項6記載の送信装置。 The transmitting unit transmits a first message instructing to transmit a part of the first or second data in the second or fourth period using the first shared channel. The transmitting device according to claim 6, wherein
  10.  前記制御部は、前記第1のデータを前記第1及び第2の期間で送信するか否か又は前記第2のデータを前記第3及び第4の期間で送信するか否かを示す情報要素と、前記第1又は第2のデータの一部を送信するスロット番号を示す情報要素と、前記第1又は第2のデータの一部の送信を開始するシンボルのシンボル番号と、先頭スロットの次のスロットの終了シンボルは、更に次のスロットでシフトさせるか否かを示す情報要素とを含む前記第1のメッセージを生成することを特徴とする請求項9記載の送信装置。 An information element indicating whether or not the first data is transmitted in the first and second periods or whether the second data is transmitted in the third and fourth periods; An information element indicating a slot number for transmitting a part of the first or second data, a symbol number of a symbol for starting transmission of a part of the first or second data, 10. The transmitting apparatus according to claim 9, wherein the first message further includes an end symbol of the slot of (i) and an information element indicating whether or not to shift in the next slot.
  11.  前記第1のメッセージは、RRCReconfigurationメッセージに含まれるPDSCH(Physical Downlink Shared CHannel)-Config又はPUSCH(Physical Uplink Shared CHannel)-Configであることを特徴とする請求項9記載の送信装置。 10. The transmission apparatus according to claim 9, wherein the first message is a PDSCH (Physical Downlink Shared CHannel) -Config or a PUSCH (Physical Uplink Shared CHannel) -Config included in an RRCReconfiguration message.
  12.  前記第1の制御チャネルと前記第1の共有チャネルは、それぞれPDCCH(Physical Downlink Control CHannel)とPDSCH(Physical Downlink Shared CHannel)であり、前記前記第2の共有チャネルは、PUSCH(Physical Uplink Control CHannel)であることを特徴とする請求項9記載の送信装置。 The first control channel and the first shared channel are PDCCH (Physical Downlink Control CHannel) and PDSCH (Physical Downlink Shared CHannel), respectively, and the second shared channel is PUSCH (Physical Uplink Control CHannel). The transmitting device according to claim 9, wherein:
  13.  前記送信部は、前記第1のデータの一部を前記第2の期間で送信することを指示する第5の制御信号を前記第1の制御チャネルを用いて送信することを特徴とする請求項6記載の送信装置。 The said transmission part transmits the 5th control signal which instruct | indicates transmitting a part of said 1st data in the said 2nd period using the said 1st control channel, The said control part, The said control part is characterized by the above-mentioned. 7. The transmission device according to 6.
  14.  前記送信部は、前記第1の制御信号に含まれるNDI(New Data Indicator)、HARQ(Hybrid Automatic Repeat reQuest)プロセス番号、及びRVとそれぞれ同じNDI、HARQプロセス番号、及びRVを含む前記第5の制御信号を送信する請求項13記載の送信装置。 The fifth transmission unit includes an NDI (New Data Indicator), an HARQ (Hybrid Automatic Repeat Repeat request) process number, and an NDI, HARQ process number, and RV that are respectively the same as the RV included in the first control signal. 14. The transmitting device according to claim 13, which transmits a control signal.
  15.  前記送信部は、前記第1の制御信号を第1のスロット期間で送信し、前記第5の制御信号と前記第1のデータの一部とを前記第1のスロット期間の次の第2のスロット期間で送信することを特徴とする請求項13記載の送信装置。 The transmission unit transmits the first control signal in a first slot period, and transmits the fifth control signal and a part of the first data to a second control signal in a second slot next to the first slot period. 14. The transmission device according to claim 13, wherein transmission is performed during a slot period.
  16.  前記制御部は、前記第5の制御信号により割り当てられた前記第1のデータの一部を送信する第1の無線リソースの領域に、前記第5の制御信号を含む他の制御信号を送信する第2の無線リソースの領域が含まれるとき、前記第2の無線リソースの領域に割り当てた前記第1のデータの部分をパンクチャすることを特徴とする請求項13記載の送信装置。 The control unit transmits another control signal including the fifth control signal to an area of a first radio resource for transmitting a part of the first data allocated by the fifth control signal. 14. The transmitting apparatus according to claim 13, wherein when the area of the second radio resource is included, a part of the first data allocated to the area of the second radio resource is punctured.
  17.  前記第1の制御チャネルと前記第1の共有チャネルは、それぞれPDCCH(Physical Downlink Control CHannel)とPDSCH(Physical Downlink Shared CHannel)であることを特徴とする請求項13記載の送信装置。 14. The transmitting apparatus according to claim 13, wherein the first control channel and the first shared channel are a PDCCH (Physical Downlink Control CHannel) and a PDSCH (Physical Downlink Shared CHannel), respectively.
  18.  前記送信部は、スロット内において前記第1のデータの送信が終了するシンボルを示す終了シンボルを含む第2のメッセージを前記第1の共有チャネルを用いて送信、又は前記終了シンボルを含む第6の制御信号を前記第1の制御チャネルを用いて送信することを特徴とする請求項1記載の送信装置。 The transmitting unit transmits a second message including an end symbol indicating a symbol at which transmission of the first data ends in a slot using the first shared channel, or a sixth message including the end symbol. The transmission device according to claim 1, wherein a control signal is transmitted using the first control channel.
  19.  前記第2のメッセージは、RRCReconfigurationメッセージに含まれるPDSCH(Physical Downlink Shared CHannel)-Config又はPUSCH(Physical Uplink Shared CHannel)-Configであることを特徴とする請求項18記載の送信装置。 19. The transmission apparatus according to claim 18, wherein the second message is a PDSCH (Physical Downlink Shared CHannel) -Config or a PUSCH (Physical Uplink Shared CHannel) -Config included in an RRCReconfiguration message.
  20.  前記送信部は、開始シンボルからの長さに代えて、前記終了シンボルを含む前記第6の制御信号を前記第1の制御チャネルを利用して送信することを特徴とする請求項18記載の送信装置。 19. The transmission according to claim 18, wherein the transmission unit transmits the sixth control signal including the end symbol using the first control channel instead of the length from the start symbol. apparatus.
  21.  前記送信部は、スロット内で前記第1の制御信号の送信が可能なシンボルを表す情報要素を含む第3のメッセージを前記第1の共有チャネルを用いて送信し、
     前記第3のメッセージは、前記第1のデータの送信を開始した第1のスロットの次の第2のスロット以降のスロットにおける前記情報要素の内容と、前記第2のスロット以降のスロット以外のスロットにおける前記情報要素の内容とが異なる内容となっている前記第3のメッセージを送信する
     ことを特徴とする請求項1記載の送信装置。
    The transmitting unit transmits a third message including an information element representing a symbol capable of transmitting the first control signal in a slot using the first shared channel,
    The third message includes a content of the information element in a slot after a second slot after the first slot that has started transmission of the first data, and a slot other than a slot after the second slot. The transmission device according to claim 1, wherein the third message having a content different from the content of the information element is transmitted.
  22.  前記情報要素は、monitoringSybolsWithinSlotであることを特徴とする請求項21記載の送信装置。 22. The transmitting apparatus according to claim 21, wherein the information element is monitoringSybolsWithInSlot.
  23.  前記送信部は、スロット内で前記第1の制御信号の送信が可能なシンボルを表す情報要素を含む第3のメッセージを前記第1の共有チャネルを用いて送信し、
     前記第1の制御信号の送信が可能なシンボルは、前記第1の制御信号について実際に送信を開始したシンボルからの相対位置で表され、
     前記送信部は、第1の制御信号の送信機会を表すシンボルを含む第4のメッセージを前記第1の共有チャネルを用いて送信する
     ことを特徴とする請求項1記載の送信装置。
    The transmitting unit transmits a third message including an information element representing a symbol capable of transmitting the first control signal in a slot using the first shared channel,
    The symbol capable of transmitting the first control signal is represented by a relative position from a symbol that has actually started transmitting the first control signal,
    The transmitting device according to claim 1, wherein the transmitting unit transmits a fourth message including a symbol indicating a transmission opportunity of a first control signal using the first shared channel.
  24.  前記情報要素は、monitoringSybolsWithinSlotであることを特徴とする請求項23記載の送信装置。 24. The transmitting apparatus according to claim 23, wherein the information element is monitoringSybolsWithInSlot.
  25.  前記送信装置は、基地局装置であり、前記受信装置は、端末装置である、又は、
     前記送信装置は、端末装置であり、前記受信装置は、基地局装置である
     ことを特徴とする請求項1記載の送信装置。
    The transmitting device is a base station device, the receiving device is a terminal device, or
    The transmission device according to claim 1, wherein the transmission device is a terminal device, and the reception device is a base station device.
  26.  前記第2のシンボルは、第2の制御チャネルを含み、
     前記送信部は、前記第2のシンボルに割り当てられた前記第2のデータと第2の制御信号とを前記第2の共有チャネルと前記第2の制御チャネルと夫々用いて、前記受信装置へ送信することを特徴とする請求項1記載の送信装置。
    The second symbol includes a second control channel;
    The transmitting unit transmits the second data and the second control signal assigned to the second symbol to the receiving device by using the second shared channel and the second control channel, respectively. The transmission device according to claim 1, wherein
  27.  前記第2の制御チャネルは、PUCCH(Physical Uplink Control CHannel)であることを特徴とする請求項26記載の送信装置。 27. The transmitting apparatus according to claim 26, wherein the second control channel is a PUCCH (Physical Uplink Control CHannel).
  28.  免許が不要な第1の周波数帯を用いて、送信装置と無線通信が可能な受信装置において、
     第1のシンボルに割り当てられた第1の制御信号と第1のデータとを第1の制御チャネルと第1の共有チャネルとを夫々用いて、又は第2のシンボルに割り当てられた第2のデータを第2の共有チャネルを用いて、前記送信装置から受信する受信部と、
     前記第1の制御信号と前記第1のデータ、又は前記第2のデータとにより、第1の通信方向における前記第1の制御チャネルと前記第1の共有チャネルとを含む前記第1のシンボル、又は、前記第1の通信方向と異なる第2の通信方向における前記第2の共有チャネルを含む前記第2のシンボルが時間方向にシフトされたことを夫々確認する制御部
     を備えることを特徴とする受信装置。
    In the receiving device capable of wireless communication with the transmitting device using the first frequency band that does not require a license,
    The first control signal and the first data assigned to the first symbol are used for the first control channel and the first shared channel, respectively, or the second data assigned to the second symbol. Using a second shared channel, receiving from the transmitting device,
    The first symbol including the first control channel and the first shared channel in a first communication direction according to the first control signal and the first data or the second data; Or a control unit for confirming that the second symbol including the second shared channel in a second communication direction different from the first communication direction has been shifted in the time direction. Receiver.
  29.  前記制御部は、前記第1の制御信号に含まれる、前記第1のデータについての、スロットにおける開始シンボルと前記開始シンボルからの長さとにより、前記第1又は第2のシンボルがシフトされたことを確認することを特徴とする請求項28記載の受信装置。 The control unit may be configured such that the first or second symbol is shifted according to a start symbol in a slot and a length from the start symbol of the first data included in the first control signal. 29. The receiving device according to claim 28, wherein:
  30.  前記受信部は、
     前記第1の制御信号により割り当てられた第1の期間において受信することができなかった前記第1のデータの一部を、第3の制御信号により割り当てられた第2の期間で受信し、又は、
     前記第1の制御信号により割り当てられた第3の期間において受信することができなかった前記第2のデータの一部を、第4の制御信号により割り当てられた第4の期間で受信する
     ことを特徴とする請求項28記載の受信装置。
    The receiving unit,
    Receiving a part of the first data that could not be received in the first period assigned by the first control signal in a second period assigned by a third control signal; or ,
    Receiving a part of the second data that could not be received in the third period allocated by the first control signal in a fourth period allocated by the fourth control signal. The receiving device according to claim 28, wherein:
  31.  前記受信部は、
     前記第1又は第2のデータの一部を前記第2又は第4の期間で送信することを指示する第1のメッセージを前記第1の共有チャネルを用いて受信し、又は、
     前記第1のデータの一部を前記第2の期間で送信することを指示する第5の制御信号を前記第1の制御チャネルを用いて受信し、
     前記受信部は、前記第1のメッセージ又は前記第5の制御信号により、前記第1のデータの一部を、前記第2又は第4の期間で受信する
     ことを特徴とする請求項30記載の受信装置。
    The receiving unit,
    Receiving, using the first shared channel, a first message indicating that a part of the first or second data is to be transmitted in the second or fourth period; or
    Receiving, using the first control channel, a fifth control signal instructing to transmit a part of the first data in the second period;
    The said receiving part receives a part of the said 1st data in the said 2nd or 4th period by the said 1st message or the said 5th control signal. The said Claim 30 characterized by the above-mentioned. Receiver.
  32.  送信装置と、
     受信装置とを備え、
     前記送信装置と前記受信装置とが、免許が不要な第1の周波数帯を用いて無線通信が可能な無線通信システムにおいて、
     前記送信装置は、
     前記第1の周波数帯が他の送信装置により使用されていないことを確認し、第1の通信方向における第1の制御チャネルと第1の共有チャネルとを含む第1のシンボル、又は、前記第1の通信方向と異なる第2の通信方向における第2の共有チャネルを含む第2のシンボルを、時間方向にシフトさせる制御部と、
     前記第1のシンボルに割り当てられた第1の制御信号と第1のデータとを前記第1の制御チャネルと前記第1の共有チャネルとを夫々用いて、又は前記第2のシンボルに割り当てられた第2のデータを前記第2の共有チャネルを用いて、前記受信装置へ送信する送信部と
     を備え、
     前記受信装置は、
     前記第1の制御信号と前記第1のデータとを前記第1の制御チャネルと前記第1の共有チャネルとを夫々用いて、又は前記第2のデータを前記第2の共有チャネルを夫々用いて、前記送信装置から受信する受信部
     を備えることを特徴とする無線通信システム。
    A transmitting device;
    With a receiving device,
    In the wireless communication system in which the transmitting device and the receiving device can perform wireless communication using a first frequency band that does not require a license,
    The transmission device,
    Confirm that the first frequency band is not used by another transmitting device, and a first symbol including a first control channel and a first shared channel in a first communication direction, or the first symbol A control unit configured to shift a second symbol including a second shared channel in a second communication direction different from the one communication direction in a time direction;
    The first control signal and the first data assigned to the first symbol are assigned using the first control channel and the first shared channel, respectively, or assigned to the second symbol. A transmitting unit for transmitting second data to the receiving device using the second shared channel,
    The receiving device,
    The first control signal and the first data are respectively used by using the first control channel and the first shared channel, or the second data is used by using the second shared channel, respectively. And a receiving unit for receiving from the transmitting device.
  33.  制御部と、送信部とを有し、免許が不要な第1の周波数帯を用いて、受信装置と無線通信が可能な送信装置における通信方法であって、
     前記制御部により、前記第1の周波数帯が他の送信装置により使用されていないことを確認し、第1の通信方向における第1の制御チャネルと第1の共有チャネルとを含む第1のシンボル、又は、前記第1の通信方向と異なる第2の通信方向における第2の共有チャネルを含む第2のシンボルを、時間方向にシフトさせ、
     前記送信部により、前記第1のシンボルに割り当てられた第1の制御信号と第1のデータとを前記第1の制御チャネルと前記第1の共有チャネルとを夫々用いて、又は前記第2のシンボルに割り当てられた第2のデータを前記第2の共有チャネルを夫々用いて、前記受信装置へ送信する
     ことを特徴とする通信方法。
    A communication method in a transmission device that has a control unit and a transmission unit, and that can perform wireless communication with a reception device using a first frequency band that does not require a license,
    The control unit confirms that the first frequency band is not used by another transmission device, and includes a first symbol including a first control channel and a first shared channel in a first communication direction. Or shifting a second symbol including a second shared channel in a second communication direction different from the first communication direction in a time direction;
    The transmitting unit transmits a first control signal and first data assigned to the first symbol using the first control channel and the first shared channel, respectively, or the second control signal and the first shared channel. A communication method comprising: transmitting second data assigned to a symbol to the receiving device using each of the second shared channels.
PCT/JP2018/029689 2018-08-07 2018-08-07 Transmission device, receiving device, wireless communication system and communication method WO2020031277A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP2018/029689 WO2020031277A1 (en) 2018-08-07 2018-08-07 Transmission device, receiving device, wireless communication system and communication method
EP18929086.9A EP3826418A4 (en) 2018-08-07 2018-08-07 Transmission device, receiving device, wireless communication system and communication method
CN201880096430.4A CN112544117B (en) 2018-08-07 2018-08-07 Transmitting apparatus, receiving apparatus, wireless communication system, and communication method
KR1020217006669A KR20210040421A (en) 2018-08-07 2018-08-07 Transmitting device, receiving device, wireless communication system and communication method
JP2020535382A JPWO2020031277A1 (en) 2018-08-07 2018-08-07 Transmitters, receivers, wireless communication systems, and communication methods
CN202311289427.3A CN117202401A (en) 2018-08-07 2018-08-07 Receiving apparatus and transmitting apparatus
US17/167,798 US11956820B2 (en) 2018-08-07 2021-02-04 Transmission device, reception device, wireless communication system, and communication method
JP2022079385A JP7288223B2 (en) 2018-08-07 2022-05-13 Transmitter, receiver, wireless communication system, and communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029689 WO2020031277A1 (en) 2018-08-07 2018-08-07 Transmission device, receiving device, wireless communication system and communication method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/167,798 Continuation US11956820B2 (en) 2018-08-07 2021-02-04 Transmission device, reception device, wireless communication system, and communication method

Publications (1)

Publication Number Publication Date
WO2020031277A1 true WO2020031277A1 (en) 2020-02-13

Family

ID=69414581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029689 WO2020031277A1 (en) 2018-08-07 2018-08-07 Transmission device, receiving device, wireless communication system and communication method

Country Status (6)

Country Link
US (1) US11956820B2 (en)
EP (1) EP3826418A4 (en)
JP (1) JPWO2020031277A1 (en)
KR (1) KR20210040421A (en)
CN (2) CN117202401A (en)
WO (1) WO2020031277A1 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105052068B (en) * 2013-03-19 2019-08-02 Lg电子株式会社 Enable the terminals to the method and device of receiving and transmitting signal in a wireless communication system
US9775048B2 (en) * 2013-09-24 2017-09-26 Qualcomm Incorporated Performance of a user equipment (UE) in unlicensed spectrum
WO2016000167A1 (en) * 2014-06-30 2016-01-07 华为技术有限公司 Sub-frame processing method and device
CN107113143B (en) * 2014-12-23 2020-06-05 Lg电子株式会社 Method and apparatus for transceiving enhanced physical downlink control channel
JP6736043B2 (en) * 2015-01-30 2020-08-05 京セラ株式会社 base station
WO2016185945A1 (en) * 2015-05-15 2016-11-24 京セラ株式会社 Base station and user terminal
US11153868B2 (en) * 2015-09-02 2021-10-19 Ntt Docomo, Inc. User equipment, wireless base station, and wireless communication method using multiple Transmission Time Interval (TTI) lengths

Non-Patent Citations (42)

* Cited by examiner, † Cited by third party
Title
3GPP TR 38.801, March 2017 (2017-03-01)
3GPP TR 38.802, September 2017 (2017-09-01)
3GPP TR 38.803, September 2017 (2017-09-01)
3GPP TR 38.804, March 2017 (2017-03-01)
3GPP TR 38.900, July 2017 (2017-07-01)
3GPP TR 38.912, June 2017 (2017-06-01)
3GPP TR 38.913, June 2017 (2017-06-01)
3GPP TS 36.211, March 2018 (2018-03-01)
3GPP TS 36.212, March 2018 (2018-03-01)
3GPP TS 36.213, March 2018 (2018-03-01)
3GPP TS 36.300, March 2018 (2018-03-01)
3GPP TS 36.321, March 2018 (2018-03-01)
3GPP TS 36.322, April 2018 (2018-04-01)
3GPP TS 36.323, December 2017 (2017-12-01)
3GPP TS 36.331, March 2018 (2018-03-01)
3GPP TS 36.413, March 2018 (2018-03-01)
3GPP TS 36.423, March 2018 (2018-03-01)
3GPP TS 36.425, March 2018 (2018-03-01)
3GPP TS 37.340, March 2018 (2018-03-01)
3GPP TS 38. 215, March 2018 (2018-03-01)
3GPP TS 38.201, December 2017 (2017-12-01)
3GPP TS 38.202, March 2018 (2018-03-01)
3GPP TS 38.211, March 2018 (2018-03-01)
3GPP TS 38.212, April 2018 (2018-04-01)
3GPP TS 38.213, March 2018 (2018-03-01)
3GPP TS 38.214, March 2018 (2018-03-01)
3GPP TS 38.300, March 2018 (2018-03-01)
3GPP TS 38.321, March 2018 (2018-03-01)
3GPP TS 38.322, March 2018 (2018-03-01)
3GPP TS 38.323, March 2018 (2018-03-01)
3GPP TS 38.331, March 2018 (2018-03-01)
3GPP TS 38.401, March 2018 (2018-03-01)
3GPP TS 38.410, April 2018 (2018-04-01)
3GPP TS 38.413, April 2018 (2018-04-01)
3GPP TS 38.420, April 2018 (2018-04-01)
3GPP TS 38.423, April 2018 (2018-04-01)
3GPP TS 38.470, March 2018 (2018-03-01)
3GPP TS 38.473
HUAWEI ET AL.: "NR frame structure on unlicensed bands", 3GPP TSG RAN WG1 ADHOC_NR_AH_1709 RL-1715580, 9 September 2017 (2017-09-09), XP051329002, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_AH/NR_AH_1709/Docs/Rl-1715580.zip> [retrieved on 20181011] *
NOKIA ET AL.: "On the UL control channel structure for NR", 3GPP TSG-RAN WG1#86B RL-1609740, 1 October 2016 (2016-10-01), XP051159653, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WGl_RLl/TSGRl_86b/Docs/Rl-1609740.zip> [retrieved on 20181011] *
NOKIAALCATEL: "Enriched feedback for adaptive HARQ", 3GPP TSG RAN WG1, 20 January 2017 (2017-01-20)
See also references of EP3826418A4

Also Published As

Publication number Publication date
US20210160925A1 (en) 2021-05-27
KR20210040421A (en) 2021-04-13
EP3826418A4 (en) 2021-08-25
EP3826418A1 (en) 2021-05-26
JPWO2020031277A1 (en) 2021-08-12
CN117202401A (en) 2023-12-08
US11956820B2 (en) 2024-04-09
CN112544117B (en) 2024-02-27
CN112544117A (en) 2021-03-23

Similar Documents

Publication Publication Date Title
JP6954977B2 (en) Terminal, feedback control method, and feedback method
US11943168B2 (en) Method and apparatus for transmission and reception of sidelink feedback in wireless communication system
EP3588825B1 (en) Method and apparatus for transmitting feedback information
US11425697B2 (en) Dynamic management of uplink control signaling resources in wireless network
US11791937B2 (en) Method and apparatus for transmission and reception of sidelink control information in wireless communication system
WO2020199856A1 (en) Information transmission method and communication apparatus
CN112398597B (en) Feedback information transmission method and device
JPWO2018229948A1 (en) Base station device, terminal device, wireless communication system, and communication method
US11705992B2 (en) Infrastructure equipment, wireless telecommunications system and method
WO2018233552A1 (en) Data transmission method and device
CN108702205A (en) Method and apparatus for communication between devices
EP4025005A1 (en) Method and apparatus for determining physical sidelink feedback channel resource
US20230336314A1 (en) Communications devices, network infrastructure equipment, wireless communications networks and methods
JP7288223B2 (en) Transmitter, receiver, wireless communication system, and communication method
EP3432661B1 (en) Transmission method and apparatus for control information
WO2020031277A1 (en) Transmission device, receiving device, wireless communication system and communication method
WO2020031278A1 (en) Transmission device, receiving device, wireless communication system and communication method
WO2021164603A1 (en) Resource indication method and apparatus for sidelink control information, and terminal device
WO2024017290A1 (en) Communication method and apparatus, and computer-readable storage medium
WO2018192091A1 (en) Data transmission method and device
WO2023213411A1 (en) Enhanced uplink control information mapping to uplink channel allocations
CN115884385A (en) Channel transmission method, communication device, communication equipment, storage medium and product
CN115189850A (en) Uplink control information multiplexing method and related device
CN105409152A (en) Uplink data transmission method, device and system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929086

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020535382

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018929086

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018929086

Country of ref document: EP

Effective date: 20210218