WO2020029997A1 - 侧行通信方法、终端设备和网络设备 - Google Patents

侧行通信方法、终端设备和网络设备 Download PDF

Info

Publication number
WO2020029997A1
WO2020029997A1 PCT/CN2019/099589 CN2019099589W WO2020029997A1 WO 2020029997 A1 WO2020029997 A1 WO 2020029997A1 CN 2019099589 W CN2019099589 W CN 2019099589W WO 2020029997 A1 WO2020029997 A1 WO 2020029997A1
Authority
WO
WIPO (PCT)
Prior art keywords
bwps
bwp
terminal device
resource
communication
Prior art date
Application number
PCT/CN2019/099589
Other languages
English (en)
French (fr)
Inventor
苏宏家
罗俊
张锦芳
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19846348.1A priority Critical patent/EP3817485B1/en
Publication of WO2020029997A1 publication Critical patent/WO2020029997A1/zh
Priority to US17/173,066 priority patent/US11943744B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices

Definitions

  • the present application relates to the field of communication technologies, and more particularly, to a side-by-side communication method, a terminal device, and a network device.
  • bandwidth components for different terminal equipment according to factors such as the business requirements of the terminal equipment.
  • BWP bandwidth components
  • UL-BWP bandwidth components used for uplink (uplink, UL) communication
  • DL-BWP bandwidth components used for downlink (downlink (DL) communication
  • the above solution only considers the requirement for transmitting information between the terminal device and the network device, and does not consider how to perform sidelink (SL) communication between different terminal devices. Therefore, how to configure BWP resources for terminal devices to enable side-to-side communication between different terminal devices is a problem that needs to be solved.
  • This application provides a lateral communication method, a terminal device, and a network device, so that the terminal device can perform lateral communication with other terminal devices on a configured frequency domain resource.
  • a side communication method includes: a terminal device receiving resource configuration information sent by a network device, the resource configuration information being used to configure a public resource for the terminal device; and the terminal device receiving a side line sent by the network device Link BWP instruction information.
  • the side-link BWP instruction information is used to indicate N side-link bandwidth bandwidth portions SL-BWP; the terminal device performs side-line communication with other terminal devices on the N SL-BWPs.
  • the common resource is a resource for side communication that all terminal devices configured by the network device for all terminal devices within the coverage of the network device need to use.
  • the above N SL-BWPs are the bandwidth part BWPs configured by the terminal device for side-by-side communication, and the N SL-BWPs include frequency domain resources corresponding to public resources, where N is a positive integer.
  • a terminal device is configured with N SL-BWPs including frequency domain resources corresponding to a common resource, so that the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • terminal devices may be terminal devices other than the above terminal devices, and the other terminal devices may also be configured with at least one SL-BWP, and the at least one SL-BWP also includes frequency domain resources corresponding to public resources. Since the SL-BWP configured for the terminal device and other terminal devices all include frequency-domain resources corresponding to the common resources, the terminal device can perform side-by-side communication with other terminal devices.
  • the number of the other terminal devices may be one or multiple. That is, the above-mentioned terminal devices can perform side-by-side communication with one or more other terminal devices in the N SL-BWPs.
  • the public resource is a public resource pool.
  • N SL-BWPs including frequency-domain resources corresponding to public resources may mean that at least one SL-BWP of the N SL-BWPs includes frequency-domain resources corresponding to public resources.
  • the public resource includes K sub-public resources, where K is a positive integer greater than 1.
  • the resource configuration information configures a public resource
  • the public resource includes three sub-public resources.
  • the side link BWP indication information indicates 3 SL-BWPs
  • the two SL-BEPs in the SL-BWP include frequency domain resources corresponding to all three sub-public resources, or each SL-BWP in the three SL-BWPs may include frequency domain resources corresponding to one sub-public resource.
  • the above method further includes: the terminal device receives side-link BWP configuration information sent by the network device, and the side-link BWP configuration information is used to configure M SL-BWP for the terminal device.
  • the M SL-BWPs are BWPs that can be used for side-by-side communication.
  • the N SL-BWPs are M SL-BWPs, and M is a positive integer greater than or equal to N.
  • the above N SL-BWPs may be SL-BWPs activated from the configured M SL-BWPs. Further, the above N SL-BWPs may be activated from the M SL-BWPs and include the frequency domain corresponding to the public resources. SL-BWP of the resource.
  • the above method further includes: the terminal device receives uplink BWP indication information sent by the network device, and the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL-BWP.
  • Y is a positive integer
  • the Y UL-BWPs are UL-BWPs activated by the network device.
  • the terminal device can also be configured with the UL-BWP, so that the terminal device can perform uplink communication with the network device according to the UL-BWP.
  • the Y UL-BWPs and the N SL-BWPs are all on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL-BWPs .
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not contain the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the resource configuration information carries multiplexing format instruction information
  • the multiplexing format instruction information is used to instruct the terminal device to duplicate the side-line data and side-line control information sent by the public resource for side-line communication.
  • the format includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the network equipment can flexibly configure side-line resources according to the needs of service types and the like, thereby improving system performance.
  • the resource configuration information carries transmission mode indication information
  • the transmission mode indication information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission (unicast) , Multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set (numerology) indication information, and the parameter set indication information is used to instruct the terminal device to use a common resource for side parameter communication when the parameter set includes subcarriers Spacing (SCS) and cyclic prefix (CP).
  • SCS subcarriers Spacing
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different needs of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information also carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for A multiplexing format of side-line data and side-line control information sent during side-line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side communication, and the transmission mode includes unicast transmission (unicast ), Multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side-by-side parameter set (numerology) when the parameter set includes subcarriers Spacing (SCS) and cyclic prefix (CP).
  • SCS subcarriers Spacing
  • CP cyclic prefix
  • the dedicated resources are specifically dedicated resource pools.
  • the network device can configure dedicated resources for some terminal devices according to the characteristics and requirements of side-line communication, so that certain terminal devices can perform side-line communication through the configured dedicated resources, which can improve system performance.
  • dedicated resources may be configured for these terminal devices so that these terminal devices can use the dedicated resources for side-line communication to ensure the reliability of side-line communication.
  • a side-by-side communication method includes: a network device sends resource configuration information to a terminal device, the resource configuration information being used to configure a common resource for the terminal device; the network device sends a side-link to the terminal device BWP indication information.
  • the sidelink BWP indication information is used to indicate N sidelink bandwidth bandwidth portions SL-BWP.
  • the N SL-BWPs are used for sideline communication between the terminal device and other terminal devices.
  • N is a positive integer. .
  • the common resource is a resource for side communication that all terminal devices configured by the network device for all terminal devices within the coverage of the network device need to use.
  • the above N SL-BWPs are the bandwidth part BWPs configured by the terminal device for side-by-side communication, and the N SL-BWPs include frequency domain resources corresponding to public resources, where N is a positive integer.
  • a network device configures N SL-BWPs including frequency-domain resources corresponding to a common resource for a terminal device, so that the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • terminal devices may be terminal devices other than the above terminal devices, and the other terminal devices may also be configured with at least one SL-BWP, and the at least one SL-BWP also includes frequency domain resources corresponding to public resources. Since the SL-BWP configured for the terminal device and other terminal devices all include frequency domain resources corresponding to the public resources, the terminal device can perform side-by-side communication with other terminal devices.
  • the number of the other terminal devices may be one or multiple. That is, the above-mentioned terminal devices can perform side-by-side communication with one or more other terminal devices in the N SL-BWPs.
  • the public resource is a public resource pool.
  • the above method further includes: the network device sends side link BWP configuration information to the terminal device, and the side link BWP configuration information is used to configure M SL-BWP for the terminal device.
  • the M SL-BWPs are BWPs that can be used for side-by-side communication.
  • the N SL-BWPs are M SL-BWPs, and M is a positive integer greater than or equal to N.
  • the above N SL-BWPs may be SL-BWPs activated from the configured M SL-BWPs. Further, the above N SL-BWPs may be activated from the M SL-BWPs and include the frequency domain corresponding to the public resources. SL-BWP of the resource.
  • the above method further includes: the network device sends uplink BWP indication information to the terminal device, where the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL-BWP.
  • Y is a positive integer
  • the Y UL-BWPs are UL-BWPs activated by the network device.
  • the terminal device can also be configured with the UL-BWP, so that the terminal device can perform uplink communication with the network device according to the UL-BWP.
  • the Y UL-BWPs and the N SL-BWPs are all located in the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL-BWPs .
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not contain the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the resource configuration information carries multiplexing format instruction information
  • the multiplexing format instruction information is used to instruct the terminal device to duplicate the side-line data and side-line control information sent by the public resource for side-line communication.
  • the format includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the resource configuration information carries transmission mode indication information
  • the transmission mode indication information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission (unicast) , Multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set (numerology) indication information, and the parameter set indication information is used to instruct the terminal device to use a common resource for side parameter communication when the parameter set includes subcarriers Spacing (SCS) and cyclic prefix (CP).
  • SCS subcarriers Spacing
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different needs of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information also carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for A multiplexing format of side-line data and side-line control information sent during side-line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side communication, and the transmission mode includes unicast transmission (unicast ), Multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side-by-side parameter set (numerology) when the parameter set includes subcarriers Spacing (SCS) and cyclic prefix (CP).
  • SCS subcarriers Spacing
  • CP cyclic prefix
  • the dedicated resources are specifically dedicated resource pools.
  • the network device can configure dedicated resources for some terminal devices according to the characteristics and requirements of side-line communication, so that certain terminal devices can perform side-line communication through the configured dedicated resources, which can improve system performance.
  • a side-by-side communication method includes: a terminal device receiving resource configuration information sent by a network device, the resource configuration information being used to configure a public resource for the terminal device; the terminal device receiving an uplink sent by the network device BWP indication information, the uplink BWP indication information is used to indicate Y UL-BWPs, the Y UL-BWPs include frequency domain resources corresponding to common resources, and Y is a positive integer; the terminal device is on Y UL-BWPs Perform side-by-side communication with other terminal equipment.
  • the common resource is a resource for side communication that all terminal devices configured by the network device for all terminal devices within the coverage of the network device need to use.
  • the public resource is a public resource pool.
  • a terminal device is configured with Y UL-BWPs including frequency domain resources corresponding to a common resource, so that the terminal device can use the Y UL-BWPs to perform side-by-side communication with other terminal devices.
  • the other terminal device may be a terminal device other than the terminal device, and the other terminal device may also be configured with at least one UL-BWP, and the at least one UL-BWP also includes a frequency domain resource corresponding to the public resource. Since the UL-BWP configured for the terminal device and other terminal devices includes frequency domain resources corresponding to the common resources, the terminal device can perform side-by-side communication with other terminal devices.
  • the number of the other terminal devices may be one or multiple. That is to say, the above terminal devices can perform side-by-side communication with one or more other terminal devices in the Y UL-BWPs.
  • the frequency domain resources corresponding to the common resources included in the above Y UL-BWPs may mean that at least one UL-BWP among the Y UL-BWPs includes the frequency domain resources corresponding to the common resources.
  • the public resource includes K sub-public resources, where K is a positive integer greater than 1.
  • the resource configuration information configures a public resource
  • the public resource includes three sub-public resources.
  • the side link BWP indication information indicates 3 UL-BWPs
  • the two UL-BEPs in the UL-BWP include frequency domain resources corresponding to all three sub-public resources, or each UL-BWP in the three UL-BWPs may include frequency domain resources corresponding to one sub-public resource.
  • the above method further includes: the terminal device receives uplink BWP configuration information sent by the network device, and the uplink BWP configuration information is used to configure X UL-BWP for the terminal device.
  • the Y UL-BWPs mentioned above belong to X UL-BWPs, and X is a positive integer greater than or equal to Y.
  • the aforementioned Y UL-BWPs may be BWPs activated by the network device from the X UL-BWPs.
  • the resource configuration information carries multiplexing format instruction information
  • the multiplexing format instruction information is used to instruct the terminal device to send the sideline data and sideline control information when using a common resource for sideline communication.
  • Multiplexing format which includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the resource configuration information carries transmission mode indication information
  • the transmission mode indication information is used to instruct a terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission (unicast ), Multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set (numerology) indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side parameter communication when the parameter set includes a sub-set Carrier spacing (SCS) and cyclic prefix (CP).
  • SCS sub-set Carrier spacing
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different needs of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information also carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side communication.
  • the transmission mode includes unicast transmission ( unicast), multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set (numerology) indication information
  • the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication
  • the parameter set includes Carrier spacing (SCS) and cyclic prefix (CP).
  • the dedicated resources are specifically dedicated resource pools.
  • the network device can configure dedicated resources for some terminal devices according to the characteristics and requirements of side-line communication, so that certain terminal devices can perform side-line communication through the configured dedicated resources, which can improve system performance.
  • a side-by-side communication method includes: the network device sends resource configuration information to the terminal device, the resource configuration information is used to configure a public resource for the terminal device; the network device sends an uplink BWP to the terminal device Indication information, the uplink BWP indication information is used to indicate Y UL-BWPs, the Y UL-BWPs include frequency domain resources corresponding to the common resources, and the Y UL-BWPs are used for terminal equipment to perform sidewalks with other terminal equipment Communication, Y is a positive integer.
  • the common resource is a resource for side communication that all terminal devices configured by the network device for all terminal devices within the coverage of the network device need to use.
  • the public resource is a public resource pool.
  • the network device configures the terminal device with Y SL-BWPs including frequency domain resources corresponding to the common resources, so that the terminal device can reuse the Y UL-BWPs for side-by-side communication with other terminal devices.
  • the other terminal device may be a terminal device other than the terminal device, and the other terminal device may also be configured with at least one UL-BWP, and the at least one UL-BWP also includes a frequency domain resource corresponding to the public resource. Since the UL-BWP configured for the terminal device and other terminal devices includes frequency domain resources corresponding to the common resources, the terminal device can perform side-by-side communication with other terminal devices.
  • the number of the other terminal devices may be one or multiple. That is to say, the above terminal devices can perform side-by-side communication with one or more other terminal devices in the Y UL-BWPs.
  • the above method further includes: the network device sends uplink BWP configuration information to the terminal device, and the uplink BWP configuration information is used to configure X UL-BWP for the terminal device.
  • the Y UL-BWPs mentioned above belong to X UL-BWPs, and X is a positive integer greater than or equal to Y.
  • the aforementioned Y UL-BWPs may be BWPs activated by the network device from the X UL-BWPs.
  • the resource configuration information carries multiplexing format instruction information
  • the multiplexing format instruction information is used to instruct the terminal device to send the sideline data and sideline control information when using a common resource for sideline communication.
  • Multiplexing format which includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the resource configuration information carries transmission mode indication information
  • the transmission mode indication information is used to instruct a terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission (unicast ), Multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set (numerology) indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side parameter communication when the parameter set includes a sub-set Carrier spacing (SCS) and cyclic prefix (CP).
  • SCS sub-set Carrier spacing
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different needs of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information also carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side communication.
  • the transmission mode includes unicast transmission ( unicast), multicast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set (numerology) indication information
  • the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication
  • the parameter set includes Carrier spacing (SCS) and cyclic prefix (CP).
  • a side-by-side communication method includes: a terminal device receiving side-link BWP indication information sent by a network device, where the side-link BWP indication information is used to indicate N side-link bandwidths. Part of SL-BWP; terminal equipment performs side-by-side communication with other terminal equipment on N SL-BWP.
  • the N SL-BWPs are the bandwidth part BWPs of the side communication of the terminal equipment, and the N SL-BWPs include the public SL-BW, which is all the network equipment configured for all terminal equipments covered by the network equipment. Frequency domain resources used by side devices for side communication
  • the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • other terminal devices may be terminal devices other than the above terminal devices, and the other terminal devices may also be configured with at least one SL-BWP, and the at least one SL-BWP also includes a common SL-BWP. Since the SL-BWP configured for the above terminal device and other terminal devices all include a common SL-BWP, the above terminal device can perform side-by-side communication with other terminal devices.
  • the number of the other terminal devices may be one or multiple. That is, the above-mentioned terminal devices can perform side-by-side communication with one or more other terminal devices in the N SL-BWPs.
  • the above method further includes: the terminal device receives side-link BWP configuration information sent by the network device, and the side-link BWP configuration information is used to configure M SL-BWP for the terminal device.
  • M SL-BWPs are BWPs that can be used for side communication
  • N SL-BWPs belong to M SL-BWPs
  • M is a positive integer greater than or equal to N.
  • the N SL-BWPs may be SL-BWPs that are activated by the network device from the M SL-BWPs.
  • the method further includes: the terminal device receives uplink BWP indication information sent by the network device, and the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL-BWP, where Y is positive Integer.
  • the Y UL-BWPs are UL-BWPs activated by network devices.
  • the Y UL-BWPs and the N SL-BWPs are all on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL-BWPs .
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not contain the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the side link BWP configuration information carries M multiplexing format information
  • the M multiplexing format information corresponds to the M SL-BWPs in a one-to-one manner, where any multiplexing format information is used
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the side link BWP configuration information carries M transmission mode information
  • the M transmission mode information corresponds to the M SL-BWP one by one, wherein any one transmission mode information is used to indicate the adoption
  • the transmission mode of the side-line data and side-line control information sent by the SL-BWP corresponding to any one of the transmission mode information during side-to-side communication.
  • the transmission mode includes unicast, multicast, and broadcast transmission. (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the side-link BWP configuration information carries M parameter set information, and the M parameter set information corresponds to the M SL-BWPs one-to-one, wherein, any parameter set information is used to indicate a parameter set of the side-line data and the side-line control information sent when the SL-BWP corresponding to any of the parameter set information is used for side-to-side communication.
  • spacing SCS
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different needs of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the side-link BWP configuration information is also used to configure dedicated resources for the terminal device.
  • the resource configuration information also carries multiplexing format instruction information, and the multiplexing format instruction information is used to indicate the terminal device.
  • the side-link BWP configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use M SL-BWP for side-line communication.
  • Transmission modes include unicast, multicast, and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the side-link BWP configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use M SL-BWP parameter set when performing side-line communication (numerology ),
  • the parameter set includes subcarrier spacing (SCS) and cyclic prefix (CP).
  • the dedicated resources are specifically dedicated resource pools.
  • the network device can configure dedicated resources for some terminal devices according to the characteristics and requirements of side-line communication, so that certain terminal devices can perform side-line communication through the configured dedicated resources, which can improve system performance.
  • dedicated resources may be configured for these terminal devices so that these terminal devices can use the dedicated resources for side-line communication to ensure the reliability of side-line communication.
  • a side-by-side communication method includes: a network device generates side-link BWP indication information, where the side-link BWP indication information is used to indicate N side-link bandwidth portions SL-BWP ; The network device sends side-link BWP indication information to the terminal device, where N SL-BWPs are used for the terminal device to perform side-line communication with other terminal devices.
  • the N SL-BWPs are the bandwidth part BWPs of the side communication of the terminal equipment, and the N SL-BWPs include the public SL-BW, which is all the network equipment configured for all terminal equipments covered by the network equipment. Frequency domain resources used by side devices for side communication
  • a network device configures N SL-BWPs including a common SL-BWP for a terminal device, so that the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the number of the other terminal devices may be one or multiple. That is, the above-mentioned terminal devices can perform side-by-side communication with one or more other terminal devices in the N SL-BWPs.
  • the above method further includes: the network device sends side link BWP configuration information to the terminal device, and the side link BWP configuration information is used to configure M SL-BWP for the terminal device.
  • M SL-BWPs are BWPs that can be used for side communication
  • N SL-BWPs belong to M SL-BWPs
  • M is a positive integer greater than or equal to N.
  • the N SL-BWPs may be SL-BWPs that are activated by the network device from the M SL-BWPs.
  • the network device sends uplink BWP indication information to the terminal device, and the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL-BWP, where Y is a positive integer.
  • the Y UL-BWPs and the N SL-BWPs are all on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL-BWPs .
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not contain the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the side link BWP configuration information carries M multiplexing format information
  • the M multiplexing format information corresponds to the M SL-BWPs in a one-to-one manner, where any multiplexing format information is used
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the side link BWP configuration information carries M transmission mode information
  • the M transmission mode information corresponds to the M SL-BWP one by one, wherein any one transmission mode information is used to indicate the adoption
  • the transmission mode of the side-line data and side-line control information sent by the SL-BWP corresponding to any one of the transmission mode information during side-to-side communication.
  • the transmission mode includes unicast, multicast, and broadcast transmission. (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the side-link BWP configuration information carries M parameter set information
  • the M parameter set information corresponds to the M SL-BWPs one-to-one
  • any parameter set information is used to indicate a parameter set of the side-line data and the side-line control information sent when the SL-BWP corresponding to any of the parameter set information is used for side-line communication
  • the parameter set includes a subcarrier interval (subcarrier spacing (SCS) and cyclic prefix (CP).
  • SCS subcarrier spacing
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • a terminal device includes a module for executing a method in any of the possible designs of the first aspect, the third aspect, and the fifth aspect.
  • a terminal device includes a module for executing a method in any one of the possible designs of the second aspect, the fourth aspect, and the sixth aspect.
  • a terminal device including a memory, a transceiver, and a processor.
  • the memory is used to store a program
  • the processor is used to execute a program
  • the processor and the processor The transceiver performs the method in any one of the possible designs of the first aspect, the third aspect, and the fifth aspect.
  • a network device including a memory, a transceiver, and a processor.
  • the memory is used to store a program
  • the processor is used to execute a program
  • the processor and the processor The transceiver performs the method in any one of the possible designs of the second aspect, the fourth aspect, and the sixth aspect.
  • a computer-readable storage medium stores program code for device execution, and the program code includes a program for executing the first aspect, the third aspect, and the fifth aspect.
  • the program code includes a program for executing the first aspect, the third aspect, and the fifth aspect.
  • a computer-readable storage medium stores program code for device execution, and the program code includes a program for executing the second aspect, the fourth aspect, and the sixth aspect.
  • the program code includes a program for executing the second aspect, the fourth aspect, and the sixth aspect.
  • a chip includes a processor and a communication interface, and the processor and the communication interface are configured to execute any one of the first aspect, the third aspect, and the fifth aspect. In design.
  • the communication interface is a transceiver.
  • the chip is integrated on a terminal device.
  • a chip includes a processor and a communication interface, and the processor and the communication interface are configured to execute any one of the second aspect, the fourth aspect, and the sixth aspect. In design.
  • the communication interface is a transceiver.
  • the chip is integrated on a network device.
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a carrier where UL-BWP and SL-BWP are located;
  • FIG. 4 is a schematic diagram of a carrier where UL-BWP and SL-BWP are located;
  • FIG. 5 is a schematic diagram of a carrier where UL-BWP and SL-BWP are located;
  • FIG. 6 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a configured public resource pool and a dedicated resource pool
  • FIG. 8 is a schematic diagram of a correspondence relationship between each SL-BWP and a public resource pool and a dedicated resource pool;
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • FIG. 12 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a configured public resource pool and a dedicated resource pool
  • FIG. 14 is a schematic diagram of a correspondence relationship between each UL-BWP, a public resource pool, and a dedicated resource pool;
  • 15 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 17 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • FIG. 18 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • FIG. 19 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 20 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to a variety of communication systems, for example, a 5th Generation (5G) system, a new radio (NR) system, or a communication system having the same architecture as the 5G system.
  • 5G 5th Generation
  • NR new radio
  • the terminal device in this application may be referred to as a terminal, a user equipment (UE), a mobile station (MS), a mobile terminal (MT), and the like.
  • the terminal equipment here may specifically be a mobile phone, a tablet, a computer with a wireless transmitting and receiving function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, industrial control wireless terminal in industrial control, wireless terminal in self driving, wireless terminal in remote medical surgery, wireless terminal in smart grid, transportation safety
  • the network device in this application may be an access device that the terminal device accesses to the mobile communication system through wireless means, or may be a base station NodeB, an evolved base station (evolved NodeB, eNodeB), and a transmission / reception point. TRP), next generation base station (gNB) in 5G mobile communication systems, base stations in future mobile communication systems or access nodes in wireless-fidelity (WiFi) systems, or cloud wireless
  • TRP next generation base station
  • gNB next generation base station
  • WiFi wireless-fidelity
  • a wireless controller in a cloud access network (CRAN) scenario, a roadside unit (RSU) in a car networking system can also be a relay station, and network equipment in a future evolved PLMN network.
  • CRAN cloud access network
  • RSU roadside unit
  • FIG. 1 is a schematic structural diagram of a mobile communication system applied in an embodiment of the present application.
  • the mobile communication system shown in FIG. 1 includes a core network device 101, a network device 102, and a terminal device 103 and a terminal device 104 (two terminal devices are shown in FIG. 1).
  • the terminal device 103 and the terminal device 104 may be connected to the network device 102 in a wireless manner, and the network device 102 may be connected to the core network device 101 in a wireless or wired manner.
  • the core network device 101 and the network device 102 may be separate physical devices, or the functions of the core network device 101 and the logical functions of the network device 102 may be integrated on the same physical device, or may be integrated on one physical device.
  • the functions of part of the core network device 101 and the functions of part of the network device 102 are described.
  • the terminal equipment can be fixed or removable.
  • the foregoing network device 102 may specifically be an access network device.
  • the terminal device 103 in addition to the normal communication with the network device 102, the terminal device 103 can also perform side-by-side communication with the terminal device 104.
  • FIG. 1 is only a schematic diagram of a mobile communication system according to an embodiment of the present application, and the mobile communication system may further include other devices.
  • the mobile communication system shown in FIG. 1 may further include a wireless relay device and a wireless backhaul device (not shown in FIG. 1).
  • This embodiment of the present application does not limit the number of core network devices, network devices, and terminal devices included in the mobile communication system.
  • FIG. 1 is only a schematic diagram of a mobile communication system that may be applied in the embodiments of the present application, and the embodiments of the present application may also be applied to other mobile communication systems capable of implementing network device and terminal device communication. There are no restrictions on the specific form of the mobile communication system to which it can be applied.
  • the side-by-side communication may also be referred to as side-by-side link communication (may be referred to as SL communication for short).
  • FIG. 2 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • the method shown in FIG. 2 may be executed by a terminal device.
  • the method shown in FIG. 2 includes steps 110 to 130. Steps 110 to 130 are described in detail below.
  • the network device sends resource configuration information to the terminal device, and the terminal device receives the resource configuration information.
  • the above resource configuration information may be used to configure a common resource for the terminal device, where the common resource is a resource for side communication that all terminal devices configured by the network device for all terminal devices within the coverage of the network device need to use .
  • the above-mentioned public resource is a time-frequency resource configured by the network device for all terminal devices within the coverage of the network device, and all terminal devices within the network device coverage need to use the common resource for side-by-side communication.
  • the network device sends side-link BWP indication information to the terminal device, and the terminal device receives the side-link BWP indication information.
  • the side-link BWP indication information is used to indicate N side-link bandwidth bandwidth portions SL-BWP.
  • the N SL-BWPs are bandwidth portion BWPs for side-line communication of the terminal device.
  • the N SL-BWPs include A frequency domain resource corresponding to a common resource, where N is a positive integer.
  • the above sidelink BWP indication information may also be activation information sent by a network device, and the activation information may be carried in radio resource control (radio resource control (RRC) signaling), and the activation information is used to activate N SLs. -BWP, so as to obtain N activated SL-BWPs, and the N activated SL-BWPs may be used for subsequent side communication.
  • RRC radio resource control
  • the public resource may be a public resource pool.
  • the frequency domain resources corresponding to the public resources included in the N SL-BWPs mentioned above may mean that at least one SL-BWP of the N SL-BWPs includes the frequency domain resources corresponding to the public resources.
  • the public resource may include K sub-public resources, where K is a positive integer greater than 1.
  • the network device configures a public resource for the terminal device through the resource configuration information, and the public resource includes three sub-public resources.
  • the side link BWP indication information indicates 3 SL-BWPs
  • the two SL-BEPs in the SL-BWP include frequency domain resources corresponding to all three sub-public resources, or each SL-BWP in the three SL-BWPs may include frequency domain resources corresponding to one sub-public resource.
  • the terminal device performs side-by-side communication with other terminal devices on the N SL-BWPs.
  • the other terminal devices may include at least one terminal device such as terminal device 1 to terminal device i (i is a positive integer). That is, in the method shown in FIG. 2, the terminal device can perform side-by-side communication with one or more other terminal devices on the N SL-BWPs.
  • the side line communication may send side line control information and / or side line data to other terminal devices for the terminal device, and may also receive side line response information or side line feedback information from other terminal devices for the terminal device.
  • the terminal device can communicate with other terminal devices on the N SL-BWPs. Perform side-by-side communication.
  • step 140 the method shown in FIG. 2 further includes step 140. It should be understood that step 140 may occur after step 110, and step 140 is described in detail below.
  • the network device sends side link BWP configuration information to the terminal device, and the terminal device receives the side link BWP configuration information.
  • the above-mentioned lateral link BWP configuration information is used to configure M SL-BWPs for the terminal device.
  • the M SL-BWPs are BWPs that can be used for lateral communication, and the N SL-BWPs belong to the M SL-BWPs.
  • M is a positive integer greater than or equal to N.
  • the above N SL-BWPs may be SL-BWPs activated from the configured M SL-BWPs. Further, the above N SL-BWPs may be activated from the M SL-BWPs and include the frequency domain corresponding to the public resources. SL-BWP of the resource.
  • step 150 may occur before step 140, or occur after step 140, or step 150 and step 140 may occur simultaneously.
  • Step 150 is described in detail below.
  • the network device sends uplink BWP instruction information to the terminal device, and the terminal device receives the uplink BWP instruction information.
  • the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL-BWP, where Y is a positive integer.
  • the terminal device can also be configured with the UL-BWP, so that the terminal device can communicate with the network device according to the UL-BWP.
  • Y UL-BWPs and N SL-BWPs may be located on the same carrier or in different carriers, and when the Y UL-BWPs and N SL-BWPs are on the same carrier, the N SLs -BWP can also reuse some resources of Y UL-BWP.
  • the distribution of the SL-BWP and UL-BWP on the carrier is described in detail below with reference to FIGS. 3 to 5. It should be understood that the SL-BWP shown in FIG. 3 to FIG. 5 refer to the above-mentioned N SL-BWPs, and the UL-BWP shown in FIG. 3 to FIG. 5 refer to the above-mentioned Y UL-BWP. 3 to 5 when introducing the Y UL-BWPs and N SL-BWPs, the above-mentioned Y UL-BWPs are represented by the UL-BWPs shown in FIGS. 3 to 5, and those shown in FIGS. 3 to 5 The SL-BWP shown indicates the N SL-BWPs described above.
  • SL-BWP and UL-BWP are on the same carrier (SL-BWP and UL-BWP are on a shared carrier), and the frequency-domain resources occupied by SL-BWP are the same as those of UL-BWP. Subset.
  • the frequency domain resources occupied by the UL-BWP may only partially overlap with the frequency domain resources occupied by the SL-BWP.
  • the SL-BWP and the UL-BWP are located in the same carrier, but the SL-BWP and the UL-BWP include different frequency domain resources.
  • side communication and uplink communication can be completely independent, and there will be no interference between them.
  • SL-BWP is located in carrier 1 and UL-BWP is located in carrier 2.
  • the above-mentioned resource configuration information carries multiplexing format instruction information
  • the multiplexing format instruction information is used to instruct the terminal device to send side-line data when using the common resource for side-line communication
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • Network equipment can meet the communication requirements of different services of terminal equipment by configuring a multiplexing format for public resources.
  • Network equipment can flexibly configure side-line resources according to the needs of business types, etc., and improve system performance.
  • the above resource configuration information may also carry transmission mode indication information and parameter set indication information, which are used to indicate the transmission mode and parameter set when a public resource is used for side communication Case.
  • the resource configuration information carries transmission mode instruction information
  • the transmission mode instruction information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission and multicast transmission. (groupcast) and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information carries parameter set indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side-by-side parameter set (numerology).
  • the parameter set includes subcarrier spacing, SCS) and cyclic prefix (CP).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • side devices can perform side-to-side communication through public resources.
  • some terminal devices have higher requirements for service reliability, or have higher requirements for the confidentiality of data for side-to-side communication.
  • the network device can also configure the dedicated resources for the terminal device by using the resource configuration information.
  • the above resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for side communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side transmission mode.
  • the transmission mode includes unicast transmission, group Broadcast transmission (groupcast) and broadcast transmission (broadcast).
  • the network device can flexibly configure the side-line resources according to different requirements of the side-line communication, which can improve the effect of the side-line communication and improve system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication (numerology), and the parameter set includes a subcarrier interval (subcarrier interval) spacing (SCS) and cyclic prefix (CP).
  • the parameter set includes a subcarrier interval (subcarrier interval) spacing (SCS) and cyclic prefix (CP).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible allocation of the side resource, which can improve the effect of the side communication.
  • the above-mentioned dedicated resources may specifically be dedicated resource pools.
  • the network device can configure dedicated resources for some terminal devices according to the characteristics and requirements of side-line communication, so that certain terminal devices can perform side-line communication through the configured dedicated resources, which can improve system performance.
  • the resource configuration information may also carry multiplexing format indication information, which is used to instruct the terminal device to use the dedicated resource for A multiplexing format of side-line data and side-line control information sent during side-line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • Network equipment can satisfy the side-line communication needs of different services of terminal equipment by configuring the multiplexing format for the dedicated resources.
  • the lateral communication method in the embodiment of the present application is described in detail above with reference to FIGS. 2 to 5.
  • Example 1 corresponding to FIGS. 6 to 8.
  • the process of performing side-to-side communication between the terminal device 1 and the terminal device 2 is described in detail.
  • the network device configures the terminal device with an SL-BWP including a public resource
  • the public resource may be a public resource pool, so that the terminal device can perform side-by-side communication through the SL-BWP resource pool including the public resource.
  • the following describes in detail the complete process of performing side-to-side communication between the terminal device 1 and the terminal device 2 in the first example by taking a common resource as a common resource pool as an example in FIG. 6.
  • the method shown in FIG. 6 includes steps 1001 to 1007, and these steps are described in detail below.
  • the network device configures a resource pool for the terminal device 1.
  • the network device configures a resource pool for the terminal device 2.
  • step 1002 may be performed before step 1001 or after step 1001, or step 1002 may be performed simultaneously with step 1001.
  • the network device may be a terminal device through a system message block (SIB), cell-specific RRC signaling, or end-user-level (UE-specific) RRC signaling.
  • SIB system message block
  • UE-specific end-user-level
  • the resource information is equivalent to the resource configuration information described above, and resources can be configured for the terminal device through the resource information. Specifically, the resource information may be used to configure a resource pool for the terminal device. At this time, the resource information may also become resource pool information (resource pool configuration information).
  • the above resource information indicates N resource pools.
  • N resource pools there are at least M common resource pools (Common Resource Pool) and (NM) dedicated resource pools (Ndicated resource pool), N ⁇ 1, 1 ⁇ M ⁇ N.
  • Common Resource Pool Common Resource Pool
  • NM dedicated resource pools N ⁇ 1, 1 ⁇ M ⁇ N.
  • the network device configures two common resource pools for terminal device 1 and terminal device 2.
  • the two common resource pools are common resource pool 1 (CommonResourcePool # 1) and common resource pool 2 (CommonResourcePool # 2). ).
  • the network device In addition to the public resource pool, the network device also configures two dedicated resource pools for terminal device 1 and terminal device 2. These two dedicated resource pools are dedicated resource pool 1 (DedicatedResourcePool # 1) and dedicated resource pool 2 (DedicatedResourcePool # 2).
  • the common resource pool is common to all end users, and all end users can perform side communication in the common resource pool, including sending and receiving SL data. Some end users can perform side communication in the dedicated resource pool, which depends on the configuration of the network equipment and the end user's own capabilities and needs.
  • the network device configures M SL-BWPs for the terminal device 1.
  • the network device configures M SL-BWPs for the terminal device 2.
  • the network device may configure the SL-BWP for the terminal device through RRC signaling.
  • the network device activates N SL-BWPs for the terminal device 1.
  • the network device activates N SL-BWPs for the terminal device 2.
  • the network device may activate the N SL-BWPs by sending activation signaling to the terminal device 1 and the terminal device 2.
  • the activated N SL-BWPs include public resource pool 1 and public resource pool 2, which also includes all public resource pools.
  • the activated N SL-BWPs also include Public resource pool 1 and public resource pool 2.
  • the N SL-BWPs including all public resource pools means that among the N SL-BWPs, at least one SL-BWP includes all public resource pools.
  • the first SL-BWP and the N-th SL-BWP each include a common resource pool 1 and a common resource pool 2.
  • terminal device 1 and terminal device 2 the number of activated SL-BWPs they contain may be different, as long as at least one of the activated SL-BWPs includes all public resource pools, and terminal device 1 Side communication with terminal device 2 is possible.
  • the terminal device 1 performs side-by-side communication with the terminal device 2 in a resource pool on the activated N SL-BWPs.
  • the network device configures X BWP for the terminal device 1.
  • the network device configures X BWPs for the terminal device 2.
  • the terminal device may specifically configure the BWP for the terminal device 1 and the terminal device 2 through RRC signaling.
  • At least one BWP can be activated for communication transmission at the same time.
  • the BWP configured in the bandwidth used for downlink communication is DL-BWP
  • the BWP configured in the bandwidth used for uplink communication is UL-BWP.
  • actions in configuring the BWP in steps 1008 and 1009 and the actions in configuring the SL-BWP in steps 1003 and 1004 can be performed simultaneously or sequentially (configure the BWP first, configure the SL-BWP later Or, configure SL-BWP first, configure BWP last).
  • the terminal device 1 or the terminal device 2 can perform side-by-side communication and uplink communication (communication of a Uu air interface) at the same time, where the side-by-side communication and uplink communication can occur on a shared carrier.
  • SL-BWP and UL-BWP are located on the same carrier.
  • SL-BWP can reuse UL-BWP resources within UL-BWP.
  • the side communication and the uplink communication occur on a shared carrier, but SL-BWP and UL-BWP do not overlap, that is, SL and UL do not use the same resources.
  • the side-by-side communication and the uplink communication also occur on a separate carrier, and the SL-BWP and the UL-BWP do not overlap. That is, SL and UL do not use the same resources.
  • the SL-BWP is configured through the network device.
  • the SL-BWP can also be configured by the terminal device itself.
  • a terminal device can not only perform side-by-side communication with other terminal devices through time-frequency resources in a common resource pool, but also can perform side-by-side communication with other terminal devices through time-frequency resources in a dedicated resource pool.
  • dedicated resource pools are generally configured by network equipment or selected by users based on pre-configured resources or sensing based on the capabilities or needs of the terminal equipment, and are configured for SL-BWP of some terminal equipment Resources. The following describes in detail a process of performing side-by-side communication using resources in a public resource pool and a dedicated resource pool with reference to FIG. 8.
  • the network device is configured with two common resource pools and three dedicated resource pools, namely, common resource pool 1 (CommonResourcePool # 1), common resource pool 2 (CommonResourcePool # 2), and dedicated resource pool 1 (DedicatedResourcePool). # 1), a dedicated resource pool 2 (DedicatedResourcePool # 2), and a dedicated resource pool 3 (DedicatedResourcePool # 3).
  • common resource pool 1 CommonResourcePool # 1
  • CommonResourcePool # 2 CommonResourcePool # 2
  • dedicated resource pool 3 dedicatedResourcePool # 3
  • the network equipment configures the SL-BWP of each of the 4 UEs through RRC signaling, and each UE The SL-BWP are:
  • UE-A UE-A SL-BWP # 1, UE-A SL-BWP # 2;
  • UE-B UE-B SL-BWP # 1;
  • UE-C UE-C SL-BWP # 1, UE-C SL-BWP # 2;
  • UE-D UE-D SL-BWP # 1, UE-D SL-BWP # 2, UE-D SL-BWP # 3.
  • each UE has a SL-BWP covering the common resource pool 1 and the common resource pool 2.
  • dedicated resource pool 1 and dedicated resource pool 2 are covered by UE-A SL-BWP # 1 and UE-D SL-BWP # 1. In addition to UE-A and UE-D, they can pass through public resource pool 1 and public resource pool. In addition to performing side-by-side communication with the time-frequency resources in 2, side-by-side communication may also be performed through the time-frequency resources in the dedicated resource pool 1 or the dedicated resource pool 2.
  • the dedicated resource pool 3 is covered by UE-C SL-BWP # 2 and UE-D SL-BWP # 3. Therefore, in addition to UE-C and UE-D, sideways can be performed through public resource pool 1 and public resource pool 2. In addition to communication, side communication can also be performed through the dedicated resource pool 3.
  • the configuration information may further include at least one of the following information.
  • the multiplexing format of the side line control information and the side line data may be represented by a bit value of a bit in the multiplexing format indication information. For example, when the bit value is 1, the side line control information and the side line are indicated. The data is time-division multiplexed. When the bit value is 0, it indicates that the side-line control information and the side-line data are frequency-division multiplexed.
  • the transmission modes are unicast transmission, multicast transmission, and broadcast transmission.
  • the transmission mode during side-by-side communication can be expressed using a two-bit bit value. For example, 00 indicates unicast, 01 indicates multicast, and 10 indicates broadcast.
  • the carrier interval indication information may include 3 bits of information, indicating at least several subcarrier intervals of 15 kHz, 30 kHz, 60 kHz, 120 kHz, and 240 kHz.
  • the CP indication information may include 1 bit information. When the value of this bit is 1, it indicates a normal cyclic prefix (NCP). When the value of this bit is 0, it indicates an extended cyclic prefix. , ECP).
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 10000 in FIG. 9 corresponds to the method shown in FIG. 2 and FIG. 6 above.
  • the terminal device 10000 can perform each step performed by the terminal device in the method shown in FIG. 2, and the terminal device 10000 can also perform Various steps performed by the terminal device 1 in the method shown in FIG. 6.
  • the definitions and explanations of the steps in the side-to-side communication method in the embodiment of the present application shown in FIG. 2 and FIG. 6 are also applicable to the steps performed by the terminal device 10000 shown in FIG. 9.
  • the terminal device 10000 appropriately omits repeated descriptions.
  • the terminal device 10000 shown in FIG. 9 includes:
  • the receiving unit 10010 is configured to receive resource configuration information sent by a network device, where the resource configuration information is used to configure a common resource for the terminal device, and the common resource is all the network equipment covered by the network device. Resources used by all terminal devices configured by the terminal device for lateral communication;
  • the receiving unit 10010 is further configured to receive side-link BWP indication information sent by the network device, where the side-link BWP indication information is used to indicate N side-link bandwidth portions SL-BWP.
  • the N SL-BWPs are bandwidth part BWPs of the side device for side communication, the N SL-BWPs include frequency domain resources corresponding to the public resources, and N is a positive integer;
  • a side communication unit 10020 is configured to perform side communication with other terminal devices on the N SL-BWPs.
  • a terminal device is configured with N SL-BWPs including frequency domain resources corresponding to a common resource, so that the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the public resource is a public resource pool.
  • the receiving unit 10010 is further configured to receive side link BWP configuration information sent by the network device, where the side link BWP configuration information is used to configure the terminal device M SL-BWPs, the M SL-BWPs are BWPs that can be used for side communication, wherein the N SL-BWPs belong to the M SL-BWPs, and M is a positive integer greater than or equal to N.
  • the receiving unit 10010 is further configured to receive uplink BWP indication information sent by the network device, where the uplink BWP indication information is used to indicate Y uplink bandwidth portions.
  • uplink BWP indication information is used to indicate Y uplink bandwidth portions.
  • UL-BWP Y is a positive integer.
  • the terminal device can also be configured with the UL-BWP, so that the terminal device can perform uplink communication with the network device according to the UL-BWP.
  • the Y UL-BWPs and the N SL-BWPs are all located on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include a first frequency domain resource, and the first frequency domain resource belongs to the Y UL-BWPs, and the first A frequency domain resource belongs to the N SL-BWPs.
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not include the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the resource configuration information carries multiplexing format indication information
  • the multiplexing format indication information is used to instruct the terminal device to send a side line when using the common resource for side line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the above resource configuration information may also carry transmission mode indication information and parameter set indication information, which are used to indicate the transmission mode and parameter set when a public resource is used for side communication. Case.
  • the resource configuration information carries transmission mode instruction information
  • the transmission mode instruction information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission and multicast transmission. (groupcast) and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information carries parameter set indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side-by-side parameter set (numerology).
  • the parameter set includes subcarrier spacing, SCS) and cyclic prefix (CP).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • side devices can perform side-to-side communication through public resources.
  • some terminal devices have higher requirements for service reliability, or have higher requirements for the confidentiality of data for side-to-side communication.
  • the above-mentioned dedicated resources may specifically be dedicated resource pools.
  • the network device can also configure the dedicated resources for the terminal device by using the resource configuration information.
  • the above resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for side communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side transmission mode.
  • the transmission mode includes unicast transmission, group Broadcast transmission (groupcast) and broadcast transmission (broadcast).
  • the network device can flexibly configure the side-line resources according to different requirements of the side-line communication, which can improve the effect of the side-line communication and improve system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication (numerology), and the parameter set includes a subcarrier interval (subcarrier interval). spacing (SCS) and cyclic prefix (CP).
  • SCS subcarrier interval
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible allocation of the side resource, which can improve the effect of the side communication.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • FIG. 10 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 20000 in FIG. 10 corresponds to the method shown in FIG. 2 and FIG. 6 above, and the network device 20000 can perform each step performed by the network device in the methods shown in FIG. 2 and FIG. 6.
  • the network equipment 20000 shown in FIG. 10 includes:
  • the sending unit 20010 is configured to send resource configuration information to a terminal device, where the resource configuration information is used to configure a public resource for the terminal device, where the public resource is a network device within a coverage area of the network device. Resources used by all terminal devices for side-line communication that all terminal devices need to use;
  • the sending unit 20010 is further configured to send side-link BWP indication information to the terminal device, where the side-link BWP indication information is used to indicate N side-link bandwidth portions SL-BWP, the N
  • the SL-BWP includes frequency domain resources corresponding to the public resources, the N SL-BWPs are used for side communication between the terminal device and other terminal devices, and N is a positive integer.
  • a network device configures N SL-BWPs including frequency-domain resources corresponding to a common resource for a terminal device, so that the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the sending unit 20010 is further configured to send side link BWP configuration information to the terminal device, where the side link BWP configuration information is used to configure M for the terminal device SL-BWPs, the M SL-BWPs are BWPs that can be used for side communication, wherein the N SL-BWPs belong to the M SL-BWPs, and M is a positive integer greater than or equal to N.
  • the sending unit 20010 is further configured to send uplink BWP indication information to the terminal device, where the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL -BWP, Y is a positive integer.
  • the terminal device can also be configured with the UL-BWP, so that the terminal device can perform uplink communication with the network device according to the UL-BWP.
  • the Y UL-BWPs and the N SL-BWPs are all located on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include a first frequency domain resource, and the first frequency domain resource belongs to the Y UL-BWPs, and the first A frequency domain resource belongs to the N SL-BWPs.
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not include the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the resource configuration information carries multiplexing format indication information
  • the multiplexing format indication information is used to instruct the terminal device to send a side line when using the common resource for side line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • the above resource configuration information may also carry transmission mode indication information and parameter set indication information, which are used to indicate the transmission mode and parameter set when a public resource is used for side communication. Case.
  • the resource configuration information carries transmission mode instruction information
  • the transmission mode instruction information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission and multicast transmission. (groupcast) and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information carries parameter set indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side-by-side parameter set (numerology).
  • the parameter set includes subcarrier spacing, SCS) and cyclic prefix (CP).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • side devices can perform side-to-side communication through public resources.
  • some terminal devices have higher requirements for service reliability, or have higher requirements for the confidentiality of data for side-to-side communication.
  • the network device can also configure the dedicated resources for the terminal device by using the resource configuration information.
  • the above resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for side communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side transmission mode.
  • the transmission mode includes unicast transmission, group Broadcast transmission (groupcast) and broadcast transmission (broadcast).
  • the network device can flexibly configure the side-line resources according to different requirements of the side-line communication, which can improve the effect of the side-line communication and improve system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication (numerology), and the parameter set includes a subcarrier interval (subcarrier interval). spacing (SCS) and cyclic prefix (CP).
  • SCS subcarrier interval
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the above-mentioned dedicated resources may specifically be dedicated resource pools.
  • Network device 20000 configures resources for terminal device 10000 through resource configuration information, so that it is a terminal device.
  • the N SL-BWPs obtained by the 10000 configuration include frequency domain resources corresponding to the public resources, so that the terminal device 10000 can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the terminal device is composed of a memory, a transceiver, and a processor
  • the receiving unit 10010 in the terminal device 10000 corresponds to a transceiver
  • the side communication unit 10020 corresponds to a transceiver and a processor.
  • the sending unit 20010 in the network device 20000 is equivalent to a transceiver.
  • a dedicated SL-BWP is used for side communication by setting a terminal device.
  • side communication can also be performed by multiplexing an existing UL-BWP.
  • the following describes the communication method on the other side of the embodiment of the present application in detail with reference to FIGS. 11 to 14.
  • FIG. 11 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • the method shown in FIG. 11 may be executed by a terminal device.
  • the method shown in FIG. 11 includes steps 210 to 230. Steps 210 to 230 are described in detail below.
  • the network device sends resource configuration information to the terminal device, and the terminal device receives the resource configuration information.
  • the resource configuration information is used to configure a common resource for the terminal device.
  • the common resource is configured by the network device for all terminal devices within the coverage area of the network device. Resources used by all terminal devices for side-by-side communication.
  • the common resource is a resource for side communication that all terminal devices configured by the network device for all terminal devices within the coverage of the network device need to use.
  • the public resource is a public resource pool.
  • the network device sends uplink BWP instruction information to the terminal device, and the terminal device receives the uplink BWP instruction information.
  • the uplink BWP instruction information is used to indicate Y UL-BWPs, where the Y UL-BWPs include Frequency domain resources corresponding to public resources, Y is a positive integer;
  • the terminal equipment performs side-by-side communication with other terminal equipment on the Y UL-BWPs.
  • the other terminal devices may include at least one terminal device such as terminal device 1 to terminal device i (i is a positive integer). That is, in the method shown in FIG. 11, the terminal device can communicate with one or more other terminal devices on the N SL-BWPs.
  • a terminal device is configured with Y SL-BWPs including frequency domain resources corresponding to a common resource, so that the terminal device can reuse the Y UL-BWPs for side-by-side communication with other terminal devices.
  • the frequency domain resources corresponding to the common resources included in the above Y UL-BWPs may mean that at least one UL-BWP among the Y UL-BWPs includes the frequency domain resources corresponding to the common resources.
  • the public resource includes K sub-public resources, where K is a positive integer greater than 1.
  • the resource configuration information configures a public resource
  • the public resource includes three sub-public resources.
  • the uplink BWP indication information indicates 3 UL-BWPs
  • the two UL-BEPs in the BWP include frequency domain resources corresponding to all three sub-public resources, or each UL-BWP in the three UL-BWPs may include frequency domain resources corresponding to one sub-public resource.
  • the method shown in FIG. 11 further includes step 240.
  • the step 240 includes: the network device sends uplink BWP configuration information to the terminal device, the terminal device receives the uplink BWP configuration information, and the uplink BWP configuration The information is used to configure X UL-BWP for the terminal device.
  • the Y UL-BWPs mentioned above belong to X UL-BWPs, and X is a positive integer greater than or equal to Y.
  • the aforementioned Y UL-BWPs may be BWPs activated by the network device from the X UL-BWPs.
  • the resource configuration information carries multiplexing format indication information
  • the multiplexing format indication information is used to instruct the terminal device to send a side line when using the common resource for side line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • the above resource configuration information may also carry transmission mode indication information and parameter set indication information, which are used to indicate the transmission mode and parameter set when a public resource is used for side communication. Case.
  • the resource configuration information carries transmission mode instruction information
  • the transmission mode instruction information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission and multicast transmission. (groupcast) and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information carries parameter set indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side-by-side parameter set (numerology).
  • the parameter set includes subcarrier spacing, SCS) and cyclic prefix (CP).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • side devices can perform side-to-side communication through public resources.
  • some terminal devices have higher requirements for service reliability, or have higher requirements for the confidentiality of data for side-to-side communication.
  • the network device can also configure the dedicated resources for the terminal device by using the resource configuration information.
  • the above resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for side communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side transmission mode.
  • the transmission mode includes unicast transmission, group Broadcast transmission (groupcast) and broadcast transmission (broadcast).
  • the network device can flexibly configure the side-line resources according to different requirements of the side-line communication, which can improve the effect of the side-line communication and improve system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication (numerology), and the parameter set includes a subcarrier interval (subcarrier interval). spacing (SCS) and cyclic prefix (CP).
  • SCS subcarrier interval
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the above-mentioned dedicated resources may specifically be dedicated resource pools.
  • the network device can configure dedicated resources for some terminal devices according to the characteristics and requirements of side-line communication, so that certain terminal devices can perform side-line communication through the configured dedicated resources, which can improve system performance.
  • the side communication method according to the embodiment of the present application is described in detail above with reference to FIG. 11.
  • the terminal device is combined with Example 2 (corresponding to FIGS. 12 to 14).
  • the process of side communication with terminal device 2 is described in detail.
  • the network device configures the terminal device with a UL-BWP including a common resource (the common resource may be a common resource pool), so that the terminal device can perform side-by-side communication by reusing the UL-BWP resource pool.
  • the common resource may be a common resource pool
  • the following uses the public resource as a public resource pool as an example to describe the complete process of side communication between the terminal device 1 and the terminal device 2 in Example 2 in detail.
  • the method shown in FIG. 12 includes steps 2001 to 2006. These steps are described in detail below.
  • the network device configures a resource pool for the terminal device 1.
  • the network device configures a resource pool for the terminal device 2.
  • step 2002 may be performed before step 2001 or after step 2001, or step 2002 and step 2001 may be performed simultaneously.
  • the network device may configure the resource pool information for the terminal device 1 and the terminal device 2 through SIB, cell-level RRC signaling, or end-user-level RRC signaling.
  • the above resource pool information indicates N resource pools.
  • the N resource pools there are at least M public resource pools and N-M dedicated resource pools, N ⁇ 1, 1 ⁇ M ⁇ N.
  • the network device is configured with two common resource pools and two dedicated resource pools, namely, common resource pool 1 (CommonResourcePool # 1), common resource pool 2 (CommonResourcePool # 2), and dedicated resource pool 1. (DedicatedResourcePool # 1) and DedicatedResourcePool # 2.
  • the network device configured X UL-BWP for the terminal device 1.
  • the network equipment configured X UL-BWP for the terminal equipment 2.
  • the network device may configure the BWP for the terminal device through RRC signaling.
  • the network device activated Y UL-BWPs for the terminal device 1.
  • the network equipment activated Y UL-BWP for the terminal equipment 2.
  • the network device may activate the Y BWPs by sending activation signaling to the terminal device 1 and the terminal device 2.
  • the activated Y UL-BWPs include public resource pool 1 and public resource pool 2, which also includes all public resource pools.
  • the activated Y UL-BWPs also include Public resource pool 1 and public resource pool 2.
  • N UL-BWP including all common resource pools means that among these N UL-BWPs, at least one UL-BWP includes all common resource pools.
  • terminal device 1 and terminal device 2 the number of activated UL-BWPs they contain may be different, as long as at least one of the activated UL-BWPs contains all public resource pools, terminal device 1 Side communication with terminal device 2 is possible.
  • the terminal device 1 performs side-by-side communication with the terminal device 2 on the activated UL-BWP.
  • the terminal device can not only perform side-by-side communication with other terminal devices through time-frequency resources in a common resource pool, but also can perform side-by-side communication with other terminal devices through time-frequency resources in a dedicated resource pool.
  • dedicated resource pools are generally configured by network equipment or selected by users based on pre-configured resources or sensing based on the capabilities or needs of terminal equipment, and are configured for UL-BWP of some terminal equipment Resources, the following describes in detail a process of performing side-by-side communication using resources in a public resource pool and a dedicated resource pool with reference to FIG. 14.
  • the network device is configured with two common resource pools and two dedicated resource pools, namely, common resource pool 1 (CommonResourcePool # 1), common resource pool 2 (CommonResourcePool # 2), and dedicated resource pool 1 (DedicatedResourcePool). # 1) and Dedicated Resource Pool 2 (DedicatedResourcePool # 2).
  • a cell has 4 end users, namely UE-A, UE-B, UE-C, and UE-D.
  • the network equipment configures the UL-BWP of each of the 4 UEs through RRC signaling, and the UL-BWP of each UE is respectively for:
  • UE-A UE-A UL-BWP
  • UE-B UE-B UL-BWP
  • UE-C UE-C UL-BWP
  • UE-D UE-D UL-BWP.
  • the UL-BWP of each UE covers the common resource pool 1 and the common resource pool 2.
  • UE-B and UL-BWP only cover public resource pool 1 and public resource pool 2. Therefore, UE-B can only perform side-by-side communication through time-frequency resources in public resource pool 1 and public resource pool 2.
  • UE-C UL-BWP covers public resource pool 1 and public resource pool 2 as well as dedicated resource pool 2.
  • UE-A UL-BWP covers public resource pool 1 and public resource pool 2 as well as With the dedicated resource pool 1, UE-D UL-BWP covers all public resource pools and all dedicated resource pools.
  • UE-D can perform side-by-side communication with the other three UEs, and the UE-D can also communicate with the UE through the resources in the dedicated resource pool 1. -A communication, UE-D can also communicate with UE-C through time-frequency resources in the dedicated resource pool 2.
  • the configuration information may further include at least one of the following information.
  • FIG. 15 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 30000 in FIG. 15 corresponds to the method shown in FIG. 11 and FIG. 12 above.
  • the terminal device 30000 can perform each step performed by the terminal device in the method shown in FIG. 11, and the terminal device 30000 can also perform Various steps performed by the terminal device 1 in the method shown in FIG. 12.
  • the limitations and explanations of the steps in the side-to-side communication method in the embodiment of the present application shown in FIG. 11 and FIG. 12 are also applicable to the steps performed by the terminal device 30000 shown in FIG. 15.
  • the repeated description of the terminal device 30000 is appropriately omitted.
  • the terminal device 30000 shown in FIG. 15 includes:
  • the receiving unit 30010 is configured to receive resource configuration information sent by a network device, where the resource configuration information is used to configure a common resource for the terminal device, and the common resource is all the network equipment covered by the network device. Resources used by all terminal devices configured by the terminal device for lateral communication;
  • the receiving unit 30010 is further configured to receive uplink BWP indication information sent by the network device, where the uplink BWP indication information is used to indicate Y UL-BWPs, where the Y UL-BWPs include all UL-BWPs.
  • the frequency domain resources corresponding to the common resources, Y is a positive integer;
  • a side communication unit 30020 is configured to perform side communication with other terminal devices on the Y UL-BWPs.
  • the side-line communication unit 30020 may be a transceiver unit or a sending unit; when the side-line communication is a terminal device, it receives from other terminal devices When the lateral response information or the feedback information, the lateral communication unit 30020 may be a transceiver unit or the receiving unit 30010.
  • the public resource is a public resource pool.
  • a terminal device is configured with Y SL-BWPs including frequency domain resources corresponding to a common resource, so that the terminal device can reuse the Y UL-BWPs for side-by-side communication with other terminal devices.
  • the receiving unit 30010 is further configured to receive uplink BWP configuration information sent by the network device, where the uplink BWP configuration information is used to configure X terminal devices.
  • uplink BWP configuration information is used to configure X terminal devices.
  • UL-BWP wherein the Y UL-BWPs belong to the X UL-BWPs, and X is a positive integer greater than or equal to Y.
  • the uplink BWP configuration information carries X multiplexing format indication information, and the X multiplexing format indication information corresponds to the X UL-BWPs one to one, so
  • the multiplexing format instruction information is used to instruct the terminal device to use the multiplexing format of the sideline data and the sideline control information sent by the UL-BWP corresponding to the any one of the multiplexing format instruction information for sideline communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • Network equipment can flexibly configure side-line resources according to the needs of business types, etc., and improve system performance.
  • FIG. 16 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 40000 in FIG. 16 corresponds to the method shown in FIG. 11 and FIG. 12 above, and the network device 40,000 can perform each step performed by the network device in the methods shown in FIG. 11 and FIG. 12.
  • FIG. 16 is described below.
  • the illustrated network device 40000 appropriately omits repetitive descriptions.
  • the network device 40000 shown in FIG. 16 includes:
  • a sending unit 40010 is configured to send resource configuration information to a terminal device, where the resource configuration information is used to configure a common resource for the terminal device, and the common resource is that the network device is all terminals within a coverage area of the network device. Resources for side communication that are required for all terminal devices configured by the device;
  • the sending unit 40010 is further configured to send uplink BWP indication information to the terminal device, where the uplink BWP indication information is used to indicate Y UL-BWPs, and the Y UL-BWPs include the public resources Corresponding frequency domain resources, the Y UL-BWPs are used for side communication between the terminal device and other terminal devices, and Y is a positive integer.
  • the public resource is a public resource pool.
  • the network device configures the terminal device with Y SL-BWPs including frequency domain resources corresponding to the common resources, so that the terminal device can reuse the Y UL-BWPs for side-by-side communication with other terminal devices.
  • the sending unit 40010 is further configured to send uplink BWP configuration information to a terminal device, where the uplink BWP configuration information is used to configure X UL-BWPs for the terminal device , wherein the Y UL-BWPs belong to the X UL-BWPs, and X is a positive integer greater than or equal to Y.
  • the uplink BWP configuration information carries X multiplexing format indication information, and the X multiplexing format indication information corresponds to the X UL-BWPs one to one, so
  • the multiplexing format instruction information is used to instruct the terminal device to use the multiplexing format of the sideline data and the sideline control information sent by the UL-BWP corresponding to the any one of the multiplexing format instruction information for sideline communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information carries multiplexing format indication information
  • the multiplexing format indication information is used to instruct the terminal device to send a side line when using the common resource for side line communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • the above resource configuration information may also carry transmission mode indication information and parameter set indication information, which are used to indicate the transmission mode and parameter set when a public resource is used for side communication. Case.
  • the resource configuration information carries transmission mode instruction information
  • the transmission mode instruction information is used to instruct the terminal device to use a public resource for side communication
  • the transmission mode includes unicast transmission and multicast transmission. (groupcast) and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information carries parameter set indication information
  • the parameter set indication information is used to instruct the terminal device to use a public resource for side-by-side parameter set (numerology).
  • the parameter set includes subcarrier spacing, SCS) and cyclic prefix (CP).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • side devices can perform side-to-side communication through public resources.
  • some terminal devices have higher requirements for service reliability, or have higher requirements for the confidentiality of data for side-to-side communication.
  • the network device can also configure the dedicated resources for the terminal device by using the resource configuration information.
  • the above resource configuration information is also used to configure a dedicated resource for the terminal device.
  • the resource configuration information carries multiplexing format instruction information, and the multiplexing format instruction information is used to instruct the terminal device to use the dedicated resource for side communication.
  • the multiplexing format includes frequency division multiplexing and time division multiplexing.
  • the resource configuration information also carries transmission mode indication information, and the transmission mode indication information is used to instruct the terminal device to use a dedicated resource for side-by-side transmission mode.
  • the transmission mode includes unicast transmission, group Broadcast transmission (groupcast) and broadcast transmission (broadcast).
  • the network equipment can flexibly configure the resources of the side traffic according to the different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the resource configuration information also carries parameter set indication information, and the parameter set indication information is used to instruct the terminal device to use a dedicated resource for side parameter communication (numerology), and the parameter set includes a subcarrier interval (subcarrier interval). spacing (SCS) and cyclic prefix (CP).
  • SCS subcarrier interval
  • CP cyclic prefix
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the above-mentioned dedicated resources may specifically be dedicated resource pools.
  • Network equipment can flexibly configure side-line resources according to the needs of business types, etc., and improve system performance.
  • the above-mentioned terminal device 30000 and network device 40,000 may be used together to perform the side-by-side communication method shown in FIG. 11 and FIG. 12 above.
  • the Y UL-BWPs obtained by the 30000 configuration include frequency domain resources corresponding to the public resources, so that the terminal device 30000 can perform side-by-side communication with other terminal devices on the Y UL-BWPs.
  • the terminal device is composed of a memory, a transceiver, and a processor
  • the receiving unit 30010 in the terminal device 30,000 corresponds to the transceiver
  • the side communication unit 30020 corresponds to the transceiver and the processor.
  • the sending unit 40010 in the network device 40,000 is equivalent to a transceiver.
  • the side communication method, the terminal device, and the network device are described in detail above with reference to FIGS. 11 to 16.
  • the UL-BWP including public resources is set for the terminal device, and the side communication is performed by multiplexing the UL-BWP.
  • the terminal device can also be configured to include the public SL.
  • the N SL-BWPs of the BWP enable the terminal device to perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • FIG. 17 is a schematic flowchart of a lateral communication method according to an embodiment of the present application.
  • the method shown in FIG. 17 may be executed by a terminal device.
  • the method shown in FIG. 17 includes steps 310 and 320. Steps 310 and 320 are described in detail below.
  • the network device sends side-link BWP indication information, and the terminal device receives the side-link BWP indication information.
  • the above sidelink BWP indication information is used to indicate N sidelink bandwidth bandwidth portions SL-BWP, where the N SL-BWPs are bandwidth portion BWPs for side communication of the terminal device, and the N SL-BWPs include the public SL-BWP
  • the public SL-BWP is a frequency domain resource that is used by all terminal devices configured by the network device for all terminal devices covered by the network device for lateral communication.
  • the terminal device performs side-by-side communication with other terminal devices on the N SL-BWPs.
  • the other terminal devices may include at least one terminal device such as terminal device 1 to terminal device i (i is a positive integer). That is, in the method shown in FIG. 17, the terminal device can communicate with one or more other terminal devices on the N SL-BWPs.
  • the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the method shown in FIG. 17 further includes step 330, and the step 330 includes: the terminal device receives side-link BWP configuration information sent by the network device, and the side-link BWP configuration information is used for all
  • the terminal device is configured with M SL-BWPs, wherein the M SL-BWPs are BWPs that can be used for side communication, wherein the N SL-BWPs belong to the M SL-BWPs, and M is greater than or A positive integer equal to N.
  • the N SL-BWPs described above may be SL-BWPs that are activated by the network device from the M SL-BWPs.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the network equipment can flexibly configure side-line resources according to the needs of service types and the like, thereby improving system performance.
  • the Y UL-BWPs and the N SL-BWPs are all located in the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL-BWPs.
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not include the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the network equipment can flexibly configure side-line resources according to the needs of service types and the like, thereby improving system performance.
  • the side link BWP configuration information carries M multiplexing format indication information
  • the M multiplexing format indication information corresponds to the M SL-BWPs in a one-to-one manner, where any multiplexing format indication information is used for Indicates that the multiplexing format of the sideline data and the sideline control information sent during the sideline communication using the SL-BWP corresponding to any one of the multiplexing format instruction information, among which the sideline data and the sideline control information are available in a multiplexed format Including frequency division multiplexing and time division multiplexing.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the side-link BWP configuration information carries M transmission mode information
  • the M transmission mode information corresponds to the M SL-BWPs in a one-to-one manner, where any one transmission mode information is used to indicate the use of any transmission mode.
  • the transmission mode of the side-line data and the side-line control information sent by the SL-BWP corresponding to the mode information when performing side-to-side communication.
  • the transmission mode includes unicast, multicast, and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the side-link BWP configuration information carries M parameter set information
  • the M parameter set information corresponds to the M SL-BWP one by one, where any one parameter set information is used to indicate the adoption of The parameter set of the side-line data and the side-line control information sent by the SL-BWP during side-to-side communication corresponding to any one of the parameter set information.
  • the parameter set includes subcarrier spacing (SCS) and cyclic prefix (CP). ).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the side communication method in the embodiment of the present application is described in detail above with reference to FIG. 17.
  • the following describes the terminal device 1 and the terminal in combination with the third example (corresponding to FIG. 18)
  • the process of the side communication performed by the device 2 is described in detail.
  • Example 3 the network device no longer configures a resource pool, but directly configures SL-BWP for multiple terminal devices, and the configured SL-BWP includes a public BWP, which is the coverage area of the network device for the network device. Frequency domain resources used by all terminal devices configured by all terminal devices for side communication.
  • the terminal device 1 and terminal device 2 are taken as an example and the complete process of side communication between the terminal device 1 and the terminal device 2 in Example 3 is described in detail with reference to FIG. 18.
  • the method shown in FIG. 18 includes steps 3001 to 3007, and these steps are described in detail below.
  • the network device configures M SL-BWPs for the terminal device 1.
  • the network device configures M SL-BWPs for the terminal device 2.
  • the network device may configure the SL-BWP for the terminal device through RRC signaling.
  • the network device activates N SL-BWPs for the terminal device 1.
  • the network device activates N SL-BWPs for the terminal device 2.
  • the network device may activate N SL-BWPs by sending activation signaling to the terminal device 1 and the terminal device 2.
  • the activated N SL-BWPs include a public BWP, which is a network SL-BWP that is used by all terminal devices configured by the network device for all terminal devices covered by the network device for sideline communication. Frequency domain resources.
  • the number of the above-mentioned public SL-BWPs may be one or more.
  • the activated N SL-BWPs also include a common BWP.
  • the terminal device 1 performs side-by-side communication with the terminal device 2 in a resource pool on the activated N SL-BWPs.
  • the network device configures X BWP for the terminal device 1.
  • the network device configures X BWPs for the terminal device 2.
  • the terminal device may specifically configure the BWP for the terminal device 1 and the terminal device 2 through RRC signaling.
  • at least one BWP can be activated for communication transmission at the same time.
  • the BWP configured in the bandwidth used for downlink communication is DL-BWP
  • the BWP configured in the bandwidth used for uplink communication is UL-BWP.
  • actions in configuring the BWP in steps 3006 and 3007 and the actions in configuring the SL-BWP in steps 3001 and 3002 can be performed simultaneously or sequentially (configure BWP first, configure SL-BWP later Or, configure SL-BWP first, configure BWP last).
  • the terminal device 1 or the terminal device 2 can perform side-by-side communication and uplink communication at the same time, wherein the side-by-side communication and uplink communication can occur on a shared carrier, that is, SL-BWP It is in the same carrier as UL-BWP.
  • SL-BWP and UL-BWP are located in the same carrier, SL-BWP and L-BWP can contain the same frequency domain resources.
  • SL-BWP can be completely inside UL-BWP, that is, SL-BWP Frequency-domain resources of UL-BWP can be fully reused.
  • the frequency-domain resources of the SL-BWP and the frequency-domain resources of the UL-BWP may not overlap.
  • the side-by-side communication and the uplink communication also occur on a separate carrier, and the SL-BWP and the UL-BWP do not overlap. That is, SL and UL do not use the same resources.
  • the configuration information when the network device configures the resource pool, the configuration information may further include at least one of the following information.
  • FIG. 19 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 50,000 in FIG. 19 corresponds to the method shown in FIG. 17 and FIG. 18 above.
  • the terminal device 50,000 can perform various steps performed by the terminal device in the method shown in FIG. 17, and the terminal device 50,000 can also perform Various steps performed by the terminal device 1 in the method shown in FIG. 18.
  • the limitations and explanations of the steps in the side-to-side communication method in the embodiment of the present application shown in FIG. 17 and FIG. 18 are also applicable to the steps performed by the terminal device 50,000 shown in FIG. 19.
  • the repeated description of the terminal device 50000 is appropriately omitted.
  • the terminal device 50000 shown in FIG. 19 includes:
  • a receiving unit 50010 is configured to receive side-link BWP indication information sent by the network device, where the side-link BWP indication information is used to indicate N side-link bandwidth portions SL-BWP, and the N SLs -BWP is a bandwidth part BWP of the terminal device for side-by-side communication, the N SL-BWPs include a public SL-BWP, and the public SL-BWP is all terminals where the network device covers the network device Frequency domain resources used by all terminal devices configured by the device for lateral communication;
  • a side communication unit 50020 is configured to perform side communication with other terminal devices on the N SL-BWPs.
  • the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the receiving unit 50010 is further configured to: receive side link BWP configuration information sent by the network device, where the side link BWP configuration information is used for all
  • the terminal device is configured with M SL-BWPs, wherein the M SL-BWPs are BWPs that can be used for side communication, wherein the N SL-BWPs belong to the M SL-BWPs, and M is greater than or A positive integer equal to N.
  • the receiving unit 50010 is further configured to receive uplink BWP indication information sent by the network device, where the uplink BWP indication information is used to indicate Y uplink bandwidth portions.
  • uplink BWP indication information is used to indicate Y uplink bandwidth portions.
  • UL-BWP Y is a positive integer.
  • Network equipment can flexibly configure side-line resources according to the needs of business types, etc., and improve system performance.
  • the Y UL-BWPs and the N SL-BWPs are all located on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL- BWP.
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not include the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • the side link BWP configuration information carries M multiplexing format indication information
  • the M multiplexing format indication information corresponds to the M SL-BWPs one-to-one
  • any one of the multiplexing format indication information is used to indicate a multiplexing format of the sideline data and the sideline control information sent when the sideline communication is performed by using the SL-BWP corresponding to the any one of the multiplexing format instruction information
  • the multiplexing formats available for the side line data and side line control information include frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the side-link BWP configuration information carries M transmission mode information
  • the M transmission mode information corresponds to the M SL-BWPs in a one-to-one manner, where any one transmission mode information is used to indicate the use of any transmission mode.
  • the transmission mode of the side-line data and the side-line control information sent by the SL-BWP corresponding to the mode information when performing side-to-side communication.
  • the transmission mode includes unicast, multicast, and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the side-link BWP configuration information carries M parameter set information
  • the M parameter set information corresponds to the M SL-BWP one by one, where any one parameter set information is used to indicate the adoption of The parameter set of the side-line data and the side-line control information sent by the SL-BWP during side-to-side communication corresponding to any one of the parameter set information.
  • the parameter set includes subcarrier spacing (SCS) and cyclic prefix (CP). ).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • FIG. 20 is a schematic block diagram of a network device according to an embodiment of the present application.
  • the network device 60000 in FIG. 20 corresponds to the method shown in FIG. 17 and FIG. 18 above, and the network device 60,000 can perform each step performed by the network device in the method shown in FIG. 17 and FIG. 18.
  • FIG. 20 is described below.
  • the illustrated network device 60000 appropriately omits repeated descriptions.
  • the network device 60000 shown in FIG. 20 includes:
  • a generating unit 60010 is configured to generate side-link BWP indication information, where the side-link BWP indication information is used to indicate N side-link bandwidth portions SL-BWP, and the N SL-BWPs include a common SL- BWP, the common SL-BWP is a frequency domain resource used by all terminal devices configured by the network device for all terminal devices covered by the network device for side-line communication;
  • the sending unit 60020 is configured to send side-link BWP indication information to a terminal device, where the N SL-BWPs are used for side-communication between the terminal device and other terminal devices.
  • a network device configures N SL-BWPs including a common SL-BWP for a terminal device, so that the terminal device can perform side-by-side communication with other terminal devices on the N SL-BWPs.
  • the sending unit 60020 is further configured to send side link BWP configuration information to the terminal device, where the side link BWP configuration information is used to configure M for the terminal device SL-BWPs, where the M SL-BWPs are BWPs that can be used for side communication, where the N SL-BWPs belong to the M SL-BWPs, and M is a positive integer greater than or equal to N .
  • the sending unit 60020 is further configured to send uplink BWP indication information to the terminal device, where the uplink BWP indication information is used to indicate Y uplink bandwidth portions UL -BWP, Y is a positive integer.
  • Network equipment can flexibly configure side-line resources according to the needs of business types, etc., and improve system performance.
  • the Y UL-BWPs and the N SL-BWPs are all located on the same carrier.
  • the spectrum resource utilization efficiency can be optimized.
  • the Y UL-BWPs and the N SL-BWPs include first frequency-domain resources, the first frequency-domain resources belong to the Y UL-BWPs, and the first frequency-domain resources belong to the N SL- BWP.
  • the aforementioned Y UL-BWPs and N SL-BWPs include the same frequency domain resources (the frequency domain resources of the Y UL-BWPs and the N SL-BWPs have an intersection).
  • the SL-BWP and the UL-BWP contain the same frequency domain resources
  • the SL-BWP can reuse part of the UL-BWP resources for side-by-side communication, which can optimize the utilization efficiency of the spectrum resources.
  • the Y UL-BWPs and the N SL-BWPs do not include the same frequency domain resources.
  • the Y UL-BWPs and the N SL-BWPs are located in different carriers.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • the side link BWP configuration information carries M multiplexing format indication information
  • the M multiplexing format indication information corresponds to the M SL-BWPs one-to-one
  • any one of the multiplexing format indication information is used to indicate a multiplexing format of the sideline data and the sideline control information sent when the sideline communication is performed by using the SL-BWP corresponding to the any one of the multiplexing format instruction information
  • the multiplexing formats available for the side line data and side line control information include frequency division multiplexing and time division multiplexing.
  • the sideline communication requirements of different services of the terminal equipment can be met.
  • side-line data and side-line control information can be configured to use time division multiplexing in the same slot.
  • side-line services can be configured.
  • Data and side-line control information are frequency division multiplexed in the same time slot.
  • the side-link BWP configuration information carries M transmission mode information
  • the M transmission mode information corresponds to the M SL-BWPs in a one-to-one manner, where any one transmission mode information is used to indicate the use of any transmission mode.
  • the transmission mode of the side-line data and the side-line control information sent by the SL-BWP corresponding to the mode information when performing side-to-side communication.
  • the transmission mode includes unicast, multicast, and broadcast.
  • the network equipment can flexibly configure the resources of the side traffic according to different requirements of the side traffic, which can improve the effect of the side traffic and improve the system performance.
  • the side-link BWP configuration information carries M parameter set information
  • the M parameter set information corresponds to the M SL-BWP one by one, where any one parameter set information is used to indicate the adoption of The parameter set of the side-line data and the side-line control information sent by the SL-BWP during side-to-side communication corresponding to any one of the parameter set information.
  • the parameter set includes subcarrier spacing (SCS) and cyclic prefix (CP). ).
  • the network device can flexibly configure the parameter set according to the different seeks of the side communication, thereby realizing the flexible configuration of the side resource, which can improve the effect of the side communication.
  • the terminal device is composed of a memory, a transceiver, and a processor
  • the receiving unit 50010 in the terminal device 50,000 is equivalent to a transceiver
  • the side communication unit 50020 is equivalent to a transceiver and a processor.
  • the generating unit 60010 in the network device 60000 corresponds to a processor
  • the sending unit 60020 corresponds to a transceiver.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memories (ROMs), random access memories (RAMs), magnetic disks or compact discs and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了侧行通信的方法、终端设备和网络设备。该方法包括:终端设备接收网络设备发送的资源配置信息,资源配置信息用于为终端设备配置公共资源,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源;终端设备接收网络设备发送的侧行链路BWP指示信息,侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,N个SL-BWP包含公共资源对应的频域资源,N为正整数;终端设备在N个SL-BWP上与其它终端设备进行侧行通信。本申请能够使得终端设备在配置好的N个SL-BWP与其它终端设备之间进行侧行通信。

Description

侧行通信方法、终端设备和网络设备
本申请要求于2018年08月10日提交中国专利局、申请号为201810914366.8、申请名称为“侧行通信方法、终端设备和网络设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,并且更具体地,涉及一种侧行通信方法、终端设备和网络设备。
背景技术
在新无线(new radio,NR)系统中,为了实现终端设备与网络设备之间通信,网路设备可以根据终端设备的业务需求等因素来为不同的终端设备配置各自的带宽部分(bandwidth,BWP),其中,用于上行链路(uplink,UL)通信的BWP称为UL-BWP,用于下行链路(downlink,DL)通信的BWP称为DL-BWP。
但是上述方案在为终端设备配置BWP时只考虑到了终端设备与网络设备之间传输信息的需求,而未考虑到不同的终端设备之间如何进行侧行链路(slidelink,SL)通信。因此,如何为终端设备配置BWP资源,以使得不同的终端设备之间进行侧行通信是一个需要解决的问题。
发明内容
本申请提供一种侧行通信方法、终端设备和网络设备,以使得终端设备能够在配置的频域资源上与其它终端设备进行侧行通信。
第一方面,提供了一种侧行通信方法,该方法包括:终端设备接收网络设备发送的资源配置信息,该资源配置信息用于为终端设备配置公共资源;终端设备接收网络设备发送的侧行链路BWP指示信息,该侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP;终端设备在N个SL-BWP上与其它终端设备进行侧行通信。
其中,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源。
另外,上述N个SL-BWP为终端设备配置的用于进行侧行通信的带宽部分BWP,该N个SL-BWP包含公共资源对应的频域资源,其中,N为正整数。
本申请中,通过为终端设备配置包含公共资源对应的频域资源的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
应理解,其它终端设备可以是上述终端设备之外的终端设备,该其它终端设备也可以被配置至少一个SL-BWP,并且该至少一个SL-BWP中也包含公共资源对应的频域资源。由于为上述终端设备和其它终端设备配置的SL-BWP中均包含公共资源对应的频域资源, 因此,上述终端设备能够与其它终端设备进行侧行通信。
另外,上述其它终端设备的数量可以是一个,也可以是多个。也就是说,上述终端设备可以在N个SL-BWP与其它的一个或者多个终端设备进行侧行通信。
可选地,上述公共资源具体为公共资源池。
应理解,上述N个SL-BWP中包含公共资源对应的频域资源可以是指该N个SL-BWP中的至少一个SL-BWP包含公共资源对应的频域资源。
可选地,公共资源包含K个子公共资源,其中,K为大于1的正整数。
例如,资源配置信息配置了公共资源,该公共资源包括3个子公共资源。假设侧行链路BWP指示信息指示了3个SL-BWP,那么,在该3个SL-BWP中,可以只有一个SL-BWP包含全部3个子公共资源对应的频域资源,也可以是3个SL-BWP中的2个SL-BEP包含全部3个子公共资源对应的频域资源,也可以是3个SL-BWP中的每个SL-BWP均包含1个子公共资源对应的频域资源。
在一种可能的设计中,上述方法还包括:终端设备接收网络设备发送的侧行链路BWP配置信息,该侧行链路BWP配置信息用于为终端设备配置M个SL-BWP。
其中,上述M个SL-BWP是可用于侧行通信的BWP,上述N个SL-BWP属于M个SL-BWP,M为大于或者等于N的正整数。
上述N个SL-BWP可以是从配置的M个SL-BWP激活出来的SL-BWP,进一步的,上述N个SL-BWP可以是从M个SL-BWP激活出来的包括公共资源对应的频域资源的SL-BWP。
在一种可能的设计中,上述方法还包括:终端设备接收网络设备发送的上行链路BWP指示信息,该上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP。
其中,Y为正整数,Y个UL-BWP是被网络设备激活的UL-BWP。
网络设备在配置SL-BWP的同时,也可以为终端设备配置UL-BWP,使得终端设备能够根据UL-BWP与网络设备之间进行上行通信。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
在一种可能的设计中,资源配置信息携带有复用格式指示信息,该复用格式指示信息 用于指示终端设备采用公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
因此,网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
在一种可能的设计中,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,资源配置信息还携带有参数集(numerology)指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同需求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
在一种可能的设计中,资源配置信息还用于为终端设备配置专用资源,该资源配置信息还携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
在一种可能的设计中,资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
可选地,上述专用资源具体为专用资源池。
网络设备可以根据侧行通信的特点和需求为某些终端设备配置专用资源,使得某些终端设备通过配置的专用资源进行侧行通信,能够提高系统性能。
例如,当终端设备之间需要进行高可靠性的侧行通信业务时,可以为这些终端设备配置专用资源,使这些终端设备能够利用专用资源进行侧行通信,以保证侧行通信的可靠性。
第二方面,提供了一种侧行通信方法,该方法包括:网络设备向终端设备发送资源配置信息,该资源配置信息用于为终端设备配置公共资源;网络设备向终端设备发送侧行链路BWP指示信息,该侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,该N个SL-BWP用于终端设备与其它终端设备进行侧行通信,N为正整数。
其中,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设 备均需使用的用于侧行通信的资源。
另外,上述N个SL-BWP为终端设备配置的用于进行侧行通信的带宽部分BWP,该N个SL-BWP包含公共资源对应的频域资源,其中,N为正整数。
本申请中,网络设备通过为终端设备配置包含公共资源对应的频域资源的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
应理解,其它终端设备可以是上述终端设备之外的终端设备,该其它终端设备也可以被配置至少一个SL-BWP,并且该至少一个SL-BWP中也包含公共资源对应的频域资源。由于为上述终端设备和其它终端设备配置的SL-BWP中均包含公共资源对应的频域资源,因此,上述终端设备能够与其它终端设备进行侧行通信。
另外,上述其它终端设备的数量可以是一个,也可以是多个。也就是说,上述终端设备可以在N个SL-BWP与其它的一个或者多个终端设备进行侧行通信。
可选地,上述公共资源具体为公共资源池。
在一种可能的设计中,上述方法还包括:网络设备向终端设备发送侧行链路BWP配置信息,该侧行链路BWP配置信息用于为终端设备配置M个SL-BWP。
其中,上述M个SL-BWP是可用于侧行通信的BWP,上述N个SL-BWP属于M个SL-BWP,M为大于或者等于N的正整数。
上述N个SL-BWP可以是从配置的M个SL-BWP激活出来的SL-BWP,进一步的,上述N个SL-BWP可以是从M个SL-BWP激活出来的包括公共资源对应的频域资源的SL-BWP。
在一种可能的设计中,上述方法还包括:网络设备向终端设备发送上行链路BWP指示信息,该上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP。
其中,Y为正整数,Y个UL-BWP是被网络设备激活的UL-BWP。
网络设备在配置SL-BWP的同时,也可以为终端设备配置UL-BWP,使得终端设备能够根据UL-BWP与网络设备之间进行上行通信。
在一种可能的设计中,所述Y个UL-BWP与所述N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
在一种可能的设计中,资源配置信息携带有复用格式指示信息,该复用格式指示信息 用于指示终端设备采用公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
在一种可能的设计中,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,资源配置信息还携带有参数集(numerology)指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同需求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
在一种可能的设计中,资源配置信息还用于为终端设备配置专用资源,该资源配置信息还携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
在一种可能的设计中,资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
可选地,上述专用资源具体为专用资源池。
网络设备可以根据侧行通信的特点和需求为某些终端设备配置专用资源,使得某些终端设备通过配置的专用资源进行侧行通信,能够提高系统性能。
第三方面,提供了一种侧行通信方法,该方法包括:终端设备接收网络设备发送的资源配置信息,该资源配置信息用于为终端设备配置公共资源;终端设备接收网络设备发送的上行链路BWP指示信息,该上行链路BWP指示信息用于指示Y个UL-BWP,该Y个UL-BWP包括公共资源对应的频域资源,Y为正整数;终端设备在Y个UL-BWP上与其它终端设备进行侧行通信。
其中,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源
可选地,上述公共资源具体为公共资源池。
本申请中,通过为终端设备配置包含公共资源对应的频域资源的Y个UL-BWP,使得终端设备能够使用该Y个UL-BWP与其它终端设备进行侧行通信。
上述其它终端设备可以是上述终端设备之外的终端设备,该其它终端设备也可以被配置至少一个UL-BWP,并且该至少一个UL-BWP中也包含上述公共资源对应的频域资源。由于为上述终端设备和其它终端设备配置的UL-BWP中均包含公共资源对应的频域资源,因此,上述终端设备能够与其它终端设备进行侧行通信。
上述其它终端设备的数量可以是一个,也可以是多个。也就是说,上述终端设备可以在Y个UL-BWP与其它的一个或者多个终端设备进行侧行通信。
应理解,上述Y个UL-BWP中包含公共资源对应的频域资源可以是指该Y个UL-BWP中的至少一个UL-BWP包含公共资源对应的频域资源。
可选地,公共资源包含K个子公共资源,其中,K为大于1的正整数。
例如,资源配置信息配置了公共资源,该公共资源包括3个子公共资源。假设侧行链路BWP指示信息指示了3个UL-BWP,那么,在该3个UL-BWP中,可以只有一个UL-BWP包含全部3个子公共资源对应的频域资源,也可以是3个UL-BWP中的2个UL-BEP包含全部3个子公共资源对应的频域资源,也可以是3个UL-BWP中的每个UL-BWP均包含1个子公共资源对应的频域资源。
在一种可能的设计中,上述方法还包括:终端设备接收网络设备发送的上行链路BWP配置信息,该上行链路BWP配置信息用于为终端设备配置X个UL-BWP。
其中,上述Y个UL-BWP属于X个UL-BWP,X为大于或者等于Y的正整数。上述Y个UL-BWP可以是被网络设备从X个UL-BWP中激活的BWP。
在一种可能的设计中,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
在一种可能的设计中,该资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,该资源配置信息还携带有参数集(numerology)指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同需求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
在一种可能的设计中,该资源配置信息还用于为终端设备配置专用资源,该资源配置信息还携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源 进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
在一种可能的设计中,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,该资源配置信息还携带有参数集(numerology)指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
可选地,上述专用资源具体为专用资源池。
网络设备可以根据侧行通信的特点和需求为某些终端设备配置专用资源,使得某些终端设备通过配置的专用资源进行侧行通信,能够提高系统性能。
第四方面,提供了一种侧行通信方法,该方法包括:网络设备向终端设备发送资源配置信息,该资源配置信息用于为终端设备配置公共资源;网络设备向终端设备发送上行链路BWP指示信息,该上行链路BWP指示信息用于指示Y个UL-BWP,该Y个UL-BWP包括公共资源对应的频域资源,Y个UL-BWP用于终端设备与其它终端设备进行侧行通信,Y为正整数。
其中,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源
可选地,上述公共资源具体为公共资源池。
本申请中,网络设备通过为终端设备配置包含公共资源对应的频域资源的Y个SL-BWP,使得终端设备能够复用该Y个UL-BWP与其它终端设备进行侧行通信。
上述其它终端设备可以是上述终端设备之外的终端设备,该其它终端设备也可以被配置至少一个UL-BWP,并且该至少一个UL-BWP中也包含上述公共资源对应的频域资源。由于为上述终端设备和其它终端设备配置的UL-BWP中均包含公共资源对应的频域资源,因此,上述终端设备能够与其它终端设备进行侧行通信。
上述其它终端设备的数量可以是一个,也可以是多个。也就是说,上述终端设备可以在Y个UL-BWP与其它的一个或者多个终端设备进行侧行通信。
在一种可能的设计中,上述方法还包括:网络设备向终端设备发送上行链路BWP配置信息,该上行链路BWP配置信息用于为终端设备配置X个UL-BWP。
其中,上述Y个UL-BWP属于X个UL-BWP,X为大于或者等于Y的正整数。上述Y个UL-BWP可以是被网络设备从X个UL-BWP中激活的BWP。
在一种可能的设计中,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制 信息在同一时隙采用频分复用。
在一种可能的设计中,该资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,该资源配置信息还携带有参数集(numerology)指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同需求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
在一种可能的设计中,该资源配置信息还用于为终端设备配置专用资源,该资源配置信息还携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
在一种可能的设计中,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,该资源配置信息还携带有参数集(numerology)指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
第五方面,提供了一种侧行通信方法,该方法包括:终端设备接收网络设备发送的侧行链路BWP指示信息,该侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP;终端设备在N个SL-BWP上与其它终端设备进行侧行通信。
其中,N个SL-BWP为终端设备进行侧行通信的带宽部分BWP,N个SL-BWP包含公共SL-BW,该公共SL-BWP为网络设备为网络设备覆盖范围的所有终端设备配置的所有终端设备均需使用的用于侧行通信的频域资源
本申请中,通过为终端设备配置包含公共SL-BWP的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
应理解,其它终端设备可以是上述终端设备之外的终端设备,该其它终端设备也可以被配置至少一个SL-BWP,并且该至少一个SL-BWP中也包含公共SL-BWP。由于为上述终端设备和其它终端设备配置的SL-BWP中均包含公共SL-BWP,因此,上述终端设备能够与其它终端设备进行侧行通信。
另外,上述其它终端设备的数量可以是一个,也可以是多个。也就是说,上述终端设备可以在N个SL-BWP与其它的一个或者多个终端设备进行侧行通信。
在一种可能的设计中,上述方法还包括:终端设备接收网络设备发送的侧行链路BWP配置信息,该侧行链路BWP配置信息用于为终端设备配置M个SL-BWP。
其中,M个SL-BWP是可用于侧行通信的BWP,N个SL-BWP属于M个SL-BWP,M为大于或者等于N的正整数。进一步的,N个SL-BWP可以是被网络设备从M个SL-BWP中激活得到的SL-BWP。
在一种可能的设计中,上述方法还包括:终端设备接收网络设备发送的上行链路BWP指示信息,上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。Y个UL-BWP是被网络设备激活的UL-BWP。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
在一种可能的设计中,侧行链路BWP配置信息中携带有M个复用格式信息,M个复用格式信息与M个SL-BWP一一对应,其中,任意一个复用格式信息用于指示采用与任意一个复用格式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,其中,侧行数据和侧行控制信息可用的复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
在一种可能的设计中,侧行链路BWP配置信息中携带有M个传输模式信息,M个传输模式信息与M个SL-BWP一一对应,其中,任意一个传输模式信息用于指示采用与任意一个传输模式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,在一种可能的设计中,侧行链路BWP配置信息中携带有M个参数集(numerology)信息,M个参数集信息与M个SL-BWP一一对应,其中,任意一个参数集信息用于指示采用与任意一个参数集信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS) 和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同需求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
在一种可能的设计中,该侧行链路BWP配置信息还用于为终端设备配置专用资源,该资源配置信息还携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该M个SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
在一种可能的设计中,该侧行链路BWP配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用M个SL-BWP进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,该侧行链路BWP配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用M个SL-BWP进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
可选地,上述专用资源具体为专用资源池。
网络设备可以根据侧行通信的特点和需求为某些终端设备配置专用资源,使得某些终端设备通过配置的专用资源进行侧行通信,能够提高系统性能。
例如,当终端设备之间需要进行高可靠性的侧行通信业务时,可以为这些终端设备配置专用资源,使这些终端设备能够利用专用资源进行侧行通信,以保证侧行通信的可靠性。
第六方面,提供了一种侧行通信方法,该方法包括:网络设备生成侧行链路BWP指示信息,该侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP;网络设备向终端设备发送侧行链路BWP指示信息,其中,N个SL-BWP用于终端设备与其它终端设备进行侧行通信。
其中,N个SL-BWP为终端设备进行侧行通信的带宽部分BWP,N个SL-BWP包含公共SL-BW,该公共SL-BWP为网络设备为网络设备覆盖范围的所有终端设备配置的所有终端设备均需使用的用于侧行通信的频域资源
本申请中,网络设备通过为终端设备配置包含公共SL-BWP的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
另外,上述其它终端设备的数量可以是一个,也可以是多个。也就是说,上述终端设备可以在N个SL-BWP与其它的一个或者多个终端设备进行侧行通信。
在一种可能的设计中,上述方法还包括:网络设备向终端设备发送侧行链路BWP配置信息,该侧行链路BWP配置信息用于为终端设备配置M个SL-BWP。
其中,M个SL-BWP是可用于侧行通信的BWP,N个SL-BWP属于M个SL-BWP,M为大于或者等于N的正整数。进一步的,N个SL-BWP可以是被网络设备从M个SL-BWP中激活得到的SL-BWP。
在一种可能的设计中,网络设备向终端设备发送上行链路BWP指示信息,上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
在一种可能的设计中,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
在一种可能的设计中,侧行链路BWP配置信息中携带有M个复用格式信息,M个复用格式信息与M个SL-BWP一一对应,其中,任意一个复用格式信息用于指示采用与任意一个复用格式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,其中,侧行数据和侧行控制信息可用的复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
在一种可能的设计中,侧行链路BWP配置信息中携带有M个传输模式信息,M个传输模式信息与M个SL-BWP一一对应,其中,任意一个传输模式信息用于指示采用与任意一个传输模式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
在一种可能的设计中,在一种可能的设计中,侧行链路BWP配置信息中携带有M个参数集(numerology)信息,M个参数集信息与M个SL-BWP一一对应,其中,任意一个参数集信息用于指示采用与任意一个参数集信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
第七方面,提供一种终端设备,所述终端侧设备包括用于执行所述第一方面、第三方面以及第五方面中的任一可能的设计中的方法的模块。
第八方面,提供一种终端设备,所述终端侧设备包括用于执行所述第二方面、第四方面以及第六面中的任一可能的设计中的方法的模块。
第九方面,提供一种终端设备,包括存储器、收发器和处理器,所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器和所述收发器执行所述第一方面、第三方面以及第五方面中的任一可能的设计中的方法。
第十方面,提供一种网络设备,包括存储器、收发器和处理器,所述存储器用于存储程序,所述处理器用于执行程序,当所述程序被执行时,所述处理器和所述收发器执行所述第二方面、第四方面以及第六面中的任一可能的设计中的方法。
第十一面,提供一种计算机可读存储介质,所述计算机可读介质存储用于设备执行的程序代码,所述程序代码包括用于执行所述第一方面、第三方面以及第五方面中的任一可能的设计中的方法。
第十二方面,提供一种计算机可读存储介质,所述计算机可读介质存储用于设备执行的程序代码,所述程序代码包括用于执行所述第二方面、第四方面以及第六面中的任一可能的设计中的方法的模块。
第十三方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器和所述通信接口用于执行所述第一方面、第三方面以及第五方面中的任一可能的设计中的方法。
在一种可能的设计中,所述通信接口为收发器。
在一种可能的设计中,所述芯片集成在终端设备上。
第十四方面,提供一种芯片,所述芯片包括处理器和通信接口,所述处理器和所述通信接口用于执行所述第二方面、第四方面以及第六面中的任一可能的设计中的方法。
在一种可能的设计中,所述通信接口为收发器。
在一种可能的设计中,所述芯片集成在网络设备上。
附图说明
图1是本申请实施例应用的移动通信系统的架构示意图;
图2是本申请实施例的侧行通信方法的示意性流程图;
图3是UL-BWP和SL-BWP所在的载波的示意图;
图4是UL-BWP和SL-BWP所在的载波的示意图;
图5是UL-BWP和SL-BWP所在的载波的示意图;
图6是本申请实施例的侧行通信方法的示意性流程图;
图7是配置的公共资源池和专用资源池的示意图;
图8是各个SL-BWP与公共资源池、专用资源池的对应关系的示意图;
图9是本申请实施例的终端设备的示意性框图;
图10是本申请实施例的网络设备的示意性框图;
图11是本申请实施例的侧行通信方法的示意性流程图;
图12是本申请实施例的侧行通信方法的示意性流程图;
图13是配置的公共资源池和专用资源池的示意图;
图14是各个UL-BWP与公共资源池、专用资源池的对应关系的示意图;
图15是本申请实施例的终端设备的示意性框图;
图16是本申请实施例的网络设备的示意性框图;
图17是本申请实施例的侧行通信方法的示意性流程图;
图18是本申请实施例的侧行通信方法的示意性流程图;
图19是本申请实施例的终端设备的示意性框图;
图20是本申请实施例的网络设备的示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于多种通信系统,例如:第五代(5th Generation,5G)系统、新无线(new radio,NR)系统或者与5G系统具有相同架构的通信系统等。
本申请中的终端设备可以称为终端(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等。这里的终端设备具体可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端以及车联网系统中的车、车载设备或车载模块等等。
本申请中的网络设备可以是终端设备通过无线方式接入到该移动通信系统中的接入设备,也可以是基站NodeB、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、5G移动通信系统中的下一代基站(next generation NodeB,gNB)、未来移动通信系统中的基站或无线保真(wireless-fidelity,WiFi)系统中的接入节点,还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,车联网系统中的路边单元(road side unit,RSU),还可以是中继站以及未来演进的PLMN网络中的网络设备等。
图1是本申请实施例应用的移动通信系统的架构示意图。
图1所示的移动通信系统包括核心网设备101、网络设备102以及终端设备103和终端设备104(图1中示出了两个终端设备)。终端设备103和终端设备104可以通过无线的方式与网络设备102相连,网络设备102可以通过无线或有线方式与核心网设备101连接。核心网设备101与网络设备102可以是独立的不同的物理设备,也可以是将核心网设备101的功能与网络设备102的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备101的功能和部分的网络设备102的功能。终端设备可以是固定位置的,也可以是可移动的。
应理解,上述网络设备102具体可以是接入网设备。
在图1所示的系统中,终端设备103除了与网络设备102之间进行正常的通信之外,还可以与终端设备104进行侧行通信。
应理解,图1只是本申请实施例的移动通信系统的一种示意图,该移动通信系统中还可以包括其它设备。例如,图1所示的移动通信系统还可以包括无线中继设备和无线回传设备(图1中未示出)。本申请实施例对该移动通信系统中包括的核心网设备、网络设备和终端设备的数量不做限定。
应理解,上述图1只是本申请实施例可能应用的一种移动通信系统的示意图,本申请 实施例的还可以应用在其它能够实现网络设备与终端设备通信的移动通信系统中,本申请实施例对可以应用到的移动通信系统的具体形式不做限制。
本申请中,侧行通信还可以称为侧行链路通信(可以简称为SL通信)。
图2是本申请实施例的侧行通信方法的示意性流程图。图2所示的方法可以由终端设备执行,图2所示的方法包括步骤110至步骤130,下面对步骤110至步骤130进行详细的介绍。
110、网络设备向终端设备发送资源配置信息,终端设备接收该资源配置信息。
上述资源配置信息可以用于为该终端设备配置公共资源,其中,该公共资源为网络设备为该网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源。
也就是说,上述公共资源是网络设备为网络设备的覆盖范围内的所有终端设备配置的时频资源,网络设备覆盖范围内的所有终端设备均需要使用该公共资源用于侧行通信
120、网络设备向终端设备发送侧行链路BWP指示信息,终端设备接收该侧行链路BWP指示信息。
其中,该侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,该N个SL-BWP为终端设备进行侧行通信的带宽部分BWP,该N个SL-BWP包含公共资源对应的频域资源,N为正整数。
进一步的,上述侧行链路BWP指示信息还可以是网络设备发送的激活信息,该激活信息可以承载于无线资源控制(radio resource control,RRC)信令中,该激活信息用于激活N个SL-BWP,从而得到N个激活的SL-BWP,该N个激活的SL-BWP可以用于后续的侧行通信。
上述公共资源可以为公共资源池。
可选地,上述N个SL-BWP中包含公共资源对应的频域资源可以是指该N个SL-BWP中的至少一个SL-BWP包含公共资源对应的频域资源。
上述公共资源可以包含K个子公共资源,其中,K为大于1的正整数。
例如,网络设备通过资源配置信息为终端设备配置了公共资源,该公共资源包括3个子公共资源。假设侧行链路BWP指示信息指示了3个SL-BWP,那么,在该3个SL-BWP中,可以只有一个SL-BWP包含全部3个子公共资源对应的频域资源,也可以是3个SL-BWP中的2个SL-BEP包含全部3个子公共资源对应的频域资源,也可以是3个SL-BWP中的每个SL-BWP均包含1个子公共资源对应的频域资源。
130、终端设备在N个SL-BWP上与其它终端设备进行侧行通信。
如图2所示,上述其它终端设备可以包括终端设备1至终端设备i(i为正整数)等至少一个终端设备。也就是说,在图2所示的方法中,终端设备可以在N个SL-BWP上与其它的一个或者多个终端设备进行侧行通信。该侧行通信可以为终端设备向其它终端设备发送侧行控制信息和/或侧行数据,也可以为终端设备从其它终端设备接收侧行应答信息或侧行反馈信息。
本申请中,通过为终端设备配置N个SL-BWP,并且配置的该N个SL-BWP中包含公共资源对应的频域资源,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
可选地,图2所示的方法还包括步骤140,应理解,步骤140可以在步骤110之后发生,下面对步骤140进行详细介绍。
140、网络设备向终端设备发送侧行链路BWP配置信息,终端设备接收该侧行链路BWP配置信息。
其中,上述侧行链路BWP配置信息用于为终端设备配置M个SL-BWP,该M个SL-BWP是可用于侧行通信的BWP,该N个SL-BWP属于M个SL-BWP,M为大于或者等于N的正整数。
上述N个SL-BWP可以是从配置的M个SL-BWP激活出来的SL-BWP,进一步的,上述N个SL-BWP可以是从M个SL-BWP激活出来的包括公共资源对应的频域资源的SL-BWP。
可选地,图2所示的方法还包括步骤150,应理解,步骤150可以先于步骤140发生,或者后于步骤140发生,或者,步骤150和步骤140可以同时发生。
本申请对步骤110至步骤150之间的先后顺序不做严格限定,只要这些步骤发生的先后顺序符合通信逻辑,能够正常进行侧行通信即可。下面对步骤150进行详细介绍。
150、网络设备向终端设备发送上行链路BWP指示信息,终端设备接收该上行链路BWP指示信息。
该上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
在配置SL-BWP的同时,也可以为终端设备配置UL-BWP,使得终端设备能够根据UL-BWP与网络设备之间进行通信。
应理解,上述Y个UL-BWP与N个SL-BWP既可以位于同一载波,也可以位于不同的载波中,并且当Y个UL-BWP与N个SL-BWP位于同一载波时,N个SL-BWP还可以复用Y个UL-BWP的一部分资源。
下面结合图3至图5对SL-BWP与UL-BWP的在载波上的分布进行详细的介绍。应理解,图3至图5中所示的SL-BWP是指上述N个SL-BWP,图3至图5中所示的UL-BWP是指上述Y个UL-BWP,为了简洁,下面结合图3至图5对Y个UL-BWP与N个SL-BWP进行介绍时,以图3至图5中所示的UL-BWP表示上述Y个UL-BWP,以图3至图5中所示的SL-BWP表示上述N个SL-BWP。
如图3所示,SL-BWP与UL-BWP位于同一载波中(SL-BWP与UL-BWP位于共享载波中),并且SL-BWP占用的频域资源是UL-BWP占用的频域资源的子集。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源的利用效率。
应理解,当UL-BWP和SL-BWP位于同一载波中时,UL-BWP占用的频域资源可以与SL-BWP占用的频域资源只有部分重复。
如图4所示,SL-BWP与UL-BWP位于同一载波中,但是SL-BWP与UL-BWP包含不同的频域资源。这种情况下,侧行通信和上行通信可以完全独立,相互之间不会产生干扰。
如图5所示,SL-BWP位于载波1中,UL-BWP位于载波2中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及终端设备与网络设备之间的上行通信,避免侧行通信与上行通信之间互相干扰。
可选地,作为一个实施例,上述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
网络设备通过为公共资源配置复用格式,可以满足终端设备不同业务的侧行通信需求。网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
应理解,上述资源配置信息除了携带复用格式指示信息之外,还可以携带传输模式指示信息和参数集(numerology)指示信息,用于指示采用公共资源进行侧行通信时的传输模式以及参数集的情况。
可选地,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,资源配置信息携带有参数集指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。
应理解,终端设备之间可以通过公共资源进行侧行通信,在某些情况下,有些终端设备对业务的可靠性要求比较高,或者对侧行通信的数据的保密性要求较高,那么,这种情况下,可以通过为某些终端设备单独配置专用资源,使得这些终端设备利用专用资源进行侧行通信。
因此,网络设备除了通过上述资源配置信息为终端设备配置公共资源之外,还可以通过资源配置信息为终端设备配置专用资源。
可选地,上述资源配置信息还用于为终端设备配置专用资源,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
可选地,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
因此,网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,该资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧 行资源,能够提高侧行通信的效果。
上述专用资源具体可以为专用资源池。
网络设备可以根据侧行通信的特点和需求为某些终端设备配置专用资源,使得某些终端设备通过配置的专用资源进行侧行通信,能够提高系统性能。
可选地,当网络设备通过资源配置信息为终端设备配置了专用资源时,该资源配置信息还可以携带复用格式指示信息,该复用格式指示信息用于指示该终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
网络设备通过为专用资源配置复用格式,可以满足终端设备不同业务的侧行通信需求。
上文结合图2至图5对本申请实施例的侧行通信方法进行了详细的介绍,为了更好地理解本申请实施例的侧行通信方法,下面结合实例一(对应图6至图8)对终端设备1与终端设备2进行侧行通信的过程进行详细的介绍。
在实例一中,网络设备为终端设备配置包含公共资源的SL-BWP,该公共资源可以是公共资源池,使得终端设备可以通过该包含公共资源的SL-BWP的资源池进行侧行通信。
下面结合图6以公共资源为公共资源池为例,对实例一中终端设备1和终端设备2进行侧行通信的完整过程进行详细的介绍。
图6所示的方法包括步骤1001至步骤1007,下面对这些步骤进行详细介绍。
1001、网络设备为终端设备1配置资源池。
1002、网络设备为终端设备2配置资源池。
应理解,上述步骤1002既可以先于步骤1001进行也可以后于步骤1001进行,或者,步骤1002也可以与步骤1001同时进行。
在上述步骤1001和步骤1002中,网络设备可以通过系统消息块(system information block,SIB)、小区级(cell-specific)的RRC信令或者终端用户级(UE-specific)RRC信令为终端设备1和终端设备2配置资源信息。
该资源信息相当于上文中的资源配置信息,通过该资源信息能够为终端设备配置资源。具体地,该资源信息可以用于为终端设备配置资源池,此时该资源信息也可以成为资源池信息(资源池配置信息)。
上述资源信息指示了N个资源池,在该N个资源池中至少有M个公共资源池(Common Resource Pool)和(N-M)个专用资源池(Dedicated Resource Pool),N≥1,1≤M≤N。
如图7所示,网络设备为终端设备1和终端设备2配置了两个公共资源池,这两个公共资源池分别是公共资源池1(CommonResourcePool#1)和公共资源池2(CommonResourcePool#2)。
除了公共资源池之外,网络设备还为终端设备1和终端设备2配置了两个专用资源池,这两个专用资源池分别为专用资源池1(DedicatedResourcePool#1)和专用资源池2(DedicatedResourcePool#2)。
其中,公共资源池对于所有终端用户而言是公用的,所有终端用户都可以在公共资源池进行侧行通信,包括SL数据的发送和接收。一部分终端用户可以在专用资源池进行侧 行通信,这取决于网络设备的配置和终端用户自身的能力和需求。
1003、网络设备为终端设备1配置M个SL-BWP。
1004、网络设备为终端设备2配置M个SL-BWP。
在上述步骤1003和步骤1004中,网络设备可以通过RRC信令为终端设备配置SL-BWP。
1005、网络设备为终端设备1激活N个SL-BWP。
1006、网络设备为终端设备2激活N个SL-BWP。
在步骤1005和步骤1006中,网络设备可以通过向终端设备1和终端设备2发送激活信令来激活N个SL-BWP。
对于终端设备1来说,激活的N个SL-BWP包括公共资源池1和公共资源池2,也就包括全部的公共资源池,对于终端设备2来说,激活的N个SL-BWP也包括公共资源池1和公共资源池2。
以终端设备1为例,N个SL-BWP包括全部的公共资源池是指在这N个SL-BWP中,至少有一个SL-BWP包含全部的公共资源池。例如,如图7所示,在N个SL-BWP中,第一个SL-BWP和第N个SL-BWP均包含公共资源池1和公共资源池2。
应理解,对于终端设备1和终端设备2来说,它们包含的激活的SL-BWP的数量可以不同,只要激活的SL-BWP中至少有一个SL-BWP包含全部的公共资源池,终端设备1和终端设备2之间就可以进行侧行通信。
1007、终端设备1在激活的N个SL-BWP上的资源池中与终端设备2进行侧行通信。
应理解,图6所示的方法还可以包括步骤:
1008、网络设备为终端设备1配置X个BWP;
1009、网络设备为终端设备2配置X个BWP。
在步骤1008和步骤1009中,终端设备具体可以通过RRC信令为终端设备1和终端设备2配置BWP。
对于同一个终端设备来说,在同一时刻可以激活至少一个BWP用于通信传输。其中,用于下行通信的带宽中配置的BWP为DL-BWP,用于上行通信的带宽中配置的BWP为UL-BWP。
应理解,步骤1008和步骤1009中的配置BWP中的动作与步骤1003和步骤1004中配置SL-BWP中的动作既可以同时进行,也可以先后进行(配置BWP在前,配置SL-BWP在后,或者,配置SL-BWP在前,配置BWP在后)。
应理解,在实例一中,终端设备1或者终端设备2可以同时进行侧行通信和上行通信(Uu空口的通信),其中,侧行通信和上行通信可以发生在共享载波(shared carrier)上,也就是说SL-BWP与UL-BWP位于同一载波,如图3所示,SL-BWP可以在UL-BWP内部,复用UL-BWP的资源。另外,如图4所示,侧行通信和上行通信发生在共享载波(shared carrier)上,但SL-BWP和UL-BWP不重合,即SL和UL不使用相同的资源。
可选地,侧行通信和上行通信也发生在独立的载波(shared carrier)上,SL-BWP和UL-BWP不重合。即SL和UL不使用相同的资源。
在上述过程中,SL-BWP均是通过网络设备配置的,当没有网络设备控制时,SL-BWP也可以由终端设备自身进行配置。
在实例一中,终端设备不仅可以通过公共资源池中的时频资源与其它的终端设备进行侧行通信,终端设备还可以通过专用资源池中的时频资源与其它的终端设备进行侧行通信,与公共资源池不同,专用资源池一般是根据终端设备的能力或者需求,由网络设备配置或者用户根据预配置的资源或者侦听(sensing)来选择,为部分终端设备的SL-BWP配置的资源,下面结合图8对利用公共资源池和专用资源池中的资源进行侧行通信的过程进行详细的描述。
如图8所示,网络设备配置了2个公共资源池和3个专用资源池,分别为公共资源池1(CommonResourcePool#1)、公共资源池2(CommonResourcePool#2)以及专用资源池1(DedicatedResourcePool#1)、专用资源池2(DedicatedResourcePool#2)和专用资源池3(DedicatedResourcePool#3)。假设一个小区有4个终端,这4个终端分别为UE-A、UE-B、UE-C和UE-D,那么,网络设备通过RRC信令配置4个UE各自的SL-BWP,各个UE的SL-BWP分别为:
UE-A:UE-A SL-BWP#1、UE-A SL-BWP#2;
UE-B:UE-B SL-BWP#1;
UE-C:UE-C SL-BWP#1、UE-C SL-BWP#2;
UE-D:UE-D SL-BWP#1、UE-D SL-BWP#2、UE-D SL-BWP#3。
其中,每个UE中都有一个SL-BWP覆盖了公共资源池1和公共资源池2。
进一步的,专用资源池1和专用资源池2被UE-A SL-BWP#1和UE-D SL-BWP#1覆盖,UE-A和UE-D除了可以通过公共资源池1和公共资源池2中的时频资源进行侧行通信之外,还可以通过专用资源池1或者专用资源池2中的时频资源进行侧行通信。
另外,专用资源池3被UE-C SL-BWP#2和UE-D SL-BWP#3覆盖,因此,UE-C和UE-D除了可以通过公共资源池1和公共资源池2进行侧行通信之外,还可以通过专用资源池3进行侧行通信。
另外,在实例一中,网络设备在配置资源池时,配置信息中还可以包括下列信息中的至少一种。
(1)侧行控制信息(sidelink scheduling assignment,SA)和侧行数据的复用格式指示信息。
侧行控制信息和侧行数据的复用格式可以采用复用格式指示信息中的一个比特位的比特值来表示,例如,当该比特位的取值为1时表示侧行控制信息和侧行数据是时分复用的,当该比特位的取值为0时表示侧行控制信息和侧行数据是频频分复用的。
(2)侧行通信时的传输模式,所述传输模式为单播传输,组播传输和广播传输。侧行通信时的传输模式可以使用2个比特位的比特值来表示,例如00表示单播,01表示组播,10表示广播。
(3)子载波间隔指示信息。
在载波间隔指示信息可以包含3个比特信息,至少指示15kHz,30kHz,60kHz,120kHz和240kHz这几种子载波间隔。
(4)循环前缀(cyclic prefix,CP)指示信息。
CP指示信息可以包含1个比特信息,当该比特位的取值为1时表示常规循环前缀(normal cyclic prefix,NCP),当该比特位的取值为0时表示扩展循环前缀(extended cyclic  prefix,ECP)。
图9是本申请实施例的终端设备的示意性框图。图9中的终端设备10000与上文中图2以及图6中所示的方法是对应的,终端设备10000能够执行图2所示的方法中由终端设备执行的各个步骤,终端设备10000还可以执行图6所示的方法中由终端设备1执行的各个步骤。图2和图6中对本申请实施例的侧行通信方法中的各个步骤的限定和解释同样适用于图9所示的终端设备10000执行的各个步骤,为了简洁,下面在介绍图9所示的终端设备10000适当省略重复的描述。
图9所示的终端设备10000包括:
接收单元10010,用于接收网络设备发送的资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
所述接收单元10010还用于接收所述网络设备发送的侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,其中,所述N个SL-BWP为所述终端设备进行侧行通信的带宽部分BWP,所述N个SL-BWP包含所述公共资源对应的频域资源,N为正整数;
侧行通信单元10020,用于在所述N个SL-BWP上与其它终端设备进行侧行通信。
本申请中,通过为终端设备配置包含公共资源对应的频域资源的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
可选地,上述公共资源具体为公共资源池。
可选地,作为一个实施例,所述接收单元10010还用于:接收所述网络设备发送的侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
可选地,作为一个实施例,所述接收单元10010还用于:接收所述网络设备发送的上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
网络设备在配置SL-BWP的同时,也可以为终端设备配置UL-BWP,使得终端设备能够根据UL-BWP与网络设备之间进行上行通信。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP包含第一频域资源,所述第一频域资源属于所述Y个UL-BWP,所述第一频域资源属于所述N个SL-BWP。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
可选地,作为一个实施例,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
应理解,上述资源配置信息除了携带复用格式指示信息之外,还可以携带传输模式指示信息和参数集(numerology)指示信息,用于指示采用公共资源进行侧行通信时的传输模式以及参数集的情况。
可选地,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,资源配置信息携带有参数集指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。
应理解,终端设备之间可以通过公共资源进行侧行通信,在某些情况下,有些终端设备对业务的可靠性要求比较高,或者对侧行通信的数据的保密性要求较高,那么,这种情况下,可以通过为某些终端设备单独配置专用资源,使得这些终端设备利用专用资源进行侧行通信。
上述专用资源具体可以为专用资源池。
因此,网络设备除了通过上述资源配置信息为终端设备配置公共资源之外,还可以通过资源配置信息为终端设备配置专用资源。
可选地,上述资源配置信息还用于为终端设备配置专用资源,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
可选地,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
因此,网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,该资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧 行资源,能够提高侧行通信的效果。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
图10是本申请实施例的网络设备的示意性框图。图10中的网络设备20000与上文中图2以及图6中所示的方法是对应的,网络设备20000能够执行图2和图6所示的方法中由网络设备执行的各个步骤。
应理解,图2和图6中对本申请实施例的侧行通信方法中的各个步骤的限定和解释同样适用于图9所示的网络设备20000执行的各个步骤,为了简洁,下面在介绍图10所示的网络设备20000适当省略重复的描述。
图10所示的网络设备20000包括:
发送单元20010,用于向终端设备发送资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,其中,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
所述发送单元20010还用于向所述终端设备发送侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,所述N个SL-BWP包含所述公共资源对应的频域资源,所述N个SL-BWP用于所述终端设备与其它终端设备进行侧行通信,N为正整数。
本申请中,网络设备通过为终端设备配置包含公共资源对应的频域资源的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
可选地,作为一个实施例,所述发送单元20010还用于:向所述终端设备发送侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
可选地,作为一个实施例,所述发送单元20010还用于:向所述终端设备发送上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
网络设备在配置SL-BWP的同时,也可以为终端设备配置UL-BWP,使得终端设备能够根据UL-BWP与网络设备之间进行上行通信。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP包含第一频域资源,所述第一频域资源属于所述Y个UL-BWP,所述第一频域资源属于所述N个SL-BWP。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
可选地,作为一个实施例,所述Y个UL-BWP与所述N个SL-BWP位于不同的载波 中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
可选地,作为一个实施例,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
应理解,上述资源配置信息除了携带复用格式指示信息之外,还可以携带传输模式指示信息和参数集(numerology)指示信息,用于指示采用公共资源进行侧行通信时的传输模式以及参数集的情况。
可选地,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,资源配置信息携带有参数集指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
应理解,终端设备之间可以通过公共资源进行侧行通信,在某些情况下,有些终端设备对业务的可靠性要求比较高,或者对侧行通信的数据的保密性要求较高,那么,这种情况下,可以通过为某些终端设备单独配置专用资源,使得这些终端设备利用专用资源进行侧行通信。
因此,网络设备除了通过上述资源配置信息为终端设备配置公共资源之外,还可以通过资源配置信息为终端设备配置专用资源。
可选地,上述资源配置信息还用于为终端设备配置专用资源,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
可选地,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
因此,网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,该资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。
上述专用资源具体可以为专用资源池。
应理解,上述终端设备10000和网络设备20000可以共同用于执行上文图2和图6所示的侧行通信方法中,网络设备20000通过资源配置信息为终端设备10000配置资源,使得为终端设备10000配置得到的N个SL-BWP包含公共资源对应的频域资源,进而使得终端设备10000可以在N个SL-BWP上与其它终端设备进行侧行通信。
另外,当终端设备由存储器、收发器和处理器构成时,终端设备10000中的接收单元10010相当于收发器,侧行通信单元10020相当于收发器和处理器。
当网络设备由存储器、收发器和处理器构成时,网络设备20000中的发送单元20010相当于收发器。
上文结合图2至图10对本申请实施例的一种侧行通信方法、终端设备和网络设备进行了详细的介绍。在图2至图10所示的方法中,是通过为终端设备设置专用的SL-BWP用于侧行通信,事实上,还可以通过复用已有的UL-BWP来进行侧行通信。下面结合图11至图14对本申请实施例的另一侧行通信方法进行详细的介绍。
图11是本申请实施例的侧行通信方法的示意性流程图。图11所示的方法可以由终端设备执行,图11所示的方法包括步骤210至步骤230,下面对步骤210至步骤230进行详细的介绍。
210、网络设备向终端设备发送资源配置信息,终端设备接收该资源配置信息,该资源配置信息用于为终端设备配置公共资源,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源。
其中,公共资源为网络设备为网络设备覆盖范围内的所有终端设备配置的所有终端设备均需使用的用于侧行通信的资源
可选地,上述公共资源具体为公共资源池。
220、网络设备向终端设备发送上行链路BWP指示信息,终端设备接收该上行链路BWP指示信息,该上行链路BWP指示信息用于指示Y个UL-BWP,其中,Y个UL-BWP包括公共资源对应的频域资源,Y为正整数;
230、终端设备在Y个UL-BWP上与其它终端设备进行侧行通信。
如图11所示,上述其它终端设备可以包括终端设备1至终端设备i(i为正整数)等至少一个终端设备。也就是说,在图11所示的方法中,终端设备可以在N个SL-BWP上与其它的一个或者多个终端设备进行通信。
本申请中,通过为终端设备配置包含公共资源对应的频域资源的Y个SL-BWP,使得终端设备能够复用该Y个UL-BWP与其它终端设备进行侧行通信。
应理解,上述Y个UL-BWP中包含公共资源对应的频域资源可以是指该Y个UL-BWP中的至少一个UL-BWP包含公共资源对应的频域资源。
可选地,公共资源包含K个子公共资源,其中,K为大于1的正整数。
例如,资源配置信息配置了公共资源,该公共资源包括3个子公共资源。假设上行链路BWP指示信息指示了3个UL-BWP,那么,在该3个UL-BWP中,可以只有一个UL-BWP包含全部3个子公共资源对应的频域资源,也可以是3个UL-BWP中的2个UL-BEP包含全部3个子公共资源对应的频域资源,也可以是3个UL-BWP中的每个UL-BWP均包含1个子公共资源对应的频域资源。
可选地,图11所示的方法还包括步骤240,该步骤240包括:网络设备向终端设备发送上行链路BWP配置信息,终端设备接收该上行链路BWP配置信息,该上行链路BWP配置信息用于为终端设备配置X个UL-BWP。
其中,上述Y个UL-BWP属于X个UL-BWP,X为大于或者等于Y的正整数。上述Y个UL-BWP可以是被网络设备从X个UL-BWP中激活的BWP。
可选地,作为一个实施例,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
应理解,上述资源配置信息除了携带复用格式指示信息之外,还可以携带传输模式指示信息和参数集(numerology)指示信息,用于指示采用公共资源进行侧行通信时的传输模式以及参数集的情况。
可选地,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,资源配置信息携带有参数集指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
应理解,终端设备之间可以通过公共资源进行侧行通信,在某些情况下,有些终端设备对业务的可靠性要求比较高,或者对侧行通信的数据的保密性要求较高,那么,这种情况下,可以通过为某些终端设备单独配置专用资源,使得这些终端设备利用专用资源进行侧行通信。
因此,网络设备除了通过上述资源配置信息为终端设备配置公共资源之外,还可以通过资源配置信息为终端设备配置专用资源。
可选地,上述资源配置信息还用于为终端设备配置专用资源,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
可选地,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
因此,网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,该资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。上述专用资源具体可以为专用资源池。
网络设备可以根据侧行通信的特点和需求为某些终端设备配置专用资源,使得某些终端设备通过配置的专用资源进行侧行通信,能够提高系统性能。
上文结合图11对本申请实施例的侧行通信方法进行了详细的介绍,为了更好地理解本申请实施例的侧行通信方法,下面结合实例二(对应图12至图14)对终端设备1与终端设备2进行侧行通信的过程进行详细的介绍。
在实例二中,网络设备为终端设备配置包含公共资源(该公共资源可以是公共资源池)的UL-BWP,使得终端设备可以通过复用该UL-BWP的资源池进行侧行通信。下面结合图12对实例二中终端设备1和终端设备2进行侧行通信的完整过程进行详细的介绍。
下面结合图12以公共资源为公共资源池为例,对实例二中终端设备1和终端设备2进行侧行通信的完整过程进行详细的介绍。
图12所示的方法包括步骤2001至步骤2006,下面对这些步骤进行详细介绍。
2001、网络设备为终端设备1配置资源池。
2002、网络设备为终端设备2配置资源池。
应理解,上述步骤2002既可以先于步骤2001进行也可以后于步骤2001进行,或者,步骤2002与步骤2001同时进行。
在上述步骤2001和步骤2002中,网络设备可以通过SIB、小区级的RRC信令或者终端用户级的RRC信令为终端设备1和终端设备2配置资源池信息。
其中,上述资源池信息指示了N个资源池,在该N个资源池中至少有M个公共资源池和N-M个专用资源池,N≥1,1≤M≤N。
例如,如图13所示,网络设备配置了2个公共资源池和2个专用资源池,分别为公共资源池1(CommonResourcePool#1)、公共资源池2(CommonResourcePool#2)以及专用资源池1(DedicatedResourcePool#1)和专用资源池2(DedicatedResourcePool#2)。
2003、网络设备为终端设备1配置X个UL-BWP。
2004、网络设备为终端设备2配置X个UL-BWP。
在上述步骤2003和步骤2004中,网络设备可以通过RRC信令为终端设备配置BWP。
2005、网络设备为终端设备1激活Y个UL-BWP。
2006、网络设备为终端设备2激活Y个UL-BWP。
在上述步骤2005和步骤2006中,网络设备可以通过向终端设备1和终端设备2发送激活信令来激活Y个BWP。
对于终端设备1来说,激活的Y个UL-BWP包括公共资源池1和公共资源池2,也就包括全部的公共资源池,对于终端设备2来说,激活的Y个UL-BWP也包括公共资源池1和公共资源池2。
以终端设备1为例,N个UL-BWP包括全部的公共资源池是指在这N个UL-BWP中,至少有一个UL-BWP包含全部的公共资源池。
应理解,对于终端设备1和终端设备2来说,它们包含的激活的UL-BWP的数量可以不同,只要激活的UL-BWP中至少有一个UL-BWP包含全部的公共资源池,终端设备1和终端设备2之间就可以进行侧行通信。
2007、终端设备1在激活的UL-BWP上与终端设备2进行侧行通信。
在实例二中,终端设备不仅可以通过公共资源池中的时频资源与其它的终端设备进行侧行通信,终端设备还可以通过专用资源池中的时频资源与其它的终端设备进行侧行通信,与公共资源池不同,专用资源池一般是根据终端设备的能力或者需求,由网络设备配置或者用户根据预配置的资源或者侦听(sensing)来选择,为部分终端设备的UL-BWP配置的资源,下面结合图14对利用公共资源池和专用资源池中的资源进行侧行通信的过程进行详细的描述。
如图14所示,网络设备配置了2个公共资源池和2个专用资源池,分别为公共资源池1(CommonResourcePool#1)、公共资源池2(CommonResourcePool#2),专用资源池1(DedicatedResourcePool#1)和专用资源池2(DedicatedResourcePool#2)。
假设一个小区有4个终端用户,分别为UE-A、UE-B、UE-C和UE-D,网络设备通过RRC信令配置4个UE各自的UL-BWP,各个UE的UL-BWP分别为:
UE-A:UE-A UL-BWP;
UE-B:UE-B UL-BWP;
UE-C:UE-C UL-BWP;
UE-D:UE-D UL-BWP。
其中,每个UE的UL-BWP都覆盖了公共资源池1和公共资源池2。
进一步的,UE-B UL-BWP只覆盖了公共资源池1和公共资源池2,因此,UE-B只能通过公共资源池1和公共资源池2中的时频资源进行侧行通信。UE-C UL-BWP除了覆盖公共资源池1和公共资源池2之外,还覆盖了专用资源池2,UE-A UL-BWP除了覆盖公共资源池1和公共资源池2之外,还覆盖了专用资源池1,UE-D UL-BWP则是覆盖了全部的公共资源池和全部的专用资源池。因此,UE-D可以除了可以通过专用资源池1和专用资源池2中的时频资源与其它三个UE进行侧行通信之外,UE-D还可以通过专用资源池1中的资源与UE-A通信,UE-D还可以通过专用资源池2中的时频资源与UE-C通信。
另外,在实例二中,网络设备在配置资源池时,配置信息中还可以包括下列信息中的至少一种。
(1)侧行控制信息(SA)和侧行数据的复用格式指示信息;
(2)侧行通信时的传输模式;
(2)子载波间隔(subcarrierspacing,SCS)指示信息;
(3)循环前缀(cyclic prefix,CP)指示信息。
上述指示信息的具体指示方式可参见实例一中相关内容,这里不再重复描述。
图15是本申请实施例的终端设备的示意性框图。图15中的终端设备30000与上文中图11和图12中所示的方法是对应的,终端设备30000能够执行图11所示的方法中由终端设备执行的各个步骤,终端设备30000还可以执行图12所示的方法中由终端设备1执行的各个步骤。图11和图12中对本申请实施例的侧行通信方法中的各个步骤的限定和解释同样适用于图15所示的终端设备30000执行的各个步骤,为了简洁,下面在介绍图15所示的终端设备30000适当省略重复的描述。
图15所示的终端设备30000包括:
接收单元30010,用于接收网络设备发送的资源配置信息,所述资源配置信息用于为 所述终端设备配置公共资源,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
所述接收单元30010还用于接收所述网络设备发送的上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个UL-BWP,其中,所述Y个UL-BWP包括所述公共资源对应的频域资源,Y为正整数;
侧行通信单元30020,用于在所述Y个UL-BWP上与其它终端设备进行侧行通信。
当上述侧行通信为终端设备向其它终端设备发送侧行控制信息或侧行数据时,所述侧行通信单元30020可以为收发单元或发送单元;当侧行通信为终端设备从其它终端设备接收侧行应答信息或反馈信息时,所述侧行通信单元30020可以为收发单元或所述接收单元30010。
可选地,上述公共资源具体为公共资源池。
本申请中,通过为终端设备配置包含公共资源对应的频域资源的Y个SL-BWP,使得终端设备能够复用该Y个UL-BWP与其它终端设备进行侧行通信。
可选地,作为一个实施例,所述接收单元30010还用于:接收所述网络设备发送的上行链路BWP配置信息,所述上行链路BWP配置信息用于为所述终端设备配置X个UL-BWP,其中,所述Y个UL-BWP属于所述X个UL-BWP,X为大于或者等于Y的正整数。
可选地,作为一个实施例,所述上行链路BWP配置信息中携带有X个复用格式指示信息,所述X个复用格式指示信息与所述X个UL-BWP一一对应,所述任意一个复用格式指示信息用于指示所述终端设备采用与所述任意一个复用格式指示信息对应的UL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
图16是本申请实施例的网络设备的示意性框图。图16中的网络设备40000与上文中图11和图12中所示的方法是对应的,网络设备40000能够执行图11和图12所示的方法中由网络设备执行的各个步骤。
应理解,图11和图12中对本申请实施例的侧行通信方法中的各个步骤的限定和解释同样适用于图16所示的网络设备40000执行的各个步骤,为了简洁,下面在介绍图16所示的网络设备40000适当省略重复的描述。
图16所示的网络设备40000包括:
发送单元40010,用于向终端设备发送资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
所述发送单元40010还用于向所述终端设备发送上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个UL-BWP,所述Y个UL-BWP包括所述公共资源对应的频域资源,所述Y个UL-BWP用于所述终端设备与其它终端设备进行侧行通信,Y为正整数。
可选地,上述公共资源具体为公共资源池。
本申请中,网络设备通过为终端设备配置包含公共资源对应的频域资源的Y个 SL-BWP,使得终端设备能够复用该Y个UL-BWP与其它终端设备进行侧行通信。
可选地,作为一个实施例,所述发送单元40010还用于:向终端设备发送上行链路BWP配置信息,所述上行链路BWP配置信息用于为所述终端设备配置X个UL-BWP,其中,所述Y个UL-BWP属于所述X个UL-BWP,X为大于或者等于Y的正整数。
可选地,作为一个实施例,所述上行链路BWP配置信息中携带有X个复用格式指示信息,所述X个复用格式指示信息与所述X个UL-BWP一一对应,所述任意一个复用格式指示信息用于指示所述终端设备采用与所述任意一个复用格式指示信息对应的UL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
可选地,作为一个实施例,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
应理解,上述资源配置信息除了携带复用格式指示信息之外,还可以携带传输模式指示信息和参数集(numerology)指示信息,用于指示采用公共资源进行侧行通信时的传输模式以及参数集的情况。
可选地,资源配置信息携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用公共资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,资源配置信息携带有参数集指示信息,该参数集指示信息用于指示终端设备采用公共资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地配置侧行资源,能够提高侧行通信的效果。
应理解,终端设备之间可以通过公共资源进行侧行通信,在某些情况下,有些终端设备对业务的可靠性要求比较高,或者对侧行通信的数据的保密性要求较高,那么,这种情况下,可以通过为某些终端设备单独配置专用资源,使得这些终端设备利用专用资源进行侧行通信。
因此,网络设备除了通过上述资源配置信息为终端设备配置公共资源之外,还可以通过资源配置信息为终端设备配置专用资源。
可选地,上述资源配置信息还用于为终端设备配置专用资源,该资源配置信息携带有复用格式指示信息,该复用格式指示信息用于指示终端设备采用该专用资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,该复用格式包括频分复用和时分复用。
可选地,该资源配置信息还携带有传输模式指示信息,该传输模式指示信息用于指示终端设备采用专用资源进行侧行通信时的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
因此,网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通 信的效果,提高系统性能。
可选地,该资源配置信息还携带有参数集指示信息,该参数集指示信息用于指示终端设备采用专用资源进行侧行通信时的参数集(numerology),该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。上述专用资源具体可以为专用资源池。
网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
应理解,上述终端设备30000和网络设备40000可以共同用于执行上文图11和图12所示的侧行通信方法中,网络设备40000通过资源配置信息为终端设备30000配置资源,使得为终端设备30000配置得到的Y个UL-BWP包含公共资源对应的频域资源,进而使得终端设备30000可以在Y个UL-BWP上与其它终端设备进行侧行通信。
另外,当终端设备由存储器、收发器和处理器构成时,终端设备30000中的接收单元30010相当于收发器,侧行通信单元30020相当于收发器和处理器。
当网络设备由存储器、收发器和处理器构成时,网络设备40000中的发送单元40010相当于收发器。
上文结合图11至图16对本申请实施例的一种侧行通信方法、终端设备和网络设备进行了详细的介绍。在图11至图16所示的方法中,是通过为终端设备设置包含公共资源的UL-BWP,通过复用UL-BWP进行侧行通信,事实上,还可以通过为终端设备配置包含公共SL-BWP的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。下面结合图17和图18对本申请实施例的另一侧行通信方法进行详细的介绍。
图17是本申请实施例的侧行通信方法的示意性流程图。图17所示的方法可以由终端设备执行,图17所示的方法包括步骤310和步骤320,下面对步骤310和步骤320进行详细的介绍。
310、网络设备发送侧行链路BWP指示信息,终端设备接收该侧行链路BWP指示信息。
上述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,N个SL-BWP为终端设备进行侧行通信的带宽部分BWP,N个SL-BWP包含公共SL-BWP,公共SL-BWP为网络设备为网络设备覆盖范围的所有终端设备配置的所有终端设备均需使用的用于侧行通信的频域资源。
320、终端设备在N个SL-BWP上与其它终端设备进行侧行通信。
如图17所示,上述其它终端设备可以包括终端设备1至终端设备i(i为正整数)等至少一个终端设备。也就是说,在图17所示的方法中,终端设备可以在N个SL-BWP上与其它的一个或者多个终端设备进行通信。
本申请中,通过为终端设备配置包含公共SL-BWP的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
可选地,图17所示的方法还包括步骤330,该步骤330包括:终端设备接收所述网络设备发送的侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,其中,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
上述N个SL-BWP可以是被网络设备从M个SL-BWP中激活得到的SL-BWP。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
因此,网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
可选地,Y个UL-BWP与N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
可选地,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
可选地,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
可选地,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
因此,网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
可选地,侧行链路BWP配置信息中携带有M个复用格式指示信息,M个复用格式指示信息与M个SL-BWP一一对应,其中,任意一个复用格式指示信息用于指示采用与任意一个复用格式指示信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,其中,侧行数据和侧行控制信息可用的复用格式包括频分复用和时分复用。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
可选地,侧行链路BWP配置信息中携带有M个传输模式信息,M个传输模式信息与M个SL-BWP一一对应,其中,任意一个传输模式信息用于指示采用与任意一个传输模式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,侧行链路BWP配置信息中携带有M个参数集(numerology)信息,M个参数集信息与M个SL-BWP一一对应,其中,任意一个参数集信息用于指示采用与任意一 个参数集信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。
上文结合图17对本申请实施例的侧行通信方法进行了详细的介绍,为了更好地理解本申请实施例的侧行通信方法,下面结合实例三(对应图18)对终端设备1与终端设备2进行侧行通信的过程进行详细的介绍。
在实例三中,网络设备不再配置资源池,而是直接为多个终端设备配置SL-BWP,并且配置的SL-BWP中包含公共BWP,该公共SL-BWP为网络设备为网络设备覆盖范围的所有终端设备配置的所有终端设备均需使用的用于侧行通信的频域资源。
下面以终端设备1和终端设备2为例并结合图18对实例三中终端设备1和终端设备2进行侧行通信的完整过程进行详细的介绍。
图18所示的方法包括步骤3001至步骤3007,下面对这些步骤进行详细介绍。
3001、网络设备为终端设备1配置M个SL-BWP。
3002、网络设备为终端设备2配置M个SL-BWP。
在上述步骤3001和步骤3002中,网络设备可以通过RRC信令为终端设备配置SL-BWP。
3003、网络设备为终端设备1激活N个SL-BWP。
3004、网络设备为终端设备2激活N个SL-BWP。
在步骤3003和步骤3004中,网络设备可以通过向终端设备1和终端设备2发送激活信令来激活N个SL-BWP。
对于终端设备1来说,激活的N个SL-BWP包括公共BWP,该公共SL-BWP为网络设备为网络设备覆盖范围的所有终端设备配置的所有终端设备均需使用的用于侧行通信的频域资源。
应理解,上述公共SL-BWP的数量可以是一个或者多个。
同样,对于终端设备2来说,激活的N个SL-BWP也包括公共BWP。
3005、终端设备1在激活的N个SL-BWP上的资源池中与终端设备2进行侧行通信。
应理解,图18所示的方法还可以包括以下步骤:
3006、网络设备为终端设备1配置X个BWP;
3007、网络设备为终端设备2配置X个BWP。
在步骤3006和步骤3007中,终端设备具体可以通过RRC信令为终端设备1和终端设备2配置BWP。对于同一个终端设备来说,在同一时刻可以激活至少一个BWP用于通信传输。其中,用于下行通信的带宽中配置的BWP为DL-BWP,用于上行通信的带宽中配置的BWP为UL-BWP。
应理解,步骤3006和步骤3007中的配置BWP中的动作与步骤3001和步骤3002中配置SL-BWP中的动作既可以同时进行,也可以先后进行(配置BWP在前,配置SL-BWP在后,或者,配置SL-BWP在前,配置BWP在后)。
应理解,在实例三中,终端设备1或者终端设备2可以同时进行侧行通信和上行通信,其中,侧行通信和上行通信可以发生在共享载波(shared carrier)上,也就是说SL-BWP 与UL-BWP位于同一载波内。当SL-BWP与UL-BWP位于同一载波内时,SL-BWP可以与L-BWP包含相同的频域资源,进一步的,SL-BWP可以完全位于UL-BWP内部,也就是说,SL-BWP可以完全复用UL-BWP的频域资源。
另外,当SL-BWP与UL-BWP位于同一载波内时,SL-BWP的频域资源也可以与UL-BWP的频域资源没有交集。
可选地,侧行通信和上行通信也发生在独立的载波(shared carrier)上,SL-BWP和UL-BWP不重合。即SL和UL不使用相同的资源。
另外,在实例三中,网络设备在配置资源池时,配置信息中还可以包括下列信息中的至少一种。
(1)侧行控制信息(SA)和侧行数据的复用格式指示信息;
(2)侧行通信时的传输模式;
(2)子载波间隔(subcarrierspacing,SCS)指示信息;
(3)循环前缀(cyclic prefix,CP)指示信息。
上述指示信息的具体指示方式可参见实例一中相关内容,这里不再重复描述。
图19是本申请实施例的终端设备的示意性框图。图19中的终端设备50000与上文中图17和图18中所示的方法是对应的,终端设备50000能够执行图17所示的方法中由终端设备执行的各个步骤,终端设备50000还可以执行图18所示的方法中由终端设备1执行的各个步骤。图17和图18中对本申请实施例的侧行通信方法中的各个步骤的限定和解释同样适用于图19所示的终端设备50000执行的各个步骤,为了简洁,下面在介绍图19所示的终端设备50000适当省略重复的描述。
图19所示的终端设备50000包括:
接收单元50010,用于接收所述网络设备发送的侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,所述N个SL-BWP为所述终端设备进行侧行通信的带宽部分BWP,所述N个SL-BWP包含公共SL-BWP,所述公共SL-BWP为所述网络设备为所述网络设备覆盖范围的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的频域资源;
侧行通信单元50020,用于在所述N个SL-BWP上与其它终端设备进行侧行通信。
本申请中,通过为终端设备配置包含公共SL-BWP的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
可选地,作为一个实施例,其特征在于,所述接收单元50010还用于:接收所述网络设备发送的侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,其中,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
可选地,作为一个实施例,所述接收单元50010还用于:接收所述网络设备发送的上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
可选地,作为一个实施例,所述侧行链路BWP配置信息中携带有M个复用格式指示信息,所述M个复用格式指示信息与所述M个SL-BWP一一对应,其中,任意一个复用格式指示信息用于指示采用与所述任意一个复用格式指示信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,其中,所述侧行数据和侧行控制信息可用的复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
可选地,侧行链路BWP配置信息中携带有M个传输模式信息,M个传输模式信息与M个SL-BWP一一对应,其中,任意一个传输模式信息用于指示采用与任意一个传输模式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,侧行链路BWP配置信息中携带有M个参数集(numerology)信息,M个参数集信息与M个SL-BWP一一对应,其中,任意一个参数集信息用于指示采用与任意一个参数集信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。
图20是本申请实施例的网络设备的示意性框图。图20中的网络设备60000与上文中图17和图18中所示的方法是对应的,网络设备60000能够执行图17和图18所示的方法中由网络设备执行的各个步骤。
应理解,图17和图18中对本申请实施例的侧行通信方法中的各个步骤的限定和解释同样适用于图20所示的网络设备60000执行的各个步骤,为了简洁,下面在介绍图20所 示的网络设备60000适当省略重复的描述。
图20所示的网络设备60000包括:
生成单元60010,用于生成侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,所述N个SL-BWP包含公共SL-BWP,所述公共SL-BWP为所述网络设备为所述网络设备覆盖范围的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的频域资源;
发送单元60020,用于向终端设备发送侧行链路BWP指示信息,其中,所述N个SL-BWP用于所述终端设备与其它终端设备进行侧行通信。
本申请中,网络设备通过为终端设备配置包含公共SL-BWP的N个SL-BWP,使得终端设备能够在该N个SL-BWP上与其它终端设备进行侧行通信。
可选地,作为一个实施例,所述发送单元60020还用于:向所述终端设备发送侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,其中,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
可选地,作为一个实施例,所述发送单元60020还用于:向所述终端设备发送上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
网络设备可以根据业务类型等需求来灵活配置侧行资源,提高系统性能。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP均位于同一载波中。
通过将UL-BWP与SL-BWP配置到同一载波中,能够优化频谱资源利用效率。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP包含第一频域资源,该第一频域资源属于Y个UL-BWP,第一频域资源属于N个SL-BWP。
也就是说,上述Y个UL-BWP与N个SL-BWP包含相同的频域资源(Y个UL-BWP与N个SL-BWP的频域资源有交集)。
当SL-BWP与UL-BWP包含相同的频域资源时,SL-BWP可以复用UL-BWP的部分资源进行侧行通信,能够优化频谱资源的利用效率。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP不包含相同的频域资源。
通过为UL-BWP和SL-BWP配置不同的频域资源,能够使得侧行通信和上行通信之间相互独立,相互之间不产生干扰。
可选地,作为一个实施例,Y个UL-BWP与N个SL-BWP位于不同的载波中。
通过将UL-BWP与SL-BWP配置到不同的载波中,能够在不同的载波上分别进行侧行通信以及上行通信,避免侧行通信与上行通信之间互相产生干扰。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
可选地,作为一个实施例,所述侧行链路BWP配置信息中携带有M个复用格式指示信息,所述M个复用格式指示信息与所述M个SL-BWP一一对应,其中,任意一个复用格式指示信息用于指示采用与所述任意一个复用格式指示信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,其中,所述侧行数据和侧行控制信息可用的复用格式包括频分复用和时分复用。
网络设备通过配置复用格式,可以满足终端设备不同业务的侧行通信需求。
例如,对于超低时延需求的侧行业务,可以配置侧行数据和侧行控制信息在同一时隙(slot)采用时分复用,对于高可靠性需求的侧行业务,则可以配置侧行数据和侧行控制信息在同一时隙采用频分复用。
可选地,侧行链路BWP配置信息中携带有M个传输模式信息,M个传输模式信息与M个SL-BWP一一对应,其中,任意一个传输模式信息用于指示采用与任意一个传输模式信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的传输模式,该传输模式包括单播传输(unicast),组播传输(groupcast)和广播传输(broadcast)。
网络设备能够根据侧行通信的不同需求来灵活配置侧行资源,能够提高侧行通信的效果,提高系统性能。
可选地,侧行链路BWP配置信息中携带有M个参数集(numerology)信息,M个参数集信息与M个SL-BWP一一对应,其中,任意一个参数集信息用于指示采用与任意一个参数集信息对应的SL-BWP进行侧行通信时发送的侧行数据和侧行控制信息的参数集,该参数集包括子载波间隔(subcarrier spacing,SCS)和循环前缀(cyclic prefix,CP)。
网络设备可以根据侧行通信的不同寻求来灵活配置参数集,进而实现灵活地额配置侧行资源,能够提高侧行通信的效果。
另外,当终端设备由存储器、收发器和处理器构成时,终端设备50000中的接收单元50010相当于收发器,侧行通信单元50020相当于收发器和处理器。
当网络设备由存储器、收发器和处理器构成时,网络设备60000中的生成单元60010相当于处理器,发送单元60020相当于收发器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现 有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种侧行通信的方法,其特征在于,包括:
    终端设备接收网络设备发送的资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
    所述终端设备接收所述网络设备发送的侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,其中,所述N个SL-BWP为所述终端设备进行侧行通信的带宽部分BWP,所述N个SL-BWP包含所述公共资源对应的频域资源,N为正整数;
    所述终端设备在所述N个SL-BWP上与其它终端设备进行侧行通信。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
  3. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
  4. 如权利要求3所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP均位于同一载波中。
  5. 如权利要求4所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP包含第一频域资源,所述第一频域资源属于所述Y个UL-BWP,所述第一频域资源属于所述N个SL-BWP。
  6. 如权利要求4所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP不包含相同的频域资源。
  7. 如权利要求3所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP位于不同的载波中。
  8. 如权利要求1-7中任一项所述的方法,其特征在于,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
  9. 一种侧行通信的方法,其特征在于,包括:
    网络设备向终端设备发送资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,其中,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
    所述网络设备向所述终端设备发送侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,所述N个SL-BWP包含所述公共资源 对应的频域资源,所述N个SL-BWP用于所述终端设备与其它终端设备进行侧行通信,N为正整数。
  10. 如权利要求9所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
  11. 如权利要求9或10所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
  12. 如权利要求11所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP均位于同一载波中。
  13. 如权利要求12所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP包含第一频域资源,所述第一频域资源属于所述Y个UL-BWP,所述第一频域资源属于所述N个SL-BWP。
  14. 如权利要求12所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP不包含相同的频域资源。
  15. 如权利要求11所述的方法,其特征在于,所述Y个UL-BWP与所述N个SL-BWP位于不同的载波中。
  16. 如权利要求9-15中任一项所述的方法,其特征在于,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
  17. 一种终端设备,其特征在于,包括:
    接收单元,用于接收网络设备发送的资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
    所述接收单元还用于接收所述网络设备发送的侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,其中,所述N个SL-BWP为所述终端设备进行侧行通信的带宽部分BWP,所述N个SL-BWP包含所述公共资源对应的频域资源,N为正整数;
    侧行通信单元,用于在所述N个SL-BWP上与其它终端设备进行侧行通信。
  18. 如权利要求17所述的终端设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
  19. 如权利要求17或18所述的终端设备,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
  20. 如权利要求19所述的终端设备,其特征在于,所述Y个UL-BWP与所述N个 SL-BWP均位于同一载波中。
  21. 如权利要求20所述的终端设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP包含第一频域资源,所述第一频域资源属于所述Y个UL-BWP,所述第一频域资源属于所述N个SL-BWP。
  22. 如权利要求20所述的终端设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP不包含相同的频域资源。
  23. 如权利要求19所述的终端设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP位于不同的载波中。
  24. 如权利要求17-23中任一项所述的终端设备,其特征在于,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用和时分复用。
  25. 一种网络设备,其特征在于,包括:
    发送单元,用于向终端设备发送资源配置信息,所述资源配置信息用于为所述终端设备配置公共资源,其中,所述公共资源为所述网络设备为所述网络设备覆盖范围内的所有终端设备配置的所述所有终端设备均需使用的用于侧行通信的资源;
    所述发送单元还用于向所述终端设备发送侧行链路BWP指示信息,所述侧行链路BWP指示信息用于指示N个侧行链路带宽部分SL-BWP,所述N个SL-BWP包含所述公共资源对应的频域资源,所述N个SL-BWP用于所述终端设备与其它终端设备进行侧行通信,N为正整数。
  26. 如权利要求25所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送侧行链路BWP配置信息,所述侧行链路BWP配置信息用于为所述终端设备配置M个SL-BWP,所述M个SL-BWP是可用于侧行通信的BWP,其中,所述N个SL-BWP属于所述M个SL-BWP,M为大于或者等于N的正整数。
  27. 如权利要求25或26所述的网络设备,其特征在于,所述发送单元还用于:
    向所述终端设备发送上行链路BWP指示信息,所述上行链路BWP指示信息用于指示Y个上行链路带宽部分UL-BWP,Y为正整数。
  28. 如权利要求27所述的网络设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP均位于同一载波中。
  29. 如权利要求28所述的网络设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP包含第一频域资源,所述第一频域资源属于所述Y个UL-BWP,所述第一频域资源属于所述N个SL-BWP。
  30. 如权利要求28所述的网络设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP不包含相同的频域资源。
  31. 如权利要求27所述的网络设备,其特征在于,所述Y个UL-BWP与所述N个SL-BWP位于不同的载波中。
  32. 如权利要求25-31中任一项所述的网络设备,其特征在于,所述资源配置信息携带有复用格式指示信息,所述复用格式指示信息用于指示所述终端设备采用所述公共资源进行侧行通信时发送的侧行数据和侧行控制信息的复用格式,所述复用格式包括频分复用 和时分复用。
PCT/CN2019/099589 2018-08-10 2019-08-07 侧行通信方法、终端设备和网络设备 WO2020029997A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19846348.1A EP3817485B1 (en) 2018-08-10 2019-08-07 Sidelink communication method, terminal device and network device
US17/173,066 US11943744B2 (en) 2018-08-10 2021-02-10 Sidelink communication method, terminal device, and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810914366.8 2018-08-10
CN201810914366.8A CN110831192B (zh) 2018-08-10 2018-08-10 侧行通信方法、终端设备和网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/173,066 Continuation US11943744B2 (en) 2018-08-10 2021-02-10 Sidelink communication method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2020029997A1 true WO2020029997A1 (zh) 2020-02-13

Family

ID=69414516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099589 WO2020029997A1 (zh) 2018-08-10 2019-08-07 侧行通信方法、终端设备和网络设备

Country Status (4)

Country Link
US (1) US11943744B2 (zh)
EP (1) EP3817485B1 (zh)
CN (1) CN110831192B (zh)
WO (1) WO2020029997A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022031985A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Interaction of multicast band width part (bwp) with multiple bwp

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3820210B1 (en) * 2018-07-03 2024-09-18 Ntt Docomo, Inc. Communication device and base station
CN110958700B (zh) * 2018-09-27 2022-04-22 维沃移动通信有限公司 一种副链路资源确定方法和设备
CN112771964B (zh) * 2018-09-27 2024-05-07 夏普株式会社 用于v2x通信的带宽部分配置
CN111436089B (zh) 2019-01-11 2021-08-20 华为技术有限公司 通信的方法和装置
EP3897050A4 (en) * 2019-01-11 2022-01-26 Huawei Technologies Co., Ltd. COMMUNICATION METHOD AND DEVICE
JP7434331B2 (ja) 2019-01-11 2024-02-20 オッポ広東移動通信有限公司 サイドリンク通信の方法、端末機器及びネットワーク機器
CN111436121B (zh) * 2019-01-11 2021-11-19 华为技术有限公司 一种旁链路资源的配置方法及装置
CN115868200A (zh) * 2020-10-23 2023-03-28 华为技术有限公司 处理侧行链路进程的方法及装置
CN115550889B (zh) * 2021-06-29 2024-09-20 维沃移动通信有限公司 传输方法、装置、设备及介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733507A (zh) * 2016-08-12 2018-02-23 华硕电脑股份有限公司 无线通信系统中确定测量的基础参数带宽的方法和设备
CN107734693A (zh) * 2016-08-12 2018-02-23 华硕电脑股份有限公司 无线通信系统中用于确定基础参数带宽的方法和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8780789B2 (en) * 2011-02-16 2014-07-15 Telefonaktiebolaget L M Ericsson (Publ) Methods and nodes related to coding of channel status information (CSI) payload
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
KR101983829B1 (ko) * 2014-08-03 2019-09-03 엘지전자 주식회사 무선 통신 시스템에서 단말 간 통신을 위한 방법 및 이를 위한 장치
WO2016021202A1 (en) * 2014-08-08 2016-02-11 Sharp Kabushiki Kaisha A mechanism of resource-pool monitoring for inter-cell device-to-device communication
CN104869526B (zh) * 2015-04-10 2019-02-12 电信科学技术研究院 一种设备到设备通信及其资源分配方法、设备
US10616864B2 (en) * 2015-08-07 2020-04-07 Sharp Kabushiki Kaisha Allocating resources for wireless sidelink direct communications
CN113949497B (zh) * 2015-08-13 2024-03-12 株式会社Ntt都科摩 终端、通信方法以及无线通信系统
WO2017152416A1 (zh) * 2016-03-11 2017-09-14 华为技术有限公司 传输上行控制信息的方法和装置
US10506402B2 (en) * 2016-03-31 2019-12-10 Samsung Electronics Co., Ltd. Method and apparatus for transmission of control and data in vehicle to vehicle communication
US10880897B2 (en) * 2016-05-13 2020-12-29 Apple Inc. Apparatus of a user equipment (UE) to select resources in a vehicle to vehicle (V2V) communication system
CN107889222B (zh) * 2016-09-29 2022-03-08 华为技术有限公司 信号传输方法、终端设备、网络设备和通信系统
US10631280B2 (en) * 2016-11-03 2020-04-21 Telefonaktiebolaget Lm Ericsson (Publ) Variable subband configuration of search space
KR102628326B1 (ko) * 2016-12-27 2024-01-24 5쥐 아이피 홀딩스 엘엘씨 대역폭 부분(bwp) 지시자를 시그널링하는 방법 및 이를 이용하는 무선 통신 장비
CN110234094B (zh) 2018-03-05 2024-03-01 华为技术有限公司 一种资源配置方法、第一通信设备、第二通信设备及系统
US11432369B2 (en) * 2018-06-19 2022-08-30 Apple Inc. Reference signal and control information processing in 5G-NR wireless systems
US11382083B2 (en) * 2018-07-23 2022-07-05 Samsung Electronics Co., Ltd. Method and apparatus for high reliability transmission in vehicle to everything (V2X) communication
US11457431B2 (en) * 2018-08-03 2022-09-27 FG Innovation Company Limited Sidelink radio resource allocation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733507A (zh) * 2016-08-12 2018-02-23 华硕电脑股份有限公司 无线通信系统中确定测量的基础参数带宽的方法和设备
CN107734693A (zh) * 2016-08-12 2018-02-23 华硕电脑股份有限公司 无线通信系统中用于确定基础参数带宽的方法和设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RANI: "Reply LS on Subcarrier Spacing for BWPs and TDD Configurations", 3GPP TSG RAN WG1 MEETING #93 R1-1807676, 24 May 2018 (2018-05-24), XP051463306 *
See also references of EP3817485A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022031985A1 (en) * 2020-08-07 2022-02-10 Qualcomm Incorporated Interaction of multicast band width part (bwp) with multiple bwp
US12035334B2 (en) 2020-08-07 2024-07-09 Qualcomm Incorporated Interaction of multicast band width part (BWP) with multiple BWP

Also Published As

Publication number Publication date
US11943744B2 (en) 2024-03-26
EP3817485B1 (en) 2024-08-07
CN110831192A (zh) 2020-02-21
US20210168766A1 (en) 2021-06-03
EP3817485A4 (en) 2021-09-22
CN110831192B (zh) 2024-07-19
EP3817485A1 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
WO2020029997A1 (zh) 侧行通信方法、终端设备和网络设备
EP3783960B1 (en) Method for allocating sidelink resource, device, and system
US11395291B2 (en) Allocating transmission resources in communication networks that provide low latency services
WO2016138822A1 (zh) 资源处理方法及装置
EP3937519B1 (en) Communication method and apparatus
CN107743721A (zh) 用于正交频分多址(ofdma)信道化的目标唤醒时间(twt)调度
JP7046169B2 (ja) 情報伝送方法および装置
CN110830954B (zh) 一种直接链路通信的方法、终端及网络设备
WO2013185624A1 (zh) 配置资源与接收下行控制信息的方法和终端设备
WO2019170097A1 (zh) 一种确定控制信道位置方法设备和处理器可读存储介质
WO2015026929A1 (en) Methods and devices for allocating resources in device-to device communication
WO2017135026A1 (ja) 無線通信装置、通信方法、コンピュータプログラム及び無線通信システム
CN111083785A (zh) 资源配置的确定、指示方法及装置
KR20200014423A (ko) 리소스 블록 그룹 크기를 결정하기 위한 방법 및 장치
WO2015139328A1 (zh) 一种利用非授权频谱的数据调度方法、装置和设备
CN109803422B (zh) 一种资源激活的方法及相关设备
CN108811154A (zh) 数据包传输方法和设备
CN113615281A (zh) 5g-nr集成接入回程网络中的子分布式单元资源配置信息信令
CN111953464A (zh) 频域资源的处理方法、装置及系统
CN109644454A (zh) 终端唤醒控制方法、装置及存储介质
CN110971349B (zh) 一种重复传输方法、终端和网络侧设备
WO2015000113A1 (zh) 一种载波状态指示方法及设备
WO2011082696A1 (zh) 通知载波指示信息以及获知载波信息的方法及装置
EP3534639B1 (en) Information transmission method and terminal apparatus
WO2020078456A1 (zh) 业务的发送方法、装置及终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846348

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019846348

Country of ref document: EP

Effective date: 20210128

NENP Non-entry into the national phase

Ref country code: DE