WO2020029885A1 - 信号处理方法和装置 - Google Patents

信号处理方法和装置 Download PDF

Info

Publication number
WO2020029885A1
WO2020029885A1 PCT/CN2019/099091 CN2019099091W WO2020029885A1 WO 2020029885 A1 WO2020029885 A1 WO 2020029885A1 CN 2019099091 W CN2019099091 W CN 2019099091W WO 2020029885 A1 WO2020029885 A1 WO 2020029885A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
antenna port
reference signal
linear
transmission layer
Prior art date
Application number
PCT/CN2019/099091
Other languages
English (en)
French (fr)
Inventor
韩玮
任翔
葛士斌
刘永
毕晓艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020029885A1 publication Critical patent/WO2020029885A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a signal processing method and device.
  • MIMO multiple-input multiple-output
  • MIMO systems usually use precoding techniques to improve the channel to improve the effect of spatial multiplexing.
  • the precoding technology uses a precoding matrix matching the channel to process a spatially multiplexed data stream (hereinafter referred to as a spatial stream), thereby implementing precoding of the channel and improving the reception quality of the spatial stream.
  • Precoding technology can be divided into linear precoding technology and non-linear precoding technology.
  • Non-linear precoding technology can be considered as the introduction of non-linear processing on the basis of linear precoding technology.
  • the transmit power of the signal changes, which may cause the actual transmit power to exceed the transmit power limit allowed by the system. For this, at present, no corresponding solution has been given.
  • the embodiments of the present application provide a signal processing method and device, which are helpful to realize the transmission power of the signal after the non-linear precoding, and meet the design limitation requirements of the system on the transmission power.
  • an embodiment of the present application provides a signal processing method, including: first, moving a signal to be transmitted in at least one of the N transmission layers; N ⁇ 1, and N is an integer. Then, non-linear precoding is performed on the signal to be sent after the moving of the at least one transmission layer; and the transmission power of the non-linear precoding to be sent signal of the at least one transmission layer is less than or equal to a preset threshold. Next, a non-linearly pre-coded to-be-sent signal of the at least one transmission layer is transmitted.
  • the execution subject of the technical solution may be a sending device (for example, a network device).
  • the N transmission layers may be N transmission layers of the same receiving end device.
  • the at least one transport layer may be a part or all of the N transport layers.
  • the to-be-transmitted signal of at least one transport layer is a codeword-to-layer mapped signal of at least one transport layer.
  • moving the signal to be transmitted refers to shifting the real part and / or the imaginary part of one or more (such as each) symbol in the signal to be transmitted.
  • the preset threshold may be a predefined maximum power used by the sending end device to send signals (or a transmission power allowed by the system), as predetermined through a protocol.
  • the signal to be transmitted is moved, so that the transmission power of the signal obtained after the non-linear precoding is limited to a preset threshold, which helps The transmission power of the signal to be transmitted after the non-linear precoding is achieved, which meets the design limitation requirements of the system for the transmission power.
  • the shift unit of the shift value is preset.
  • the method further includes sending configuration information, and the configuration information is used to configure a moving unit of a moving value.
  • the configuration information may be radio resource control (RRC) signaling, or medium access control (MAC) signaling.
  • the method further includes sending configuration information, and the configuration information is used to configure a move value.
  • the configuration information may be downlink control information (DCI).
  • non-linear precoding is performed on the to-be-sent signals after the at least one transmission layer is moved, and layer-to-antenna port mapping is performed on the to-be-sent signals after the at least one transmission layer is moved, and then, Non-linear precoding is performed on a signal to be transmitted mapped to an antenna port.
  • sending at least one transmission layer's non-linear pre-coded to-be-sent signal includes: layer-to-antenna mapping of the non-linear pre-coded to-be-sent signal, and sending the mapping to the antenna port. Signal to be sent.
  • an embodiment of the present application provides a signal processing method, including: receiving a non-linearly precoded signal of at least one of the N transmission layers; N ⁇ 1, N is an integer; Equalize the non-linearly pre-coded signal of the at least one transport layer; reverse-shift the equalized signal of the at least one transport layer to obtain the signal to be decoded of the at least one transport layer; The decoded signal is decoded.
  • the execution subject of the technical solution may be a receiving end device (for example, a terminal).
  • the “non-linearly pre-coded signal of at least one transmission layer” may be a signal obtained by transmitting the “non-linearly pre-coded signal of at least one transmission layer to be sent” to the receiving end device through the channel. .
  • Each symbol in the signal to be decoded is a candidate to-be-decoded symbol in a candidate to-be-decoded symbol set.
  • the candidate to-be-decoded symbol set includes a plurality of candidate to-be-decoded symbols.
  • the candidate symbol set to be decoded may also be called a constellation set.
  • the reverse movement may be the reverse operation of the movement in the first aspect.
  • receiving a non-linear pre-coded signal of at least one of the N transmission layers includes: receiving at least one of the N transmission layers' non-linear pre-mapping signals mapped to an antenna port. Encode the signal, and perform inverse layer-to-antenna mapping on the signal to obtain a non-linearly pre-encoded signal of the at least one transmission layer.
  • At least one transmission layer includes an n-th transmission layer, 1 ⁇ n ⁇ N, where n is an integer; the signals of at least one transmission layer in the N transmission layers are reverse-shifted to obtain at least one transmission.
  • the to-be-decoded signal of the layer includes: inversely shifting the i-th symbol according to the shift unit of the shift value of the i-th symbol in the signal of the n-th transmission layer and the candidate to-be-decoded symbol set to obtain the corresponding i-th symbol
  • the to-be-decoded symbols are: i ⁇ 1, i is an integer; the to-be-decoded symbols corresponding to the i-th symbol belong to the candidate to-be-decoded symbol set.
  • At least one transport layer includes an n-th transport layer, 1 ⁇ n ⁇ N, where n is an integer.
  • Perform reverse transfer on the signals of at least one of the N transmission layers to obtain at least one signal to be decoded in the transmission layer, including: according to the formula x (n) (i) t (n) (i)-a (n ) (i), reverse-shift the ith symbol in the signal of the nth transmission layer; t (n) (i) is the ith symbol after equalization, and x (n) (i) is the reverse-shift A (n) (i) is the shift value of x (n) (i); i ⁇ 1, i is an integer.
  • the shift unit of the shift value is preset.
  • the method further includes receiving configuration information, and the configuration information is used to configure a moving unit of a moving value.
  • the method further includes receiving configuration information, and the configuration information is used to configure a move value.
  • the signal processing method provided in the second aspect corresponds to the method provided in the first aspect, and therefore, the explanation of the related content in the second aspect and the description of the beneficial effects can be described in the first aspect, and will not be repeated here.
  • an embodiment of the present application provides a signal processing method, including: adjusting a reference signal corresponding to at least one antenna port among P antenna ports; P ⁇ 2, P is an integer; and the at least one antenna port
  • the corresponding adjusted reference signal is subjected to non-linear precoding; wherein the transmission power of the signal to be transmitted after the non-linear precoding of the at least one antenna port is less than or equal to a preset threshold; and the non-linearity of the at least one antenna port is transmitted.
  • Pre-coded reference signal may be a sending device (for example, a network device). In this way, it helps to realize the transmission power of the reference signal after the non-linear precoding, which meets the design limitation requirements of the system for the transmission power.
  • the reference signal may be, for example, but not limited to, a channel state information reference signal (CSI-RS) or a demodulation reference signal (DMRS).
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • the reference signal corresponding to the antenna port is a reference signal mapped from the layer to the antenna port.
  • the P antenna ports may be a total of antenna ports of one or more receiving end devices scheduled by the transmitting end device this time.
  • the amplitude of the reference signal before adjustment and the amplitude of the reference signal after adjustment are different, and the phases are the same. That is, the amplitude of the reference signal is scaled. Specifically: for any (such as each) symbol in the reference signal, the amplitude of the symbol after adjustment is different from that of the symbol before adjustment, and the phase of the symbol after adjustment is different from that of the symbol before adjustment The phases are the same.
  • the method further includes: sending configuration information; the configuration information is used to indicate an adjustment value of the reference signal.
  • the configuration information may be DCI, of course, the embodiment of the present application is not limited thereto.
  • an embodiment of the present application provides a signal processing method, including: receiving a non-linear pre-coded reference signal corresponding to at least one antenna port of P antenna ports; P ⁇ 2, P is an integer;
  • the non-linear pre-coded reference signal corresponding to the at least one antenna port is inversely adjusted; the inversely adjusted reference signal corresponding to the at least one antenna port is used for channel estimation.
  • the execution subject of the technical solution may be a receiving end device (for example, a terminal).
  • the reverse adjustment may be the reverse operation of the adjustment in the third aspect.
  • the amplitude of the reference signal before the inverse adjustment is different from that of the reference signal after the inverse adjustment, and the phases are the same. Specifically: For any (such as each) symbol in the reference signal, the amplitude of the symbol after inverse adjustment is different from that of the symbol before inverse adjustment, and the phase of the symbol after inverse adjustment is different from that before the inverse adjustment. The symbols have the same phase.
  • the method may further include: receiving configuration information, where the configuration information is used to indicate an adjustment value of a reference signal corresponding to at least one antenna port.
  • performing inverse adjustment on the non-linear precoded reference signal corresponding to the at least one antenna port includes: inversely adjusting the non-linear precoded reference signal corresponding to the at least one antenna port according to the adjustment value.
  • the configuration information may be DCI, of course, the embodiment of the present application is not limited thereto.
  • the signal processing method provided in the fourth aspect corresponds to the method provided in the third aspect described above. Therefore, explanations of related content in the fourth aspect and description of beneficial effects can be used in the third aspect described above, and will not be repeated here.
  • an embodiment of the present application provides a signal processing method, including: performing non-linear precoding on reference signals corresponding to at least two antenna port sets; wherein each antenna port set in the at least two antenna port sets It includes at least two antenna ports, each antenna port set includes code division multiplexing time-frequency resources between reference signals corresponding to different antenna ports, and maps non-linear precoded reference signals corresponding to at least two antenna port sets.
  • each resource unit of the time-frequency resource includes a non-linear precoded reference signal corresponding to an antenna port set; and sends a reference signal mapped to the time-frequency resource.
  • the execution subject of the technical solution may be a sending device (for example, a network device). In this way, it is helpful to achieve power enhancement of the reference signal, thereby helping to improve the coverage performance and detection performance of the reference signal.
  • performing non-linear precoding on the reference signals corresponding to the at least two antenna port sets includes: performing non-linear precoding on the reference signals corresponding to each antenna port set in the at least two antenna port sets, respectively. coding.
  • performing non-linear precoding on the reference signals corresponding to the at least two antenna port sets includes: uniformly performing non-linear precoding on the reference signals corresponding to the at least two antenna port sets, and mapping them to Reference signals on each resource unit other than the non-linearly pre-coded reference signal corresponding to the resource unit are set to zero.
  • performing non-linear precoding on the reference signals corresponding to the at least two antenna port sets includes: using a non-linear precoding algorithm to perform non-linear precoding on the reference signals corresponding to the at least two antenna port sets;
  • the non-linear precoding algorithm enables a reference signal obtained by the non-linear precoding to be mapped to time-frequency resources, and each resource unit includes a reference signal corresponding to an antenna port set.
  • an embodiment of the present application provides a signal processing apparatus, and the signal processing apparatus may be configured to execute any one of the methods provided in the first to fifth aspects.
  • the device may be a transmitting device or a receiving device, or may be a chip.
  • the signal processing device may be divided into functional modules according to the methods provided in the first to fifth aspects, for example, each functional module may be divided corresponding to each function, or two or two may be divided. More than one function is integrated in one processing module.
  • the signal processing device may include a processor and a transceiver.
  • the processor may be configured to execute the non-transceiving step in any one of the methods provided in the first aspect to the fifth aspect.
  • a transceiver can be used to perform the transmitting and receiving steps in the method.
  • the processor may be configured to move a signal to be transmitted in at least one of the N transmission layers; N ⁇ 1, N is an integer; Send a signal to perform non-linear precoding; wherein the transmission power of the signal to be sent after the non-linear precoding of the at least one transmission layer is less than or equal to a preset threshold.
  • the transceiver may be configured to send a non-linearly pre-coded signal to be transmitted for the at least one transport layer.
  • the transceiver may specifically be a transmitter.
  • the transceiver may be configured to receive a non-linearly precoded signal of at least one of the N transmission layers; N ⁇ 1, and N is an integer.
  • the processor may be configured to perform equalization on the non-linearly pre-coded signal of the at least one transmission layer according to the reference signal; perform reverse transfer on the equalized signal of the at least one transmission layer to obtain the signal to be decoded of the at least one transmission layer. ; Decoding the to-be-decoded signal of the at least one transport layer.
  • the transceiver may specifically be a receiver.
  • the processor may be configured to adjust a reference signal corresponding to at least one antenna port of the P antenna ports; P ⁇ 2, P is an integer; the adjusted The reference signal is subjected to non-linear precoding; the transmission power of the signal to be sent after the non-linear precoding of the at least one antenna port is less than or equal to a preset threshold.
  • the transceiver may be configured to send a non-linear pre-coded reference signal of the at least one antenna port.
  • the transceiver may specifically be a transmitter.
  • the transceiver may be configured to receive a non-linear pre-coded reference signal corresponding to at least one antenna port of the P antenna ports; P ⁇ 2, and P is an integer.
  • the processor may be configured to perform inverse adjustment on the non-linear precoded reference signal corresponding to the at least one antenna port; and the inverse adjusted reference signal corresponding to the at least one antenna port is used to perform channel estimation.
  • the transceiver may specifically be a receiver.
  • the processor may be configured to perform non-linear precoding on the reference signals corresponding to the at least two antenna port sets; wherein each antenna port set in the at least two antenna port sets includes at least two antennas Ports, code division multiplexing time-frequency resources between reference signals corresponding to different antenna ports included in each antenna port set; and mapping non-linear precoded reference signals corresponding to at least two antenna port sets to time-frequency resources; Each resource unit of the time-frequency resource includes a non-linear precoded reference signal corresponding to an antenna port set.
  • the transceiver can be used to send a reference signal mapped to a time-frequency resource. In this example, the transceiver may specifically be a transmitter.
  • an embodiment of the present application provides a signal processing device.
  • the signal processing device may include a memory and a processor.
  • the memory is used to store a computer program.
  • the computer program is executed by the processor, the first to fifth aspects are implemented. Either method provided by the aspect is executed.
  • the device may be a transmitting device or a receiving device or a chip.
  • an embodiment of the present application provides a processor, which is configured to execute any one of the methods provided in the first to fifth aspects.
  • the processor is configured to move signals to be sent in at least one of the N transmission layers; N ⁇ 1, N is an integer;
  • the signal is subjected to non-linear precoding; wherein the transmission power of the signal to be sent after the non-linear precoding of the at least one transmission layer is less than or equal to a preset threshold. And outputting a signal to be sent after the non-linear precoding of the at least one transmission layer.
  • the processor is configured to receive a non-linearly pre-coded signal of at least one of the input N transmission layers; N ⁇ 1, and N is an integer. And, the non-linearly pre-coded signal of the at least one transport layer is equalized according to the reference signal; the equalized signal of the at least one transport layer is reverse-shifted to obtain the signal to be decoded of the at least one transport layer; A signal to be decoded of at least one transport layer is decoded.
  • the processor may be used to perform, for example, but not limited to, baseband related processing, and the receiver and the transmitter may be respectively used to perform, such as, but not limited to, radio frequency transceiver.
  • the above devices may be provided on separate chips, or at least partly or entirely on the same chip.
  • the receiver and the transmitter may be provided on the receiver chip and the transmitter chip which are independent of each other. It can be integrated into a transceiver and then set on the transceiver chip.
  • the processor may be further divided into an analog baseband processor and a digital baseband processor.
  • the analog baseband processor and the transceiver may be integrated on the same chip, and the digital baseband processor may be provided on a separate chip.
  • digital baseband processors can be used with multiple application processors (such as, but not limited to, graphics processors, multimedia processors, etc.) Integrated on the same chip.
  • application processors such as, but not limited to, graphics processors, multimedia processors, etc.
  • Such a chip may be referred to as a system chip. Whether each device is independently set on a different chip or integrated on one or more chips often depends on the specific needs of the product design. The embodiment of the present application does not limit the specific implementation form of the device.
  • An embodiment of the present application further provides a computer-readable storage medium, including program code, where the program code includes instructions for performing part or all of the steps of any one of the methods provided in the first aspect to the fifth aspect.
  • An embodiment of the present application further provides a computer-readable storage medium on which a computer program is stored, and when the computer program is run on the computer, the computer is caused to execute any one of the possible aspects provided in the first to fifth aspects. method.
  • the embodiment of the present application further provides a computer program product, which, when run on a computer, causes any of the methods provided by the first party to the fifth aspect to be executed.
  • the present application further provides a communication chip in which instructions are stored, which when executed on a network device or terminal, causes the network device or terminal to execute any of the methods provided in the first aspect to the fifth aspect.
  • any of the signal processing devices or processors or computer-readable storage media or computer program products or communication chips provided above is used to execute the corresponding methods provided above. Therefore, what it can achieve For the beneficial effects, reference may be made to the beneficial effects in the corresponding method, and details are not described herein again.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a hardware structure of a communication device applicable to an embodiment of the present application
  • FIG. 3 is a first schematic diagram of a signal processing method according to an embodiment of the present application.
  • FIG. 4 is a first schematic diagram of a signal processing process performed by a sending-end device according to an embodiment of the present application
  • FIG. 5A is a second schematic diagram of a signal processing process performed by a sending-end device according to an embodiment of the present application.
  • FIG. 5B is a third schematic diagram of a signal processing process performed by a sending-end device according to an embodiment of the present application.
  • FIG. 6A is a fourth schematic diagram of a signal processing process performed by a sending-end device according to an embodiment of the present application.
  • FIG. 6B is a fifth schematic diagram of a signal processing process performed by a transmitting end device according to an embodiment of the present application.
  • FIG. 7 is a second schematic diagram of a signal processing method according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of reverse movement provided by an embodiment of the present application.
  • FIG. 9 is a third schematic diagram of a signal processing method according to an embodiment of the present application.
  • FIG. 10 is a sixth schematic diagram of a signal processing process performed by a receiving end device according to an embodiment of the present application.
  • FIG. 11 is a fourth schematic diagram of a signal processing method according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a reference signal applicable to an embodiment of the present application.
  • FIG. 13 is a schematic diagram of a non-linear precoding technique applicable to an embodiment of the present application.
  • FIG. 14 is a fifth schematic diagram of a signal processing method according to an embodiment of the present application.
  • FIG. 15A is a first schematic diagram of a process of nonlinear precoding provided by an embodiment of the present application.
  • FIG. 15B is a second schematic diagram of a non-linear precoding process provided by an embodiment of the present application.
  • FIG. 15C is a third schematic diagram of a non-linear precoding process provided by an embodiment of the present application.
  • 16 is a first schematic structural diagram of a signal processing device according to an embodiment of the present application.
  • FIG. 17 is a second schematic structural diagram of a signal processing apparatus according to an embodiment of the present application.
  • the term “plurality” in this application means two or more.
  • "And / or” is just a kind of association relationship describing related objects, which means that there can be three kinds of relationships, for example, A and / or B can mean: there are A alone, both A and B, and B alone. Situation.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • the terms “first” and “second” are used to distinguish different objects, and do not limit the order of the different objects.
  • the technical solution provided in this application can be applied to various communication systems.
  • the technical solution provided in this application can be applied to a 5G communication system, a future evolution system or a variety of communication fusion systems, etc., and can also be applied to an existing communication system, etc.
  • the application scenarios of the technical solutions provided in this application may include multiple types, for example, machine-to-machine (M2M), macro communication, enhanced mobile Internet (eMBB), ultra-high reliability and ultra-low Time-delay communication (ulreliable & low latency communication (uRLLC)) and massive Internet of Things communication (mass machine type communication (mMTC)).
  • M2M machine-to-machine
  • eMBB enhanced mobile Internet
  • uRLLC ultra-high reliability and ultra-low Time-delay communication
  • mMTC massive Internet of Things communication
  • These scenarios may include, but are not limited to, a communication scenario between a terminal and a terminal, a communication scenario between a network device and a network device, a communication scenario between a network device and a terminal, and the like. The following descriptions are all based on the scenario of network device and terminal communication.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the communication system may include one or more network devices 10 (only one is shown) and one or more network devices 10 connected to each. Terminal 20.
  • FIG. 1 is only a schematic diagram, and does not constitute a limitation on an application scenario of the technical solution provided in this application.
  • the network device 10 may be a transmission receiving node (TRP), a base station, a relay station, or an access point.
  • the network device 10 may be a network device in a 5G communication system or a network device in a future evolved network; it may also be a wearable device or a vehicle-mounted device.
  • it can be: a global system for mobile communications (GSM) or a code division multiple access (CDMA) network, or a base transceiver station (BTS), or a broadband NB (NodeB) in wideband code division multiple access (WCDMA) can also be eNB or eNodeB (evolutional NodeB) in long term evolution (LTE).
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • BTS base transceiver station
  • NodeB broadband NB
  • WCDMA wideband code division multiple access
  • WCDMA wideband code division multiple access
  • the network device 10 may also be a wireless controller in a cloud radio access network (CRAN)
  • the terminal 20 may be a user equipment (UE), an access terminal, a UE unit, a UE station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a UE terminal, a wireless communication device, a UE agent, or a UE device Wait.
  • Access terminals can be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (PDA), and wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved public land mobile network (PLMN) networks, etc. .
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • Functional handheld devices computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks or terminals in future evolved public land mobile network (PLMN)
  • each network element for example, network device 10 and terminal 20, etc.
  • each network element may be implemented by one device, or may be implemented by multiple devices, or may be a functional module within one device.
  • This application implements Examples do not specifically limit this. It can be understood that the foregoing functions may be network elements in hardware devices, software functions running on dedicated hardware, or virtualized functions instantiated on a platform (for example, a cloud platform).
  • each network element in FIG. 1 may be implemented by the communication device 200 in FIG. 2.
  • FIG. 2 is a schematic diagram of a hardware structure of a communication device applicable to an embodiment of the present application.
  • the communication device 200 includes at least one processor 201, a communication line 202, a memory 203, and at least one communication interface 204.
  • the processor 201 may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more processors for controlling the execution of the program of the solution of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • the communication line 202 may include a path for transmitting information between the aforementioned components.
  • the communication interface 204 uses any device such as a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • a transceiver to communicate with other devices or communication networks, such as Ethernet, RAN, wireless local area networks (WLAN), and the like.
  • the memory 203 may be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (random access memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (EEPROM-ready-only memory (EEPROM)), compact disc (read-only memory (CD-ROM)) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory may exist independently, and is connected to the processor through the communication line 202.
  • the memory can also be integrated with the processor.
  • the memory provided in the embodiments of the present application may generally be non-volatile.
  • the memory 203 is configured to store a computer execution instruction for executing the solution of the present application, and the processor 201 controls execution.
  • the processor 201 is configured to execute computer execution instructions stored in the memory 203, so as to implement the method provided in the following embodiments of the present application.
  • the computer-executable instructions in the embodiments of the present application may also be referred to as application program codes, which are not specifically limited in the embodiments of the present application.
  • the processor 201 may include one or more CPUs, such as CPU0 and CPU1 in FIG. 2.
  • the communication device 200 may include multiple processors, such as the processor 201 and the processor 207 in FIG. 2. Each of these processors may be a single-CPU processor or a multi-CPU processor.
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the communication device 200 may further include an output device 205 and an input device 206.
  • the output device 205 is in communication with the processor 201 and can display information in a variety of ways.
  • the output device 205 may be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector. Wait.
  • the input device 206 is in communication with the processor 201 and can receive user input in a variety of ways.
  • the input device 206 may be a mouse, a keyboard, a touch screen device, or a sensing device.
  • the above-mentioned communication device 200 may be a general-purpose device or a special-purpose device.
  • the communication device 200 may be a desktop computer, a portable computer, a network server, a personal digital assistant (PDA), a mobile phone, a tablet computer, a wireless terminal device, an embedded device, or a device having a similar structure in FIG. device.
  • PDA personal digital assistant
  • the embodiment of the present application does not limit the type of the communication device 200.
  • the transmitting device described below may be the network device 10 in FIG. 1 and the receiving device is the terminal 20 in FIG. 1; or the transmitting device may be the terminal 20 in FIG. 1 and receive The end device is the network device 10 in FIG. 1. If no explanation is provided, the following description is based on the example that the sending device is a network device and the receiving device is a terminal.
  • FIG. 3 it is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • the method shown in FIG. 3 includes:
  • the transmitting device moves a signal to be transmitted in at least one of the N transmission layers; N ⁇ 1, N is an integer.
  • the N transmission layers may be N transmission layers of the same receiving end device.
  • the at least one transport layer may be a part or all of the N transport layers.
  • the signal to be transmitted is a data signal transmitted through a physical downlink shared channel (PDSCH), and is specifically composed of one or more symbols.
  • the symbol refers to a modulation symbol (or a constellation point symbol) obtained by modulating a coded bit (or a coded bit stream).
  • the modulation method used for performing the modulation is, for example, but not limited to, a quadrature amplitude modulation (QAM) method, a quadrature phase shift keying (QPSK) modulation method, or a pulse amplitude modulation (pulse amplitude modulation), PAM) method.
  • QAM quadrature amplitude modulation
  • QPSK quadrature phase shift keying
  • PAM pulse amplitude modulation
  • the signal to be sent before the transfer is referred to as the original signal to be sent, which will be collectively described herein and will not be described in detail below.
  • the original to-be-sent signal is a signal mapped by a codeword to a layer, and is a constellation symbol in a constellation set of the original to-be-sent signal.
  • the constellation set of the original to-be-sent signal includes 4 constellation symbols, and each symbol in the original to-be-sent signal can be among the 4 constellation symbols. Of any constellation symbol.
  • Moving the signal to be sent refers to shifting the real part and / or the imaginary part of one or more (such as each) symbol in the signal to be sent.
  • t (n) (i) x (n) (i) + a (n) (i)
  • the i-th among the signals to be transmitted of the n-th transport layer included in the at least one transport layer The symbol is moved.
  • 1 ⁇ n ⁇ N, and n is an integer.
  • t (n) (i) is the i-th symbol after the transfer of the n-th transport layer
  • x (n) (i) is the i-th symbol before the transfer of the n-th transport layer
  • a (n) (i ) Is the shift value of x (n) (i); i ⁇ 1, i is an integer.
  • a (n) (i) k 1 (n) (i) A + jk 2 (n) (i) B.
  • k 1 (n) (i) A is the real part of a (n) (i)
  • jk 2 (n) (i) B is the imaginary part of a (n) (i)
  • j is the imaginary part label.
  • k 1 (n) (i) and k 2 (n) (i) are integers, respectively.
  • one of k 1 (n) (i) and k 2 (n) (i) may be 0.
  • the values of A and B can be predefined, for example, predefined by the protocol; or the sending end device can be configured to the receiving end device by at least one of signaling such as RRC signaling, MAC signaling, and DCI .
  • the method may further include one of the following steps A and B:
  • Step A The sending device sends configuration information to the receiving device, and the configuration information is used to configure a moving unit of a moving value (such as a (n) (i) above).
  • the configuration information may be at least one of RRC signaling, MAC signaling, and DCI.
  • the configuration information may be RRC signaling or MAC signaling.
  • the moving unit of the moving value may be a complex number, and may also include a moving unit of a real number part and / or an imaginary part.
  • the moving value a (n) (i) is an integer multiple of 2 + j3
  • the moving unit of the moving value can be 2 + j3, or the moving unit that can be expressed as the real part is 2 and the moving unit of the imaginary part It's 3rd grade.
  • the moving unit of the moving value may also be predefined, for example, predetermined through an agreement.
  • the moving unit of the moving value may be granularity of the transmission layer, that is, the value of the moving unit of each symbol in the signal to be transmitted in the same transmission layer is the same.
  • the moving units corresponding to the signals to be transmitted in different transmission layers may be the same or different.
  • the embodiments of the present application are not limited to this.
  • Step B The sending-end device sends configuration information to the receiving-end device, and the configuration information is used to configure a move value (such as a (n) (i)).
  • the configuration information may be at least one of RRC signaling, MAC signaling, and DCI.
  • the configuration information may be DCI.
  • the technical solution provided in step A can save transmission overhead.
  • the receiving end device can demodulate the received data signal according to the moving unit or moving value of the moving value, refer to the following.
  • the transmitting-end device performs non-linear precoding on the signal to be sent after the at least one transport layer is moved. Wherein, the transmission power of the signal to be transmitted after the non-linear precoding of the at least one transmission layer is less than or equal to a preset threshold.
  • the embodiment of the present application does not limit the non-linear precoding method used when executing S102.
  • it can be Tomlinson-Harashima precoding (THP), vector perturbation precoding, dirty paper Precoding (dirty, paper, precoding), etc.
  • the transmission power of the signal is less than or equal to the preset threshold, and may include: the transmission power of one or more symbols (such as each symbol) in the signal is less than or equal to the preset threshold.
  • the preset threshold may be a predefined maximum power used by the sending end device to send signals (or a transmission power allowed by the system), as predetermined through a protocol.
  • the embodiment of the present application does not limit the specific value of the preset threshold and the manner of obtaining the value. For example, reference may be made to the prior art.
  • S102 may include: the transmitting-end device performs non-linear precoding on the moved to-be-sent signal of the current transmission layer according to the moved-to-be-sent signal of the one or more transmission layers; It is a transport layer other than the current transport layer among the N transport layers. For example, if the current transport layer is the nth transport layer, 1 ⁇ n ⁇ N, and n is an integer, the sending device can use the formula Non-linear precoding is performed on the signal to be transmitted after the n-th transmission layer is moved.
  • ⁇ (n) (i) is the i-th symbol in the signal to be transmitted after the non-linear precoding of the n-th transmission layer
  • t (n) (i) is the signal to be transmitted after the removal of the n-th transmission layer
  • the i-th symbol in i, i ⁇ 1, i is an integer
  • t (l) (i) is the i-th symbol in the to-be-transmitted signal after the transfer of the l-th transmission layer in the N-transmission layers
  • b nl Is the weight of the lth transport layer relative to the nth transport layer, 1 ⁇ l ⁇ N, l is an integer
  • Ns is a subset of the set [1,2, ..., N].
  • the transmitting device sends a signal to be sent after the non-linear precoding of the at least one transmission layer. Specifically, the transmission power obtained in S102 is used to send the non-linearly pre-coded to-be-sent signal of the at least one transmission layer.
  • FIG. 4 a schematic diagram of a signal processing process performed by a sending end device may be shown in FIG. 4.
  • the sending-end device performs processing such as relocation and non-linear precoding on the signal to be sent, so that the transmitted power of the processed signal to be sent is less than or equal to the maximum power used by the sending-end device to send signals.
  • the signals to be transmitted obtained by using different modulation methods to modulate the same coded bit may be different (for example, different amplitudes and / or phases); and, different non-linear precoding methods are used to precode the same signal.
  • the transmitted power of the signals obtained thereafter may be different. Therefore, in an implementation manner, the transmitting-end device may move the signal to be transmitted in combination with a modulation mode and / or a non-linear precoding mode of the signal to be transmitted.
  • the transmitting end device may also perform other processing on the transmitted signal, such as mapping from a layer to an antenna port.
  • the mapping from the layer to the antenna port may occur after the non-linear precoding, or may occur before the non-linear precoding.
  • S102 may include: the transmitting device performs layer-to-antenna port mapping on the at least one transport layer to-be-sent signal, and then maps to the antenna port Non-linear precoding is performed on signals to be sent at the port.
  • the transmitting device performs layer-to-antenna port mapping on the at least one transport layer to-be-sent signal, and then maps to the antenna port Non-linear precoding is performed on signals to be sent at the port.
  • FIG. 5A a schematic diagram of a signal processing process performed by the sending end device may be shown in FIG. 5A.
  • S103 may include: the transmitting device performs layer-to-antenna mapping on the non-linear precoded signal to be transmitted, and then sends the Send a signal.
  • the transmitting device performs layer-to-antenna mapping on the non-linear precoded signal to be transmitted, and then sends the Send a signal.
  • FIG. 5B a schematic diagram of a signal processing process performed by the transmitting device may be shown in FIG. 5B.
  • the sending device can perform a unified execution of the signals to be sent to multiple receiving devices. Mapping of antenna ports. For example, assuming that the transmitting device sends signals to the receiving devices 1 to 3 respectively, based on the layer-to-antenna port mapping steps performed by the three receiving devices, the schematic diagram of the signal processing process performed by the transmitting device can be as shown in the figure. 6A or 6B. Among them, FIG. 6A is drawn based on FIG. 5A, and FIG. 6B shows drawing based on FIG. 5B.
  • the transmitting-end device moves the signal to be transmitted before performing non-linear precoding on the signal to be transmitted, so as to limit the transmission power of the signal obtained after the non-linear precoding is within a preset threshold. It helps to realize the transmission power of the signal to be transmitted after the non-linear precoding, and meets the system's design limit requirements for the transmission power.
  • FIG. 7 it is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • the method shown in FIG. 7 includes:
  • the receiving end device receives a non-linear precoded signal of at least one of the N transmission layers.
  • N ⁇ 1, N is an integer.
  • the “non-linearly pre-coded signal of at least one transport layer” in S201 may be “a signal to be sent after non-linearly pre-coding of at least one transport layer” in the embodiment shown in FIG. Signal from the end device.
  • S201 may include: a receiving end device receives at least one of the N transmission layers a non-linearly precoded signal mapped to an antenna port, and performs layer-to-antenna inverse mapping on the signal To obtain the non-linearly pre-coded signal of the at least one transmission layer.
  • a receiving end device receives at least one of the N transmission layers a non-linearly precoded signal mapped to an antenna port, and performs layer-to-antenna inverse mapping on the signal To obtain the non-linearly pre-coded signal of the at least one transmission layer.
  • the receiving end device performs equalization on the non-linear pre-encoded signal of the at least one transmission layer according to the reference signal.
  • Equalization means that the equalizer of the receiving device generates the opposite characteristics to the channel, and is used to offset the inter-symbol interference caused by the time-varying multipath propagation characteristics of the channel.
  • the specific implementation of equalization has been described in detail in the prior art, and is not repeated here.
  • the equalized signal of the at least one transmission layer is a signal obtained by the transmitting device in S101 that the receiving device estimates the signal to be sent by the at least one transmission layer.
  • S203 The receiving end device reversely shifts the equalized signal of the at least one transport layer to obtain a signal to be decoded of the at least one transport layer.
  • the to-be-decoded signal includes one or more to-be-decoded symbols, and each to-be-decoded symbol is a candidate to-be-decoded symbol in a candidate to-be-decoded symbol set.
  • the candidate to-be-decoded symbol set includes a plurality of candidate to-be-decoded symbols.
  • the candidate to-be-decoded symbol set may also be referred to as a constellation set, and may specifically be a constellation set corresponding to the original to-be-sent signal described in the embodiment shown in FIG. 3.
  • the to-be-decoded signal of the at least one transport layer is the to-be-transmitted signal of the at least one transport layer before the sending-end device performs the relocation in S101 estimated by the receiver device, that is, the original to-be-transmitted signal of the at least one transport layer signal.
  • the reverse movement performed by the receiving device in S203 may be the reverse operation of the movement performed by the sending device in S201.
  • the specific implementation of the reverse movement is listed below:
  • S203 may include: shifting according to a shift value of an i-th symbol in a signal of the n-th transmission layer.
  • Unit and candidate symbol set to be decoded reversely shift the i-th symbol to obtain the symbol to be decoded corresponding to the i-th symbol; where i ⁇ 1, i is an integer; the symbol to be decoded corresponding to the i-th symbol belongs to the candidate Decoding symbol collection.
  • the moving unit of the moving value may be predefined, or may be obtained by the receiving device by receiving the configuration information sent by the sending device. For related descriptions of the moving unit, reference may be made to the embodiment shown in FIG. 3, and details are not described herein again.
  • the receiving device may first move the i-th symbol one or more times according to the moving unit, so that the position after the moving is located within the range of the constellation map for the first time. Then, the candidate symbol set to be decoded and The candidate symbol to be decoded closest to the i-th symbol after the inverse transfer is used as the symbol to be decoded corresponding to the i-th symbol.
  • FIG. 8 it is a schematic diagram of a reverse transfer process. Among them, the horizontal axis in FIG. 8 represents a real part, and the vertical axis represents an imaginary part.
  • a QPSK modulation method is used as an example for description to obtain an original signal to be transmitted.
  • the candidate to-be-decoded symbol set includes 4 candidate to-be-decoded symbols (labeled as O1, O2, O3, and O4).
  • the receiving end device may first remove the i-th symbol from the Position A is moved twice in the direction indicated by the dotted arrow in FIG. 8 (specifically, the opposite direction indicated by the moving unit), so that the moved position (labeled as position B) is located within the range of the constellation map for the first time.
  • the candidate to-be-decoded symbol (ie, O3) closest to the position B in the candidate to-be-decoded symbol set is used as the to-be-decoded symbol corresponding to the i-th symbol.
  • S204 The receiving end device decodes the to-be-decoded signal of the at least one transport layer.
  • the signal processing method provided in this embodiment corresponds to the embodiment shown in FIG. 3. Therefore, for explanation of related content and description of beneficial effects in this embodiment, refer to the embodiment shown in FIG. To repeat.
  • the above S101 may be replaced by: the transmitting device adjusts the amplitude and / or phase of one or more (such as each) symbol in the signal to be transmitted in the at least one transmission layer.
  • the transmitting device adjusts the amplitude and / or phase of one or more (such as each) symbol in the signal to be transmitted in the at least one transmission layer.
  • the i-th symbol in the to-be-sent signal of the n-th transport layer included in the at least one transport layer is adjusted. 1 ⁇ n ⁇ N, n is an integer.
  • t (n) (i) is the adjusted i-th symbol of the n-th transport layer
  • x (n) (i) is the i-th symbol of the n-th transport layer before adjustment
  • b (n) (i ) Is an amplitude adjustment factor for x (n) (i)
  • ⁇ (n) (i) is a phase adjustment factor for x (n) (i).
  • one of b (n) (i) and ⁇ (n) (i) may be 1.
  • the sending device can send configuration information to the receiving device, and the configuration information is used to configure the adjustment factor.
  • the adjustment factor may include an amplitude adjustment factor and / or a phase adjustment factor.
  • the adjustment factor includes an adjustment factor other than 1 among the amplitude adjustment factor and the phase adjustment factor.
  • the above S203 may be replaced with: the receiving device performs the amplitude and / or phase of one or more (such as each) symbol in the at least one transmission layer to-be-sent signal according to the adjustment factor Inverse adjustment.
  • the receiving device Perform inverse adjustment on the ith symbol in the signal of the nth transmission layer; t (n) (i) is the ith symbol after equalization, and x (n) (i) is the ith symbol after inverse adjustment , B (n) (i) is an amplitude adjustment factor of x (n) (i), and ⁇ (n) (i) is a phase adjustment factor of x (n) (i).
  • the precoding technology used for precoding the data signal is a non-linear precoding technology
  • the precoding technology used for precoding the reference signal may be a non-linear precoding technology. It can be a linear precoding technique.
  • the reference signal is a reference signal for performing channel estimation on a transmission channel through which the data signal passes.
  • FIG. 9 it is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • the method shown in FIG. 9 includes:
  • the transmitting device adjusts a reference signal corresponding to at least one antenna port among the P antenna ports; P ⁇ 2, where P is an integer.
  • the reference signal may be, for example, but not limited to, CSI-RS or DMRS.
  • the reference signal corresponding to the antenna port is a reference signal mapped from the layer to the antenna port.
  • the P antenna ports may be a total of antenna ports of one or more receiving end devices scheduled by the transmitting end device this time. Generally, the number of antenna ports of a receiving device is equal to the number of transmission layers of the receiving device. Therefore, the number of antenna ports P may be the sum of the number of transmission layers of multiple receiving devices.
  • the at least one antenna port may be a part or all of the P antenna ports.
  • the reference signal before adjustment is referred to as the original reference signal, which will be collectively described here and will not be described in detail below.
  • the original reference signal is a signal mapped from the layer to the antenna port, and is a constellation symbol in the constellation set of the original reference signal.
  • the constellation set of the original reference signal includes 4 constellation symbols, and each symbol in the original reference signal can be any one of the 4 constellation symbols .
  • the constellation set of the original reference signal and the constellation set of the original to-be-sent signal described above may be the same or different.
  • Adjusting the reference signal refers to adjusting the amplitude of one or more symbols (such as each symbol) in the reference signal. That is, the reference signal before adjustment and the reference signal after adjustment have different amplitudes and the same phase.
  • t (p) (i) x (p) (i) + a (p) (i)
  • the i-th one of the reference signals corresponding to the p-th antenna port included in the at least one antenna port The symbols are moved, 1 ⁇ p ⁇ P, where p is an integer.
  • t (p) (i) is the i-th symbol after moving
  • x (p) (i) is the i-th symbol before moving
  • a (p) (i) is the moving value of x (p) (i) (That is, a specific implementation of the adjustment value); i ⁇ 1, i is an integer.
  • a (p) (i) is a real number.
  • t (p) (i) b (p) (i) x (p) (i), the i-th one of the reference signals corresponding to the p-th antenna port included in the at least one antenna port
  • Sign adjustment 1 ⁇ p ⁇ P
  • p is an integer.
  • t (p) (i) is the i-th symbol after adjustment
  • x (p) (i) is the i-th symbol before adjustment
  • b (p) (i) is the adjustment factor for x (p) (i) (That is, a specific implementation of the adjustment value); i ⁇ 1, i is an integer.
  • b (p) (i) is a real number.
  • the method may further include: the sending device sends configuration information; the configuration information is used to indicate an adjustment value of the reference signal.
  • the adjustment value may specifically be the above-mentioned moving value or adjustment factor.
  • the embodiment of this application does not limit the sequence of the steps and S302 to S303.
  • the configuration information may be at least one of RRC signaling, MAC signaling, and DCI.
  • the configuration information may be DCI.
  • the adjustment values of different symbols in the signals to be transmitted on the same antenna port may be the same or different.
  • the transmitting-end device performs non-linear precoding on the adjusted reference signal corresponding to the at least one antenna port; wherein the transmission power of the signal to be sent after the non-linear precoding of the at least one antenna port is less than or equal to a preset Threshold.
  • the transmitting end device performs processing such as adjustment and non-linear precoding on the reference signal, so that the transmission power of the processed reference signal is less than or equal to the maximum power used by the transmitting end device to transmit the signal (or the system allows Transmit power).
  • the transmitting device may adjust the reference signal in combination with the non-linear precoding mode used in S303.
  • the transmitting device sends a non-linear pre-coded reference signal of the at least one antenna port.
  • FIG. 10 a schematic diagram of a signal processing process performed by a sending end device may be shown in FIG. 10.
  • the transmitting-end device adjusts the reference signal before performing non-linear precoding on the reference signal, so as to limit the transmission power of the signal obtained after the non-linear precoding is within a preset threshold. It helps to realize the transmission power of the reference signal after non-linear precoding, which meets the system's design limit requirements for transmission power.
  • FIG. 11 it is a schematic diagram of a signal processing method according to an embodiment of the present application.
  • the method shown in FIG. 11 includes:
  • the receiving end device receives a non-linear precoded reference signal corresponding to at least one antenna port of the P antenna ports; P ⁇ 2, where P is an integer.
  • non-linearly pre-coded reference signal of at least one antenna port in S401 may be “the non-linearly pre-coded reference signal of at least one antenna port” in the embodiment shown in FIG. 9 and transmitted to the receiving channel. Signal from the end device.
  • the receiver device performs inverse adjustment on the non-linear pre-coded reference signal corresponding to the at least one antenna port; the inverse adjusted reference signal corresponding to the at least one antenna port is used for channel estimation.
  • the amplitude of the reference signal before the inverse adjustment is different from that of the reference signal after the inverse adjustment, and the phases are the same. Specifically, for any symbol in the reference signal, the amplitude before and after the inverse adjustment is different, and the phase before and after the inverse adjustment is the same.
  • the method may further include: the receiving device receives configuration information, where the configuration information is used to indicate an adjustment value of a reference signal corresponding to the at least one antenna port.
  • S402 may include: the receiving end device performs inverse adjustment on the non-linear precoded reference signal corresponding to the at least one antenna port according to the adjustment value.
  • the i-th symbol in the reference signal corresponding to the port is inversely adjusted.
  • x (p) (i) is the i-th symbol after inverse adjustment
  • x (p) (i) is the i-th symbol before inverse adjustment
  • a (p) (i) is x (p) (i )
  • B (p) (i) is an adjustment factor for x (p) (i)
  • b (p) (i) is a real number. 1 ⁇ p ⁇ P, p is an integer, i ⁇ 1, i is an integer.
  • the inverse adjustment performed by the receiving device in S402 may be the inverse operation of the adjustment performed by the transmitting device in S301.
  • the signal processing method provided in this embodiment corresponds to the embodiment shown in FIG. 9. Therefore, for explanation of related content and description of beneficial effects in this embodiment, refer to the embodiment shown in FIG. To repeat.
  • the antenna ports corresponding to the reference signals sent by the transmitting device may belong to at least two antenna port sets, and the code signals are multiplexed between the reference signals corresponding to the antenna ports in each antenna port set.
  • CDM Orthogonal code division multiplexing
  • FIG. 12 it is a schematic diagram of a reference signal applicable to this scenario.
  • the abscissa in FIG. 12 represents the time domain, and each time domain unit is a symbol; the ordinate represents the frequency domain, and each frequency domain unit is a subcarrier.
  • (A) and (b) in FIG. 12 only show reference signals on a part of REs in one resource block (RB).
  • (A) in FIG. 12 is described using a single-symbol DMRS type 1 as an example.
  • Single-symbol DMRS type 1 contains two CDM groups (labeled CDM group 0 and CDM group 1) in one RB, CDM group 0 includes port 0 and port 1, and CDM group 1 includes port 2 and port 3.
  • the reference signal corresponding to port 0 and the reference signal corresponding to port 1 are code-division multiplexed time-frequency resources
  • the reference signal corresponding to port 2 and the reference signal corresponding to port 3 are code-division multiplexed time-frequency resources.
  • (B) in FIG. 12 is described by taking a two-symbol DMRS type 1 as an example.
  • Double-symbol DMRS type 1 contains two CDM groups (labeled CDM, group 0, and CDM group 1) in one RB, CDM group 0 contains port 0, port 1, port 4, and port 5, and CDM group 1 contains port 2 and port 3. Port 6 and Port 7. Other examples are not listed one by one.
  • the reference signals corresponding to ports0 to 3 on any two adjacent REs (such as RE0 represented by symbol 0 and subcarrier 10, and RE1 represented by symbol 0 and subcarrier 11) in (a) in FIG. 12 can be expressed as The following formula 1:
  • s i represents a set of reference signals corresponding to porti, 0 ⁇ i ⁇ 3, and i is an integer.
  • matrix Each row represents a reference signal corresponding to an antenna port, and each column represents a reference signal on an RE.
  • the specific 0th column indicates the reference signal on RE0, and the 1st column indicates the reference signal on RE1.
  • the elements of this matrix represent the reference signals.
  • RE0 only includes the reference signal corresponding to CDM group 0, that is, the reference signal s 00 corresponding to port 0 and the reference signal s 10 corresponding to port 1;
  • RE1 only includes the reference signal corresponding to CDM group 1, namely port Reference signal s 21 corresponding to 2 and reference signal s 31 corresponding to port 3.
  • the sending device can perform linear precoding on the reference signals corresponding to CDM group0 and CDM group1 (specifically, the reference signals on RE0 and RE1 described above) by the following formula 2:
  • y represents a matrix composed of linear precoded reference signals
  • H represents a channel matrix
  • P represents a precoding matrix
  • s represents a matrix composed of reference signals
  • n represents noise.
  • p i represents a precoding vector of si .
  • the transmitting device can precode the reference signal s 00 and the reference signal s 10 corresponding to the CDM group 0 through the precoding vectors p 1 and p 2 respectively.
  • the receiving device can detect s 00 and / or s 10 on RE0, so as to estimate the precoding equivalent channel of port 0 and / or port 1.
  • the transmitting (a) end device can precode the port 2 reference signal s 21 and port 3 reference signal s 31 included in the CDM group 1 through the precoding vectors p 3 and p 4 respectively.
  • the receiving device can detect s 21 and / or s 31 on RE1, so as to estimate the precoding equivalent channel of port 2 and / or port 3.
  • the reference signal transmission power corresponding to the corresponding antenna port can be enhanced on a specific RE.
  • the above RE0 includes a reference signal corresponding to port 0 and a reference signal corresponding to port 1
  • RE1 includes a reference signal corresponding to port 2 and a reference signal corresponding to port 3.
  • the power corresponding to port 0 on RE0 can be doubled (that is, 3dB).
  • the power corresponding to port1 on RE0 can be doubled.
  • the power of the reference signal sent on RE1 can be doubled, respectively.
  • Non-linear precoding technology can be understood as adding non-linear processing links before linear precoding technology.
  • THP the non-linear precoding technology as an example, as shown in FIG. 13, it is a schematic diagram of THP.
  • THP's non-linear processing steps include power adjustment and filtering. Power adjustment is used to adjust the power of the signal, and filtering is used to pre-eliminate the interference generated by the signal through the channel.
  • s indicates the signal before the non-linear processing step
  • x indicates the signal obtained after the non-linear processing step.
  • the signal here may be a data signal or a reference signal, and the following description uses the signal as a reference signal as an example for description.
  • the reference signal obtained after the non-linear processing of the reference signals on the RE can be expressed as:
  • x i s i represents the reference signal by the reference signal obtained by nonlinear processing chain
  • s' i s i represents the reference signal for adjusting the reference signal power obtained
  • the elements in the coefficient matrix represent the channel coefficients
  • l xi represents the i-th transmit antenna port (that is, port0 to 3) and The channel coefficient of the channel between the xth receiving antenna port. 1 ⁇ y ⁇ 4, y is an integer.
  • the reference signals corresponding to port0 and port1 are located on RE0, and the reference signals corresponding to port2 and port3 are located on RE1, for example, based on the reference signal shown in (a) in FIG. 12, the reference on these two REs is based on THP.
  • Signals undergoing non-linear processing can be expressed as:
  • an embodiment of the present application provides a method for processing a reference signal, as shown in FIG. 14.
  • the method includes:
  • Each antenna port set includes at least two antenna ports, and each antenna port set includes CDM time-frequency resources between reference signals corresponding to different antenna ports.
  • the reference signal corresponding to each antenna port set includes: a set of reference signals corresponding to all antenna ports in the antenna port set.
  • Each antenna port set can also be called a CDM group.
  • the reference signal may be, for example, but not limited to, CSI-RS or DMRS.
  • a schematic diagram of a reference signal applicable to this embodiment may be shown in FIG. 11.
  • the transmitting device maps the non-linear pre-coded reference signals corresponding to at least two antenna port sets to time-frequency resources; each resource unit of the time-frequency resources includes a non-linear pre-code corresponding to one antenna port set Reference signal.
  • the resource unit may be, for example, a resource element (RE).
  • the transmitting device sends a reference signal mapped to the time-frequency resource.
  • each resource unit includes a non-linear precoded reference signal corresponding to an antenna port set. In this way, it is helpful to enhance the power of the reference signal and thus to improve Reference signal coverage and detection performance.
  • S501 can be implemented in one of the following ways:
  • Non-linear precoding is performed on the reference signals corresponding to each antenna port set in at least two antenna port sets.
  • non-linear processing is performed on the reference signals corresponding to each antenna port set in at least two antenna port sets, and then at least two antenna ports are constructed according to the non-linearly processed reference signals corresponding to each antenna port set.
  • the corresponding non-linearly processed reference signals are collected, and then the non-linearly processed reference signals corresponding to the constructed at least two antenna port sets are linearly precoded.
  • Performing non-linear processing on the reference signals corresponding to each antenna port set may include: using multiple filtering algorithms to perform non-linear processing on the reference signals corresponding to each antenna port set, respectively.
  • the number of rows of the coefficient matrix of the filtering algorithm used is equal to the number of antenna ports included in the antenna port set.
  • the filtering algorithm may be referred to as a filter.
  • the filter is a logical function module for performing the filtering algorithm. Based on this, the filtering algorithm used when performing nonlinear processing on the reference signal corresponding to each antenna port set.
  • the number of rows of the coefficient matrix equal to the number of antenna ports included in the antenna port set can be understood as: When the reference signal corresponding to each antenna port set is subjected to nonlinear processing, the size of the filter used and the The number of antenna ports included in the antenna port set is equal.
  • FIG. 15A a schematic process diagram of this specific implementation manner can be shown in FIG. 15A.
  • FIG. 15A is described by using an example in which at least two antenna port sets are CDM group0 and CDM group1.
  • S0 indicates the reference signal corresponding to CDM group0
  • X0 indicates the reference signal obtained through non-linear processing corresponding to CDM group0
  • S1 indicates the reference signal corresponding to CDM group1
  • X1 indicates the reference signal obtained through nonlinear processing corresponding to CDM group1.
  • the transmitting device can perform non-linear processing on the reference signal corresponding to CDM group0 through the following formula 3, and non-linear processing on the reference signal corresponding to CDM group1 through the following formula 4:
  • Equation 4 With reference to FIG. 15A,
  • the non-linearly processed reference signal X ′ corresponding to the constructed at least two antenna port sets is:
  • x p ′ represents a non-linearly processed reference signal corresponding to the p-th antenna port in the at least two antenna port sets, where 1 ⁇ p ⁇ 4, and p is an integer.
  • the first method may include: for each antenna port set, performing a reference signal corresponding to the current antenna port according to the reference signal corresponding to one or more antenna ports in the antenna port set except the current antenna port.
  • Non-linear processing For example, according to the formula Non-linearly process the reference signals corresponding to the p nth antenna port in the at least two antenna port sets; Is the i-th symbol in the non-linearly processed reference signal corresponding to the p- n antenna port, Is the i-th symbol in the reference signal corresponding to the p- n antenna port, i ⁇ 1, i is an integer; Is the i-th symbol in the reference signal corresponding to the p l antenna port in at least two antenna port sets, p l is an element in the set Nc, and set Nc is the antenna port set to which the p n antenna port belongs Contains a collection of some or all antenna ports. For example, in combination with the embodiment shown in FIG. 9 described above, Is the adjusted ith symbol.
  • non-linear processing is performed on the reference signals corresponding to the at least two antenna port sets in a unified manner, and then, other references except for the non-linearly processed reference signals corresponding to the resource unit are mapped to each resource unit.
  • the signal is set to 0 to obtain a non-linearly processed reference signal corresponding to at least two antenna port sets, and then linearly precoding the non-linearly processed reference signal corresponding to the at least two antenna port sets.
  • Performing non-linear processing on the reference signals corresponding to the at least two antenna port sets may include: using a filtering algorithm to perform non-linear processing on the reference signals corresponding to the at least two antenna port sets.
  • the number of rows of the coefficient matrix of the filtering algorithm used is equal to the number of antenna ports included in the at least two antenna port sets.
  • FIG. 15B a schematic process diagram of the specific implementation manner can be shown in FIG. 15B.
  • S indicates a reference signal corresponding to the at least two antenna port sets
  • X indicates a reference signal obtained through nonlinear processing corresponding to the at least two antenna port sets.
  • the transmitting device may first perform non-linear processing on the reference signals corresponding to CDM group0 and CDM group1 through formula 5 below:
  • Method 3 Use a non-linear precoding algorithm to perform non-linear processing on the reference signals corresponding to at least two antenna port sets; the non-linear precoding algorithm enables the reference signal obtained by the non-linear precoding to be mapped to time-frequency resources, and each resource The unit contains a reference signal corresponding to a set of antenna ports.
  • the technical solution provided by the third method can be understood as: by adjusting parameters of the non-linear precoding algorithm, after the reference signal obtained after the non-linear precoding is mapped to the resource unit, each resource unit includes a reference corresponding to an antenna port set. signal.
  • a non-linear precoding algorithm is used to uniformly perform non-linear processing on the reference signals corresponding to the at least two antenna port sets, and then linearly pre-code the non-linearly processed reference signals corresponding to the at least two antenna port sets.
  • the transmitting device may perform non-linear precoding on the reference signals corresponding to CDM group0 and CDM group1 through the following formula 6:
  • the above manner 2 or manner 3 may include: for each antenna port set, corresponding to the current antenna port according to a reference signal corresponding to one or more antenna ports in the antenna port set other than the current antenna port.
  • the reference signal is processed non-linearly.
  • the functional modules of the signal processing device may be divided according to the foregoing method example.
  • each functional module may be divided corresponding to each function, or two or more
  • the functions are integrated in a processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 16 it is a schematic diagram of a signal processing apparatus according to an embodiment of the present application.
  • the signal processing device 160 shown in FIG. 16 may specifically be a transmitting-end device, and may be used to perform some or all steps in the signal processing method shown in FIG. 3, FIG. 9, or FIG.
  • the signal processing device 160 shown in FIG. 16 may include a processing unit 1601 and a transmitting unit 1602. specific:
  • a processing unit 1601 is configured to move a signal to be transmitted in at least one of the N transmission layers; N ⁇ 1, N is an integer; perform non-linear pre-processing on the signal to be transmitted after the at least one transmission layer is moved. Encoding; wherein the transmission power of the signal to be transmitted after the non-linear precoding of the at least one transmission layer is less than or equal to a preset threshold.
  • the sending unit 1602 is configured to send a non-linearly precoded signal to be sent of the at least one transmission layer.
  • the processing unit 1601 may be used to execute S101 and S102, and the sending unit 1602 may be used to execute S103.
  • the at least one transport layer includes an n-th transport layer, 1 ⁇ n ⁇ N, and n is an integer.
  • the moving unit of the moving value is preset; or, the sending unit 1602 is further configured to send configuration information, and the configuration information is used to configure the moving unit of the moving value.
  • a processing unit 1601 is configured to adjust a reference signal corresponding to at least one antenna port of the P antenna ports; P ⁇ 2, P is an integer; perform non-linear pre-processing on the adjusted reference signal corresponding to the at least one antenna port. Encoding; wherein, the transmission power of the signal to be transmitted after the non-linear precoding of the at least one antenna port is less than or equal to a preset threshold.
  • the sending unit 1602 is configured to send a non-linear precoded reference signal of the at least one antenna port. For example, in conjunction with FIG. 9, the processing unit 1601 may be used to execute S301 and S302, and the sending unit 1602 may be used to execute S303.
  • the amplitude of the reference signal before adjustment and the amplitude of the reference signal after adjustment are different, and the phases are the same.
  • the sending unit 1602 is further configured to send configuration information; the configuration information is used to indicate an adjustment value of the reference signal.
  • the processing unit 1601 is configured to perform non-linear precoding on the reference signals corresponding to the at least two antenna port sets; wherein each antenna port set in the at least two antenna port sets includes at least two antenna ports and each antenna port set Code division multiplexing of time-frequency resources between reference signals corresponding to different antenna ports; mapping of non-linear precoded reference signals corresponding to at least two antenna port sets to time-frequency resources; each resource of time-frequency resources
  • the unit includes a non-linear precoded reference signal corresponding to an antenna port set.
  • the sending unit 1602 is configured to send a reference signal mapped to a time-frequency resource. For example, in conjunction with FIG. 14, the processing unit 1601 may be used to execute S501 and S502, and the sending unit 1602 may be used to execute S503.
  • the processing unit 1601 is specifically configured to perform non-linear precoding on the reference signals corresponding to each antenna port set in at least two antenna port sets, respectively.
  • non-linear precoding is uniformly performed on the reference signals corresponding to the at least two antenna port sets, and reference to be performed on each resource unit other than the non-linear precoded reference signal corresponding to the resource unit is performed.
  • the signal is set to 0.
  • a non-linear precoding algorithm is used to perform non-linear precoding on the reference signals corresponding to the at least two antenna port sets; the non-linear precoding algorithm enables the reference signal obtained by the non-linear precoding to be mapped to time-frequency resources, and
  • the unit contains a reference signal corresponding to a set of antenna ports.
  • the foregoing processing unit 1601 may correspond to the processor 201 or the processor 207 in FIG. 2.
  • the sending unit 1602 may correspond to the communication interface 204 in FIG. 2.
  • FIG. 17 it is a schematic diagram of a signal processing apparatus according to an embodiment of the present application.
  • the signal processing apparatus 170 shown in FIG. 17 may specifically be a receiving-end device, and may be used to execute some or all steps in the signal processing method shown in FIG. 7 or FIG. 11.
  • the signal processing device 170 shown in FIG. 17 may include a receiving unit 1701 and a processing unit 1702. specific:
  • the receiving unit 1701 is configured to receive a non-linearly pre-coded signal of at least one of the N transmission layers; N ⁇ 1, and N is an integer.
  • a processing unit 1702 configured to equalize the non-linearly pre-coded signal of the at least one transmission layer according to the reference signal; and perform reverse transfer on the equalized signal of the at least one transmission layer to obtain the to-be-decoded at least one transmission layer Signal; decoding the signal to be decoded for the at least one transport layer.
  • the receiving unit 1701 may be used to execute S201, and the processing unit 1702 may be used to execute S202 to S204.
  • the at least one transmission layer includes an n-th transmission layer, where 1 ⁇ n ⁇ N, where n is an integer; the processing unit is specifically configured to: according to the shift value of the i-th symbol in the signal of the n-th transmission layer Removal unit and candidate candidate symbol set, inversely shift the i-th symbol to obtain the symbol to be decoded corresponding to the i-th symbol; i ⁇ 1, i is an integer; the symbol to be decoded corresponding to the i-th symbol belongs to the candidate to be decoded Symbol collection.
  • the moving unit of the moving value is preset; or, the receiving unit 1701 is further configured to receive configuration information, and the configuration information is used to configure the moving unit of the moving value.
  • the receiving unit 1701 is configured to receive a non-linear precoded reference signal corresponding to at least one antenna port of the P antenna ports; P ⁇ 2, and P is an integer.
  • the processing unit 1702 is configured to perform inverse adjustment on the non-linear pre-coded reference signal corresponding to the at least one antenna port; and the inverse adjusted reference signal corresponding to the at least one antenna port is used to perform channel estimation.
  • the receiving unit 1701 may be used to execute S401, and the processing unit 1702 may be used to execute S402.
  • the amplitude of the reference signal before the inverse adjustment is different from that of the reference signal after the inverse adjustment, and the phases are the same.
  • the receiving unit 1701 is further configured to receive configuration information, where the configuration information is used to indicate an adjustment value of a reference signal corresponding to the at least one antenna port.
  • the processing unit 1702 is specifically configured to perform inverse adjustment on the non-linear precoded reference signal corresponding to the at least one antenna port according to the adjustment value.
  • the receiving unit 1701 may correspond to the communication interface 204 in FIG. 2.
  • the processing unit 1702 may correspond to the processor 201 or the processor 207 in FIG. 2.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • a software program it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions.
  • a computer executes instructions loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website site, computer, server, or data center via a wired (for example, Coaxial cable, optical fiber, digital subscriber line (DSL), or wireless (such as infrared, wireless, microwave, etc.) to transmit to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device including one or more servers, data centers, and the like that can be integrated with the medium.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)), or the like.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a DVD
  • a semiconductor medium for example, a solid state disk (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了信号处理方法和装置,涉及通信技术领域,有助于实现经非线性预编码后的信号的发送功率,符合系统对发送功率的设计限制要求。该方法包括:对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;对至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;发送至少一个传输层的非线性预编码后的待发送信号。

Description

信号处理方法和装置
本申请要求于2018年08月10日提交国家知识产权局、申请号为201810913412.2、申请名称为“信号处理方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及信号处理方法和装置。
背景技术
多入多出(multiple input multiple output,MIMO)技术的出现,给无线通信带来了革命性的变化。通过在发送端设备和接收端设备上部署多根天线,MIMO技术可以显著提高无线通信系统的性能。例如,在分集场景下,MIMO技术可有效提升传输可靠性;在复用场景下,MIMO技术可以大大提升传输吞吐量。
MIMO系统通常使用预编码技术来改善信道,以提升空间复用(spatial multiplexing)的效果。预编码技术使用与信道相匹配的预编码矩阵来对空间复用的数据流(下文简称空间流)进行处理,借此来实现对信道的预编码,提升空间流的接收质量。
预编码技术可以分为线性预编码技术和非线性预编码技术。非线性预编码技术可以认为是在线性预编码技术的基础之上引入了非线性处理环节。在对信号进行非线性处理的过程中,信号的发送功率会发生变化,这可能导致实际发送功率超过系统允许的发送功率限制。对此,目前,还没有给出相应的解决方案。
发明内容
本申请实施例提供了信号处理方法和装置,有助于实现经非线性预编码后的信号的发送功率,符合系统对发送功率的设计限制要求。
第一方面,本申请实施例提供了一种信号处理方法,包括:首先,对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数。然后,对该至少一个传输层的搬移后的待发送信号,进行非线性预编码;该至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。接着,发送该至少一个传输层的非线性预编码后的待发送信号。该技术方案的执行主体可以是发送端设备(例如网络设备)。
其中,N个传输层可以是同一接收端设备的N个传输层。至少一个传输层可以是N个传输层中的部分或全部传输层。
其中,至少一个传输层的待发送信号,是至少一个传输层的经码字到层映射的信号。
其中,对待发送信号进行搬移,是指对待发送信号中的一个或多个(如每个)符号的实部和/或虚部进行平移。
其中,预设阈值可以是预定义的如通过协议预定的允许发送端设备发送信号所使用的最大功率(或者系统允许的发送功率)。
本技术方案中,通过在对待发送信号进行非线性预编码之前,对该待发送信号进行搬移,从而将非线性预编码之后得到的信号的发送功率限制在预设阈值之内,这样有助于实现待发送信号在经过非线性预编码后的发送功率,符合系统对发送功率的设计限制要求。
在一种可能的设计中,该至少一个传输层包括第n个传输层,1≤n≤N,n是整数;对N个传输层中的至少一个传输层的待发送信号进行搬移,包括:根据公式t (n)(i)=x (n)(i)+a (n)(i),对第n个传输层的待发送信号中的第i个符号进行搬移;其中,t (n)(i)是搬移后的第i个符号,x (n)(i)是搬移前的第i个符号,a (n)(i)是x (n)(i)的搬移值;i≥1,i是整数。
在一种可能的设计中,搬移值的搬移单位是预设的。或者,该方法还包括发送配置信息,配置信息用于配置搬移值的搬移单位。例如,该配置信息可以无线资源控制(radio resource control,RRC)信令,或者媒体接入控制(medium access control,MAC)信令。
在一种可能的设计中,该方法还包括发送配置信息,配置信息用于配置搬移值。例如,该配置信息可以是下行控制信息(downlink control information,DCI)。
在一种可能的设计中,对至少一个传输层的搬移后的待发送信号,进行非线性预编码,对该至少一个传输层的搬移后的待发送信号进行层到天线端口的映射,然后,将映射至天线端口的待发送信号进行非线性预编码。
在一种可能的设计中,发送至少一个传输层的非线性预编码后的待发送信号,包括:对非线性预编码后的待发送信号进行层到天线端口的映射,发送映射到天线端口的待发送信号。
第二方面,本申请实施例提供了一种信号处理方法,包括:接收N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数;根据参考信号对该至少一个传输层的非线性预编码后的信号进行均衡;对该至少一个传输层的均衡后的信号进行逆搬移,得到该至少一个传输层的待解码信号;对该至少一个传输层的待解码信号进行解码。该技术方案的执行主体可以是接收端设备(例如终端)。
其中,“至少一个传输层的非线性预编码后的信号”,可以是第一方面提供的“至少一个传输层的非线性预编码后的待发送信号”经信道传输至接收端设备得到的信号。
其中,待解码信号中的每个符号是候选待解码符号集合中的一个候选待解码符号。候选待解码符号集合包括多个候选待解码符号。候选待解码符号集合也可以称为星座集合。
其中,逆搬移可以是上述第一方面中的搬移的逆操作。
在一种可能的设计中,接收N个传输层中的至少一个传输层的非线性预编码后的信号,包括:接收N个传输层中的至少一个传输层的映射到天线端口的非线性预编码后的信号,并对该信号进行层到天线端口的逆映射,得到该至少一个传输层的非线性预编码后的信号。
在一种可能的设计中,至少一个传输层包括第n个传输层,1≤n≤N,n是整数;对N个传输层中的至少一个传输层的信号进行逆搬移,得到至少一个传输层的待解码信号,包括:根据第n个传输层的信号中的第i个符号的搬移值的搬移单位和候选待 解码符号集合,对第i个符号进行逆搬移,得到第i个符号对应的待解码符号;其中,i≥1,i是整数;第i个符号对应的待解码符号属于候选待解码符号集合。
在一种可能的设计中,至少一个传输层包括第n个传输层,1≤n≤N,n是整数。对N个传输层中的至少一个传输层的信号进行逆搬移,得到至少一个传输层的待解码信号,包括:根据公式x (n)(i)=t (n)(i)-a (n)(i),对第n个传输层的信号中的第i个符号进行逆搬移;t (n)(i)是均衡后的第i个符号,x (n)(i)是逆搬移后的第i个符号,a (n)(i)是x (n)(i)的搬移值;i≥1,i是整数。
在一种可能的设计中,搬移值的搬移单位是预设的。或者,该方法还包括接收配置信息,配置信息用于配置搬移值的搬移单位。
在一种可能的设计中,该方法还包括接收配置信息,配置信息用于配置搬移值。
第二方面提供的信号处理方法与上述第一方面提供的方法相对应,因此,第二方面中相关内容的解释以及有益效果的描述等均可以上述第一方面,此处不再赘述。
第三方面,本申请实施例提供了一种信号处理方法,包括:对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;对该至少一个天线端口对应的调整后的参考信号,进行非线性预编码;其中,该至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;发送该至少一个天线端口的非线性预编码后的参考信号。该技术方案的执行主体可以是发送端设备(例如网络设备)。这样,有助于实现参考信号在经过非线性预编码后的发送功率,符合系统对发送功率的设计限制要求。
其中,参考信号可以例如但不限于是:信道状态信息参考信号(channel-state information reference signal,CSI-RS)或解调参考信号(demodulation reference signal,DMRS)等。
其中,天线端口对应的参考信号,是经层到天线端口的映射的参考信号。P个天线端口可以是发送端设备本次调度的一个或多个接收端设备的天线端口的总和。
在一种可能的设计中,调整前的参考信号与调整后的参考信号的幅度不同,且相位相同。也就是说,对参考信号的幅度进行缩放。具体的:对于参考信号中的任意一个(如每个)符号来说,调整后的该符号的幅度与调整前的该符号的幅度不同,调整后的该符号的相位与调整前的该符号的相位相同。
在一种可能的设计中,该方法还包括:发送配置信息;配置信息用于指示参考信号的调整值。例如,配置信息可以是DCI,当然本申请实施例不限于此。
第四方面,本申请实施例提供了一种信号处理方法,包括:接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数;对该至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;该至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。该技术方案的执行主体可以是接收端设备(例如终端)。
其中,逆调整可以是上述第三方面中的调整的逆操作。
在一种可能的设计中,逆调整前的参考信号与逆调整后的参考信号的幅度不同,且相位相同。具体的:对于参考信号中的任意一个(如每个)符号来说,逆调整后的该符号的幅度与逆调整前的该符号的幅度不同,逆调整后的该符号的相位与逆调整前的该符号的相位相同。
在一种可能的设计中,该方法还可以包括:接收配置信息,配置信息用于指示至少一个天线端口对应的参考信号的调整值。该情况下,对至少一个天线端口对应的非线性预编码后的参考信号进行逆调整,包括:根据调整值,对至少一个天线端口对应的非线性预编码后的参考信号进行逆调整。例如,该配置信息可以是DCI,当然本申请实施例不限于此。
第四方面提供的信号处理方法与上述第三方面提供的方法相对应,因此,第四方面中相关内容的解释以及有益效果的描述等均可以上述第三方面,此处不再赘述。
第五方面,本申请实施例提供了一种信号处理方法,包括:对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;将至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号;发送映射至时频资源的参考信号。该技术方案的执行主体可以是发送端设备(例如网络设备)。这样,有助于实现参考信号的功率增强,从而有助于提高参考信号的覆盖性能和检测性能。
在一种可能的设计中,对至少两个天线端口集合对应的参考信号进行非线性预编码,包括:对至少两个天线端口集合中的每个天线端口集合对应的参考信号分别进行非线性预编码。
在一种可能的设计中,对至少两个天线端口集合对应的参考信号进行非线性预编码,包括:对至少两个天线端口集合对应的参考信号统一进行非线性预编码,并将待映射至每个资源单元上的除该资源单元对应的非线性预编码后的参考信号之外的其他参考信号置0。
在一种可能的设计中,对至少两个天线端口集合对应的参考信号进行非线性预编码,包括:使用非线性预编码算法对至少两个天线端口集合对应的参考信号进行非线性预编码;非线性预编码算法使得经非线性预编码得到的参考信号映射至时频资源后,每个资源单元上包含一个天线端口集合对应的参考信号。
第六方面,本申请实施例提供了一种信号处理装置,该信号处理装置可以用于执行上述第一方面至第五方面提供的任一种方法。示例的,该装置可以是发送端设备或接收端设备,也可以是一个芯片。
在一种可能的设计中,可以根据上述第一方面至第五方面提供的方法对该信号处理装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。
在另一种可能的设计中,该信号处理装置可以包括处理器和收发器。其中,处理器可以用于执行上述第一方面至第五方面提供的任一种方法中的非收发步骤。收发器器可以用于执行该方法中的收发步骤。
例如,结合上述第一方面,处理器可以用于对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;对该至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,该至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。收发器可以用于发送该至少一个传输层的非线性预编码后 的待发送信号。该示例中,收发器具体可以是发射器。
例如,结合上述第二方面,收发器可以用于接收N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数。处理器可以用于根据参考信号对该至少一个传输层的非线性预编码后的信号进行均衡;对该至少一个传输层的均衡后的信号进行逆搬移,得到该至少一个传输层的待解码信号;对该至少一个传输层的待解码信号进行解码。该示例中,收发器具体可以是接收器。
例如,结合上述第三方面,处理器可以用于对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;对该至少一个天线端口对应的调整后的参考信号,进行非线性预编码;该至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。收发器可以用于发送该至少一个天线端口的非线性预编码后的参考信号。该示例中,收发器具体可以是发射器。
例如,结合上述第四方面,收发器可以用于接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数。处理器可以用于对该至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;该至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。该示例中,收发器具体可以是接收器。
例如,结合上述第五方面,处理器可以用于对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;将至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号。收发器可以用于发送映射至时频资源的参考信号。该示例中,收发器具体可以是发射器。
第七方面,本申请实施例提供了一种信号处理装置,该信号处理装置可以包括存储器和处理器,存储器用于存储计算机程序,该计算机程序被处理器执行时,使得第一方面至第五方面提供的任一方法被执行。例如,该装置可以是发送端设备或接收端设备或者是一个芯片。
第八方面,本申请实施例提供了一种处理器,该处理器用于执行上述第一方面至第五方面提供的任一种方法。
例如,结合上述第一方面,该处理器用于对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;对该至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,该至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。并输出该至少一个传输层的非线性预编码后的待发送信号。
例如,结合上述第二方面,该处理器用于接收输入的N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数。以及,根据参考信号对该至少一个传输层的非线性预编码后的信号进行均衡;对该至少一个传输层的均衡后的信号进行逆搬移,得到该至少一个传输层的待解码信号;对该至少一个传输层的待解码信号进行解码。
其他示例的原理与此类似,此处不再一一说明。
在具体实现过程中,处理器可用于进行,例如但不限于,基带相关处理,接收器 和发射器可分别用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上,例如,接收器和发射器可以设置在彼此独立的接收器芯片和发射器芯片上,也可以整合为收发器继而设置在收发器芯片上。又例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器,其中模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
本申请实施例还提供了一种计算机可读存储介质,包括程序代码,该程序代码包括用于执行上述第一方面至第五方面提供的任一种方法的部分或全部步骤的指令。
本申请实施例还提供了一种计算机可读存储介质,其上储存有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第一方面至第五方面提供的任一种可能的方法。
本申请实施例还提供了一种计算机程序产品,当其在计算机上运行时,使得第一方至第五方面提供任一方法被执行。
本申请还提供了一种通信芯片,其中存储有指令,当其在网络设备或终端上运行时,使得网络设备或终端执行第一方面至第五方面提供的任一方法。
可以理解地,上述提供的任一种信号处理装置或处理器或计算机可读存储介质或计算机程序产品或通信芯片等均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考对应的方法中的有益效果,此处不再赘述。
应注意,本申请实施例提供的上述用于存储计算机指令或者计算机程序的器件,例如但不限于,上述存储器、计算机可读存储介质和通信芯片等,均具有非易失性(non-transitory)。
附图说明
图1为可适用于本申请一实施例的通信系统的示意图;
图2为可适用于本申请一实施例的通信设备的硬件结构示意图;
图3为本申请实施例提供的信号处理方法的示意图一;
图4为本申请实施例提供的发送端设备执行的信号处理的过程示意图一;
图5A为本申请实施例提供的发送端设备执行的信号处理的过程示意图二;
图5B为本申请实施例提供的发送端设备执行的信号处理的过程示意图三;
图6A为本申请实施例提供的发送端设备执行的信号处理的过程示意图四;
图6B为本申请实施例提供的发送端设备执行的信号处理的过程示意图五;
图7为本申请实施例提供的信号处理方法的示意图二;
图8为本申请实施例提供的一种逆搬移的示意图;
图9为本申请实施例提供的信号处理方法的示意图三;
图10为本申请实施例提供的接收端设备执行的信号处理的过程示意图六;
图11为本申请实施例提供的信号处理方法的示意图四;
图12为可适用于本申请实施例的参考信号的示意图;
图13为可适用于本申请一实施例的非线性预编码技术的示意图;
图14为本申请实施例提供的信号处理方法的示意图五;
图15A本申请实施例提供的非线性预编码的过程示意图一;
图15B本申请实施例提供的非线性预编码的过程示意图二;
图15C本申请实施例提供的非线性预编码的过程示意图三;
图16为本申请实施例提供的信号处理装置的结构示意图一;
图17为本申请实施例提供的信号处理装置的结构示意图二。
具体实施方式
本申请中的术语“多个”是指两个或两个以上。“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”,一般表示前后关联对象是一种“或”的关系。术语“第一”、“第二”等是为了区分不同的对象,并不限定该不同对象的顺序。
本申请提供的技术方案可以应用于各种通信系统。本申请提供的技术方案可以应用于5G通信系统,未来演进系统或多种通信融合系统等中,也可以应用于在现有通信系统等。本申请提供的技术方案的应用场景可以包括多种,例如,机器对机器(machine to machine,M2M)、宏微通信、增强型移动互联网(enhanced mobile broadband,eMBB)、超高可靠性与超低时延通信(ultra reliable&low latency communication,uRLLC)以及海量物联网通信(massive machine type communication,mMTC)等场景。这些场景可以包括但不限于:终端与终端之间的通信场景,网络设备与网络设备之间的通信场景,网络设备与终端之间的通信场景等。下文中均是以应用于网络设备和终端通信的场景中为例进行说明的。
图1为可适用于本申请一实施例的通信系统的示意图,该通信系统可以包括一个或多个网络设备10(仅示出了1个)以及与每一网络设备10连接的一个或多个终端20。图1仅为示意图,并不构成对本申请提供的技术方案的适用场景的限定。
网络设备10可以是传输接收节点(transmission reception point,TRP)、基站、中继站或接入点等。网络设备10可以是5G通信系统中的网络设备或未来演进网络中的网络设备;还可以是可穿戴设备或车载设备等。另外还可以是:全球移动通信系统(global system for mobile communication,GSM)或码分多址(code division multiple access,CDMA)网络中的基站收发信台(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的NB(NodeB),还可以是长期演进(long term evolution,LTE)中的eNB或eNodeB(evolutional NodeB)。网络设备10还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器。
终端20可以是用户设备(user equipment,UE)、接入终端、UE单元、UE站、移动站、移动台、远方站、远程终端、移动设备、UE终端、无线通信设备、UE代理或UE装置等。接入终端可以是蜂窝电话、无绳电话、会话发起协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal  digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端等。
可选的,图1中的各网元(例如网络设备10和终端20等)可以由一个设备实现,也可以由多个设备共同实现,还可以是一个设备内的一个功能模块,本申请实施例对此不作具体限定。可以理解的是,上述功能既可以是硬件设备中的网络元件,也可以是在专用硬件上运行的软件功能,或者是平台(例如,云平台)上实例化的虚拟化功能。
例如,图1中的各网元均可以通过图2中的通信设备200来实现。图2所示为可适用于本申请一实施例的通信设备的硬件结构示意图。该通信设备200包括至少一个处理器201,通信线路202,存储器203以及至少一个通信接口204。
处理器201可以是一个通用中央处理器(central processing unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信线路202可包括一通路,在上述组件之间传送信息。
通信接口204,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如以太网,RAN,无线局域网(wireless local area networks,WLAN)等。
存储器203可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc read-only memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器可以是独立存在,通过通信线路202与处理器相连接。存储器也可以和处理器集成在一起。本申请实施例提供的存储器通常可以具有非易失性。其中,存储器203用于存储执行本申请方案的计算机执行指令,并由处理器201来控制执行。处理器201用于执行存储器203中存储的计算机执行指令,从而实现本申请下述实施例提供的方法。
可选的,本申请实施例中的计算机执行指令也可以称之为应用程序代码,本申请实施例对此不作具体限定。
在具体实现中,作为一种实施例,处理器201可以包括一个或多个CPU,例如图2中的CPU0和CPU1。
在具体实现中,作为一种实施例,通信设备200可以包括多个处理器,例如图2中的处理器201和处理器207。这些处理器中的每一个可以是一个单核(single-CPU)处理器,也可以是一个多核(multi-CPU)处理器。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
在具体实现中,作为一种实施例,通信设备200还可以包括输出设备205和输入设备206。输出设备205和处理器201通信,可以以多种方式来显示信息。例如,输出设备205可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting  diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备206和处理器201通信,可以以多种方式接收用户的输入。例如,输入设备206可以是鼠标、键盘、触摸屏设备或传感设备等。
上述的通信设备200可以是一个通用设备或者是一个专用设备。在具体实现中,通信设备200可以是台式机、便携式电脑、网络服务器、掌上电脑(personal digital assistant,PDA)、移动手机、平板电脑、无线终端设备、嵌入式设备或有图2中类似结构的设备。本申请实施例不限定通信设备200的类型。
以下,结合附图对本申请实施例提供的技术方案进行说明。需要说明的是,下文中描述的发送端设备可以是图1中的网络设备10,且接收端设备是图1中的终端20;或者,发送端设备可以是图1中的终端20,且接收端设备是图1中的网络设备10。如果不加说明,下文中均是以发送端设备是网络设备,接收端设备是终端为例进行说明的。
如图3所示,为本申请实施例提供的一种信号处理方法的示意图。图3所示的方法包括:
S101:发送端设备对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数。
N个传输层可以是同一接收端设备的N个传输层。至少一个传输层可以是N个传输层中的部分或全部传输层。
待发送信号,是经物理下行共享信道(physical downlink shared channel,PDSCH)传输的数据信号,具体是由一个或多个符号构成的。符号,是指编码比特(或编码比特流)经过调制得到的调制符号(或星座点符号)。执行调制所使用的调制方式例如但不限于是正交振幅调制(quadrature amplitude modulation,QAM)方式、正交相移键控(quadrature phase shift keyin,QPSK)调制方式或脉冲幅度调制(pulse amplitude modulation,PAM)方式等。
为了便于理解,在下文的一些实施例中,将搬移前的待发送信号称为原始待发送信号,在此统一说明,下文不再赘述。可以理解的,原始待发送信号是是经码字到层映射的信号,且是原始待发送信号的星座集合中的一个星座符号。例如,若获得原始待发送信号所采用的调制方式是QPSK调制方式,则原始待发送信号的星座集合包括4个星座符号,原始待发送信号中的每个符号均可以是这4个星座符号中的任意一个星座符号。
对待发送信号进行搬移,是指对待发送信号中的一个或多个(如每个)符号的实部和/或虚部进行平移。例如,根据公式t (n)(i)=x (n)(i)+a (n)(i),对该至少一个传输层包括的第n个传输层的待发送信号中的第i个符号进行搬移。其中,1≤n≤N,n是整数。t (n)(i)是第n个传输层的搬移后的第i个符号,x (n)(i)是第n个传输层的搬移前的第i个符号,a (n)(i)是x (n)(i)的搬移值;i≥1,i是整数。
示例的,a (n)(i)=k 1 (n)(i)A+jk 2 (n)(i)B。其中,k 1 (n)(i)A是a (n)(i)的实部,jk 2 (n)(i)B是a (n)(i)的虚部,j是虚部标记。k 1 (n)(i)和k 2 (n)(i)分别是整数,可选的,k 1 (n)(i)和k 2 (n)(i)的其中之一可以为0。A和B的取值可以是预定义的,例如通过协议预定义的;也可以是发送端设备通过信令如RRC信令、MAC信令和DCI中的至少一种,配置给接收端设备的。
为了使得接收端设备对所接收到的数据信号进行正确解码,该方法还可以包括以下步骤A和步骤B的其中之一:
步骤A:发送端设备向接收端设备发送配置信息,该配置信息用于配置搬移值(如上述a (n)(i))的搬移单位。该配置信息可以是RRC信令、MAC信令和DCI中的至少一种,例如可以是RRC信令或者MAC信令。
作为一个示例,搬移值的搬移单位可以是一个复数,也可以包括实数部分的搬移单位和/或虚数部分。例如,如果搬移值a (n)(i)是2+j3的整数倍,则搬移值的搬移单位可以是2+j3,或者可以表示为实数部分的搬移单位是2,且虚数部分的搬移单位是3等。
具体实现的过程中,搬移值的搬移单位也可以是预定义的,例如通过协议预定的。
具体实现的过程中,作为一个示例,搬移值的搬移单位可以是传输层粒度的,也就是说,同一传输层的待发送信号中的各符号的搬移单位的取值相同。不同传输层的待发送信号对应的搬移单位可以相同,也可以不同。当然本申请实施例不限于此。
步骤B:发送端设备向接收端设备发送配置信息,该配置信息用于配置搬移值(如a (n)(i))。该配置信息可以是RRC信令、MAC信令和DCI中的至少一种,例如可以是DCI。
相比步骤B提供的技术方案,步骤A提供的技术方案能够节省传输开销。关于接收端设备根据搬移值的搬移单位或搬移值如何实现对接收到的数据信号进行解调,可以参考下文。
S102:发送端设备对该至少一个传输层的搬移后的待发送信号,进行非线性预编码。其中,该至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。
本申请实施例对执行S102时所采用的非线性预编码方式不进行限定,例如可以是Tomlinson-Harashima预编码(Tomlinson-Harashima precoding,THP)、矢量摄动预编码(vector perturbation precoding)、脏纸预编码(dirty paper precoding)等。
信号的发送功率小于或等于预设阈值,可以包括:信号中的一个或多个符号(如每个符号)的发送功率小于或等于预设阈值。其中,预设阈值可以是预定义的如通过协议预定的允许发送端设备发送信号所使用的最大功率(或者系统允许的发送功率)。本申请实施例对该预设阈值的具体取值以及取值的获取方式不进行限定,例如可以参考现有技术。
可选的,S102可以包括:发送端设备根据一个或多个传输层的搬移后的待发送信号,对当前传输层的搬移后的待发送信号进行非线性预编码;该一个或多个传输层是N个传输层中的除当前传输层之外的传输层。例如,若当前传输层是第n个传输层,1≤n≤N,n是整数,则发送端设备可以根据公式
Figure PCTCN2019099091-appb-000001
对第n个传输层的搬移后的待发送信号进行非线性预编码。ν (n)(i)是第n个传输层的非线性预编码后的待发送信号中的第i个符号,t (n)(i)是第n个传输层的搬移后的待发送信号中的第i个符号,i≥1,i是整数;t (l)(i)是N个传输层中的第l个传输层的搬移后的待发送信号中的第i个符号,b nl是第l个传输层相对第n个传输层的权重,1≤l≤N,l是整数,Ns为集合[1,2,…,N]的一个子集。
S103:发送端设备发送该至少一个传输层的非线性预编码后的待发送信号。具体 的,使用S102中获得的发送功率发送该至少一个传输层的非线性预编码后的待发送信号。
图3所示的方法中,发送端设备执行的信号处理的过程示意图可以如图4所示。
本实施例可以描述为:发送端设备通过对待发送信号执行搬移和非线性预编码等处理,使得处理后的待发送信号的发送功率小于或等于发送端设备发送信号所使用的最大功率。
可以理解的,由于采用不同调制方式对同一编码比特进行调制所得到的待发送信号可能不同(例如幅度不同和/或相位不同);并且,采用不同的非线性预编码方式对同一信号进行预编码之后所得到的信号的发送功率可能不同。因此,在一种实现方式中,发送端设备可以结合待发送信号的调制方式和/或非线性预编码方式,对待发送信号进行搬移。
具体实现的过程中,发送端设备还可以对待发送信号进行其他处理,例如层到天线端口的映射等。其中,层到天线端口的映射可以发生在非线性预编码之后,也可以发生在非线性预编码之前。
如果层到天线端口的映射发生在非线性预编码之后,则S102可以包括:发送端设备对该至少一个传输层的搬移后的待发送信号进行层到天线端口的映射,然后,将映射至天线端口的待发送信号进行非线性预编码。该情况下,发送端设备执行的信号处理的过程示意图可以如图5A所示。
如果层到天线端口的映射发生在非线性预编码之前,则S103可以包括:发送端设备对非线性预编码后的待发送信号进行层到天线端口的映射,然后,发送映射到天线端口的待发送信号。该情况下,发送端设备执行的信号处理的过程示意图可以如图5B所示。
上文均是以发送端设备对向一个接收端设备的待发送信号进行处理为例进行说明的,具体实现的过程中,发送端设备可以对多个接收端设备的待发送信号统一执行层到天线端口的映射。例如,假设发送端设备向接收端设备1~3分别发送信号,那么,基于该3个接收端设备执行的层到天线端口的映射步骤时,发送端设备执行的信号处理的过程示意图可以如图6A或图6B所示。其中,图6A是基于图5A进行绘制的,图6B示基于图5B进行绘制的。
本实施例中,发送端设备通过在对待发送信号进行非线性预编码之前,对该待发送信号进行搬移,从而将非线性预编码之后得到的信号的发送功率限制在预设阈值之内,这样有助于实现待发送信号在经过非线性预编码后的发送功率,符合系统对发送功率的设计限制要求。
如图7所示,为本申请实施例提供的一种信号处理方法的示意图。图7所示的方法包括:
S201:接收端设备接收N个传输层中的至少一个传输层的非线性预编码后的信号。N≥1,N是整数。
关于N个传输层和至少一个传输层的相关解释可以参考上述图3所示的实施例。S201中的“至少一个传输层的非线性预编码后的信号”,可以是图3所示的实施例中的“至少一个传输层的非线性预编码后的待发送信号”经信道传输至接收端设备得到 的信号。
具体实现的过程中,S201可以包括:接收端设备接收N个传输层中的至少一个传输层的映射到天线端口的非线性预编码后的信号,并对该信号进行层到天线端口的逆映射,得到该至少一个传输层的非线性预编码后的信号。具体实现方式可以参考现有技术。
S202:接收端设备根据参考信号对该至少一个传输层的非线性预编码后的信号进行均衡。
均衡,是指接收端设备的均衡器产生与信道相反的特性,用来抵消信道的时变多径传播特性引起的码间干扰。关于均衡的具体实现方式在现有技术中已有详细描述,此处不再赘述。
可以理解的,该至少一个传输层的均衡后的信号,为接收端设备预估的S101中发送端设备对该至少一个传输层的待发送信号执行搬移得到的信号。
S203:接收端设备对该至少一个传输层的均衡后的信号进行逆搬移,得到该至少一个传输层的待解码信号。
待解码信号包括一个或多个待解码符号,每个待解码符号是候选待解码符号集合中的一个候选待解码符号。候选待解码符号集合包括多个候选待解码符号。候选待解码符号集合也可以称为星座集合,具体可以是图3所示的实施例中描述的原始待发送信号对应的星座集合。
可以理解的,该至少一个传输层的待解码信号,是接收端设备预估的S101中发送端设备执行搬移前的该至少一个传输层的待发送信号,即该至少一个传输层的原始待发送信号。
S203中接收端设备执行逆搬移可以是S201中发送端设备执行搬移的逆操作,以下列举逆搬移的具体实现:
可选的,如果至少一个传输层包括第n个传输层,1≤n≤N,n是整数,则S203可以包括:根据第n个传输层的信号中的第i个符号的搬移值的搬移单位和候选待解码符号集合,对第i个符号进行逆搬移,得到第i个符号对应的待解码符号;其中,i≥1,i是整数;第i个符号对应的待解码符号属于候选待解码符号集合。搬移值的搬移单位可以是预定义的,也可以是接收端设备通过接收发送端设备发送的配置信息获得的。搬移单位的相关描述可以参考图3所示的实施例,此处不再赘述。
示例的,接收端设备可以首先按照搬移单位,将该第i个符号进行一次或多次逆搬移,使得搬移后的位置首次位于星座图所在的范围内,然后,将候选待解码符号集合中与逆搬移后的第i个符号距离最近的候选待解码符号作为该第i个符号对应的待解码符号。如图8所示,为一种逆搬移过程的示意图。其中,图8中的横轴表示实部,纵轴表示虚部。图8中是以获得原始待发送信号所采用的调制方式是QPSK调制方式为例进行说明。该情况下,候选待解码符号集合包括4个候选待解码符号(标记为O1、O2、O3和O4)。假设S202中获得的均衡后的第n个传输层的信号中的第i个符号的位置为图8中所示的位置A,则接收端设备可以首先按照搬移单位,将该第i个符号从位置A沿图8中虚线箭头所示的方向(具体是搬移单位所表示的反方向)进行2次搬移,使得搬移后的位置(标记为位置B)首次位于星座图所在的范围内,然后,将 候选待解码符号集合中与位置B距离最近的候选待解码符号(即O3)作为该第i个符号对应的待解码符号。
可选的,如果至少一个传输层包括第n个传输层,1≤n≤N,n是整数,那么,在发送端设备执行上述步骤B的情况下,S203可以包括:接收端设备根据公式x (n)(i)=t (n)(i)-a (n)(i),对第n个传输层的信号中的第i个符号进行逆搬移;t (n)(i)是均衡后的第i个符号,x (n)(i)是逆搬移后的第i个符号,a (n)(i)是x (n)(i)的搬移值;i≥1,i是整数。
S204:接收端设备对该至少一个传输层的待解码信号进行解码。
关于解码的具体实现方式在现有技术中已有详细描述,此处不再赘述。
本实施例提供的信号处理方法与图3所示的实施例相对应,因此,本实施例中相关内容的解释以及有益效果的描述等均可以参考图3所示的实施例,此处不再赘述。
可选的,上述S101可以替换为:发送端设备对该至少一个传输层的待发送信号中的一个或多个(如每个)符号的幅度和/或相位进行调整。例如,根据公式
Figure PCTCN2019099091-appb-000002
对该至少一个传输层包括的第n个传输层的待发送信号中的第i个符号进行调整。1≤n≤N,n是整数。t (n)(i)是第n个传输层的调整后的第i个符号,x (n)(i)是第n个传输层的调整前的第i个符号,b (n)(i)是x (n)(i)的幅度调整因子,θ (n)(i)是x (n)(i)的相位调整因子。可选的,b (n)(i)和θ (n)(i)的其中之一可以为1。
基于该可选的实现方式,发送端设备可以向接收端设备发送配置信息,该配置信息用于配置调整因子。其中,调整因子可以包括幅度调整因子和/或相位调整因子,具体的,调整因子包括幅度调整因子和相位调整因子中不为1的调整因子。
基于该可选的实现方式,上述S203可以替换为:接收端设备根据调整因子,对该至少一个传输层的待发送信号中的一个或多个(如每个)符号的幅度和/或相位进行逆调整。例如,接收端设备根据公式
Figure PCTCN2019099091-appb-000003
对第n个传输层的信号中的第i个符号进行逆调整;t (n)(i)是均衡后的第i个符号,x (n)(i)是逆调整后的第i个符号,b (n)(i)是x (n)(i)的幅度调整因子,θ (n)(i)是x (n)(i)的相位调整因子。
可以理解的,具体实现的过程中,如果对数据信号进行预编码所采用的预编码技术是非线性预编码技术,则对参考信号进行预编码所采用的预编码技术可以是非线性预编码技术,也可以是线性预编码技术。其中,该参考信号是用于对该数据信号所经的传输信道进行信道估计的参考信号。对参考信号进行线性预编码的实现方式可以参考现有技术。对参考信号进行非线性预编码技术的实现方式可以参考现有技术,也可以参考下文提供的技术方案。
如图9所示,为本申请实施例提供的一种信号处理方法的示意图。图9所示的方法包括:
S301:发送端设备对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数。
参考信号可以例如但不限于是CSI-RS或DMRS等。
天线端口对应的参考信号,是经层到天线端口的映射的参考信号。P个天线端口可以是发送端设备本次调度的一个或多个接收端设备的天线端口的总和。通常,一个接收端设备的天线端口数与该接收端设备的传输层数相等,因此,天线端口数P可以 是多个接收端设备的传输层数之和。至少一个天线端口可以是P个天线端口中的部分或全部天线端口。
为了便于理解,在下文的一些实施例中,将调整前的参考信号称为原始参考信号,在此统一说明,下文不再赘述。可以理解的,原始参考信号是经层到天线端口映射的信号,且是原始参考信号的星座集合中的一个星座符号。例如,若获得原始参考信号所采用的调制方式是QPSK调制方式,则原始参考信号的星座集合包括4个星座符号,原始参考信号中的每个符号均可以是这4个星座符号的任意一个符号。具体实现的过程中,原始参考信号的星座集合与上文中描述的原始待发送信号的星座集合可以相同,也可以不相同。
对参考信号进行调整是指对参考信号中的一个或多个符号(如每个符号)的幅度进行调整。也就是说,调整前的参考信号与调整后的该参考信号的幅度不同,且相位相同。
例如,根据公式t (p)(i)=x (p)(i)+a (p)(i),对该至少一个天线端口包括的第p个天线端口对应的参考信号中的第i个符号进行搬移,1≤p≤P,p是整数。t (p)(i)是搬移后的第i个符号,x (p)(i)是搬移前的第i个符号,a (p)(i)是x (p)(i)的搬移值(即调整值的一种具体实现方式);i≥1,i是整数。a (p)(i)是实数。
又如,根据公式t (p)(i)=b (p)(i)x (p)(i),对该至少一个天线端口包括的第p个天线端口对应的参考信号中的第i个符号进行调整,1≤p≤P,p是整数。t (p)(i)是调整后的第i个符号,x (p)(i)是调整前的第i个符号,b (p)(i)是x (p)(i)的调整因子(即调整值的一种具体实现方式);i≥1,i是整数。b (p)(i)是实数。
可选的,该方法还可以包括:发送端设备发送配置信息;配置信息用于指示参考信号的调整值。其中,调整值具体可以是上述搬移值或调整因子等。本申请实施例对该步骤与S302~S303的先后顺序不进行限定。该配置信息可以是如RRC信令、MAC信令和DCI中的至少一种,例如,该配置信息可以是DCI。
同一天线端口的待发送信号中的不同符号的调整值可以相同,也可以不同。
S302:发送端设备对该至少一个天线端口对应的调整后的参考信号,进行非线性预编码;其中,该至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。
关于非线性预编码方式以及预设阈值的相关说明可以参考上述图3所示的实施例。
本实施例可以描述为:发送端设备通过对参考信号执行调整和非线性预编码等处理,使得处理后的参考信号的发送功率小于或等于发送端设备发送信号所使用的最大功率(或者系统允许的发送功率)。
可以理解的,采用不同的非线性预编码方式对同一信号进行预编码之后所得到的信号的发送功率可能不同。因此,在一种实现方式中,发送端设备可以结合S303中所使用的非线性预编码方式,对参考信号进行调整。
S303:发送端设备发送该至少一个天线端口的非线性预编码后的参考信号。
图9所示的方法中,发送端设备执行的信号处理的过程示意图可以如图10所示。
本实施例中,发送端设备通过在对参考信号进行非线性预编码之前,对参考信号进行调整,从而将非线性预编码之后得到的信号的发送功率限制在预设阈值之内,这 样,有助于实现参考信号在经过非线性预编码后的发送功率,符合系统对发送功率的设计限制要求。
如图11所示,为本申请实施例提供的一种信号处理方法的示意图。图11所示的方法包括:
S401:接收端设备接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数。
关于P个天线端口中的至少一个天线端口的相关解释可以参考上述图9所示的实施例。S401中的“至少一个天线端口的非线性预编码后的参考信号”,可以是图9所示的实施例中的“至少一个天线端口的非线性预编码后的参考信号”经信道传输至接收端设备得到的信号。
S402:接收端设备对该至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;该至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。
可选的,逆调整前的参考信号与逆调整后的参考信号的幅度不同,且相位相同。具体的,对于参考信号中的任一符号来说,逆调整前后的幅度不同,且逆调整前后的相位相同。
可选的,在执行S402之前,该方法还可以包括:接收端设备接收配置信息,配置信息用于指示该至少一个天线端口对应的参考信号的调整值。S402可以包括:接收端设备根据调整值,对该至少一个天线端口对应的非线性预编码后的参考信号进行逆调整。
例如,假设调整值是搬移值,则接收端设备可以根据公式x (p)(i)=t (p)(i)-a (p)(i)对至少一个天线端口包括的第p个天线端口对应的参考信号中的第i个符号进行逆调整。
又如,假设调整值是调整因子,则接收端设备可以根据公式x (p)(i)=t (p)(i)/b (p)(i)对参考信号中的第i个符号进行逆调整。
其中,x (p)(i)是逆调整后的第i个符号,x (p)(i)是逆调整前的第i个符号,a (p)(i)是x (p)(i)的搬移值,b (p)(i)是x (p)(i)的调整因子,b (p)(i)是实数。1≤p≤P,p是整数,i≥1,i是整数。
S402中接收端设备执行逆调整可以是S301中发送端设备执行调整的逆操作。
本实施例提供的信号处理方法与图9所示的实施例相对应,因此,本实施例中相关内容的解释以及有益效果的描述等均可以参考图9所示的实施例,此处不再赘述。
可以理解的,在一些场景中,发送端设备所发送的参考信号对应的天线端口可以归属于至少两个天线端口集合,每个天线端口集合中的各天线端口对应的参考信号之间码分复用(orthogonal code division multiplexing,CDM)时频资源。
如图12所示,为可适用于该场景的参考信号的示意图。图12中的横坐标表示时域,每个时域单位是一个符号;纵坐标表示频域,每个频域单位是一个子载波。图12中的(a)和图12中的(b)仅示出了一个资源块(resource block,RB)中的部分RE上的参考信号。图12中的(a)是以单符号DMRS类型1为例进行说明的。单符号DMRS类型1在一个RB内包含2个CDM组(标记为CDM group 0和CDM group 1),CDM group 0包含port(端口)0和port 1,CDM group 1包含port 2和port 3。port 0对应的参考信号和port1对应的参考信号之间码分复用时频资源,port2对应的参考信 号和port3对应的参考信号之间码分复用时频资源。图12中的(b)是以双符号DMRS类型1为例进行说明的。双符号DMRS类型1在一个RB内包含2个CDM组(标记为CDM group 0和CDM group 1),CDM group 0包含port 0、port 1、port 4和port 5,CDM group 1包含port 2、port 3、port 6和port 7。其他示例不再一一列举。
图12中的(a)中任意两个相邻RE(如符号0和子载波10所表示的RE0,以及符号0和子载波11所表示的RE1等)上的port0~3对应的参考信号可以表示为如下公式1:
公式1:
Figure PCTCN2019099091-appb-000004
其中,s i表示porti对应的参考信号构成的集合,0≤i≤3,i是整数。矩阵
Figure PCTCN2019099091-appb-000005
的每行表示一个天线端口对应的参考信号,每列表示一个RE上的参考信号。具体的第0列表示RE0上的参考信号,第1列表示RE1上的参考信号。该矩阵的元素表示参考信号。
由公式1可知,RE0上仅包含CDM group 0对应的参考信号,即port 0对应的参考信号s 00和port 1对应的参考信号s 10;RE1上仅包含CDM group 1对应的参考信号,即port 2对应的参考信号s 21和port 3对应的参考信号s 31
以下,通过预编码方式是线性预编码为例,说明功率增强。
发送端设备可以通过如下公式2对CDM group0和CDM group1对应的参考信号(具体是上文中描述的RE0和RE1上的参考信号)进行线性预编码:
公式2:
Figure PCTCN2019099091-appb-000006
其中,y表示线性预编码后的参考信号构成的矩阵,H表示信道矩阵,P表示预编码矩阵,s表示参考信号构成的矩阵,n表示噪声。p i表示s i的预编码矢量。
由此可知,发送端设备可以通过预编码矢量p 1和p 2对CDM group 0对应的参考信号s 00和参考信号s 10分别进行预编码。接收端设备可以在RE0上检测s 00和/或s 10,从而估计出port 0和/或port 1的预编码等效信道。发送(a)端设备可以通过预编码矢量p 3和p 4对CDM group 1所包含的port 2参考信号s 21和port 3参考信号s 31,分别进行预编码。接收端设备可以在RE1上检测s 21和/或s 31,从而估计出port 2和/或port 3的预编码等效信道。
结合上述参考信号的时频资源特点,为了确保参考信号的覆盖性能和检测性能,可以在特定RE上增强相应天线端口对应的参考信号发送功率。例如,上述RE0包含port 0对应的参考信号和port 1对应的参考信号,RE1包含port 2对应的参考信号和 port 3对应的参考信号。对于port 0,由于仅在RE0上发送参考信号,而不在RE1上发送信号(即不占用功率),因此RE0上的port 0对应的功率可以增加一倍(即3dB)。类似的,对于port 1,由于仅在RE0上发送参考信号,而不在RE1上发送信号,因此RE0上的port 1对应的功率可以增加一倍。同样,对于port 2和port 3,在RE1上发送的参考信号的功率分别可以增加一倍。
非线性预编码技术可以理解为是在线性预编码技术之前增加非线性处理环节。以非线性预编码技术是THP为例,如图13所示,为THP的示意图。THP的非线性处理环节包括功率调整和滤波。功率调整用于对信号进行功率调整,滤波用于预消除信号经信道产生的干扰。s表示非线性处理环节之前的信号,x表示非线性处理环节之后得到的信号。其中,这里的信号可以是数据信号,也可以是参考信号,下文中均以该信号是参考信号为例进行说明。
如果port0~3对应的参考信号均位于同一RE上,则该RE上的参考信号经非线性处理环节后得到的参考信号可以表示为:
Figure PCTCN2019099091-appb-000007
其中,x i表示参考信号s i经非线性处理环节得到的参考信号,s' i表示对参考信号s i进行功率调整得到的参考信号,
Figure PCTCN2019099091-appb-000008
表示执行滤波所采用的系数矩阵(或者称为执行滤波所采用的滤波算法的系数矩阵),该系数矩阵中的元素表示信道系数,l xi表示第i个发送天线端口(即port0~3)与第x个接收天线端口之间的信道的信道系数。1≤y≤4,y为整数。
如果port0和port1对应的参考信号位于RE0上,port2和port3对应的参考信号位于RE1上,例如,基于图12中的(a)所示的参考信号,则按照THP对这两个RE上的参考信号进行非线性处理可以表示为:
Figure PCTCN2019099091-appb-000009
由此可知,对于port 2和port 3,由于RE0上存在不为零的参考信号,因此无法借用RE0来对RE1的port 2和port 3做功率增强。
基于此,本申请实施例提供了针对参考信号的处理方法,如图14所示。该方法包括:
S501:发送端设备对至少两个天线端口集合对应的参考信号进行非线性预编码。其中,每个天线端口集合包括至少两个天线端口,每个天线端口集合包括的不同天线端口对应的参考信号之间CDM时频资源。
其中,每个天线端口集合对应的参考信号包括:该天线端口集合中的所有天线端口对应的参考信号构成的集合。每个天线端口集合也可以称为是一个CDM group。参考信号可以例如但不限于是CSI-RS或DMRS等。可适用于本实施例的参考信号的示意图可以如图11所示。
S502:发送端设备将至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号。资源单元例如可以是资源元素(resource element,RE)。
S503:发送端设备发送映射至时频资源的参考信号。
本实施例提供的信号处理方法,用于实现每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号,这样,有助于实现参考信号的功率增强,从而有助于提高参考信号的覆盖性能和检测性能。
可选的,S501可以通过以下方式之一实现:
方式一:对至少两个天线端口集合中的每个天线端口集合对应的参考信号分别进行非线性预编码。
具体的,对至少两个天线端口集合中的每个天线端口集合对应的参考信号分别进行非线性处理,然后,根据每个天线端口集合对应的非线性处理后的参考信号构建至少两个天线端口集合对应的非线性处理后的参考信号,接着,对构建的至少两个天线端口集合对应的非线性处理后的参考信号进行线性预编码。
对每个天线端口集合对应的参考信号分别进行非线性处理,可以包括:利用多个滤波算法分别对每个天线端口集合对应的参考信号进行非线性处理。其中,对每个天线端口集合对应的参考信号进行非线性处理时,所采用的滤波算法的系数矩阵的行数与该天线端口集合包含的天线端口个数相等。
作为一个示例,滤波算法可以称为滤波器,该滤波器是用于执行滤波算法的逻辑功能模块,基于此,对每个天线端口集合对应的参考信号进行非线性处理时,所采用的滤波算法的系数矩阵的行数与该天线端口集合包含的天线端口个数相等可以理解为: 对每个天线端口集合对应的参考信号进行非线性处理时,所采用的滤波器的尺寸(size)与该天线端口集合包含的天线端口个数相等。
结合图11和上文中的描述可知,该具体实现方式的过程示意图可以如图15A所示。图15A是以至少两个天线端口集合是CDM group0和CDM group1为例进行说明的。S0表示CDM group0对应的参考信号,X0表示CDM group0对应的经非线性处理得到的参考信号,S1表示CDM group1对应的参考信号,X1表示CDM group1对应的经非线性处理得到的参考信号。
例如,基于上述公式1,发送端设备可以通过如下公式3对CDM group0对应的参考信号进行非线性处理,且通过如下公式4对CDM group1对应的参考信号进行非线性处理:
公式3:
Figure PCTCN2019099091-appb-000010
结合图15A,
Figure PCTCN2019099091-appb-000011
Figure PCTCN2019099091-appb-000012
公式4:
Figure PCTCN2019099091-appb-000013
结合图15A,
Figure PCTCN2019099091-appb-000014
基于此,构建的至少两个天线端口集合对应的非线性处理后的参考信号X'为:
Figure PCTCN2019099091-appb-000015
其中,x p′表示至少两个天线端口集合中的第p个天线端口对应的非线性处理后的参考信号,1≤p≤4,p是整数。
可选的,方式一可以包括:对于每个天线端口集合,根据该天线端口集合中的除当前天线端口之外的一个或多个天线端口对应的参考信号,对当前天线端口对应的参考信号进行非线性处理。例如,根据公式
Figure PCTCN2019099091-appb-000016
对至少两个天线端口集合中的第p n个天线端口对应的参考信号进行非线性处理;其中,
Figure PCTCN2019099091-appb-000017
是第p n个天线端口对应的非线性处理后的参考信号中的第i个符号,
Figure PCTCN2019099091-appb-000018
是第p n个天线端口对应的参考信号中的第i个符号,i≥1,i是整数;
Figure PCTCN2019099091-appb-000019
是至少两个天线端口集合中的第p l个天线端口对应的参考信号中的第i个符号,p l是集合Nc的中的元素,集合Nc是第p n个天线端口所属的天线端口集合包含的部分或全部天线端口构成的集合。示例的,结合上述图9所示的实施例,
Figure PCTCN2019099091-appb-000020
是第p l个天线端口对应的调整后的第i个符号。
方式二:对至少两个天线端口集合对应的参考信号统一进行非线性预编码,并将每个资源单元上的除该资源单元对应的非线性预编码后的参考信号之外的其他参考信 号置0。
具体的,对至少两个天线端口集合对应的参考信号统一进行非线性处理,然后,将待映射至每个资源单元上的除该资源单元对应的非线性处理后的参考信号之外的其他参考信号置0,得到至少两个天线端口集合对应的非线性处理后的参考信号,接着,对该至少两个天线端口集合对应的非线性处理后的参考信号进行线性预编码。
对至少两个天线端口集合对应的参考信号分别进行非线性处理,可以包括:利用一个滤波算法对至少两个天线端口集合对应的参考信号进行非线性处理。其中,对至少两个天线端口集合对应的参考信号进行非线性处理时,所采用的滤波算法的系数矩阵的行数与该至少两个天线端口集合包含的天线端口个数相等。
结合图11和上文中的描述可知,该具体实现方式的过程示意图可以如图15B所示。其中,S表示至少两个天线端口集合对应的参考信号,X表示该至少两个天线端口集合对应的经非线性处理得到的参考信号。
例如,基于上述公式1,发送端设备首先可以通过如下公式5对CDM group0和CDM group1对应的参考信号进行非线性处理:
公式5:
Figure PCTCN2019099091-appb-000021
结合图15B,
Figure PCTCN2019099091-appb-000022
然后,将公式5中的元素
Figure PCTCN2019099091-appb-000023
Figure PCTCN2019099091-appb-000024
置0,从而得到该至少两个天线端口集合对应的经非线性处理得到的参考信号
Figure PCTCN2019099091-appb-000025
方式三:使用非线性预编码算法对至少两个天线端口集合对应的参考信号进行非线性处理;非线性预编码算法使得经非线性预编码得到的参考信号映射至时频资源后,每个资源单元上包含一个天线端口集合对应的参考信号。
该方式三提供的技术方案可以理解为:通过调整非线性预编码算法的参数,使得 非线性预编码后得到的参考信号映射至资源单元后,每个资源单元上包含一个天线端口集合对应的参考信号。
具体的,使用非线性预编码算法对至少两个天线端口集合对应的参考信号统一进行非线性处理,然后,对该至少两个天线端口集合对应的非线性处理后的参考信号进行线性预编码。
结合图11和上文中的描述可知,该具体实现方式的过程示意图可以如图15C所示。其中,S和X'的解释可以参考上文。
例如,基于上述公式1,发送端设备可以通过如下公式6对CDM group0和CDM group1对应的参考信号进行非线性预编码:
公式6:
Figure PCTCN2019099091-appb-000026
可选的,上述方式二或方式三可以包括:对于每个天线端口集合,根据该天线端口集合中的除当前天线端口之外的一个或多个天线端口对应的参考信号,对当前天线端口对应的参考信号进行非线性处理。例如,根据公式
Figure PCTCN2019099091-appb-000027
对至少两个天线端口集合中的第p n个天线端口对应的参考信号进行非线性处理;其中,
Figure PCTCN2019099091-appb-000028
是第p n个天线端口对应的非线性处理后的参考信号中的第i个符号,
Figure PCTCN2019099091-appb-000029
是第p n个天线端口对应的参考信号中的第i个符号,i≥1,i是整数;
Figure PCTCN2019099091-appb-000030
是至少两个天线端口集合中的第p l个天线端口对应的参考信号中的第i个符号,p l是集合Nc的中的元素,集合Nc是第p n个天线端口所属的天线端口集合包含的部分或全部天线端口构成的集合。示例的,结合上述图9所示的实施例,
Figure PCTCN2019099091-appb-000031
是第p l个天线端口对应的调整后的第i个符号。
上述主要从方法的角度对本申请实施例提供的方案进行了介绍。为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对信号处理装置(包括接收端设备或发送端设备)进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
如图16所示,为本申请实施例提供的一种信号处理装置示意图。作为一个示例,图16所示的信号处理装置160具体可以是发送端设备,可以用于执行如图3、图9或 图14所示的信号处理方法中的部分或全部步骤。
图16所示的信号处理装置160可以包括处理单元1601和发送单元1602。具体的:
在本申请的一些实施例中:
处理单元1601,用于对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;对该至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,该至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。发送单元1602,用于发送该至少一个传输层的非线性预编码后的待发送信号。例如,结合图3,处理单元1601可以用于执行S101和S102,发送单元1602可以用于执行S103。
可选的,该至少一个传输层包括第n个传输层,1≤n≤N,n是整数。处理单元1601具体用于:根据公式t (n)(i)=x (n)(i)+a (n)(i),对第n个传输层的待发送信号中的第i个符号进行搬移;其中,t (n)(i)是搬移后的第i个符号,x (n)(i)是搬移前的第i个符号,a (n)(i)是x (n)(i)的搬移值;i≥1,i是整数。
可选的,搬移值的搬移单位是预设的;或者,发送单元1602还用于发送配置信息,配置信息用于配置搬移值的搬移单位。
在本申请的另一些实施例中:
处理单元1601,用于对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;对该至少一个天线端口对应的调整后的参考信号,进行非线性预编码;其中,该至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值。发送单元1602,用于发送该至少一个天线端口的非线性预编码后的参考信号。例如,结合图9,处理单元1601可以用于执行S301和S302,发送单元1602可以用于执行S303。
可选的,调整前的参考信号与调整后的参考信号的幅度不同,且相位相同。
可选的,发送单元1602还用于,发送配置信息;配置信息用于指示参考信号的调整值。
在本申请的另一些实施例中:
处理单元1601,用于对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;将至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号。发送单元1602,用于发送映射至时频资源的参考信号。例如,结合图14,处理单元1601可以用于执行S501和S502,发送单元1602可以用于执行S503。
可选的,处理单元1601具体用于:对至少两个天线端口集合中的每个天线端口集合对应的参考信号分别进行非线性预编码。或者,对至少两个天线端口集合对应的参考信号统一进行非线性预编码,并将待映射至每个资源单元上的除该资源单元对应的非线性预编码后的参考信号之外的其他参考信号置0。或者,使用非线性预编码算法对至少两个天线端口集合对应的参考信号进行非线性预编码;非线性预编码算法使得经非线性预编码得到的参考信号映射至时频资源后,每个资源单元上包含一个天线端 口集合对应的参考信号。
上述提供的任一种信号处理装置160中相关内容的解释以及有益效果的描述等均可参考上述对应的方法实施例,此处不再赘述。
作为一个示例,结合图2所示的通信设备,上述处理单元1601可以对应图2中的处理器201或处理器207。发送单元1602可以对应图2中的通信接口204。
如图17所示,为本申请实施例提供的一种信号处理装置示意图。作为一个示例,图17所示的信号处理装置170具体可以是接收端设备,可以用于执行如图7或图11所示的信号处理方法中的部分或全部步骤。
图17所示的信号处理装置170可以包括接收单元1701和处理单元1702。具体的:
在本申请的一些实施例中:
接收单元1701,用于接收N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数。处理单元1702,用于根据参考信号对该至少一个传输层的非线性预编码后的信号进行均衡;对该至少一个传输层的均衡后的信号进行逆搬移,得到该至少一个传输层的待解码信号;对该至少一个传输层的待解码信号进行解码。例如,结合图7,接收单元1701可以用于执行S201,处理单元1702可以用于执行S202~S204。
可选的,该至少一个传输层包括第n个传输层,1≤n≤N,n是整数;处理单元具体用于:根据第n个传输层的信号中的第i个符号的搬移值的搬移单位和候选待解码符号集合,对第i个符号进行逆搬移,得到第i个符号对应的待解码符号;i≥1,i是整数;第i个符号对应的待解码符号属于候选待解码符号集合。
可选的,搬移值的搬移单位是预设的;或者,接收单元1701还用于接收配置信息,配置信息用于配置搬移值的搬移单位。
在本申请的另一些实施例中:
接收单元1701,用于接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数。处理单元1702,用于对该至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;该至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。例如,结合图7,接收单元1701可以用于执行S401,处理单元1702可以用于执行S402。
可选的,逆调整前的参考信号与逆调整后的参考信号的幅度不同,且相位相同。
可选的,接收单元1701还用于,接收配置信息,配置信息用于指示该至少一个天线端口对应的参考信号的调整值。处理单元1702具体用于,根据调整值,对该至少一个天线端口对应的非线性预编码后的参考信号进行逆调整。
上述提供的任一种信号处理装置170中相关内容的解释以及有益效果的描述等均可参考上述对应的方法实施例,此处不再赘述。
作为一个示例,结合图2所示的通信设备,接收单元1701可以对应图2中的通信接口204。上述处理单元1702可以对应图2中的处理器201或处理器207。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机执行指令时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、 专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可以用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管在此结合各实施例对本申请进行了描述,然而,在实施所要求保护的本申请过程中,本领域技术人员通过查看附图、公开内容、以及所附权利要求书,可理解并实现公开实施例的其他变化。在权利要求中,“包括”(comprising)一词不排除其他组成部分或步骤,“一”或“一个”不排除多个的情况。单个处理器或其他单元可以实现权利要求中列举的若干项功能。相互不同的从属权利要求中记载了某些措施,但这并不表示这些措施不能组合起来产生良好的效果。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (42)

  1. 一种信号处理方法,其特征在于,包括:
    对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;
    对所述至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,所述至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    发送所述至少一个传输层的非线性预编码后的待发送信号。
  2. 根据权利要求1所述的信号处理方法,其特征在于,所述至少一个传输层包括第n个传输层,1≤n≤N,n是整数;所述对N个传输层中的至少一个传输层的待发送信号进行搬移,包括:
    根据公式t (n)(i)=x (n)(i)+a (n)(i),对所述第n个传输层的待发送信号中的第i个符号进行搬移;其中,所述t (n)(i)是搬移后的所述第i个符号,所述x (n)(i)是搬移前的所述第i个符号,所述a (n)(i)是所述x (n)(i)的搬移值;i≥1,i是整数。
  3. 根据权利要求2所述的信号处理方法,其特征在于,
    所述搬移值的搬移单位是预设的;
    或者,所述方法还包括发送配置信息,所述配置信息用于配置所述搬移值的搬移单位。
  4. 一种信号处理方法,其特征在于,包括:
    接收N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数;
    根据参考信号对所述至少一个传输层的非线性预编码后的信号进行均衡;
    对所述至少一个传输层的均衡后的信号进行逆搬移,得到所述至少一个传输层的待解码信号;
    对所述至少一个传输层的待解码信号进行解码。
  5. 根据权利要求4所述的信号处理方法,其特征在于,所述至少一个传输层包括第n个传输层,1≤n≤N,n是整数;所述对N个传输层中的至少一个传输层的信号进行逆搬移,得到所述至少一个传输层的待解码信号,包括:
    根据所述第n个传输层的信号中的第i个符号的搬移值的搬移单位和候选待解码符号集合,对所述第i个符号进行逆搬移,得到所述第i个符号对应的待解码符号;其中,i≥1,i是整数;所述第i个符号对应的待解码符号属于所述候选待解码符号集合。
  6. 根据权利要求5所述的信号处理方法,其特征在于,
    所述搬移值的搬移单位是预设的;
    或者,所述方法还包括接收配置信息,所述配置信息用于配置所述搬移值的搬移单位。
  7. 一种信号处理方法,其特征在于,包括:
    对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;
    对所述至少一个天线端口对应的调整后的参考信号,进行非线性预编码;其中,所述至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    发送所述至少一个天线端口的非线性预编码后的参考信号。
  8. 根据权利要求7所述的信号处理方法,其特征在于,调整前的所述参考信号与调整后的所述参考信号的幅度不同,且相位相同。
  9. 根据权利要求7或8所述的信号处理方法,其特征在于,所述方法还包括:
    发送配置信息;所述配置信息用于指示所述参考信号的调整值。
  10. 一种信号处理方法,其特征在于,包括:
    接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数;
    对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;所述至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。
  11. 根据权利要求10所述的信号处理方法,其特征在于,逆调整前的所述参考信号与逆调整后的所述参考信号的幅度不同,且相位相同。
  12. 根据权利要求10或11所述的信号处理方法,其特征在于,所述方法还包括:
    接收配置信息,所述配置信息用于指示所述至少一个天线端口对应的参考信号的调整值;
    所述对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整,包括:
    根据所述调整值,对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整。
  13. 一种信号处理方法,其特征在于,包括:
    对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,所述至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,所述每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;
    将所述至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;所述时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号;
    发送所述映射至时频资源的参考信号。
  14. 根据权利要求13所述的信号处理方法,其特征在于,所述对至少两个天线端口集合对应的参考信号进行非线性预编码,包括:
    对所述至少两个天线端口集合中的每个天线端口集合对应的参考信号分别进行非线性预编码;
    或者,对所述至少两个天线端口集合对应的参考信号统一进行非线性预编码,并将待映射至每个所述资源单元上的除该资源单元对应的非线性预编码后的参考信号之外的其他参考信号置0;
    或者,使用非线性预编码算法对所述至少两个天线端口集合对应的参考信号进行非线性预编码;所述非线性预编码算法使得经所述非线性预编码得到的参考信号映射至时频资源后,每个所述资源单元上包含一个天线端口集合对应的参考信号。
  15. 一种信号处理装置,其特征在于,包括:
    处理单元,用于对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1, N是整数;对所述至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,所述至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    发送单元,用于发送所述至少一个传输层的非线性预编码后的待发送信号。
  16. 根据权利要求15所述的信号处理装置,其特征在于,所述至少一个传输层包括第n个传输层,1≤n≤N,n是整数;
    所述处理单元具体用于:根据公式t (n)(i)=x (n)(i)+a (n)(i),对所述第n个传输层的待发送信号中的第i个符号进行搬移;其中,所述t (n)(i)是搬移后的所述第i个符号,所述x (n)(i)是搬移前的所述第i个符号,所述a (n)(i)是所述x (n)(i)的搬移值;i≥1,i是整数。
  17. 根据权利要求16所述的信号处理装置,其特征在于,
    所述搬移值的搬移单位是预设的;或者,所述发送单元还用于发送配置信息,所述配置信息用于配置所述搬移值的搬移单位。
  18. 一种信号处理装置,其特征在于,包括:
    接收单元,用于接收N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数;
    处理单元,用于根据参考信号对所述至少一个传输层的非线性预编码后的信号进行均衡;对所述至少一个传输层的均衡后的信号进行逆搬移,得到所述至少一个传输层的待解码信号;对所述至少一个传输层的待解码信号进行解码。
  19. 根据权利要求18所述的信号处理装置,其特征在于,所述至少一个传输层包括第n个传输层,1≤n≤N,n是整数;
    所述处理单元具体用于:根据所述第n个传输层的信号中的第i个符号的搬移值的搬移单位和候选待解码符号集合,对所述第i个符号进行逆搬移,得到所述第i个符号对应的待解码符号;i≥1,i是整数;所述第i个符号对应的待解码符号属于所述候选待解码符号集合。
  20. 根据权利要求19所述的信号处理装置,其特征在于,
    所述搬移值的搬移单位是预设的;或者,所述接收单元还用于接收配置信息,所述配置信息用于配置所述搬移值的搬移单位。
  21. 一种信号处理装置,其特征在于,包括:
    处理单元,用于对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;对所述至少一个天线端口对应的调整后的参考信号,进行非线性预编码;其中,所述至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    发送单元,用于发送所述至少一个天线端口的非线性预编码后的参考信号。
  22. 根据权利要求21所述的信号处理装置,其特征在于,调整前的所述参考信号与调整后的所述参考信号的幅度不同,且相位相同。
  23. 根据权利要求21或22所述的信号处理装置,其特征在于,
    所述发送单元还用于,发送配置信息;所述配置信息用于指示所述参考信号的调整值。
  24. 一种信号处理装置,其特征在于,包括:
    接收单元,用于接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数;
    处理单元,用于对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;所述至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。
  25. 根据权利要求24所述的信号处理装置,其特征在于,逆调整前的所述参考信号与逆调整后的所述参考信号的幅度不同,且相位相同。
  26. 根据权利要求24或25所述的信号处理装置,其特征在于,
    所述接收单元还用于,接收配置信息,所述配置信息用于指示所述至少一个天线端口对应的参考信号的调整值;
    所述处理单元具体用于,根据所述调整值,对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整。
  27. 一种信号处理装置,其特征在于,包括:
    处理单元,用于对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,所述至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,所述每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;将所述至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;所述时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号;
    发送单元,用于发送所述映射至时频资源的参考信号。
  28. 根据权利要求27所述的信号处理装置,其特征在于,所述处理单元具体用于:
    对所述至少两个天线端口集合中的每个天线端口集合对应的参考信号分别进行非线性预编码;
    或者,对所述至少两个天线端口集合对应的参考信号统一进行非线性预编码,并将待映射至每个所述资源单元上的除该资源单元对应的非线性预编码后的参考信号之外的其他参考信号置0;
    或者,使用非线性预编码算法对所述至少两个天线端口集合对应的参考信号进行非线性预编码;所述非线性预编码算法使得经所述非线性预编码得到的参考信号映射至时频资源后,每个所述资源单元上包含一个天线端口集合对应的参考信号。
  29. 一种信号处理装置,其特征在于,包括存储器和处理器;所述存储器用于存储程序代码;所述处理器用于调用所述程序代码,以执行如权利要求1至14任一项所述的信号处理方法。
  30. 一种计算机可读存储介质,其特征在于,包括程序代码,所述程序代码包括用于执行如权利要求1至14任一项所述的信号处理方法的部分或全部步骤的指令。
  31. 一种信号处理装置,其特征在于,包括:
    处理器,用于对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;以及,对所述至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,所述至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    收发器,用于发送所述至少一个传输层的非线性预编码后的待发送信号。
  32. 一种信号处理装置,其特征在于,包括:
    收发器,用于接收N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数;
    处理器,用于根据参考信号对所述至少一个传输层的非线性预编码后的信号进行均衡;对所述至少一个传输层的均衡后的信号进行逆搬移,得到所述至少一个传输层的待解码信号;以及,对所述至少一个传输层的待解码信号进行解码。
  33. 一种信号处理装置,其特征在于,包括:
    处理器,用于对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;以及,对所述至少一个天线端口对应的调整后的参考信号,进行非线性预编码;其中,所述至少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    收发器,用于发送所述至少一个天线端口的非线性预编码后的参考信号。
  34. 一种信号处理装置,其特征在于,包括:
    收发器,用于接收P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数;
    处理器,用于对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;所述至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。
  35. 一种信号处理装置,其特征在于,包括:
    处理器,用于对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,所述至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,所述每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;以及将所述至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;所述时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号;
    收发器,用于发送所述映射至时频资源的参考信号。
  36. 一种处理器,其特征在于,用于:
    对N个传输层中的至少一个传输层的待发送信号进行搬移;N≥1,N是整数;
    对所述至少一个传输层的搬移后的待发送信号,进行非线性预编码;其中,所述至少一个传输层的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    输出所述至少一个传输层的非线性预编码后的待发送信号。
  37. 一种处理器,其特征在于,用于:
    接收输入的N个传输层中的至少一个传输层的非线性预编码后的信号;N≥1,N是整数;
    根据参考信号对所述至少一个传输层的非线性预编码后的信号进行均衡;
    对所述至少一个传输层的均衡后的信号进行逆搬移,得到所述至少一个传输层的待解码信号;
    对所述至少一个传输层的待解码信号进行解码。
  38. 一种处理器,其特征在于,用于:
    对P个天线端口中的至少一个天线端口对应的参考信号进行调整;P≥2,P是整数;
    对所述至少一个天线端口对应的调整后的参考信号,进行非线性预编码;所述至 少一个天线端口的非线性预编码后的待发送信号的发送功率小于或等于预设阈值;
    输出所述至少一个天线端口的非线性预编码后的参考信号。
  39. 一种处理器,其特征在于,用于:
    接收输入的P个天线端口中的至少一个天线端口对应的非线性预编码后的参考信号;P≥2,P是整数;
    对所述至少一个天线端口对应的非线性预编码后的参考信号进行逆调整;所述至少一个天线端口对应的逆调整后的参考信号用于进行信道估计。
  40. 一种处理器,其特征在于,用于:
    对至少两个天线端口集合对应的参考信号进行非线性预编码;其中,所述至少两个天线端口集合中的每个天线端口集合包括至少两个天线端口,所述每个天线端口集合包括的不同天线端口对应的参考信号之间码分复用时频资源;
    将所述至少两个天线端口集合对应的非线性预编码后的参考信号,映射至时频资源;所述时频资源的每个资源单元上包含一个天线端口集合对应的非线性预编码后的参考信号;
    输出所述映射至时频资源的参考信号。
  41. 一种计算机程序产品,其特征在于,当所述计算机程序产品在计算机上运行时,使得权利要求1至14任一项所述的方法被执行。
  42. 一种通信芯片,其中存储有指令,当其在网络设备或终端上运行时,使得网络设备或终端执行权利要求1至14任一项所述的方法。
PCT/CN2019/099091 2018-08-10 2019-08-02 信号处理方法和装置 WO2020029885A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810913412.2A CN110830090B (zh) 2018-08-10 2018-08-10 信号处理方法和装置
CN201810913412.2 2018-08-10

Publications (1)

Publication Number Publication Date
WO2020029885A1 true WO2020029885A1 (zh) 2020-02-13

Family

ID=69413388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099091 WO2020029885A1 (zh) 2018-08-10 2019-08-02 信号处理方法和装置

Country Status (2)

Country Link
CN (1) CN110830090B (zh)
WO (1) WO2020029885A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113300989A (zh) * 2021-07-28 2021-08-24 四川创智联恒科技有限公司 一种nr-5g物理下行共享信道的快速实现方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104717002A (zh) * 2013-12-11 2015-06-17 重庆重邮信科通信技术有限公司 秩指示和预编码矩阵索引的估计方法、系统和终端
CN105191203A (zh) * 2013-05-08 2015-12-23 交互数字专利控股公司 用于长期演进(lte)系统中的网络辅助式干扰消除和/或抑制(naics)的方法、系统和装置
CN106982078A (zh) * 2016-01-18 2017-07-25 株式会社Ntt都科摩 无线通信系统的信号传输方法、基站和用户终端

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039110B2 (ja) * 2009-10-05 2012-10-03 株式会社エヌ・ティ・ティ・ドコモ 基地局装置、移動局装置及び送信電力制御方法
CN102201899A (zh) * 2011-06-10 2011-09-28 中兴通讯股份有限公司 一种多输入多输出系统的信号传输方法、系统及装置
US10305566B2 (en) * 2015-02-04 2019-05-28 Kabushiki Kaisha Toshiba Methods and systems for transmitting information across a MIMO channel from a transmitter to a receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105191203A (zh) * 2013-05-08 2015-12-23 交互数字专利控股公司 用于长期演进(lte)系统中的网络辅助式干扰消除和/或抑制(naics)的方法、系统和装置
CN104717002A (zh) * 2013-12-11 2015-06-17 重庆重邮信科通信技术有限公司 秩指示和预编码矩阵索引的估计方法、系统和终端
CN106982078A (zh) * 2016-01-18 2017-07-25 株式会社Ntt都科摩 无线通信系统的信号传输方法、基站和用户终端

Also Published As

Publication number Publication date
CN110830090B (zh) 2021-08-13
CN110830090A (zh) 2020-02-21

Similar Documents

Publication Publication Date Title
US10805930B2 (en) Device, method, and program
US11381295B2 (en) Method and apparatus to enable CSI reporting in wireless communication systems
JP6513080B2 (ja) ネットワークアシスト干渉相殺及び抑制のためのネットワークシグナリング
US20180309490A1 (en) Method and apparatus for higher rank csi reporting in advanced wireless communication systems
WO2019191932A1 (zh) 上行天线的选择方法和装置
US11888557B2 (en) Method and apparatus for port selection in wireless communication systems
US11277184B2 (en) Method and apparatus for high rand CSI reporting in wireless communications systems
US20230283329A1 (en) Method and apparatus for robust mimo transmission
WO2019228390A1 (zh) 用于解调数据的方法和通信装置
WO2016082123A1 (zh) 处理数据的方法、网络节点和终端
US11277187B2 (en) Method and apparatus for CSI parameter configuration in wireless communication systems
EP3573275A1 (en) Signal sending and receiving method, apparatus and system in wireless communications
WO2019029716A1 (zh) 处理数据的方法和装置
WO2020029885A1 (zh) 信号处理方法和装置
CN111371478B (zh) 预编码方法和装置及信息传输方法和装置
US20230246687A1 (en) Method and apparatus for reporting of time-domain channel properties
EP3817481A1 (en) Method and apparatus in user equipment and base station used for wireless communication
US20230037394A1 (en) Method and apparatus for compression-based csi reporting
US20220376759A1 (en) Method and apparatus for uci multiplexing
US9265039B2 (en) Resource element mapping for wireless transmissions
WO2021104020A1 (zh) 数据传输方法、发送设备和接收设备
WO2023241215A1 (zh) 一种通信方法及设备
WO2023050449A1 (en) Enhanced csi reporting for multi-trp operation
US20240097815A1 (en) MAC Architectures for Adaptive NOMA Modulation
US20240098704A1 (en) MAC Architectures for Adaptive NOMA Modulation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846342

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846342

Country of ref document: EP

Kind code of ref document: A1