WO2020029974A1 - 数据传输方法、芯片、控制器及显示装置 - Google Patents

数据传输方法、芯片、控制器及显示装置 Download PDF

Info

Publication number
WO2020029974A1
WO2020029974A1 PCT/CN2019/099510 CN2019099510W WO2020029974A1 WO 2020029974 A1 WO2020029974 A1 WO 2020029974A1 CN 2019099510 W CN2019099510 W CN 2019099510W WO 2020029974 A1 WO2020029974 A1 WO 2020029974A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
controller
driving chip
bit
target driving
Prior art date
Application number
PCT/CN2019/099510
Other languages
English (en)
French (fr)
Inventor
郭志杰
陈明
王洁琼
段欣
罗信忠
朱昊
Original Assignee
京东方科技集团股份有限公司
北京京东方显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方显示技术有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/643,261 priority Critical patent/US11231805B2/en
Publication of WO2020029974A1 publication Critical patent/WO2020029974A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/102Program control for peripheral devices where the programme performs an interfacing function, e.g. device driver
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1407General aspects irrespective of display type, e.g. determination of decimal point position, display with fixed or driving decimal point, suppression of non-significant zeros
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/08Details of timing specific for flat panels, other than clock recovery
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2370/00Aspects of data communication

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a data transmission method, a chip, a controller, and a display device.
  • the display panel driving part usually includes a timing controller (English: Timing Controller), a source driver (English: Source Driver), and a gate driver (English: Gate Driver).
  • the source driver includes a plurality of source driver chips.
  • the electrode driver includes a plurality of gate driving chips.
  • a driving chip in a display device can only perform voltage data writing operations under the control of a timing controller.
  • the timing controller processes each frame of image data to generate a data signal corresponding to each frame of image data
  • control signals the data signals are transmitted to a plurality of source driver chips connected in parallel, and each source driver chip converts the received data signals into data voltages to be written into corresponding pixels on the display panel.
  • An embodiment of the present disclosure provides a data transmission method, a chip, a controller, and a display device.
  • the technical solution is as follows:
  • a data transmission method applied to a target driving chip in a display device including a controller, a plurality of driving chips, and an in-cell touch display panel.
  • the target driving chip is one of the plurality of driving chips, and the target driving chip is respectively connected to the controller and the in-cell touch display panel, and the method includes:
  • the state data is used to reflect a working state of the in-cell touch display panel, and the state data includes touch data;
  • controller and the target driving chip are connected through a first differential signal line;
  • the sending back data to the controller includes:
  • the sending the backhaul data to the controller through the first differential signal line includes:
  • Each data packet includes: a start bit, a data bit, and an end bit arranged in order, the start bit is used to indicate the start of data transmission, the data bit is used to carry data to be transmitted, and the end bit is used to Indicates the end of data transmission.
  • each of the data packets further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and located between the data bit and the end bit.
  • the setting mode bit is used to indicate a mode setting mode of the data packet
  • the mode setting bit is used to indicate a mode of the data packet
  • the check bit is used to perform data verification
  • the packet mode includes request mode or response mode.
  • the touch data includes at least one of a group consisting of touch position data and touch pressure data.
  • the return data further includes: at least one of a group consisting of first instruction information, working mode data of the driving chip, and second instruction information;
  • the first instruction information is used to indicate whether the working state of the in-cell touch display panel is abnormal
  • the second instruction information is used to indicate whether the working state of the target driving chip is abnormal.
  • the in-cell touch display panel includes: a sensor, and receiving the status data acquired by the in-cell touch display panel includes:
  • the method before the sending back data to the controller, the method further includes:
  • the backhaul data including the status data in the form of a digital signal.
  • controller and the target driving chip are connected through a first differential signal line, and the controller and the target driving chip are also connected through a second differential signal line, and the method further includes:
  • the sending the backhaul data to the controller includes:
  • the backhaul data is sent to the controller in real time through the first differential signal line.
  • the in-cell touch display panel is an OLED display panel, a quantum dot display panel, a micro light emitting diode display panel, or a liquid crystal display panel integrated with a touch function layer,
  • the driving chip is a source driving chip or a gate driving chip
  • the controller is any one of a timing controller, a system chip SOC, and a micro control unit MCU integrated in the timing controller.
  • a data transmission method applied to a controller in a display device including the controller, a plurality of driving chips, and an embedded touch display panel.
  • the methods include:
  • the backhaul data includes: status data;
  • the target driving chip is one of the plurality of driving chips, and the target driving chip is respectively connected to the controller and the embedded touch display panel; the returned data is Sent by the target driving chip to the controller after receiving the status data acquired by the embedded touch display panel, the status data is used to reflect the working status of the embedded touch display panel,
  • the status data includes touch data.
  • controller and the target driving chip are connected through a first differential signal line
  • the receiving backhaul data sent by the target driving chip includes:
  • the receiving the return data sent by the target driving chip through the first differential signal line includes:
  • the data packet includes: a start bit, a data bit, and an end bit arranged in sequence, the start bit is used to indicate the start of data transmission, the data bit is used to carry data to be transmitted, and the end bit is used to Indicates the end of data transmission.
  • the data packet further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • Check Digit a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • the setting mode bit is used to indicate a mode setting mode of the data packet
  • the mode setting bit is used to indicate a mode of the data packet
  • the check bit is used to perform data verification
  • the packet mode includes request mode or response mode.
  • controller and the target driving chip are further connected through a second differential signal line, and the method further includes:
  • the receiving the return data sent by the target driving chip through the first differential signal line includes:
  • a target driving chip is provided.
  • the display device where the target driving chip is located includes a controller, a plurality of driving chips, and an embedded touch display panel.
  • One of the plurality of driving chips, the target driving chip is respectively connected to the controller and the embedded touch display panel, and the target driving chip includes:
  • a first receiving module is configured to receive status data obtained by the in-cell touch display panel, the state data is used to reflect a working state of the in-cell touch display panel, and the state data includes: ⁇ ⁇ ; Control data;
  • the sending module is configured to send back data to the controller, where the back data includes the status data.
  • controller and the target driving chip are connected through a first differential signal line
  • the sending module includes:
  • a sending submodule configured to send the backhaul data to the controller through the first differential signal line.
  • controller and the target driving chip are further connected through a second differential signal line, and the device further includes:
  • a second receiving module configured to receive a control signal sent by the controller through the second differential signal line
  • the sending sub-module is configured to:
  • the backhaul data is sent to the controller in real time through the first differential signal line.
  • the sending sub-module is configured to:
  • the data packet includes: a start bit, a data bit, and an end bit arranged in sequence, the start bit is used to indicate the start of data transmission, the data bit is used to carry data to be transmitted, and the end bit is used to Indicates the end of data transmission.
  • the data packet further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • Check Digit a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • the setting mode bit is used to indicate a mode setting mode of the data packet
  • the mode setting bit is used to indicate a mode of the data packet
  • the check bit is used to perform data verification
  • the packet mode includes request mode or response mode.
  • the touch data includes at least one of a group consisting of touch position data and touch pressure data.
  • the return data further includes: at least one of a group consisting of first instruction information, working mode data of the driving chip, and second instruction information; the first instruction information is used to indicate Whether the working state of the in-cell touch display panel is abnormal, and the second indication information is used to indicate whether the working state of the target driving chip is abnormal.
  • the in-cell touch display panel includes a sensor, and the first receiving module is configured to receive the touch data and data collected by the sensor.
  • the target driving chip further includes:
  • a conversion module configured to perform analog-to-digital conversion on the status data in the form of an analog signal to obtain the status data in the form of a digital signal before the sending back data to the controller;
  • a generating module is configured to generate the backhaul data, where the backhaul data includes the status data in a digital signal form.
  • the controller and the target driving chip are connected through a first differential signal line, and the controller and the target driving chip are also connected through a second differential signal line.
  • the target driving chip further includes:
  • a second receiving module configured to receive a control signal sent by the controller through the second differential signal line
  • the sending module is configured to send the backhaul data to the controller in real time through the first differential signal line.
  • the target driving chip is a source driving chip or a gate driving chip
  • the embedded touch display panel is an OLED display panel, a quantum dot display panel, or a micro light emitting diode display with integrated touch function layer. Panel or liquid crystal display panel;
  • the controller is any one of a timing controller, a system chip SOC, and a micro control unit MCU integrated in the timing controller.
  • a controller is provided.
  • the display device where the controller is located further includes a plurality of driving chips and an embedded touch display panel.
  • the controller includes:
  • a receiving module configured to receive backhaul data sent by the target driving chip, where the backhaul data includes: status data;
  • the target driving chip is one of the plurality of driving chips, and the target driving chip is respectively connected to the controller and the embedded touch display panel; the returned data is Sent by the target driving chip to the controller after receiving the status data acquired by the embedded touch display panel, the status data is used to reflect the working status of the embedded touch display panel,
  • the status data includes touch data.
  • controller and the target driving chip are connected through a first differential signal line
  • the receiving module includes:
  • a receiving submodule configured to receive the return data sent by the target driving chip through the first differential signal line.
  • the receiving sub-module is configured to:
  • the data packet includes: a start bit, a data bit, and an end bit arranged in sequence, the start bit is used to indicate the start of data transmission, the data bit is used to carry data to be transmitted, and the end bit is used to Indicates the end of data transmission.
  • the data packet further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • Check Digit a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • the setting mode bit is used to indicate a mode setting mode of the data packet
  • the mode setting bit is used to indicate a mode of the data packet
  • the check bit is used to perform data verification
  • the packet mode includes request mode or response mode.
  • the controller is further connected to the target driving chip through a second differential signal line, and the controller further includes:
  • a sending module configured to send a control signal to the target driving chip through a second differential signal line
  • the receiving sub-module is configured to:
  • a target driving chip there is provided a target driving chip.
  • the display device includes a controller, a plurality of driving chips, and an embedded touch display panel.
  • the target driving chip is the plurality of driving chips.
  • One of the driving chips, the target driving chip is respectively connected to the controller and the embedded touch display panel, and the target driving chip includes:
  • a memory for storing executable instructions of the processor
  • the processor can execute the data transmission method according to any one of the first aspects.
  • a controller is provided.
  • the display device where the controller is located further includes a plurality of driving chips and an embedded touch display panel.
  • the target driving chip includes:
  • a memory for storing executable instructions of the processor
  • the processor can execute the data transmission method according to any one of the second aspects.
  • a display device includes: a controller, a plurality of driving chips, and an in-cell touch display panel;
  • the controller is the controller according to any one of the fourth aspects, and the plurality of driving chips include the target driving chip according to any one of the third aspects;
  • the controller is the controller according to the sixth aspect, and the plurality of driving chips include the target driving chip according to the fifth aspect.
  • the controller is connected to the target driving chip through a first differential signal line, and the target driving chip is configured to send back data to the controller through the first differential signal line.
  • the controller and the target driving chip are connected through a first differential signal line and a second differential signal line;
  • the controller is configured to send a control signal to the target driving chip through the second differential signal line;
  • the target driving chip is configured to send back data to the controller in real time through the first differential signal line.
  • a computer-readable storage medium stores instructions; when the instructions are run on a processing component of a computer, the processing component is caused to execute the foregoing The data transmission method according to any one aspect, or causing the processing component to execute the data transmission method according to any one of the second aspect.
  • FIG. 1 is a schematic diagram of an application environment of a data transmission method according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of an application environment of another data transmission method according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of an application environment of another data transmission method according to an embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a touch function layer according to an exemplary embodiment.
  • Fig. 5 is a schematic structural diagram of another touch function layer according to an exemplary embodiment.
  • Fig. 6 is a flow chart showing a data transmission method according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing another data transmission method according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing still another data transmission method according to an exemplary embodiment.
  • Fig. 9 is a schematic structural diagram of a data packet transmitted on a first differential signal line according to an exemplary embodiment.
  • Fig. 10 is a schematic structural diagram of a data packet transmitted on another first differential signal line according to an exemplary embodiment.
  • Fig. 11 is a schematic diagram illustrating a connection relationship between an in-cell touch display panel, a target driving chip, and a controller according to an exemplary embodiment.
  • Fig. 12 is a block diagram showing a target driving chip according to an exemplary embodiment.
  • Fig. 13 is a block diagram showing a sending module according to an exemplary embodiment.
  • Fig. 14 is a block diagram showing another target driving chip according to an exemplary embodiment.
  • Fig. 15 is a block diagram illustrating yet another target driving chip according to an exemplary embodiment.
  • Fig. 16 is a block diagram showing a controller according to another exemplary embodiment.
  • Fig. 17 is a block diagram of a receiving module according to another exemplary embodiment.
  • Fig. 18 is a block diagram showing another controller according to another exemplary embodiment.
  • Fig. 19 is a block diagram showing a target driving chip according to still another exemplary embodiment.
  • Fig. 20 is a block diagram showing another controller according to still another exemplary embodiment.
  • Fig. 21 is a block diagram showing a display device according to an exemplary embodiment.
  • FIG. 1 is a schematic diagram of an application environment of a data transmission method according to an embodiment of the present disclosure.
  • the data transmission method is applied to a display device, which includes a controller 01, a plurality of The driving chip 02 and the in-cell touch display panel 03.
  • the in-cell touch display panel is a display panel integrated with a touch function layer (referred to as a touch layer), that is, a display panel embedded with a touch function layer (for example, the touch function layer is embedded in a pixel of the display panel).
  • the in-cell touch display panel can be an OLED (Organic Light-Emitting Diode) display panel, a quantum dot display panel, a micro light-emitting diode display panel, or an LCD (Liquid Crystal Display).
  • the micro light emitting diode in the embodiment of the present disclosure may include: a micro light emitting diode (English: Micro Light Emitting Diode; abbreviation: Micro LED) or a mini light emitting diode (English: mini Light Emitting Diode; abbreviation: mini-LED).
  • the plurality of driving chips 02 are all connected to the controller 01. At least one of the plurality of driving chips 02 is also connected to the in-cell touch display panel 03. The at least one driving chip 02 has a transmission function of returning data.
  • FIG. 1 illustrates that the plurality of driving chips 02 have the function of transmitting back data and are connected to the in-cell touch display panel 03 as an example, but this is not a limitation.
  • the controller 01 can control the driving chip 02. Based on this, the data transmission method provided by the embodiment of the present disclosure can obtain the data obtained by the in-cell touch display panel by returning data. Postback of status data.
  • the controller 01 may be connected to each of the at least one driving chip 02 through a first signal line L1 and a second signal line L2.
  • Each of the at least one driving chip 02 can send back data to the controller 01 through the first signal line L1, and the controller 01 can send each of the at least one driving chip 02 through the second signal line L2.
  • the driving chip 02 sends a control signal.
  • FIG. 2 illustrates that a plurality of driving chips 02 are connected to the controller 01 through the first signal line L1 and the second signal line L2 as an example, but it is not limited thereto.
  • the above driving chip may be a source driving chip or a gate driving chip; the controller may be a timing controller, a system chip (English: System; Chip: SOC for short), and a micro control unit (English: Microcontroller Unit (MCU).
  • FIG. 3 uses the controller as the timing controller 011 and the driving chip as the source driving chip 021 as an example for description. As shown in FIG. 3, the timing controller 011 is connected to the source driving chips 021 in one-to-one correspondence through a plurality of second signal lines L2, and the timing controller 011 is respectively connected to a plurality of sources through at least one first signal line L1.
  • the pole driving chip 021 has a one-to-one corresponding connection with a chip having a transmission function of returning data (that is, capable of transmitting the returning data).
  • the timing controller 011 is further connected with a third signal line H, and the plurality of source driving chips 021 are connected in parallel and connected to the third signal line H; the third signal line can be used to identify the level status, For example, the level state of the pins of the source driving chip is set to a high level or a low level through the third signal line H.
  • the first signal line and the second signal line may be high-speed signal lines, and the third signal line may be a low-speed signal line. It should be noted that if the signal line for connecting the above-mentioned in-cell touch display panel 03 and the driving chip 02 is a fourth signal line, the fourth signal line may also be a high-speed signal line. In this case, the first signal The signal transmission rate of the line, the signal transmission rate of the second signal line, and the transmission rate of the fourth signal line are all greater than the signal transmission rate of the third signal line.
  • the first signal line, the second signal line, and the fourth signal line are differential signal lines
  • the third signal line is an ordinary signal line (not a differential signal line).
  • the multiple driving chips may be respectively connected to multiple touch signal output terminals of the in-cell touch display panel.
  • the touch function layer of the in-cell touch display panel is divided into a mutual-capacitive touch function layer and a self-capacitive touch function layer according to different touch principles.
  • the mutual-capacitive touch function layer includes a plurality of touch driving lines Tx arranged horizontally (that is, the row direction of pixels in the panel), and a plurality of touch sensing lines that are arranged vertically (that is, the column direction of pixels in the panel) Line Rx.
  • Each touch driving line Tx crosses a touch sensing line Rx to form a touch unit 001, one touch driving line Tx corresponds to one row of touch units 001, and one touch sensing line Rx corresponds to one column of touch units 001.
  • FIG. 4 uses a total of eight touch sensing lines Rx and a total of 56 touch driving lines Tx as examples, and the number of Rx and Tx is not limited in the embodiment of the present disclosure.
  • the embedded touch display panel sequentially inputs a touch scan signal to the touch driving line Tx in the mutual capacitive touch function layer, and collects each touch sensing line Rx
  • the position of the touch point (such as the position of the touched unit 001 being touched) is determined according to the sensing signal on each touch sensing line Rx.
  • the above-mentioned touch function can be implemented by a touch driving integrated circuit (English: integrated circuit; IC for short) in an in-cell touch display panel, that is, the above-mentioned touch driving IC can be used to input a touch scanning signal and collect sensing Signal and determine the location of the touch point.
  • the above-mentioned touch signal output terminal may be a terminal of the touch sensing line Rx.
  • each driving chip having a function of transmitting back data may be connected to at least one touch sensing line Rx (for example, each driving chip having a function of transmitting back data may be connected to a set of touch sensing lines, each group
  • the touch sensing line includes at least two adjacent touch sensing lines.
  • the driving chip shares the functions of a part of the touch driving IC; in another optional implementation manner, each has a transmission of return data
  • the functional driving chip can be connected to the touch driving IC, that is, the touch signal output terminal is a terminal of the touch driving IC.
  • the driving chip realizes the fast return of the data of the touch driving IC to the controller.
  • the driving chip and the touch signal output terminal are connected through a differential signal line.
  • the self-capacitive touch functional layer usually includes a single layer of indium tin oxide (English: Indium Tin Oxide; ITO for short).
  • the single-layer ITO includes a plurality of touch units 002 arranged in an array, and each touch unit 002 is connected to one touch line Mx, that is, one touch line Mx corresponds to one touch unit.
  • the in-cell touch display panel can simultaneously input a touch scan signal to each Mx in the self-capacitive touch function layer and collect a sensing signal on each Mx.
  • the position of the touch point (such as the position of the touched touch unit 002) is determined.
  • the touch function may be implemented by a touch driving IC, that is, the touch driving IC may be used to input a touch scanning signal and collect a sensing signal, and determine a position of a touch point.
  • the touch signal output terminal may be a terminal of a touch line Mx.
  • Each driving chip with a function of transmitting back data may be connected to at least one touch line Mx (for example, each driving chip having a function of transmitting data back may be connected to a group of touch lines, each group of touch lines including adjacent At least 2 touch lines), at this time, the driving chip shares the functions of a part of the touch driving IC; in another optional implementation manner, each driving chip having a function of transmitting back data can communicate with the touch
  • the control drive IC is connected, that is, the touch signal output terminal is a touch drive IC. At this time, the drive chip realizes fast data transfer between the controller and the touch drive IC.
  • the driving chip and the touch signal output terminal are connected through a differential signal line.
  • the touch function layer in the in-cell touch display panel and the display function layer in the display panel can be reused.
  • the display panel is an OLED display panel, that is, its display function layer is implemented based on OLED
  • the touch function layer is a mutual-capacitive touch function layer
  • the layer where the touch sensing line is located and the layer where the touch driving line is located At least one of the layers is multiplexed with the electrode layer of the OLED, and the electrode layer may be one of a cathode layer and an anode layer; when the touch function layer is a self-capacitive touch function layer, the layer where the touch line is located is the same as that of the OLED.
  • the electrode layer is multiplexed, and the electrode layer may be one of a cathode layer and an anode layer.
  • the display panel is an LCD display panel, that is, its display function layer is based on a liquid crystal layer, and a pixel electrode layer and a common electrode layer for controlling the liquid crystal layer are implemented, when the touch function layer is a mutual capacitance touch In the functional layer, at least one of the layer where the touch sensing line is located and the layer where the touch driving line is located is multiplexed with the electrode layer in the display functional layer.
  • the electrode layer may be one of a pixel electrode layer and a common electrode layer;
  • the control function layer is a self-capacitive touch function layer
  • the layer where the touch line is located is multiplexed with the electrode layer in the display function layer
  • the electrode layer may be one of a pixel electrode layer and a common electrode layer.
  • the above-mentioned in-cell touch display panel may further include a sensor, and the sensor includes at least one of a group consisting of a temperature sensor, a position sensor, an infrared sensor, and an ultrasonic sensor.
  • the corresponding returned status data includes data collected by sensors.
  • each driving chip having a function of transmitting data can be connected to a touch signal output terminal and a signal output terminal of a sensor, respectively, and the corresponding returned status data includes: touch data and Data collected by the sensor; in another optional embodiment, a part of the driving chip in the display device is connected to the touch signal output terminal, and the status data returned by the sensor includes touch data, and the other part drives the signal output from the chip and the sensor Terminal connection.
  • the status data returned by the terminal includes data collected by the sensor.
  • the drive chip and the signal output terminal of the sensor are connected through a differential signal line.
  • An embodiment of the present disclosure provides a data transmission method. As shown in FIG. 6, the method is applied to a target driving chip in a display device as shown in FIG. 1 to FIG. 3.
  • the target driving chip is one of a plurality of driving chips. chip.
  • the target driving chip may be any one of the plurality of driving chips, or a specified one of the plurality of driving chips, which is not limited in the embodiment of the present disclosure.
  • the target driving chip is respectively connected with the controller and the embedded touch display panel.
  • the method includes:
  • Step 301 Receive status data obtained by the in-cell touch display panel, and the state data is used to reflect a working state of the in-cell touch display panel.
  • Step 302 Send back data to the controller.
  • the back data includes status data
  • the status data includes touch data.
  • the target driving chip can receive the status data obtained by the in-cell touch display panel and transmit the status data to the controller by returning the data, which enriches the driving chip.
  • the function improves the utilization of the driver chip.
  • An embodiment of the present disclosure provides a data transmission method. As shown in FIG. 7, the method is applied to a controller in a display device as shown in FIG. 1 to FIG. 3.
  • the display device includes a controller, a plurality of driving chips, and an embedded device.
  • Touch display panel the method includes:
  • Step 401 Receive backhaul data sent by the target driver chip, where the backhaul data includes status data.
  • the target driving chip is respectively connected to the controller and the embedded touch display panel.
  • the target driving chip is one of a plurality of driving chips.
  • the target driving chip may be any of the plurality of driving chips.
  • the returned data is sent by the target driver chip to the controller after receiving the status data obtained by the embedded touch display panel.
  • the status data is used to reflect the working status of the embedded touch display panel.
  • the status data includes: ⁇ ⁇ Control data.
  • the target driving chip can receive the status data obtained by the in-cell touch display panel and transmit the status data to the controller by returning the data, which enriches the driving chip.
  • the function improves the utilization of the driver chip.
  • An embodiment of the present disclosure provides a data transmission method, as shown in FIG. 8, which is applied to a display device shown in any one of FIGS. 1 to 3.
  • the display device includes a controller, multiple driving chips, and an embedded touch display panel.
  • the target driving chip is one of the multiple driving chips.
  • the target driving chip is connected to the controller and the embedded touch display panel, respectively.
  • the method includes:
  • Step 501 The in-cell touch display panel obtains status data.
  • the status data is used to reflect the working status of the in-cell touch display panel.
  • the state data may include touch data, which includes at least one of a group consisting of touch position data and touch pressure data.
  • the touch position data is used to indicate the position of the touch point, which may be a coordinate value;
  • the touch pressure data is used to indicate the pressure to which the touch point is subjected, which may be a pressure value.
  • the status data may further include first indication information indicating whether the working state of the in-cell touch display panel is abnormal.
  • the first indication information includes two types of normal indication information and abnormal indication information.
  • the normal indication information is used to indicate that the working state of the in-cell touch display panel is not abnormal (that is, normal); the abnormal indication information is used to indicate that the in-cell touch display panel is abnormal.
  • the working state of the control display panel is abnormal.
  • the first indication information may be represented by a preset character, for example, 0 indicates normal indication information, and 1 indicates abnormal indication information.
  • the target driving chip is connected to a signal output terminal of the sensor, and the status data may further include data collected by the sensor.
  • the in-cell touch display panel needs to acquire not only the above-mentioned touch data, but also the data collected by the sensor.
  • the senor includes at least one of a group consisting of a temperature sensor, a position sensor, an infrared sensor, and an ultrasonic sensor.
  • the data collected by the sensor may include temperature data.
  • the sensor includes a position sensor the data collected by the sensor may include position data.
  • the sensor includes an infrared sensor the data collected by the sensor may include infrared data.
  • the sensor includes an ultrasonic sensor the data collected by the sensor may include ultrasonic data.
  • Step 502 The in-cell touch display panel sends status data to the target driving chip.
  • the target driving chip may establish a connection with the embedded touch display panel in a specified manner, and the embedded touch display panel may send status data to the target driving chip through the connection.
  • the connection may be a circuit connection, a data line connection, or a flexible circuit board (English: Flexible Printed Circuit (FPC)) connection, which is not limited in the embodiments of the present disclosure.
  • the embedded touch display panel may send a target drive chip in step 502: return data of data collected by the sensor including the touch data .
  • Step 503 The target driving chip generates return data, and the return data includes status data.
  • the target driving chip After the target driving chip receives the status data obtained by the in-cell touch display panel, it can generate return data based on the status data.
  • the status data may have multiple forms.
  • the target driving chip may have different processing modes. The embodiments of the present disclosure are described by taking the following two forms of status data as examples.
  • the status data may be raw data, also called raw data. That is, in step 502, after the in-cell touch display panel obtains the status data, the status data is not processed and is directly sent to the target driving chip. Of course, this data needs to be sent in a format agreed with the target driver chip.
  • Unprocessed status data is usually status data in the form of analog signals.
  • the target driver chip can directly send the status data to the controller as return data, or process the status data to generate return data. Send back the data to the controller.
  • the processing process includes: the target driving chip performs analog-to-digital conversion on the status data in the form of analog signals to obtain the status data in the form of digital signals. After that, the target driving chip generates return data, which includes status data in the form of digital signals.
  • the above-mentioned process of performing analog-to-digital conversion of the state data in the form of an analog signal may be implemented by an analog-to-digital converter (English: Analog-to-Digital Converter) (ADC for short) integrated in a target driving chip.
  • ADC Analog-to-Digital Converter
  • the status data may be processed data, that is, in step 502, the embedded touch display panel processes the status data after acquiring the status data. And send the processed status data to the target driver chip.
  • this data needs to be sent in a format agreed with the target driver chip.
  • the processed status data is usually status data in the form of digital signals, and the target driving chip can directly send the status data to the controller as return data.
  • the return data may also include the information of the target driver chip, so that the target driver chip can realize the return of its own information, which further enriches the functions of the target driver chip.
  • the returned data includes at least one of the group consisting of the operating mode data of the target driving chip and the second instruction information indicating whether the operating state of the driving chip is abnormal.
  • the information of the target driving chip may also include other information, such as the data processing rate of the driving chip and the like.
  • the working mode data is used to indicate the working mode of the target driving chip, and the working mode is used to indicate the current data processing rate of the target driving chip.
  • the working mode of the target driving chip includes a low-speed working mode or a high-speed working mode, and the data processing rate of the high-speed working mode is greater than the data processing rate of the low-speed working mode.
  • the target driver chip can dynamically switch the working mode according to its specific usage scenario.
  • the target driving chip may determine its working mode according to the amount of data that needs to be processed currently. For example, there are m processing modules on the target driving chip. The amount of data that needs to be processed currently requires n processing modules.
  • the target driving chip may determine that the target driving chip is in a high-speed operating mode; when the number of n is not greater than the preset number threshold, the target driving chip may determine that the target driving chip is in a low-speed operating mode. Or when n / m is greater than a preset ratio threshold, the target drive chip determines that the target drive chip is in a high-speed operating mode; when n / m is not greater than a preset ratio threshold, the target drive chip determines that the target drive chip is at a low speed Operating mode.
  • the above m is a positive integer greater than 1.
  • the m processing chips may include at least one of a group consisting of an analog-to-digital conversion chip, a computing chip, and a memory chip.
  • the second instruction information indicating whether the operating status of the target driving chip is abnormal includes two types of normal instruction information and abnormal instruction information.
  • the normal instruction information is used to indicate that the operating status of the driving chip is not abnormal (that is, normal). Yu indicates that the operating status of the driver chip is abnormal.
  • the second instruction information may be represented by a preset character, for example, 0 indicates normal instruction information, and 1 indicates abnormal instruction information.
  • Step 504 The target driving chip sends back data to the controller.
  • a communication connection is established between the controller and the target driving chip.
  • the controller and the target driving chip may be connected through a first signal line or a second signal line.
  • the connection can also be made via a third signal line.
  • the controller can transmit control signals through the second signal line to achieve fast and efficient control of the target driving chip.
  • the second signal line is a high-speed signal line, such as a second differential signal line.
  • the first signal line may be a single bus, which uses Manchester coding, or may be a two-wire, such as a serial peripheral interface (English: Serial Peripheral Interface; SPI for short) bus or a two-wire serial bus (I2C bus) .
  • SPI Serial Peripheral Interface
  • I2C bus two-wire serial bus
  • the signal transmission rate of a single bus is usually 100kHz (kilohertz)
  • the transmission rate of the SPI bus can reach 16MHz
  • the transmission rate of a two-wire serial bus can reach 400kHz.
  • the transmission rates of these three types of signal lines are relatively small, and it is not possible to achieve a large amount of data transmission. If a large amount of data needs to be transmitted or data obtained in real time, packet loss is prone to occur.
  • the first signal line may also be a high-speed signal line, such as a first differential signal line.
  • Differential signal lines can realize fast and real-time data transmission, and support large data transmission. Especially when the above-mentioned state data has a large amount of data, a better transmission effect can be achieved, thereby ensuring that the controller can respond and control in a timely manner.
  • the state data includes touch data
  • the first differential signal line can quickly transmit complete touch data to the controller, and the controller can respond to the touch data quickly.
  • the state data includes temperature data collected by the temperature sensor
  • the first differential signal line can quickly transmit complete temperature data to the controller, and the controller can quickly process the temperature data based on the temperature data, for example, when the temperature is high, the temperature is reduced.
  • the target driving chip when the target driving chip is connected to the controller through the first differential signal line and the second differential signal line at the same time (that is, the target driving chip is not only connected to the controller through the first differential signal line, the target driving chip is also connected through the second When the differential signal line is connected to the controller), the target drive chip can receive the control signal sent by the controller through the second differential signal line and perform the operation indicated by the control signal; at the same time, the target drive chip can control the The device sends back data in real time. In this way, since two differential signal lines are provided between the target driving chip and the controller, the transmission and reception of signals are independent of each other and do not affect each other, and there will be no conflict in timing, so that real-time transmission of return data can be achieved.
  • the embedded touch display panel is directly transmitted to the target drive chip after each acquisition of the status data. After the target drive chip generates the return data based on the status data, it is directly transmitted to the controller through the first differential signal line. This process can be To ensure the timeliness of the status data, the controller can obtain the status data and process it in time.
  • the differential signal line includes two signal lines for signal transmission through differential transmission.
  • differential transmission is a signal transmission technology, which is different from the traditional method of one signal line (the signal line can be a clock signal line) and a ground line; differential transmission is a signal transmission on both signal lines
  • the signals transmitted on these two signal lines have the same amplitude and opposite phases.
  • the signals transmitted on these two signal lines are differential signals.
  • the difference between the signals on the two signal lines can be used to characterize the signals transmitted by the differential signal lines. For example, when the two signal lines are working normally, the loading levels are opposite.
  • the signals loaded by the two are Vo + and Vo-, by way of example, the difference between the two is positive, which means that the signal transmitted by the differential signal line is 1, and the difference is negative, which means that the signal that is transmitted by the differential signal line is 0.
  • differential signal lines can save resources without using signal lines and ground lines; high accuracy, can easily identify small signals; strong anti-electromagnetic interference (English: ElectroMagnetic Interference; (Referred to as: EMI) capability; and the signal transmission speed is fast, and has broad application prospects.
  • FIG. 9 is a schematic structural diagram of a data packet transmitted on the first differential signal line.
  • the data packet which includes the starting points arranged in order. Start bit, data bit and stop bit; wherein the start bit is used to indicate the start of data transmission, which may include a start identifier, the data bit is used to carry data to be transmitted, and the end bit is used to indicate the end of data transmission , Which may include an end identifier. It can be seen from FIG.
  • the data bits may include a data begin bit, data to be transmitted, and an data end bit (also referred to as a data end bit).
  • the data start bit is used to indicate the actual start position of the data bit and the data end Bits are used to indicate the actual end position of the data bits.
  • the data bit may further include a data check bit (not shown in FIG. 9), which is used to perform data check on the data to be transmitted and improve the reliability of data transmission.
  • each data packet further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and are located between the data bit and the end bit.
  • the setting mode bit is used to indicate the mode setting of the data packet, such as through software or through hardware.
  • the software means the setting through signaling transmission
  • the hardware means through the chip management. Set the feet high or low.
  • the setting mode bit may further include some parameters reflecting the mode setting of the data packet, such as a setup parameter for initialization, a setup parameter during transmission, or a setup parameter at the end of transmission.
  • the mode setting bit is used to indicate the mode of the data packet, and the mode of the data packet may include a request (ask or require) mode or a response mode.
  • the parity bit is used for data verification.
  • Step 505 The controller processes the returned data.
  • the returned data may include status data, and may also include information of the driving chip.
  • the controller After the controller receives the return data sent by the target driver chip, it can perform corresponding processing for different data contents in the return data. For example, data forwarding, response, or storage.
  • the return data includes status data
  • the status data includes touch data.
  • the controller may store the touch data, or respond to the touch data, or forward the touch data to a designated processor, such as a central processing unit (English: CPU; referred to as Central Processing Unit).
  • a central processing unit English: CPU; referred to as Central Processing Unit.
  • an MCU may be integrated in the timing controller, and the controller may forward touch data to the MCU.
  • the status data further includes: first indication information indicating whether the working state of the in-cell touch display panel is abnormal. Then, when the first instruction information indicates that the working state of the display panel is abnormal, that is, the first instruction information is abnormal instruction information, the controller may issue an alarm message, or forward the first instruction information to a designated processor, such as a CPU. .
  • a designated processor such as a CPU.
  • the controller is a timing controller
  • an MCU may be integrated in the timing controller, and the controller may forward the first instruction information to the MCU.
  • the status data further includes data collected by a sensor.
  • the controller can store the data collected by the sensor, or forward the data collected by the sensor to a specified processor, such as a CPU.
  • a specified processor such as a CPU.
  • the controller is a timing controller
  • the timing controller may be integrated with an MCU, and the controller may forward data collected by the sensors to the MCU.
  • the return data further includes information of the driving chip, and the information of the driving chip includes working mode data of the driving chip. Then the controller can save the working mode data.
  • the return data further includes information of the driving chip, and the information of the driving chip includes second instruction information indicating whether the working status of the driving chip is abnormal. Then, when the second instruction information indicates that the working state of the driver chip is abnormal, that is, the second instruction information is abnormal instruction information, the controller may issue an alarm message, or forward the second instruction information to a designated processor, such as a CPU. .
  • the controller is a timing controller
  • the timing controller may be integrated with an MCU, and the controller may forward the second instruction information to the MCU.
  • the controller may perform one or more of the above-mentioned processing actions based on different data contents, which is not limited in the embodiment of the present disclosure.
  • the processor may also generate a corresponding control signal based on the data content in the returned data, and send the control signal to the target driving chip to control the target driving chip.
  • the controller can also set a proprietary processing module to receive the return data transmitted by the target drive chip, and can also send the target drive chip to the target drive chip through the processing module. Control signal or response signal of the returned data.
  • the processing module may also send other data, such as configuration data, to the target driving chip, which is not limited in the embodiments of the present disclosure.
  • the processing module may send data to the target driving chip through the first differential signal line, that is, the first differential signal line may perform data bidirectional transmission; in another optional In a ground implementation manner, the processing module may send data to the target driving chip through an additional third differential signal line, that is, the third differential signal line and the first differential signal line respectively perform unidirectional data transmission.
  • the present disclosure implements Examples do not limit this.
  • the target driving chip can also send signals, such as data acquisition requests, to the embedded touch display panel. Therefore, a two-way can also be established between the target driving chip and the embedded touch display panel.
  • connection may be implemented by a circuit connection, a data line connection, or an FPC connection that supports bidirectional communication, or may be implemented by two connections that support a unidirectional communication.
  • the connection may be a circuit connection, a data line connection, or an FPC connection.
  • FIG. 11 is a schematic diagram of a connection relationship between an in-cell touch display panel, a target driving chip, and a controller.
  • the controller is a timing controller 011
  • the processing module is an MCU integrated in the controller
  • the target driving chip is a source driving chip 021.
  • the connection in the region X is to implement the basic touch display panel. Connection required for the display function; the connection in the area Y is a connection newly added in the embodiment of the present disclosure.
  • the source driving chip 021 and the in-cell touch display panel 03 can perform bidirectional data transmission.
  • the source driving chip 021 and timing controller 011 can perform bidirectional data transmission, especially when connected through a differential signal line, real-time and efficient data transmission.
  • the target driving chip can receive the status data obtained by the in-cell touch display panel and transmit the status data to the controller by returning the data, which enriches the driving chip.
  • the function improves the utilization of the driver chip.
  • data transmission through the first differential signal line can realize high-speed real-time data transmission, and the data transmission efficiency is high.
  • the embodiment of the present disclosure provides a target driving chip 60. As shown in FIG. 12, the target driving chip is applied to a display device.
  • the target driving chip is one of a plurality of driving chips of the display device.
  • the controller and the embedded touch display panel are connected, and the target driving chip 60 includes:
  • the first receiving module 601 is configured to receive status data obtained by the in-cell touch display panel, and the state data is used to reflect a working state of the in-cell touch display panel, and the state data includes touch data;
  • the sending module 602 is configured to send back data to the controller.
  • the back data includes: status data.
  • the receiving module can receive the status data obtained by the embedded touch display panel, and the sending module transmits the status data to the controller by returning the data, which is rich.
  • the function of the driver chip is improved, and the utilization rate of the driver chip is improved.
  • controller and the driving chip are connected through a first differential signal line
  • the sending module 602 includes:
  • the sending sub-module 6021 is configured to send back data to the controller through the first differential signal line.
  • the sending sub-module 6021 is configured to send the backhaul data to the controller on the first differential signal line in the form of a data packet;
  • the data packet includes: a start bit, a data bit, and an end bit arranged in sequence, the start bit is used to indicate the start of data transmission, the data bit is used to carry data to be transmitted, and the end bit is used to Indicates the end of data transmission.
  • the data packet further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • Check Digit a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a setting bit between the data bit and the end bit.
  • the setting mode bit is used to indicate a mode setting mode of the data packet
  • the mode setting bit is used to indicate a mode of the data packet
  • the check bit is used to perform data verification
  • the packet mode includes request mode or response mode.
  • the controller and the target driving chip are further connected through a second differential signal line.
  • the target driving chip 60 further includes:
  • a second receiving module 603, configured to receive a control signal sent by the controller through the second differential signal line;
  • the sending module 602 (such as the sending submodule 6021 in the sending module 602) is configured to send the backhaul data to the controller in real time through the first differential signal line.
  • the touch data includes at least one of a group consisting of touch position data and touch pressure data.
  • the return data further includes: at least one of a group consisting of first instruction information, working mode data of the driving chip, and second instruction information; the first instruction information is used to indicate Whether the working state of the in-cell touch display panel is abnormal, and the second indication information is used to indicate whether the working state of the target driving chip is abnormal.
  • the target driving chip 60 further includes:
  • a conversion module 604 configured to perform analog-to-digital conversion on the status data in the form of an analog signal before sending back data to the controller to obtain the status data in the form of a digital signal;
  • the generating module 605 is configured to generate return data, and the return data includes status data in the form of digital signals.
  • the driving chip is a source driving chip or a gate driving chip
  • the in-cell touch display panel is an OLED display panel, a quantum dot display panel, a micro light emitting diode display panel, or a liquid crystal integrated with a touch function layer.
  • the controller is any of a timing controller, a system chip SOC, and a micro control unit MCU integrated in the timing controller.
  • the in-cell touch display panel includes: a sensor, and the first receiving module 601 is configured to receive the touch data and data collected by the sensor.
  • the receiving module can receive the status data obtained by the embedded touch display panel, and the sending module transmits the status data to the controller through the return data, which enriches The function of the driver chip is improved, and the utilization rate of the driver chip is improved.
  • An embodiment of the present disclosure provides a controller 70. As shown in FIG. 16, the controller 70 includes:
  • the receiving module 701 is configured to receive return data sent by a target driving chip, and the return data includes: status data;
  • the target driving chip is one of a plurality of driving chips of the display device, and the target driving chip is respectively connected to the controller and the embedded touch display panel.
  • the returned data is sent by the target driving chip to the controller after receiving the status data obtained by the embedded touch display panel.
  • the status data is used to reflect the working status of the embedded touch display panel.
  • the status data includes: Touch data.
  • the embodiment of the present disclosure provides a controller.
  • the target driving chip can receive the status data obtained by the in-cell touch display panel, and transmit the status data to the receiving module of the controller by returning the data.
  • the functions of the driver chip are enriched and the utilization rate of the driver chip is improved.
  • the controller and the driving chip are connected through a first differential signal line.
  • the receiving module 701 includes:
  • the receiving sub-module 7011 is configured to receive the return data sent by the target driving chip through the first differential signal line.
  • controller and the target driving chip are further connected through a second differential signal line, and the controller 70 further includes:
  • a sending module 702 configured to send a control signal to the target driving chip through a second differential signal line;
  • the receiving sub-module 7011 is configured to receive, through the first differential signal line, the backhaul data sent by the target driving chip in real time.
  • the receiving submodule 7011 is configured to receive the backhaul data transmitted in the form of a data packet through the first differential signal line, where the data packet includes a start bit, a data bit, and an end arranged in sequence. Bit
  • the start bit is used to indicate the start of data transmission
  • the data bit is used to carry data to be transmitted
  • the end bit is used to indicate the end of data transmission.
  • the data packet further includes: a setting mode bit and a mode setting bit which are sequentially arranged between the start bit and the data bit, and a calibration bit located between the data bit and the end bit.
  • the setting mode bit is used to indicate a mode setting of a data packet
  • the mode setting bit is used to indicate a mode of a data packet
  • the check bit is used to perform data verification
  • the mode of the data packet includes Request mode or response mode.
  • the status data further includes first indication information indicating whether the working state of the in-cell touch display panel is abnormal.
  • the returned data further includes: at least one of the group consisting of the first instruction information, the operating mode data of the driving chip, and the second instruction information; the second instruction information is used to indicate whether the working state of the target driving chip is abnormal.
  • the in-cell touch display panel includes: a sensor, and the status data further includes: data collected by the sensor.
  • the touch data includes at least one of a group consisting of touch position data and touch pressure data.
  • the returned data further includes at least one of the group consisting of the operating mode data of the driving chip and the second instruction information indicating whether the operating state of the driving chip is abnormal.
  • each functional module in each embodiment of the present disclosure may be integrated into one module, or each module may exist separately, or two or more modules may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware, or in the form of hardware plus software functional modules.
  • An embodiment of the present disclosure provides a target driving chip 80.
  • the display device where the target driving chip is located includes a controller, a plurality of driving chips, and an in-cell touch display panel.
  • the target driving chip is a multiple of the display device.
  • One of the driving chips is connected to the controller and the in-cell touch display panel respectively.
  • the target driving chip 80 includes:
  • a memory 802 for storing executable instructions of the processor
  • the processor can execute the data transmission method for the target driving chip provided by the embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a controller 90.
  • the display device where the controller 90 is located further includes multiple driving chips and an embedded touch display panel. As shown in FIG. 20, the controller 90 includes:
  • a memory 902 for storing executable instructions of the processor
  • the processor can execute the data transmission method for the controller provided by the embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a display device.
  • the display device includes a controller, a plurality of driving chips, and an embedded touch display panel.
  • the plurality of driving chips include a target driving chip shown in FIG. 12, FIG. 14, or FIG. 15, and the controller includes a controller shown in 16 or 18;
  • the target driving chip in the plurality of driving chips is the target driving chip described in FIG. 19, and the controller is the controller described in FIG. 20.
  • the display device may be any product or component having a display function, such as electronic paper, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, and the like.
  • the controller and the target driving chip are connected through a first differential signal line, and the target driving chip is configured to send back data to the controller through the first differential signal line.
  • the controller is connected to the target driving chip not only through the first differential signal line, but also connected to the target driving chip through the second differential signal line; the controller is configured to send control to the target driving chip through the second differential signal line. Signal; the target driving chip is used to send back data to the controller in real time through the first differential signal line.
  • FIG. 21 is a structural block diagram of a display device 1000 according to an exemplary embodiment of the present disclosure.
  • the device 1000 may be any product or component having a display function, such as electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the device 1000 includes a processor 1001 and a memory 1002.
  • the processor 1001 may include one or more processing cores, such as a 4-core processor, an 8-core processor, and the like.
  • the processor 1001 may use at least one of a group consisting of DSP (Digital Signal Processing), FPGA (Field-Programmable Gate Array), and PLA (Programmable Logic Array). To implement a hardware form.
  • the processor 1001 may also include a main processor and a co-processor.
  • the main processor is a processor for processing data in the awake state, also referred to as a CPU (Central Processing Unit).
  • the co-processor is Low-power processor for processing data in standby.
  • the processor 1001 may be integrated with a GPU (Graphics Processing Unit), and the GPU is responsible for rendering and drawing content required to be displayed on the display screen.
  • the processor 1001 may further include an AI (Artificial Intelligence) processor, and the AI processor is configured to process computing operations related to machine learning.
  • AI Artificial Intelligence
  • the memory 1002 may include one or more storage media, which may be non-transitory.
  • the memory 1002 may further include a high-speed random access memory, and a non-volatile memory, such as one or more disk storage devices, flash storage devices.
  • the non-transitory storage medium in the memory 1002 is used to store at least one instruction, and the at least one instruction is used for execution by a processing component (such as the processor 1001) to implement the method provided in the method embodiment of the present disclosure Data transmission method.
  • the apparatus 1000 may further include a peripheral device interface 1003 and at least one peripheral device.
  • the processor 1001, the memory 1002, and the peripheral device interface 1003 may be connected through a bus or a signal line.
  • Each peripheral device can be connected to the peripheral device interface 1003 through a bus, a signal line, or a circuit board.
  • the peripheral device includes at least one of a group consisting of a radio frequency circuit 1004, a display screen 1005, a camera 1006, an audio circuit 1007, a positioning component 1008, and a power supply 1009.
  • the peripheral device interface 1003 may be used to connect at least one peripheral device related to I / O (Input / Output) to the processor 1001 and the memory 1002.
  • the processor 1001, the memory 1002, and the peripheral device interface 1003 are integrated on the same chip or circuit board; in some other embodiments, any one of the processor 1001, the memory 1002, and the peripheral device interface 1003 or Two can be implemented on separate chips or circuit boards, which is not limited in this embodiment.
  • the radio frequency circuit 1004 is used to receive and transmit an RF (Radio Frequency) signal, also called an electromagnetic signal.
  • the radio frequency circuit 1004 communicates with a communication network and other communication devices through electromagnetic signals.
  • the radio frequency circuit 1004 converts electrical signals into electromagnetic signals for transmission, or converts received electromagnetic signals into electrical signals.
  • the radio frequency circuit 1004 includes: an antenna system, an RF transceiver, one or more amplifiers, a tuner, an oscillator, a digital signal processor, a codec chipset, a subscriber identity module card, and the like.
  • the radio frequency circuit 1004 can communicate with other devices through at least one wireless communication protocol.
  • the wireless communication protocols include, but are not limited to, the World Wide Web, metropolitan area networks, intranets, mobile communication networks (2G, 3G, 4G, and 5G) of various generations, wireless local area networks, and / or WiFi (Wireless Fidelity) networks.
  • the radio frequency circuit 1004 may further include NFC (Near Field Communication) related circuits, which is not limited in this disclosure.
  • the display screen 1005 is used to display a UI (User Interface).
  • the UI can include graphics, text, icons, videos, and any combination thereof.
  • the display screen 1005 also has the ability to collect touch signals on or above the surface of the display screen 1005.
  • the touch signal can be input to the processor 1001 as a control signal for processing.
  • the display screen 1005 may also be used to provide a virtual button and / or a virtual keyboard, which is also called a soft button and / or a soft keyboard.
  • the display screen 1005 may be one, and the front panel of the device 1000 is provided; in other embodiments, the display screen 1005 may be at least two, respectively disposed on different surfaces of the device 1000 or in a folded design; In still other embodiments, the display screen 1005 may be a flexible display screen disposed on a curved surface or a folded surface of the device 1000. Moreover, the display screen 1005 can also be set as a non-rectangular irregular figure, that is, a special-shaped screen.
  • the display screen 1005 may include an LCD display panel or an OLED display panel.
  • the camera assembly 1006 is used for capturing images or videos.
  • the camera assembly 1006 includes a front camera and a rear camera.
  • a front camera is provided on the front panel of the device, and a rear camera is provided on the back of the device.
  • the camera assembly 1006 may further include a flash.
  • the flash can be a monochrome temperature flash or a dual color temperature flash.
  • a dual color temperature flash is a combination of a warm light flash and a cold light flash, which can be used for light compensation at different color temperatures.
  • the audio circuit 1007 may include a microphone and a speaker.
  • the microphone is used for collecting sound waves of the user and the environment, and converting the sound waves into electrical signals and inputting them to the processor 1001 for processing, or inputting to the radio frequency circuit 1004 to implement voice communication.
  • the microphone can also be an array microphone or an omnidirectional acquisition microphone.
  • the speaker is used to convert electrical signals from the processor 1001 or the radio frequency circuit 1004 into sound waves.
  • the speaker can be a traditional film speaker or a piezoelectric ceramic speaker.
  • the speaker When the speaker is a piezoelectric ceramic speaker, it can not only convert electrical signals into sound waves audible to humans, but also convert electrical signals into sound waves inaudible to humans for ranging purposes.
  • the audio circuit 1007 may further include a headphone jack.
  • the positioning component 1008 is used for positioning the current geographic position of the device 1000 to implement navigation or LBS (Location Based Service).
  • the positioning component 1008 may be a positioning component based on the US GPS (Global Positioning System), the Beidou system in China, or the Galileo system in Russia.
  • the power supply 1009 is used to power various components in the device 1000.
  • the power source 1009 may be an alternating current, a direct current, a disposable battery, or a rechargeable battery.
  • the rechargeable battery may be a wired rechargeable battery or a wireless rechargeable battery.
  • the wired rechargeable battery is a battery charged through a wired line
  • the wireless rechargeable battery is a battery charged through a wireless coil.
  • the rechargeable battery can also be used to support fast charging technology.
  • the device 1000 further includes one or more sensors 1010.
  • the one or more sensors 1010 include, but are not limited to, an acceleration sensor 1011, a gyro sensor 1012, a pressure sensor 1013, a fingerprint sensor 1014, an optical sensor 1015, and a proximity sensor 1016.
  • the acceleration sensor 1011 can detect the magnitude of acceleration on the three coordinate axes of the coordinate system established by the device 1000.
  • the acceleration sensor 1011 may be used to detect components of the acceleration of gravity on three coordinate axes.
  • the processor 1001 may control the touch display screen 1005 to display the user interface in a horizontal view or a vertical view according to the gravity acceleration signal collected by the acceleration sensor 1011.
  • the acceleration sensor 1011 may also be used for collecting motion data of a game or a user.
  • the gyro sensor 1012 can detect the body direction and rotation angle of the device 1000, and the gyro sensor 1012 can cooperate with the acceleration sensor 1011 to collect a 3D motion of the user on the device 1000. Based on the data collected by the gyro sensor 1012, the processor 1001 can implement the following functions: motion sensing (such as changing the UI according to the user's tilt operation), image stabilization during shooting, game control, and inertial navigation.
  • the pressure sensor 1013 may be disposed on a side frame of the device 1000 and / or a lower layer of the touch display screen 1005.
  • a user's holding signal to the device 1000 can be detected, and the processor 1001 can perform left-right hand recognition or quick operation according to the holding signal collected by the pressure sensor 1013.
  • the processor 1001 controls the operability controls on the UI interface according to the user's pressure operation on the touch display screen 1005.
  • the operability control includes at least one of a group consisting of a button control, a scroll bar control, an icon control, and a menu control.
  • the fingerprint sensor 1014 is used to collect a user's fingerprint, and the processor 1001 recognizes the identity of the user based on the fingerprint collected by the fingerprint sensor 1014, or the fingerprint sensor 1014 recognizes the identity of the user based on the collected fingerprint. When identifying the user's identity as a trusted identity, the processor 1001 authorizes the user to perform related sensitive operations, such as unlocking the screen, viewing encrypted information, downloading software, paying and changing settings.
  • the fingerprint sensor 1014 may be disposed on the front, back, or side of the device 1000. When a physical button or a manufacturer's logo is set on the device 1000, the fingerprint sensor 1014 can be integrated with the physical button or the manufacturer's logo.
  • the optical sensor 1015 is used to collect ambient light intensity.
  • the processor 1001 may control the display brightness of the touch display screen 1005 according to the ambient light intensity collected by the optical sensor 1015. Specifically, when the ambient light intensity is high, the display brightness of the touch display screen 1005 is increased; when the ambient light intensity is low, the display brightness of the touch display screen 1005 is decreased.
  • the processor 1001 may also dynamically adjust the shooting parameters of the camera assembly 1006 according to the ambient light intensity collected by the optical sensor 1015.
  • the proximity sensor 1016 also called a distance sensor, is usually disposed on the front panel of the device 1000.
  • the proximity sensor 1016 is used to collect the distance between the user and the front of the device 1000.
  • the processor 1001 controls the touch display screen 1005 to switch from the bright screen state to the closed screen state; when the proximity sensor 1016 detects When the distance between the user and the front of the device 1000 gradually increases, the touch screen display 1005 is controlled by the processor 1001 to switch from the rest screen state to the bright screen state.
  • FIG. 21 does not constitute a limitation on the device 1000, and may include more or fewer components than shown in the figure, or combine certain components, or adopt different component arrangements.
  • An embodiment of the present disclosure provides a storage medium.
  • the storage medium stores instructions.
  • the processing component executes the instructions, the processing component is caused to execute the data transmission method provided by the embodiment of the present disclosure.
  • An embodiment of the present disclosure provides a chip, which includes a programmable logic circuit and / or a program instruction, and is used to implement the data transmission method provided by the embodiment of the present disclosure when the chip is running.
  • An embodiment of the present disclosure provides a program product.
  • the program product stores instructions.
  • the processing component executes the instruction, the processing component is caused to execute the data transmission method provided by the embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and are not to be construed to indicate or imply relative importance.
  • plurality refers to two or more, unless explicitly defined otherwise.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Computer Hardware Design (AREA)
  • Control Of El Displays (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种数据传输方法、芯片、控制器及显示装置,属于显示技术领域。所述方法应用于显示装置中的目标驱动芯片,所述显示装置包括控制器(01)、多个驱动芯片(02)和内嵌式触控显示面板(03),所述目标驱动芯片为所述多个驱动芯片(02)中的一个驱动芯片,所述目标驱动芯片分别与所述控制器(01)以及所述内嵌式触控显示面板(03)连接。所述方法包括:接收内嵌式触控显示面板所获取的状态数据,所述状态数据用于反映所述内嵌式触控显示面板的工作状态(301);向所述控制器发送回传数据,所述回传数据包括:所述状态数据,所述状态数据包括:触控数据(302)。

Description

数据传输方法、芯片、控制器及显示装置
本公开要求于2018年08月06日提交的申请号为201810886391.X、发明名称为“数据传输方法、装置及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,特别涉及一种数据传输方法、芯片、控制器及显示装置。
背景技术
显示面板驱动部分通常包含时序控制器(英文:Timing Controller)、源极驱动器(英文:Source Driver)和栅极驱动器(英文:Gate Driver),其中,源极驱动器包括多个源极驱动芯片,栅极驱动器包括多个栅极驱动芯片。
目前,显示装置中的驱动芯片只能在时序控制器的控制下,进行电压数据写入等操作,例如,时序控制器对每一帧图像数据进行处理,生成每一帧图像数据对应的数据信号和控制信号,数据信号被传送到并联的多个源极驱动芯片,每个源极驱动芯片将所接收的数据信号转换成数据电压,以写入显示面板上相对应的像素中。
发明内容
本公开实施例提供了一种数据传输方法、芯片、控制器及显示装置,所述技术方案如下:
根据本公开实施例的第一方面,提供一种数据传输方法,应用于显示装置中的目标驱动芯片,所述显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接,所述方法包括:
接收所述内嵌式触控显示面板所获取的状态数据,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据;
向所述控制器发送回传数据,所述回传数据包括:所述状态数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接;
所述向所述控制器发送回传数据,包括:
通过所述第一差分信号线向所述控制器发送所述回传数据。
可选地,所述通过所述第一差分信号线向所述控制器发送所述回传数据,包括:
以数据包的形式在所述第一差分信号线上向所述控制器发送所述回传数据;
其中,每个数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
可选地,每个所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
可选地,所述触控数据包括触控位置数据和触控压力数据组成的群组中的至少一种。
可选地,所述回传数据还包括:由第一指示信息、所述驱动芯片的工作模式数据和第二指示信息组成的群组中的至少一种;
所述第一指示信息用于表明所述内嵌式触控显示面板的工作状态是否异常,所述第二指示信息用于表明所述目标驱动芯片的工作状态是否异常。
可选地,所述内嵌式触控显示面板包括:传感器,所述接收所述内嵌式触控显示面板所获取的状态数据,包括:
接收所述触控数据和所述传感器采集的数据。
可选地,在所述向所述控制器发送回传数据之前,所述方法还包括:
将模拟信号形式的所述状态数据进行模数转换,以得到数字信号形式的所述状态数据;
生成所述回传数据,所述回传数据包括数字信号形式的所述状态数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接,且所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述方法还包括:
接收所述控制器通过所述第二差分信号线发送的控制信号;
所述向所述控制器发送所述回传数据,包括:
通过所述第一差分信号线向所述控制器实时发送所述回传数据。
可选地,所述内嵌式触控显示面板为集成有触控功能层的OLED显示面板、量子点显示面板、微发光二极管显示面板或液晶显示面板,
所述驱动芯片为源极驱动芯片或栅极驱动芯片;
所述控制器为时序控制器、系统芯片SOC以及集成在所述时序控制器中的微控制单元MCU中的任一种。
根据本公开实施例的第二方面,提供一种数据传输方法,应用于显示装置中的控制器,所述显示装置包括所述控制器、多个驱动芯片和内嵌式触控显示面板,所述方法包括:
接收所述目标驱动芯片发送的回传数据,所述回传数据包括:状态数据;
其中,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,且所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接;所述回传数据是所述目标驱动芯片在接收所述内嵌式触控显示面板所获取的状态数据后向所述控制器发送的,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接,
所述接收所述目标驱动芯片发送的回传数据,包括:
通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据。
可选地,所述通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据,包括:
通过所述第一差分信号线接收所述目标驱动芯片发送的以数据包的形式传输的所述回传数据;
其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
可选地,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式 设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
可选地,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述方法还包括:
通过第二差分信号线向所述目标驱动芯片发送控制信号;
所述通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据,包括:
通过所述第一差分信号线接收所述目标驱动芯片实时发送的所述回传数据。
根据本公开实施例的第三方面,提供一种目标驱动芯片,所述目标驱动芯片所在的显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接,所述目标驱动芯片包括:
第一接收模块,用于接收所述内嵌式触控显示面板所获取的状态数据,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据;
发送模块,用于向所述控制器发送回传数据,所述回传数据包括:所述状态数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接,
所述发送模块,包括:
发送子模块,用于通过所述第一差分信号线向所述控制器发送所述回传数据。
可选地,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述装置还包括:
第二接收模块,用于接收所述控制器通过所述第二差分信号线发送的控制信号;
所述发送子模块,用于:
通过所述第一差分信号线向所述控制器实时发送所述回传数据。
可选地,所述发送子模块用于:
以数据包的形式在所述第一差分信号线上向所述控制器发送所述回传数据;
其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
可选地,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
可选地,所述触控数据包括由触控位置数据和触控压力数据组成的群组中的至少一种。
可选地,所述回传数据还包括:由第一指示信息、所述驱动芯片的工作模式数据和第二指示信息组成的群组中的至少一种;所述第一指示信息用于表明所述内嵌式触控显示面板的工作状态是否异常,所述第二指示信息用于表明所述目标驱动芯片的工作状态是否异常。
可选地,所述内嵌式触控显示面板包括:传感器,所述第一接收模块用于:接收所述触控数据和所述传感器采集的数据。
可选地,所述目标驱动芯片还包括:
转换模块,用于在所述向所述控制器发送回传数据之前,将模拟信号形式的所述状态数据进行模数转换,以得到数字信号形式的所述状态数据;
生成模块,用于生成所述回传数据,所述回传数据包括数字信号形式的所述状态数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述目标驱动芯片还包括:
第二接收模块,用于接收所述控制器通过所述第二差分信号线发送的控制信号;
所述发送模块用于通过所述第一差分信号线向所述控制器实时发送所述回传数据。
可选地,所述目标驱动芯片为源极驱动芯片或栅极驱动芯片,所述内嵌式触控显示面板为集成有触控功能层的OLED显示面板、量子点显示面板、微发 光二极管显示面板或液晶显示面板;
所述控制器为时序控制器、系统芯片SOC以及集成在所述时序控制器中的微控制单元MCU中的任一种。
根据本公开实施例的第四方面,提供一种控制器,所述控制器所在的显示装置还包括多个驱动芯片和内嵌式触控显示面板,所述控制器包括:
接收模块,用于接收所述目标驱动芯片发送的回传数据,所述回传数据包括:状态数据;
其中,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,且所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接;所述回传数据是所述目标驱动芯片在接收所述内嵌式触控显示面板所获取的状态数据后向所述控制器发送的,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接,
所述接收模块,包括:
接收子模块,用于通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据。
可选地,所述接收子模块用于:
通过所述第一差分信号线接收所述目标驱动芯片发送的以数据包的形式传输的所述回传数据;
其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
可选地,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
可选地,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述控制器还包括:
发送模块,用于通过第二差分信号线向所述目标驱动芯片发送控制信号;
所述接收子模块,用于:
通过所述第一差分信号线接收所述目标驱动芯片实时发送的所述回传数据。
根据本公开实施例的第五方面,提供一种目标驱动芯片,所述显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接,所述目标驱动芯片包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器运行所述可执行指令时,能够执行上述第一方面任一所述的数据传输方法。
根据本公开实施例的第六方面,提供一种控制器,所述控制器所在的显示装置还包括多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片包括:
处理器;
用于存储所述处理器的可执行指令的存储器;
其中,所述处理器运行所述可执行指令时,能够执行上述第二方面任一所述的数据传输方法。
根据本公开实施例的第七方面,提供一种显示装置,所述显示装置包括:控制器、多个驱动芯片和内嵌式触控显示面板;
所述控制器为上述第四方面任一所述的控制器,所述多个驱动芯片包括上述第三方面任一所述的目标驱动芯片;
或者,所述控制器为上述第六方面的控制器,所述多个驱动芯片包括上述第五方面所述的目标驱动芯片。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述目标驱动芯片用于通过所述第一差分信号线向所述控制器发送回传数据。
可选地,所述控制器与所述目标驱动芯片通过第一差分信号线和第二差分信号线连接;
所述控制器用于通过所述第二差分信号线向所述目标驱动芯片发送控制信号;
所述目标驱动芯片用于通过所述第一差分信号线向所述控制器实时发送回传数据。
根据本公开实施例的第八方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有指令;当所述指令在计算机的处理组件上运行时,使得处理组件执行上述第一方面任一所述数据传输方法,或者,使得处理组件执行如上述第二方面任一所述数据传输方法。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本公开。
附图说明
图1是本公开实施例提供的一种数据传输方法的应用环境示意图。
图2是本公开实施例提供的另一种数据传输方法的应用环境示意图。
图3是本公开实施例提供的又一种数据传输方法的应用环境示意图。
图4是根据一示例性实施例示出的一种触控功能层的结构示意图。
图5是根据一示例性实施例示出的另一种触控功能层的结构示意图。
图6是根据一示例性实施例示出的一种数据传输方法流程图。
图7是根据一示例性实施例示出的另一种数据传输方法流程图。
图8是根据一示例性实施例示出的又一种数据传输方法流程图。
图9是根据一示例性实施例示出的一种第一差分信号线上传输的一个数据包的结构示意图。
图10是根据一示例性实施例示出的另一种第一差分信号线上传输的一个数据包的结构示意图。
图11是根据一示例性实施例示出的一种内嵌式触控显示面板、目标驱动芯片以及控制器的连接关系示意图。
图12是根据一示例性实施例示出的一种目标驱动芯片的框图。
图13是根据一示例性实施例示出的一种发送模块的框图。
图14是根据一示例性实施例示出的另一种目标驱动芯片的框图。
图15是根据一示例性实施例示出的又一种目标驱动芯片的框图。
图16是根据另一示例性实施例示出的一种控制器的框图。
图17是根据另一示例性实施例示出的一种接收模块的框图。
图18是根据另一示例性实施例示出的另一种控制器的框图。
图19是根据又一示例性实施例示出的一种目标驱动芯片的框图。
图20是根据又一示例性实施例示出的另一种控制器的框图。
图21是根据一示例性实施例示出的一种显示装置的框图。
具体实施方式
为了使本公开的原理、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部份实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
请参考图1,图1是本公开实施例提供的一种数据传输方法的应用环境示意图,如图1所示,该数据传输方法应用于显示装置中,该显示装置包括控制器01、多个驱动芯片02和内嵌式(in-cell)触控显示面板03。该内嵌式触控显示面板为集成有触控功能层(简称:触控层)的显示面板,也即是嵌入有触控功能层的显示面板(比如触控功能层嵌入显示面板的像素中)。该内嵌式触控显示面板可以OLED(Organic Light-Emitting Diode,有机发光二极管)显示面板、量子点显示面板、微发光二极管显示面板或LCD(Liquid Crystal Display,液晶显示面板)。
需要说明的是,上述微发光二极管的尺寸小于发光二极管的尺寸,示例地,微发光二极管的最小尺寸可以达到微米级。本公开实施例中的微发光二极管可以包括:微型发光二极管(英文:Micro Light Emitting Diode;简称:Micro LED)或迷你发光二极管(英文:mini Light Emitting Diode;简称:mini-LED)。
该多个驱动芯片02均与控制器01连接,该多个驱动芯片02中的至少一个驱动芯片02还与内嵌式触控显示面板03连接。该至少一个驱动芯片02具有回传数据的传输功能。图1以该多个驱动芯片02均具有回传数据的传输功能,且均与内嵌式触控显示面板03连接为例进行说明,但并不对此进行限制。
进一步的,本公开实施例中,控制器01可以对驱动芯片02进行控制,在此基础上,本公开实施例提供的数据传输方法可以通过回传数据进行内嵌式触控显示面板所获取的状态数据的回传。为了保证控制信号和状态数据的有效传输,如图2所示,控制器01可以与至少一个驱动芯片02中的每个驱动芯片02通过第一信号线L1和第二信号线L2连接。其中,至少一个驱动芯片02中的每个驱动芯片02可以通过第一信号线L1向控制器01发送回传数据,控制器01可以通过第二信号线L2向至少一个驱动芯片02中的每个驱动芯片02发送控制信号。这样避免两个信号线在数据发送的时序上出现冲突,也可以实现数据的 实时传输。图2以多个驱动芯片02均通过第一信号线L1和第二信号线L2与控制器01连接为例进行说明,但并不对此进行限制。
上述驱动芯片可以为源极驱动芯片或栅极驱动芯片;控制器可以为时序控制器、系统芯片(英文:System on Chip;简称:SOC)以及集成在时序控制器中的微控制单元(英文:Microcontroller Unit;MCU)中的任一种。图3以控制器为时序控制器011,驱动芯片为源极驱动芯片021为例进行说明。如图3所示,该时序控制器011通过多个第二信号线L2分别与多个源极驱动芯片021一一对应连接,时序控制器011通过至少一个第一信号线L1分别与多个源极驱动芯片021中具有回传数据的传输功能(即能够进行回传数据传输)的芯片一一对应连接。可选地,该时序控制器011还连接有第三信号线H,该多个源极驱动芯片021并联,且与第三信号线H连接;该第三信号线可以进行电平状态的标识,例如通过该第三信号线H将源极驱动芯片的引脚的电平状态设置为高电平或低电平。图3假设该多个源极驱动芯片021并联且均通过第一信号线、第二信号线以及第三信号线与时序控制器011连接,并且该多个源极驱动芯片021均与内嵌式触控显示面板03连接,但本公开实施例并不对此进行限制。
其中,第一信号线和第二信号线可以为高速信号线,第三信号线可以为低速信号线。需要说明的是,假设用于连接上述内嵌式触控显示面板03与驱动芯片02的信号线为第四信号线,则该第四信号线也可以为高速信号线,此时,第一信号线的信号传输速率、第二信号线的信号传输速率和第四信号线的传输速率均大于第三信号线的信号传输速率。例如,该第一信号线、第二信号线和第四信号线为差分信号线,第三信号线为普通信号线(并非差分信号线)。
当具有回传数据的传输功能的驱动芯片有多个时,该多个驱动芯片可以分别与内嵌式触控显示面板的多个触控信号输出端子连接。
内嵌式触控显示面板的触控功能层根据其触控原理不同,划分为互容式触控功能层和自容式触控功能层。如图4所示,互容式触控功能层包括多条横向(即面板中像素的行方向)设置的触摸驱动线Tx,以及多条纵向(即面板中像素的列方向)设置的触摸感应线Rx。每条触摸驱动线Tx与一条触摸感应线Rx交叉以形成一个触摸单元001,一条触摸驱动线Tx对应一行触摸单元001,一条触摸感应线Rx对应一列触摸单元001。需要说明的是,图4以触摸感应线Rx共8条,触摸驱动线Tx共56条为例进行说明,本公开实施例对Rx和Tx的个数并不进行限制。
在互容式触控功能层实现触摸功能时,内嵌式触控显示面板依次对该互容式触控功能层中的触摸驱动线Tx输入触摸扫描信号,并采集每条触摸感应线Rx上的感应信号,根据每条触摸感应线Rx上的感应信号确定触摸点的位置(比如被触摸的触摸单元001的位置)。上述触摸功能可以由内嵌式触控显示面板中的触控驱动集成电路(英文:integrated circuit;简称:IC)来实现,也即是上述触控驱动IC可以用于输入触摸扫描信号以及采集感应信号,并确定触摸点的位置。
对于上述互容式触控功能层,在一种可选地实现方式中,上述触控信号输出端子可以为触摸感应线Rx的端子。此时,每个具有回传数据的传输功能的驱动芯片可以与至少一条触摸感应线Rx连接(例如,每个具有回传数据的传输功能的驱动芯片可以与一组触摸感应线连接,每组触摸感应线包括相邻的至少2个触摸感应线),此时,该驱动芯片分担了部分触控驱动IC的功能;在另一种可选地实现方式中,每个具有回传数据的传输功能的驱动芯片可以与触控驱动IC连接,即触控信号输出端子为触控驱动IC的端子,此时,该驱动芯片实现了将触控驱动IC的数据快速回传至控制器。可选地,驱动芯片与触控信号输出端子通过差分信号线连接。
如图5所示,自容式触控功能层通常包括单层氧化铟锡(英文:Indium Tin Oxide;简称:ITO)。该单层ITO包括:多个阵列排布的触摸单元002,每个触摸单元002连接一根触摸线Mx,也即,一根触摸线Mx对应一个触摸单元。
在自容式触控功能层实现触摸功能时,内嵌式触控显示面板可以同时向该自容式触控功能层中的每根Mx输入触摸扫描信号,并采集每个Mx上的感应信号,根据每个Mx上的感应信号是否与正常感应信号相同,来确定触摸点的位置(比如被触摸的触摸单元002的位置)。上述触摸功能可以由触控驱动IC来实现,也即是上述触控驱动IC可以用于输入触摸扫描信号以及采集感应信号,并确定触摸点的位置。
对于上述自容式触控功能层,在一种可选地实现方式中,上述触控信号输出端子可以为触摸线Mx的端子。每个具有回传数据的传输功能的驱动芯片可以与至少一条触摸线Mx连接(例如,每个具有回传数据的传输功能的驱动芯片可以与一组触摸线连接,每组触摸线包括相邻的至少2条触摸线),此时,该驱动芯片分担了部分触控驱动IC的功能;在另一种可选地实现方式中,每个具有回传数据的传输功能的驱动芯片可以与 触控驱动IC连接,即触控信号输出端子为触控驱动IC,此时,该驱动芯片实现了控制器与触控驱动IC的数据快速回传。可选地,驱动芯片与触控信号输出端子通过差分信号线连接。
需要说明的是,上述内嵌式触控显示面板中触控功能层与该显示面板中的显示功能层可以复用。例如,若该显示面板为OLED显示面板,即其显示功能层是基于OLED实现的,则当触控功能层为互容式触控功能层时,其触摸感应线所在层和触摸驱动线所在层中的至少一层与OLED的电极层复用,该电极层可以为阴极层和阳极层中的一个;当触控功能层为自容式触控功能层时,其触摸线所在层与OLED的电极层复用,该电极层可以为阴极层和阳极层中的一个。若该显示面板为LCD显示面板,即其显示功能层是基于液晶层,以及用于控制该液晶层的像素电极层和公共电极层来实现的,则当触控功能层为互容式触控功能层时,其触摸感应线所在层和触摸驱动线所在层中的至少一层与显示功能层中的电极层复用,该电极层可以为像素电极层和公共电极层中的一个;当触控功能层为自容式触控功能层时,其触摸线所在层与显示功能层中的电极层复用,该电极层可以为像素电极层和公共电极层中的一个。
值得说明的是,上述内嵌式触控显示面板中的触控功能层与该显示面板中的显示功能层复用后,触控功能层和显示功能层是分时驱动的,这样可以保证两种功能层互不干扰。
需要说明的是,上述内嵌式触控显示面板还可以包括传感器,该传感器包括温度传感器、位置传感器、红外传感器和超声波传感器组成的群组中的至少一种。相应回传的状态数据包括传感器采集的数据。在一种可选地实施例中,每个具有回传数据功能的驱动芯片可以分别与触控信号输出端子以及传感器的信号输出端子连接,则相应的回传的状态数据包括:触控数据和传感器采集的数据;在另一种可选地实施例中,显示装置中一部分驱动芯片与触控信号输出端子连接,其回传的状态数据包括触控数据,另一部分驱动芯片与传感器的信号输出端子连接,其回传的状态数据包括传感器采集的数据。可选地,驱动芯片与传感器的信号输出端子通过差分信号线连接。
本公开实施例提供一种数据传输方法,如图6所示,应用于如图1至图3任一所示的显示装置中的目标驱动芯片,目标驱动芯片为多个驱动芯片中的一个驱动芯片。示例地,该目标驱动芯片可以为该多个驱动芯片中的任意一个, 也可以是多个驱动芯片中指定的一个芯片,本公开实施例对此不做限定。目标驱动芯片分别与控制器以及内嵌式触控显示面板连接,该方法包括:
步骤301、接收内嵌式触控显示面板所获取的状态数据,该状态数据用于反映内嵌式触控显示面板的工作状态。
步骤302、向控制器发送回传数据,该回传数据包括:状态数据,该状态数据包括:触控数据。
综上所述,本公开实施例提供的数据传输方法,目标驱动芯片能够接收内嵌式触控显示面板获取的状态数据,并通过回传数据将该状态数据传输至控制器,丰富了驱动芯片的功能,提高了驱动芯片的利用率。
本公开实施例提供一种数据传输方法,如图7所示,应用于如图1至图3任一所示的显示装置中的控制器,显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,该方法包括:
步骤401、接收目标驱动芯片发送的回传数据,该回传数据包括:状态数据。
其中,目标驱动芯片分别与控制器以及内嵌式触控显示面板连接,目标驱动芯片为多个驱动芯片中的一个驱动芯片,示例的,该目标驱动芯片可以为该多个驱动芯片中的任意一个,也可以是多个驱动芯片中指定的一个芯片,本公开实施例对此不做限定;
回传数据是目标驱动芯片在接收内嵌式触控显示面板所获取的状态数据后向控制器发送的,状态数据用于反映内嵌式触控显示面板的工作状态,该状态数据包括:触控数据。
综上所述,本公开实施例提供的数据传输方法,目标驱动芯片能够接收内嵌式触控显示面板获取的状态数据,并通过回传数据将该状态数据传输至控制器,丰富了驱动芯片的功能,提高了驱动芯片的利用率。
本公开实施例提供一种数据传输方法,如图8所示,应用于如图1至图3任一所示的显示装置。该显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,目标驱动芯片为多个驱动芯片中的一个驱动芯片,目标驱动芯片分别与控制器以及内嵌式触控显示面板连接,该方法包括:
步骤501、内嵌式触控显示面板获取状态数据。
状态数据用于反映内嵌式触控显示面板的工作状态。示例地,状态数据可 以包括:触控数据,该触控数据包括触控位置数据和触控压力数据组成的群组中的至少一种。其中,触控位置数据用于表明触控点的位置,其可以为坐标值;触控压力数据用于表明触控点受到的压力,其可以为压力值。
该状态数据还可以包括:指示内嵌式触控显示面板的工作状态是否异常的第一指示信息。该第一指示信息包括正常指示信息和异常指示信息两种,该正常指示信息用于表明内嵌式触控显示面板的工作状态不异常(即正常);异常指示信息用于表明内嵌式触控显示面板的工作状态异常。该第一指示信息可以用预设字符表示,例如,0表示正常指示信息,1表示异常指示信息。
可选地,当内嵌式触控显示面板包括传感器时,该目标驱动芯片与传感器的信号输出端子连接,该状态数据还可以包括:传感器采集的数据。此时,在步骤501中,内嵌式触控显示面板不仅需要获取上述触控数据,还需要获取传感器采集的数据。
示例地,该传感器包括温度传感器、位置传感器、红外传感器和超声波传感器组成的群组中的至少一种。当传感器包括温度传感器时,该传感器采集的数据可以包括温度数据。当传感器包括位置传感器时,该传感器采集的数据可以包括位置数据。当传感器包括红外传感器时,该传感器采集的数据可以包括红外数据。当传感器包括超声波传感器时,传感器采集的数据可以包括超声波数据。
步骤502、内嵌式触控显示面板向目标驱动芯片发送状态数据。
在本公开实施例中,目标驱动芯片可以与内嵌式触控显示面板通过指定方式建立连接,内嵌式触控显示面板可以通过该连接向目标驱动芯片发送状态数据。例如该连接可以为电路连接、数据线连接或者柔性电路板(英文:Flexible Printed Circuit;简称:FPC)连接,本公开实施例对此不做限定。
当步骤501中的状态数据包括触控数据和传感器采集的数据时,在步骤502中内嵌式触控显示面板可以向目标驱动芯片发送:包括该触控数据的传感器采集的数据的回传数据。
步骤503、目标驱动芯片生成回传数据,该回传数据包括状态数据。
目标驱动芯片接收内嵌式触控显示面板所获取的状态数据后,可以基于该状态数据生成回传数据。在本公开实施例中,状态数据可以有多种形式,针对状态数据的不同形式,目标驱动芯片可以有不同的处理方式。本公开实施例以以下两种状态数据的形式为例进行说明。
在状态数据的第一种形式中,该状态数据可以是未经处理的数据(raw data),也称原始数据。也即是在步骤502中,内嵌式触控显示面板在获取了该状态数据后,未对该状态数据进行处理,直接发送至目标驱动芯片。当然,该数据需要按照与目标驱动芯片约定的格式进行发送。
未经处理的状态数据,其通常为模拟信号形式的状态数据,目标驱动芯片可以直接将该状态数据作为回传数据发送至控制器,也可以对该状态数据进行处理后,生成回传数据,再将回传数据发送至控制器。该处理过程包括:目标驱动芯片将模拟信号形式的状态数据进行模数转换,以得到数字信号形式的状态数据。之后,目标驱动芯片生成回传数据,该回传数据包括数字信号形式的状态数据。上述将模拟信号形式的状态数据进行模数转换的过程可以通过集成在目标驱动芯片中的模数转换器(英文:Analog-to-Digital Converter;简称:ADC)实现。
在状态数据的第二种形式中,该状态数据可以是经处理的数据,也即是在步骤502中,内嵌式触控显示面板在获取了该状态数据后,对该状态数据进行处理,并将处理后的状态数据发送至目标驱动芯片。当然,该数据需要按照与目标驱动芯片约定的格式进行发送。
经过处理的状态数据,其通常为数字信号形式的状态数据,目标驱动芯片可以直接将该状态数据作为回传数据发送至控制器。
进一步的,除了状态数据,该回传数据还可以包括目标驱动芯片的信息,这样目标驱动芯片可以实现其自身信息的回传,进一步丰富了目标驱动芯片的功能。
例如,该回传数据包括目标驱动芯片的工作模式数据和指示驱动芯片的工作状态是否异常的第二指示信息组成的群组中的至少一种。当然,该目标驱动芯片的信息还可以包括其他信息,如驱动芯片的数据处理速率等等。
该工作模式数据用于表明目标驱动芯片所处的工作模式,该工作模式用于表明目标驱动芯片当前进行数据处理的速率。例如,目标驱动芯片的工作模式包括低速工作模式或者高速工作模式,该高速工作模式的数据处理速率大于低速工作模式的数据处理速率。目标驱动芯片可以根据其具体使用场景动态切换工作模式。可选地,目标驱动芯片可以根据当前需要处理的数据量来确定其工作模式,例如,目标驱动芯片上共m个处理模块,当前需要处理的数据量需要使用n个处理模块,当n的个数大于预设个数阈值时,目标驱动芯片可以确定 该目标驱动芯片处于高速工作模式;当n的个数不大于预设个数阈值,目标驱动芯片可以确定该目标驱动芯片处于低速工作模式。或者当n/m大于预设比例阈值时,目标驱动芯片确定该目标驱动芯片处于高速工作模式;当n/m的个数不大于预设比例阈值时,目标驱动芯片确定该目标驱动芯片处于低速工作模式。上述m为大于1的正整数。m个处理芯片可以包括模数转换芯片、计算芯片和存储芯片组成的群组中的至少一种。
该指示目标驱动芯片的工作状态是否异常的第二指示信息包括:正常指示信息和异常指示信息两种,该正常指示信息用于表明驱动芯片的工作状态不异常(即正常);异常指示信息用于表明驱动芯片的工作状态异常。该第二指示信息可以用预设字符表示,例如,0表示正常指示信息,1表示异常指示信息。
步骤504、目标驱动芯片向控制器发送回传数据。
在本公开实施例中,控制器与目标驱动芯片建立有通信连接,如图1至图3任一所示,控制器与目标驱动芯片可以通过第一信号线连接,也可以通过第二信号线连接,还可以通过第三信号线连接。通常控制器可以通过该第二信号线进行控制信号的传输,以实现对目标驱动芯片的快速高效控制。示例地,该第二信号线为高速信号线,例如第二差分信号线。
上述第一信号线可以为单总线,其采用曼彻斯特编码,也可以为双线,如串行外设接口(英文:Serial Peripheral Interface;简称:SPI)总线或两线式串行总线(I2C总线)。但是,单总线的信号传输速率通常为100kHz(千赫兹),SPI总线的传输速率可以达到16MHz,两线式串行总线的传输速率可以达到400kHz。这三种形式的信号线的传输速率均较小,无法实现大数据量的传输,如果需要传输较大数据量的数据或者实时获取的数据时,容易出现丢包现象。因此,本公开实施例中,该第一信号线还可以为高速信号线,如第一差分信号线。差分信号线可以实现数据的快速实时回传,并且支持大数据量的传输。尤其在上述状态数据的数据量较大时,能够实现更好的传输效果,从而保证控制器能够及时响应与控制。例如,状态数据包括触控数据时,第一差分信号线能够将完整的触控数据快速传输给控制器,控制器可以针对触控数据进行快速响应;状态数据包括温度传感器采集的温度数据时,第一差分信号线能够将完整的温度数据快速传输给控制器,控制器可以基于该温度数据进行迅速处理,例如在温度较高时,进行降温处理。
进一步的,当目标驱动芯片同时通过第一差分信号线和第二差分信号线与 控制器连接(也即,目标驱动芯片不仅通过第一差分信号线与控制器连接,目标驱动芯片还通过第二差分信号线与控制器连接)时,目标驱动芯片可以接收控制器通过第二差分信号线发送的控制信号,执行该控制信号指示的操作;同时,目标驱动芯片可以通过第一差分信号线向控制器实时发送回传数据。这样,由于目标驱动芯片和控制器之间设置了两个差分信号线,因此,信号的收发相互独立,互不影响,时序上不会出现冲突,从而可以实现回传数据的实时发送。内嵌式触控显示面板在每次获取状态数据后,直接传输至目标驱动芯片,目标驱动芯片基于该状态数据生成回传数据后,直接通过第一差分信号线传输至控制器,该过程可以保证状态数据的时效性,实现控制器对状态数据的即使获取,以及及时处理。
差分信号线包括两根信号线,通过差分传输的方式进行信号传输。其中,差分传输是一种信号传输的技术,区别于传统的一根信号线(该信号线可以是时钟信号线)一根地线的做法;差分传输是在这两根信号线上都传输信号,这两根信号线上传输的信号的振幅相等,相位相反。在这两根信号线上传输的信号就是差分信号。通过该两根信号线上的信号的差值可以表征差分信号线具体传输的信号,示例地,这两根信号线在正常工作时,加载的电平相反,两者加载的信号分别为Vo+和Vo-,示例地,两者差值为正则为表征差分信号线具体传输的信号1,差值为负则表征差分信号线具体传输的信号为0。通过差分信号线相较于传统的信号线,可以节约资源,无需使用信号线和地线;精确度较高,可以很容易识别小信号;有很强的抗电磁干扰(英文:Electro Magnetic Interference;简称:EMI)能力;且信号传输速度快,具有广泛应用前景。
上述第一差分信号线上传输的信号以数据包的形式传输。如图9所示,图9为第一差分信号线上传输的一个数据包的结构示意图,第一差分信号线上的其他数据包的结构也可以参考该数据包,其包括依次排列的起始位(start)、数据位和结束(stop)位;其中,起始位用于表明数据传输开始,其可以包括起始标识,数据位用于携带待传输数据,结束位用于表明数据传输结束,其可以包括结束标识。由图7可以看出,上述起始位、数据位和结束位均由差值0或1表示,每个差值占用1比特(bit)。其中,数据位中可以包括数据起始(begin)位、待传输数据和数据结束(end)位(也称数据截止位),该数据起始位用于表明数据位的实际开始位置,数据结束位用于表明数据位的实际结束位置。进一步的,该数据位还可以包括数据校验位(图9未示出),用于进行待传输数 据的数据校验,提高数据传输的可靠性。
可选地,如图10所示,每个数据包还包括:位于起始位和数据位之间的依次排列的设置方式(mode)位和模式设置位,位于数据位和结束位之间的校验位。其中,设置方式位用于表明数据包的模式设置的方式,如通过软件方式设置或者通过硬件方式设置,其中,软件方式指的是通过信令传输的方式设置,硬件方式指的是通过芯片管脚置高或置低的方式设置。进一步的,设置方式位中还可以包括一些反映数据包的模式设置的参数,如初始化(setup)的设置参数、传输过程中的设置参数或结束传输时的设置参数。模式设置位用于表明数据包的模式,该数据包的模式可以包括请求(ask或require)模式或响应模式。校验位用于进行数据校验。
步骤505、控制器对回传数据进行处理。
由步骤503可知,回传数据可以包括状态数据,也可以包括驱动芯片的信息。在控制器接收目标驱动芯片发送的回传数据后,可以针对回传数据中的数据内容不同,进行相应的处理。例如,进行数据的转发、响应或存储等。
本公开实施例以以下几种回传数据的数据内容为例所对应的处理动作进行说明:
首先,回传数据包括状态数据,该状态数据包括:触控数据。则控制器可以存储该触控数据,或者对该触控数据进行响应,又或者将该触控数据转发至指定处理器,如中央处理器(英文:CPU;简称:Central Processing Unit)。当该控制器为时序控制器时,该时序控制器中可以集成有MCU,控制器可以将触控数据转发至MCU。
可选地,该状态数据还包括:指示内嵌式触控显示面板的工作状态是否异常的第一指示信息。则当第一指示信息指示显示面板的工作状态异常,也即是该第一指示信息为异常指示信息时,控制器可以发出告警信息,或者将该第一指示信息转发至指定处理器,如CPU。当该控制器为时序控制器时,该时序控制器中可以集成有MCU,控制器可以将该第一指示信息转发至MCU。
可选地,该状态数据还包括:传感器采集的数据。则控制器可以存储该传感器采集的数据,或者将该传感器采集的数据转发至指定处理器,如CPU。当该控制器为时序控制器时,该时序控制器可以集成有MCU,控制器可以将传感器采集的数据转发至MCU。
可选地,回传数据还包括驱动芯片的信息,该驱动芯片的信息包括驱动芯 片的工作模式数据。则控制器可以保存该工作模式数据。
可选地,回传数据还包括驱动芯片的信息,该驱动芯片的信息包括指示驱动芯片的工作状态是否异常的第二指示信息。则当第二指示信息指示驱动芯片的工作状态异常,也即是该第二指示信息为异常指示信息时,控制器可以发出告警信息,或者将该第二指示信息转发至指定处理器,如CPU。当该控制器为时序控制器时,该时序控制器可以集成有MCU,控制器可以将该第二指示信息转发至MCU。
由于回传数据中的数据内容可以有多种,控制器可以基于不同的数据内容,执行上述处理动作中的一种或多种,本公开实施例对此不作限定。并且,处理器还可以基于回传数据中的数据内容生成相应的控制信号,向该目标驱动芯片发送该控制信号,以实现对目标驱动芯片的控制。
需要说明的是,在传统的控制器的基础上,控制器还可以设置专有的处理模块来接收目标驱动芯片传输的回传数据,并且还可以通过该处理模块向该目标驱动芯片发送针对该回传数据的控制信号或者响应信号。当然处理模块还可以向目标驱动芯片发送其它数据,例如配置数据等,本公开实施例对此不做限定。在一种可选地实现方式中,该处理模块可以通过上述第一差分信号线向目标驱动芯片发送数据,也即是该第一差分信号线可以进行数据的双向传输;在另一种可选地实现方式中,该处理模块可以通过额外的第三差分信号线向目标驱动芯片发送数据,也即是该第三差分信号线和第一差分信号线分别进行数据的单向传输,本公开实施例对此不做限定。
进一步的,在控制器的控制下,目标驱动芯片也可以向内嵌式触控显示面板发送信号,例如数据获取请求,因此,目标驱动芯片和内嵌式触控显示面板之间也可以建立双向连接。该双向连接可以由一个支持双向通信的电路连接、数据线连接或者FPC连接实现,也可以由两个支持单向通信的连接实现,该连接可以为电路连接、数据线连接或者FPC连接。
如图11所示,图11为一种内嵌式触控显示面板、目标驱动芯片以及控制器的连接关系示意图。图11假设该控制器为时序控制器011,该处理模块为集成在控制器中的MCU,目标驱动芯片为源极驱动芯片021,则区域X中的连接为实现内嵌式触控显示面板基本的显示功能所需的连接;区域Y中的连接为本公开实施例中新增的连接,源极驱动芯片021与内嵌式触控显示面板03之间可以进行双向数据传输,源极驱动芯片021与时序控制器011之间可以进行双向 数据传输,尤其在通过差分信号线连接时,可以实现实时高效的数据传输。
综上所述,本公开实施例提供的数据传输方法,目标驱动芯片能够接收内嵌式触控显示面板获取的状态数据,并通过回传数据将该状态数据传输至控制器,丰富了驱动芯片的功能,提高了驱动芯片的利用率。并且通过第一差分信号线进行数据回传可以实现数据的高速实时回传,数据传输效率较高。
本公开实施例提供一种目标驱动芯片60,如图12所示,应用于显示装置中的目标驱动芯片,目标驱动芯片为显示装置的多个驱动芯片中的一个驱动芯片,目标驱动芯片分别与控制器以及内嵌式触控显示面板连接,目标驱动芯片60包括:
第一接收模块601,用于接收内嵌式触控显示面板所获取的状态数据,状态数据用于反映内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据;
发送模块602,用于向控制器发送回传数据,回传数据包括:状态数据。
综上所述,本公开实施例提供的目标驱动芯片中,接收模块能够接收内嵌式触控显示面板获取的状态数据,并由发送模块通过回传数据将该状态数据传输至控制器,丰富了驱动芯片的功能,提高了驱动芯片的利用率。
可选地,控制器与驱动芯片通过第一差分信号线连接,
可选地,如图13所示,发送模块602,包括:
发送子模块6021,用于通过第一差分信号线向控制器发送回传数据。
可选地,所述发送子模块6021用于:以数据包的形式在所述第一差分信号线上向所述控制器发送所述回传数据;
其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
可选地,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
可选地,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,如 图14所示,所述目标驱动芯片60还包括:
第二接收模块603,用于接收所述控制器通过所述第二差分信号线发送的控制信号;
所述发送模块602(如发送模块602中的所述发送子模块6021)用于:通过所述第一差分信号线向所述控制器实时发送所述回传数据。
可选地,触控数据包括触控位置数据和触控压力数据组成的群组中的至少一种。
可选地,所述回传数据还包括:由第一指示信息、所述驱动芯片的工作模式数据和第二指示信息组成的群组中的至少一种;所述第一指示信息用于表明所述内嵌式触控显示面板的工作状态是否异常,所述第二指示信息用于表明所述目标驱动芯片的工作状态是否异常。
可选地,如图15所示,目标驱动芯片60还包括:
转换模块604,用于在向控制器发送回传数据之前,将模拟信号形式的状态数据进行模数转换,以得到数字信号形式的状态数据;
生成模块605,用于生成回传数据,回传数据包括数字信号形式的状态数据。
可选地,驱动芯片为源极驱动芯片或栅极驱动芯片,所述内嵌式触控显示面板为集成有触控功能层的OLED显示面板、量子点显示面板、微发光二极管显示面板或液晶显示面板;
控制器为时序控制器、系统芯片SOC以及集成在时序控制器中的微控制单元MCU中的任一种。
可选地,所述内嵌式触控显示面板包括:传感器,所述第一接收模块601用于:接收所述触控数据和所述传感器采集的数据。
综上所述,本公开实施例提供的目标驱动芯片中,接收模块能够接收内嵌式触控显示面板获取的状态数据,并由发送模块通过回传数据将该状态数据传输至控制器,丰富了驱动芯片的功能,提高了驱动芯片的利用率。
本公开实施例提供一种控制器70,如图16所示,该控制器70包括:
接收模块701,用于接收目标驱动芯片发送的回传数据,回传数据包括:状态数据;
其中,目标驱动芯片为显示装置的多个驱动芯片中的一个驱动芯片,且所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接。回传数 据是目标驱动芯片在接收内嵌式触控显示面板所获取的状态数据后向控制器发送的,状态数据用于反映内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据。
综上所述,本公开实施例提供了一种控制器,目标驱动芯片能够接收内嵌式触控显示面板获取的状态数据,并通过回传数据将该状态数据传输至控制器的接收模块,丰富了驱动芯片的功能,提高了驱动芯片的利用率。
可选地,控制器与驱动芯片通过第一差分信号线连接,如图17所示,接收模块701,包括:
接收子模块7011,用于通过第一差分信号线接收目标驱动芯片发送的回传数据。
可选地,如图18所示,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述控制器70还包括:
发送模块702,用于通过第二差分信号线向所述目标驱动芯片发送控制信号;
所述接收子模块7011,用于:通过所述第一差分信号线接收所述目标驱动芯片实时发送的回传数据。
可选地,所述接收子模块7011用于:通过所述第一差分信号线接收数据包形式传输的所述回传数据,所述数据包包括:依次排列的起始位、数据位和结束位;
其中,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
可选地,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,位于所述数据位和所述结束位之间的校验位;
其中,所述设置方式位用于表明数据包的模式设置的方式,所述模式设置位用于表明数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
可选地,状态数据还包括:指示内嵌式触控显示面板的工作状态是否异常的第一指示信息。回传数据还包括:由第一指示信息、驱动芯片的工作模式数据和第二指示信息组成的群组中的至少一种;第二指示信息用于表明目标驱动芯片的工作状态是否异常。
可选地,所述内嵌式触控显示面板包括:传感器,所述状态数据还包括: 所述传感器采集的数据。
可选地,触控数据包括触控位置数据和触控压力数据组成的群组中的至少一种。
可选地,回传数据还包括驱动芯片的工作模式数据和指示驱动芯片的工作状态是否异常的第二指示信息组成的群组中的至少一种。
应该理解到,以上所描述的控制器和目标驱动芯片实施例仅仅是示意性的,例如,控制器和目标驱动芯片中模块和子模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本公开各个实施例中的各功能模块可以集成在一个模块中,也可以是各个模块单独存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用硬件加软件功能模块的形式实现。
本公开实施例提供一种目标驱动芯片80,所述目标驱动芯片所在的显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述显示装置的多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接。如图19所示,所述目标驱动芯片80包括:
处理器801;
用于存储所述处理器的可执行指令的存储器802;
其中,所述处理器运行所述可执行指令时,能够执行本公开实施例提供的用于目标驱动芯片的数据传输方法。
本公开实施例提供一种控制器90,所述控制器90所在的显示装置还包括多个驱动芯片和内嵌式触控显示面板,如图20所示,所述控制器90包括:
处理器901;
用于存储所述处理器的可执行指令的存储器902;
其中,所述处理器运行所述可执行指令时,能够执行本公开实施例提供的用于控制器的数据传输方法。
本公开实施例提供一种显示装置,所述显示装置包括:控制器、多个驱动 芯片和内嵌式触控显示面板。
所述多个驱动芯片包括图12、图14或图15所示的目标驱动芯片,所述控制器包括16或18所示的控制器;
或者,所述多个驱动芯片中的目标驱动芯片为图19所述的目标驱动芯片,所述控制器为图20所述的控制器。
该显示装置可以为:电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
可选地,控制器与目标驱动芯片通过第一差分信号线连接,目标驱动芯片用于通过第一差分信号线向控制器发送回传数据。
又可选地,控制器与目标驱动芯片不仅通过第一差分信号线连接,控制器与目标驱动芯片还通过第二差分信号线连接;控制器用于通过第二差分信号线向目标驱动芯片发送控制信号;目标驱动芯片用于通过第一差分信号线向控制器实时发送回传数据。
图21示出了本公开一个示例性实施例提供的显示装置1000的结构框图。该装置1000可以是电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。通常,装置1000包括有:处理器1001和存储器1002。
处理器1001可以包括一个或多个处理核心,比如4核心处理器、8核心处理器等。处理器1001可以采用DSP(Digital Signal Processing,数字信号处理)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)、PLA(Programmable Logic Array,可编程逻辑阵列)组成的群组中的至少一种硬件形式来实现。处理器1001也可以包括主处理器和协处理器,主处理器是用于对在唤醒状态下的数据进行处理的处理器,也称CPU(Central Processing Unit,中央处理器);协处理器是用于对在待机状态下的数据进行处理的低功耗处理器。在一些实施例中,处理器1001可以在集成有GPU(Graphics Processing Unit,图像处理器),GPU用于负责显示屏所需要显示的内容的渲染和绘制。一些实施例中,处理器1001还可以包括AI(Artificial Intelligence,人工智能)处理器,该AI处理器用于处理有关机器学习的计算操作。
存储器1002可以包括一个或多个存储介质,该存储介质可以是非暂态的。存储器1002还可包括高速随机存取存储器,以及非易失性存储器,比如一个或 多个磁盘存储设备、闪存存储设备。在一些实施例中,存储器1002中的非暂态的存储介质用于存储至少一个指令,该至少一个指令用于被处理组件(如处理器1001)所执行以实现本公开中方法实施例提供的数据传输方法。
在一些实施例中,装置1000还可选包括有:外围设备接口1003和至少一个外围设备。处理器1001、存储器1002和外围设备接口1003之间可以通过总线或信号线相连。各个外围设备可以通过总线、信号线或电路板与外围设备接口1003相连。具体地,外围设备包括:射频电路1004、显示屏1005、摄像头1006、音频电路1007、定位组件1008和电源1009组成的群组中的至少一种。
外围设备接口1003可被用于将I/O(Input/Output,输入/输出)相关的至少一个外围设备连接到处理器1001和存储器1002。在一些实施例中,处理器1001、存储器1002和外围设备接口1003被集成在同一芯片或电路板上;在一些其他实施例中,处理器1001、存储器1002和外围设备接口1003中的任意一个或两个可以在单独的芯片或电路板上实现,本实施例对此不加以限定。
射频电路1004用于接收和发射RF(Radio Frequency,射频)信号,也称电磁信号。射频电路1004通过电磁信号与通信网络以及其他通信设备进行通信。射频电路1004将电信号转换为电磁信号进行发送,或者,将接收到的电磁信号转换为电信号。可选地,射频电路1004包括:天线系统、RF收发器、一个或多个放大器、调谐器、振荡器、数字信号处理器、编解码芯片组、用户身份模块卡等等。射频电路1004可以通过至少一种无线通信协议来与其它装置进行通信。该无线通信协议包括但不限于:万维网、城域网、内联网、各代移动通信网络(2G、3G、4G及5G)、无线局域网和/或WiFi(Wireless Fidelity,无线保真)网络。在一些实施例中,射频电路1004还可以包括NFC(Near Field Communication,近距离无线通信)有关的电路,本公开对此不加以限定。
显示屏1005用于显示UI(User Interface,用户界面)。该UI可以包括图形、文本、图标、视频及其它们的任意组合。当显示屏1005是触摸显示屏时,显示屏1005还具有采集在显示屏1005的表面或表面上方的触摸信号的能力。该触摸信号可以作为控制信号输入至处理器1001进行处理。此时,显示屏1005还可以用于提供虚拟按钮和/或虚拟键盘,也称软按钮和/或软键盘。在一些实施例中,显示屏1005可以为一个,设置装置1000的前面板;在另一些实施例中,显示屏1005可以为至少两个,分别设置在装置1000的不同表面或呈折叠设计;在再一些实施例中,显示屏1005可以是柔性显示屏,设置在装置1000的弯曲 表面上或折叠面上。甚至,显示屏1005还可以设置成非矩形的不规则图形,也即异形屏。显示屏1005可以包括LCD显示面板或OLED显示面板。
摄像头组件1006用于采集图像或视频。可选地,摄像头组件1006包括前置摄像头和后置摄像头。通常,前置摄像头设置在装置的前面板,后置摄像头设置在装置的背面。在一些实施例中,后置摄像头为至少两个,分别为主摄像头、景深摄像头、广角摄像头、长焦摄像头中的任意一种,以实现主摄像头和景深摄像头融合实现背景虚化功能、主摄像头和广角摄像头融合实现全景拍摄以及VR(Virtual Reality,虚拟现实)拍摄功能或者其它融合拍摄功能。在一些实施例中,摄像头组件1006还可以包括闪光灯。闪光灯可以是单色温闪光灯,也可以是双色温闪光灯。双色温闪光灯是指暖光闪光灯和冷光闪光灯的组合,可以用于不同色温下的光线补偿。
音频电路1007可以包括麦克风和扬声器。麦克风用于采集用户及环境的声波,并将声波转换为电信号输入至处理器1001进行处理,或者输入至射频电路1004以实现语音通信。出于立体声采集或降噪的目的,麦克风可以为多个,分别设置在装置1000的不同部位。麦克风还可以是阵列麦克风或全向采集型麦克风。扬声器则用于将来自处理器1001或射频电路1004的电信号转换为声波。扬声器可以是传统的薄膜扬声器,也可以是压电陶瓷扬声器。当扬声器是压电陶瓷扬声器时,不仅可以将电信号转换为人类可听见的声波,也可以将电信号转换为人类听不见的声波以进行测距等用途。在一些实施例中,音频电路1007还可以包括耳机插孔。
定位组件1008用于定位装置1000的当前地理位置,以实现导航或LBS(Location Based Service,基于位置的服务)。定位组件1008可以是基于美国的GPS(Global Positioning System,全球定位系统)、中国的北斗系统或俄罗斯的伽利略系统的定位组件。
电源1009用于为装置1000中的各个组件进行供电。电源1009可以是交流电、直流电、一次性电池或可充电电池。当电源1009包括可充电电池时,该可充电电池可以是有线充电电池或无线充电电池。有线充电电池是通过有线线路充电的电池,无线充电电池是通过无线线圈充电的电池。该可充电电池还可以用于支持快充技术。
在一些实施例中,装置1000还包括有一个或多个传感器1010。该一个或多个传感器1010包括但不限于:加速度传感器1011、陀螺仪传感器1012、压力 传感器1013、指纹传感器1014、光学传感器1015以及接近传感器1016。
加速度传感器1011可以检测以装置1000建立的坐标系的三个坐标轴上的加速度大小。比如,加速度传感器1011可以用于检测重力加速度在三个坐标轴上的分量。处理器1001可以根据加速度传感器1011采集的重力加速度信号,控制触摸显示屏1005以横向视图或纵向视图进行用户界面的显示。加速度传感器1011还可以用于游戏或者用户的运动数据的采集。
陀螺仪传感器1012可以检测装置1000的机体方向及转动角度,陀螺仪传感器1012可以与加速度传感器1011协同采集用户对装置1000的3D动作。处理器1001根据陀螺仪传感器1012采集的数据,可以实现如下功能:动作感应(比如根据用户的倾斜操作来改变UI)、拍摄时的图像稳定、游戏控制以及惯性导航。
压力传感器1013可以设置在装置1000的侧边框和/或触摸显示屏1005的下层。当压力传感器1013设置在装置1000的侧边框时,可以检测用户对装置1000的握持信号,由处理器1001根据压力传感器1013采集的握持信号进行左右手识别或快捷操作。当压力传感器1013设置在触摸显示屏1005的下层时,由处理器1001根据用户对触摸显示屏1005的压力操作,实现对UI界面上的可操作性控件进行控制。可操作性控件包括按钮控件、滚动条控件、图标控件、菜单控件组成的群组中的至少一种。
指纹传感器1014用于采集用户的指纹,由处理器1001根据指纹传感器1014采集到的指纹识别用户的身份,或者,由指纹传感器1014根据采集到的指纹识别用户的身份。在识别出用户的身份为可信身份时,由处理器1001授权该用户执行相关的敏感操作,该敏感操作包括解锁屏幕、查看加密信息、下载软件、支付及更改设置等。指纹传感器1014可以被设置装置1000的正面、背面或侧面。当装置1000上设置有物理按键或厂商Logo时,指纹传感器1014可以与物理按键或厂商Logo集成在一起。
光学传感器1015用于采集环境光强度。在一个实施例中,处理器1001可以根据光学传感器1015采集的环境光强度,控制触摸显示屏1005的显示亮度。具体地,当环境光强度较高时,调高触摸显示屏1005的显示亮度;当环境光强度较低时,调低触摸显示屏1005的显示亮度。在另一个实施例中,处理器1001还可以根据光学传感器1015采集的环境光强度,动态调整摄像头组件1006的拍摄参数。
接近传感器1016,也称距离传感器,通常设置在装置1000的前面板。接近传感器1016用于采集用户与装置1000的正面之间的距离。在一个实施例中,当接近传感器1016检测到用户与装置1000的正面之间的距离逐渐变小时,由处理器1001控制触摸显示屏1005从亮屏状态切换为息屏状态;当接近传感器1016检测到用户与装置1000的正面之间的距离逐渐变大时,由处理器1001控制触摸显示屏1005从息屏状态切换为亮屏状态。
本领域技术人员可以理解,图21中示出的结构并不构成对装置1000的限定,可以包括比图示更多或更少的组件,或者组合某些组件,或者采用不同的组件布置。
本公开实施例提供一种存储介质,所述存储介质中存储有指令,当处理组件执行该指令时,使得处理组件执行如本公开实施例提供的所述数据传输方法。
本公开实施例提供一种芯片,所述芯片包括可编程逻辑电路和/或程序指令,当所述芯片运行时,用于实现本公开实施例提供的数据传输方法。
本公开实施例提供一种程序产品,所述程序产品中存储有指令,当处理组件执行该指令时,使得处理组件执行本公开实施例提供的数据传输方法。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。本公开实施例提供的方法实施例步骤的先后顺序能够进行适当调整,步骤也能够根据情况进行相应增减,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化的方法,都应涵盖在本公开的保护范围之内,因此不再赘述。
在本公开中,术语“第一”和“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性。术语“多个”指两个或两个以上,除非另有明确的限定。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (36)

  1. 一种数据传输方法,应用于显示装置中的目标驱动芯片,所述显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接,所述方法包括:
    接收所述内嵌式触控显示面板所获取的状态数据,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据;
    向所述控制器发送回传数据,所述回传数据包括:所述状态数据。
  2. 根据权利要求1所述的方法,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述向所述控制器发送回传数据,包括:
    通过所述第一差分信号线向所述控制器发送所述回传数据。
  3. 根据权利要求2所述的方法,所述通过所述第一差分信号线向所述控制器发送所述回传数据,包括:
    以数据包的形式在所述第一差分信号线上向所述控制器发送所述回传数据;
    其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
  4. 根据权利要求3所述的方法,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
    其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
  5. 根据权利要求1至4任一所述的方法,所述触控数据包括由触控位置数据和触控压力数据组成的群组中的至少一种。
  6. 根据权利要求1至5任一所述的方法,所述回传数据还包括:由第一指示信息、所述驱动芯片的工作模式数据和第二指示信息组成的群组中的至少一种;
    所述第一指示信息用于表明所述内嵌式触控显示面板的工作状态是否异常,所述第二指示信息用于表明所述目标驱动芯片的工作状态是否异常。
  7. 根据权利要求1至6任一所述的方法,所述内嵌式触控显示面板包括:传感器,所述接收所述内嵌式触控显示面板所获取的状态数据,包括:
    接收所述触控数据和所述传感器采集的数据。
  8. 根据权利要求1至7任一所述的方法,在所述向所述控制器发送回传数据之前,所述方法还包括:
    将模拟信号形式的所述状态数据进行模数转换,以得到数字信号形式的所述状态数据;
    生成所述回传数据,所述回传数据包括数字信号形式的所述状态数据。
  9. 根据权利要求1至8任一所述的方法,所述控制器与所述目标驱动芯片通过第一差分信号线连接,且所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述方法还包括:
    接收所述控制器通过所述第二差分信号线发送的控制信号;
    所述向所述控制器发送所述回传数据,包括:
    通过所述第一差分信号线向所述控制器实时发送所述回传数据。
  10. 根据权利要求1至9任一所述的方法,所述内嵌式触控显示面板为集成有触控功能层的有机发光二极管OLED显示面板、量子点显示面板、微发光二极管显示面板或液晶显示面板;
    所述目标驱动芯片为源极驱动芯片或栅极驱动芯片;
    所述控制器为时序控制器、系统芯片SOC以及集成在所述时序控制器中的微控制单元MCU中的任一种。
  11. 一种数据传输方法,应用于显示装置中的控制器,所述显示装置包括所述控制器、多个驱动芯片和内嵌式触控显示面板,所述方法包括:
    接收目标驱动芯片发送的回传数据,所述回传数据包括:状态数据;
    其中,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,且所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接;
    所述回传数据是所述目标驱动芯片在接收所述内嵌式触控显示面板所获取的状态数据后向所述控制器发送的,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据。
  12. 根据权利要求11所述的方法,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述接收所述目标驱动芯片发送的回传数据,包括:
    通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据。
  13. 根据权利要求12所述的方法,所述通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据,包括:
    通过所述第一差分信号线接收所述目标驱动芯片发送的以数据包的形式传输的所述回传数据;
    其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
  14. 根据权利要求13所述的方法,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
    其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
  15. 根据权利要求12至14任一所述的方法,所述控制器与所述目标驱动 芯片还通过第二差分信号线连接,所述方法还包括:
    通过第二差分信号线向所述目标驱动芯片发送控制信号;
    所述通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据,包括:
    通过所述第一差分信号线接收所述目标驱动芯片实时发送的所述回传数据。
  16. 一种目标驱动芯片,所述目标驱动芯片所在的显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接,所述目标驱动芯片包括:
    第一接收模块,用于接收所述内嵌式触控显示面板所获取的状态数据,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据;
    发送模块,用于向所述控制器发送回传数据,所述回传数据包括:所述状态数据。
  17. 根据权利要求16所述的目标驱动芯片,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述发送模块,包括:
    发送子模块,用于通过所述第一差分信号线向所述控制器发送所述回传数据。
  18. 根据权利要求17所述的目标驱动芯片,所述发送子模块用于:
    以数据包的形式在所述第一差分信号线上向所述控制器发送所述回传数据;
    其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
  19. 根据权利要求18所述的目标驱动芯片,所述数据包还包括:位于所述 起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
    其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
  20. 根据权利要求16至19任一所述的目标驱动芯片,所述触控数据包括由触控位置数据和触控压力数据组成的群组中的至少一种。
  21. 根据权利要求16至20任一所述的目标驱动芯片,所述回传数据还包括:由第一指示信息、所述驱动芯片的工作模式数据和第二指示信息组成的群组中的至少一种;
    所述第一指示信息用于表明所述内嵌式触控显示面板的工作状态是否异常,所述第二指示信息用于表明所述目标驱动芯片的工作状态是否异常。
  22. 根据权利要求16至21任一所述的目标驱动芯片,所述内嵌式触控显示面板包括:传感器;所述第一接收模块用于:接收所述触控数据和所述传感器采集的数据。
  23. 根据权利要求16至21任一所述的目标驱动芯片,所述目标驱动芯片还包括:
    转换模块,用于在所述向所述控制器发送回传数据之前,将模拟信号形式的所述状态数据进行模数转换,以得到数字信号形式的所述状态数据;
    生成模块,用于生成所述回传数据,所述回传数据包括数字信号形式的所述状态数据。
  24. 根据权利要求16至23任一所述的目标驱动芯片,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述目标驱动芯片还包括:
    第二接收模块,用于接收所述控制器通过所述第二差分信号线发送的控制 信号;
    所述发送模块用于通过所述第一差分信号线向所述控制器实时发送所述回传数据。
  25. 根据权利要求16至24任一所述的目标驱动芯片,所述目标驱动芯片为源极驱动芯片或栅极驱动芯片;
    所述内嵌式触控显示面板为集成有触控功能层的OLED显示面板、量子点显示面板、微发光二极管显示面板或液晶显示面板;
    所述控制器为时序控制器、系统芯片SOC以及集成在所述时序控制器中的微控制单元MCU中的任一种。
  26. 一种控制器,所述控制器所在的显示装置还包括:多个驱动芯片和内嵌式触控显示面板,所述控制器包括:
    接收模块,用于接收目标驱动芯片发送的回传数据,所述回传数据包括:状态数据;
    其中,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,且所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接;
    所述回传数据是所述目标驱动芯片在接收所述内嵌式触控显示面板所获取的状态数据后向所述控制器发送的,所述状态数据用于反映所述内嵌式触控显示面板的工作状态,所述状态数据包括:触控数据。
  27. 根据权利要求26所述的控制器,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述接收模块,包括:
    接收子模块,用于通过所述第一差分信号线接收所述目标驱动芯片发送的所述回传数据。
  28. 根据权利要求27所述的控制器,所述接收子模块用于:
    通过所述第一差分信号线接收所述目标驱动芯片发送的以数据包的形式传输的所述回传数据;
    其中,所述数据包包括:依次排列的起始位、数据位和结束位,所述起始 位用于表明数据传输开始,所述数据位用于携带待传输数据,所述结束位用于表明数据传输结束。
  29. 根据权利要求28所述的控制器,所述数据包还包括:位于所述起始位和所述数据位之间的依次排列的设置方式位和模式设置位,以及位于所述数据位和所述结束位之间的校验位;
    其中,所述设置方式位用于表明所述数据包的模式设置的方式,所述模式设置位用于表明所述数据包的模式,所述校验位用于进行数据校验,所述数据包的模式包括请求模式或响应模式。
  30. 根据权利要求27至29任一所述的控制器,所述控制器与所述目标驱动芯片还通过第二差分信号线连接,所述控制器还包括:
    发送模块,用于通过第二差分信号线向所述目标驱动芯片发送控制信号;
    所述接收子模块,用于:
    通过所述第一差分信号线接收所述目标驱动芯片实时发送的所述回传数据。
  31. 一种目标驱动芯片,所述目标驱动芯片所在的显示装置包括控制器、多个驱动芯片和内嵌式触控显示面板,所述目标驱动芯片为所述多个驱动芯片中的一个驱动芯片,所述目标驱动芯片分别与所述控制器以及所述内嵌式触控显示面板连接,所述目标驱动芯片包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器运行所述可执行指令时,能够执行权利要求1至10任一所述的数据传输方法。
  32. 一种控制器,所述控制器所在的显示装置还包括:多个驱动芯片和内嵌式触控显示面板,所述控制器包括:
    处理器;
    用于存储所述处理器的可执行指令的存储器;
    其中,所述处理器运行所述可执行指令时,能够执行权利要求11至15任一所述的数据传输方法。
  33. 一种显示装置,所述显示装置包括:控制器、多个驱动芯片和内嵌式触控显示面板;
    所述多个驱动芯片包括权利要求16至25任一所述的目标驱动芯片,所述控制器为权利要求26至30任一所述的控制器;
    或者,所述多个驱动芯片包括权利要求31所述的目标驱动芯片,所述控制器为权利要求32所述的控制器。
  34. 根据权利要求33所述的显示装置,所述控制器与所述目标驱动芯片通过第一差分信号线连接,所述目标驱动芯片用于通过所述第一差分信号线向所述控制器发送回传数据。
  35. 根据权利要求34所述的显示装置,所述控制器与所述目标驱动芯片还通过第二差分信号线连接;
    所述控制器用于通过所述第二差分信号线向所述目标驱动芯片发送控制信号;
    所述目标驱动芯片用于通过所述第一差分信号线向所述控制器实时发送回传数据。
  36. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当所述指令在计算机的处理组件上运行时,使得处理组件执行如权利要求1至10任一所述数据传输方法,或者,使得处理组件执行如权利要求11至15任一所述数据传输方法。
PCT/CN2019/099510 2018-08-06 2019-08-06 数据传输方法、芯片、控制器及显示装置 WO2020029974A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,261 US11231805B2 (en) 2018-08-06 2019-08-06 Data transmission method, chip, controller and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810886391.XA CN109976570B (zh) 2018-08-06 2018-08-06 数据传输方法、装置及显示装置
CN201810886391.X 2018-08-06

Publications (1)

Publication Number Publication Date
WO2020029974A1 true WO2020029974A1 (zh) 2020-02-13

Family

ID=67075958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099510 WO2020029974A1 (zh) 2018-08-06 2019-08-06 数据传输方法、芯片、控制器及显示装置

Country Status (3)

Country Link
US (1) US11231805B2 (zh)
CN (1) CN109976570B (zh)
WO (1) WO2020029974A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115019635A (zh) * 2021-09-30 2022-09-06 荣耀终端有限公司 一种折叠电子设备

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109976570B (zh) 2018-08-06 2022-08-05 京东方科技集团股份有限公司 数据传输方法、装置及显示装置
US11099675B1 (en) * 2020-04-23 2021-08-24 Novatek Microelectronics Corp. Display device, operation method, driving circuit and timing control circuit
CN111613161A (zh) * 2020-05-19 2020-09-01 深圳Tcl数字技术有限公司 显示数据的传输方法、显示装置及存储介质
KR20220032143A (ko) * 2020-09-07 2022-03-15 주식회사 엘엑스세미콘 터치 센싱 장치 및 이를 구동하는 방법
CN114205514B (zh) * 2020-09-17 2023-04-28 京东方科技集团股份有限公司 相机系统及其数据传输方法、显示屏和电子设备
CN112860125B (zh) * 2021-03-19 2024-04-16 京东方科技集团股份有限公司 触控显示驱动装置、方法及触控显示装置
CN115148146A (zh) * 2021-12-14 2022-10-04 杰华特微电子股份有限公司 用于led显示系统的led驱动电路、多线通信装置和方法
CN114550633A (zh) * 2022-02-28 2022-05-27 厦门天马微电子有限公司 一种显示面板和显示设备
CN117931000A (zh) * 2022-10-25 2024-04-26 华为技术有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140191987A1 (en) * 2013-01-07 2014-07-10 Quanta Computer Inc. Data transmission device and method for transmitting display and touch data and computer system having the same
CN103941926A (zh) * 2013-01-18 2014-07-23 瀚宇彩晶股份有限公司 具有触控功能的显示装置
CN105976779A (zh) * 2016-07-01 2016-09-28 深圳市华星光电技术有限公司 时序控制器及其数据更新方法、液晶显示面板
CN109976570A (zh) * 2018-08-06 2019-07-05 京东方科技集团股份有限公司 数据传输方法、装置及显示装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559661B2 (ja) * 1996-10-22 2004-09-02 キヤノン株式会社 画像形成装置及び制御装置
CN104020891A (zh) * 2014-05-30 2014-09-03 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
KR102349822B1 (ko) * 2015-07-31 2022-01-11 엘지디스플레이 주식회사 터치 IC(integrated circuit) 및 터치 디스플레이 장치와 이의 구동 방법
KR102370717B1 (ko) * 2015-12-31 2022-03-04 엘지디스플레이 주식회사 유기 발광 다이오드 표시 장치
US9857911B1 (en) * 2016-07-29 2018-01-02 Parade Technologies, Ltd. Bi-directional scalable intra-panel interface
KR102440260B1 (ko) * 2017-12-08 2022-09-05 엘지디스플레이 주식회사 터치 회로, 터치 구동 회로, 터치 표시장치 및 그 구동 방법
KR102605378B1 (ko) * 2018-07-19 2023-11-24 엘지디스플레이 주식회사 터치 센서를 구비하는 표시장치

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140191987A1 (en) * 2013-01-07 2014-07-10 Quanta Computer Inc. Data transmission device and method for transmitting display and touch data and computer system having the same
CN103941926A (zh) * 2013-01-18 2014-07-23 瀚宇彩晶股份有限公司 具有触控功能的显示装置
CN105976779A (zh) * 2016-07-01 2016-09-28 深圳市华星光电技术有限公司 时序控制器及其数据更新方法、液晶显示面板
CN109976570A (zh) * 2018-08-06 2019-07-05 京东方科技集团股份有限公司 数据传输方法、装置及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115019635A (zh) * 2021-09-30 2022-09-06 荣耀终端有限公司 一种折叠电子设备
CN115019635B (zh) * 2021-09-30 2023-10-27 荣耀终端有限公司 一种折叠电子设备

Also Published As

Publication number Publication date
US11231805B2 (en) 2022-01-25
CN109976570B (zh) 2022-08-05
US20200257399A1 (en) 2020-08-13
CN109976570A (zh) 2019-07-05

Similar Documents

Publication Publication Date Title
WO2020029974A1 (zh) 数据传输方法、芯片、控制器及显示装置
US11392226B2 (en) Active stylus calibration method, active stylus, and electronic device
CN111225042B (zh) 数据传输的方法、装置、计算机设备以及存储介质
EP4109218B1 (en) Mobile phone comprising a touch screen with an in-display fingerprint sensor
WO2020259674A1 (zh) 一种曲面屏的防误触方法及电子设备
WO2018098638A1 (zh) 一种电子设备拍摄方法和装置
CN110333834B (zh) 帧频调整方法及装置、显示设备、计算机可读存储介质
US11257439B2 (en) Data transmission method and device, display screen, and display device
WO2020001564A1 (zh) 一种处理任务的方法、装置及系统
CN108762881B (zh) 界面绘制方法、装置、终端及存储介质
WO2021063099A1 (zh) 拍摄方法及电子设备
US11393418B2 (en) Method, device and system for data transmission, and display device
WO2019192244A1 (zh) 参数配置方法、装置及显示装置
CN109697113B (zh) 请求重试的方法、装置、设备及可读存储介质
WO2022199102A1 (zh) 图像处理方法及装置
WO2021052015A1 (zh) 一种触控屏控制方法和电子设备
CN112181915B (zh) 执行业务的方法、装置、终端和存储介质
CN110086814B (zh) 一种数据获取的方法、装置及存储介质
WO2023045806A9 (zh) 触控屏中的位置信息计算方法和电子设备
CN114785766B (zh) 智能设备的控制方法、终端及服务器
WO2021129453A1 (zh) 一种截屏方法及相关设备
CN113843814A (zh) 机械臂设备的控制系统、方法、装置和存储介质
WO2019214694A1 (zh) 存储数据的方法、读取数据的方法、装置及系统
CN113518383B (zh) 网络管理方法、装置、系统、设备及计算机可读存储介质
WO2024114770A1 (zh) 一种光标控制方法和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848394

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19848394

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19848394

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.10.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19848394

Country of ref document: EP

Kind code of ref document: A1