WO2020031265A1 - Semiconductor memory device - Google Patents

Semiconductor memory device Download PDF

Info

Publication number
WO2020031265A1
WO2020031265A1 PCT/JP2018/029627 JP2018029627W WO2020031265A1 WO 2020031265 A1 WO2020031265 A1 WO 2020031265A1 JP 2018029627 W JP2018029627 W JP 2018029627W WO 2020031265 A1 WO2020031265 A1 WO 2020031265A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory cell
cell array
layer
wiring layer
layers
Prior art date
Application number
PCT/JP2018/029627
Other languages
French (fr)
Japanese (ja)
Inventor
東 和幸
一道 津村
勝又 竜太
史隆 荒井
Original Assignee
キオクシア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キオクシア株式会社 filed Critical キオクシア株式会社
Priority to SG11202013103YA priority Critical patent/SG11202013103YA/en
Priority to PCT/JP2018/029627 priority patent/WO2020031265A1/en
Priority to CN201880094473.9A priority patent/CN112262474A/en
Publication of WO2020031265A1 publication Critical patent/WO2020031265A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/50EEPROM devices comprising charge-trapping gate insulators characterised by the boundary region between the core and peripheral circuit regions

Definitions

  • Embodiments of the present invention relate to a semiconductor memory device.
  • the memory density per area cannot be sufficiently improved.
  • a memory cell array layer having a first surface and a second surface opposite to the first surface and not including a substrate, and a plurality of memory cells three-dimensionally arranged in a memory cell array region;
  • a plurality of memory cell array layers including a surface wiring layer embedded in the first surface and / or the second surface;
  • the surface wiring layers of the respective memory cell array layers are provided so as to overlap when viewed from a direction perpendicular to the first surface, and the plurality of memory cell array layers are formed by joining the surface wiring layers to each other.
  • a semiconductor memory device characterized by being stacked is provided.
  • FIG. 1 is a schematic sectional view of the semiconductor memory device according to the first embodiment.
  • the semiconductor memory device according to the first embodiment includes a peripheral circuit layer 100 including a control circuit for controlling writing, erasing, and reading of data to and from a memory cell, and a first circuit including a plurality of three-dimensionally arranged first memory cells.
  • the memory cell array layer 200 are laminated so as to face each other, and are laminated and bonded.
  • a structure in which the first memory cell array layer 200 and the second memory cell array layer 300 including a plurality of two-dimensionally arranged second memory cells are joined so as to face each other, stacked, and bonded to each other. Have.
  • the first memory cell array layer 200 has a first surface (lower surface) Sa1 in FIG. 1 and a second surface (upper surface) Sa2 opposite to the first surface, and has a first memory cell array 10a having a three-dimensional structure.
  • FIG. 2 is a schematic perspective view of the semiconductor memory device according to the first embodiment, and is a schematic perspective view of the first memory cell array 10a. In FIG. 2, illustration of some insulating layers such as an inter-electrode insulating layer is omitted.
  • FIG. 2 is upside down with respect to FIG. 1.
  • the upper side in FIG. 2 is the first surface side, and the lower side is the second surface side.
  • two directions orthogonal to each other are defined as an X direction and a Y direction, and a direction in which a plurality of electrode layers WL are stacked is orthogonal to the X direction and the Y direction (XY plane).
  • Direction two directions orthogonal to each other are defined as an X direction and a Y direction, and a direction in which a plurality of electrode layers WL are stacked is orthogonal to the X direction and the Y direction (XY plane).
  • the first memory cell array 10a has a first stacked body 12a in which a plurality of electrode layers WL and insulating layers 11 are alternately stacked one by one.
  • a plurality of first columnar portions 13a extending in the Z direction are provided in the first stacked body 12a.
  • the first columnar portion 13a is provided, for example, in a columnar or elliptical columnar shape.
  • the plurality of first columnar portions 13a are arranged in, for example, a staggered lattice or a square lattice on the XY plane.
  • the electrode layer WL is divided into a plurality of blocks in the Y direction and extends in the X direction.
  • the insulating layer 11 mainly contains, for example, silicon and oxygen, and is, for example, a silicon oxide film (SiO), a silicon oxynitride film (SiON), or a carbon-containing silicon oxide film (SiOC).
  • a drain-side selection gate SGD is provided in the upper portion on the first surface Sa1 side of the first columnar portion 13a, and a source-side selection gate SGS is provided in a lower portion on the second surface Sa2 side.
  • the drain-side selection gate SGD is provided on the uppermost electrode layer WL via the insulating layer 11.
  • the source-side selection gate SGS is provided below the lowermost electrode layer WL via an insulating layer 11.
  • the drain-side selection gate SGD and the source-side selection gate SGS can be formed thicker than the single electrode layer WL.
  • first source line 17a is connected to the lower end of the first columnar portion 13a on the second surface Sa2 side.
  • the first source line 17a is provided below the source-side selection gate SGS via the interlayer insulating layer 15.
  • a first source side wiring layer 19a is provided in the interlayer insulating layer 18 at the lower end of the first columnar portion 13a and further below the first source line 17a.
  • the interlayer insulating layer 18 may be a laminated layer.
  • FIG. 3 is a schematic cross-sectional view of the semiconductor memory device according to the first embodiment, and is a schematic cross-sectional view near the first columnar portion.
  • FIG. 4 is an enlarged schematic cross-sectional view of a portion A, which is a part near the first columnar portion in FIG. 3 and 4 show cross sections parallel to the YZ plane in FIG.
  • the memory film MC is provided between the inner wall of the memory hole and the channel body 20 in the memory cell MC.
  • the memory film 21 includes, for example, a block insulating film 22, a charge storage film 23, and a tunnel insulating film 24. Between the electrode layer WL and the channel body 20, a block insulating film 22, a charge storage film 23, and a tunnel insulating film 24 are provided in this order from the electrode layer WL side.
  • the block insulating film 22 is in contact with the electrode layer WL, the tunnel insulating film 24 is in contact with the channel body 20, and the charge storage film 23 is provided between the block insulating film 22 and the tunnel insulating film 24.
  • the channel body 20 functions as a channel in the memory cell MC, and the electrode layer WL functions as a control gate of the memory cell.
  • the charge storage film 23 functions as a data storage layer for storing charges injected from the channel body 20. That is, a memory cell MC having a structure in which the control gate surrounds the periphery of the channel is formed at the intersection of the channel body 20 and each electrode layer WL.
  • the semiconductor memory device is a non-volatile semiconductor memory device that can electrically perform data erasing and writing freely and can retain stored contents even when the power is turned off.
  • the memory cell MC is, for example, a charge trap type memory cell.
  • the charge storage film 23 has a large number of trap sites for capturing charges, and is, for example, a silicon nitride film. It may be a floating gate type memory cell.
  • the tunnel insulating film 24 becomes a potential barrier when charges are injected into the charge storage film 23 from the channel body 20 or when charges stored in the charge storage film 23 diffuse into the channel body 20.
  • the tunnel insulating film 24 is, for example, a silicon oxide film.
  • a laminated film having a structure in which a silicon nitride film is sandwiched between a pair of silicon oxide films may be used as the tunnel insulating film.
  • ONO film a laminated film having a structure in which a silicon nitride film is sandwiched between a pair of silicon oxide films
  • an erasing operation can be performed with a lower electric field than a single layer of a silicon oxide film.
  • the block insulating film 22 prevents the charge stored in the charge storage film 23 from diffusing into the electrode layer WL.
  • the block insulating film 22 includes, for example, a silicon nitride film 221 provided in contact with the electrode layer WL, and a silicon oxide film 222 provided between the silicon nitride film 221 and the charge storage film 23.
  • the silicon nitride film 221 having a higher dielectric constant than the silicon oxide film 222 in contact with the electrode layer WL By providing the silicon nitride film 221 having a higher dielectric constant than the silicon oxide film 222 in contact with the electrode layer WL, back tunnel electrons injected from the electrode layer WL during erasing can be suppressed. That is, by using a stacked film of the silicon oxide film and the silicon nitride film as the block insulating film 35, the charge blocking property can be improved.
  • a drain-side selection transistor STD is provided above the first columnar portion 13a, and a source-side selection transistor STS is provided below the other.
  • the drain-side selection gate SGD functions as a gate electrode (control gate) of the drain-side selection transistor STD.
  • An insulating film 26 (FIG. 3) functioning as a gate insulating film of the drain-side selection transistor STD is provided between the drain-side selection gate SGD and the channel body 20.
  • the channel body 20 of the drain-side selection transistor STD provided in the first columnar portion 13a is connected to the bit line BL above the drain-side selection gate SGD.
  • the source-side selection gate SGS functions as a gate electrode (control gate) of the source-side selection transistor STS.
  • An insulating film 27 (FIG. 3) functioning as a gate insulating film of the source-side selection transistor STS is provided between the source-side selection gate SGS and the channel body 20.
  • the channel body 20 of the source-side selection transistor STS provided in the first columnar portion 13a is connected to the source line SL below the source-side selection gate SGS.
  • a first source side wiring layer 19a is provided in the interlayer insulating layer 18.
  • the channel body 20 of the first columnar portion 13a is electrically connected to the first bit line BL and the first source line SL. Further, similarly, at least a part of the first bit line BL and the first source line SL is also outside the first memory cell array region 28a when viewed from a direction perpendicular to the first surface by another wiring layer or plug. Are drawn out as a first bit line lead-out part and a first source line lead-out part (not shown). The first bit line lead-out portion and the first source line lead-out portion drawn out of the first memory cell array region 28a are the first signal line lead-out electrodes provided outside the first memory cell array region 28a. 37a.
  • a first surface wiring layer 38a and a second surface wiring layer 39a are provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200.
  • the first surface wiring layer 38a and the second surface wiring layer 39a are embedded in the first surface Sa1 and the second surface Sa2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown).
  • the first signal line lead-out electrode 37a is formed of the first surface wiring layer 38a and the second surface wiring layer provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, respectively. 39a is electrically connected.
  • the first signal line lead-out electrode 37a, the first surface wiring layer 38a, and the second surface wiring layer 39a penetrate the first memory cell array layer 200.
  • a first external connection electrode 40a is provided outside the first memory cell array region 28a. That is, the first external connection electrode 40a is provided in a region further outside the staircase structure in the memory cell array.
  • the first external connection electrode 40a is electrically connected to the first surface wiring layer 38a and the second surface wiring layer 39a provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, respectively. It is connected.
  • the first surface wiring layer 38a and the second surface wiring layer 39a are embedded in the first surface Sa1 and the second surface Sa2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown).
  • the first external connection electrode 40a, the first surface wiring layer 38a, and the second surface wiring layer 39a penetrate the first memory cell array layer 200.
  • the peripheral circuit layer 100 includes the circuit board 1.
  • the circuit substrate 1 of the peripheral circuit layer 100 is, for example, a silicon substrate.
  • a control circuit is formed on the circuit forming surface of the circuit board 1 in the peripheral circuit layer.
  • the control circuit is formed as an integrated circuit including a transistor.
  • the transistor has a MOSFET structure having a gate electrode, source / drain regions, and the like.
  • the source / drain region of the MOSFET is connected to the circuit-side connection electrode 41 by another wiring layer or a plug.
  • the circuit-side connection electrode 41 is electrically connected to a circuit-side wiring layer 42 provided on a circuit formation surface of the peripheral circuit layer 100.
  • the circuit-side wiring layer 42 is embedded in the circuit formation surface, and the surface is exposed from an interlayer insulating layer (not shown).
  • the second memory cell array layer 300 has the same configuration as the first memory cell array layer 200 shown in FIGS. That is, the second memory cell array layer 300 has a third surface (lower surface) Sb1 and a fourth surface (upper surface) Sb2 opposite to the third surface in FIG. 1 and has a three-dimensional structure of the second memory cell array 10b. Have. Descriptions of other similar configurations are omitted.
  • the channel body 20 of the second columnar portion 13b is electrically connected to the second bit line BL and the second source line SL. Further, at least a part of the second bit line BL and the second source line SL is formed outside the second memory cell array region 28b as viewed from a direction perpendicular to the third surface by another wiring layer or plug. It is led out as a second bit line lead-out part and a second source line lead-out part.
  • the second bit line lead-out portion and the second source line lead-out portion drawn out of the first memory cell array region 28b are connected to a second signal line lead-out electrode provided outside the second memory cell array region 28b. 37b. Note that the configuration in the second memory cell array region 28b is the same as that of the first memory cell array layer 200, and therefore the description of the reference numerals is omitted.
  • a second external connection electrode 40b is provided outside the second memory cell array region 28b. That is, the second external connection electrode 40b is provided in a region further outside the staircase structure in the memory cell array.
  • the second external connection electrode 40b is electrically connected to the third surface wiring layer 38b and the fourth surface wiring layer 39b provided on the third surface Sb1 and the fourth surface Sb2 of the second memory cell array layer 300, respectively. It is connected.
  • the third surface wiring layer 38b and the fourth surface wiring layer 39b are embedded in the third surface Sb1 and the fourth surface Sb2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown).
  • the first surface wiring layer 38a provided on the first surface Sa1 is bonded and joined to the circuit-side wiring layer 42 provided on the circuit forming surface.
  • the first surface wiring layer 38a and the circuit-side wiring layer 42 are, for example, copper or a copper alloy containing copper as a main component.
  • An insulating film (not shown) is provided around the first surface wiring layer 38a and the circuit-side wiring layer 42.
  • the insulating film is, for example, an inorganic film, a resin film, or the like.
  • the first memory cell array layer 200 and the peripheral circuit layer 100 are electrically connected via the first surface wiring layer 38a and the circuit-side wiring layer 42.
  • the second surface wiring layer 39a provided on the second surface Sa2 is bonded to and bonded to the third surface wiring layer 38b provided on the third surface Sb1.
  • the second surface wiring layer 39a and the third surface wiring layer 38b are, for example, copper or a copper alloy containing copper as a main component.
  • An insulating film (not shown) is provided around the second surface wiring layer 39a provided on the second surface and the third surface wiring layer 38b provided on the third surface Sb1.
  • the insulating film is, for example, an inorganic film and includes a silicon nitride film.
  • the first memory cell array layer and the second memory cell array layer are electrically connected via a second surface wiring layer 39a and a third surface wiring layer 38b.
  • the bonding between the wiring layers can be performed at the bonding surface, and the bonding using hydrogen bonding between the inorganic films can be performed. Therefore, it is preferable to use an inorganic film as the insulating film since a gap between bonding surfaces is less likely to occur, and it is not necessary to perform underfill using a resin film.
  • the peripheral circuit layer 100, the first memory cell array layer 200, and the second memory cell array layer 300 include a first signal line lead electrode, a second signal line lead electrode, a first external connection electrode, They are electrically connected by a second external connection electrode (not shown).
  • Signal line extraction electrodes are provided outside the memory cell array regions 28a and 28b, and external connection electrodes are provided outside the memory cell array region and further outside the staircase structure portion in the memory cell array.
  • the signal line lead-out electrodes and the external connection electrodes of the memory cell array layer are respectively provided in overlapping regions when viewed from a direction perpendicular to the first surface Sa1.
  • the signal line lead-out electrodes are electrically connected to the surface wiring layers 39a and 39b, and the external connection electrodes of the uppermost second memory cell array layer 300 are electrically connected to the external connection pads 52.
  • FIG. 5 shows only a part of the electrical connection states of the first signal line lead electrode, the second signal line lead electrode, the first external connection electrode, the second external connection electrode, and the like. Illustration is omitted.
  • the peripheral circuit layer 100 and the first memory cell array layer 200 are stacked.
  • the circuit-side wiring layer 42 and the first surface wiring layer 38a are joined.
  • joining is performed by applying a mechanical pressure, and diffusion joining is performed.
  • the bonding is performed by using an inert plasma treatment on the bonding surface and forming a OH group on the bonding surface to generate hydrogen bonds.
  • they are joined using an organic adhesive or the like.
  • the substrate 2 is removed with a chemical such as KOH.
  • the insulating films around each wiring layer can also be joined.
  • the first insulating layer 50 and the second insulating layer 51 are removed so that the upper surfaces of the first external connection electrode 40a and the first signal line extraction electrode 37a are exposed, and a groove is formed. As shown in FIG. 8, a second surface wiring layer 39a serving as a bonding metal is formed in the groove, and the upper surface of the second surface wiring layer 39a is exposed.
  • a first memory cell array layer 200 is used instead of the peripheral circuit layer 100 shown in FIG. 6, and a second memory cell array layer 300 is used instead of the first memory cell array layer 200 shown in FIG. 6 to FIG. 8 are repeated.
  • the external connection pad 52 is formed on the surface wiring layer electrically connected to the second external connection electrode 40b among the fourth surface wiring layer 39b exposed on the upper surface.
  • the second memory cell array layer 300 is stacked on the first memory cell array layer 200.
  • one or more other memory cell array layers are stacked on the second memory cell array layer 300. May be.
  • at least a part of one or more other memory cell array layers may include the substrate. In that case, warpage of the stacked semiconductor memory devices can be reduced.
  • the peripheral circuit layer 100 may not be laminated, and only a laminate of the memory cell array layers may be formed.
  • FIG. 10 is a schematic cross-sectional view of a semiconductor memory device according to a first modification of the first embodiment.
  • a wiring layer 61 that connects the memory string MS1 of the first memory cell array layer 200 and the memory string MS2 of the second memory cell array layer 300 is provided.
  • the wiring layer 61 is provided inside the memory cell array region, and is connected to the first source side wiring layer 19a of the first memory cell array layer 200 and the second bit line 16b of the second memory cell array layer 300.
  • the first memory cell array layer and the second memory cell array layer are connected without interposing a signal line extraction electrode provided outside the memory cell array region.
  • the first memory cell array layer and the second memory cell array layer are connected to a signal line extraction electrode provided outside the memory cell array region and a wiring provided inside the memory cell array region. They are connected using layers.
  • the electrode area required for connecting the memory cell array layer can be reduced, and the chip area can be reduced.
  • FIG. 11 is a schematic cross-sectional view of a semiconductor memory device according to a second modification of the first embodiment. The description of the external connection electrode is omitted.
  • At least a part of the word wiring layer and the select gate wiring layer of the first memory cell array layer 200 is drawn as a word line lead portion 35 and a select gate line lead portion 36 by another wiring layer or plug, and the first surface Sa1 is provided. Is folded inside the first memory cell array region 28a when viewed from the direction perpendicular to the first direction.
  • the word line lead portion 35 and the select gate line lead portion 36 drawn inside the first memory cell array region 28a are connected to the first signal line lead electrode 37a provided inside the first memory cell array region 28a. Have been.
  • first bit line BL and the first source line SL is also drawn out as a first bit line lead-out part and a first source line lead-out part by another wiring layer or plug. It is folded back inside the first memory cell array region 28a when viewed from a direction perpendicular to the first surface Sa1 (not shown).
  • the first bit line lead-out portion and the first source line lead-out portion drawn out inside the first memory cell array region 28a are the first signal line lead-out electrodes provided inside the first memory cell array region 28a. 37a.
  • a first surface wiring layer 38a and a second surface wiring layer 39a are provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, respectively, inside the memory cell array region.
  • the first surface wiring layer 38a and the second surface wiring layer 39a provided inside the memory cell array region are electrically connected to the first signal line extraction electrode 37a.
  • the word wiring layer and the selection gate wiring layer is formed by another wiring layer or plug by using the word line lead-out portion 35 and the selection gate line. It is pulled out as the lead-out portion 36 and is folded back inside the second memory cell array region 28b when viewed from the direction perpendicular to the third surface Sb1.
  • the word line lead portion 35 and the select gate line lead portion 36 drawn inside the second memory cell array region 28b are connected to the second signal line lead electrode 37b provided inside the second memory cell array region 28b. Have been.
  • the second bit line BL and the second source line SL is led out as a second bit line lead-out part and a second source line lead-out part by another wiring layer or plug, and It is folded back inside the second memory cell array region 28b when viewed from a direction perpendicular to the plane (not shown).
  • the second bit line lead-out portion and the second source line lead-out portion drawn out inside the second memory cell array region 28b are the second signal line lead-out electrodes provided inside the second memory cell array region 28b. 37b.
  • a part of the second signal line extraction electrode 37b may be provided outside the second memory cell array region 28b.
  • a third surface wiring layer 38b is provided on the third surface Sb1 of the second memory cell array layer 300 inside the memory cell array region.
  • the third surface wiring layer 38 provided inside the memory cell array region is electrically connected to the second signal line extraction electrode 37b.
  • a fourth surface wiring layer (not shown) may be provided inside the memory cell array region. In this case, the fourth surface wiring layer provided inside the memory cell array region is electrically connected to the second signal line extraction electrode 37b.
  • the signal line extraction electrode of each memory cell array layer is connected to a surface wiring layer provided inside the memory cell array region, and the surface wiring layer of each memory array layer is viewed from a direction perpendicular to the first surface.
  • Each can be provided in an overlapping area. Therefore, when a plurality of memory cell array layers are stacked, the chip area can be further reduced, the wiring length can be reduced, and operation delay can be suppressed.
  • the first memory cell array layer 200 and the second memory cell array layer 300 do not have a substrate (for example, a silicon substrate). Therefore, in stacking the first memory cell array layer 200 and the second memory cell array layer 300 and electrically connecting them, it is possible to connect them without forming a through silicon via (TSV). Accordingly, there is no need to perform a substrate etching step which requires cost and processing time, or to form an insulating film for preventing a short circuit between the substrate and the via, thereby reducing costs and improving throughput.
  • TSV through silicon via
  • the memory cell array layer and the peripheral circuit layer are formed by different wafer processes, even when a high-temperature heat treatment is required when forming the memory cell array layer, the impurity diffusion of the transistor in the peripheral circuit layer or the metallization may be performed. Adverse effects such as deterioration of the wiring layer can be suppressed.
  • the memory cell array layer is stacked so that the first surface faces the peripheral circuit layer.
  • a bit line or a word line is drawn out to the first surface side of the memory cell array layer, and the bit line or the word line is connected to a signal line drawing electrode. Since the memory cell array layer is stacked so that the first surface faces the peripheral circuit layer, the wiring distance of the electrode layer can be reduced, and the adverse effect on the operation speed can be suppressed.
  • a plurality of memory cell array layers are stacked on the peripheral circuit layer. Therefore, when the stacked body of one memory cell array layer is 48 layers, for example, by stacking two memory cell array layers, a memory cell array of 96 layers, which is twice the 48 layers, is realized by using a 48-layer process technology. can do. Therefore, it is possible to easily improve the memory density.
  • bit lines and the word lines are led out of the memory cell array region, and a signal line lead electrode connected via a bit line lead portion and a word line lead portion is provided outside the memory cell array region.
  • the external connection electrode is provided in a region outside the memory cell array region and further outside the staircase structure portion in the memory cell array.
  • the signal line lead-out electrodes and the external connection electrodes of each memory cell array layer are provided in respective overlapping regions when viewed from a direction perpendicular to the first surface. Therefore, when a plurality of memory cell array layers are stacked, the wiring length can be reduced, and operation delay can be suppressed.
  • the external connection electrode and the surface wiring layer connected to the external connection electrode at least penetrate a layer (here, the first memory cell array layer) sandwiched between the upper and lower sides by the memory cell array layer and / or the peripheral circuit layer. It is provided in.
  • the signal line extraction electrode and the surface wiring layer connected to the signal line extraction electrode at least penetrate a layer (here, the first memory cell array layer) sandwiched between upper and lower sides by the memory cell array layer and / or the peripheral circuit layer. It is provided to be. Therefore, when a plurality of memory cell array layers are stacked, the wiring length can be further reduced, the operation delay can be further reduced, and the reliability can be improved.
  • the layout of the external connection electrodes can be made so as not to be connected to the memory cells, and external signals can be input from the external connection pads to the peripheral circuit layer without passing through the memory cells. By doing so, adverse effects such as operation delay can be further suppressed.
  • the signal line lead-out electrode is electrically connected to each memory cell array layer even in a route not connected to the memory cell, the signal lines of each layer are connected without passing through the memory cell. By doing so, adverse effects such as operation delay can be further suppressed.
  • a first source side wiring layer can be used as a first source lead portion of the first source line SL.
  • a second source-side wiring layer can be used as a second source line lead portion of the second source line SL.
  • a bit line or a word line is drawn out to the first surface side or the third surface side, and the bit line or the word line is connected to a signal line drawing electrode.
  • the first memory cell array layer is stacked with the first surface facing the peripheral circuit layer
  • the second memory cell array layer is stacked with the third surface facing the first memory cell array layer. That is, the first memory cell array layer and the second memory cell array layer are stacked so that the signal lines are drawn out in the same direction and the orientations of the first memory cell array layer and the second memory cell array layer are aligned.
  • the bit lines and the word lines are drawn out on the side where the peripheral circuit layer is provided (the lower side in FIG. 1) and are stacked on the peripheral circuit layer, the wiring distance of the electrode layer can be reduced. Therefore, it is possible to suppress an adverse effect on the operation speed.
  • first memory cell array layer and the second memory cell array layer are stacked face-to-face without being aligned, one of the memory cell array layers is placed on, for example, a tape, and the substrate is placed on the tape. After removal, it is necessary to stack the substrate so that the surface from which the substrate has been removed faces the peripheral circuit or the other memory cell array layer.
  • the memory cell array layer formed on the substrate can be formed by stacking the memory cell array layer on the peripheral circuit layer so that the substrate surface faces upward and removing the substrate. Therefore, stacking the memory cell array layer and the second memory cell array layer in the same orientation is preferable in that it can be easily formed without using a tape or the like.
  • FIG. 12 is a schematic cross-sectional view of the semiconductor memory device according to the second embodiment.
  • another memory cell array layer is stacked on the semiconductor memory device of FIG. 1, and a peripheral circuit layer 100, a first memory cell array layer 200, and a second memory cell array layer 300 are sequentially arranged from the bottom.
  • a third memory cell array layer 400 is sequentially arranged from the bottom.
  • FIG. 13 is a circuit diagram of the semiconductor memory device according to the second embodiment.
  • FIG. 13 shows a part of the circuit of the memory string MS3 connected to the wiring layer 71.
  • a plurality of memory cells are provided, and some of them are not shown.
  • the plurality of memory cells are provided with a drain-side selection transistor STD and a source-side selection transistor STS, and store an array layer ID provided for each memory cell array layer.
  • the circuit of the memory string MS3 functions as a part of an array layer select circuit for selecting an array layer.
  • FIG. 14 is a block diagram showing the configuration of the system of the semiconductor memory device according to the second embodiment.
  • FIG. 14 shows a system configuration of a semiconductor memory device including an array layer select circuit provided in the memory string MS3 connected to the wiring layer 71.
  • Address lines and array layer select signal lines are input to each memory cell array layer as signal lines.
  • the memory cell array layer it is determined whether the memory cell array layer is selected based on the array layer select signal line and the stored array layer ID, and an address line is input to the memory cell array.
  • each of the memory areas or memory blocks of the second memory cell array layer may be connected to the upper and lower memory cell array layers using the wiring layer 71.
  • a memory area or a memory block can be selected using each transistor and each memory cell in each memory string MS, and a semiconductor memory having a plurality of stacked memory cell array layers Even in a device, the number of wirings can be significantly reduced.

Abstract

The semiconductor memory device according to an embodiment of the present invention includes a plurality of memory cell array layers each of which has a first surface and a second surface opposite the first surface and does not include a substrate, said memory cell array layers each including a plurality of memory cells three-dimensionally arranged in a memory cell array region and a surface wiring layer that is embedded in the first surface and/or the second surface. The surface wiring layers of the memory cell array layers are provided so as to overlap one another when viewed in a direction perpendicular to the first surface, and the plurality of memory cell array layers are stacked by the surface wiring layers being connected to each other.

Description

半導体記憶装置Semiconductor storage device
 本発明の実施形態は、半導体記憶装置に関する。 Embodiments of the present invention relate to a semiconductor memory device.
 基板上に、絶縁層を介して電極層を複数積層した積層体に、メモリホールを形成し、そのメモリホール内に電荷蓄積膜を介してチャネルとなるシリコンボディが設けられた3次元構造の半導体記憶装置が提案されている。また、この3次元構造のメモリセルアレイの制御回路をメモリセルアレイの直下又は直上に設ける技術が提案されている。 A semiconductor having a three-dimensional structure in which a memory hole is formed in a stacked body in which a plurality of electrode layers are stacked on a substrate via an insulating layer, and a silicon body serving as a channel is provided in the memory hole via a charge storage film. Storage devices have been proposed. In addition, a technique has been proposed in which a control circuit for a memory cell array having the three-dimensional structure is provided immediately below or directly above the memory cell array.
 しかしながら、この例では、面積当たりのメモリ密度を十分に向上することができていない。 However, in this example, the memory density per area cannot be sufficiently improved.
特開2011-204829号公報JP 2011-204829 A 特開2016-62901号公報JP 2016-62901 A
 小型で高性能な半導体記憶装置を提供する。 提供 Provide small and high performance semiconductor memory devices.
 実施形態によれば、第1面及び前記第1面と反対側の第2面を持ち、基板を含まないメモリセルアレイ層であって、メモリセルアレイ領域に3次元配置された複数のメモリセルと、第1面または/及び第2面に埋め込まれた表面配線層とを含むメモリセルアレイ層を複数有し、
 それぞれの前記メモリセルアレイ層の前記表面配線層は、前記第1面に垂直な方向から見て重なるように設けられ、前記表面配線層同士が互いに接合されることによって、複数の前記メモリセルアレイ層が積層されていることを特徴とする半導体記憶装置が提供される。
According to the embodiment, a memory cell array layer having a first surface and a second surface opposite to the first surface and not including a substrate, and a plurality of memory cells three-dimensionally arranged in a memory cell array region; A plurality of memory cell array layers including a surface wiring layer embedded in the first surface and / or the second surface;
The surface wiring layers of the respective memory cell array layers are provided so as to overlap when viewed from a direction perpendicular to the first surface, and the plurality of memory cell array layers are formed by joining the surface wiring layers to each other. A semiconductor memory device characterized by being stacked is provided.
第1の実施形態に係る半導体記憶装置を示す模式断面図1 is a schematic cross-sectional view illustrating a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置を示す模式斜視図1 is a schematic perspective view illustrating a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置を示す模式断面図1 is a schematic cross-sectional view illustrating a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置の一部を拡大した模式断面図FIG. 2 is a schematic cross-sectional view showing an enlarged part of the semiconductor memory device according to the first embodiment. 第1の実施形態に係る半導体記憶装置を示す模式斜視図1 is a schematic perspective view illustrating a semiconductor memory device according to a first embodiment. 第1の実施形態に係る半導体記憶装置の製造方法を示す模式断面図FIG. 4 is a schematic cross-sectional view illustrating the method for manufacturing the semiconductor memory device according to the first embodiment. 第1の実施形態に係る半導体記憶装置の製造方法を示す模式断面図FIG. 4 is a schematic cross-sectional view illustrating the method for manufacturing the semiconductor memory device according to the first embodiment. 第1の実施形態に係る半導体記憶装置の製造方法を示す模式断面図FIG. 4 is a schematic cross-sectional view illustrating the method for manufacturing the semiconductor memory device according to the first embodiment. 第1の実施形態に係る半導体記憶装置の製造方法を示す模式断面図FIG. 4 is a schematic cross-sectional view illustrating the method for manufacturing the semiconductor memory device according to the first embodiment. 第1の実施形態の第1の変形例に係る半導体記憶装置の模式断面図Schematic sectional view of a semiconductor memory device according to a first modification of the first embodiment. 第1の実施形態の第2の変形例に係る半導体記憶装置の模式断面図Schematic sectional view of a semiconductor memory device according to a second modification of the first embodiment. 第2の実施形態に係る半導体記憶装置を示す模式断面図Schematic sectional view showing a semiconductor memory device according to a second embodiment. 第2の実施形態に係る半導体記憶装置の回路図Circuit diagram of a semiconductor memory device according to a second embodiment 第2の実施形態に係る半導体記憶装置のシステムの構成を示すブロック図FIG. 2 is a block diagram illustrating a configuration of a system of a semiconductor memory device according to a second embodiment.
 以下、図面を参照し、実施の形態について説明する。なお、各図面中同じ要素には同じ符号を付している。 Hereinafter, embodiments will be described with reference to the drawings. The same reference numerals are given to the same elements in each drawing.
 (第1の実施形態)
 図1は、第1の実施形態に係る半導体記憶装置の模式断面図である。第1の実施形態の半導体記憶装置は、メモリセルに対するデータの書き込み、消去、読み出しを制御する制御回路を含む周辺回路層100と、3次元配置された複数の第1のメモリセルを含む第1のメモリセルアレイ層200とが、向かい合うように接合して積層され、貼り合される構造を有している。また、第1のメモリセルアレイ層200と、3次元配置された複数の第2のメモリセルを含む第2のメモリセルアレイ層300とが、向かい合うように接合して積層され、貼り合される構造を有している。
(First embodiment)
FIG. 1 is a schematic sectional view of the semiconductor memory device according to the first embodiment. The semiconductor memory device according to the first embodiment includes a peripheral circuit layer 100 including a control circuit for controlling writing, erasing, and reading of data to and from a memory cell, and a first circuit including a plurality of three-dimensionally arranged first memory cells. And the memory cell array layer 200 are laminated so as to face each other, and are laminated and bonded. Further, a structure in which the first memory cell array layer 200 and the second memory cell array layer 300 including a plurality of two-dimensionally arranged second memory cells are joined so as to face each other, stacked, and bonded to each other. Have.
 まず、第1のメモリセルアレイ層200について説明する。第1のメモリセルアレイ層200は、図1における第1面(下面)Sa1と第1面と反対側の第2面(上面)Sa2を持ち、3次元構造の第1のメモリセルアレイ10aを有する。図2は、第1の実施形態に係る半導体記憶装置の模式斜視図であり、第1のメモリセルアレイ10aの模式斜視図である。なお、図2においては、電極間絶縁層などの一部の絶縁層の図示について省略している。また、図2は、図1と上下が逆となっており、図2における上側が第1面側であり、下側が第2面側である。 First, the first memory cell array layer 200 will be described. The first memory cell array layer 200 has a first surface (lower surface) Sa1 in FIG. 1 and a second surface (upper surface) Sa2 opposite to the first surface, and has a first memory cell array 10a having a three-dimensional structure. FIG. 2 is a schematic perspective view of the semiconductor memory device according to the first embodiment, and is a schematic perspective view of the first memory cell array 10a. In FIG. 2, illustration of some insulating layers such as an inter-electrode insulating layer is omitted. FIG. 2 is upside down with respect to FIG. 1. The upper side in FIG. 2 is the first surface side, and the lower side is the second surface side.
 図2において、相互に直交する2方向をX方向及びY方向とし、これらX方向及びY方向(XY面)に対して直交し、複数層の電極層WLが積層された方向をZ方向(積層方向)とする。 In FIG. 2, two directions orthogonal to each other are defined as an X direction and a Y direction, and a direction in which a plurality of electrode layers WL are stacked is orthogonal to the X direction and the Y direction (XY plane). Direction).
 第1のメモリセルアレイ10aは、電極層WLと絶縁層11とがそれぞれ1層ずつ交互に複数層積層された第1の積層体12aを有する。この第1の積層体12a内には、Z方向に延びる第1の柱状部13aが複数設けられている。第1の柱状部13aは例えば、円柱状もしくは楕円柱状に設けられる。複数の第1の柱状部13aは、例えば、XY面において、千鳥格子、もしくは、正方格子に配列されている。電極層WLはY方向に複数のブロックに分離され、X方向に延びている。 The first memory cell array 10a has a first stacked body 12a in which a plurality of electrode layers WL and insulating layers 11 are alternately stacked one by one. A plurality of first columnar portions 13a extending in the Z direction are provided in the first stacked body 12a. The first columnar portion 13a is provided, for example, in a columnar or elliptical columnar shape. The plurality of first columnar portions 13a are arranged in, for example, a staggered lattice or a square lattice on the XY plane. The electrode layer WL is divided into a plurality of blocks in the Y direction and extends in the X direction.
 電極層WLは、例えば、シリコンを主成分として含む層である。さらに、電極層WLは、シリコン層に導電性を持たせるための不純物として、ボロンを含んでいる。また、電極層WLは、金属シリサイドを含んでいてもよい。 (4) The electrode layer WL is, for example, a layer containing silicon as a main component. Further, the electrode layer WL contains boron as an impurity for giving conductivity to the silicon layer. Further, the electrode layer WL may include metal silicide.
 絶縁層11は、例えばシリコンと酸素を主に含んでおり、シリコン酸化膜(SiO)、シリコン酸窒化膜(SiON)、炭素含有シリコン酸化膜(SiOC)などである。 The insulating layer 11 mainly contains, for example, silicon and oxygen, and is, for example, a silicon oxide film (SiO), a silicon oxynitride film (SiON), or a carbon-containing silicon oxide film (SiOC).
 第1の柱状部13aの第1面Sa1側である上部にはドレイン側選択ゲートSGD、第2面Sa2側である下部にはソース側選択ゲートSGSが設けられている。ドレイン側選択ゲートSGDは最上層の電極層WL上に絶縁層11を介して設けられている。ソース側選択ゲートSGSは最下層の電極層WL下に絶縁層11を介して設けられている。ここで、例えば、ドレイン側選択ゲートSGD及びソース側選択ゲートSGSは、1層の電極層WLよりも厚く形成することができる。 (4) A drain-side selection gate SGD is provided in the upper portion on the first surface Sa1 side of the first columnar portion 13a, and a source-side selection gate SGS is provided in a lower portion on the second surface Sa2 side. The drain-side selection gate SGD is provided on the uppermost electrode layer WL via the insulating layer 11. The source-side selection gate SGS is provided below the lowermost electrode layer WL via an insulating layer 11. Here, for example, the drain-side selection gate SGD and the source-side selection gate SGS can be formed thicker than the single electrode layer WL.
 第1の柱状部13aの第1面Sa1側である上端部には、第1のビット線16aが接続されている。第1のビット線16aは複数設けられ、金属が用いられている。複数の第1のビット線16aは、X方向に離間して、Y方向に延びている。第1のビット線16aは、ドレイン側選択ゲートSGD上に絶縁層11及び層間絶縁層14を介して設けられている。 上端 A first bit line 16a is connected to an upper end of the first columnar portion 13a on the first surface Sa1 side. A plurality of first bit lines 16a are provided and metal is used. The plurality of first bit lines 16a are separated in the X direction and extend in the Y direction. The first bit line 16a is provided on the drain-side selection gate SGD via the insulating layer 11 and the interlayer insulating layer 14.
 第1の柱状部13aの第2面Sa2側である下端部には、第1のソース線17aが接続されている。第1のソース線17aは、ソース側選択ゲートSGS下に層間絶縁層15を介して設けられている。また、第1の柱状部13aの下端部であって、第1のソース線17aのさらに下側には、層間絶縁層18内に第1のソース側配線層19aが設けられている。層間絶縁層18は積層された層であってもよい。 1A first source line 17a is connected to the lower end of the first columnar portion 13a on the second surface Sa2 side. The first source line 17a is provided below the source-side selection gate SGS via the interlayer insulating layer 15. Further, a first source side wiring layer 19a is provided in the interlayer insulating layer 18 at the lower end of the first columnar portion 13a and further below the first source line 17a. The interlayer insulating layer 18 may be a laminated layer.
 図3は、第1の実施形態に係る半導体記憶装置の模式断面図であり、第1の柱状部近傍の模式断面図である。図4は、図3の第1の柱状部近傍の一部であるA部を拡大した模式断面図である。図3及び図4は、図2におけるYZ面に平行な断面を表している。 FIG. 3 is a schematic cross-sectional view of the semiconductor memory device according to the first embodiment, and is a schematic cross-sectional view near the first columnar portion. FIG. 4 is an enlarged schematic cross-sectional view of a portion A, which is a part near the first columnar portion in FIG. 3 and 4 show cross sections parallel to the YZ plane in FIG.
 図3に示すように、第1の柱状部13aは、複数の電極層WL、複数の絶縁層11を含む第1の積層体12a内に形成されるI字状のメモリホール内に形成される。そのメモリホール内には、半導体チャネルとしてのチャネルボディ20が設けられている。チャネルボディ20は、例えばシリコン膜である。チャネルボディ20の不純物濃度は、電極層WLの不純物濃度よりも低い。 As shown in FIG. 3, the first columnar portion 13a is formed in an I-shaped memory hole formed in a first stacked body 12a including a plurality of electrode layers WL and a plurality of insulating layers 11. . A channel body 20 as a semiconductor channel is provided in the memory hole. The channel body 20 is, for example, a silicon film. The impurity concentration of the channel body 20 is lower than the impurity concentration of the electrode layer WL.
 図4に示すように、メモリセルMCはメモリホールの内壁とチャネルボディ20との間には、メモリ膜21が設けられている。メモリ膜21は、例えば、ブロック絶縁膜22と電荷蓄積膜23とトンネル絶縁膜24とを有する。電極層WLとチャネルボディ20との間に、電極層WL側から順にブロック絶縁膜22、電荷蓄積膜23、及びトンネル絶縁膜24が設けられている。 (4) As shown in FIG. 4, the memory film MC is provided between the inner wall of the memory hole and the channel body 20 in the memory cell MC. The memory film 21 includes, for example, a block insulating film 22, a charge storage film 23, and a tunnel insulating film 24. Between the electrode layer WL and the channel body 20, a block insulating film 22, a charge storage film 23, and a tunnel insulating film 24 are provided in this order from the electrode layer WL side.
 チャネルボディ20は積層体の積層方向に延びる筒状に設けられ、そのチャネルボディ20の外周面を囲むようにメモリ膜21が積層体の積層方向に延びつつ筒状に設けられている。電極層WLはメモリ膜21を介してチャネルボディ20の周囲を囲んでいる。また、チャネルボディ20の内側には、コア絶縁膜25が設けられている。コア絶縁膜25は、例えばシリコン酸化膜である。 The channel body 20 is provided in a cylindrical shape extending in the stacking direction of the stacked body. The electrode layer WL surrounds the periphery of the channel body 20 via the memory film 21. The core insulating film 25 is provided inside the channel body 20. The core insulating film 25 is, for example, a silicon oxide film.
 ブロック絶縁膜22は電極層WLに接し、トンネル絶縁膜24はチャネルボディ20に接し、ブロック絶縁膜22とトンネル絶縁膜24との間に電荷蓄積膜23が設けられている。 The block insulating film 22 is in contact with the electrode layer WL, the tunnel insulating film 24 is in contact with the channel body 20, and the charge storage film 23 is provided between the block insulating film 22 and the tunnel insulating film 24.
 チャネルボディ20はメモリセルMCにおけるチャネルとして機能し、電極層WLはメモリセルのコントロールゲートとして機能する。電荷蓄積膜23はチャネルボディ20から注入される電荷を蓄積するデータ記憶層として機能する。すなわち、チャネルボディ20と各電極層WLとの交差部分に、チャネルの周囲をコントロールゲートが囲んだ構造のメモリセルMCが形成されている。 The channel body 20 functions as a channel in the memory cell MC, and the electrode layer WL functions as a control gate of the memory cell. The charge storage film 23 functions as a data storage layer for storing charges injected from the channel body 20. That is, a memory cell MC having a structure in which the control gate surrounds the periphery of the channel is formed at the intersection of the channel body 20 and each electrode layer WL.
 第1の実施形態の半導体記憶装置は、データの消去・書き込みを電気的に自由に行うことができ、電源を切っても記憶内容を保持することができる不揮発性半導体記憶装置となっている。 The semiconductor memory device according to the first embodiment is a non-volatile semiconductor memory device that can electrically perform data erasing and writing freely and can retain stored contents even when the power is turned off.
 メモリセルMCは、例えばチャージトラップ型のメモリセルである。電荷蓄積膜23は、電荷を捕獲するトラップサイトを多数有し、例えば、シリコン窒化膜である。浮遊ゲート型のメモリセルであってもかまわない。 The memory cell MC is, for example, a charge trap type memory cell. The charge storage film 23 has a large number of trap sites for capturing charges, and is, for example, a silicon nitride film. It may be a floating gate type memory cell.
 トンネル絶縁膜24は、電荷蓄積膜23にチャネルボディ20から電荷が注入される際、または電荷蓄積膜23に蓄積された電荷がチャネルボディ20へ拡散する際に電位障壁となる。トンネル絶縁膜24は、例えばシリコン酸化膜である。 (4) The tunnel insulating film 24 becomes a potential barrier when charges are injected into the charge storage film 23 from the channel body 20 or when charges stored in the charge storage film 23 diffuse into the channel body 20. The tunnel insulating film 24 is, for example, a silicon oxide film.
 あるいは、トンネル絶縁膜として、一対のシリコン酸化膜でシリコン窒化膜を挟んだ構造の積層膜(ONO膜)を用いてもよい。トンネル絶縁膜としてONO膜を用いると、シリコン酸化膜の単層に比べて、低電界で消去動作を行うことができる。 Alternatively, a laminated film (ONO film) having a structure in which a silicon nitride film is sandwiched between a pair of silicon oxide films may be used as the tunnel insulating film. When an ONO film is used as a tunnel insulating film, an erasing operation can be performed with a lower electric field than a single layer of a silicon oxide film.
 ブロック絶縁膜22は、電荷蓄積膜23に蓄積された電荷が、電極層WLへ拡散するのを防止する。ブロック絶縁膜22は、例えば、電極層WLに接して設けられたシリコン窒化膜221とシリコン窒化膜221と電荷蓄積膜23との間に設けられたシリコン酸化膜222とを有する。 (4) The block insulating film 22 prevents the charge stored in the charge storage film 23 from diffusing into the electrode layer WL. The block insulating film 22 includes, for example, a silicon nitride film 221 provided in contact with the electrode layer WL, and a silicon oxide film 222 provided between the silicon nitride film 221 and the charge storage film 23.
 シリコン酸化膜222よりも誘電率の高い膜であるシリコン窒化膜221を電極層WLに接して設けることで、消去時に電極層WLから注入されるバックトンネル電子を抑制することができる。すなわち、ブロック絶縁膜35として、シリコン酸化膜とシリコン窒化膜との積層膜を使うことで、電荷ブロッキング性を高めることができる。 (4) By providing the silicon nitride film 221 having a higher dielectric constant than the silicon oxide film 222 in contact with the electrode layer WL, back tunnel electrons injected from the electrode layer WL during erasing can be suppressed. That is, by using a stacked film of the silicon oxide film and the silicon nitride film as the block insulating film 35, the charge blocking property can be improved.
 図2及び図3に示すように、第1の柱状部13aの上部にはドレイン側選択トランジスタSTDが設けられ、他方の下部にはソース側選択トランジスタSTSが設けられている。 (2) As shown in FIGS. 2 and 3, a drain-side selection transistor STD is provided above the first columnar portion 13a, and a source-side selection transistor STS is provided below the other.
 メモリセルMC、ドレイン側選択トランジスタSTD及びソース側選択トランジスタSTSは、積層体の積層方向(Z方向)に電流が流れる縦型トランジスタである。 The memory cell MC, the drain-side selection transistor STD, and the source-side selection transistor STS are vertical transistors in which current flows in the stacking direction (Z direction) of the stacked body.
 ドレイン側選択ゲートSGDは、ドレイン側選択トランジスタSTDのゲート電極(コントロールゲート)として機能する。ドレイン側選択ゲートSGDとチャネルボディ20との間には、ドレイン側選択トランジスタSTDのゲート絶縁膜として機能する絶縁膜26(図3)が設けられている。第1の柱状部13aに設けられた、ドレイン側選択トランジスタSTDのチャネルボディ20は、ドレイン側選択ゲートSGDの上方で、ビット線BLと接続されている。 (4) The drain-side selection gate SGD functions as a gate electrode (control gate) of the drain-side selection transistor STD. An insulating film 26 (FIG. 3) functioning as a gate insulating film of the drain-side selection transistor STD is provided between the drain-side selection gate SGD and the channel body 20. The channel body 20 of the drain-side selection transistor STD provided in the first columnar portion 13a is connected to the bit line BL above the drain-side selection gate SGD.
 ソース側選択ゲートSGSは、ソース側選択トランジスタSTSのゲート電極(コントロールゲート)として機能する。ソース側選択ゲートSGSとチャネルボディ20との間には、ソース側選択トランジスタSTSのゲート絶縁膜として機能する絶縁膜27(図3)が設けられている。第1の柱状部13aに設けられた、ソース側選択トランジスタSTSのチャネルボディ20は、ソース側選択ゲートSGSの下方で、ソース線SLと接続されている。 (4) The source-side selection gate SGS functions as a gate electrode (control gate) of the source-side selection transistor STS. An insulating film 27 (FIG. 3) functioning as a gate insulating film of the source-side selection transistor STS is provided between the source-side selection gate SGS and the channel body 20. The channel body 20 of the source-side selection transistor STS provided in the first columnar portion 13a is connected to the source line SL below the source-side selection gate SGS.
 ソース線SLのさらに下方には、層間絶縁層18内に第1のソース側配線層19aが設けられている。 Below the source line SL, a first source side wiring layer 19a is provided in the interlayer insulating layer 18.
 これら複数のメモリセルMC、ドレイン側選択トランジスタSTD、ソース側選択トランジスタSTSは、チャネルボディ20を通じて直列接続され、I字状の1つのメモリストリングMSを構成する。このメモリストリングMSがX方向及びY方向に複数配列されていることにより、複数のメモリセルMCがX方向、Y方向及びZ方向に3次元的に配置されている。 The memory cells MC, the drain-side selection transistor STD, and the source-side selection transistor STS are connected in series through the channel body 20 to form one I-shaped memory string MS. Since the plurality of memory strings MS are arranged in the X direction and the Y direction, the plurality of memory cells MC are three-dimensionally arranged in the X direction, the Y direction, and the Z direction.
 図1は、前記した第1のメモリセルアレイ10aにおけるX方向の端部の領域を示す。複数のメモリセルMCが配置された第1のメモリセルアレイ領域28aの端部には、X方向に延びる電極層WLの階段構造部29が形成されている。階段構造部29において、各層の電極層WLのX方向の端部は階段状に形成されている。階段構造部29には、階段状に形成された各層の電極層WLと接続された複数のコンタクトプラグ30が設けられている。コンタクトプラグ30は、層間絶縁層31を貫通して階段状の各層の電極層WLに接続している。 FIG. 1 shows an end area in the X direction of the first memory cell array 10a. At the end of the first memory cell array region 28a where the plurality of memory cells MC are arranged, a step structure 29 of the electrode layer WL extending in the X direction is formed. In the staircase structure section 29, the end in the X direction of the electrode layer WL of each layer is formed in a staircase shape. The staircase structure portion 29 is provided with a plurality of contact plugs 30 connected to the electrode layers WL of each layer formed in a staircase shape. The contact plug 30 penetrates through the interlayer insulating layer 31 and is connected to the electrode layer WL of each step-like layer.
 また、階段構造部29において、選択ゲートSG(ドレイン側選択ゲートSGD、ソース側選択ゲートSGS)はコンタクトプラグ32に接続している。 In the staircase structure 29, the selection gate SG (the drain-side selection gate SGD and the source-side selection gate SGS) is connected to the contact plug 32.
 電極層WLと接続されたコンタクトプラグ30は、ワード配線層33に接続されている。選択ゲートSGと接続されたコンタクトプラグ32は、選択ゲート配線層34に接続されている。ワード配線層33と選択ゲート配線層34は同じレイヤーに設けられている。 The contact plug 30 connected to the electrode layer WL is connected to the word wiring layer 33. The contact plug 32 connected to the selection gate SG is connected to the selection gate wiring layer 34. The word wiring layer 33 and the selection gate wiring layer 34 are provided on the same layer.
 第1のメモリセルアレイ層200は基板を含んでいない。また、第1のソース線SLより第2面側にさらに第1のソース側配線層19aが設けられている。 
 ワード配線層33及び選択ゲート配線層34の少なくとも一部は、他の配線層やプラグによって、第1面に垂直な方向から見て第1のメモリセルアレイ領域28aの外側に、ワード線引出部35及び選択ゲート線引出部36として引き出される。第1のメモリセルアレイ領域28aの外側に引き出されたワード線引出部35及び選択ゲート線引出部36は、第1のメモリセルアレイ領域28aの外側に設けられた第1の信号線引出電極37aに接続されている。
The first memory cell array layer 200 does not include a substrate. Further, a first source side wiring layer 19a is further provided on the second surface side of the first source line SL.
At least a part of the word wiring layer 33 and the select gate wiring layer 34 is formed by another wiring layer or plug outside the first memory cell array region 28a when viewed from a direction perpendicular to the first surface. And a selection gate line drawing section 36. The word line lead portion 35 and the select gate line lead portion 36 drawn out of the first memory cell array region 28a are connected to the first signal line lead electrode 37a provided outside the first memory cell array region 28a. Have been.
 また、第1の柱状部13aのチャネルボディ20と第1のビット線BL及び第1のソース線SLは電気的に接続されている。さらに、第1のビット線BL及び第1のソース線SLの少なくとも一部も同様に、他の配線層やプラグによって、第1面に垂直な方向から見て第1のメモリセルアレイ領域28aの外側に、第1のビット線引出部及び第1のソース線引出部として引き出される(図示しない)。第1のメモリセルアレイ領域28aの外側に引き出された第1のビット線引出部及び第1のソース線引出部は、第1のメモリセルアレイ領域28aの外側に設けられた第1の信号線引出電極37aに接続されている。 {The channel body 20 of the first columnar portion 13a is electrically connected to the first bit line BL and the first source line SL. Further, similarly, at least a part of the first bit line BL and the first source line SL is also outside the first memory cell array region 28a when viewed from a direction perpendicular to the first surface by another wiring layer or plug. Are drawn out as a first bit line lead-out part and a first source line lead-out part (not shown). The first bit line lead-out portion and the first source line lead-out portion drawn out of the first memory cell array region 28a are the first signal line lead-out electrodes provided outside the first memory cell array region 28a. 37a.
 第1のメモリセルアレイ層200の第1面Sa1及び第2面Sa2には、第1の表面配線層38a及び第2の表面配線層39aが設けられている。第1の表面配線層38a及び第2の表面配線層39aは、それぞれ第1面Sa1及び第2面Sa2に埋め込まれており、図示しない層間絶縁層から表面が露出している。ここで、例えば、第1の信号線引出電極37aは第1のメモリセルアレイ層200の第1面Sa1及び第2面Sa2にそれぞれ設けられた第1の表面配線層38a及び第2の表面配線層39aに電気的に接続されている。第1の信号線引出電極37a、第1の表面配線層38a及び第2の表面配線層39aは第1のメモリセルアレイ層200を貫通している。 {Circle around (1)} On the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, a first surface wiring layer 38a and a second surface wiring layer 39a are provided. The first surface wiring layer 38a and the second surface wiring layer 39a are embedded in the first surface Sa1 and the second surface Sa2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown). Here, for example, the first signal line lead-out electrode 37a is formed of the first surface wiring layer 38a and the second surface wiring layer provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, respectively. 39a is electrically connected. The first signal line lead-out electrode 37a, the first surface wiring layer 38a, and the second surface wiring layer 39a penetrate the first memory cell array layer 200.
 また、第1のメモリセルアレイ領域28aの外側に、第1の外部接続電極40aが設けられている。すなわち、第1の外部接続電極40aは、メモリセルアレイにおける階段構造部よりもさらに外側の領域に設けられている。第1の外部接続電極40aは、第1のメモリセルアレイ層200の第1面Sa1及び第2面Sa2にそれぞれ設けられた第1の表面配線層38a及び第2の表面配線層39aに電気的に接続されている。第1の表面配線層38a及び第2の表面配線層39aは、それぞれ第1面Sa1及び第2面Sa2に埋め込まれており、図示しない層間絶縁層から表面が露出している。第1の外部接続電極40a、第1の表面配線層38a及び第2の表面配線層39aは第1のメモリセルアレイ層200を貫通している。 {Circle around (1)}, a first external connection electrode 40a is provided outside the first memory cell array region 28a. That is, the first external connection electrode 40a is provided in a region further outside the staircase structure in the memory cell array. The first external connection electrode 40a is electrically connected to the first surface wiring layer 38a and the second surface wiring layer 39a provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, respectively. It is connected. The first surface wiring layer 38a and the second surface wiring layer 39a are embedded in the first surface Sa1 and the second surface Sa2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown). The first external connection electrode 40a, the first surface wiring layer 38a, and the second surface wiring layer 39a penetrate the first memory cell array layer 200.
 周辺回路層100は回路用基板1を含む。周辺回路層100の回路用基板1は、例えばシリコン基板である。周辺回路層の回路用基板1の回路形成面には、制御回路が形成されている。制御回路としては、トランジスタを含む集積回路として形成されている。トランジスタとしては、ゲート電極、ソース/ドレイン領域などを有するMOSFET構造を有する。MOSFETのソース/ドレイン領域は、他の配線層やプラグによって、回路側接続電極41に接続されている。回路側接続電極41は、周辺回路層100の回路形成面に設けられた回路側配線層42に電気的に接続されている。回路側配線層42は、回路形成面に埋め込まれており、図示しない層間絶縁層から表面が露出している。 The peripheral circuit layer 100 includes the circuit board 1. The circuit substrate 1 of the peripheral circuit layer 100 is, for example, a silicon substrate. A control circuit is formed on the circuit forming surface of the circuit board 1 in the peripheral circuit layer. The control circuit is formed as an integrated circuit including a transistor. The transistor has a MOSFET structure having a gate electrode, source / drain regions, and the like. The source / drain region of the MOSFET is connected to the circuit-side connection electrode 41 by another wiring layer or a plug. The circuit-side connection electrode 41 is electrically connected to a circuit-side wiring layer 42 provided on a circuit formation surface of the peripheral circuit layer 100. The circuit-side wiring layer 42 is embedded in the circuit formation surface, and the surface is exposed from an interlayer insulating layer (not shown).
 第2のメモリセルアレイ層300は、図1乃至図4に示した第1のメモリセルアレイ層200と同様の構成となっている。すなわち、第2のメモリセルアレイ層300は、図1における第3面(下面)Sb1と第3面と反対側の第4面(上面)Sb2を持ち、3次元構造の第2のメモリセルアレイ10bを有する。その他、同様の構成については記載を省略する。 The second memory cell array layer 300 has the same configuration as the first memory cell array layer 200 shown in FIGS. That is, the second memory cell array layer 300 has a third surface (lower surface) Sb1 and a fourth surface (upper surface) Sb2 opposite to the third surface in FIG. 1 and has a three-dimensional structure of the second memory cell array 10b. Have. Descriptions of other similar configurations are omitted.
 第2のメモリセルアレイ層300は基板を含んでいない。また、第2のソース線SLより第4面側にさらに第2のソース側配線層19bが設けられている。 
 第1のメモリセルアレイ層200と同様に、ワード配線層33及び選択ゲート配線層34の少なくとも一部は他の配線層やプラグによって、第3面に垂直な方向から見て第2のメモリセルアレイ領域28bの外側に、ワード線引出部35及び選択ゲート線引出部36として引き出される。第2のメモリセルアレイ領域28bの外側に引き出されたワード線引出部35及び選択ゲート線引出部36は、第2のメモリセルアレイ領域28bの外側に設けられた第2の信号線引出電極37bに接続されている。
The second memory cell array layer 300 does not include a substrate. Further, a second source side wiring layer 19b is further provided on the fourth surface side of the second source line SL.
Similarly to the first memory cell array layer 200, at least a part of the word wiring layer 33 and the select gate wiring layer 34 is formed by another wiring layer or plug by a second memory cell array area as viewed from a direction perpendicular to the third surface. The word line lead-out part 35 and the select gate line lead-out part 36 are drawn out of the area 28b. The word line lead portion 35 and the select gate line lead portion 36 drawn outside the second memory cell array region 28b are connected to the second signal line lead electrode 37b provided outside the second memory cell array region 28b. Have been.
 また、第2の柱状部13bのチャネルボディ20と第2のビット線BL及び第2のソース線SLは電気的に接続されている。さらに、第2のビット線BL及び第2のソース線SLの少なくとも一部は、他の配線層やプラグによって、第3面に垂直な方向から見て第2のメモリセルアレイ領域28bの外側に、第2のビット線引出部及び第2のソース線引出部として引き出される。第1のメモリセルアレイ領域28bの外側に引き出された第2のビット線引出部及び第2のソース線引出部は、第2のメモリセルアレイ領域28bの外側に設けられた第2の信号線引出電極37bに接続されている。なお、第2のメモリセルアレイ領域28b内の構成は、第1のメモリセルアレイ層200と同じであるので符号の記載を省略する。 {The channel body 20 of the second columnar portion 13b is electrically connected to the second bit line BL and the second source line SL. Further, at least a part of the second bit line BL and the second source line SL is formed outside the second memory cell array region 28b as viewed from a direction perpendicular to the third surface by another wiring layer or plug. It is led out as a second bit line lead-out part and a second source line lead-out part. The second bit line lead-out portion and the second source line lead-out portion drawn out of the first memory cell array region 28b are connected to a second signal line lead-out electrode provided outside the second memory cell array region 28b. 37b. Note that the configuration in the second memory cell array region 28b is the same as that of the first memory cell array layer 200, and therefore the description of the reference numerals is omitted.
 第2のメモリセルアレイ層300の第3面Sb1及び第4面Sb2には、第3の表面配線層38b及び第4の表面配線層39bが設けられている。第3の表面配線層38b及び第4の表面配線層39bは、それぞれ第3面Sb1及び第4面Sb2に埋め込まれており、図示しない層間絶縁層から表面が露出している。ここで、例えば、第2の信号線引出電極37bは第2のメモリセルアレイ層300の第3面及び第4面にそれぞれ設けられた第3の表面配線層38b及び第4の表面配線層39bに電気的に接続されている。第2の信号線引出電極、第3及び第4の表面配線層は、第2のメモリセルアレイ層300を貫通している。 A third surface wiring layer 38b and a fourth surface wiring layer 39b are provided on the third surface Sb1 and the fourth surface Sb2 of the second memory cell array layer 300. The third surface wiring layer 38b and the fourth surface wiring layer 39b are embedded in the third surface Sb1 and the fourth surface Sb2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown). Here, for example, the second signal line extraction electrode 37b is connected to the third surface wiring layer 38b and the fourth surface wiring layer 39b provided on the third and fourth surfaces of the second memory cell array layer 300, respectively. It is electrically connected. The second signal line lead-out electrode and the third and fourth surface wiring layers penetrate the second memory cell array layer 300.
 また、第2のメモリセルアレイ領域28bの外側に、第2の外部接続電極40bが設けられている。すなわち、第2の外部接続電極40bは、メモリセルアレイにおける階段構造部よりもさらに外側の領域に設けられている。第2の外部接続電極40bは、第2のメモリセルアレイ層300の第3面Sb1及び第4面Sb2にそれぞれ設けられた第3の表面配線層38b及び第4の表面配線層39bに電気的に接続されている。第3の表面配線層38b及び第4の表面配線層39bは、それぞれ第3面Sb1及び第4面Sb2に埋め込まれており、図示しない層間絶縁層から表面が露出している。第2の外部接続電極40b、第3の表面配線層38b及び第4の表面配線層39bは第2のメモリセルアレイ層300を貫通している。第4の表面配線層39bのうち、第2の外部接続電極40bに電気的に接続された表面配線層上に、外部接続パッド52が設けられる。 {Circle around (2)}, a second external connection electrode 40b is provided outside the second memory cell array region 28b. That is, the second external connection electrode 40b is provided in a region further outside the staircase structure in the memory cell array. The second external connection electrode 40b is electrically connected to the third surface wiring layer 38b and the fourth surface wiring layer 39b provided on the third surface Sb1 and the fourth surface Sb2 of the second memory cell array layer 300, respectively. It is connected. The third surface wiring layer 38b and the fourth surface wiring layer 39b are embedded in the third surface Sb1 and the fourth surface Sb2, respectively, and the surfaces are exposed from an interlayer insulating layer (not shown). The second external connection electrode 40b, the third surface wiring layer 38b, and the fourth surface wiring layer 39b penetrate the second memory cell array layer 300. The external connection pad 52 is provided on the surface wiring layer of the fourth surface wiring layer 39b that is electrically connected to the second external connection electrode 40b.
 図1に示すように、第1面Sa1に設けられた第1の表面配線層38aは、回路形成面に設けられた回路側配線層42と貼り合され、接合されている。第1の表面配線層38a及び回路側配線層42は、例えば銅または銅を主成分とする銅合金である。第1の表面配線層38a及び回路側配線層42の周囲には絶縁膜(図示せず)が設けられている。絶縁膜は、例えば無機膜、樹脂膜などである。第1のメモリセルアレイ層200と周辺回路層100は第1の表面配線層38a及び回路側配線層42を介して、電気的に接続されている。 (1) As shown in FIG. 1, the first surface wiring layer 38a provided on the first surface Sa1 is bonded and joined to the circuit-side wiring layer 42 provided on the circuit forming surface. The first surface wiring layer 38a and the circuit-side wiring layer 42 are, for example, copper or a copper alloy containing copper as a main component. An insulating film (not shown) is provided around the first surface wiring layer 38a and the circuit-side wiring layer 42. The insulating film is, for example, an inorganic film, a resin film, or the like. The first memory cell array layer 200 and the peripheral circuit layer 100 are electrically connected via the first surface wiring layer 38a and the circuit-side wiring layer 42.
 また、図1に示すように、第2面Sa2に設けられた第2の表面配線層39aは、第3面Sb1に設けられた第3の表面配線層38bと貼り合され、接合されている。第2の表面配線層39a及び第3の表面配線層38bは、例えば銅または銅を主成分とする銅合金である。第2面に設けられた第2の表面配線層39a及び第3面Sb1に設けられた第3の表面配線層38bの周囲には絶縁膜(図示せず)が設けられている。絶縁膜は、例えば無機膜であり、シリコン窒化膜を含む。第1のメモリセルアレイ層と第2のメモリセルアレイ層は、第2の表面配線層39a及び第3の表面配線層38bを介して、電気的に接続されている。 Further, as shown in FIG. 1, the second surface wiring layer 39a provided on the second surface Sa2 is bonded to and bonded to the third surface wiring layer 38b provided on the third surface Sb1. . The second surface wiring layer 39a and the third surface wiring layer 38b are, for example, copper or a copper alloy containing copper as a main component. An insulating film (not shown) is provided around the second surface wiring layer 39a provided on the second surface and the third surface wiring layer 38b provided on the third surface Sb1. The insulating film is, for example, an inorganic film and includes a silicon nitride film. The first memory cell array layer and the second memory cell array layer are electrically connected via a second surface wiring layer 39a and a third surface wiring layer 38b.
 なお、配線層の周囲の絶縁膜が無機膜の場合、接合面において配線層同士の接合を行うとともに、無機膜同士の水素接合を利用した接合を行うことができる。よって、絶縁膜として無機膜を用いると、接合面の隙間が生じにくいため、樹脂膜を用いたアンダーフィルを行う必要がなくなるという点で好ましい。 In the case where the insulating film around the wiring layer is an inorganic film, the bonding between the wiring layers can be performed at the bonding surface, and the bonding using hydrogen bonding between the inorganic films can be performed. Therefore, it is preferable to use an inorganic film as the insulating film since a gap between bonding surfaces is less likely to occur, and it is not necessary to perform underfill using a resin film.
 図5は、第1の実施形態に係る半導体記憶装置の模式斜視図であり、周辺回路層、第1のメモリセルアレイ層及び第2のメモリセルアレイ層の電気的な接続状態に関する模式斜視図である。 FIG. 5 is a schematic perspective view of the semiconductor memory device according to the first embodiment, and is a schematic perspective view relating to the electrical connection state of the peripheral circuit layer, the first memory cell array layer, and the second memory cell array layer. .
 図5に示すように、周辺回路層100、第1のメモリセルアレイ層200及び第2のメモリセルアレイ層300は第1の信号線引出電極、第2の信号線引出電極、第1外部接続電極及び第2外部接続電極(図示しない)によって、電気的に接続されている。メモリセルアレイ領域28a,28bの外側に信号線引出電極を設け、メモリセルアレイ領域の外側であって、メモリセルアレイにおける階段構造部よりもさらに外側の領域に外部接続電極が設けられている。メモリセルアレイ層の信号線引出電極及び外部接続電極は、第1面Sa1に垂直な方向から見て、それぞれ、重なる領域に設けられている。信号線引出電極は表面配線層39a,39bに電気的に接続され、最上層となる第2のメモリセルアレイ層300の外部接続電極は外部接続パッド52に電気的に接続されている。なお、図5において、第1の信号線引出電極、第2の信号線引出電極、第1外部接続電極及び第2外部接続電極などの電気的な接続状態を一部のみ示し、それ以外は、図示を省略している。 As shown in FIG. 5, the peripheral circuit layer 100, the first memory cell array layer 200, and the second memory cell array layer 300 include a first signal line lead electrode, a second signal line lead electrode, a first external connection electrode, They are electrically connected by a second external connection electrode (not shown). Signal line extraction electrodes are provided outside the memory cell array regions 28a and 28b, and external connection electrodes are provided outside the memory cell array region and further outside the staircase structure portion in the memory cell array. The signal line lead-out electrodes and the external connection electrodes of the memory cell array layer are respectively provided in overlapping regions when viewed from a direction perpendicular to the first surface Sa1. The signal line lead-out electrodes are electrically connected to the surface wiring layers 39a and 39b, and the external connection electrodes of the uppermost second memory cell array layer 300 are electrically connected to the external connection pads 52. Note that FIG. 5 shows only a part of the electrical connection states of the first signal line lead electrode, the second signal line lead electrode, the first external connection electrode, the second external connection electrode, and the like. Illustration is omitted.
 図6乃至図9を用いて、第1の実施形態に係る半導体記憶装置の製造方法について説明する。図6乃至図9は第1の実施形態に係る半導体記憶装置の製造方法に係り、半導体記憶装置の一断面図である。 方法 A method of manufacturing the semiconductor memory device according to the first embodiment will be described with reference to FIGS. 6 to 9 are cross-sectional views of the semiconductor memory device according to the method for manufacturing the semiconductor memory device according to the first embodiment.
 図6に示すように、回路用基板1上にトランジスタなどを含む制御回路を形成し、絶縁膜(図示せず)から表面が露出する回路側配線層42を有する周辺回路層100を形成する。また、他の基板2下にバッファ層として、第1の絶縁層50、例えばシリコン酸化膜が形成され、第1の絶縁層50下に第1のソース線側配線層19a及び第1のソース線17aが形成され、第1のソース線17a下に第1の選択ゲートSG、複数の電極層WLなどが形成される。次にメモリストリングMS、階段構造部29などが形成される。さらに第1の外部接続電極40a、第1の信号線引出電極37a及び絶縁膜(図示せず)から表面が露出する第1の表面配線層38aが形成され、第1のメモリセルアレイ層200が形成される。続いて、周辺回路層100の回路側配線層42及び第1のメモリセルアレイ層200の第1の表面配線層38aが向かい合うように積層される。 (6) As shown in FIG. 6, a control circuit including a transistor and the like is formed on the circuit substrate 1, and a peripheral circuit layer 100 having a circuit-side wiring layer 42 whose surface is exposed from an insulating film (not shown) is formed. A first insulating layer 50, for example, a silicon oxide film is formed as a buffer layer under the other substrate 2, and a first source line side wiring layer 19a and a first source line are formed under the first insulating layer 50. 17a are formed, and a first select gate SG, a plurality of electrode layers WL, and the like are formed below the first source line 17a. Next, the memory string MS, the staircase structure 29, and the like are formed. Further, a first external connection electrode 40a, a first signal line extraction electrode 37a, and a first surface wiring layer 38a whose surface is exposed from an insulating film (not shown) are formed, and a first memory cell array layer 200 is formed. Is done. Subsequently, the circuit-side wiring layer 42 of the peripheral circuit layer 100 and the first surface wiring layer 38a of the first memory cell array layer 200 are stacked so as to face each other.
 次に、図7に示すように、周辺回路層100及び第1のメモリセルアレイ層200が積層される。このとき、回路側配線層42及び第1の表面配線層38aは接合される。その接合方法としては、例えば機械的圧力をかけて接合され、拡散接合される。あるいは接合面に不活性プラズマ処理を行い、接合面にOH基を形成することで生じる水素結合を利用して接合される。あるいは有機接着剤等を用いて接合される。その後、例えばKOHなどの薬液により、基板2を除去する。この時、各配線層の周囲の絶縁膜同士も接合されることができる。 Next, as shown in FIG. 7, the peripheral circuit layer 100 and the first memory cell array layer 200 are stacked. At this time, the circuit-side wiring layer 42 and the first surface wiring layer 38a are joined. As a joining method, for example, joining is performed by applying a mechanical pressure, and diffusion joining is performed. Alternatively, the bonding is performed by using an inert plasma treatment on the bonding surface and forming a OH group on the bonding surface to generate hydrogen bonds. Alternatively, they are joined using an organic adhesive or the like. Thereafter, the substrate 2 is removed with a chemical such as KOH. At this time, the insulating films around each wiring layer can also be joined.
 メモリセルアレイ層は基板を有していないため、メモリセルアレイ層にかかる応力によって変形しやすく、積層された半導体記憶装置が反ってしまうことが考えられる。そこで、第2の絶縁層51を形成する。第2の絶縁層51は、基板を除去した後に生じる反りとは逆方向の応力を有する層であり、応力調整膜として形成される。第2の絶縁層51としては、例えばシリコン窒化膜を形成する。このようにすることによって、半導体記憶装置に生じる応力を緩和させることができ、半導体記憶装置の反りを抑制することができる。 た め Since the memory cell array layer does not have a substrate, it is likely that the memory cell array layer is easily deformed by stress applied to the memory cell array layer, and the stacked semiconductor memory devices may warp. Therefore, a second insulating layer 51 is formed. The second insulating layer 51 is a layer having a stress in a direction opposite to a warp generated after the substrate is removed, and is formed as a stress adjusting film. As the second insulating layer 51, for example, a silicon nitride film is formed. By doing so, the stress generated in the semiconductor memory device can be reduced, and the warpage of the semiconductor memory device can be suppressed.
 次に、第1の外部接続電極40a及び第1の信号線引出電極37aの上面が露出するように、第1の絶縁層50及び第2の絶縁層51を除去し、溝を形成する。図8に示すように、その溝に接合金属となる第2の表面配線層39aを形成し、第2の表面配線層39aの上面を露出させる。 Next, the first insulating layer 50 and the second insulating layer 51 are removed so that the upper surfaces of the first external connection electrode 40a and the first signal line extraction electrode 37a are exposed, and a groove is formed. As shown in FIG. 8, a second surface wiring layer 39a serving as a bonding metal is formed in the groove, and the upper surface of the second surface wiring layer 39a is exposed.
 次に、図8に続いて、図6に示す周辺回路層100に代えて第1のメモリセルアレイ層200とし、図6に示す第1のメモリセルアレイ層200に代えて第2のメモリセルアレイ層300として、図6乃至図8と同様の工程を繰り返す。図9に示すように、上面に露出した第4の表面配線層39bのうち、第2の外部接続電極40bに電気的に接続する表面配線層上に、外部接続パッド52を形成する。このようにして、周辺回路層100、第1のメモリセルアレイ層200及び第2のメモリセルアレイ層300が積層された半導体記憶装置を形成することができる。 Next, following FIG. 8, a first memory cell array layer 200 is used instead of the peripheral circuit layer 100 shown in FIG. 6, and a second memory cell array layer 300 is used instead of the first memory cell array layer 200 shown in FIG. 6 to FIG. 8 are repeated. As shown in FIG. 9, the external connection pad 52 is formed on the surface wiring layer electrically connected to the second external connection electrode 40b among the fourth surface wiring layer 39b exposed on the upper surface. Thus, a semiconductor memory device in which the peripheral circuit layer 100, the first memory cell array layer 200, and the second memory cell array layer 300 are stacked can be formed.
 第1の実施形態では、第1のメモリセルアレイ層200上に第2のメモリセルアレイ層300を積層したが、さらに、第2のメモリセルアレイ層300上に一層または多層の他のメモリセルアレイ層を積層してもよい。このとき、一層または多層の他のメモリセルアレイ層の少なくとも一部の層が基板を含んでいてもよい。その場合、積層された半導体記憶装置の反りを低減することができる。 In the first embodiment, the second memory cell array layer 300 is stacked on the first memory cell array layer 200. However, one or more other memory cell array layers are stacked on the second memory cell array layer 300. May be. At this time, at least a part of one or more other memory cell array layers may include the substrate. In that case, warpage of the stacked semiconductor memory devices can be reduced.
 また、周辺回路層100を積層せず、メモリセルアレイ層の積層体のみを形成してもかまわない。 {Circle around (4)} The peripheral circuit layer 100 may not be laminated, and only a laminate of the memory cell array layers may be formed.
 (第1の変形例)
 図10は、第1の実施形態の第1の変形例に係る半導体記憶装置の模式断面図である。第1のメモリセルアレイ層200のメモリストリングMS1と第2のメモリセルアレイ層300のメモリストリングMS2とを接続する配線層61が設けられている。配線層61はメモリセルアレイ領域の内側に設けられており、第1のメモリセルアレイ層200の第1ソース側配線層19a及び第2メモリセルアレイ層300の第2のビット線16bと接続している。第1のメモリセルアレイ層と第2のメモリセルアレイ層とは、メモリセルアレイ領域の外側に設けられた信号線引出電極を介さずに接続されている。
(First Modification)
FIG. 10 is a schematic cross-sectional view of a semiconductor memory device according to a first modification of the first embodiment. A wiring layer 61 that connects the memory string MS1 of the first memory cell array layer 200 and the memory string MS2 of the second memory cell array layer 300 is provided. The wiring layer 61 is provided inside the memory cell array region, and is connected to the first source side wiring layer 19a of the first memory cell array layer 200 and the second bit line 16b of the second memory cell array layer 300. The first memory cell array layer and the second memory cell array layer are connected without interposing a signal line extraction electrode provided outside the memory cell array region.
 第1の変形例では、第1のメモリセルアレイ層と第2のメモリセルアレイ層とが、メモリセルアレイ領域の外側に設けられた信号線引出電極に加えて、メモリセルアレイ領域の内側に設けられた配線層を用いて接続されている。 In the first modified example, the first memory cell array layer and the second memory cell array layer are connected to a signal line extraction electrode provided outside the memory cell array region and a wiring provided inside the memory cell array region. They are connected using layers.
 このように形成することによって、メモリセルアレイ層の接続に必要な電極面積を低減することができ、チップ面積を低減することができる。 形成 By forming in this manner, the electrode area required for connecting the memory cell array layer can be reduced, and the chip area can be reduced.
 (第2の変形例)
 図11は、第1の実施形態の第2の変形例に係る半導体記憶装置の模式断面図である。外部接続電極の記載は省略する。
(Second Modification)
FIG. 11 is a schematic cross-sectional view of a semiconductor memory device according to a second modification of the first embodiment. The description of the external connection electrode is omitted.
 第1のメモリセルアレイ層200のワード配線層及び選択ゲート配線層の少なくとも一部は、他の配線層やプラグによって、ワード線引出部35及び選択ゲート線引出部36として引き出され、第1面Sa1に垂直な方向から見て第1のメモリセルアレイ領域28aの内側に折り返される。第1のメモリセルアレイ領域28aの内側に引き出されたワード線引出部35及び選択ゲート線引出部36は、第1のメモリセルアレイ領域28aの内側に設けられた第1の信号線引出電極37aに接続されている。 At least a part of the word wiring layer and the select gate wiring layer of the first memory cell array layer 200 is drawn as a word line lead portion 35 and a select gate line lead portion 36 by another wiring layer or plug, and the first surface Sa1 is provided. Is folded inside the first memory cell array region 28a when viewed from the direction perpendicular to the first direction. The word line lead portion 35 and the select gate line lead portion 36 drawn inside the first memory cell array region 28a are connected to the first signal line lead electrode 37a provided inside the first memory cell array region 28a. Have been.
 また、第1のビット線BL及び第1のソース線SLの少なくとも一部も同様に、他の配線層やプラグによって、第1のビット線引出部及び第1のソース線引出部として引き出され、第1面Sa1に垂直な方向から見て第1のメモリセルアレイ領域28aの内側に折り返される(図示しない)。第1のメモリセルアレイ領域28aの内側に引き出された第1のビット線引出部及び第1のソース線引出部は、第1のメモリセルアレイ領域28aの内側に設けられた第1の信号線引出電極37aに接続されている。 Similarly, at least a part of the first bit line BL and the first source line SL is also drawn out as a first bit line lead-out part and a first source line lead-out part by another wiring layer or plug. It is folded back inside the first memory cell array region 28a when viewed from a direction perpendicular to the first surface Sa1 (not shown). The first bit line lead-out portion and the first source line lead-out portion drawn out inside the first memory cell array region 28a are the first signal line lead-out electrodes provided inside the first memory cell array region 28a. 37a.
 また、第2面Sa2側の第1のソース側配線層19aは、第1のメモリセルアレイ領域28aの内側に設けられた第1の信号線引出電極37aに接続されている。ここで、第1の信号線引出電極37aの一部は第1のメモリセルアレイ領域28aの外側に設けられていてもよい。 {Circle around (2)} The first source-side wiring layer 19a on the second surface Sa2 side is connected to a first signal line extraction electrode 37a provided inside the first memory cell array region 28a. Here, a part of the first signal line extraction electrode 37a may be provided outside the first memory cell array region 28a.
 第1のメモリセルアレイ層200の第1面Sa1及び第2面Sa2には、メモリセルアレイ領域の内側に、それぞれ、第1の表面配線層38a及び第2の表面配線層39aが設けられている。メモリセルアレイ領域の内側に設けられた第1の表面配線層38a及び第2の表面配線層39aは、第1の信号線引出電極37aに電気的に接続されている。 に は A first surface wiring layer 38a and a second surface wiring layer 39a are provided on the first surface Sa1 and the second surface Sa2 of the first memory cell array layer 200, respectively, inside the memory cell array region. The first surface wiring layer 38a and the second surface wiring layer 39a provided inside the memory cell array region are electrically connected to the first signal line extraction electrode 37a.
 第2のメモリセルアレイ層300は、第1のメモリセルアレイ層200と同様に、ワード配線層及び選択ゲート配線層の少なくとも一部は他の配線層やプラグによって、ワード線引出部35及び選択ゲート線引出部36として引き出され、第3面Sb1に垂直な方向から見て第2のメモリセルアレイ領域28bの内側に折り返される。第2のメモリセルアレイ領域28bの内側に引き出されたワード線引出部35及び選択ゲート線引出部36は、第2のメモリセルアレイ領域28bの内側に設けられた第2の信号線引出電極37bに接続されている。 In the second memory cell array layer 300, as in the first memory cell array layer 200, at least a part of the word wiring layer and the selection gate wiring layer is formed by another wiring layer or plug by using the word line lead-out portion 35 and the selection gate line. It is pulled out as the lead-out portion 36 and is folded back inside the second memory cell array region 28b when viewed from the direction perpendicular to the third surface Sb1. The word line lead portion 35 and the select gate line lead portion 36 drawn inside the second memory cell array region 28b are connected to the second signal line lead electrode 37b provided inside the second memory cell array region 28b. Have been.
 また、第2のビット線BL及び第2のソース線SLの少なくとも一部は、他の配線層やプラグによって、第2のビット線引出部及び第2のソース線引出部として引き出され、第3面に垂直な方向から見て第2のメモリセルアレイ領域28bの内側に折り返される(図示しない)。第2のメモリセルアレイ領域28bの内側に引き出された第2のビット線引出部及び第2のソース線引出部は、第2のメモリセルアレイ領域28bの内側に設けられた第2の信号線引出電極37bに接続されている。ここで、第2の信号線引出電極37bの一部は第2のメモリセルアレイ領域28bの外側に設けられていてもよい。 Further, at least a part of the second bit line BL and the second source line SL is led out as a second bit line lead-out part and a second source line lead-out part by another wiring layer or plug, and It is folded back inside the second memory cell array region 28b when viewed from a direction perpendicular to the plane (not shown). The second bit line lead-out portion and the second source line lead-out portion drawn out inside the second memory cell array region 28b are the second signal line lead-out electrodes provided inside the second memory cell array region 28b. 37b. Here, a part of the second signal line extraction electrode 37b may be provided outside the second memory cell array region 28b.
 第2のメモリセルアレイ層300の第3面Sb1には、メモリセルアレイ領域の内側に、第3の表面配線層38bが設けられている。メモリセルアレイ領域の内側に設けられた第3の表面配線層38は、第2の信号線引出電極37bに電気的に接続されている。ここで、第2のメモリセルアレイ層300の第4面Sb2にも、メモリセルアレイ領域の内側に、第4の表面配線層(図示しない)が設けられていてもよい。この場合、メモリセルアレイ領域の内側に設けられた第4の表面配線層は、第2の信号線引出電極37bに電気的に接続されている。 A third surface wiring layer 38b is provided on the third surface Sb1 of the second memory cell array layer 300 inside the memory cell array region. The third surface wiring layer 38 provided inside the memory cell array region is electrically connected to the second signal line extraction electrode 37b. Here, on the fourth surface Sb2 of the second memory cell array layer 300, a fourth surface wiring layer (not shown) may be provided inside the memory cell array region. In this case, the fourth surface wiring layer provided inside the memory cell array region is electrically connected to the second signal line extraction electrode 37b.
 したがって、各メモリセルアレイ層の信号線引出電極は、メモリセルアレイ領域の内側に設けられた表面配線層に接続され、各メモリアレイ層の表面配線層は、第1面に垂直な方向から見て、それぞれ重なる領域に設けることができる。よって、複数のメモリセルアレイ層を積層した場合、チップ面積をさらに小さくするとともに、配線長を抑えることができ、動作遅延を抑制することができる。 Therefore, the signal line extraction electrode of each memory cell array layer is connected to a surface wiring layer provided inside the memory cell array region, and the surface wiring layer of each memory array layer is viewed from a direction perpendicular to the first surface. Each can be provided in an overlapping area. Therefore, when a plurality of memory cell array layers are stacked, the chip area can be further reduced, the wiring length can be reduced, and operation delay can be suppressed.
 第2の変形例によれば、メモリセルアレイ領域の内側に少なくとも一部のビット線やワード線などを折り返している。ビット線引出部及びワード線引出部などを介して接続された信号線引出電極をメモリセルアレイ領域の内側に設けている。また、各メモリセルアレイ層の信号線引出電極は、メモリセルアレイ領域の内側に設けられた表面配線層に接続され、各メモリアレイ層の表面配線層は、第1面に垂直な方向から見て、それぞれ重なる領域に設けることができる。よって、複数のメモリセルアレイ層を積層した場合、チップ面積をさらに小さくするとともに、配線長を抑えることができ、動作遅延を抑制することができる。 According to the second modification, at least a part of the bit lines and the word lines are folded inside the memory cell array region. A signal line lead electrode connected via a bit line lead portion and a word line lead portion is provided inside the memory cell array region. The signal line extraction electrode of each memory cell array layer is connected to a surface wiring layer provided inside the memory cell array region, and the surface wiring layer of each memory array layer is viewed from a direction perpendicular to the first surface. Each can be provided in an overlapping area. Therefore, when a plurality of memory cell array layers are stacked, the chip area can be further reduced, the wiring length can be reduced, and operation delay can be suppressed.
 第1の実施形態によれば、第1のメモリセルアレイ層200及び第2のメモリセルアレイ層300は基板(例えば、シリコン基板)を有していない。したがって、第1のメモリセルアレイ層200と第2のメモリセルアレイ層300を積層させ、電気的に接続させるにあたって、TSV(Through Silicon Via)を形成することなく、接続することが可能となる。よって、コストや処理時間がかかる基板のエッチング工程や、基板とビアとの短絡を防止するための絶縁膜の形成を行う必要がなく、コストの削減、スループットの向上を図ることができる。 According to the first embodiment, the first memory cell array layer 200 and the second memory cell array layer 300 do not have a substrate (for example, a silicon substrate). Therefore, in stacking the first memory cell array layer 200 and the second memory cell array layer 300 and electrically connecting them, it is possible to connect them without forming a through silicon via (TSV). Accordingly, there is no need to perform a substrate etching step which requires cost and processing time, or to form an insulating film for preventing a short circuit between the substrate and the via, thereby reducing costs and improving throughput.
 また、メモリセルアレイ層と周辺回路層とを異なるウェハプロセスで形成するため、メモリセルアレイ層を形成する際に高温の熱処理が必要である場合であっても、周辺回路層のトランジスタの不純物拡散や金属の配線層の劣化などの悪影響を抑制することができる。 Further, since the memory cell array layer and the peripheral circuit layer are formed by different wafer processes, even when a high-temperature heat treatment is required when forming the memory cell array layer, the impurity diffusion of the transistor in the peripheral circuit layer or the metallization may be performed. Adverse effects such as deterioration of the wiring layer can be suppressed.
 また、メモリセルアレイ層は、第1面が周辺回路層と向かい合うように積層されている。メモリセルアレイ層の第1面側にビット線やワード線を引出し、ビット線やワード線を信号線引出電極に接続している。メモリセルアレイ層は、第1面が周辺回路層と向かい合うように積層されているため、電極層の引き回し距離を低減することができ、動作速度への悪影響を抑制することができる。 {Circle around (1)} The memory cell array layer is stacked so that the first surface faces the peripheral circuit layer. A bit line or a word line is drawn out to the first surface side of the memory cell array layer, and the bit line or the word line is connected to a signal line drawing electrode. Since the memory cell array layer is stacked so that the first surface faces the peripheral circuit layer, the wiring distance of the electrode layer can be reduced, and the adverse effect on the operation speed can be suppressed.
 さらに、第1の実施形態によれば、周辺回路層上に複数層のメモリセルアレイ層を積層している。よって、1つのメモリセルアレイ層の積層体が48層の場合、例えば2つのメモリセルアレイ層を積層することによって、48層のプロセス技術を用いて、48層の2倍の96層のメモリセルアレイを実現することができる。したがって、容易にメモリ密度を向上させることが可能となる。 According to the first embodiment, a plurality of memory cell array layers are stacked on the peripheral circuit layer. Therefore, when the stacked body of one memory cell array layer is 48 layers, for example, by stacking two memory cell array layers, a memory cell array of 96 layers, which is twice the 48 layers, is realized by using a 48-layer process technology. can do. Therefore, it is possible to easily improve the memory density.
 さらに、メモリセルアレイ領域の外側に少なくとも一部のビット線やワード線などを引出し、ビット線引出部及びワード線引出部などを介して接続された信号線引出電極を、メモリセルアレイ領域の外側に設けている。また、メモリセルアレイ領域の外側であって、メモリセルアレイにおける階段構造部よりもさらに外側の領域に外部接続電極を設けている。各メモリセルアレイ層の信号線引出電極及び外部接続電極は、第1面に垂直な方向から見て、それぞれ重なる領域に設けられている。よって、複数のメモリセルアレイ層を積層した場合、配線長を抑えることができ、動作遅延を抑制することができる。 Further, at least a part of the bit lines and the word lines are led out of the memory cell array region, and a signal line lead electrode connected via a bit line lead portion and a word line lead portion is provided outside the memory cell array region. ing. The external connection electrode is provided in a region outside the memory cell array region and further outside the staircase structure portion in the memory cell array. The signal line lead-out electrodes and the external connection electrodes of each memory cell array layer are provided in respective overlapping regions when viewed from a direction perpendicular to the first surface. Therefore, when a plurality of memory cell array layers are stacked, the wiring length can be reduced, and operation delay can be suppressed.
 あるいは、メモリセルアレイ領域の内側に少なくとも一部のビット線やワード線などを折り返している。ビット線引出部及びワード線引出部などを介して接続された信号線引出電極をメモリセルアレイ領域の内側に設けている。また、各メモリセルアレイ層の信号線引出電極は、メモリセルアレイ領域の内側に設けられた表面配線層に接続され、各メモリアレイ層の表面配線層は、第1面に垂直な方向から見て、それぞれ重なる領域に設けられている。よって、複数のメモリセルアレイ層を積層した場合、チップ面積をさらに小さくするとともに、配線長を抑えることができ、動作遅延を抑制することができる。 {Alternatively, at least some of the bit lines and word lines are folded back inside the memory cell array area. A signal line lead electrode connected via a bit line lead portion and a word line lead portion is provided inside the memory cell array region. The signal line extraction electrode of each memory cell array layer is connected to a surface wiring layer provided inside the memory cell array region, and the surface wiring layer of each memory array layer is viewed from a direction perpendicular to the first surface. Each is provided in an overlapping area. Therefore, when a plurality of memory cell array layers are stacked, the chip area can be further reduced, the wiring length can be reduced, and operation delay can be suppressed.
 また、外部接続電極、及び外部接続電極に接続された表面配線層は、メモリセルアレイ層または/及び周辺回路層によって上下を挟まれた層(ここでは第1のメモリセルアレイ層)を少なくとも貫通するように設けられている。また、信号線引出電極、及び信号線引出電極に接続された表面配線層は、メモリセルアレイ層または/及び周辺回路層によって上下を挟まれた層(ここでは第1のメモリセルアレイ層)を少なくとも貫通するように設けられている。したがって、複数のメモリセルアレイ層を積層した場合、配線長をより抑えることができ、動作遅延をより抑制することができ、信頼性を向上することができる。 In addition, the external connection electrode and the surface wiring layer connected to the external connection electrode at least penetrate a layer (here, the first memory cell array layer) sandwiched between the upper and lower sides by the memory cell array layer and / or the peripheral circuit layer. It is provided in. Further, the signal line extraction electrode and the surface wiring layer connected to the signal line extraction electrode at least penetrate a layer (here, the first memory cell array layer) sandwiched between upper and lower sides by the memory cell array layer and / or the peripheral circuit layer. It is provided to be. Therefore, when a plurality of memory cell array layers are stacked, the wiring length can be further reduced, the operation delay can be further reduced, and the reliability can be improved.
 さらに、外部接続電極は、メモリセルに接続されないようなレイアウトが可能となり、外部接続パッドからメモリセルを介さずに周辺回路層に外部信号を入力することができる。このようにすることによって、動作遅延などの悪影響をさらに抑制することができる。また、信号線引出電極は、メモリセルに接続されないルートでも各メモリセルアレイ層に電気的に接続されるため、メモリセルを介さずに各層の信号線が接続されることになる。このようにすることによって、動作遅延などの悪影響をさらに抑制することができる。 (4) Further, the layout of the external connection electrodes can be made so as not to be connected to the memory cells, and external signals can be input from the external connection pads to the peripheral circuit layer without passing through the memory cells. By doing so, adverse effects such as operation delay can be further suppressed. In addition, since the signal line lead-out electrode is electrically connected to each memory cell array layer even in a route not connected to the memory cell, the signal lines of each layer are connected without passing through the memory cell. By doing so, adverse effects such as operation delay can be further suppressed.
 また、メモリセルアレイ層は基板を有しておらず、TSV等のシリコン貫通電極を形成する必要がない。メモリセルアレイ層の第2面側(第4面側)には基板が設けられる代わりに、ソース側配線層が設けられている。よって、積層されたメモリセルアレイ層を任意に接続することができるとともに、チップ面積を増加させることなく、配線領域を増加させることができる。 (4) Further, the memory cell array layer does not have a substrate, and there is no need to form a through silicon via such as a TSV. On the second surface side (fourth surface side) of the memory cell array layer, a source side wiring layer is provided instead of providing a substrate. Therefore, the stacked memory cell array layers can be arbitrarily connected, and the wiring area can be increased without increasing the chip area.
 さらに、第1のソース線SLの第1のソース引出部として、第1のソース側配線層を用いることができる。第2のソース線SLの第2のソース線引出部として、第2のソース側配線層を用いることができる。このように、柱状部がI字状となっているメモリセルストリングを有するメモリセルアレイにおいて、ソース線の第2面側(第4面側)にソース側配線層を設けることによって、ソース線から信号線引出電極までの配線長を効率的に抑えることができる。 
 また、第2のメモリセルアレイ層の信号線引出電極及び表面配線層についても、第1のメモリセルアレイ層と同様に、第2のメモリセルアレイ層を貫通するように形成してもよい。この場合、第1のメモリセルアレイ層及び第2のメモリセルアレイ層におけるデバイス構造を共通化することができ、メモリセルアレイ層に生じる応力などの特性をそろえることができるという点で好ましい。加えて、第1のメモリセルアレイ層及び第2のメモリセルアレイ層におけるプロセスを共通化することができ、メモリセルアレイ層を効率よく製造することができるという点で好ましい。
Further, a first source side wiring layer can be used as a first source lead portion of the first source line SL. A second source-side wiring layer can be used as a second source line lead portion of the second source line SL. As described above, in a memory cell array having a memory cell string having an I-shaped columnar portion, by providing a source side wiring layer on the second surface side (fourth surface side) of a source line, a signal from a source line is provided. The wiring length up to the line extraction electrode can be efficiently reduced.
Further, the signal line lead-out electrode and the surface wiring layer of the second memory cell array layer may be formed so as to penetrate the second memory cell array layer, similarly to the first memory cell array layer. This is preferable in that the first memory cell array layer and the second memory cell array layer can have a common device structure, and characteristics such as stress generated in the memory cell array layer can be uniformed. In addition, it is preferable in that the processes in the first memory cell array layer and the second memory cell array layer can be shared, and the memory cell array layer can be manufactured efficiently.
 また、第1のメモリセルアレイ層または第2のメモリセルアレイ層では、第1面側または第3面側にビット線やワード線が引出され、ビット線やワード線は信号線引出電極に接続されている。第1のメモリセルアレイ層は、第1面が周辺回路層と向かい合うように積層され、第2のメモリセルアレイ層は、第3面が第1のメモリセルアレイ層と向かい合うように積層されている。つまり、第1のメモリセルアレイ層及び第2のメモリセルアレイ層は、同じ方向に信号線が引き出され、第1のメモリセルアレイ層及び第2のメモリセルアレイ層の向きが揃うように積層されている。このように、周辺回路層が設けられた側(図1において下側)にビット線やワード線を引出して周辺回路層上に積層しているため、電極層の引き回し距離を低減することができ、動作速度への悪影響を抑制することができる。 In the first memory cell array layer or the second memory cell array layer, a bit line or a word line is drawn out to the first surface side or the third surface side, and the bit line or the word line is connected to a signal line drawing electrode. I have. The first memory cell array layer is stacked with the first surface facing the peripheral circuit layer, and the second memory cell array layer is stacked with the third surface facing the first memory cell array layer. That is, the first memory cell array layer and the second memory cell array layer are stacked so that the signal lines are drawn out in the same direction and the orientations of the first memory cell array layer and the second memory cell array layer are aligned. As described above, since the bit lines and the word lines are drawn out on the side where the peripheral circuit layer is provided (the lower side in FIG. 1) and are stacked on the peripheral circuit layer, the wiring distance of the electrode layer can be reduced. Therefore, it is possible to suppress an adverse effect on the operation speed.
 また、仮に、第1のメモリセルアレイ層及び第2のメモリセルアレイ層の向きを揃えずに向かい合わせて積層する場合、一方のメモリセルアレイ層について、例えばテープ上などに配置し、テープ上で基板を除去してから、基板が除去された面が周辺回路または他方のメモリセルアレイ層と向かい合うように積層する必要がある。第1のメモリセルアレイ層及び第2のメモリセルアレイ層の向きを揃えて積層すると、テープなどを用いる必要がなくなる。つまり、基板上に形成されたメモリセルアレイ層を、そのまま基板表面が上になるように周辺回路層上に積層し、基板を除去することで形成することができる。よって、メモリセルアレイ層及び第2のメモリセルアレイ層の向きを揃えて積層することは、テープなどに用いずに容易に形成することが可能となるという点でも好ましい。 Further, if the first memory cell array layer and the second memory cell array layer are stacked face-to-face without being aligned, one of the memory cell array layers is placed on, for example, a tape, and the substrate is placed on the tape. After removal, it is necessary to stack the substrate so that the surface from which the substrate has been removed faces the peripheral circuit or the other memory cell array layer. When the first memory cell array layer and the second memory cell array layer are stacked in the same orientation, it is not necessary to use a tape or the like. In other words, the memory cell array layer formed on the substrate can be formed by stacking the memory cell array layer on the peripheral circuit layer so that the substrate surface faces upward and removing the substrate. Therefore, stacking the memory cell array layer and the second memory cell array layer in the same orientation is preferable in that it can be easily formed without using a tape or the like.
 (第2の実施形態)
 次に、第2の実施形態に係る半導体記憶装置について説明する。なお、基本的な構成は第1の実施形態と同様であるため、第1の実施形態で説明した事項の説明は省略する。
(Second embodiment)
Next, a semiconductor memory device according to a second embodiment will be described. Note that the basic configuration is the same as that of the first embodiment, and a description of the items described in the first embodiment will be omitted.
 図12は、第2の実施形態に係る半導体記憶装置の模式断面図である。図12では、図1の半導体記憶装置に対して、さらにもう1つのメモリセルアレイ層を積層しており、下から順に周辺回路層100、第1のメモリセルアレイ層200、第2のメモリセルアレイ層300、第3のメモリセルアレイ層400が設けられている。 FIG. 12 is a schematic cross-sectional view of the semiconductor memory device according to the second embodiment. In FIG. 12, another memory cell array layer is stacked on the semiconductor memory device of FIG. 1, and a peripheral circuit layer 100, a first memory cell array layer 200, and a second memory cell array layer 300 are sequentially arranged from the bottom. , A third memory cell array layer 400.
 ここで、図12に示すように、積層された第2のメモリセルアレイ層300は、第3面Sb1に設けられた第3の表面配線層38bと、第4面Sb2に設けられた第4の表面配線層39bとの間に、メモリストリングMS3に接続される配線層71が設けられている。すなわち、第2のメモリセルアレイ層300は、メモリストリングMS3を介して、配線層71によって、上下のメモリセルアレイ層に接続されている。 Here, as shown in FIG. 12, the stacked second memory cell array layer 300 includes a third surface wiring layer 38b provided on the third surface Sb1 and a fourth surface wiring layer 38b provided on the fourth surface Sb2. A wiring layer 71 connected to the memory string MS3 is provided between the wiring layer 71 and the surface wiring layer 39b. That is, the second memory cell array layer 300 is connected to the upper and lower memory cell array layers by the wiring layer 71 via the memory string MS3.
 図13は、第2の実施形態に係る半導体記憶装置の回路図である。図13では、配線層71に接続されたメモリストリングMS3の回路の一部を示す。メモリセルは複数設けられており、一部の図示を省略している。複数のメモリセルにはドレイン側選択トランジスタSTD及びソース側選択トランジスタSTSが設けられ、メモリセルアレイ層ごとに設けられているアレイ層IDが記憶されている。メモリストリングMS3の回路は、アレイ層を選択するアレイ層のセレクト回路の一部として機能する。 FIG. 13 is a circuit diagram of the semiconductor memory device according to the second embodiment. FIG. 13 shows a part of the circuit of the memory string MS3 connected to the wiring layer 71. A plurality of memory cells are provided, and some of them are not shown. The plurality of memory cells are provided with a drain-side selection transistor STD and a source-side selection transistor STS, and store an array layer ID provided for each memory cell array layer. The circuit of the memory string MS3 functions as a part of an array layer select circuit for selecting an array layer.
 図14は、第2の実施形態に係る半導体記憶装置のシステムの構成を示すブロック図である。図14では、配線層71に接続されたメモリストリングMS3に設けられたアレイ層セレクト回路を含む半導体記憶装置のシステムの構成を示している。 FIG. 14 is a block diagram showing the configuration of the system of the semiconductor memory device according to the second embodiment. FIG. 14 shows a system configuration of a semiconductor memory device including an array layer select circuit provided in the memory string MS3 connected to the wiring layer 71.
 各メモリセルアレイ層には、信号線として、アドレス線及びアレイ層セレクト信号線が入力される。メモリセルアレイ層では、アレイ層セレクト信号線と記憶されているアレイ層IDによって、そのメモリセルアレイ層が選択されているか判断して、メモリセルアレイにアドレス線が入力される。 (4) Address lines and array layer select signal lines are input to each memory cell array layer as signal lines. In the memory cell array layer, it is determined whether the memory cell array layer is selected based on the array layer select signal line and the stored array layer ID, and an address line is input to the memory cell array.
 このように形成することによって、各信号線を用いて個別にメモリセルアレイをセレクトすることなく、メモリストリングMS3内のトランジスタ及びメモリセルを用いて、メモリセルアレイ層を選択することができるようになり、複数積層されたメモリセルアレイ層を有する半導体記憶装置であっても、配線数を大幅に低減することができる。 By forming in this manner, the memory cell array layer can be selected using the transistors and the memory cells in the memory string MS3 without individually selecting the memory cell array using each signal line. Even in a semiconductor memory device having a plurality of stacked memory cell array layers, the number of wirings can be significantly reduced.
 また、この場合、第2のメモリセルアレイ層のメモリエリアあるいはメモリブロックごとに、それぞれが、配線層71を用いて、上下のメモリセルアレイ層に接続されていてもよい。このように形成することによって、各メモリストリングMS内の各トランジスタ及び各メモリセルを用いて、メモリエリアあるいはメモリブロックを選択することができるようになり、複数積層されたメモリセルアレイ層を有する半導体記憶装置であっても、配線数を大幅に低減することができる。 In this case, each of the memory areas or memory blocks of the second memory cell array layer may be connected to the upper and lower memory cell array layers using the wiring layer 71. By forming in this manner, a memory area or a memory block can be selected using each transistor and each memory cell in each memory string MS, and a semiconductor memory having a plurality of stacked memory cell array layers Even in a device, the number of wirings can be significantly reduced.
 以上、図面を参照しつつ、実施の形態について説明した。しかしながら本発明はこれらに限定されない。 The embodiments have been described above with reference to the drawings. However, the present invention is not limited to these.
 本発明では回路用基板を含有した例を記載したが、メモリセルアレイ層のみを積層した場合であっても、本発明の範囲に包含される。 In the present invention, the example including the circuit board is described, but the case where only the memory cell array layer is laminated is also included in the scope of the present invention.
 本発明を構成するメモリセルアレイの構成などに関して当業者が各種の設計変更を行ったものであっても、本発明の主旨を逸脱しない限り本発明の範囲に包含される。 っ て も Even if a person skilled in the art makes various design changes regarding the configuration of the memory cell array constituting the present invention, etc., it is included in the scope of the present invention unless departing from the gist of the present invention.
 また、さらに他の一態様によれば、他の構成の3次元メモリセルアレイを備えたことを特徴とする半導体記憶装置が提供される。 According to still another aspect, there is provided a semiconductor memory device provided with a three-dimensional memory cell array having another configuration.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although some embodiments of the present invention have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. These new embodiments can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and their equivalents.

Claims (12)

  1.  第1面及び前記第1面と反対側の第2面を持ち、基板を含まないメモリセルアレイ層であって、メモリセルアレイ領域に3次元配置された複数のメモリセルと、第1面または/及び第2面に埋め込まれた表面配線層とを含むメモリセルアレイ層を複数有し、
     それぞれの前記メモリセルアレイ層の前記表面配線層は、前記第1面に垂直な方向から見て重なるように設けられ、前記表面配線層同士が互いに接合されることによって、複数の前記メモリセルアレイ層が積層されていることを特徴とする半導体記憶装置。
    A memory cell array layer having a first surface and a second surface opposite to the first surface and not including a substrate, the plurality of memory cells being three-dimensionally arranged in the memory cell array region; and the first surface and / or A plurality of memory cell array layers including a surface wiring layer embedded in the second surface;
    The surface wiring layers of the respective memory cell array layers are provided so as to overlap when viewed from a direction perpendicular to the first surface, and the plurality of memory cell array layers are formed by joining the surface wiring layers to each other. A semiconductor memory device characterized by being stacked.
  2.  回路用基板と、前記回路用基板の回路形成面に設けられた制御回路と、前記回路用基板の前記回路形成面上に設けられ前記制御回路と電気的に接続された回路側配線層とを有した周辺回路層と、
     第1面及び前記第1面と反対側の第2面を持ち、第1の基板を含まない第1のメモリセルアレイ層であって、
     メモリセルアレイ領域に3次元配置された複数の第1のメモリセルと、第1の信号線引出電極と、前記第1面に垂直な方向から見て前記メモリセルアレイ領域の外側に設けられた第1の外部接続電極と、前記第1の信号線引出電極及び前記第1の外部接続電極に接続され、かつ前記第1面及び前記第2面にそれぞれ設けられた第1の表面配線層及び第2の表面配線層とを有し、前記第1面が前記周辺回路層に向かい合うように積層され、前記回路側配線層と前記第1の表面配線層が接合されている第1のメモリセルアレイ層と、
     第3面及び前記第3面と反対側の第4面を持ち、第2の基板を含まない第2のメモリセルアレイ層であって、
     前記メモリセルアレイ領域に3次元配置された複数の第2のメモリセルと、第2の信号線引出電極と、前記第3面に垂直な方向から見て前記メモリセルアレイ領域の外側に設けられた第2の外部接続電極と、前記第2の信号線引出電極及び前記第2の外部接続電極に接続され、かつ前記第3面及び前記第4面にそれぞれ設けられた第3の表面配線層及び第4の表面配線層とを有し、前記第3面が前記第1のメモリセルアレイ層に向かい合うように積層され、前記第2の表面配線層と前記第3の表面配線層が接合されている第2のメモリセルアレイ層と、を備えた半導体記憶装置。
    A circuit substrate, a control circuit provided on a circuit formation surface of the circuit substrate, and a circuit-side wiring layer provided on the circuit formation surface of the circuit substrate and electrically connected to the control circuit. A peripheral circuit layer having
    A first memory cell array layer having a first surface and a second surface opposite to the first surface and not including a first substrate,
    A plurality of first memory cells three-dimensionally arranged in the memory cell array region, a first signal line lead electrode, and a first memory cell provided outside the memory cell array region when viewed from a direction perpendicular to the first surface. And a first surface wiring layer and a second surface connected to the first signal line lead-out electrode and the first external connection electrode, and provided on the first surface and the second surface, respectively. A first memory cell array layer having the first surface facing the peripheral circuit layer, wherein the circuit-side wiring layer and the first surface wiring layer are joined. ,
    A second memory cell array layer having a third surface and a fourth surface opposite to the third surface and not including the second substrate,
    A plurality of second memory cells three-dimensionally arranged in the memory cell array region, a second signal line lead electrode, and a second memory cell provided outside the memory cell array region when viewed from a direction perpendicular to the third surface. A second external connection electrode, a third surface wiring layer connected to the second signal line lead-out electrode and the second external connection electrode, and provided on the third and fourth surfaces, respectively. And a fourth surface wiring layer, wherein the third surface is stacked so that the third surface faces the first memory cell array layer, and the second surface wiring layer and the third surface wiring layer are joined. And a memory cell array layer.
  3.  前記回路側配線層と前記第1の表面配線層、及び、前記第2の表面配線層と前記第3の表面配線層は、直接接合されていることを特徴とする請求項2に記載の半導体記憶装置。 3. The semiconductor according to claim 2, wherein the circuit-side wiring layer and the first surface wiring layer, and the second surface wiring layer and the third surface wiring layer are directly bonded. 4. Storage device.
  4.  前記複数の第1のメモリセルは、複数の絶縁層と複数の電極層が交互に積層された第1の積層体と、前記第1の積層体の積層方向に延びる第1の柱状部を有し、前記第1の柱状部の前記第1面側に第1のビット線が電気的に接続され、前記第1の柱状部の前記第2面側に第1のソース線が電気的に接続されており、前記第1のソース線よりも前記第2面側に第1のソース側配線層が設けられたことを特徴とする請求項2に記載の半導体記憶装置。 The plurality of first memory cells include a first stacked body in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked, and a first columnar portion extending in a stacking direction of the first stacked body. Then, a first bit line is electrically connected to the first surface side of the first columnar portion, and a first source line is electrically connected to the second surface side of the first columnar portion. 3. The semiconductor memory device according to claim 2, wherein a first source-side wiring layer is provided on the second surface side of the first source line.
  5.  前記複数の第2のメモリセルは、複数の絶縁層と複数の電極層が交互に積層された第2の積層体と、前記第2の積層体の積層方向に延びる第2の柱状部を有し、前記第2の柱状部の前記第3面側に第2のビット線が電気的に接続され、前記第2の柱状部の前記第4面側に第2のソース線が電気的に接続されており、前記第2のソース線よりも前記第4面側に第2のソース側配線層が設けられている請求項2に記載の半導体記憶装置。 The plurality of second memory cells include a second stacked body in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked, and a second columnar portion extending in a stacking direction of the second stacked body. Then, a second bit line is electrically connected to the third surface side of the second columnar portion, and a second source line is electrically connected to the fourth surface side of the second columnar portion. 3. The semiconductor memory device according to claim 2, wherein a second source side wiring layer is provided on the fourth surface side of the second source line.
  6.  前記複数の第1のメモリセルは、複数の絶縁層と複数の電極層が交互に積層された第1の積層体と、前記第1の積層体の積層方向に延びる第1の柱状部を有し、前記第1の柱状部の前記第1面側に第1のビット線が電気的に接続され、前記第1の柱状部の前記第2面側に第1のソース線が電気的に接続されており、前記第1のソース線よりも前記第2面側に第1のソース側配線層が設けられており、
     前記複数の第2のメモリセルは、複数の絶縁層と複数の電極層が交互に積層された第2の積層体と、前記第2の積層体の積層方向に延びる第2の柱状部を有し、前記第2の柱状部の前記第3面側に第2のビット線が電気的に接続され、前記第2の柱状部の前記第4面側に第2のソース線が電気的に接続されており、前記第2のソース線よりも前記第4面側に第2のソース側配線層が設けられており、
     前記第1のメモリセルアレイ層の前記第1のソース側配線層は、前記第2のメモリセルアレイ層の前記第2のビット線と、前記第1面に垂直な方向から見て前記メモリセルアレイ領域の内側で接続されていることを特徴とする請求項2に記載の半導体記憶装置。
    The plurality of first memory cells include a first stacked body in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked, and a first columnar portion extending in a stacking direction of the first stacked body. Then, a first bit line is electrically connected to the first surface side of the first columnar portion, and a first source line is electrically connected to the second surface side of the first columnar portion. And a first source-side wiring layer is provided on the second surface side of the first source line,
    The plurality of second memory cells include a second stacked body in which a plurality of insulating layers and a plurality of electrode layers are alternately stacked, and a second columnar portion extending in a stacking direction of the second stacked body. Then, a second bit line is electrically connected to the third surface side of the second columnar portion, and a second source line is electrically connected to the fourth surface side of the second columnar portion. A second source-side wiring layer is provided on the fourth surface side of the second source line,
    The first source-side wiring layer of the first memory cell array layer is provided between the second bit line of the second memory cell array layer and the memory cell array region when viewed from a direction perpendicular to the first surface. 3. The semiconductor memory device according to claim 2, wherein the semiconductor memory device is connected inside.
  7.  前記第1の信号線引出電極と前記第2の信号線引出電極にそれぞれ接続された前記第2の表面配線層及び前記第3の表面配線層は、前記メモリセルアレイ領域の内側に設けられていることを特徴とする請求項2に記載の半導体記憶装置。 The second surface wiring layer and the third surface wiring layer respectively connected to the first signal line lead electrode and the second signal line lead electrode are provided inside the memory cell array region. 3. The semiconductor memory device according to claim 2, wherein:
  8.  さらに前記第2のメモリセルアレイ層に向かい合うように積層された少なくとも一層の他のメモリセルアレイ層を有し、三層以上の複数のメモリセルアレイ層を有していることを特徴とする請求項2に記載の半導体記憶装置。 3. The semiconductor device according to claim 2, further comprising at least one other memory cell array layer stacked so as to face the second memory cell array layer, and having three or more memory cell array layers. 13. The semiconductor memory device according to claim 1.
  9.  前記第1のメモリセルアレイ層または前記第2のメモリセルアレイ層は、アレイ層セレクト回路の一部として、前記第1のメモリセルアレイ層または前記第2のメモリセルアレイ層を選択するトランジスタ及びアレイ層IDを記憶するメモリセルを有するメモリストリングが設けられ、前記メモリストリングは、前記第1のメモリセルアレイ層の前記第1の信号線引出電極、または、前記第2のメモリセルアレイ層の前記第2の信号線引出電極と電気的に接続されることを特徴とする請求項2に記載の半導体記憶装置。 The first memory cell array layer or the second memory cell array layer includes a transistor and an array layer ID for selecting the first memory cell array layer or the second memory cell array layer as part of an array layer select circuit. A memory string having a memory cell to be stored is provided, and the memory string is provided with the first signal line extraction electrode of the first memory cell array layer or the second signal line of the second memory cell array layer. 3. The semiconductor memory device according to claim 2, wherein the semiconductor memory device is electrically connected to an extraction electrode.
  10.  前記複数のメモリセルアレイ層のうち、少なくとも一層のメモリセルアレイ層には、アレイ層セレクト回路の一部として、メモリセルアレイ層を選択するトランジスタ及びアレイ層IDを記憶するメモリセルを有するメモリストリングが設けられることを特徴とする請求項1または請求項8に記載の半導体記憶装置。 At least one of the plurality of memory cell array layers is provided with a memory string having a transistor for selecting a memory cell array layer and a memory cell for storing an array layer ID as a part of an array layer select circuit. 9. The semiconductor memory device according to claim 1, wherein:
  11.  前記複数のメモリセルアレイ層は、少なくとも3層のメモリセルアレイ層であり、前記アレイ層セレクト回路の一部は、前記した複数の前記メモリセルアレイ層のうち上下を他のメモリセルアレイ層にはさまれた1のメモリセルアレイ層に設けられていることを特徴とする請求項10に記載の半導体記憶装置。 The plurality of memory cell array layers are at least three memory cell array layers, and a part of the array layer select circuit is sandwiched between other memory cell array layers above and below the plurality of memory cell array layers. 11. The semiconductor memory device according to claim 10, wherein the semiconductor memory device is provided in one memory cell array layer.
  12.  前記アレイ層セレクト回路の一部は、前記少なくとも一層のメモリセルアレイ層のメモリエリアあるいはメモリブロックごとに設けられていることを特徴とする請求項10に記載の半導体記憶装置。 11. The semiconductor memory device according to claim 10, wherein a part of said array layer select circuit is provided for each memory area or memory block of said at least one memory cell array layer.
PCT/JP2018/029627 2018-08-07 2018-08-07 Semiconductor memory device WO2020031265A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11202013103YA SG11202013103YA (en) 2018-08-07 2018-08-07 Semiconductor memory device
PCT/JP2018/029627 WO2020031265A1 (en) 2018-08-07 2018-08-07 Semiconductor memory device
CN201880094473.9A CN112262474A (en) 2018-08-07 2018-08-07 Semiconductor memory device with a plurality of memory cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/029627 WO2020031265A1 (en) 2018-08-07 2018-08-07 Semiconductor memory device

Publications (1)

Publication Number Publication Date
WO2020031265A1 true WO2020031265A1 (en) 2020-02-13

Family

ID=69415430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/029627 WO2020031265A1 (en) 2018-08-07 2018-08-07 Semiconductor memory device

Country Status (3)

Country Link
CN (1) CN112262474A (en)
SG (1) SG11202013103YA (en)
WO (1) WO2020031265A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112204742A (en) * 2020-08-28 2021-01-08 长江存储科技有限责任公司 Three-dimensional NAND memory device and method of forming the same
TWI764522B (en) * 2020-05-01 2022-05-11 日商鎧俠股份有限公司 semiconductor memory device
TWI769666B (en) * 2020-09-11 2022-07-01 日商鎧俠股份有限公司 Semiconductor device and wiring structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204829A (en) * 2010-03-25 2011-10-13 Toshiba Corp Semiconductor memory device
JP2013077767A (en) * 2011-09-30 2013-04-25 Toshiba Corp Semiconductor device and method of manufacturing the same, and management system of semiconductor device
JP2015225868A (en) * 2014-05-26 2015-12-14 マイクロン テクノロジー, インク. Method for manufacturing semiconductor device
JP2016062901A (en) * 2014-09-12 2016-04-25 株式会社東芝 Semiconductor storage device and manufacturing method of the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892867B2 (en) * 2004-11-19 2007-03-14 株式会社ルネサステクノロジ Semiconductor integrated circuit device and manufacturing method thereof
JP5010192B2 (en) * 2006-06-22 2012-08-29 株式会社東芝 Nonvolatile semiconductor memory device
KR101160185B1 (en) * 2010-04-26 2012-06-26 서울대학교산학협력단 3d vertical type memory cell string with shield electrode, memory array using the same and fabrication method thereof
US10199386B2 (en) * 2015-07-23 2019-02-05 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
JP2018148071A (en) * 2017-03-07 2018-09-20 東芝メモリ株式会社 Storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011204829A (en) * 2010-03-25 2011-10-13 Toshiba Corp Semiconductor memory device
JP2013077767A (en) * 2011-09-30 2013-04-25 Toshiba Corp Semiconductor device and method of manufacturing the same, and management system of semiconductor device
JP2015225868A (en) * 2014-05-26 2015-12-14 マイクロン テクノロジー, インク. Method for manufacturing semiconductor device
JP2016062901A (en) * 2014-09-12 2016-04-25 株式会社東芝 Semiconductor storage device and manufacturing method of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI764522B (en) * 2020-05-01 2022-05-11 日商鎧俠股份有限公司 semiconductor memory device
CN112204742A (en) * 2020-08-28 2021-01-08 长江存储科技有限责任公司 Three-dimensional NAND memory device and method of forming the same
CN112204742B (en) * 2020-08-28 2022-11-22 长江存储科技有限责任公司 Three-dimensional NAND memory device and method of forming the same
US11728303B2 (en) 2020-08-28 2023-08-15 Yangtze Memory Technologies Co., Ltd. Three-dimensional NAND memory device and method of forming the same
TWI769666B (en) * 2020-09-11 2022-07-01 日商鎧俠股份有限公司 Semiconductor device and wiring structure

Also Published As

Publication number Publication date
CN112262474A (en) 2021-01-22
SG11202013103YA (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US10074667B1 (en) Semiconductor memory device
US11594547B2 (en) Semiconductor device having a pad proximate to a step structure section of an array chip
US11721684B2 (en) Semiconductor device
TWI647816B (en) Semiconductor memory device
US20180374864A1 (en) Semiconductor memory device
US20200381381A1 (en) Memory device
JP5351201B2 (en) Nonvolatile semiconductor memory device and manufacturing method thereof
TWI712051B (en) Semiconductor device and manufacturing method thereof
JP2019165134A (en) Semiconductor memory device
US20120032249A1 (en) Nonvolatile semiconductor memory device and method for manufacturing nonvolatile semiconductor memory device
WO2020031265A1 (en) Semiconductor memory device
JP2018160529A (en) Storage device
CN114156275A (en) Semiconductor memory device and method of manufacturing the same
TWI766796B (en) semiconductor memory device
TWI759813B (en) semiconductor memory device
TWI697905B (en) Semiconductor memory device
TWI741630B (en) Semiconductor memory device
TWI830219B (en) Semiconductor device
TW202224161A (en) Semiconductor device
JP2023177065A (en) Semiconductor storage device, method of manufacturing semiconductor storage device, and semiconductor wafer
TW202211454A (en) Semiconductor device and method of manufacturing same
JP2023088563A (en) Semiconductor device and manufacturing method thereof
JP2022190984A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP