WO2019228390A1 - 用于解调数据的方法和通信装置 - Google Patents

用于解调数据的方法和通信装置 Download PDF

Info

Publication number
WO2019228390A1
WO2019228390A1 PCT/CN2019/088962 CN2019088962W WO2019228390A1 WO 2019228390 A1 WO2019228390 A1 WO 2019228390A1 CN 2019088962 W CN2019088962 W CN 2019088962W WO 2019228390 A1 WO2019228390 A1 WO 2019228390A1
Authority
WO
WIPO (PCT)
Prior art keywords
dmrs
transmission
layer
sequence
transmission layer
Prior art date
Application number
PCT/CN2019/088962
Other languages
English (en)
French (fr)
Inventor
徐明慧
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019228390A1 publication Critical patent/WO2019228390A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a communication device for demodulating data.
  • MIMO multiple-input multiple-output
  • the precoding technology is a very important step in MIMO.
  • the system Before performing precoding, the system first maps the data information to be sent to different layers through layer mapping, so that the data information is distributed to different layers in a certain way. On the layer, after that, the data information allocated to the layer is mapped to the physical antenna through the precoding technology.
  • the precoding technology can transfer some necessary signal processing processes that are difficult to implement at the receiving end to the transmitting end, thereby ensuring signal performance during transmission.
  • the existing precoding technology is actually an adaptive technology. As the channel state information (CSI) changes, the result of precoding the data information will change accordingly.
  • the real-time changing data information preprocessing technology enables the terminal device to obtain the correct target data information in the changed CSI. Therefore, precoding is a very key technology in the MIMO of the LTE system.
  • Typical precoding methods can be divided into two types: linear precoding and non-linear precoding.
  • Each type of precoding method has its suitable working scenario.
  • the precoding scheme used is a low-complexity linear precoding scheme.
  • the gain provided by the linear precoding scheme is excessive. Small, can not meet the transmission requirements of the system, at this time the non-linear precoding scheme can relatively meet the transmission requirements of the system.
  • DMRS demodulation reference signals
  • a solution can adopt linear precoding for DMRS and non-linear precoding for data.
  • the effective channel of the data is estimated according to the DMRS to demodulate the data.
  • the present application provides a method and a communication device for demodulating data.
  • the method can demodulate data according to the DMRS when the DMRS and the data experience different channels.
  • a method for demodulating data includes: a receiving end device receives instruction information sent by a transmitting end device;
  • the receiving-end device determines a layer number k of a current transmission layer according to the instruction information, where k is an integer greater than or equal to 1;
  • the receiving-end device determines a transmission signal of the demodulation reference signal DMRS on the first k transmission layers
  • the receiving end device demodulates the k-th transmission layer data according to the transmission signals of the DMRS on the first k transmission layers.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • the receiving end device demodulating the k-th transmission layer data according to the DMRS transmission signals on the first k transmission layers includes:
  • the receiving-end device Determining, by the receiving-end device, the power back-off factor ⁇ k of the data of the k-th transmission layer according to the transmission signals of the DMRS on the first k transmission layers and the reception signal of the DMRS of the k-th transmission layer;
  • the receiving end device demodulates the k-th transmission layer data according to the power backoff factor ⁇ k .
  • the channel parameters between the first k transmission layers and the k-th transmission layer are obtained by the receiving end device according to the DMRS transmission signals on the first k transmission layers, so that The channel parameters between the transmission layer and the k-th transmission layer determine the power back-off factor ⁇ k of the k-th transmission layer data, and then demodulate the k-th transmission layer data.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • the receiving end device determines the k-th transmission layer according to a transmission signal of the DMRS on the first k transmission layers and a reception signal of the DMRS on the k-th transmission layer.
  • the power back-off factor ⁇ k of the data includes:
  • channel parameters l kj where j is an integer greater than or equal to 1 and less than or equal to k;
  • the receiving-end device determines a power back-off factor ⁇ k of data of the k-th transmission layer according to a channel parameter l kj between the j-th transmission layer and the k-th transmission layer in the first k transmission layers.
  • a transmission signal of a DMRS on each transmission layer is transmitted through at least one subcarrier, wherein a channel between a j-th transmission layer and the k-th transmission layer
  • the parameter l kj includes a channel parameter l kj (i) of each subcarrier carrying at least one subcarrier of the DMRS of the j-th transmission layer, where i represents a number of the subcarrier carrying the DMRS of the j-th transmission layer;
  • Channel parameters l kj include:
  • the receiving end device determines a channel parameter l kj according to a corresponding DMRS received signal on the i-th subcarrier on the k-th transmission layer and a transmitted signal of the DMRS on the i-th sub-carrier on the j-th transmission layer. (i) .
  • the receiver device can determine the power back-off factor ⁇ k (i) representing the i-th subcarrier corresponding to the k-th transmission layer data. Furthermore, demodulation of the k-th layer data is realized, and the problems in the prior art are solved.
  • the indication information may directly indicate the layer number k of the current transport layer, or may indirectly indicate the layer number k of the current transport layer.
  • the following describes the indirect information in the embodiments of the present application. 6 possible cases indicating the layer number of the current transport layer.
  • the indication information is used to indicate a DMRS port number k of a current transmission layer, where the DMRS port number and the layer number of the transmission layer have a one-to-one correspondence relationship, so
  • the receiving end device determining the layer number k of the current transmission layer according to the instruction information includes: the receiving end device determining the DMRS port number k as the layer number k of the current transmission layer.
  • the sending device instructs the DMRS port number to indirectly indicate the layer number k of the current transport layer. No additional signaling is required to specifically instruct the transport layer
  • the layer number can save signaling overhead.
  • the instruction information is used to indicate a sequence index number k of a DMRS transmission signal of a current transmission layer, where the index number of the sequence of a DMRS transmission signal and the transmission The layer number of the layer has a one-to-one correspondence relationship, and the receiving end device determines the layer number k of the current transmission layer according to the instruction information, including: the receiving end device determines a sequence index number k of a DMRS transmission signal as the The layer number k of the current transport layer.
  • the sequence index number k of the transmitted signal of the DMRS of the current transmission layer is indicated by the transmitting device indirectly indicating the layer number k of the current transmission layer.
  • the embodiment of the present application does not require additional signaling to specifically indicate the layer number of the transmission layer. Can save signaling overhead.
  • the indication information is used to indicate a sequence index of a transmitted signal of a first k-layer DMRS, and the receiving end device determines a layer of a current transmission layer according to the indication information
  • the number k includes: determining, by the receiving device, the layer number k of the current transmission layer according to the number of sequence indexes of the DMRS transmission signal;
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer by using the sequence index number of the DMRS transmission signal indicated by the transmitting device, and the embodiment of the present application does not require additional signaling to specifically indicate the layer number of the transmission layer, which can save Signaling overhead.
  • the indication information is used to indicate a sequence scrambling identifier of the first k-layer DMRS
  • the receiving end device determines a layer number of a current transmission layer according to the indication information k includes: determining, by the receiving end device, the layer number k of the current transmission layer according to the number of sequence scrambling identifiers of the DMRS.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the number of sequence scrambling identifiers of the DMRS indicated by the transmitting device.
  • the embodiment of the present application does not need additional signaling to specifically indicate the layer number of the transmission layer, which can save information. Order overhead.
  • the indication information is used to indicate a sequence scrambling identification index number k of the DMRS of the current transmission layer, where the sequence scrambling identification index number of the DMRS and the transmission layer
  • the layer number has a one-to-one correspondence
  • the receiving end device determines the layer number k of the current transmission layer according to the instruction information, including: the receiving end device determines the sequence scrambling identification index number k of the DMRS as the The layer number k of the current transmission layer is described.
  • the sequence scrambling identification index number k of the DMRS of the current transmission layer is instructed by the sending device to indirectly indicate the layer number k of the current transmission layer, and the embodiment of the present application does not require additional signaling to specifically indicate the layer number of the transmission layer Can save signaling overhead.
  • the indication information is used to indicate a sequence scrambling identification index of a first k-layer DMRS, and the receiving end device determines a layer of a current transmission layer according to the indication information.
  • the number k includes: determining, by the receiving end device, the layer number k of the current transmission layer according to the number of sequence scrambling identification indexes of the DMRS.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the sequence scrambling identification index number of the DMRS indicated by the transmitting device, and the embodiment of the present application does not need additional signaling to specifically indicate the layer number of the transmission layer, which can save Signaling overhead.
  • the terminal device After determining the layer number k of the current transmission layer, the terminal device needs to determine the DMRS transmission signal on the previous k transmission layer to determine the power back-off factor of the k-th transmission layer data according to the DMRS transmission signal on the previous k transmission layer. ⁇ k .
  • the following describes some implementations in which the receiving end device determines the transmission signal of the DMRS on the first k transmission layer.
  • the receiving-end device determining a transmission signal of the DMRS on the first k transmission layers includes:
  • the receiving-end device determines a DMRS transmission signal on the k-th transmission layer according to a high-level signaling and / or a DMRS mapping resource position, and the receiving-end device determines a first number according to a sequence index of the DMRS transmission signal indicated by the transmitting-end device.
  • the transmission signal to the DMRS on the k-1th transmission layer is a high-level signaling and / or a DMRS mapping resource position
  • the receiving end device may determine according to high-level signaling (for example, radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location The transmitted signal of the DMRS on the k-th transmission layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the method may further include sending the above-mentioned high-level signaling and / or location indication information used to indicate a DMRS mapping resource location to the receiving end device.
  • the determining, by the receiving end device according to the sequence index of the DMRS transmission signal indicated by the sending end device, the transmission signals of the DMRS on the 1st to k-1th transmission layers includes:
  • the receiving device determines the first to k-1th transmission layers from a preset DMRS sequence set according to a sequence index of the DMRS transmission signals on the 1st to k-1th transmission layers indicated by the transmitting device.
  • a DMRS transmission signal wherein the DMRS sequence set includes one or more DMRS sequences specifically defined for non-linear precoding.
  • the method may further include sending, by the sending-end device to the receiving-end device, index indication information indicating a sequence index of a transmission signal of the DMRS on the first to k-1th transmission layers.
  • the sending-end device and the receiving-end device may locally store the preset DMRS sequence set, and the DMRS sequence set includes a sequence of multiple DMRS transmission signals.
  • the preset DMRS sequence set may be a unique sequence set composed of sequences of the multiple DMRS transmission signals when there is a non-linear precoding user and / or a non-linear precoding layer, and each sequence corresponds to an index
  • the sequence set and / or the correspondence between the sequence and the index number in the set can be notified by signaling, or can be pre-agreed, pre-defined, or pre-configured by the sender and receiver.
  • the embodiments of this application are not limited to this.
  • the transmitting device may indicate an index of a sequence of DMRS transmission signals of each of the first k-1 transmission layers, and the receiving device may determine the first k-1 from the preset DMRS sequence set according to the indicated index. Transmitted DMRS transmission signals.
  • the receiving-end device determines a DMRS transmission signal on the k-th transmission layer according to a high-level signaling and / or a DMRS mapping resource position, and the receiving-end device determines the first to k-1th according to a sequence scrambling identifier of the DMRS.
  • the DMRS transmit signal on the transport layer.
  • the receiving end device may determine according to high-level signaling (for example, radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location The transmitted signal of the DMRS on the k-th transmission layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the method may further include sending the above-mentioned high-level signaling and / or location indication information used to indicate a DMRS mapping resource location to the receiving end device.
  • the receiving end device determines the DMRS transmission signals on the first to k-1th transmission layers according to the sequence scrambling identifier of the DMRS, including the receiving end device determining the first Transmission signals of DMRS on the 1st to k-1th transmission layers:
  • the receiving end device determines a transmission signal of the DMRS on the first to k-1th transmission layers according to a default sequence scrambling identifier of the DMRS, where DMRS scrambling identification signaling at all transport layers is default;
  • the receiving-end device determines, based on the sequence scrambling identifier of the DMRS configured by the DMRS scrambling identifier signaling, the first to k-1th transmission layers.
  • the receiving end device determines the first to k-1th according to a preconfigured wireless network temporary identifier RNTI that is used as a non-linear precoding sequence scrambling identifier.
  • RNTI wireless network temporary identifier
  • the receiving-end device determining a transmission signal of the DMRS on the first k transmission layers includes:
  • the receiving-end device determines a DMRS transmission signal on the k-th transmission layer according to a high-level signaling and / or DMRS mapping resource position, and the receiving-end device determines the first to k-1th according to the layer number of the current transmission layer.
  • the transmission signals of the DMRS on the transmission layer wherein the transmission signals of the DMRS corresponding to the transmission layer correspond to the layer numbers of the transmission layer one by one.
  • the receiving end device may determine according to high-level signaling (for example, radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location The transmitted signal of the DMRS on the k-th transmission layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the receiving end device may pre-store a transmission signal sequence of DMRS corresponding to multiple layer numbers one by one, and the receiving end device may select from the pre-stored multiple DMRS transmission signal sequences according to the current transmission layer layer number k.
  • the transmission signal sequences of the DMRS corresponding to the layer number 1 to the layer number k-1 are respectively used as the transmission signal sequences of the DMRS of the transmission layer 1 to the transmission layer k-1.
  • the one-to-one correspondence between the above-mentioned DMRS transmission signal sequence and the layer number of the transmission layer may be the sequence k of the DMRS transmission signal corresponding to the layer number k of the transmission layer.
  • the above-mentioned one-to-one correspondence may also be Other correspondences, for example, the sequence k1 of the DMRS transmission signal corresponds to the transmission layer number k2, where k1 and k2 may not be equal.
  • the foregoing one-to-one correspondence may be pre-configured or pre-defined or indicated by signaling, and the embodiment of the present application is not limited thereto.
  • the method may further include transmitting information indicating a one-to-one correspondence between the transmission signal of the DMRS and the layer number of the transmission layer to the receiving end device.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • a method for demodulating data is provided. It should be understood that the method in the second aspect corresponds to the first aspect, the method in the second aspect may be performed by a transmitting device, and the method in the first aspect may be performed by The receiving device instructions that the sending device interacts with indicate that the actions performed by the sending device correspond to the actions performed by the receiving device. For details about the scheme and beneficial effects of the sending device and receiving device interaction, see the description of the first aspect. Repeat, and detailed description is appropriately omitted.
  • the method includes: the sending-end device generates indication information, where the indication information is used to determine a layer number k of a current transmission layer, where k is an integer greater than or equal to 1;
  • the transmitting device sends instruction information to the receiving device, so that the receiving device determines the layer number k of the current transmission layer according to the instruction information, and demodulates the first transmission layer according to the transmission signals of the DMRS on the first k transmission layers.
  • k Transport layer data
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • the indication information is used to indicate a DMRS port number k of the current transmission layer; and the indication information is used to indicate a sequence index of a DMRS transmission signal of the current transmission layer.
  • Number k the indication information is used to indicate the sequence index of the DMRS transmitted signal of the first k layers; the indication information is used to indicate the sequence scrambling identification of the DMRS of the first k layers; the indication information is used to indicate the DMRS of the current transmission layer
  • the sequence scrambling identification index number k; the indication information is used to indicate the sequence scrambling identification index of the DMRS of the first k layers; or the indication information is used to indicate the layer number k of the current transmission layer.
  • the method further includes: the sending-end device sends at least one of the following information to the receiving-end device: DMRS mapping resource location information; Configure the non-linear precoding sequence scrambling identifier as the configuration information of the wireless network temporary identifier RNTI; the sequence index information of the DMRS transmission signal on the 1st to k-1th transmission layers; the DMRS scrambling identification information of all transmission layers Order; information indicating that the DMRS transmission signals of all transmission layers are the same; information indicating a one-to-one correspondence between the transmission signals of the DMRS and the layer numbers of the transmission layer.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and the solution
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • a communication device including each module or unit for performing the method in any one of the first aspect and the possible implementation manners of the first aspect.
  • the communication device is a receiving end device.
  • the receiving end device is a terminal device.
  • a communication device which includes each module or unit for performing the method in any one of the second aspect and the second aspect.
  • the communication device is a transmitting device.
  • the sending device is a network device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the method in the first aspect and its possible implementation.
  • the communication device is a receiving end device.
  • the receiving end device is a terminal device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the communication device executes the method in the second aspect and its possible implementation.
  • the communication device is a transmitting device.
  • the sending device is a network device.
  • a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the first aspect and the method in any possible implementation manner of the first aspect are implemented.
  • a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, the second aspect and the method in any one of the possible implementation manners of the second aspect are implemented.
  • a computer program product is provided.
  • the computer program product is executed by a computer, the first aspect and the method in any possible implementation manner of the first aspect are implemented.
  • a computer program product is provided, and when the computer program product is executed by a computer, the second aspect and the method in any one of the possible implementation manners of the second aspect are implemented.
  • a processing device including a processor.
  • the method in any one of the foregoing first aspect to the second aspect or any possible implementation manner of the first to the second aspect is executed by the processor.
  • the processor may be Dedicated processor.
  • the processing apparatus may further include a memory, and the memory stores code, and the processor executes the code in the memory to execute any one of the foregoing first to second aspects or the first to second aspects.
  • the processor may be a general purpose processor.
  • the related data interaction process for example, sending data may be a process of outputting data from a processor, and receiving data may be a process of receiving input data by a processor.
  • the processed output data can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the eleventh aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a system including the foregoing sending-end device and receiving-end device.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a data processing process according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a method for demodulating data according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of resource mapping according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of resource mapping according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a method for demodulating data according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a method for demodulating data according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a communication device according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of a terminal device according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a communication device according to another embodiment of the present application.
  • FIG. 11 is a schematic diagram of a network device according to another embodiment of the present application.
  • the embodiments of the present application can be applied to various communication systems, and therefore, the following description is not limited to a specific communication system.
  • GSM global mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS Universal mobile communication system
  • WLAN wireless local area networks
  • WiFi wireless fidelity
  • next-generation communication systems namely the fifth generation (5th generation, 5G
  • the communication system is, for example, a new radio (NR) system.
  • NR new radio
  • the network device may be a base station (BTS) in global mobile communication (GSM) or code division multiple access (CDMA) or broadband
  • the base station (nodeB, NB) in wideband code division multiple access (WCDMA) can also be an evolutionary node (evolutionary node B, eNB / eNodeB) in long term evolution (LTE), or Relay station or access point, or network equipment in the future 5G network, for example, transmission point (TRP or transmission point, TP) in NR system, base station (gNB) in NR system, radio frequency unit in NR system , Such as a remote radio frequency unit, a base station in a 5G system or a group (including multiple antenna panels) antenna panel, etc. It can also be a wearable device or a car-mounted device. Different network devices may be located in the same cell or in different cells, which is not specifically limited herein.
  • the gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include a radio frequency unit (radio unit, RU).
  • CU implements some functions of gNB and DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence layer protocol (PDCP) layer functions, and DU implements wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain.
  • Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers are examples of radio resource control (RLC), media access control (MAC) and physical (PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, and the CU can also be divided into network devices in the core network CN, which is not limited herein.
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , Wireless communication equipment, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital processing (PDA), and wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, home appliances, wearables, drones, and terminal devices in future 5G networks or future evolved public land mobile communication networks public The terminal equipment in land mobile network (PLMN) is not limited in this embodiment of the present application.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices, which are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction.
  • Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions, and need to cooperate with other devices such as smart phones Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • the embodiments of the present application can be adapted to any of the foregoing communication systems.
  • the embodiments of the present application can be applied to LTE systems and subsequent evolved systems such as 5G, or other wireless communication systems using various wireless access technologies, such as using code division.
  • Multiple-access, frequency-division multiple-access, time-division multiple-access, orthogonal frequency-division multiple-access, single-carrier frequency-division multiple-access and other access technology systems especially suitable for scenarios that require channel information feedback and / or apply secondary precoding technology
  • a wireless network using a mass-multiple-input multiple-output (M-MIMO) technology a wireless network using a distributed antenna technology, and the like.
  • M-MIMO mass-multiple-input multiple-output
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the communication system 100 includes a network device 102, and the network device 102 may include multiple antenna groups.
  • Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 106 and 110, and additional groups may include antennas 112 and 114. 2 antennas are shown in FIG. 1 for each antenna group, however, more or fewer antennas may be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain.
  • each of them may include multiple components related to signal transmission and reception (such as a processor, a modulator, a multiplexer, a decoder, etc.). Modulator, demultiplexer or antenna, etc.).
  • the network device 102 may communicate with multiple terminal devices (eg, the terminal device 116 and the terminal device 122). However, it is understood that the network device 102 may communicate with any number of terminal devices similar to the terminal devices 116 or 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smartphones, laptops, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and / or any other suitable devices for communicating on the wireless communication system 100. device.
  • the terminal device 116 communicates with the antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link 116 and receive information from the terminal device 116 through the reverse link 120.
  • the terminal device 122 communicates with the antennas 104 and 106, where the antennas 104 and 106 send information to the terminal device 122 through the forward link 124 and receive information from the terminal device 122 through the reverse link 126.
  • the forward link 116 may utilize a different frequency band from the reverse link 120, and the forward link 124 may utilize the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 116 and the reverse link 120 may use a common frequency band
  • the link 126 may use a common frequency band.
  • Each set of antennas and / or areas designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector covered by the network device 102.
  • the transmitting antennas of the network device 102 can use beamforming to improve the signal-to-noise ratio of the forward links 116 and 124.
  • the Mobile devices experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting apparatus and / or a wireless communication receiving apparatus.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may obtain (for example, generate, receive from another communication device, or save in a memory, etc.) a certain number of data bits to be transmitted to the wireless communication receiving device through a channel.
  • Such data bits may be contained in a transport block (or transport blocks) of data, which may be segmented to generate a plurality of code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device-to-device (D2D) network or a machine-to-machine (M2M) network or other network.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • FIG. 1 is only an example for easy understanding. Simplified schematic diagram, the network can also include other network equipment, not shown in Figure 1.
  • FIG. 2 shows the main steps of a data processing process performed by a transmitting end (such as a network device) before data is transmitted through orthogonal frequency division multiplexing (OFDM) symbols.
  • a transmitting end such as a network device
  • OFDM orthogonal frequency division multiplexing
  • the receiving end (for example, a terminal device) can perform demodulation data.
  • the receiving end for example, a terminal device
  • demodulation data For the specific data processing processes mentioned above, please refer to the descriptions in the existing standards.
  • the precoding technology may be to process the transmitted signal in advance under the condition of a known channel state, that is, to process the transmitted signal by using a precoding matrix that matches the channel resources, so that the precoding is performed.
  • the to-be-transmitted signal is adapted to the channel, so that the complexity of eliminating the influence between channels at the receiving end is reduced. Therefore, by precoding the transmitted signal, the quality of the received signal (such as signal to interference plus noise ratio (SINR)) is improved. Therefore, by adopting the precoding technology, it is possible to realize transmission between a transmitting device and multiple receiving devices on the same time-frequency resource, that is, multiple user multiple input multiple output (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • precoding can also be performed in other ways (for example, when the channel matrix cannot be known). Pre-coding matrix or weighting processing method is used to perform pre-coding), the specific content will not be repeated here.
  • MIMO uses multiple transmitting antennas to transmit signals with the same information through different paths, and at the same time, multiple independent fading of the same data symbol can be obtained at the receiving end. Signals, thereby obtaining diversity to improve the reception reliability, and the spatial diversity of MIMO technology can be used to combat channel fading.
  • the precoding technology can not only effectively suppress the interference of multiple users in the MIMO system, but also greatly improve the system capacity while greatly simplifying the receiver algorithm.
  • the quality of the received signal (such as signal to interference plus noise ratio (SINR)) is improved. Therefore, by adopting the precoding technology, it is possible to realize transmission between a transmitting device and multiple receiving devices on the same time-frequency resource, that is, multiple user multiple input multiple output (MU-MIMO).
  • SINR signal to interference plus noise ratio
  • the sender In order to obtain a precoding matrix that can be adapted to the channel, the sender usually performs channel estimation in advance by sending a reference signal, and obtains feedback from the receiver to determine a more accurate precoding matrix to precode the data to be sent.
  • the transmitting end may be a network device
  • the receiving end may be a terminal device.
  • the reference signal may be a reference signal for downlink channel measurement, for example, a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the terminal device can perform CSI measurement according to the received CSI-RS, and feedback the CSI of the downlink channel to the network device;
  • the sending end can also be a terminal device,
  • the receiving end can be a network device, and the reference signal can be used for uplink Reference signals for channel measurement, for example, sounding reference signals (SRS).
  • the network device may perform channel estimation and / or CSI measurement according to the received SRS, and indicate the CSI of the uplink channel to the terminal device.
  • the CSI may include, for example, but not limited to, a precoding matrix indicator (PMI), a rank indicator (RI), a channel quality indicator (CQI), and the like.
  • PMI precoding matrix indicator
  • RI rank indicator
  • CQI channel quality indicator
  • the communication method applicable to the reference signal and the type of the reference signal are not particularly limited in this application.
  • the sending end may be, for example, a network device, and the receiving end may be, for example, a terminal device.
  • the reference signal may be, for example, a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the sending end may be, for example, a terminal device, and the receiving end may be, for example, a network device, and the reference signal may be a sounding reference signal (SRS); for device-to-device (D2D) data transmission
  • SRS sounding reference signal
  • D2D device-to-device
  • the sending end may be, for example, a terminal device, and the receiving end may be, for example, a terminal device.
  • the reference signal may be, for example, an SRS.
  • Typical precoding methods can be divided into two types: linear precoding and non-linear precoding. Each type of precoding method has its suitable working scenario. The following describes linear precoding and non-linear precoding, respectively.
  • Linear precoding is a linear processing of the acquired channel state information.
  • Typical linear precoding algorithms can include zero forcing (ZF) precoding and its various improved algorithms, minimum mean square error (MMSE) precoding, block diagonalization (BD) ) Precoding and optimized signal to noise ratio (SLNR) precoding.
  • ZF zero forcing
  • MMSE minimum mean square error
  • BD block diagonalization
  • SLNR signal to noise ratio
  • Non-linear precoding is a non-linear operation on the channel matrix (such as introducing iteration, interference cancellation, modulo, and power backoff).
  • Typical non-linear precoding methods can include dirty paper coding (DPC), modulo algebra Precoding (tomlinson, harashima, precoding (THP) and vector perturbation (VP) precoding.
  • DPC dirty paper coding
  • modulo algebra Precoding tomlinson, harashima
  • precoding THP
  • VP vector perturbation
  • DMRS uses linear precoding and data uses non-linear precoding, in this case, DMRS and data experience different equivalent channels.
  • the receiving device cannot directly demodulate data based on the DMRS.
  • an embodiment of the present application provides a communication method, which can demodulate data according to the DMRS when the DMRS uses linear precoding and the data uses non-linear precoding.
  • FIG. 3 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method shown in FIG. 3 is described from the perspective of interaction between a network device and a terminal device.
  • the method shown in FIG. 3 can be applied to both downlink transmission and uplink transmission.
  • the sending device is a network device and the receiving device is a terminal device.
  • the sending device is a terminal device.
  • the receiving device is a network device.
  • only the lower row transmission is taken as an example for detailed description. For the process of uplink transmission, refer to the description of the downlink transmission in this article.
  • the sending end device may also be referred to as a sending end
  • the receiving end device may also be referred to as a receiving end
  • the embodiments of the present application are not limited thereto.
  • the following first describes a scenario in which DMRS uses linear precoding, and data signals use non-linear precoding. The relationship between the received signals.
  • the signals sent by the sending end device include DMRS signals and data.
  • the signals received by the receiving end device may include DMRS and data.
  • the data may be data carried by a physical downlink shared channel (PDSCH) or a physical uplink shared channel (PDSCH) PUSCH.
  • PDSCH physical downlink shared channel
  • PDSCH physical uplink shared channel
  • the data is transmitted during uplink transmission. Is data carried by the PUSCH, and the data may be data carried by the PDSCH during downlink transmission.
  • the received signal of the data of the k-th transmission layer (for example, the data is data carried by PDSCH or PUSCH) is:
  • y k represents the received signal of the k-th transmission layer data
  • l kk represents the channel corresponding to the k- th transmission layer
  • ⁇ k represents the power backoff factor corresponding to the k-th transmission layer data
  • a k represents the original on the k-th transmission layer
  • a transmission signal such as a quadrature amplitude modulation (QAM) signal
  • n k represents noise corresponding to the k-th transmission layer.
  • the received signal corresponding to the j-th layer DMRS transmission signal received by the k-th transmission layer is:
  • l kj is the k-th row and j-th column of the lower triangular matrix L obtained by orthogonal triangle (QR) decomposition of the channel matrix H.
  • l kj represents the j-th layer signal versus the k-th layer signal.
  • the equivalent channel of the data is l kk ⁇ k . Therefore, to demodulate the data, we need to know the parameters ⁇ k and l kk , or the product of the two, l kk ⁇ k .
  • the receiving device can determine the k-th transmission layer data according to the channel parameter l kj between the DMRS transmission signal on each of the first k transmission layers and the k-th transmission layer. Power back-off factor ⁇ k .
  • l kj can be determined according to y k and s j . Since y k is a signal received by the receiving end device, as long as the receiving end device can determine the transmission signal s j of the DMRS corresponding to the first k layer (j layer), it can determine l kj according to formula (2). ⁇ k is further obtained according to the formula (3), and the data can be demodulated according to the formula (1) without considering i.
  • precoding manner herein may also be referred to as a precoding scheme, a precoding mode, a precoding category, or a precoding type, and the like, and the embodiments of the present application are not limited thereto.
  • data and DMRS may be mapped on different orthogonal frequency division multiplexing (OFDM) symbols, and data and DMRS may also be mapped on the same OFDM symbol. Examples are not limited to this.
  • a port (also referred to as an antenna port) may be understood as a reference signal port, and a reference signal corresponds to an antenna port.
  • the port in the embodiment of the present application may also be a DMRS port.
  • the port may be a logical port or a physical antenna port.
  • One port corresponds to one transmission layer, and those skilled in the art can understand the meaning.
  • the DMRS transmission signal on the transport layer in the embodiments of the present application may refer to the original transmission sequence (or the original transmission sequence) of the DMRS, for example, the original transmission sequence refers to quadrature amplitude modulation (QAM) Or quadrature phase shift keying (QPSK) modulation.
  • the transmission signal of the DMRS on the transmission layer may also be referred to as the original transmission sequence of the DMRS on the transmission layer.
  • the method 300 shown in FIG. 3 includes:
  • the sending device sends instruction information to the receiving device.
  • the sending-end device generates the instruction information, and sends the instruction information to the receiving-end device, and accordingly, the receiving-end device receives the instruction information.
  • the indication information is used by the receiving end device to determine a layer number k of a current transmission layer, where k is an integer greater than or equal to 1.
  • a receiving end device in order to demodulate data through DMRS, a receiving end device (for example, a terminal device) needs to determine a specific value of a layer number k of a current transmission layer, so as to determine a value of l kj to be estimated. Number.
  • the receiving device determines the value of k, it needs to calculate k channel parameters l kj , that is, l k1 to l kk .
  • the indication information may directly indicate the layer number k of the current transport layer, or may indirectly indicate the layer number k of the current transport layer.
  • the following describes the indirect information in the embodiments of the present application 6 possible situations indicating the current transport layer layer number k.
  • the indication information is used to indicate the DMRS port number k of the current transmission layer, where the DMRS port number has a one-to-one correspondence with the layer number of the transmission layer.
  • the sending device instructs the DMRS port number to indirectly indicate the layer number k of the current transport layer. No additional signaling is required to specifically instruct the transport layer
  • the layer number can save signaling overhead.
  • the above-mentioned one-to-one correspondence may be the DMRS port number k corresponding to the layer number k of the transmission layer.
  • the above-mentioned one-to-one correspondence may also be other correspondences, such as the DMRS port number k1 Corresponds to the transmission layer number k2, where k1 and k2 may not be equal.
  • the foregoing one-to-one correspondence may be pre-configured or pre-defined or indicated by signaling, and the embodiment of the present application is not limited thereto.
  • the indication information may be specifically used to indicate the DMRS port number and other information (for example, other reference signals).
  • the port number for example, CSI-RS port number, SRS port number
  • / or DMRS sequence index number, etc. the receiving end device can jointly determine the current transmission layer layer number through the DMRS port number and other information.
  • the layer number of the current transmission layer is a sum or product of a DMRS port number and a value indicated by other information (for example, the value is a port number of another reference signal or a DMRS sequence index number, etc.).
  • the current transmission layer number can be 8 (that is, 2 * 4) or the current transmission layer layer number can be 6 (that is, 2 + 4).
  • the layer number of the current transmission layer needs to be represented by n bits.
  • the DMRS port number may be used to correspond to n1 bits, and the other information may be used to correspond to n2 bits.
  • n is equal to n1 + n2, and the receiving end device may determine the n bit values corresponding to the layer number according to the specific values of the n1 bits and n2 bits, and then may determine the layer number.
  • the indication information is used to indicate a sequence index number k of a transmission signal of the DMRS of the current transmission layer, where the index number of the sequence of the DMRS transmission signal has a one-to-one correspondence with the layer number of the transmission layer.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer by using the sending end device to indicate the sequence index number of the DMRS transmission signal.
  • the receiving end device can determine the DMRS transmission signal of the k-th transmission layer according to the sequence of a plurality of DMRS transmission signals stored locally, and can also determine the current transmission layer according to the index number. Layer number k.
  • the sequences of the multiple DMRS transmission signals may constitute a unique sequence set when a non-linear precoding user and / or a non-linear precoding layer are used, and each sequence corresponds to an index number.
  • the sequence set and / or set The correspondence between the sequence and the index number can be notified by signaling, or can be pre-agreed, pre-defined, or pre-configured by both parties of the sending and receiving ends, and the embodiment of the present application is not limited to this.
  • the sequence index number k of the transmitted signal of the DMRS of the current transmission layer is indicated by the transmitting device indirectly indicating the layer number k of the current transmission layer.
  • the embodiment of the present application does not require additional signaling to specifically indicate the layer number of the transmission layer. Can save signaling overhead.
  • the above-mentioned one-to-one correspondence may be a sequence index number k of a DMRS transmission signal corresponding to a layer number k of a transmission layer.
  • the above-mentioned one-to-one correspondence may also be other correspondences.
  • the sequence index number k1 of the DMRS transmission signal corresponds to the transmission layer number k2, where k1 and k2 may not be equal.
  • the foregoing one-to-one correspondence may be pre-configured or pre-defined or indicated by signaling, and the embodiment of the present application is not limited thereto.
  • the indication information may be specifically used to indicate the sequence index number of the DMRS transmission signal.
  • the receiving end device can use the sequence index number of the DMRS transmission signal to communicate with other The information association determines the layer number of the current transport layer.
  • the layer number of the current transmission layer is a sequence index number of a DMRS transmission signal and a value indicated by other information (for example, the value is a port number of another reference signal or a DMRS sequence index number, etc.). And or product.
  • the sequence index number of the DMRS transmission signal is 2, and the value indicated by other information is 4, the current transmission layer number can be 8 (that is, 2 * 4) or the current transmission layer layer number can be 6 (that is, 2+). 4) Wait.
  • the layer number of the current transmission layer needs to be represented by n bits.
  • the sequence index number of the transmitted signal through DMRS corresponds to n1 of the bits, which corresponds to the other information.
  • n2 bits where n is equal to n1 + n2, the receiving end device can determine the n bit values corresponding to the layer number according to the specific values of the n1 bits and n2 bits, and then the layer number can be determined.
  • the indication information is used to indicate a sequence index of a transmitted signal of the first k-layer or the first k-1 layer DMRS.
  • the receiving end device needs to determine the DMRS transmission signal of each of the first k transmission layers.
  • the transmitting-end device and the receiving-end device may locally store a sequence of multiple DMRS transmission signals, where the sequences of multiple DMRS transmission signals may constitute a non-linear precoding user and / or a non-linear precoding layer.
  • Unique sequence set, and each sequence corresponds to an index number, the sequence set and / or the correspondence between the sequence and the index number in the set can be notified by signaling, or can be pre-agreed, pre-defined, or Pre-configured, embodiments of the present application are not limited thereto.
  • the transmitting device may indicate an index of a sequence of DMRS transmission signals of each of the first k or the first k-1 transmission layers, and the receiving device may determine the first k or the first k-1 transmissions according to the indicated index.
  • DMRS transmit signal may indicate an index of a sequence of DMRS transmission signals of each of the first k or the first k-1 transmission layers, and the receiving device may determine the first k or the first k-1 transmissions according to the indicated index.
  • DMRS transmit signal may indicate an index of a sequence of DMRS transmission signals of each of the first k or the first k-1 transmission layers
  • the receiving-end device may determine the transmission signal of the DMRS of the k-th transmission layer in other ways, for example, may use high-level signaling (for example, radio resource control (radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location determines the DMRS transmission signal on the kth transport layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the receiving end device may determine the layer number k of the current transmission layer according to the number of received indexes k or k-1.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer by using the sequence index number of the DMRS transmission signal indicated by the transmitting device, and the embodiment of the present application does not require additional signaling to specifically indicate the layer number of the transmission layer, which can save Signaling overhead.
  • the indication information is used to indicate a sequence scrambling identifier of the first k-layer or the first k-1 layer DMRS.
  • the receiving end device in order to demodulate data according to the DMRS, the receiving end device needs to determine the transmission signals of the respective DMRS in the first k transmission layers.
  • the sending-end device may indicate the sequence of the scrambled signals of the DMRS transmission signals of each of the first k or the first k-1 transmission layers, and then the receiving-end device may scramble the identified signals according to the indicated sequence.
  • the number determines the layer number of the current transport layer as k. It should be understood that, in a case where the sending-end device indicates the first k-1 sequence scrambling identifiers, the receiving-end device may determine the sequence scrambling identifier of the DMRS transmission signal of the k-th transmission layer in other ways.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the number of sequence scrambling identifiers of the DMRS indicated by the transmitting device.
  • the embodiment of the present application does not need additional signaling to specifically indicate the layer number of the transmission layer, which can save information. Order overhead.
  • the indication information is used to indicate the sequence scrambling identification index number k of the DMRS of the current transmission layer, where the sequence scrambling identification index of the DMRS has a one-to-one correspondence with the layer number of the transmission layer.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer by using the sending end device to indicate the sequence scrambling identification index number of the DMRS.
  • the receiving end device can determine the sequence scrambling identification of the DMRS of the k-th transmission layer according to the sequence scrambling identification of a plurality of DMRSs stored locally, or can scramble according to the sequence.
  • the identification index number determines the layer number k of the current transport layer.
  • the multiple DMRS DMRS sequence scrambling identifiers may form a unique DMRS sequence scrambling identifier set when there is a non-linear precoding user and / or a non-linear precoding layer, and each DMRS sequence scrambling identifier corresponds to one Index number, the DMRS sequence scrambling identifier set and / or the correspondence between the DMRS sequence scrambling identifier and the index number can be notified by signaling, or can be pre-agreed, pre-defined, or pre-configured by the receiving and sending parties.
  • the application examples are not limited to this.
  • the sequence scrambling identification index number k of the DMRS of the current transmission layer is instructed by the sending device to indirectly indicate the layer number k of the current transmission layer, and the embodiment of the present application does not require additional signaling to specifically indicate the layer number of the transmission layer Can save signaling overhead.
  • the one-to-one correspondence may be the sequence scrambling identification index number k of the DMRS corresponding to the layer number k of the transmission layer.
  • the one-to-one correspondence may also be other correspondences.
  • the sequence scrambling identification index number k1 of the DMRS corresponds to the transmission layer number k2, where k1 and k2 may not be equal. It should be understood that the foregoing one-to-one correspondence may be pre-configured or pre-defined or indicated by signaling, and the embodiment of the present application is not limited thereto.
  • the indication information may be specifically used to indicate the sequence scrambling identification index number of the DMRS.
  • the receiving end device may use the DMRS sequence scrambling to identify the index number and other The information (for example, port numbers of other reference signals (for example, CSI-RS port number, SRS port number) and / or DMRS sequence index number, etc.) jointly determine the layer number of the current transmission layer.
  • the layer number of the current transmission layer is a sequence scrambling identification index number of the DMRS and a value indicated by other information (for example, the value is a port number of another reference signal or a DMRS sequence index number, etc.). And or product.
  • the current transmission layer number can be 8 (that is, 2 * 4) or the current transmission layer layer number can be 6 (that is, 2+). 4) Wait.
  • the layer number of the current transmission layer needs to be represented by n bits.
  • the DMRS sequence scrambling identification index number may correspond to n1 of the bits and correspond to the other information.
  • n2 bits where n is equal to n1 + n2, the receiving end device can determine the n bit values corresponding to the layer number according to the specific values of the n1 bits and n2 bits, and then the layer number can be determined.
  • the indication information is used to indicate a sequence scrambling identification index of the first k-layer or the first k-1 layer DMRS.
  • the receiving end device needs to determine the transmission signals of the respective DMRS in the first k transmission layers.
  • the transmitting-end device and the receiving-end device may locally store a plurality of DMRS sequence scrambling identifiers, and the plurality of DMRS sequence scrambling identifiers may constitute a non-linear precoding user and / or a non-linear precoding
  • the corresponding relationship can be notified by signaling, and can also be pre-agreed, pre-defined, or pre-configured by both sides of the sender and receiver.
  • the embodiment of the present application is not limited to this.
  • the transmitting device may indicate the sequence scrambling identification index of the DMRS of each of the first k or the first k-1 transmission layers, and then the receiving device may determine the first k or the first k-1 transmissions according to the indicated index.
  • DMRS sequence scrambling identification It should be understood that, in the case that the sending-end device indicates the first k-1 sequence scrambling identification indexes, the receiving-end device may determine the sequence scrambling identification of the DMRS of the k-th transmission layer in other ways. In this case, the receiving end device may determine the layer number k of the current transmission layer according to the received sequence scrambling identification number k or k-1 of the DMRS.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the sequence scrambling identification index number of the DMRS indicated by the transmitting device, and the embodiment of the present application does not need additional signaling to specifically indicate the layer number of the transmission layer, which can save Signaling overhead.
  • the receiving end device determines the layer number k of the current transmission layer according to the instruction information, where k is an integer greater than or equal to 1.
  • a receiving device in order to implement data demodulated by DMRS, a receiving device (for example, a receiving device) needs to determine a specific value of the layer number k of the current transmission layer, so as to determine the l to be estimated.
  • the number of kj In other words, when the receiving device determines the value of k, it needs to calculate the channel parameters l kj of k , that is, l k1 to l kk .
  • the indication information is used to indicate the DMRS port number k of the current transmission layer, where the DMRS port number has a one-to-one correspondence with the layer number of the transmission layer.
  • the receiving end device determines the DMRS port number k as all The layer number k of the current transmission layer is described.
  • the receiving device can determine the DMRS port number k according to the instruction of the sending device. Since the DMRS port number has a one-to-one correspondence with the transmission layer number, the receiving device can directly determine the port number k as the current transmission. The layer number of the layer.
  • the receiving end device may jointly determine the layer number of the current transmission layer through the DMRS port number and other information.
  • the layer number of the current transmission layer is a sum or product of a DMRS port number and a value indicated by other information (for example, the value is a port number of another reference signal or a DMRS sequence index number, etc.). For example, if the DMRS port number is 2, and the value indicated by other information is 4, the receiving device can determine that the current transmission layer number can be 8 (that is, 2 * 4) or that the current transmission layer layer number can be 6 (that is, 2+ 4) Wait.
  • the layer number of the current transmission layer needs to be represented by n bits.
  • the DMRS port number may be used to correspond to n1 bits, and the other information may be used to correspond to n2 bits.
  • n is equal to n1 + n2
  • the other information corresponds to n2 bits thereof.
  • n is equal to n1 + n2.
  • the receiving device can determine the n bits corresponding to the layer number according to the specific values of the n1 bits and n2 bits. Value, which in turn can determine the layer number.
  • the sending device indicates the DMRS port number to indirectly indicate the layer number k of the current transmission layer.
  • the receiving device can determine the layer number of the current transmission layer. No additional signaling is required to specifically indicate the layer number of the transmission layer. Save signaling overhead.
  • the indication information is used to indicate a sequence index number k of a DMRS transmission signal of the current transmission layer, where the index number of the sequence of the DMRS transmission signal has a one-to-one correspondence with the layer number of the transmission layer.
  • the The receiving end device determines the sequence index number k of the DMRS transmission signal as the layer number k of the current transmission layer.
  • the embodiment of the present application indirectly indicates the current transmission layer by using the sequence index number of the transmission device to instruct the DMRS transmission signal.
  • the layer number k of the DMRS transmission signal is used by the receiving end device to determine the DMRS transmission signal of the k-th transmission layer according to the sequence of multiple DMRS transmission signals stored locally, or according to the index number. Determine the layer number k of the current transport layer.
  • the receiving end device can jointly determine the layer number of the current transmission layer through the sequence index number of the DMRS transmitted signal and other information.
  • the layer number of the current transmission layer is a sequence index number of a DMRS transmission signal and a value indicated by other information (for example, the value is a port number of another reference signal or a DMRS sequence index number, etc.). And or product.
  • the current transmission layer number can be 8 (that is, 2 * 4) or the current transmission layer layer number can be 6 (that is, 2+). 4) Wait.
  • the layer number of the current transmission layer needs to be represented by n bits.
  • the sequence index number of the transmitted signal through DMRS corresponds to n1 of the bits, which corresponds to the other information.
  • n2 bits where n is equal to n1 + n2, the receiving end device can determine the n bit values corresponding to the layer number according to the specific values of the n1 bits and n2 bits, and then the layer number can be determined.
  • the sequence index number k of the transmission signal of the DMRS of the current transmission layer is indicated indirectly by the transmitting device to indicate the layer number k of the current transmission layer, and the receiving device can determine the layer number of the current transmission layer.
  • This embodiment does not require additional signaling to specifically indicate the layer number of the transport layer, which can save signaling overhead.
  • the indication information is used to indicate a sequence index of a transmission signal of the first k-layer or the first k-1 layer DMRS.
  • the receiving end device determines the current transmission according to the number of sequence indexes of the DMRS transmission signal.
  • the layer number k of the layer is used to indicate a sequence index of a transmission signal of the first k-layer or the first k-1 layer DMRS.
  • the transmitting-end device and the receiving-end device may locally store a sequence of multiple DMRS transmission signals, and the transmitting-end device may indicate the transmission signals of the DMRS of each of the first k or the first k-1 transmission layers.
  • the index of the sequence so that the receiving end device can determine the first k or the first k-1 transmitted DMRS transmission signals according to the indicated index.
  • the receiving-end device may determine the transmission signal of the DMRS of the k-th transmission layer in other ways, for example, may use high-level signaling (for example, radio resource control (radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location determines the DMRS transmission signal on the kth transport layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the receiving end device may determine the layer number k of the current transmission layer according to the number of received indexes k or k-1.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the sequence index number of the DMRS transmission signal indicated by the transmitting device, and the receiving device can determine the layer number of the current transmission layer.
  • the extra signaling specifically indicates the layer number of the transport layer, which can save signaling overhead.
  • the indication information is used to indicate the sequence scrambling identifier of the first k-layer or the first k-1 layer DMRS.
  • the receiving end device determines the number of the current transmission layer according to the number of sequence scrambling identifiers of the DMRS. Layer number k.
  • the transmitting end device may indicate the sequence scrambling identification of the DMRS transmission signal of each of the first k or the first k-1 transmission layers, and then the receiving end device may scramble the identification number according to the indicated sequence. Determine the layer number of the current transport layer as k. It should be understood that, in a case where the sending-end device indicates the first k-1 sequence scrambling identifiers, the receiving-end device may determine the sequence scrambling identifier of the DMRS transmission signal of the k-th transmission layer in other ways.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the number of sequence scrambling identifiers of the DMRS indicated by the transmitting device, and the receiving device can determine the layer number of the current transmission layer. No additional information is required in the embodiment of the present application.
  • the signaling specifically indicates the layer number of the transport layer, which can save signaling overhead.
  • the indication information is used to indicate the sequence scrambling identification index number k of the DMRS of the current transmission layer, where the sequence scrambling identification index number of the DMRS has a one-to-one correspondence with the layer number of the transmission layer.
  • the receiving The end device determines the sequence scrambling identification index number k of the DMRS as the layer number k of the current transmission layer.
  • the embodiment of the present application indirectly indicates the current transmission layer through the sequence scrambling identification index number of the DMRS indicated by the sending device.
  • the layer number k of the DMRS sequence scrambling identification index number The receiving device can determine the sequence scrambling identification number of the DMRS of the k-th transmission layer according to the sequence scrambling identification index numbers of multiple DMRSs stored locally.
  • the layer number k of the current transmission layer can be determined according to the index number.
  • the receiving end device may scramble the identification index number and other information (for example, the port number of other reference signals (for example, CSI-RS port number, SRS port number) and / or DMRS sequence index number through the DMRS sequence. ) Jointly determine the layer number of the current transport layer.
  • the layer number of the current transmission layer is a sequence scrambling identification index number of the DMRS and a value indicated by other information (for example, the value is a port number of another reference signal or a DMRS sequence index number, etc.). And or product.
  • the current transmission layer number can be 8 (that is, 2 * 4) or the current transmission layer layer number can be 6 (that is, 2+). 4) Wait.
  • the layer number of the current transmission layer needs to be represented by n bits.
  • the DMRS sequence scrambling identification index number may correspond to n1 of the bits and correspond to the other information.
  • n2 bits where n is equal to n1 + n2, the receiving end device can determine the n bit values corresponding to the layer number according to the specific values of the n1 bits and n2 bits, and then the layer number can be determined.
  • the sequence scrambling identification index number k of the DMRS of the current transmission layer is instructed by the transmitting device to indirectly indicate the layer number k of the current transmission layer, and the receiving device can determine the layer number of the current transmission layer.
  • This embodiment does not require additional signaling to specifically indicate the layer number of the transport layer, which can save signaling overhead.
  • the indication information is used to indicate a sequence scrambling identification index of the first k-layer or the first k-1 layer DMRS.
  • the receiving device determines the current transmission according to the number of sequence scrambling identification indexes of the DMRS.
  • the layer number k of the layer is used to indicate a sequence scrambling identification index of the first k-layer or the first k-1 layer DMRS.
  • the sending-end device and the receiving-end device may locally store the sequence scrambling identifiers of multiple DMRSs, and the sending-end device may indicate the sequence scrambling of the DMRS of each of the first k or the first k-1 transmission layers.
  • the identification index so that the receiving end device can determine the sequence scrambling identification of the first k or the first k-1 DMRSs according to the indicated index.
  • the receiving-end device may determine the sequence scrambling identification of the DMRS of the k-th transmission layer in other ways. In this case, the receiving end device may determine the layer number k of the current transmission layer according to the received sequence scrambling identification number k or k-1 of the DMRS.
  • the embodiment of the present application indirectly indicates the layer number k of the current transmission layer through the sequence scrambling identification index number of the DMRS indicated by the transmitting device, and the receiving device can determine the layer number of the current transmission layer.
  • the extra signaling specifically indicates the layer number of the transport layer, which can save signaling overhead.
  • the receiving end device determines a transmission signal of the demodulation reference signal DMRS on the first k transmission layers.
  • the terminal device needs to determine the DMRS transmission signals on the previous k transmission layers to determine the k-th transmission layer data based on the DMRS transmission signals on the previous k transmission layers.
  • Power back-off factor ⁇ k is a parameter that determines the DMRS transmission signals on the previous k transmission layers.
  • the following describes some implementations in which the receiving end device determines the transmission signal of the DMRS on the first k transmission layer.
  • the receiving-end device determines a DMRS transmission signal on the k-th transmission layer according to high-level signaling and / or a DMRS mapping resource location, and the receiving-end device is based on The sequence index of the transmission signal of the DMRS indicated by the transmitting end device determines the transmission signal of the DMRS on the first to k-1th transmission layers;
  • the receiving end device may determine according to high-level signaling (for example, radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location The transmitted signal of the DMRS on the k-th transmission layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the method may further include sending the above-mentioned high-level signaling and / or location indication information used to indicate a DMRS mapping resource location to the receiving end device.
  • the determining, by the receiving end device according to the sequence index of the DMRS transmission signal indicated by the sending end device, the transmission signals of the DMRS on the 1st to k-1th transmission layers includes:
  • the receiving device determines the first to k-1th transmission layers from a preset DMRS sequence set according to a sequence index of the DMRS transmission signals on the 1st to k-1th transmission layers indicated by the transmitting device.
  • a DMRS transmission signal wherein the DMRS sequence set includes one or more DMRS sequences specifically defined for non-linear precoding.
  • the method may further include sending, by the sending-end device to the receiving-end device, index indication information indicating a sequence index of a transmission signal of the DMRS on the first to k-1th transmission layers.
  • the sending-end device and the receiving-end device may locally store the preset DMRS sequence set, and the DMRS sequence set includes a sequence of multiple DMRS transmission signals.
  • the preset DMRS sequence set may be a unique sequence set composed of sequences of the multiple DMRS transmission signals when there is a non-linear precoding user and / or a non-linear precoding layer, and each sequence corresponds to an index
  • the sequence set and / or the correspondence between the sequence and the index number in the set can be notified by signaling, or can be pre-agreed, pre-defined, or pre-configured by the sender and receiver.
  • the embodiments of this application are not limited to this.
  • the transmitting device may indicate an index of a sequence of DMRS transmission signals of each of the first k-1 transmission layers, and the receiving device may determine the first k-1 from the preset DMRS sequence set according to the indicated index. Transmitted DMRS transmission signals.
  • the receiving end device maps downlink DMRS scrambling identifiers (DL-DMRS-Scrambling-ID) and / or DMRS according to high-level signaling (for example, radio resource control (radio resource control (RRC) signaling)
  • RRC radio resource control
  • the resource location determines the transmission signal of the DMRS on the kth transmission layer.
  • the receiving end device may also determine the transmission of the DMRS on the kth transmission layer according to the sequence index of the DMRS transmission signal indicated by the network device. signal.
  • the receiving end device may determine the transmitting signals of the DMRS on the 1st to kth transmission layers according to the sequence index of the transmitted signals of the DMRS indicated by the transmitting end device.
  • the method for specifically determining the transmission signals of the DMRS of the first to k-th transmission layers is the same as the method of determining the transmission signals of the DMRS of the first to k-1th transmission layers, and the description is not repeated here.
  • the receiving end device determines a transmission signal of the DMRS on the k-th transmission layer according to a high-level signaling and / or a DMRS mapping resource position, and the receiving end device The transmission signals of the DMRS on the first to k-1th transmission layers are determined according to the sequence scrambling identifier of the DMRS.
  • the receiving end device may determine according to high-level signaling (for example, radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location The transmitted signal of the DMRS on the k-th transmission layer.
  • RRC radio resource control
  • DL-DMRS-Scrambling-ID downlink DMRS scrambling identifier
  • the method may further include sending the above-mentioned high-level signaling and / or location indication information used to indicate a DMRS mapping resource location to the receiving end device. Further, the receiving end device determines the transmission signals of the DMRS on the first to k-1th transmission layers according to the sequence scrambling identification of the DMRS.
  • the receiving end device may also determine the transmission signals of the DMRS on the first k transmission layers in a unified manner, that is, the receiving end device determines the first to kth transmission layers according to the sequence scrambling identifier of the DMRS.
  • DMRS transmit signal.
  • the receiving end device determines a DMRS transmission signal on the 1st to k-1th or 1st to kth transmission layers in one of the following three ways:
  • the receiving end device determines a transmission signal of the DMRS on the 1st to k-1th or 1st to kth transmission layers according to a default sequence scrambling identifier of the DMRS, where all transmission layers DMRS scrambling identification signaling defaults.
  • the receiving An end device determines, according to a default sequence scrambling identifier of the DMRS, a transmission signal of the DMRS on the first to k-1th or the first to kth transmission layers.
  • the other signaling mentioned above may be a special signaling for displaying the default DMRS scrambling identification signaling indicating the terminal devices currently scheduled together, or it may be a hidden DMRS signaling indicating the terminal devices currently scheduled together.
  • the interference identification signaling is the default signaling.
  • the other signaling may be used to indicate that when a non-linear precoding terminal device or a non-linear precoding transmission layer exists in a terminal device or a transmission layer that is currently scheduled together, then all of the terminal devices or all transmission layers
  • the DMRS sequence scrambling flags are all configured by default.
  • the DMRS sequence scrambling identifiers of all terminal devices or all transmission layers are configured by default.
  • the other signaling may be a non-linear terminal device or a non-linear precoded transmission layer indicating that there is a non-linear terminal device or a non-linear precoding in the terminal device currently being scheduled together.
  • the DMRS scrambling identification signaling may be downlink DMRS scrambling identification (DL-DMRS-Scrambling-ID) signaling
  • the DMRS scrambling identification signaling may be uplink DMRS scrambling identification (UL-DMRS-Scrambling-ID) signaling.
  • the method may further include transmitting to the receiving device information indicating that the DMRS transmission signals of all the transmission layers are the same (for example, the sequence scrambling identifiers of the DMRS of all the transmission layers are the same).
  • the receiving end device may determine the transmission signals of the DMRS on the first k-1 or the first k transmission layers according to the default sequence scrambling identification of the DMRS. For example, the receiving end device The sequence scrambling identifier of the DMRS and the resource location of each transmission layer in the first k-1 or the first k transmission layers determine the transmission signals of the DMRS on each transmission layer. It should be understood that the default sequence scrambling identifier of the DMRS may be a cell identifier (cell ID) or other identifiers, and the embodiment of the present application is not limited thereto.
  • the receiving end device when the receiving end device receives the DMRS scrambling identification signaling and other signaling for indicating that the DMRS sequence scrambling identification of the terminal devices currently scheduled together are the same, the receiving end device ( For example, a terminal device) determines a DMRS transmission signal on the 1st to k-1th or 1st to kth transmission layers according to the sequence scrambling identifier of the DMRS configured by the DMRS scrambling identifier signaling.
  • the other signaling mentioned above may be a dedicated signaling for indicating that the DMRS scrambling identifiers of the terminal devices currently scheduled together are the same, or may be a hidden DMRS scrambling identifier for the terminal devices currently scheduled together. Let all be the same signaling.
  • a special scrambling identifier when configured or specified in advance, all terminal devices consider that the scrambling identifiers of the DMRS sequences of the terminal devices currently scheduled together are the same, for example, they are all special scrambling identifiers.
  • Other signaling for configuring a special scrambling identifier can implicitly indicate that the DMRS sequence scrambling identifiers of the terminal devices currently scheduled together are the same; or, it is predefined or specified that when there is non-linearity in the currently scheduled transmission layer or terminal device When precoding a terminal device or a transmission layer, all terminal devices consider that the currently scheduled terminal devices use the same DMRS scrambling sequence identifier or DMRS sequence.
  • This other signaling is used to indicate the currently scheduled transmission layer or Terminal equipment or transmission layer with non-linear precoding in the terminal equipment (for example, all terminal equipment or transmission layer is non-linear precoding or mixed precoding) can be used to implicitly indicate that all terminal equipment uses the same DMRS scrambling sequence identifier Or DMRS sequence.
  • the method may further include sending the sending-end device to the receiving-end device with the DMRS scrambling identification signaling and / or indicating that the DMRS transmission signals of all transmission layers are the same (for example, DMRS of all transmission layers The sequence scrambling identifiers are all the same).
  • the DMRS scrambling identification signaling may be downlink DMRS scrambling identification (DL-DMRS-Scrambling-ID) signaling
  • the DMRS scrambling identification signaling may be uplink DMRS scrambling identification (UL-DMRS-Scrambling-ID) signaling.
  • the receiving device can determine the DMRS transmission signal of the first k-1 or the first k transmission layers according to the DMRS sequence scrambling identifier configured by the DMRS scrambling identification signaling. For example, the receiving device scrambles according to the configured DMRS sequence. The identification and the resource location of each transmission layer in the first k-1 or first k transmission layers determine the DMRS transmission signal on each transmission layer.
  • the sequence scrambling identifier of the configured DMRS may be a cell identifier (cell ID) or other identifiers, and the embodiment of the present application is not limited thereto.
  • the terminal device determines the 1st to k-1th or 1st to kth transmissions according to a preconfigured wireless network temporary identity (RNTI) that is used as a non-linear precoding sequence scrambling identifier.
  • RNTI wireless network temporary identity
  • the transmission signal of the DMRS on the layer, wherein the sequence scrambling identifiers of the DMRS corresponding to all transmission layers are the RNTI.
  • the method may further include sending the sending-end device to the receiving-end device with configuration information for configuring a non-linear precoding sequence scrambling identifier as a wireless network temporary identifier RNTI and / or indicating all transmission layers Information that the DMRS transmitted signals are the same (for example, the sequence scrambling identifiers of the DMRSs of all transmission layers are the same).
  • the embodiments of the present application are not limited to pre-configuring a sequence scrambling identifier specifically for non-linear precoding as the wireless network temporary identifier RNTI.
  • the sending-end device and the receiving-end device may also be pre-defined specifically for non-linear precoding.
  • the sequence scrambling identifier is the wireless network temporary identifier RNTI.
  • the receiving end device may determine the transmission signal of the DMRS on the first k-1 or the first k transmission layers according to the pre-defined or pre-configured sequence scrambling identifier of the DMRS, that is, the RNTI. For example, the receiving end device may The resource location of each transmission layer in the k-1 or the first k transmission layers determines the transmission signal of the DMRS on each transmission layer.
  • the receiving end device can determine the transmission signal of each transmission layer DMRS sequence on each subcarrier according to the QAM symbol mapping order in the sequence ( That is, a QAM symbol transmitted on a resource element (resource element, RE) on each subcarrier).
  • the receiving-end device determines a transmission signal of the DMRS on the first k transmission layers, including:
  • the receiving-end device determines a DMRS transmission signal on the k-th transmission layer according to a high-level signaling and / or DMRS mapping resource position, and the receiving-end device determines the first to k-1th according to the layer number of the current transmission layer.
  • the transmission signals of the DMRS on the transmission layer wherein the transmission signals of the DMRS corresponding to the transmission layer correspond to the layer numbers of the transmission layer one by one.
  • the receiving end device may determine according to high-level signaling (for example, radio resource control (RRC) signaling downlink DMRS scrambling identifier (DL-DMRS-Scrambling-ID)) and / or DMRS mapping resource location The transmitted signal of the DMRS on the k-th transmission layer. Then the receiving end device can determine the DMRS transmission signals of the first k-1 transmission layers in the following manner.
  • RRC radio resource control
  • the receiving-end device may also determine the transmission signals of the DMRS on the first k transmission layers in a unified manner, that is, the receiving-end device determines the transmission signals of the DMRS on the first to k-th transmission layers in the following manner .
  • the receiving-end device may pre-store a transmission signal sequence of DMRS corresponding to multiple layer numbers one by one, and the receiving-end device uses the layer number k of the current transmission layer from the pre-stored multiple DMRS.
  • the transmission signal sequences of the DMRS corresponding to the layer number 1 to the layer number k-1 are respectively used as the transmission signal sequences of the DMRS of the transmission layer 1 to the transmission layer k-1; or, the layer number 1 to the layer number k correspond to
  • the DMRS transmission signal sequences are respectively used as the DMRS transmission signal sequences of the transmission layer 1 to the transmission layer k.
  • the one-to-one correspondence between the above-mentioned DMRS transmission signal sequence and the layer number of the transmission layer may be the sequence k of the DMRS transmission signal corresponding to the layer number k of the transmission layer.
  • the above-mentioned one-to-one correspondence may also be Other correspondences, for example, the sequence k1 of the DMRS transmission signal corresponds to the transmission layer number k2, where k1 and k2 may not be equal.
  • the foregoing one-to-one correspondence may be pre-configured or pre-defined or indicated by signaling, and the embodiment of the present application is not limited thereto.
  • the method may further include transmitting information indicating a one-to-one correspondence between the transmission signal of the DMRS and the layer number of the transmission layer to the receiving end device.
  • the receiving end device demodulates the k-th transmission layer data according to the DMRS transmission signals on the first k transmission layers. Specifically, in the embodiment of the present application, the channel parameters between the first k transmission layers and the k-th transmission layer are obtained by the receiving end device according to the DMRS transmission signals on the first k transmission layers, so that The channel parameters between the transmission layer and the k-th transmission layer determine the power back-off factor ⁇ k of the k-th transmission layer data, and then demodulate the k-th transmission layer data.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • the receiving end device demodulates the k-th transmission layer data according to the DMRS transmission signals on the first k transmission layers, including: the receiving end device may The transmission signal of the DMRS on the transmission layer determines the power back-off factor ⁇ k of the data of the k-th transmission layer. For example, the receiving end device determines the transmission signal of the DMRS on the first k transmission layers and the received signal of the DMRS on the k-th transmission layer. A power back-off factor ⁇ k of the k-th transmission layer data; thereafter, the receiver device demodulates the k-th transport layer data according to the power back-off factor ⁇ k .
  • the receiving end device can determine the power back-off factor of the data of the k-th transmission layer according to the transmission signals of the DMRS on the first k transmission layers.
  • ⁇ k can further determine the equivalent channel of the k-th transmission layer data, and can further realize the demodulation of the k-th transmission layer data (non-linear pre-encoded data) through linear precoding DMRS.
  • the receiving end device determines the power back-off factor ⁇ k of the data of the k-th transmission layer according to the transmission signals of the DMRS on the first k transmission layers and the received signal of the DMRS of the k-th transmission layer. Including: determining, by the receiving end device, the j-th transmission layer and the k-th transmission layer in the first k transmission layers according to a transmission signal of the DMRS on the first k transmission layers and a reception signal of the DMRS on the k-th transmission layer Channel parameters l kj between transmission layers, where j is an integer greater than or equal to 1 and less than or equal to k;
  • the receiving-end device determines a power back-off factor ⁇ k of data of the k-th transmission layer according to a channel parameter l kj between the j-th transmission layer and the k-th transmission layer in the first k transmission layers.
  • the transmission signal of the DMRS on each transmission layer is transmitted through at least one subcarrier, where the channel parameter l kj between the j-th transmission layer and the k-th transmission layer includes the DMRS carrying the DMRS of the j-th transmission layer.
  • the receiving end device determines the j-th transmission layer and the j-th transmission layer in the first k transmission layers according to the DMRS transmission signals on the first k transmission layers and the k-th transmission layer received signals.
  • the channel parameters l kj between the kth transmission layer include:
  • the receiving end device determines a channel parameter l kj according to a corresponding DMRS received signal on the i-th subcarrier on the k-th transmission layer and a transmitted signal of the DMRS on the i-th sub-carrier on the j-th transmission layer. (i) .
  • the receiving end device determines the channel parameter l kj (i according to the corresponding DMRS received signal on the i-th subcarrier on the k-th transmission layer and the transmitted signal of the DMRS on the i-th sub-carrier on the j-th transmission layer. ) , Including the receiving end device determining a channel parameter l kj (i) according to the following formula (4 ) :
  • y dmrs, kj (i) represents the received signal on the i-th subcarrier corresponding to the transmission signal of the j-th DMRS received on the k-th transmission layer, where y dmrs, kj ( i) indicates that the transmission signal of the j-th layer on the ith sub-carrier corresponds to the interference of the k-layer received signal; when j is equal to k, y dmrs, kj (i) indicates that the transmission signal of the k-th layer on the ith sub-carrier corresponds to The received signal on the i-th subcarrier; s j (i) represents the transmitted signal of the DMRS of the j-th transmission layer on the i-th subcarrier, and n k (i) represents the k-th transmission layer on the i-th Noise received on a subcarrier.
  • the receiving end device can determine l kj (i) according to the above formula (4 ) .
  • transmission layer 1 For example, as shown in FIG. 4, it is assumed that there are a total of four transmission layers, namely, transmission layer 1 to transmission layer 4, where each transmission layer corresponds to a port, and transmission layer 1 is mapped on subcarriers 1, 5, 9, and transmission layer 2.
  • the mapping is on subcarriers 2, 6, and 10, the transport layer 3 is mapped on subcarriers 3, 7, and 11, and the transport layer 4 is mapped on subcarriers 4, 8, and 12.
  • each row in the matrix S corresponds to a transmission signal of each transmission layer, for example, the first to fourth rows respectively correspond to the transmission layer 1 to the transmission layer 4 DMRS transmitted signals; each column in the matrix S corresponds to a subcarrier, for example, the first to twelfth columns correspond to subcarriers 1 to 12 respectively.
  • the element s j (i) of the j-th row and the i-th column in the matrix S represents the DMRS transmission signal of the transport layer j on the i-th subcarrier.
  • each row in the matrix y dmrs corresponds to the received signal of each transmission layer, for example, the first row to The fourth row corresponds to the received signals of the DMRS of the transmission layer 1 to the transmission layer 4; each column in the matrix y dmrs corresponds to a subcarrier, for example, the first column to the 12th column correspond to the subcarriers 1 to 12 respectively.
  • Each element in the matrix y dmrs for example, the element in the x-th row and the y-column represents the received signal of the x-th layer signal on the y-th subcarrier.
  • the receiving device can determine the channel parameter l kj (i) according to the matrix S and the matrix y dmrs .
  • each transmission layer is mapped to non-adjacent subcarriers.
  • each transmission layer It may also be mapped to a plurality of adjacent subcarriers.
  • each transport layer is mapped onto two consecutive subcarriers. Assume that there are N transport layers and N ports, and each transport layer corresponds to a port. Each transport layer is mapped to two consecutive subcarriers, so there are 2N subcarriers. Among them, transport layer 1 is mapped to subcarrier 1 and subcarriers. On 2, the transport layer 2 is mapped on subcarrier 3 and subcarrier 4 ... The transport layer N is mapped on subcarrier 2N-1 and subcarrier 2N.
  • the form of the signal S sent by the transmitting device is as follows, where each row in the matrix S corresponds to the transmission signal of each transmission layer, for example, the first Rows to sixth correspond to the DMRS transmission signals of transport layer 1 to transport layer 6, respectively; each column in matrix S corresponds to a subcarrier, for example, columns 1 to 12 correspond to subcarriers 1 to 12 respectively.
  • the element s j (i) of the j-th row and the i-th column in the matrix S represents the DMRS transmission signal of the transport layer j on the i-th subcarrier.
  • each row in the matrix y dmrs corresponds to the received signal of each transmission layer, for example, the first row to The sixth row corresponds to the received signals of the DMRS of the transport layer 1 to the transport layer 6 respectively; each column in the matrix y dmrs corresponds to a subcarrier, for example, the first column to the 12th column correspond to the subcarriers 1 to 12 respectively.
  • Each element in the matrix y dmrs for example, the element in the x-th row and the y-column represents the received signal of the x-th layer signal on the y-th subcarrier.
  • the receiving device can determine the channel parameter l kj (i) according to the matrix S and the matrix y dmrs .
  • each Each transport layer can also be mapped to three consecutive subcarriers; or each transport layer can be mapped to four subcarriers, where the first two subcarriers of the four subcarriers are adjacent, the last two subcarriers are adjacent, and the middle two The subcarriers are not adjacent.
  • the DMRS is mapped on all subcarriers on the third OFDM symbol, that is, the case of subcarriers 1 to 12 on the third OFDM symbol.
  • the DMRS may also be mapped to only a part of subcarriers on the OFDM symbol, and the remaining subcarriers other than the part of the subcarriers on the OFDM symbol may be mapped with data (for example, data in PDSCH or PUSCH) or not.
  • data for example, data in PDSCH or PUSCH
  • the examples in FIGS. 4 and 5 only show examples in which the DMRS occupies one OFDM symbol.
  • the DMRS may also occupy multiple OFDM symbols.
  • the multiple OFDM symbols may be adjacent symbols or It is a non-adjacent symbol, and the embodiment of the present application is not limited thereto.
  • the above solution 1 describes the mapping scheme of the transmission layer by frequency division.
  • the embodiment of the present application may use the code division to perform the mapping.
  • every two transmission layers are regarded as one group, and the group of transmission layers is mapped onto two consecutive subcarriers at the same time, and the code division between the two transmission layers is different, and Inter-frequency division scene.
  • each row in the matrix S corresponds to the transmission signal of each transmission layer
  • each column in the matrix S corresponds to a subcarrier, for example, the first to the Nth columns correspond to the subcarrier 1 respectively.
  • the element s j (i) of the j-th row and the i-th column in the matrix S represents the DMRS transmission signal of the transport layer j on the i-th subcarrier.
  • each row in the matrix y dmrs corresponds to the received signal of each transmission layer, for example, the first to Nth rows correspond to the transmission layer, respectively. 1 to DMRS received signals of the transport layer N; each column in the matrix y dmrs corresponds to a subcarrier, for example, the first to Nth columns correspond to subcarriers 1 to N respectively.
  • Each element in the matrix y dmrs for example, the element in the x-th row and the y-column represents the received signal of the x-th layer signal on the y-th subcarrier.
  • ports 2m-1 and 2m of a code packet transmit signals on the odd-numbered subcarriers, and transmit signals on the even-numbered subcarriers are opposite.
  • the embodiment of the present application can assume that the channel parameters l kj (2m-1) corresponding to the two subcarriers of the code packet are equal to l kj (2m) . Then the receiving end device can determine the channel parameter l kj (i) according to the matrix S and the matrix y dmrs .
  • the receiving device can determine a fallback factor ⁇ k representing the i-th subcarrier corresponding to the k-th transmission layer according to the following formula (5) (i) .
  • the DMRS of each transmit signal is mapped only to the layer part of subcarriers, only acquisition section l kj (i) according to the protocol described above, wherein, for the layer kJ remaining l (i) can be obtained according to this part l kj (i) , for example, it can be obtained according to the obtained l kj (i) by means such as average value, median value, weighted summation, interpolation method, filtering method or extrapolation method, etc.
  • the embodiments of the present application are not limited thereto.
  • the receiving end device can demodulate the k- th transmission layer data according to the equivalent channel of the k-th transmission layer data for kk (i) ⁇ k (i) .
  • the receiving device may demodulate data of the k-th transmission layer (for example, data carried by PDSCH or PUSCH) according to the following formula (6).
  • y k (i) l kk (i) ⁇ k (i) a k (i) + n k (i) (6)
  • i is an integer greater than or equal to 1 and less than or equal to N
  • i represents the number of subcarriers
  • N represents the total number of subcarriers
  • y k (i) represents the data of the kth transmission layer on the ith subcarrier.
  • Received signal (or y k (i) represents the received signal corresponding to the k-th transmission layer data received on the i-th sub-carrier); l kk (i) represents the channel of the i-th sub-carrier corresponding to the k- th transmission layer ⁇ k (i) represents the power backoff factor of the k-th transmission layer on the i-th subcarrier; a k (i) represents the original transmitted signal of the k-th transmission layer on the i-th subcarrier (for example, quadrature amplitude modulation ( quadrature amplitude modulation (QAM) signal); n k (i) represents noise on the i-th subcarrier.
  • QAM quadrature amplitude modulation
  • the indication information of the transmitting end device can be used to implement the receiving end device to estimate the effective channel of the data according to the DMRS to implement the data.
  • Demodulation solves the problem that in the prior art, it is impossible to directly estimate the effective channel of the data and demodulate the data based on the DMRS received signal.
  • each transmission layer is mapped on at least one subcarrier, and for each subcarrier transmitted, demodulation of data on the subcarrier is performed according to the DMRS transmitted on each subcarrier.
  • the formula in the embodiment of FIG. 3 can be rolled back, that is, in FIG. 3
  • the subcarrier footnotes can be removed from the formulas and matrices (this case can also be seen as a case where one layer is mapped to a subcarrier).
  • the above step 340 can be replaced as follows:
  • the receiving-end device determines the ⁇ k according to formula (3):
  • the receiving end device may determine the j-th transmission layer and the k-th transmission layer in the first k transmission layers according to the DMRS transmission signals on the first k transmission layers and the reception signals of the k-th transmission layer. Between the channel parameters l kj . Specifically, the receiving-end device determines the sub-channel parameter l kj according to formula (2):
  • y dmrs, kj represents the DMRS signal received on the kth transmission layer
  • j 1,2, ..., k
  • s j represents the DMRS transmission signal of the jth transmission layer
  • n k represents The noise corresponding to the k-th transmission layer.
  • the DMRS signals with inputs are as follows:
  • the value of s j in the above formula (2) may be s 11 to s NN , and may represent the original QAM symbols of the DMRS signals transmitted on the first to N- th transmission layers, respectively.
  • the received signal y dmrs obtained is as follows:
  • the receiving device can determine the channel parameter l kj according to the matrix S and the matrix y dmrs . Then, according to formula (3), the receiving end device can determine the power back-off factor ⁇ k to perform data demodulation.
  • the receiving device may demodulate data of the k-th transmission layer (for example, data carried by PDSCH or PUSCH) according to formula (1).
  • y k represents the received signal of the k-th transmission layer data
  • l kk represents the channel corresponding to the k- th transmission layer
  • ⁇ k represents the power back-off factor corresponding to the k-th transmission layer
  • a k represents the original transmission on the k-th transmission layer
  • a signal such as a quadrature amplitude modulation (QAM) signal
  • n k represents noise corresponding to the k-th transmission layer.
  • a solution that requires a receiving end device for example, a terminal device to determine a power back-off factor ⁇ k .
  • the sending end device For example, a network device
  • the receiving end device implements demodulation of data according to the indicated power backoff factor ⁇ k of the transmitting end device.
  • FIG. 6 is a schematic diagram of a method for data demodulation according to another embodiment of the present application.
  • the method shown in FIG. 6 is described from the perspective of interaction between a network device and a terminal device.
  • the method shown in FIG. 6 can be applied to both downlink transmission and uplink transmission.
  • the sending end device is a network device and the receiving end device is a terminal device.
  • the sending end device is a terminal device.
  • the receiving device is a network device.
  • only the lower row transmission is taken as an example for detailed description.
  • the method 600 shown in FIG. 6 includes:
  • the transmitting device determines a power backoff factor ⁇ k of the data .
  • the transmitting end device determines ⁇ k according to the obtained downlink channel, such as a channel estimated through SRS, or a channel fed back by the terminal device.
  • the transmitting device sends instruction information to the receiving device, where the instruction information is used to indicate the power backoff factor ⁇ k .
  • the receiving end device receives the indication information and determines the power back-off factor ⁇ k .
  • the indication information may be indicated by the sending device through RRC signaling, DCI, or MAC signaling.
  • the indication information may be indicated by DCI; or, when the channel changes slowly.
  • the indication information may be indicated by MAC signaling or RRC signaling, and the embodiment of the present application is not limited thereto.
  • the receiving end device demodulates the k-th transmission layer data according to the power backoff factor ⁇ k .
  • a specific demodulation process of the receiving end device may refer to the description of FIG. 3 described above, and details are not described herein again.
  • the sending end device when the DMRS uses linear precoding and the data uses non-linear precoding, the sending end device indicates the power back-off factor ⁇ k , so that the receiving end device can estimate the effective channel of the data according to the DMRS.
  • the demodulation of data is realized, and the problem that the effective channel of the data cannot be directly estimated and demodulated from the DMRS received signal in the prior art is solved.
  • DMRS uses a linear precoding scheme and data uses a non-linear precoding scheme
  • the equivalent channels of the two are different.
  • the receiving end device cannot demodulate data according to the DMRS.
  • the difference between the two equivalent channels can also be compensated at the transmitting device so that the two equivalent channels are the same, and then the receiving device can demodulate the data according to the DMRS. This solution is described in detail below with reference to FIG. 7.
  • FIG. 7 is a schematic diagram of a method for data demodulation according to another embodiment of the present application.
  • the method shown in FIG. 7 is described from the perspective of interaction between a network device and a terminal device.
  • the method shown in FIG. 7 can be applied to both downlink transmission and uplink transmission.
  • the sending device is a network device and the receiving device is a terminal device.
  • the sending device is a terminal device.
  • the receiving device is a network device.
  • only the lower row transmission is taken as an example for detailed description.
  • the process of uplink transmission refer to the description of the downlink transmission in this article.
  • the method 700 shown in FIG. 7 includes:
  • the transmitting device sends a power-adjusted DMRS signal.
  • the transmitting device performs power adjustment when transmitting the DMRS signal, so that the equivalent channel of the DMRS and the equivalent channel of the data are the same or similar.
  • the transmitting device first determines a power adjustment parameter, then performs power adjustment on the DMRS signal, and sends the power adjusted DMRS signal.
  • the power adjustment parameter is ⁇ k
  • the power-adjusted DMRS signal may be a signal obtained by a transmitting device pre-multiplying a DMRS signal at the kth layer by a DMRS power backoff factor ⁇ k , where ⁇ k is The power backoff factor of the k-th transmission layer data, ⁇ is the coefficient (also known as the power backoff factor coefficient), which indicates that the DMRS power backoff factor is ⁇ times the data power backoff factor.
  • the default is 1, different layers or
  • the value of ⁇ between different UEs may be the same or different.
  • the value set of ⁇ may be predefined or pre-configured or specified.
  • the transmitting device sends instruction information to the receiving device, where the instruction information is used to indicate ⁇ .
  • the instruction information is used to indicate ⁇ .
  • both the transmitting and receiving sides take a default value of 1 for ⁇ .
  • the receiving end device demodulates the k-th transmission layer data according to the power compensation factor.
  • the receiving device according to the current layer DMRS transmission signal (that is, the power-adjusted DMRS signal), the received signal, and the effective channel of the data estimated by ⁇ , for example, kk (i) ⁇ k (i) , and further Can demodulate data through DMRS.
  • the value of ⁇ k can be any value, it requires a large signaling overhead to notify the accurate ⁇ k . If ⁇ k is quantized and then notified, although the overhead can be reduced, the accuracy will deteriorate.
  • the method in the embodiment of the present application can reduce the signaling overhead and ensure the accuracy of the effective channel.
  • the difference between the equivalent channel of the DMRS and the data is compensated at the transmitting device so that the equivalent channels of the two are the same, and the receiving device can estimate the effective channel of the data according to the DMRS to implement data Demodulation solves the problem that in the prior art, it is impossible to directly estimate the effective channel of the data and demodulate the data based on the DMRS received signal.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 800 may include:
  • the processing unit 810 and the transceiver unit 820 are The processing unit 810 and the transceiver unit 820.
  • the transceiver unit is configured to receive the instruction information sent by the transmitting device; the processing unit is configured to determine the layer number k of the current transmission layer according to the instruction information, where k is an integer greater than or equal to 1; and the first k transmissions are determined.
  • the processing unit is specifically configured to determine a power back-off factor ⁇ k of the data of the k-th transmission layer according to a transmission signal of the DMRS on the first k transmission layers and a received signal of the DMRS of the k-th transmission layer;
  • the processing unit is specifically configured to determine the j-th transmission layer and all of the j-th transmission layers according to the transmission signals of the DMRS on the first k transmission layers and the reception signals of the DMRS on the k-th transmission layer.
  • the channel parameter l kj between the k- th transmission layer is described, where j is an integer greater than or equal to 1 and less than or equal to k;
  • the power back-off factor ⁇ k of the data of the k-th transmission layer is determined according to the channel parameter l kj between the j-th transmission layer and the k-th transmission layer in the first k transmission layers.
  • the transmission signal of the DMRS on each transmission layer is transmitted through at least one subcarrier, wherein the channel parameter l kj between the j-th transmission layer and the k-th transmission layer includes the DMRS carrying the DMRS of the j-th transmission layer.
  • the processing unit is specifically configured to determine a channel parameter according to a corresponding DMRS received signal on the i-th subcarrier on the k-th transmission layer and a transmitted signal of the DMRS on the i-th sub-carrier on the j-th transmission layer. l kj (i) .
  • the indication information is used to indicate a DMRS port number k of the current transmission layer, where the DMRS port number has a one-to-one correspondence with the layer number of the transmission layer, and the processing unit is specifically configured to determine the DMRS port number k Is the layer number k of the current transmission layer;
  • the indication information is used to indicate a sequence index number k of a DMRS transmission signal of the current transmission layer, where the index number of the sequence of the DMRS transmission signal has a one-to-one correspondence with the layer number of the transmission layer, and the processing unit specifically uses Determining a sequence index number k of a DMRS transmission signal as a layer number k of the current transmission layer;
  • the indication information is used to indicate a sequence index of a transmission signal of the DMRS of the first k layers, and the processing unit is specifically configured to determine the layer number k of the current transmission layer according to the number of sequence indexes of the DMRS transmission signals;
  • the indication information is used to indicate the sequence scrambling identifier of the DMRS of the first k layers, and the processing unit is specifically configured to determine the layer number k of the current transmission layer according to the number of sequence scrambling identifiers of the DMRS;
  • the indication information is used to indicate the sequence scrambling identification index number k of the DMRS of the current transmission layer, where the sequence scrambling identification index number of the DMRS has a one-to-one correspondence with the layer number of the transmission layer, and the processing unit is specifically configured to: Determining the sequence scrambling identification index number k of the DMRS as the layer number k of the current transmission layer;
  • the indication information is used to indicate the sequence scrambling identification index of the DMRS of the first k layers, and the processing unit is specifically configured to determine the layer number k of the current transmission layer according to the number of sequence scrambling identification indexes of the DMRS; or
  • the indication information is used to indicate a layer number k of a current transmission layer.
  • the processing unit is specifically configured to determine a transmission signal of the DMRS on the k-th transmission layer according to a high-level signaling and / or a DMRS mapping resource position, and determine a first DMRS transmission signals on the 1st to k-1th transmission layers;
  • the processing unit is specifically configured to determine a transmission signal of the DMRS on the k-th transmission layer according to a high-level signaling and / or a DMRS mapping resource position, and determine the first to k-1th transmission layers according to a DMRS sequence scrambling identifier DMRS transmit signal; or,
  • the processing unit is specifically configured to determine a transmission signal of the DMRS on the k-th transmission layer according to a high-level signaling and / or a DMRS mapping resource position, and determine the first to k-1th transmission layers according to a layer number of the current transmission layer.
  • DMRS transmission signals wherein the transmission signals of the DMRS corresponding to the transmission layer correspond to the layer numbers of the transmission layer one to one.
  • the processing unit is specifically configured to determine the first to the k-th from a preset DMRS sequence set according to a sequence index of a DMRS transmission signal on the first to the k-1th transmission layers indicated by the transmitting device.
  • a preset DMRS sequence set according to a sequence index of a DMRS transmission signal on the first to the k-1th transmission layers indicated by the transmitting device.
  • -1 DMRS transmission signals on a transport layer wherein the DMRS sequence set includes one or more DMRS sequences specifically defined for non-linear precoding.
  • the processing unit is specifically configured to determine a transmission signal of the DMRS on the first to k-1th transmission layers in one of the following three ways:
  • the DMRS sequence scrambling identifiers configured according to the DMRS scrambling identifier signaling are used to determine the transmission signals of the DMRS on the 1st to k-1th transmission layers, where the DMRS sequence scrambling identifiers corresponding to all transmission layers All the same
  • the transmission signals of the DMRS on the first to k-1th transmission layers are determined, where the DMRS corresponding to all transmission layers
  • the sequence scrambling identifiers are all the RNTI.
  • the communication device 800 provided in this application corresponds to the process performed by the receiving end device in the method embodiment in FIG. 3 described above.
  • functions of each unit / module in the communication device reference may be made to the description of the method embodiment in FIG. 3 above. To repeat.
  • the communication device 800 in the embodiment of the present application may also correspond to the processes performed by the receiving device in FIG. 6 to FIG. 7 described above.
  • the communication device 800 in the embodiment of the present application may also correspond to the processes performed by the receiving device in FIG. 6 to FIG. 7 described above.
  • functions of each unit / module in the communication device see FIG. 6 to FIG. 7 above. The description of the method embodiment is not repeated here.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • the communication device described in FIG. 8 may be a receiving end device.
  • the receiving end device is a terminal device
  • the receiving end device is a network device.
  • the communication device may be a terminal device, and may also be a chip or an integrated circuit installed in the terminal device.
  • FIG. 9 is a schematic structural diagram of a terminal device according to an embodiment of the present application, which is easy to understand and illustrate.
  • the terminal device uses a mobile phone as an example.
  • FIG. 9 shows only the main components of the terminal device.
  • the terminal device 900 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory is mainly used for storing software programs and data.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out in the form of electromagnetic waves through the antenna.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 9 shows only one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 9 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transmitting and receiving function may be regarded as the transmitting and receiving unit 91 of the terminal device 900, for example, for supporting the terminal device to perform the transmitting and receiving function as performed by the terminal device in FIG.
  • a processor having a processing function is regarded as a processing unit 92 of the terminal device 900, which corresponds to the processing unit 810 in FIG. 8, for example, for demodulating data.
  • the terminal device 900 includes a transceiver unit 91 and a processing unit 92.
  • the transceiver unit may also be referred to as a transceiver, a transceiver, a transceiver device, and the like.
  • the transceiver unit corresponds to the transceiver unit 820 in FIG. 8.
  • the transceiver unit is configured to receive instruction information sent by a transmitting device.
  • the device for implementing the receiving function in the transceiver unit 91 can be regarded as a receiving unit
  • the device for implementing the transmitting function in the transceiver unit 91 can be regarded as a transmitting unit, that is, the transceiver unit 91 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 92 may be configured to execute instructions stored in the memory to control the transceiver unit 91 to receive signals and / or send signals to complete functions of the terminal device in the foregoing method embodiments.
  • the function of the transceiver unit 91 may be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • the terminal device 900 shown in FIG. 9 can implement various processes related to the terminal device in the method embodiments in FIG. 3 and FIG. 7. Operations and / or functions of each module in the terminal device 900 are respectively implemented to implement corresponding processes in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments. To avoid repetition, detailed descriptions are appropriately omitted here.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device 1000 may include:
  • the processing unit 1010 and the transceiver unit 1020 are The processing unit 1010 and the transceiver unit 1020.
  • the processing unit is configured to generate instruction information, where the instruction information is used to determine a layer number k of a current transmission layer, where k is an integer greater than or equal to 1.
  • the transceiver unit is configured to send instruction information to the receiving end device, so that the receiving end device determines the layer number k of the current transmission layer according to the instruction information, and demodulates the transmission layer according to the DMRS transmission signals on the first k transmission layers.
  • the k-th transport layer data is described.
  • the indication information is used to indicate the DMRS port number k of the current transmission layer
  • the indication information is used to indicate a sequence index number k of a transmission signal of a DMRS of a current transmission layer
  • the indication information is used to indicate a sequence index of a transmitted signal of the first k-layer DMRS;
  • the indication information is used to indicate a sequence scrambling identifier of the first k-layer DMRS
  • the indication information is used to indicate a sequence scrambling identification index number k of a DMRS of a current transmission layer
  • the indication information is used to indicate a sequence scrambling identification index of the first k-layer DMRS.
  • the indication information is used to indicate a layer number k of a current transmission layer.
  • the transceiver unit is further configured to send at least one of the following information to the receiving end device:
  • Sequence scrambling identifier for configuring non-linear precoding is configuration information of a wireless network temporary identifier RNTI;
  • the communication device provided in this application corresponds to the process performed by the transmitting device in the method embodiments shown in FIG. 3 to FIG. 7.
  • functions of each unit / module in the communication device reference may be made to the description above, and details are not described herein again.
  • the embodiment of the present application enables the receiving end device to estimate the effective channel of the data according to the DMRS for demodulating the data by using the instruction of the sending end device, and solves the problem.
  • the problem that the effective channel of the data cannot be estimated directly from the DMRS received signal and the data is demodulated is solved.
  • the communication device shown in FIG. 10 may be a transmitting device.
  • the transmitting device In the uplink transmission, the transmitting device may be a terminal device.
  • the transmitting device In the downstream transmission, the transmitting device may be a network device.
  • the following transmission is used as an example. , Describe the specific example of the communication device.
  • the communication device may be a network device, and may also be a chip or an integrated circuit installed in the network device.
  • FIG. 11 is a schematic structural diagram of a network device according to an embodiment of the present application, and for example, may be a schematic structural diagram of a base station. As shown in FIG. 11, the network device 1100 may be applied to the system shown in FIG. 1 to perform the functions of the network device in the foregoing method embodiment.
  • the network device 1100 may include one or more radio frequency units, such as a remote radio unit (RRU) 111 and one or more baseband units (BBUs) (also referred to as digital units, DUs). ) 112.
  • the RRU 111 may be referred to as a transceiver unit 111 and corresponds to the transceiver unit 1020 in FIG. 10.
  • the transceiver unit may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1111 And RF unit 1112.
  • the RRU111 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending instruction information to a terminal device.
  • the BBU112 part is mainly used for baseband processing and controlling base stations.
  • the RRU 111 and the BBU 112 may be physically disposed together or physically separated, that is, a distributed base station.
  • the BBU 112 is a control center of the base station, and may also be referred to as a processing unit 112, which may correspond to the processing unit 1010 in FIG. 10, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, spreading, and the like.
  • the BBU Processed Unit
  • the BBU may be used to control the base station to execute the operation procedure on the network device in the foregoing method embodiment, for example, to generate the foregoing instruction information and the like.
  • the BBU 112 may be composed of one or more boards, and multiple boards may jointly support a single access system wireless access network (such as an LTE network), or may separately support wireless systems of different access systems. Access network (such as LTE network, 5G network or other networks).
  • the BBU 112 further includes a memory 1121 and a processor 1122.
  • the memory 1121 is used to store necessary instructions and data.
  • the processor 1122 is configured to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1121 and the processor 1122 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It may also be that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the network device 1100 shown in FIG. 11 can implement various processes related to the network device in the method embodiments in FIG. 3 to FIG. 7.
  • the operations and / or functions of each module in the network device 1100 are respectively to implement the corresponding processes in the foregoing method embodiments.
  • An embodiment of the present application further provides a processing apparatus including a processor and an interface; the processor is configured to execute a communication method in any one of the foregoing method embodiments.
  • the processing device may be a chip.
  • the processing device may be a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or a system-on-chip (SoC). It can be a central processor (CPU), a network processor (NP), a digital signal processor (DSP), or a microcontroller (micro controller) Unit (MCU), can also be programmable controller (programmable logic device, PLD) or other integrated chips.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system-on-chip
  • CPU central processor
  • NP network processor
  • DSP digital signal processor
  • MCU microcontroller
  • PLD programmable controller
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced synchronous dynamic random access memory
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • An embodiment of the present application further provides a communication system, which includes the foregoing sending-end device and receiving-end device.
  • the transmitting device is a network device, and the receiving device is a terminal device; or the transmitting device is a terminal device, and the receiving device is a network device.
  • An embodiment of the present application further provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the method for demodulating data in any one of the foregoing method embodiments is implemented.
  • the embodiment of the present application further provides a computer program product, and when the computer program product is executed by a computer, the method for demodulating data in any one of the foregoing method embodiments is implemented.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk), SSD)) and so on.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding module or unit performs the corresponding steps, for example, the sending module (transmitter) method performs the sending
  • the receiving module (receiver) executes the steps received in the method embodiment, and other steps except sending and receiving can be executed by the processing module (processor).
  • the processing module processor
  • the sending module and the receiving module may form a transceiver module, and the transmitter and the receiver may form a transceiver to jointly realize the transmitting and receiving function; the processor may be one or more.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one or more of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • an embodiment or “an embodiment” mentioned throughout the specification means that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present application.
  • the appearances of "in one embodiment” or “in an embodiment” appearing throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in the various embodiments of the present application, the size of the sequence numbers of the above processes does not mean the order of execution. The execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and / or a computer.
  • an application running on a computing device and a computing device can be components.
  • One or more components can reside within a process and / or thread of execution, and a component can be localized on one computer and / or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals) Communicate via local and / or remote processes.
  • data packets e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于数据解调的方法和通信装置,该方法包括接收端设备接收发送端设备发送的指示信息;该接收端设备根据该指示信息确定当前传输层的层号k,k为大于或等于1的整数;该接收端设备确定前k个传输层上的解调参考信号DMRS的发射信号;该接收端设备根据该前k个传输层上的DMRS的发射信号解调第k传输层数据。本申请实施例能够在DMRS与数据经历不同信道的情况下,实现接收端设备根据DMRS进行数据的解调。

Description

用于解调数据的方法和通信装置
本申请要求于2018年6月1日提交中国专利局、申请号为201810557362.9、申请名称为“用于解调数据的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种用于解调数据的方法和通信装置。
背景技术
现有的长期演进(long term evolution,LTE)系统中,多入多出(multiple input multiple output,MIMO)是物理层的一项关键技术,主要是利用多个发射天线及多个接收天线来提升系统性能的一种方法。
其中,预编码技术是MIMO的一个非常重要的步骤,在进行预编码之前,系统首先通过层映射将待发送的数据信息映射到不同的层上,以使得数据信息按照一定的方式分配到不同的层上,之后,再通过预编码技术把分配到层上的数据信息映射到物理天线上。预编码技术能够将在接收端难以实施的一些必要的信号处理过程转到发射端处进行,从而保证传输过程的信号性能。
现有的预编码技术实际上是一种自适应技术,随着信道状态信息(channel state information,CSI)的变化,对数据信息进行预编码的结果也会相应地变化,这种根据CSI的变化而实时变化的数据信息预处理技术使得终端设备可以在变化的CSI中获得正确的目标数据信息,因此预编码是LTE系统MIMO中的一项十分关键的技术。
不同的预编码方式的性能和复杂度是互不相同的,典型的预编码方式可以分为线性预编码以及非线性预编码两类,每一类预编码方式有其适合的工作场景。而在现有的LTE协议中,采用的预编码方案是复杂度较低的线性预编码方案,可是在某些场景中,如终端设备间的干扰较大时,线性预编码方案提供的增益过小,不能满足系统的传输要求,此时非线性预编码方案相对能够满足系统的传输需求。
由于非线性预编码方式中信号功率会抬升,为了避免发射功率过大,通常需要对发射信号进行功率调整,通常会有以下两种方式对功率抬升后的信号进行功率调整:功率回退方式和求模方式。接收端同样进行相应的功率调整,以对信号进行检测)。数据和解调参考信号(demodulation reference signal,DMRS)均采用非线性预编码方案进行预编码时,为了准确的估计出信道,DMRS只能通过功率回退的方式调整功率,因此,当数据是采用求模方式调整功率时,该DMRS上的功率回退因子需由基站指示给终端,需要额外占用一定的开销。
为了避免上述增加开销的问题,一种解决方案可以通过对DMRS采用线性预编码,对数据采用非线性预编码方案,然而这种情况下,DMRS和数据经历不同的等效信道,接 收端设备难以根据DMRS估计出数据的有效信道以进行数据的解调。
因此,在DMRS与数据采用不同的预编码方式的情况下,如何根据DMRS进行数据的解调,成为亟待解决的问题。
发明内容
本申请提供一种用于解调数据方法和通信装置,该方法能够在DMRS与数据经历不同信道的情况下,根据DMRS进行数据的解调。
第一方面,提供了一种用于解调数据的方法,该方法包括:接收端设备接收发送端设备发送的指示信息;
所述接收端设备根据所述指示信息确定当前传输层的层号k,k为大于或等于1的整数;
所述接收端设备确定前k个传输层上的解调参考信号DMRS的发射信号;
所述接收端设备根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
结合第一方面,在第一方面的一种实现方式中,所述接收端设备根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据,包括:
所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k
所述接收端设备根据所述功率回退因子λ k解调所述第k传输层数据。
具体而言,本申请实施例通过接收端设备根据所述前k个传输层上的DMRS的发射信号来获取前k个传输层与第k传输层之间的信道参数,进而能够根据前k个传输层与第k传输层之间的信道参数来确定第k传输层数据的功率回退因子λ k,进而实现对第k传输层数据的解调。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
结合第一方面,在第一方面的一种实现方式中,所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k,包括:
所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,其中,j为大于或等于1且小于或等于k的整数;
所述接收端设备根据所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,确定第k传输层数据的功率回退因子λ k
结合第一方面,在第一方面的一种实现方式中,每个传输层上的DMRS的发射信号 通过至少一个子载波传输,其中,第j传输层与所述第k传输层之间的信道参数l kj包括承载第j传输层的DMRS的至少一个子载波中的各个子载波的信道参数l kj(i),其中,i表示承载第j传输层的DMRS的子载波的编号;
所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,包括:
所述接收端设备根据第k个传输层上对应的在第i子载波上的DMRS接收信号和所述第j个传输层在所述第i个子载波上的DMRS的发射信号确定信道参数l kj(i)
在确定出信道参数l kj(i)后,该接收端设备即可确定表示第k传输层数据对应的第i子载波的功率回退因子λ k(i)。进而实现对第k层数据的解调,解决现有技术中的问题。
应理解,本申请实施例中,指示信息可以直接指示当前传输层的层号k,也可以间接指示当前传输层的层号k,作为示例而非限定,下面描述本申请实施例中指示信息间接指示当前传输层的层号的6种可能的情况。
结合第一方面,在第一方面的一种实现方式中,所述指示信息用于指示当前传输层的DMRS端口号k,其中,DMRS端口号与传输层的层号具有一一对应关系,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备将DMRS端口号k确定为所述当前传输层的层号k。
在DMRS端口号与传输层的层号具有一一对应关系的情况下,本申请实施例通过发送端设备指示DMRS端口号间接指示当前传输层的层号k,无需额外的信令专门指示传输层的层号,能够节省信令开销。
结合第一方面,在第一方面的一种实现方式中,所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k,其中,DMRS的发射信号的序列的索引号与传输层的层号具有一一对应关系,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备将DMRS的发射信号的序列索引号k确定为所述当前传输层的层号k。
因此,本申请实施例通过发送端设备指示当前传输层的DMRS的发射信号的序列索引号k间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
结合第一方面,在第一方面的一种实现方式中,所述指示信息用于指示前k层DMRS的发射信号的序列索引,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备根据所述DMRS的发射信号的序列索引个数确定所述当前传输层的层号k;
因此,本申请实施例通过发送端设备指示的DMRS的发射信号的序列索引个数间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
结合第一方面,在第一方面的一种实现方式中,所述指示信息用于指示前k层DMRS的序列加扰标识,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备根据所述DMRS的序列加扰标识个数确定所述当前传输层的层号k。
因此,本申请实施例通过发送端设备指示的DMRS的序列加扰标识个数间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
结合第一方面,在第一方面的一种实现方式中,所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k,其中,DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备将所述DMRS的序列加扰标识索引号k确定为所述当前传输层的层号k。
因此,本申请实施例通过发送端设备指示当前传输层的DMRS的序列加扰标识索引号k间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
结合第一方面,在第一方面的一种实现方式中,所述指示信息用于指示前k层DMRS的序列加扰标识索引,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备根据所述DMRS的序列加扰标识索引个数确定所述当前传输层的层号k。
因此,本申请实施例通过发送端设备指示的DMRS的序列加扰标识索引个数间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
在确定了当前传输层的层号k后,终端设备需要确定前k传输层上的DMRS的发射信号,以根据前k传输层上的DMRS的发射信号确定第k传输层数据的功率回退因子λ k
下面描述接收端设备确定前k传输层上的DMRS的发射信号的一些实现方式。
结合第一方面,在第一方面的一种实现方式中,所述接收端设备确定前k个传输层上的DMRS的发射信号,包括:
所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据发送端设备指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号。
具体而言,接收端设备可以根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送上述高层信令和/或用于指示DMRS映射资源位置的位置指示信息。
进一步地,所述接收端设备根据发送端设备的指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号,包括:
所述接收端设备根据发送端设备指示的第1至第k-1个传输层上的DMRS的发射信号的序列索引从预设的DMRS序列集合中确定第1至第k-1个传输层上的DMRS的发射信号,其中,所述DMRS序列集合包括专门为非线性预编码定义的一个或多个DMRS序列。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送指示第1至第k-1个传输层上的DMRS的发射信号的序列索引的索引指示信息。
具体而言,发送端设备和接收端设备可以本地存储有该预设的DMRS序列集合,该DMRS序列集合中包括多个DMRS的发射信号的序列。应理解,该预设的DMRS序列集合可以为有非线性预编码用户和/或非线性预编码层时该多个DMRS发射信号的序列构成的特有的序列集合,并且每个序列均对应一个索引号,该序列集合和/或集合中序列与索引号之间的对应关系可由信令通知,也可由收发端双方预先约定、预先定义或预先配置,本申请实施例并不限于此。发送端设备可以指示该前k-1个传输层中各个传输层的DMRS 的发射信号的序列的索引,进而接收端设备可以根据指示的索引从该预设的DMRS序列集合中确定前k-1个传输的DMRS的发射信号。
结合第一方面,在第一方面的一种实现方式中,
所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号。
具体而言,接收端设备可以根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送上述高层信令和/或用于指示DMRS映射资源位置的位置指示信息。
进一步地,所述接收端设备根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,包括所述接收端设备按照以下三种方式中的一种确定第1至第k-1个传输层上的DMRS的发射信号:
可选地,在第一方面的一种实现方式中,所述接收端设备根据默认的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层的DMRS加扰标识信令均缺省;
可选地,在第一方面的一种实现方式中,所述接收端设备根据DMRS加扰标识信令配置的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均相同;
可选地,在第一方面的一种实现方式中,所述接收端设备根据预配置的用作非线性预编码的序列加扰标识的无线网络临时标识RNTI,确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均为所述RNTI。
结合第一方面,在第一方面的一种实现方式中,所述接收端设备确定前k个传输层上的DMRS的发射信号,包括:
所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据当前传输层的层号确定第1至第k-1个传输层上的DMRS的发射信号,其中,传输层对应的DMRS的发射信号与传输层的层号一一对应。
具体而言,接收端设备可以根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。
本申请实施例中,接收端设备可以预存与多个层号一一对应的DMRS的发射信号序列,接收端设备根据当前传输层的层号k,从该预存的多个DMRS的发射信号序列中将层号1至层号k-1对应的DMRS的发射信号序列分别作为传输层1至传输层k-1的DMRS的发射信号序列。
应理解,上述DMRS的发射信号序列与传输层的层号的一一对应关系可以是DMRS的发射信号的序列k对应传输层的层号k,可选地,上述的一一对应关系还可以是其他对应关系,如DMRS的发射信号的序列k1与传输层号k2对应,其中,k1与k2可以不相等。应理解,上述一一对应关系可以是预配置或预定义或由信令指示的,本申请实施例并不限 于此。其中,在上述一一对应关系是信令指示的情况下,该方法还可以包括发送端设备向接收端设备发送指示DMRS的发射信号与传输层的层号间一一对应关系的信息。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
第二方面,提供了一种用于解调数据的方法,应理解,第二方面的方法与第一方面对应,第二方面的方法可以由发送端设备执行,第一方面的方法可以由与发送端设备交互的接收端设备指示,发送端设备执行的动作与接收端设备执行的动作对应,具体地发送端设备和接收端设备交互的方案和有益效果可以参见第一方面的描述,为了避免重复,适当省略详细描述。
具体地,该方法包括:所述发送端设备生成指示信息,所述指示信息用于确定当前传输层的层号k,k为大于或等于1的整数;
发送端设备向接收端设备发送指示信息,以使得所述接收端设备根据所述指示信息确定当前传输层的层号k,并根据前k个传输层上的DMRS的发射信号解调所述第k传输层数据。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
结合第二方面,在第二方面的一种实现方式中,所述指示信息用于指示当前传输层的DMRS端口号k;所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k;所述指示信息用于指示前k层DMRS的发射信号的序列索引;所述指示信息用于指示前k层DMRS的序列加扰标识;所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k;所述指示信息用于指示前k层DMRS的序列加扰标识索引;或者所述指示信息用于指示当前传输层的层号k。
结合第二方面,在第二方面的一种实现方式中,所述方法还包括:所述发送端设备向所述接收端设备发送以下信息中的至少一种:DMRS映射资源位置信息;用于配置非线性预编码的序列加扰标识为无线网络临时标识RNTI的配置信息;第1至第k-1个传输层上的DMRS的发射信号的序列索引信息;所有传输层的DMRS加扰标识信令;指示所有传输层的DMRS发射信号均相同的信息;指示DMRS的发射信号与传输层的层号间一一对应关系的信息。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
第三方面,提供了一种通信装置,包括用于执行第一方面、第一方面中任一种可能实现方式中的方法的各个模块或单元。
在一种实现方式中,该通信装置为接收端设备。例如,该接收端设备为终端设备。
第四方面,提供了一种通信装置,包括用于执行第二方面、第二方面中任一种可能实现方式中方法的各个模块或单元。
在一种实现方式中,该通信装置为发送端设备。例如,该发送端设备为网络设备。
第五方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第一方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为接收端设备。例如,该接收端设备为终端设备。
第六方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行第二方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为发送端设备。例如,该发送端设备为网络设备。
第七方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第一方面、第一方面中任一种可能的实现方式中的方法。
第八方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第二方面、第二方面中任一种可能的实现方式中的方法。
第九方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第一方面、第一方面中任一种可能的实现方式中的方法。
第十方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第二方面、第二方面中任一种可能的实现方式中的方法。
第十一方面,提供了一种处理装置,包括处理器。
在一种实现方式中,上述第一方面至第二方面或第一至第二方面的任一可能的实现方式中的方法的由该处理器执行,在这种情况下,该处理器可以为专用处理器。
在另一种实现方式中,该处理装置还可以包括存储器,该存储器中存储有代码,处理器执行存储器中的代码执行上述第一方面至第二方面或第一至第二方面的任一可能的实现方式中的方法,在这种情况下,该处理器可以为通用处理器。
应理解,在第十一方面中相关的数据交互过程例如发送数据可以为从处理器输出数据的过程,接收数据可以为处理器接收输入数据的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述十一方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十二方面,提供了一种系统,包括前述的发送端设备和接收端设备。
附图说明
图1是本申请实施例可应用的通信系统的场景示意图。
图2是根据本申请一个实施例数据处理过程示意图。
图3是根据本申请一个实施例的用于解调数据的方法示意流程图。
图4是根据本申请一个实施例的资源映射示意图。
图5是根据本申请另一实施例的资源映射示意图。
图6是根据本申请另一实施例的用于解调数据的方法示意流程图。
图7是根据本申请另一实施例的用于解调数据的方法示意流程图。
图8是根据本申请一个实施例的通信装置示意图。
图9是根据本申请另一实施例的终端设备示意图。
图10是根据本申请另一实施例的通信装置示意图。
图11是根据本申请另一实施例的网络设备示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。例如,本申请实施例可以应用于全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、频分双工(frequency division duplex,FDD)系统、时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、无线局域网(wireless local area networks,WLAN)、无线保真(wireless fidelity,WiFi)以及下一代通信系统,即第五代(5th generation,5G)通信系统,例如,新空口(new radio,NR)系统。
本申请实施例中,网络设备可以是全球移动通讯(global system of mobile communication,GSM)或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)中的基站(nodeB,NB),还可以是长期演进(long term evolution,LTE)中的演进型基站(evolutional node B,eNB/eNodeB),或者中继站或接入点,或者未来5G网络中的网络设备,例如,NR系统中传输点(transmission and reception point,TRP或transmission point TP)、NR系统中的基站(gNB)、NR系统中的射频单元,如远端射频单元、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等。还可以是可穿戴设备或车载设备等。不同的网络设备可以位于同一个小区,也可以位于不同的小区,具体的在此不做限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划 分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、家用电器、可穿戴设备、无人机设备以及未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本申请实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例可以适应于上述任意通信系统,例如,本申请实施例可以适用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用大规模阵列天线(massive multiple-input multiple-output,M-MIMO)技术的无线网络、应用分布式天线技术的无线网络等。
图1是本申请实施例可应用的通信系统的场景示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线106和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路116向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备 122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路116可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路116和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路116和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路116和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图2示出了数据通过正交频分复用(orthogonal frequency division multiplexing,OFDM)符号发送之前发送端(例如网络设备)所进行的数据处理过程的主要步骤。如图2所示,来自上层(例如,媒体接入控制(media access control,MAC)层)的业务流经过信道编码之后的得到的码字经过加扰、调制、层映射后映射到一个或多层,然后经过预编码处理、资源单元映射,最后将调制后的符号通过天线端口发送出去。
相应地,接收端(例如终端设备)可以进行解调数据。具体的上述各个数据处理过程可以参见现有标准中的描述。
其中,预编码技术可以是在已知信道状态的情况下,通过在发送端对待发射信号做预先的处理,即借助与信道资源相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,使得接收端消除信道间影响的复杂度降低。因此,通过对发射信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR))得以提升。因此,采用预编码技术,可以实现发送端设备与多个接收端设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。应注意,有关预编码技术的相关描述仅用于举例,并非用于限制本申请实施例的保护范围,在具体实现过程中,还可以通过其他方式进行预编码(例如在无法获知信道矩阵的情况下采用预先设置的预编码矩阵或者加权处理方式进行预编码),具体内容本文不再赘述。
MIMO技术的主要作用是提供空间分集和空间复用增益,MIMO利用多根发射天线将具有相同信息的信号通过不同的路径发射出去,同时在接收端可以获取同一个数据符号的多个独立衰落的信号,从而获得分集提高的接收可靠性,MIMO技术的空间分集可以用来对抗信道衰落。
预编码技术不仅能够有效抑制MIMO系统中的多个用户干扰,而且能在大大简化接收端算法的同时显著提升系统容量。
因此,通过对发射信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR))得以提升。因此,采用预编码技术,可以实现发送端设备与多个接收端设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
发送端为了获取能够与信道相适配的预编码矩阵,通常通过发送参考信号的方式来预先进行信道估计,获取接收端的反馈,从而确定出较为准确的预编码矩阵来对待发送数据进行预编码处理。具体地,该发送端可以为网络设备,接收端可以为终端设备,该参考信号可以为用于下行信道测量的参考信号,例如,信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备可以根据接收到的CSI-RS,进行CSI测量,并向网络设备反馈下行信道的CSI;该发送端也可以为终端设备,接收端可以为网络设备,该参考信号可以为用于上行信道测量的参考信号,例如,探测参考信号(sounding reference signal,SRS)。网络设备可以根据接收到的SRS,进行信道估计和/或CSI测量,向终端设备指示上行信道的CSI。CSI可以包括例如但不限于预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)和信道质量指示(channel quality indicator,CQI)等。
应理解,本申请对于参考信号所适用的通信方式以及参考信号的类型并未特别限定。例如,对于下行数据传输,该发送端例如可以为网络设备,接收端例如可以为终端设备,该参考信号例如可以为信道状态信息参考信号(channel state information reference signal,CSI-RS);对于上行数据传输,该发送端例如可以为终端设备,接收端例如可以为网络设备,该参考信号例如可以为探测参考信号(sounding reference signal,SRS);对于设备到设备(device to device,D2D)的数据传输,发送端例如可以是终端设备,接收端例如也可以是终端设备,该参考信号例如可以为SRS。
应理解,以上列举的参考信号的类型仅为示例性说明,而不应对本申请构成任何限定,本申请也并不排除采用其他的参考信号以实现相同或相似功能的可能。
不同的预编码方式的性能和复杂度是互不相同的,典型的预编码方式可以分为线性预编码以及非线性预编码两类,每一类预编码方式有其适合的工作场景。下面对线性预编码和非线性预编码分别进行介绍。
线性预编码是对所获取的信道状态信息进行线性处理。典型的线性预编码算法可以包括迫零(zero forcing,ZF)预编码以及它的各种改进算法,最小均方误差(mimimum mean square error,MMSE)预编码,块对角化(block diagonalization,BD)预编码以及最优化信漏噪比(signal to leakage noise ratio,SLNR)预编码。线性预编码的优点是其操作复杂度低、实现简单、实用性强,但是受信道相关性影响较大,因为在信道矩阵H为病态时,接收端等效噪声会增大,从而影响解调及检测而带来系统性能的损失。
非线性预编码是对信道矩阵进行非线性操作(如引入迭代、干扰消除、取模、功率回退),典型的非线性预编码方式可以包括脏纸编码(dirty paper coding,DPC),模代数预编码(tomlinson harashima precoding,THP)和矢量扰动(vector perturbation,VP)预编码。非线性预编码的优点是性能优异,受信道相关性影响较小,缺点是复杂度高。
当DMRS采用线性预编码,数据采用非线性预编码时,这种情况下,DMRS和数据经历不同的等效信道。接收端设备无法直接根据DMRS进行数据的解调。
鉴于上述问题,本申请实施例提供了一种通信的方法,能够在DMRS采用线性预编码,数据采用非线性预编码的情况下,根据DMRS进行数据的解调。
以下,为了便于理解和说明,作为示例而非限定,以将本申请的通信的方法在通信系统中的执行过程和动作进行说明。
作为示例而非限定,下面结合图3描述本申请实施例的方法。图3是根据本申请一个实施例的通信的方法示意性流程图。如图3所示的方法从网络设备与终端设备交互的角度进行了描述。图3所示的方法能够应用于下行传输也可以应用于上行传输,其中,在下行传输中,发送端设备为网络设备,接收端设备为终端设备;在上行传输中,发送端设备为终端设备,接收端设备为网络设备。下文仅以下行传输为例进行详细说明,上行传输的过程可以参考本文中下行传输的描述。
应理解,本申请实施例中,发送端设备也可以称为发送端,接收端设备也可以称为接收端,本申请实施例并不限于此。
为了使得本申请实施例的方案更容易理解,作为示例,而非限定,下面首先描述DMRS采用线性预编码、数据信号采用非线性预编码的场景发送端设备发送的发射信号以及接收端设备接收到的接收信号之间的关系。
应理解,本申请实施例中,发送端设备发送的信号包括DMRS信号和数据,相对应地,接收端设备接收的信号可以包括DMRS和数据。
应理解,本申请实施例中,数据可以为物理下行共享信道(physical downlink shared channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PDSCH)PUSCH承载的数据,例如,在上行传输时该数据为PUSCH承载的数据,下行传输时该数据可以为PDSCH承载的数据。
由于DMRS和数据采用的预编码方式不同,因此,DMRS与数据经历的等效信道不同。
例如,第k传输层的数据(例如,该数据为PDSCH或PUSCH承载的数据)的接收信号为:
y k=l kkλ ka k+n k                                           (1)
其中,y k表示第k传输层数据的接收信号;l kk表示第k传输层对应的信道;λ k表示第k传输层数据对应的功率回退因子;a k表示第k传输层上的原始发射信号(例如为正交振幅调制(quadrature amplitude modulation,QAM)信号);n k表示第k传输层对应的噪声。
第k传输层接收到的对应第j层DMRS发射信号的接收信号为:
y dmrs,kj=l kjs j+n k                                     (2)
其中,y dmrs,kj表示第k个传输层上的接收到的DMRS信号;j=1,2,...,k,s j表示所述 第j个传输层上的DMRS的发射信号;l kj表示承载第j传输层与所述第k传输层之间的信道参数;n k表示第k传输层对应噪声。
其中l kj为信道矩阵H进行正交三角(QR)分解得到的下三角矩阵L的第k行第j列的元素,在j小于k时,l kj表示第j层信号对第k层信号的干扰;在j等于k时,l kj表示第k层信号对应的信道;具体地,L与H的关系如下:
H H=QR=QL H
根据上述公式(1)可以得出,数据的等效信道为l kkλ k,因此,想要对数据解调,需要知道参数λ k和l kk,或二者的乘积l kkλ k
根据公式(2),可以得出,在j=k时,可以计算出l kk。因此,根据DMRS解调数据的问题关键在于如何确定λ k。又由于λ k可以表示成如下形式:
Figure PCTCN2019088962-appb-000001
因此,根据公式(3),在确定出l kk的基础上只要能够确定l k1至l k,k-1即可确定λ k
也就是说,根据公式(3),接收端设备可以根据前k个传输层中各个传输层上的DMRS的发射信号与第k传输层之间的信道参数l kj,确定第k传输层数据的功率回退因子λ k
又根据上述公式(2),可以根据y k和s j即可以确定l kj。由于y k为接收端设备接收到的信号,因此,接收端设备只要能够确定前k层(第j层)对应的DMRS的发射信号s j即可以根据公式(2)确定l kj。进而根据公式(3)得到λ k,进而可以根据公式(1)在不考虑i的情况下,实现对数据的解调。
应理解,上文公式(1)至公式(3)描述的只是一种发送信号与接收信号之间的关系的例子,在实际应用中,本申请实施例中的发射信号与接收信号之间的关系还可以为其他公式形式,本申请实施例并不限于此。
应理解,本文中的名词“预编码方式”也可以称为预编码方案、预编码模式、预编码类别或预编码类型等,本申请实施例并不限于此。
应理解,本申请实施例中,数据和DMRS可以映射在不同的正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上,数据和DMRS也可以映射在同一个OFDM符号上,本申请实施例并不限于此。
需要说明的是,在本申请实施例中,端口(也可以称为天线端口)可以理解为参考信号端口,一个参考信号与一个天线端口对应,本申请实施例中的端口也可以为DMRS端口,该端口可以为逻辑端口也可以为物理天线端口,一个端口对应一个传输层,本领域的技术人员可以理解其含义。
应理解,本申请实施例中传输层上的DMRS的发射信号可以是指DMRS的原始发射序列(或原始发送序列),例如该原始发射序列是指经过正交幅度调制(quadrature amplitude modulation,QAM)或正交相移键控(quadrature phase shift keying,QPSK)调制得到的信号。本申请实施例中传输层上的DMRS的发射信号也可以称为传输层的DMRS的原始发送序列。
以下,为了便于理解和说明,作为示例而非限定,根据以上分析结合图3详细描述本申请实施例的用于解调数据的方法在通信系统中的执行过程和动作。
具体地,如图3所示的方法300包括:
310,发送端设备向接收端设备发送指示信息。
具体地,发送端设备生成指示信息,并向接收端设备发送该指示信息,相应地,接收端设备接收该指示信息。该指示信息用于该接收端设备确定当前传输层的层号k,k为大于或等于1的整数。
具体而言,根据上文描述,为了实现通过DMRS解调数据,接收端设备(例如,终端设备)需要确定当前传输层的层号k的具体取值,以此确定出需要估计的l kj的个数。也就是说在接收端设备确定了k的取值的情况下,需要计算k个信道参数l kj,即l k1至l kk
应理解,本申请实施例中,指示信息可以直接指示当前传输层的层号k,也可以间接指示当前传输层的层号k,作为示例而非限定,下面描述本申请实施例中指示信息间接指示当前传输层层号k的6种可能的情况。
情况一:
所述指示信息用于指示当前传输层的DMRS端口号k,其中,DMRS端口号与传输层的层号具有一一对应关系。
在DMRS端口号与传输层的层号具有一一对应关系的情况下,本申请实施例通过发送端设备指示DMRS端口号间接指示当前传输层的层号k,无需额外的信令专门指示传输层的层号,能够节省信令开销。
可选的,在情况一中,上述一一对应关系可以是DMRS端口号k对应传输层的层号k,可选地,上述的一一对应关系还可以是其他对应关系,如DMRS端口号k1与传输层号k2对应,其中,k1与k2可以不相等。应理解,上述一一对应关系可以是预配置或预定义或由信令指示的,本申请实施例并不限于此。
在情况一中,描述了通过DMRS端口号确定当前传输层的层号的情况,可选地,本申请实施中,指示信息可以具体用于指示DMRS端口号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等),接收端设备可以通过DMRS端口号与其他信息联合确定当前传输层的层号。例如,在一种实现方式中,当前传输层的层号为DMRS端口号与其他信息指示的数值(例如,该数值为其他参考信号的端口号或者DMRS序列索引号等)之和或乘积等。例如,DMRS端口号为2,其他信息指示的数值为4,则当前传输的层号可以为8(即2*4)或者当前传输层的层号可以为6(即2+4)等。再例如,在另一种实现方式中,当前传输层的层号需要通过n个比特表示,本申请实施例中可以通过DMRS端口号对应其中n1个比特,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,接收端设备可以根据该n1个比特和n2比特的具体取值确定层号对应的n个比特值,进而可以确定层号。
本申请实施例并不限于此。
情况二:
所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k,其中,DMRS的发射信号的序列的索引号与传输层的层号具有一一对应关系。
在DMRS的发射信号的序列索引号与传输层的层号具有一一对应关系的情况下,本申请实施例通过发送端设备指示DMRS的发射信号的序列索引号间接指示当前传输层的层号k,通过该DMRS的发射信号的序列索引号,接收端设备可以根据本地存储的多个DMRS发射信号的序列确定出该第k传输层的DMRS的发射信号,也可以根据该索引号 确定当前传输层的层号k。其中该多个DMRS发射信号的序列可以构成有非线性预编码用户和/或非线性预编码层时的特有的序列集合,并且每个序列均对应一个索引号,该序列集合和/或集合中序列与索引号之间的对应关系可由信令通知,也可由收发端双方预先约定、预先定义或预先配置,本申请实施例并不限于此。
因此,本申请实施例通过发送端设备指示当前传输层的DMRS的发射信号的序列索引号k间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
可选的,在情况二中,上述一一对应关系可以是DMRS的发射信号的序列索引号k对应传输层的层号k,可选地,上述的一一对应关系还可以是其他对应关系,如DMRS的发射信号的序列索引号k1与传输层号k2对应,其中,k1与k2可以不相等。应理解,上述一一对应关系可以是预配置或预定义或由信令指示的,本申请实施例并不限于此。
在情况二中,描述了通过DMRS的发射信号的序列索引号确定当前传输层的层号的情况,可选地,本申请实施中,指示信息可以具体用于指示DMRS的发射信号的序列索引号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等),接收端设备可以通过DMRS的发射信号的序列索引号与其他信息联合确定当前传输层的层号。例如,在一种实现方式中,当前传输层的层号为DMRS的发射信号的序列索引号与其他信息指示的数值(例如,该数值为其他参考信号的端口号或者DMRS序列索引号等)之和或乘积等。例如,DMRS的发射信号的序列索引号为2,其他信息指示的数值位4,则当前传输的层号可以为8(即2*4)或者当前传输层的层号可以为6(即2+4)等。再例如,在另一种实现方式中,当前传输层的层号需要通过n个比特表示,本申请实施例中可以通过DMRS的发射信号的序列索引号对应其中n1个比特,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,接收端设备可以根据该n1个比特和n2比特的具体取值确定层号对应的n个比特值,进而可以确定层号。
情况三:
所述指示信息用于指示前k层或前k-1层DMRS的发射信号的序列索引。
根据前文描述,为了根据DMRS解调数据,接收端设备需要确定前k个传输层中各个传输层的DMRS的发射信号。一种情况下,发送端设备和接收端设备可以本地存储有多个DMRS的发射信号的序列,其中该多个DMRS发射信号的序列可以构成有非线性预编码用户和/或非线性预编码层时的特有的序列集合,并且每个序列均对应一个索引号,该序列集合和/或集合中序列与索引号之间的对应关系可由信令通知,也可由收发端双方预先约定、预先定义或预先配置,本申请实施例并不限于此。
发送端设备可以指示该前k或者前k-1个传输层中各个传输层的DMRS的发射信号的序列的索引,进而接收端设备可以根据指示的索引确定前k个或前k-1个传输的DMRS的发射信号。应理解,在发送端设备指示前k-1个索引的情况下,接收端设备可以通过其他的方式确定第k传输层的DMRS的发射信号,例如,可以通过高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。这种情况下,接收端设备可以根据接收到的索引个数k或k-1来确定当前传输层的层号k。
因此,本申请实施例通过发送端设备指示的DMRS的发射信号的序列索引个数间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况四:
所述指示信息用于指示前k层或前k-1层DMRS的序列加扰标识。
根据前文描述,为了根据DMRS解调数据,接收端设备需要确定前k个传输层中各个传输层DMRS的发射信号。一种情况下,发送端设备可以指示该前k或者前k-1个传输层中各个传输层的DMRS的发射信号的序列加扰标识,进而接收端设备可以根据指示的序列加扰标识的个数确定当前传输层的层号为k。应理解,在发送端设备指示前k-1个序列加扰标识的情况下,接收端设备可以通过其他的方式确定第k传输层的DMRS的发射信号的序列加扰标识。
因此,本申请实施例通过发送端设备指示的DMRS的序列加扰标识个数间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况五:
所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k,其中,DMRS的序列加扰标识索引与传输层的层号具有一一对应关系。
在DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系的情况下,本申请实施例通过发送端设备指示DMRS的序列加扰标识索引号间接指示当前传输层的层号k,通过该DMRS的序列加扰标识索引号,接收端设备可以根据本地存储的多个DMRS的序列加扰标识确定出该第k传输层的DMRS的序列加扰标识,也可以根据该序列加扰标识索引号确定当前传输层的层号k。其中该多个DMRSDMRS的序列加扰标识可以构成有非线性预编码用户和/或非线性预编码层时的特有的DMRS的序列加扰标识集合,并且每个DMRS的序列加扰标识均对应一个索引号,该DMRS的序列加扰标识集合和/或集合中DMRS的序列加扰标识与索引号之间的对应关系可由信令通知,也可由收发端双方预先约定、预先定义或预先配置,本申请实施例并不限于此。
因此,本申请实施例通过发送端设备指示当前传输层的DMRS的序列加扰标识索引号k间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
可选的,在情况五中,上述一一对应关系可以是DMRS的序列加扰标识索引号k对应传输层的层号k,可选地,上述的一一对应关系还可以是其他对应关系,如DMRS的序列加扰标识索引号k1与传输层号k2对应,其中,k1与k2可以不相等。应理解,上述一一对应关系可以是预配置或预定义或由信令指示的,本申请实施例并不限于此。
在情况五中,描述了通过DMRS的序列加扰标识索引号确定当前传输层的层号的情况,可选地,本申请实施中,指示信息具体可以用于指示DMRS的序列加扰标识索引号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等),接收端设备可以通过DMRS的序列加扰标识索引号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等)联合确定当前传输层的层号。例如,在一种实现方式中,当前传输层的层号为 DMRS的序列加扰标识索引号与其他信息指示的数值(例如,该数值为其他参考信号的端口号或者DMRS序列索引号等)之和或乘积等。例如,DMRS的序列加扰标识索引号为2,其他信息指示的数值位4,则当前传输的层号可以为8(即2*4)或者当前传输层的层号可以为6(即2+4)等。再例如,在另一种实现方式中,当前传输层的层号需要通过n个比特表示,本申请实施例中可以通过DMRS的序列加扰标识索引号对应其中n1个比特,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,接收端设备可以根据该n1个比特和n2比特的具体取值确定层号对应的n个比特值,进而可以确定层号。
情况六:
所述指示信息用于指示前k层或前k-1层DMRS的序列加扰标识索引。
根据前文描述,为了根据DMRS解调数据,接收端设备需要确定前k个传输层中各个传输层DMRS的发射信号。一种情况下,发送端设备和接收端设备可以本地存储有多个DMRS的序列加扰标识,其中该多个DMRS的序列加扰标识可以构成有非线性预编码用户和/或非线性预编码层时的特有的DMRS的序列加扰标识集合,并且每个DMRS的序列加扰标识均对应一个索引号,该DMRS的序列加扰标识集合和/或集合中DMRS的序列加扰标识与索引号之间的对应关系可由信令通知,也可由收发端双方预先约定、预先定义或预先配置,本申请实施例并不限于此。
发送端设备可以指示该前k或者前k-1个传输层中各个传输层的DMRS的序列加扰标识索引,进而接收端设备可以根据指示的索引确定前k个或前k-1个传输的DMRS的序列加扰标识。应理解,在发送端设备指示前k-1个序列加扰标识索引的情况下,接收端设备可以通过其他的方式确定第k传输层的DMRS的序列加扰标识。这种情况下,接收端设备可以根据接收到的DMRS的序列加扰标识索引个数k或k-1来确定当前传输层的层号k。
因此,本申请实施例通过发送端设备指示的DMRS的序列加扰标识索引个数间接指示当前传输层的层号k,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
320,接收端设备根据该指示信息确定当前传输层的层号k,k为大于或等于1的整数。
具体而言,根据上文描述,为了实现通过DMRS解调的数据,接收端设备(例如,接收端设备)需要确定当前传输层的层号k的具体取值,以此确定出需要估计的l kj的个数。也就是说在接收端设备确定了k的取值的情况下,需要计算k各信道参数l kj,即l k1至l kk
下面结合指示信息的6种情况,分别描述本申请实施例中确定当前传输层的层号k的具体方案。
情况一:
所述指示信息用于指示当前传输层的DMRS端口号k,其中,DMRS端口号与传输层的层号具有一一对应关系,在320中,所述接收端设备将DMRS端口号k确定为所述当前传输层的层号k。
具体而言,接收端设备根据发送端设备的指示即可确定DMRS端口号k,由于DMRS端口号与传输层号具有一一对应关系,因此,接收端设备可以直接将端口号k确定为当前传输层的层号。
可选地,当指示信息具体用于指示DMRS端口号与其他信息时,接收端设备可以通 过DMRS端口号与其他信息联合确定当前传输层的层号。例如,在一种实现方式中,当前传输层的层号为DMRS端口号与其他信息指示的数值(例如,该数值为其他参考信号的端口号或者DMRS序列索引号等)之和或乘积等。例如,DMRS端口号为2,其他信息指示的数值为4,则接收端设备可以确定当前传输的层号可以为8(即2*4)或者当前传输层的层号可以为6(即2+4)等。再例如,在另一种实现方式中,当前传输层的层号需要通过n个比特表示,本申请实施例中可以通过DMRS端口号对应其中n1个比特,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,接收端设备可以根据该n1个比特和n2比特的具体取值确定层号对应的n个比特值,进而可以确定层号。
本申请实施例通过发送端设备指示DMRS端口号间接指示当前传输层的层号k,接收端设备即可以确定出当前传输层的层号,无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况二:
所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k,其中,DMRS的发射信号的序列的索引号与传输层的层号具有一一对应关系,在320中,所述接收端设备将DMRS的发射信号的序列索引号k确定为所述当前传输层的层号k。
具体而言,在DMRS的发射信号的序列索引号与传输层的层号具有一一对应关系的情况下,本申请实施例通过发送端设备指示DMRS的发射信号的序列索引号间接指示当前传输层的层号k,通过该DMRS的发射信号的序列索引号,接收端设备可以根据本地存储的多个DMRS发射信号的序列确定出该第k传输层的DMRS的发射信号,也可以根据该索引号确定当前传输层的层号k。
可选地,当指示信息具体用于指示DMRS的发射信号的序列索引号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等),接收端设备可以通过DMRS的发射信号的序列索引号与其他信息联合确定当前传输层的层号。例如,在一种实现方式中,当前传输层的层号为DMRS的发射信号的序列索引号与其他信息指示的数值(例如,该数值为其他参考信号的端口号或者DMRS序列索引号等)之和或乘积等。例如,DMRS的发射信号的序列索引号为2,其他信息指示的数值位4,则当前传输的层号可以为8(即2*4)或者当前传输层的层号可以为6(即2+4)等。再例如,在另一种实现方式中,当前传输层的层号需要通过n个比特表示,本申请实施例中可以通过DMRS的发射信号的序列索引号对应其中n1个比特,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,接收端设备可以根据该n1个比特和n2比特的具体取值确定层号对应的n个比特值,进而可以确定层号。
因此,本申请实施例通过发送端设备指示当前传输层的DMRS的发射信号的序列索引号k间接指示当前传输层的层号k,接收端设备即可以确定出当前传输层的层号,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况三:
所述指示信息用于指示前k层或前k-1层DMRS的发射信号的序列索引,在320中,所述接收端设备根据所述DMRS的发射信号的序列索引个数确定所述当前传输层的层号k。
具体而言,发送端设备和接收端设备可以本地存储有多个DMRS的发射信号的序列,发送端设备可以指示该前k或者前k-1个传输层中各个传输层的DMRS的发射信号的序列的索引,进而接收端设备可以根据指示的索引确定前k个或前k-1个传输的DMRS的发射信号。应理解,在发送端设备指示前k-1个索引的情况下,接收端设备可以通过其他的方式确定第k传输层的DMRS的发射信号,例如,可以通过高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。这种情况下,接收端设备可以根据接收到的索引个数k或k-1来确定当前传输层的层号k。
因此,本申请实施例通过发送端设备指示的DMRS的发射信号的序列索引个数间接指示当前传输层的层号k,接收端设备即可以确定出当前传输层的层号,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况四:
所述指示信息用于指示前k层或前k-1层DMRS的序列加扰标识,在320中,所述接收端设备根据所述DMRS的序列加扰标识个数确定所述当前传输层的层号k。
具体而言,发送端设备可以指示该前k或者前k-1个传输层中各个传输层的DMRS的发射信号的序列加扰标识,进而接收端设备可以根据指示的序列加扰标识的个数确定当前传输层的层号为k。应理解,在发送端设备指示前k-1个序列加扰标识的情况下,接收端设备可以通过其他的方式确定第k传输层的DMRS的发射信号的序列加扰标识。
因此,本申请实施例通过发送端设备指示的DMRS的序列加扰标识个数间接指示当前传输层的层号k,接收端设备即可以确定出当前传输层的层号,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况五:
所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k,其中,DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系,在320中,所述接收端设备将所述DMRS的序列加扰标识索引号k确定为所述当前传输层的层号k。
具体而言,在DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系的情况下,本申请实施例通过发送端设备指示DMRS的序列加扰标识索引号间接指示当前传输层的层号k,通过该DMRS的序列加扰标识索引号,接收端设备可以根据本地存储的多个DMRS的序列加扰标识索引号确定出该第k传输层的DMRS的序列加扰标识,也可以根据该索引号确定当前传输层的层号k。
可选地,当指示信息具体用于指示DMRS的序列加扰标识索引号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等),接收端设备可以通过DMRS的序列加扰标识索引号与其他信息(例如,其他参考信号的端口号(例如,CSI-RS端口号、SRS端口号)和/或DMRS序列索引号等)联合确定当前传输层的层号。例如,在一种实现方式中,当前传输层的层号为DMRS的序列加扰标识索引号与其他信息指示的数值(例如,该数值为其他参考信号的端口号或者DMRS序列索引号等)之和或乘积等。例如,DMRS的序列加扰标识索引号为2,其他信息指示的数值位4,则当前传输的层号可以为8(即2*4)或者当前传输层的层号可以为6(即2+4)等。再例如,在另一种实现方式中,当前传输层的层号需要通过n个比特表示,本申请实 施例中可以通过DMRS的序列加扰标识索引号对应其中n1个比特,通过该其他信息对应其中n2个比特,其中,n等于n1+n2,接收端设备可以根据该n1个比特和n2比特的具体取值确定层号对应的n个比特值,进而可以确定层号。
因此,本申请实施例通过发送端设备指示当前传输层的DMRS的序列加扰标识索引号k间接指示当前传输层的层号k,接收端设备即可以确定出当前传输层的层号,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
情况六:
所述指示信息用于指示前k层或前k-1层DMRS的序列加扰标识索引,在320中,所述接收端设备根据所述DMRS的序列加扰标识索引个数确定所述当前传输层的层号k。
具体而言,发送端设备和接收端设备可以本地存储有多个DMRS的序列加扰标识,发送端设备可以指示该前k或者前k-1个传输层中各个传输层的DMRS的序列加扰标识索引,进而接收端设备可以根据指示的索引确定前k个或前k-1个传输的DMRS的序列加扰标识。应理解,在发送端设备指示前k-1个序列加扰标识索引的情况下,接收端设备可以通过其他的方式确定第k传输层的DMRS的序列加扰标识。这种情况下,接收端设备可以根据接收到的DMRS的序列加扰标识索引个数k或k-1来确定当前传输层的层号k。
因此,本申请实施例通过发送端设备指示的DMRS的序列加扰标识索引个数间接指示当前传输层的层号k,接收端设备即可以确定出当前传输层的层号,本申请实施例无需额外的信令专门指示传输层的层号,能够节省信令开销。
330,接收端设备确定前k个传输层上的解调参考信号DMRS的发射信号。
根据前文描述,在确定了当前传输层的层号k后,终端设备需要确定前k传输层上的DMRS的发射信号,以根据前k传输层上的DMRS的发射信号确定第k传输层数据的功率回退因子λ k
下面描述接收端设备确定前k传输层上的DMRS的发射信号的一些实现方式。
可选地,在一种实现方式中,在330中,所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据发送端设备指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号;
具体而言,接收端设备可以根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送上述高层信令和/或用于指示DMRS映射资源位置的位置指示信息。
进一步地,所述接收端设备根据发送端设备的指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号,包括:
所述接收端设备根据发送端设备指示的第1至第k-1个传输层上的DMRS的发射信号的序列索引从预设的DMRS序列集合中确定第1至第k-1个传输层上的DMRS的发射信号,其中,所述DMRS序列集合包括专门为非线性预编码定义的一个或多个DMRS序列。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送指示第1至第k-1个传输层上的DMRS的发射信号的序列索引的索引指示信息。
具体而言,发送端设备和接收端设备可以本地存储有该预设的DMRS序列集合,该DMRS序列集合中包括多个DMRS的发射信号的序列。应理解,该预设的DMRS序列集合可以为有非线性预编码用户和/或非线性预编码层时该多个DMRS发射信号的序列构成的特有的序列集合,并且每个序列均对应一个索引号,该序列集合和/或集合中序列与索引号之间的对应关系可由信令通知,也可由收发端双方预先约定、预先定义或预先配置,本申请实施例并不限于此。发送端设备可以指示该前k-1个传输层中各个传输层的DMRS的发射信号的序列的索引,进而接收端设备可以根据指示的索引从该预设的DMRS序列集合中确定前k-1个传输的DMRS的发射信号。
需要说明的是,上述描述了接收端设备根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号的情况,可替代地,接收端设备可以同样根据网络设备的指示的DMRS的发射信号的序列索引确定第k个传输层上的DMRS的发射信号。
换句话说,所述接收端设备可以根据发送端设备的指示的DMRS的发射信号的序列索引确定第1至第k个传输层上的DMRS的发射信号。具体地确定第1至第k个传输层的DMRS的发射信号的方法与上述确定第1至第k-1个传输层的DMRS的发射信号的方法相同,此处不再重复描述。
可替代地,在另一种实现方式中,在330中,所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号。
具体而言,接收端设备可以根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送上述高层信令和/或用于指示DMRS映射资源位置的位置指示信息。进一步地,所述接收端设备根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号。
可替代地,接收端设备也可以按照统一的方式确定前k个传输层上的DMRS的发射信号,即所述接收端设备根据DMRS的序列加扰标识确定第1至第k个传输层上的DMRS的发射信号。
具体而言,所述接收端设备按照以下三种方式中的一种确定第1至第k-1或第1至第k个传输层上的DMRS的发射信号:
方式一:
所述接收端设备(例如终端设备)根据默认的所述DMRS的序列加扰标识确定第1至第k-1或第1至第k个传输层上的DMRS的发射信号,其中,所有传输层的DMRS加扰标识信令缺省。
具体而言,在所有传输层的DMRS加扰标识信令缺省,且收到了用于指示当前一起调度的终端设备的DMRS加扰标识信令均缺省的其他信令时,则所述接收端设备(例如终端设备)根据默认的所述DMRS的序列加扰标识确定第1至第k-1或第1至第k个传输层上的DMRS的发射信号。其中,上述其他信令可以是专门的用于显示指示当前一起调 度的终端设备的DMRS加扰标识信令均缺省的信令,也可以是隐示的指示当前一起调度的终端设备的DMRS加扰标识信令均缺省的信令。例如,该其他信令可以是用于指示:当当前一起调度的终端设备或传输层中存在非线性预编码的终端设备或非线性预编码的传输层时,则所有终端设备或所有传输层的DMRS序列加扰标识均缺省配置。又例如,预先定义或规定当前一起调度的终端设备或传输层中存在非线性预编码的终端设备或传输层时,则所有终端设备或所有传输层的DMRS序列加扰标识均缺省配置,该其他信令可以是指示当前一起调度的终端设备或传输层中存在非线性的终端设备或非线性预编码的传输层。具体而言,在下行传输时,该DMRS加扰标识信令可以为下行DMRS加扰标识(DL-DMRS-Scrambling-ID)信令,在上行传输时,该DMRS加扰标识信令可以为上行DMRS加扰标识(UL-DMRS-Scrambling-ID)信令。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送指示所有传输层的DMRS发射信号均相同(例如,所有传输层的DMRS的序列加扰标识均相同)的信息。
在该DMRS加扰标识信令缺省时,接收端设备可以根据默认的DMRS的序列加扰标识确定前k-1或前k个传输层上的DMRS的发射信号,例如,接收端设备根据默认的DMRS的序列加扰标识以及前k-1或前k个传输层中各个传输层的资源位置确定各个传输层上的DMRS的发射信号。应理解,该默认的DMRS的序列加扰标识可以为小区标识(cell ID)或其他标识,本申请实施例并不限于此。
方式二:
所述终端设备根据DMRS加扰标识信令配置的所述DMRS的序列加扰标识确定第1至第k-1或第1至第k个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均相同。
具体而言,在接收端设备接收到DMRS加扰标识信令,且收到了用于指示当前一起调度的终端设备的DMRS序列加扰标识均相同的其他信令时,则所述接收端设备(例如终端设备)根据该DMRS加扰标识信令配置的所述DMRS的序列加扰标识确定第1至第k-1或第1至第k个传输层上的DMRS的发射信号。其中,上述其他信令可以是专门的用于显示指示当前一起调度的终端设备的DMRS加扰标识均相同的信令,也可以是隐示的指示当前一起调度的终端设备的DMRS加扰标识信令均相同的信令。例如预先定义或规定当配置了特殊的加扰标识时,则所有终端设备均认为当前一起调度的终端设备的DMRS序列的加扰标识均相同,例如均为特殊的加扰标识,此时该用于配置特殊的加扰标识的其他信令则可以隐式指示当前一起调度的终端设备的DMRS序列加扰标识相同;或者,预先定义或规定当当前的调度的传输层或终端设备中存在非线性预编码的终端设备或传输层时,则所有终端设备均均认为当前一起调度的终端设备均采用相同的DMRS加扰序列标识或DMRS序列,该其他信令用于指示当前的调度的传输层或终端设备中存在非线性预编码的终端设备或传输层(例如全部终端设备或传输层都是非线性预编码或混合预编码)则可用于隐式指示所有终端设备均采用相同的DMRS加扰序列标识或DMRS序列。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送该DMRS加扰标识信令和/或指示所有传输层的DMRS发射信号均相同(例如,所有传输层的DMRS的序列加扰标识均相同)的信息。
具体而言,在下行传输时,该DMRS加扰标识信令可以为下行DMRS加扰标识(DL-DMRS-Scrambling-ID)信令,在上行传输时,该DMRS加扰标识信令可以为上行DMRS加扰标识(UL-DMRS-Scrambling-ID)信令。
接收端设备可以根据DMRS加扰标识信令配置的DMRS的序列加扰标识确定前k-1或前k个传输层上的DMRS的发射信号,例如,接收端设备根据配置的DMRS的序列加扰标识以及前k-1或前k个传输层中各个传输层的资源位置确定各个传输层上的DMRS的发射信号。应理解,该配置的DMRS的序列加扰标识可以为小区标识(cell ID)或其他标识,本申请实施例并不限于此。
方式三:
所述终端设备根据预配置的用作非线性预编码的序列加扰标识的无线网络临时标识(radio network tempory identity,RNTI),确定第1至第k-1个或第1至第k个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均为所述RNTI。
其中,在这种实现方式中,该方法还可以包括发送端设备向接收端设备发送用于配置非线性预编码的序列加扰标识为无线网络临时标识RNTI的配置信息和/或指示所有传输层的DMRS发射信号均相同(例如,所有传输层的DMRS的序列加扰标识均相同)的信息。
应理解,本申请实施例不限于预先配置专门用于非线性预编码的序列加扰标识为无线网络临时标识RNTI,例如,发送端设备和接收端设备也可以预先定义专门用于非线性预编码的序列加扰标识为无线网络临时标识RNTI。
具体而言,接收端设备可以根据预定义或预配置的DMRS的序列加扰标识即RNTI确定前k-1或前k个传输层上的DMRS的发射信号,例如,接收端设备根据RNTI以及前k-1或前k个传输层中各个传输层的资源位置确定各个传输层上的DMRS的发射信号。
应理解,在确定了每一传输层DMRS序列(QAM符号集合)后,接收端设备根据序列中QAM符号映射顺序,即可确定每一个传输层DMRS序列对应的在各个子载波上的发射信号(即各个子载波上的资源单元(resource element,RE)上传输的一个QAM符号)。
可替代地,在另一种实现方式中,在330中,所述接收端设备确定前k个传输层上的DMRS的发射信号,包括:
所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据当前传输层的层号确定第1至第k-1个传输层上的DMRS的发射信号,其中,传输层对应的DMRS的发射信号与传输层的层号一一对应。
具体而言,接收端设备可以根据高层信令(例如,无线资源控制(radio resource control,RRC)信令下行DMRS加扰标识(DL-DMRS-Scrambling-ID))和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号。然后接收端设备可以按照以下方式确定前k-1个传输层的DMRS发射信号。
可替代地,接收端设备也可以按照统一的方式确定前k个传输层上的DMRS的发射信号,即所述接收端设备按照以下方式确定第1至第k个传输层上的DMRS的发射信号。
具体而言,本申请实施例中,接收端设备可以预存与多个层号一一对应的DMRS的发射信号序列,接收端设备根据当前传输层的层号k,从该预存的多个DMRS的发射信号 序列中将层号1至层号k-1对应的DMRS的发射信号序列分别作为传输层1至传输层k-1的DMRS的发射信号序列;或者,将层号1至层号k对应的DMRS的发射信号序列分别作为传输层1至传输层k的DMRS的发射信号序列。
应理解,上述DMRS的发射信号序列与传输层的层号的一一对应关系可以是DMRS的发射信号的序列k对应传输层的层号k,可选地,上述的一一对应关系还可以是其他对应关系,如DMRS的发射信号的序列k1与传输层号k2对应,其中,k1与k2可以不相等。应理解,上述一一对应关系可以是预配置或预定义或由信令指示的,本申请实施例并不限于此。其中,在上述一一对应关系是信令指示的情况下,该方法还可以包括发送端设备向接收端设备发送指示DMRS的发射信号与传输层的层号间一一对应关系的信息。
340,接收端设备根据前k个传输层上的DMRS的发射信号解调第k传输层数据。具体而言,本申请实施例通过接收端设备根据所述前k个传输层上的DMRS的发射信号来获取前k个传输层与第k传输层之间的信道参数,进而能够根据前k个传输层与第k传输层之间的信道参数来确定第k传输层数据的功率回退因子λ k,进而实现对第k传输层数据的解调。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
例如,作为一个实施例,在340中,所述接收端设备根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据,包括:接收端设备可以根据所述前k个传输层上的DMRS的发射信号确定第k传输层数据的功率回退因子λ k,例如,接收端设备根据前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k;之后,所述接收端设备根据所述功率回退因子λ k解调所述第k传输层数据。
具体地而言,接收端设备在确定了前k个传输层上的DMRS的发射信号后,即可根据该前k个传输层上的DMRS的发射信号确定第k传输层数据的功率回退因子λ k,进而可以确定第k传输层数据的等效信道,进而可以实现通过线性预编码的DMRS实现对第k传输层数据(非线性预编码的数据)的解调。
进一步地,作为一个实施例,在340中,接收端设备根据前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k,包括:所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,其中,j为大于或等于1且小于或等于k的整数;
所述接收端设备根据所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,确定第k传输层数据的功率回退因子λ k
具体而言,每个传输层上的DMRS的发射信号通过至少一个子载波传输,其中,第j传输层与所述第k传输层之间的信道参数l kj包括承载第j传输层的DMRS的至少一个子载波中的各个子载波的信道参数l kj(i),其中,i表示承载第j传输层的DMRS的子载波的编号。
进一步地,在340中,所述接收端设备根据所述前k个传输层上的DMRS的发射信 号以及第k传输层的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,包括:
所述接收端设备根据第k个传输层上对应的在第i子载波上的DMRS接收信号和所述第j个传输层在所述第i个子载波上的DMRS的发射信号确定信道参数l kj(i)
应理解,根据传输层DMRS资源映射方式或频域位置的不同,本申请实施例中确定信道参数l kj(i)的方式也可能不同,下面描述两种确定l kj(i)的方案。
方案一:
接收端设备根据第k个传输层上对应的在第i子载波上的DMRS接收信号和所述第j个传输层在所述第i个子载波上的DMRS的发射信号确定信道参数l kj(i),包括所述接收端设备根据以下公式(4)确定信道参数l kj(i)
y dmrs,kj(i)=l kj(i)s j(i)+n k(i)                                    (4)
其中,y dmrs,kj(i)表示第k个传输层上接收到的第j层DMRS的发射信号对应的在第i子载波上的接收信号,其中,j小于k时,y dmrs,kj(i)表示第j层在第i子载波上的发送信号对应第k层接收信号的干扰;j等于k时,y dmrs,kj(i)表示第k层在第i子载波上的发送信号对应在第i子载波上的接收信号;s j(i)表示所述第j个传输层在所述第i个子载波上的DMRS的发射信号,n k(i)表示第k传输层在第i子载波上接收到的噪声。
具体而言,当所有传输层的DMRS信号均频分时,即不同的传输层的DMRS信号映射在不同的子载波上。则接收端设备可以根据上述公式(4)确定l kj(i)
例如,如图4所示,假设共四个传输层,即传输层1至传输层4,其中,每个传输层对应一个端口,传输层1映射在子载波1、5、9,传输层2映射在子载波2、6、10,传输层3映射在子载波3、7、11,传输层4映射在子载波4、8、12。
i表示一个传输层对应的一组子载波中一个子载波的编号,i遍历取这一组子载波的编号,例如,针对传输层1而言,j=1,i=1、5或9。
具体的,发送端设备发送的信号S的形式如下所示,其中,矩阵S中每一行对应每一个传输层的发射信号,例如,第一行至第四行分别对应传输层1至传输层4的DMRS的发射信号;矩阵S中的每一列对应一个子载波,例如,第1列至第12列分别对应子载波1至子载波12。矩阵S中的第j行第i列的元素s j(i)表示传输层j在第i个子载波上的DMRS的发射信号。
Figure PCTCN2019088962-appb-000002
S经过信道传输后,与公式(4)对应的接收端接收到的信号y dmrs的形式如下所示,其中,矩阵y dmrs中每一行对应每一个传输层的接收信号,例如,第一行至第四行分别对应传输层1至传输层4的DMRS的接收信号;矩阵y dmrs中每一列对应一个子载波,例如,第1列至第12列分别对应子载波1至子载波12。矩阵y dmrs中每一个元素,例如,第x行第y列的元素表示第x层信号在第y个子载波上的接收信号。
Figure PCTCN2019088962-appb-000003
接收端设备根据矩阵S和矩阵y dmrs即可确定出信道参数l kj(i)
应理解,图4中的例子中给出了,在频分的场景下,每个传输层映射到不相邻的子载波的情况,可选地,在频分的场景下,每个传输层也可以映射到相邻的多个子载波的情况。例如,每个传输层映射到连续的两个子载波上。假设共有N个传输层,N个端口,每个传输层对应一个端口,每个传输层映射到连续的2个子载波上,则共2N个子载波,其中,传输层1映射到子载波1和子载波2上,传输层2映射在子载波3和子载波4上…传输层N映射到子载波2N-1和子载波2N上。
例如,如图5示出了N=6的例子,具体地,发送端设备发送的信号S的形式如下所示,其中,矩阵S中每一行对应每一个传输层的发射信号,例如,第一行至第六行分别对应传输层1至传输层6的DMRS的发射信号;矩阵S中的每一列对应一个子载波,例如,第1列至第12列分别对应子载波1至子载波12。矩阵S中的第j行第i列的元素s j(i)表示传输层j在第i个子载波上的DMRS的发射信号。
Figure PCTCN2019088962-appb-000004
S经过信道传输后,与公式(4)对应的接收端接收到的信号y dmrs的形式如下所示,其中,矩阵y dmrs中每一行对应每一个传输层的接收信号,例如,第一行至第六行分别对应传输层1至传输层6的DMRS的接收信号;矩阵y dmrs中每一列对应一个子载波,例如,第1列至第12列分别对应子载波1至子载波12。矩阵y dmrs中每一个元素,例如,第x行第y列的元素表示第x层信号在第y个子载波上的接收信号。
Figure PCTCN2019088962-appb-000005
接收端设备根据矩阵S和矩阵y dmrs即可确定出信道参数l kj(i)
上述图4和图5中仅给出了两种资源映射的方式的形式,但本申请实施例并不限于此,本领域技术人员可以进行相应的变形,例如,在频分的场景下,每个传输层还可以映射到连续的三个子载波;或者每个传输层映射到四个子载波上,其中,该四个子载波中的前两个子载波相邻,后两个子载波相邻,中间的两个子载波不相邻等。
还应理解,在图4和图5的例子中,DMRS映射在了第三个OFDM符号上的所有子载波上,即第三个OFDM符号上的子载波1至子载波12上的情况,可选地,DMRS也可以仅映射到OFDM符号上的部分子载波上,该OFDM符号上出该部分子载波之外的其余子载波可以映射数据(例如,PDSCH或PUSCH中的数据)也可以不映射数据,本申请实施例并不限于此。
还应理解,图4和图5的例子中仅示出了DMRS占用一个OFDM符号的例子,可选的,DMRS也可以占用多个OFDM符号,该多个OFDM符号可以是相邻的符号也可以是不相邻的符号,本申请实施例并不限于此。
方案二:
上述方案一中描述了传输层频分的方式进行映射的方案,可替代地,在方案二中,本申请实施例可以采用码分的方式进行映射。
例如,本申请实施例中,每两个传输层看成一组,且该一组传输层同时映射到两个连续的子载波上,且该两个传输层之间码分,且不同的组之间频分的场景。
例如,共有传输层数为N,端口数为N,子载波数也为N,则发送端设备发送的信号S的形式如下所示,其中,矩阵S中每一行对应每一个传输层的发射信号,例如,第一行至第N行分别对应传输层1至传输层N的DMRS的发射信号;矩阵S中的每一列对应一个子载波,例如,第1列至第N列分别对应子载波1至子载波N。矩阵S中的第j行第i列的元素s j(i)表示传输层j在第i个子载波上的DMRS的发射信号。
Figure PCTCN2019088962-appb-000006
S经过信道传输后,接收端接收到的信号y dmrs的形式如下所示,其中,矩阵y dmrs中每一行对应每一个传输层的接收信号,例如,第一行至第N行分别对应传输层1至传输层N的DMRS的接收信号;矩阵y dmrs中每一列对应一个子载波,例如,第1列至第N列分别对应子载波1至子载波N。矩阵y dmrs中每一个元素,例如,第x行第y列的元素表示第x层信号在第y个子载波上的接收信号。
Figure PCTCN2019088962-appb-000007
假设作为一个码分组的端口第2m-1个端口和第2m个端口在第奇数子载波上的发射信号相同,在第偶数个子载波上的发射信号相反。
即:s 2m-1,(2m-1)=s 2m(2m-1),s 2m-1,(2m)=-s 2m,(2m),其中,m的取值为1至N/2。
则接收端接收到的信号y dmrs的形式变形如下所示,
Figure PCTCN2019088962-appb-000008
由于,码分的两个子载波相邻,信道变化不大,因此,本申请实施例可以假设码分组的两个子载波对应的信道参数l kj(2m-1)与l kj(2m)相等。则接收端设备根据矩阵S和矩阵y dmrs即可确定出信道参数l kj(i)
应理解,上述方案二中给出了将两个子载波作为一个子载波组进行码分方式的资源映射方式的形式,但本申请实施例并不限于此,本领域技术人员可以进行相应的变形。例如,更多个子载波作为一个子载波组进行码分,且每个传输层可以映射到多个子载波组上。
在确定出信道参数l k1(i)至信道参数l kk(i)后,该接收端设备即可根据以下公式(5)确定表示第k传输层对应的第i子载波的回退因子λ k(i)
Figure PCTCN2019088962-appb-000009
应理解,本申请实施例中,每个传输层的DMRS信号仅映射到部分子载波上,根据上文描述的方案仅能获取部分l kj(i),其中,针对该层中其余的l kj(i)可以根据该部分l kj(i)获得,例如,可以根据已获取的l kj(i)采用平均值、中间值、加权求和、插值法、滤波法或外推法等方法获得,本申请实施例并不限于此。
例如,针对上述方案一中图4的例子,一个传输层的DMRS仅映射到3个子载波上,例如,j=1,即对于传输层1而言,i的取值为1、5或9。也就是说,根据上文描述的方案可以求得l k1(1)、l k1(5)和l k1(9),其余的l k1(i),例如,l k1(2)、l k1(3)、l k1(4)、l k1(6)…,可以根据l k1(1)、l k1(5)和l k1(9)采用平均值、中间值、加权求和、插值法、滤波法或外推法等方法获得。
在确定了λ k(i)后,接收端设备可以根据第k传输层数据的等效信道为l kk(i)λ k(i)解调第k传输层数据。
例如,接收端设备可以根据以下公式(6)解调第k传输层的数据(例如,PDSCH或PUSCH承载的数据)。
y k(i)=l kk(i)λ k(i)a k(i)+n k(i)                                             (6)
其中,i为大于或等于1且小于或等于N的整数,i表示子载波的编号,N表示子载波的总个数;y k(i)表示第k传输层数据在第i子载波上的接收信号(或者说,y k(i)表示在第i子载波上接收到的第k传输层数据对应的接收信号);l kk(i)表示第k传输层对应的第i子载波的信道;λ k(i)表示第k传输层在第i子载波的功率回退因子;a k(i)表示第k传输层在第i子载波上的原始发射信号(例如为正交振幅调制(quadrature amplitude modulation,QAM)信号);n k(i)表示第i子载波上的噪声。
因此,本申请实施例中在DMRS采用线性预编码,数据采用非线性预编码的情况下,通过发射端设备的指示的信息,能够实现接收端设备根据DMRS估计出数据的有效信道以实现对数据的解调,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
应理解,图3所示的实施例中描述了每个传输层映射在至少一个子载波上,以及针对 每个传输的各个子载波,根据各个子载波上传输的DMRS解调该子载波上数据的方案。
可选地,本申请实施例中,也可以不用区分一个传输层映射到具体几个子载波时,将每个传输层看成一个整体,图3实施例中的公式可以回退即图3中的各个公式和矩阵中可以去掉子载波脚标(这种情况也可以可以看成一层对应映射到一个子载波的情况)。
具体而言:上述步骤340中可以替换成如下形式:所述接收端设备根据所述前k个传输层中各个传输层上的DMRS的发射信号对所述第k传输层的干扰参数l kj,确定第k传输层数据的功率回退因子λ k,包括:
所述接收端设备根据公式(3)确定所述λ k
Figure PCTCN2019088962-appb-000010
其中,所述接收端设备可以根据所述前k个传输层上的DMRS的发射信号以及第k传输层的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj。具体地,所述接收端设备根据公式(2)确定子信道参数l kj
y dmrs,kj=l kjs j+n k                      (2)
其中,y dmrs,kj表示第k个传输层上接收到的DMRS信号,j=1,2,...,k,s j表示所述第j个传输层的DMRS的发射信号,n k表示第k传输层对应的噪声。
例如,当所有层的DMRS信号均频分时:即所有层的DMRS信号均映射在一组子载波上,则有输入的DMRS信号如下所示:
Figure PCTCN2019088962-appb-000011
其中上述公式(2)中的s j的取值可以为s 11至s NN,可以分别表示第1传输层至第N传输层上发送的DMRS信号的原始QAM符号。此时,经过线性预编码矩阵F和信道H后,得到的接收信号y dmrs为如下形式:
Figure PCTCN2019088962-appb-000012
根据公式(2),接收端设备根据矩阵S和矩阵y dmrs即可确定出信道参数l kj。进而根据公式(3)接收端设备即可确定出功率回退因子λ k,进行实现对数据的解调。
例如,接收端设备可以根据公式(1)解调第k传输层的数据(例如,PDSCH或PUSCH承载的数据)。
y k=l kkλ ka k+n k            (1)
其中,y k表示第k传输层数据的接收信号;l kk表示第k传输层对应的信道;λ k表示第k传输层对应的功率回退因子;a k表示第k传输层上的原始发射信号(例如为正交振幅调制(quadrature amplitude modulation,QAM)信号);n k表示第k传输层对应的噪声。
具体而言,图3所示的方法中,需要接收端设备(例如,终端设备)自身确定功率回退因子λ k的方案,可替代地,本申请实施例中,也可以由发送端设备(例如,网络设备) 向接收端设备指示功率回退因子λ k,进而接收端设备根据发送端设备的指示的功率回退因子λ k实现对数据的解调。下面结合图6进行详细描述。
图6是根据本申请另一实施例的用于数据解调的方法示意图。如图6所示的方法从网络设备与终端设备交互的角度进行了描述。图6所示的方法能够应用于下行传输也可以应用于上行传输,其中,在下行传输中,发送端设备为网络设备,接收端设备为终端设备;在上行传输中,发送端设备为终端设备,接收端设备为网络设备。下文仅以下行传输为例进行详细说明,上行传输的过程可以参考本文中下行传输的描述。具体地,如图6所示的方法600包括:
610,发送端设备确定数据的功率回退因子λ k
具体的,发送端设备根据获取到的下行信道,如通过SRS估计的信道,或终端设备反馈的信道确定λ k
620,发送端设备向接收端设备发送指示信息,该指示信息用于指示该功率回退因子λ k
相对应地,接收端设备接收该指示信息,并确定该功率回退因子λ k
例如,该指示信息可以是发送端设备通过RRC信令、DCI或者MAC信令指示的,可选的,当信道变化较快时,该指示信息可以由DCI指示;或者,在信道变化较慢时,该指示信息可以由MAC信令或者RRC信令指示,本申请实施例并不限于此。
630,接收端设备根据功率回退因子λ k解调第k传输层数据。
具体地,在确定了功率回退因子λ k的情况下,接收端设备具体的解调数据的过程可以参考上文中针对图3的描述,此处不再赘述。
因此,本申请实施例中在DMRS采用线性预编码,数据采用非线性预编码的情况下,通过发送端设备指示功率回退因子λ k,能够实现接收端设备根据DMRS估计出数据的有效信道以实现对数据的解调,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
需要说明的是,前文中描述了由于DMRS采用线性预编码方案,数据采用非线性预编码方案,因此二者的等效信道不同。导致接收端设备无法根据DMRS进行数据的解调。
本申请实施例中也可以在发送端设备处补偿该二者等效信道的差异,以使得二者的等效信道相同,进而接收端设备能够根据DMRS进行数据的解调。下面结合图7对此方案进行详细描述。
图7是根据本申请另一实施例的用于数据解调的方法示意图。如图7所示的方法从网络设备与终端设备交互的角度进行了描述。图7所示的方法能够应用于下行传输也可以应用于上行传输,其中,在下行传输中,发送端设备为网络设备,接收端设备为终端设备;在上行传输中,发送端设备为终端设备,接收端设备为网络设备。下文仅以下行传输为例进行详细说明,上行传输的过程可以参考本文中下行传输的描述。具体地,如图7所示的方法700包括:
710,发送端设备发送功率调整后的DMRS信号。
具体的,发送端设备发送DMRS信号时进行功率调整,以使得DMRS的等效信道与数据的等效信道相同或相近。
具体而言,发送端设备首先确定功率调整参数,然后对DMRS信号进行功率调整, 并发送功率调整后的DMRS信号。
例如,该功率调整参数为αλ k,该功率调整后的DMRS信号可以是发送端设备对第k层的DMRS信号预乘以DMRS的功率回退因子αλ k后得到的信号,其中,λ k为第k传输层数据的功率回退因子,α为系数(也可以称为功率回退因子系数),表示DMRS功率回退因子为数据功率回退因子的α倍,默认为1,不同的层或不同的UE间α的值可以相同也可以不同。可选的,α的取值集合可预先定义或预配置或预先规定。
720,发送端设备向接收端设备发送指示信息,所述指示信息用于指示α。当没有指示信息时,收发端双方均对α取默认值1。
730,接收端设备根据功率补偿因子,对第k传输层数据进行解调。
具体地,接收端设备根据当前层的DMRS的发送信号(即功率调整后的DMRS信号)、接收信号以及α估计得到的数据的有效信道,例如,l kk(i)λ k(i),进而能够通过DMRS实现对数据的解调。由于λ k的值可以为任意值,通知准确的λ k需要较大的信令开销,若对λ k进行量化再通知,虽然能够减小开销,但准确度又会变差。而本申请实施例方法相比直接通知λ k而言,可以降低信令开销的同时保证有效信道的准确度。
因此,本申请实施例通过发送端设备处补偿该DMRS和数据的等效信道的差异,以使得二者的等效信道相同,进而接收端设备能够根据DMRS估计出数据的有效信道以实现对数据的解调,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
本领域的技术人员可以清楚理解,本申请中“第一”、“第二”等各种数字编号仅仅是为了描述方便进行地区分,并不作为对本申请实施例的限定。
应理解,上文中图3至图7的例子,仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将本申请实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图3至图7的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本申请实施例的范围内。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中,结合图1至图7详细描述了本申请实施例的方法,下面结合图8至图11描述本申请实施例的通信装置。
图8为本申请实施例提供的一种通信装置的结构示意图,该通信装置800可包括:
处理单元810和收发单元820。
具体地,收发单元,用于接收发送端设备发送的指示信息;处理单元,用于根据所述指示信息确定当前传输层的层号k,k为大于或等于1的整数;确定前k个传输层上的解调参考信号DMRS的发射信号;根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据。
可选地,所述处理单元具体用于根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k
根据所述功率回退因子λ k解调所述第k传输层数据。
可选地,所述处理单元具体用于根据所述前k个传输层上的DMRS的发射信号以及 第k传输层的DMRS的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,其中,j为大于或等于1且小于或等于k的整数;
根据所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,确定第k传输层数据的功率回退因子λ k
可选地,每个传输层上的DMRS的发射信号通过至少一个子载波传输,其中,第j传输层与所述第k传输层之间的信道参数l kj包括承载第j传输层的DMRS的至少一个子载波中的各个子载波的信道参数l kj(i),其中,i表示承载第j传输层的DMRS的子载波的编号;
所述处理单元具体用于根据第k个传输层上对应的在第i子载波上的DMRS接收信号和所述第j个传输层在所述第i个子载波上的DMRS的发射信号确定信道参数l kj(i)
可选地,所述指示信息用于指示当前传输层的DMRS端口号k,其中,DMRS端口号与传输层的层号具有一一对应关系,所述处理单元具体用于将DMRS端口号k确定为所述当前传输层的层号k;
所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k,其中,DMRS的发射信号的序列的索引号与传输层的层号具有一一对应关系,所述处理单元具体用于将DMRS的发射信号的序列索引号k确定为所述当前传输层的层号k;
所述指示信息用于指示前k层DMRS的发射信号的序列索引,所述处理单元具体用于根据所述DMRS的发射信号的序列索引个数确定所述当前传输层的层号k;
所述指示信息用于指示前k层DMRS的序列加扰标识,所述处理单元具体用于根据所述DMRS的序列加扰标识个数确定所述当前传输层的层号k;
所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k,其中,DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系,所述处理单元具体用于将所述DMRS的序列加扰标识索引号k确定为所述当前传输层的层号k;
所述指示信息用于指示前k层DMRS的序列加扰标识索引,所述处理单元具体用于根据所述DMRS的序列加扰标识索引个数确定所述当前传输层的层号k;或者
所述指示信息用于指示当前传输层的层号k。
可选地,所述处理单元具体用于根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,根据发送端设备指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号;
所述处理单元具体用于根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号;或者,
所述处理单元具体用于根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,根据当前传输层的层号确定第1至第k-1个传输层上的DMRS的发射信号,其中,传输层对应的DMRS的发射信号与传输层的层号一一对应。
可选地,所述处理单元具体用于根据发送端设备指示的第1至第k-1个传输层上的DMRS的发射信号的序列索引从预设的DMRS序列集合中确定第1至第k-1个传输层上的DMRS的发射信号,其中,所述DMRS序列集合包括专门为非线性预编码定义的一个或多个DMRS序列。
可选地,所述处理单元具体用于按照以下三种方式中的一种确定第1至第k-1个传输层上的DMRS的发射信号:
在所有传输层的DMRS加扰标识信令缺省时,根据默认的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,
根据DMRS加扰标识信令配置的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均相同;
根据预配置的用作非线性预编码的序列加扰标识的无线网络临时标识RNTI,确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均为所述RNTI。
本申请提供的通信装置800对应上述图3方法实施例中接收端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的图3方法实施例的描述,此处不再赘述。
可选地,本申请实施例中的通信装置800还可以对应上述图6至图7中接收端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中图6至图7方法实施例的描述,此处不再赘述。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
应理解,图8所述的通信装置可以是接收端设备,例如,在下行传输时,该接收端设备为终端设备,在上行传输时,该接收端设备为网络设备,下面以下行传输为例,描述通信装置的具体列子。具体地,该通信装置可以为终端设备,也可以是安装于终端设备中的芯片或集成电路。
以通信装置为终端设备为例,图9为本申请实施例提供的一种终端设备的结构示意图,便于理解和图示方便,图9中,终端设备以手机作为例子。图9仅示出了终端设备的主要部件。如图9所示终端设备900包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图9仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图9中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备900的收发单元91,例如,用于支持终端设备执行如图8中终端设备执行的收发功能。将具有处理功能的处理器视为终端设备900的处理单元92,其与图8中的处理单元810对应,例如,用于进行数据的解调。如图9所示,终端设备900包括收发单元91和处理单元92。收发单元也可以称为收发器、收发机、收发装置等,该收发单元与图8中的收发单元820对应,例如,用于接收发送端设备发送的指示信息。可选的,可以将收发单元91中用于实现接收功能的器件视为接收单元,将收发单元91中用于实现发送功能的器件视为发送单元,即收发单元91包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理单元92可用于执行该存储器存储的指令,以控制收发单元91接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元91的功能可以考虑通过收发电路或者收发的专用芯片实现。
应理解,图9所示的终端设备900能够实现图3图7方法实施例中涉及终端设备的各个过程。终端设备900中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图10为本申请实施例提供的一种通信装置的结构示意图,该装置1000可包括:
处理单元1010和收发单元1020。
具体的,处理单元,用于生成指示信息,所述指示信息用于确定当前传输层的层号k,k为大于或等于1的整数;
收发单元,用于向接收端设备发送指示信息,以使得所述接收端设备根据所述指示信息确定当前传输层的层号k,并根据前k个传输层上的DMRS的发射信号解调所述第k传输层数据。
可选地,
所述指示信息用于指示当前传输层的DMRS端口号k;
所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k;
所述指示信息用于指示前k层DMRS的发射信号的序列索引;
所述指示信息用于指示前k层DMRS的序列加扰标识;
所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k;
所述指示信息用于指示前k层DMRS的序列加扰标识索引;或者
所述指示信息用于指示当前传输层的层号k。
可选地,所述收发单元还用于向所述接收端设备发送以下信息中的至少一种:
DMRS映射资源位置信息;
用于配置非线性预编码的序列加扰标识为无线网络临时标识RNTI的配置信息;
第1至第k-1个传输层上的DMRS的发射信号的序列索引信息;
所有传输层的DMRS加扰标识信令;
指示所有传输层的DMRS发射信号均相同的信息;
指示DMRS的发射信号与传输层的层号间一一对应关系的信息。
本申请提供的通信装置是对应上述图3至图7方法实施例中发送端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处不再赘述。
因此,在DMRS采用线性预编码,数据采用非线性预编码的情况下,本申请实施例通过发送端设备的指示,使得接收端设备能够根据DMRS估计出数据的有效信道用于解调数据,解决了现有技术中无法直接根据DMRS接收信号估计出数据的有效信道并解调数据的问题。
应理解,图10所述的通信装置可以是发送端设备,在上行传输时,该发送端设备可以为终端设备,在下行传输时,该发送端设备可以为网络设备,下面以下行传输为例,描述通信装置的具体列子。具体地,该通信装置可以为网络设备,也可以是安装于网络设备中的芯片或集成电路。
以通信装置为网络设备为例,图11为本申请实施例提供的一种网络设备的结构示意图,例如可以为基站的结构示意图。如图11所示,该网络设备1100可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
网络设备1100可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)111和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)112。所述RRU111可以称为收发单元111,与图10中的收发单元1020对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1111和射频单元1112。所述RRU111部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送指示信息。所述BBU112部分主要用于进行基带处理,对基站进行控制等。所述RRU111与BBU112可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU112为基站的控制中心,也可以称为处理单元112,可以与图10中的处理单元1010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU112可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU112还包括存储器1121和处理器1122。所述存储 器1121用以存储必要的指令和数据。所述处理器1122用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1121和处理器1122可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图11所示的网络设备1100能够实现图3至图7方法实施例中涉及网络设备的各个过程。网络设备1100中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列(field-programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是中央处理器(central processor unit,CPU),还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated crcuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只 读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种通信系统,其包括前述的发送端设备和接收端设备。例如,该发送端设备为网络设备,该接收端设备为终端设备;或者,该发送端设备为终端设备,该接收端设备为网络设备。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中的用于解调数据的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例中的用于解调数据的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,上文中描述了通信系统中下行传输时通信的方法,但本申请并不限于此,可选地,在上行传输时也可以采用上文类似的方案,为避免重复,此处不再赘述。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在 A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本申请的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的 部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘solid state disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种用于解调数据的方法,其特征在于,包括:
    接收端设备接收发送端设备发送的指示信息;
    所述接收端设备根据所述指示信息确定当前传输层的层号k,k为大于或等于1的整数;
    所述接收端设备确定前k个传输层上的解调参考信号DMRS的发射信号;
    所述接收端设备根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据。
  2. 根据权利要求1所述的方法,其特征在于,所述接收端设备根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据,包括:
    所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k
    所述接收端设备根据所述功率回退因子λ k解调所述第k传输层数据。
  3. 根据权利要求2所述的方法,其特征在于,
    所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k,包括:
    所述接收端设备根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,其中,j为大于或等于1且小于或等于k的整数;
    所述接收端设备根据所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,确定第k传输层数据的功率回退因子λ k
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,
    所述指示信息用于指示当前传输层的DMRS端口号k,其中,DMRS端口号与传输层的层号具有一一对应关系,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备将DMRS端口号k确定为所述当前传输层的层号k;
    所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k,其中,DMRS的发射信号的序列的索引号与传输层的层号具有一一对应关系,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备将DMRS的发射信号的序列索引号k确定为所述当前传输层的层号k;
    所述指示信息用于指示前k层DMRS的发射信号的序列索引,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备根据所述DMRS的发射信号的序列索引个数确定所述当前传输层的层号k;
    所述指示信息用于指示前k层DMRS的序列加扰标识,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备根据所述DMRS的序列加扰标识个数确定所述当前传输层的层号k;
    所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k,其中,DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备将所述DMRS的序列加扰标识索引 号k确定为所述当前传输层的层号k;
    所述指示信息用于指示前k层DMRS的序列加扰标识索引,所述接收端设备根据所述指示信息确定当前传输层的层号k,包括:所述接收端设备根据所述DMRS的序列加扰标识索引个数确定所述当前传输层的层号k;或者
    所述指示信息用于指示当前传输层的层号k。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,
    所述接收端设备确定前k个传输层上的DMRS的发射信号,包括:
    所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据发送端设备指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号;
    所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号;或者,
    所述接收端设备根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,所述接收端设备根据当前传输层的层号确定第1至第k-1个传输层上的DMRS的发射信号,其中,传输层对应的DMRS的发射信号与传输层的层号一一对应。
  6. 根据权利要求5所述的方法,其特征在于,所述接收端设备根据发送端设备的指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号,包括:
    所述接收端设备根据发送端设备指示的第1至第k-1个传输层上的DMRS的发射信号的序列索引从预设的DMRS序列集合中确定第1至第k-1个传输层上的DMRS的发射信号,其中,所述DMRS序列集合包括专门为非线性预编码定义的一个或多个DMRS序列。
  7. 根据权利要求5所述的方法,其特征在于,所述接收端设备根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,包括所述接收端设备按照以下三种方式中的一种确定第1至第k-1个传输层上的DMRS的发射信号:
    所述接收端设备根据默认的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的DMRS加扰标识信令均缺省;
    所述接收端设备根据DMRS加扰标识信令配置的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均相同;
    所述接收端设备根据预配置的用作非线性预编码的序列加扰标识的无线网络临时标识RNTI,确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均为所述RNTI。
  8. 一种用于解调数据的方法,其特征在于,包括:
    发送端设备生成指示信息,所述指示信息用于确定当前传输层的层号k,k为大于或等于1的整数;
    所述发送端设备向接收端设备发送指示信息,以使得所述接收端设备根据所述指示信息确定当前传输层的层号k,并根据前k个传输层上的DMRS的发射信号解调所述第k传输层数据。
  9. 根据权利要求8所述的方法,其特征在于,
    所述指示信息用于指示当前传输层的DMRS端口号k;
    所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k;
    所述指示信息用于指示前k层DMRS的发射信号的序列索引;
    所述指示信息用于指示前k层DMRS的序列加扰标识;
    所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k;
    所述指示信息用于指示前k层DMRS的序列加扰标识索引;或者
    所述指示信息用于指示当前传输层的层号k。
  10. 根据权利要求8或9所述的方法,其特征在于,所述方法还包括:所述发送端设备向所述接收端设备发送以下信息中的至少一种:
    DMRS映射资源位置信息;
    用于配置非线性预编码的序列加扰标识为无线网络临时标识RNTI的配置信息;
    第1至第k-1个传输层上的DMRS的发射信号的序列索引信息;
    所有传输层的DMRS加扰标识信令;
    指示所有传输层的DMRS发射信号均相同的信息;
    指示DMRS的发射信号与传输层的层号间一一对应关系的信息。
  11. 一种通信装置,其特征在于,包括:
    收发单元,用于接收发送端设备发送的指示信息;
    处理单元,用于根据所述指示信息确定当前传输层的层号k,k为大于或等于1的整数;
    确定前k个传输层上的解调参考信号DMRS的发射信号;
    根据所述前k个传输层上的DMRS的发射信号解调第k传输层数据。
  12. 根据权利要求11所述的通信装置,其特征在于,
    所述处理单元具体用于根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定第k传输层数据的功率回退因子λ k
    根据所述功率回退因子λ k解调所述第k传输层数据。
  13. 根据权利要求12所述的通信装置,其特征在于,
    所述处理单元具体用于根据所述前k个传输层上的DMRS的发射信号以及第k传输层的DMRS的接收信号确定所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,其中,j为大于或等于1且小于或等于k的整数;
    根据所述前k个传输层中第j传输层与所述第k传输层之间的信道参数l kj,确定第k传输层数据的功率回退因子λ k
  14. 根据权利要求11至13中任一项所述的通信装置,其特征在于,
    所述指示信息用于指示当前传输层的DMRS端口号k,其中,DMRS端口号与传输层的层号具有一一对应关系,所述处理单元具体用于将DMRS端口号k确定为所述当前传输层的层号k;
    所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k,其中,DMRS的发射信号的序列的索引号与传输层的层号具有一一对应关系,所述处理单元具体用于将DMRS的发射信号的序列索引号k确定为所述当前传输层的层号k;
    所述指示信息用于指示DMRS的发射信号的序列索引,所述处理单元具体用于根据所述DMRS的发射信号的序列索引个数确定所述当前传输层的层号k;
    所述指示信息用于指示DMRS的序列加扰标识,所述处理单元具体用于根据所述DMRS的序列加扰标识个数确定所述当前传输层的层号k;
    所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k,其中,DMRS的序列加扰标识索引号与传输层的层号具有一一对应关系,所述处理单元具体用于将所述DMRS的序列加扰标识索引号k确定为所述当前传输层的层号k;
    所述指示信息用于指示DMRS的序列加扰标识索引,所述处理单元具体用于根据所述DMRS的序列加扰标识索引个数确定所述当前传输层的层号k;或者,
    所述指示信息用于指示当前传输层的层号k。
  15. 根据权利要求11至14中任一项所述的通信装置,其特征在于,
    所述处理单元具体用于根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,根据发送端设备指示的DMRS的发射信号的序列索引确定第1至第k-1个传输层上的DMRS的发射信号;
    所述处理单元具体用于根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,根据DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号;或者,
    所述处理单元具体用于根据高层信令和/或DMRS映射资源位置确定第k个传输层上的DMRS的发射信号,根据当前传输层的层号确定第1至第k-1个传输层上的DMRS的发射信号,其中,传输层对应的DMRS的发射信号与传输层的层号一一对应。
  16. 根据权利要求15所述的通信装置,其特征在于,所述处理单元具体用于根据发送端设备指示的第1至第k-1个传输层上的DMRS的发射信号的序列索引从预设的DMRS序列集合中确定第1至第k-1个传输层上的DMRS的发射信号,其中,所述DMRS序列集合包括专门为非线性预编码定义的一个或多个DMRS序列。
  17. 根据权利要求15所述的通信装置,其特征在于,所述处理单元具体用于按照以下三种方式中的一种确定第1至第k-1个传输层上的DMRS的发射信号:
    根据默认的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的DMRS加扰标识信令均缺省;
    根据DMRS加扰标识信令配置的所述DMRS的序列加扰标识确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均相同;
    根据预配置的用作非线性预编码的序列加扰标识的无线网络临时标识RNTI,确定第1至第k-1个传输层上的DMRS的发射信号,其中,所有传输层对应的所述DMRS的序列加扰标识均为所述RNTI。
  18. 一种用于解调数据的通信装置,其特征在于,包括:
    处理单元,用于生成指示信息,所述指示信息用于确定当前传输层的层号k,k为大于或等于1的整数;
    收发单元,用于向接收端设备发送指示信息,以使得所述接收端设备根据所述指示信息确定当前传输层的层号k,并根据前k个传输层上的DMRS的发射信号解调所述第k 传输层数据。
  19. 根据权利要求18所述的通信装置,其特征在于,
    所述指示信息用于指示当前传输层的DMRS端口号k;
    所述指示信息用于指示当前传输层的DMRS的发射信号的序列索引号k;
    所述指示信息用于指示前k层DMRS的发射信号的序列索引;
    所述指示信息用于指示前k层DMRS的序列加扰标识;
    所述指示信息用于指示当前传输层的DMRS的序列加扰标识索引号k;或者,
    所述指示信息用于指示前k层DMRS的序列加扰标识索引;或者
    所述指示信息用于指示当前传输层的层号k。
  20. 根据权利要求18或19所述的通信装置,其特征在于,所述收发单元还用于向所述接收端设备发送以下信息中的至少一种:
    DMRS映射资源位置信息;
    用于配置非线性预编码的序列加扰标识为无线网络临时标识RNTI的配置信息;
    第1至第k-1个传输层上的DMRS的发射信号的序列索引信息;
    所有传输层的DMRS加扰标识信令;
    指示所有传输层的DMRS发射信号均相同的信息;
    指示DMRS的发射信号与传输层的层号间一一对应关系的信息。
  21. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法。
  22. 一种计算机程序产品,其特征在于,包括程序或指令,当所述程序或指令在计算机上运行时,使得所述计算机执行如权利要求1至10中任一项所述的方法。
PCT/CN2019/088962 2018-06-01 2019-05-29 用于解调数据的方法和通信装置 WO2019228390A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810557362.9A CN110557348B (zh) 2018-06-01 2018-06-01 用于解调数据的方法和通信装置
CN201810557362.9 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019228390A1 true WO2019228390A1 (zh) 2019-12-05

Family

ID=68698503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088962 WO2019228390A1 (zh) 2018-06-01 2019-05-29 用于解调数据的方法和通信装置

Country Status (2)

Country Link
CN (1) CN110557348B (zh)
WO (1) WO2019228390A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112383329B (zh) * 2020-10-29 2022-02-08 杭州红岭通信息科技有限公司 一种基于zf算法的波束赋型优化方法
CN116686247A (zh) * 2021-02-08 2023-09-01 华为技术有限公司 一种通信的方法及装置
WO2023141897A1 (zh) * 2022-01-27 2023-08-03 Oppo广东移动通信有限公司 发送功率的确定方法及装置、终端设备、网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158319A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN104396202A (zh) * 2012-06-19 2015-03-04 瑞典爱立信有限公司 基于信道状态信息可靠性的自适应预编码
CN107733592A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 传输方案指示方法、数据传输方法、装置及系统
US20180145809A1 (en) * 2016-11-22 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for channel estimation and data decoding in wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847860B2 (en) * 2012-03-23 2017-12-19 Nokia Solutions And Networks Oy Communication mechanism using demodulation reference signal based communication mode
CN106162890B (zh) * 2015-04-14 2020-02-18 中国移动通信集团公司 一种解调参考信号dmrs端口的指示方法、装置及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158319A (zh) * 2010-02-12 2011-08-17 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN104396202A (zh) * 2012-06-19 2015-03-04 瑞典爱立信有限公司 基于信道状态信息可靠性的自适应预编码
CN107733592A (zh) * 2016-08-10 2018-02-23 华为技术有限公司 传输方案指示方法、数据传输方法、装置及系统
US20180145809A1 (en) * 2016-11-22 2018-05-24 Samsung Electronics Co., Ltd. Method and apparatus for channel estimation and data decoding in wireless communication system

Also Published As

Publication number Publication date
CN110557348B (zh) 2020-12-08
CN110557348A (zh) 2019-12-10

Similar Documents

Publication Publication Date Title
US11750250B2 (en) Communications method and device
US20210160837A1 (en) Reference signal for 3d mimo in wireless communication systems
CN108292941B (zh) 用于减少的反馈mimo的方法和装置
KR102120959B1 (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
CN113328772B (zh) 用于信道状态信息参考信号(csi-rs)的方法和装置
US10757696B2 (en) System and method for transmission and reception of control and data channels with group reference signal
KR20210052562A (ko) 업링크 제어 정보 송신 및 수신을 위한 방법 및 장치
KR20190077521A (ko) 첨단 무선 통신 시스템에서의 첨단 csi 보고
WO2012155523A1 (zh) 非周期的信道状态信息的处理方法、装置及系统
WO2019196801A1 (zh) 数据传输的方法、通信装置及系统
US11005625B2 (en) Reference signal indication method and apparatus to improve spectrum efficiency
US20130303230A1 (en) Method and apparatus for aggregated cqi for coordinated multipoint transmission
US10911122B2 (en) Reference signal sending method, reference signal receiving method, network device, and terminal device
CN108781105B (zh) 用于信道状态信息(csi)报告的方法和装置
JP7177141B2 (ja) 無線通信方法、ユーザ装置及び基地局
WO2020151531A1 (zh) 参考信号的传输方法及装置
US11277176B2 (en) Communication method, communications apparatus, and communications system
WO2019228390A1 (zh) 用于解调数据的方法和通信装置
WO2020020351A1 (zh) 接收和发送数据的方法以及通信装置
CN116724498A (zh) 用于稳健mimo传输的方法和装置
US20230013510A1 (en) Method for indicating channel state information csi measurement and communication apparatus
US20200059278A1 (en) Data sending method, data receiving method, network device, and terminal device
WO2020020354A1 (zh) 接收和发送数据的方法以及通信装置
WO2023272676A1 (en) Systems and methods for uplink codebook based transmission
WO2024065444A1 (en) Flexible multiple port srs transmission using multiple symbols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19810151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19810151

Country of ref document: EP

Kind code of ref document: A1