WO2020151531A1 - 参考信号的传输方法及装置 - Google Patents

参考信号的传输方法及装置 Download PDF

Info

Publication number
WO2020151531A1
WO2020151531A1 PCT/CN2020/071991 CN2020071991W WO2020151531A1 WO 2020151531 A1 WO2020151531 A1 WO 2020151531A1 CN 2020071991 W CN2020071991 W CN 2020071991W WO 2020151531 A1 WO2020151531 A1 WO 2020151531A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource unit
resource
port
reference signal
port group
Prior art date
Application number
PCT/CN2020/071991
Other languages
English (en)
French (fr)
Inventor
刘建琴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020151531A1 publication Critical patent/WO2020151531A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/004Orthogonal
    • H04J13/0044OVSF [orthogonal variable spreading factor]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communications, and more specifically, to a method and device for transmitting reference signals.
  • the reference signal is used to support the receiver equipment to perform channel estimation.
  • the reference signal is usually only sent on the scheduled physical resource block.
  • the reference signal can occupy all 12 subcarriers in one symbol in a physical resource block (PRB) to support the maximum number of multiple orthogonal antenna ports.
  • PRB physical resource block
  • PRB physical resource block
  • Data channels and corresponding reference signals can only occupy part of the sub-carriers within one symbol in the PRB. It will not be possible to continue to use the current reference signal resource mapping method in the PRB. Support to the largest number of orthogonal ports. Therefore, a new resource mapping method for reference signals needs to be designed.
  • the present application provides a reference signal transmission method and device, which can support the maximum number of reference signal orthogonal ports under the new data channel transmission mode.
  • an embodiment of the present application provides a reference signal transmission method, including: a transmitting end device determines a resource unit occupied by a reference signal from a reference signal resource set, and the reference signal resource set includes T ⁇ K resource units ,
  • the T ⁇ K resource units are composed of K consecutive resource units on each of the T consecutive symbols of a physical resource block PRB, where one PRB is in each of the T consecutive symbols
  • the symbol includes N resource units, T, N, and K are positive integers and N>K ⁇ 1, T ⁇ 1, T ⁇ K resource units in the T consecutive symbols and at least one port of the reference signal Group correspondence, each port group in the at least one port group includes at least two ports, and reference signals corresponding to the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units; Sending the reference signal on the T ⁇ K resource units.
  • a new reference signal configuration pattern is designed, that is, through multiple orthogonal multiplexing methods, the reference signals corresponding to multiple ports can be orthogonalized on some resource units in a PRB.
  • Multiplexing can support more types of data transmission methods; and, mapping reference signals on consecutive partial resource units in a PRB can reduce the energy consumption of detecting reference signals; in addition, reference signals occupy part of the PRB resources, Other resource units on the PRB can be used to transmit other signaling or information, which helps to improve the efficiency of resource use.
  • the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units, including: the ports in the at least one port group correspond to The reference signal is orthogonally multiplexed on the T ⁇ K resource units through at least one of sequence cyclic shift, code division multiplexing, frequency division multiplexing and time division multiplexing.
  • an orthogonal multiplexing mode or any combination of multiple orthogonal multiplexing modes can be used to flexibly implement orthogonal multiplexing of reference signals on part of resource units of a PRB.
  • the orthogonal code in the code division multiplexing is a time domain orthogonal spreading code and/or a frequency domain orthogonal spreading code.
  • different reference signal resource sets can correspond to different orthogonal multiplexing modes
  • the transmitting end device can determine the mapping mode of the reference signal on the resource unit according to the configuration parameters of the reference signal resource set, which can reduce the transmission end The complexity of device mapping reference signals.
  • the positions of the K continuous resource units are the same as the positions of the K continuous resource units occupied by the transmitting end device on one symbol of data transmission in one PRB.
  • the position of the resource unit for transmitting data in the frequency domain is the same as the position of the resource unit for transmitting the reference signal in the frequency domain, and the receiving end device can determine that the reference signal is in the frequency domain while receiving the data.
  • the receiving end device can reduce the complexity of mapping the reference signal by the transmitting end device, and on the other hand, it can reduce the energy consumption of the receiving end device for detecting the reference signal.
  • the reference signal corresponding to the port in the at least one port group is in the T
  • the cyclic shift of the sequence and frequency division multiplexing are orthogonal to ⁇ K resource units.
  • the reference signal corresponding to the port in the at least one port group is in the T ⁇ K
  • the two resource units are orthogonal through frequency domain orthogonal spreading codes and frequency division multiplexing.
  • the maximum number of orthogonal ports can be supported; 6 resource units in one symbol are used for mapping reference In the case of signals, the maximum number of quadrature ports can be supported by 4 or 6.
  • the reference signal corresponding to the port in the at least one port group is On the T ⁇ K resource units, orthogonal through sequence cyclic shift, frequency division multiplexing and time domain orthogonal spreading code; or, orthogonal through time domain orthogonal spreading code and frequency division multiplexing; or , Through frequency domain orthogonal spreading code and time division multiplexing orthogonal; or through frequency domain orthogonal spreading code, frequency division multiplexing and time division multiplexing orthogonal.
  • the frequency division multiplexing is frequency division multiplexing with a comb of 2 or frequency division multiplexing with a comb of 3.
  • the frequency domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • orthogonal spreading codes of different lengths are used, and the reference signal is mapped to some resource units in a PRB, which can effectively realize the support of the maximum number of orthogonal ports.
  • the length of the frequency domain orthogonal spreading code is 2 or 4
  • resource units on multiple subcarriers can be used to map multiple ports of the reference signal, which increases the flexibility of mapping the reference signal on the resource unit.
  • the time-domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • orthogonal spreading codes of different lengths are used, and the reference signal is mapped to some resource units in a PRB, which can effectively realize the support of the maximum number of orthogonal ports.
  • the length of the time-domain orthogonal spreading code is 2 or 4
  • resource units on multiple symbols can be used to map multiple ports of the reference signal, which increases the flexibility of mapping the reference signal on the resource unit.
  • the location of the resource element corresponding to the at least one port group in the first PRB is different from the location of the corresponding resource element in the second PRB, and the first PRB and the The second PRB is two adjacent PRBs occupied by the reference signal.
  • At least one port group of the reference signal has different mapping modes, so that the mapping density and mapping efficiency of each port of the reference signal on all PRBs can be maximized.
  • an embodiment of the present application provides a reference signal transmission method, including: a receiving end device determines a resource unit occupied by a reference signal from a reference signal resource set, the reference signal resource set including T ⁇ K resource units ,
  • the T ⁇ K resource units are composed of K consecutive resource units on each of the T consecutive symbols of a physical resource block PRB, where one PRB is in each of the T consecutive symbols
  • the symbol includes N resource units, T, N, and K are positive integers and N>K ⁇ 1, T ⁇ 1, T ⁇ K resource units in the T consecutive symbols and at least one port of the reference signal Group correspondence, each port group in the at least one port group includes at least two ports, and reference signals corresponding to the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units; Receiving the reference signal on the T ⁇ K resource units.
  • a new reference signal configuration pattern is designed, that is, through multiple orthogonal multiplexing methods, the reference signals corresponding to multiple ports can be orthogonalized on some resource units in a PRB.
  • Multiplexing can support more types of data transmission methods; moreover, part of the resource units that are continuous in the time domain and continuous in the frequency domain in a PRB are used for mapping reference signals, which can reduce the ability of the receiving device to detect reference signals.
  • the reference signal occupies part of the resources of the PRB, and other resource units on the PRB can be used to transmit other signaling or information, which is beneficial to improve the efficiency of resource use.
  • the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units, including: the ports in the at least one port group correspond to The reference signal is orthogonally multiplexed on the T ⁇ K resource units through at least one of sequence cyclic shift, code division multiplexing, frequency division multiplexing and time division multiplexing.
  • one orthogonal multiplexing mode or any combination of multiple orthogonal multiplexing modes can be used to flexibly implement orthogonal multiplexing of reference signals on some resource units of one PRB.
  • the orthogonal code in the code division multiplexing is a time domain orthogonal spreading code and/or a frequency domain orthogonal spreading code.
  • different reference signal resource sets can correspond to different orthogonal multiplexing modes
  • the receiving end device can determine the mapping mode of the reference signal on the resource unit according to the configuration parameters of the reference signal resource set, which can reduce the receiving end The complexity of device mapping reference signals.
  • the positions of the K continuous resource units are the same as the positions of the K continuous resource units occupied by the receiving end device on one symbol of data reception in one PRB.
  • the resource unit used to transmit data is also used to transmit reference signals.
  • the receiving end device can detect the reference signal in the resource area occupied by the data while receiving the data.
  • the receiving end device can be reduced
  • the complexity of mapping the reference signal on the other hand, can reduce the energy consumption required by the receiving device to detect the reference signal.
  • the reference signal corresponding to the port in the at least one port group is in the T
  • the cyclic shift of the sequence and frequency division multiplexing are orthogonal to ⁇ K resource units.
  • the maximum number of orthogonal ports can be supported by 4 or 6.
  • the reference signal corresponding to the port in the at least one port group is in the T ⁇ K
  • the two resource units are orthogonal through frequency domain orthogonal spreading codes and frequency division multiplexing.
  • the maximum number of orthogonal ports can be supported; for 6 resource units in a symbol In the case of mapping the corresponding ports of the reference signal, a maximum number of 4 or 6 orthogonal ports can be supported.
  • the reference signal corresponding to the port in the at least one port group is On the T ⁇ K resource units, orthogonal through sequence cyclic shift, frequency division multiplexing and time domain orthogonal spreading code; or, orthogonal through time domain orthogonal spreading code and frequency division multiplexing; or , Through frequency domain orthogonal spreading code and time division multiplexing orthogonal; or through frequency domain orthogonal spreading code, frequency division multiplexing and time division multiplexing orthogonal.
  • the maximum number of orthogonal ports of 4, 6, 8, or 12 can be supported.
  • the frequency division multiplexing is a frequency division multiplexing with a comb of 2 or a frequency division multiplexing with a comb of 3.
  • different frequency division multiplexing methods are used to map the reference signal to some resource units in a PRB, which can effectively realize the support of the maximum number of orthogonal ports.
  • the frequency domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • orthogonal spreading codes of different lengths are used, and the reference signal is mapped to some resource units in a PRB, which can effectively realize the support of the maximum number of orthogonal ports.
  • the length of the frequency domain orthogonal spreading code is 2 or 4
  • resource units on multiple subcarriers can be used to map multiple ports of the reference signal, which increases the flexibility of mapping the reference signal on the resource unit.
  • the time domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • orthogonal spreading codes of different lengths are used, and the reference signal is mapped to some resource units in a PRB, which can effectively realize the support of the maximum number of orthogonal ports.
  • the length of the time-domain orthogonal spreading code is 2 or 4
  • resource units on multiple symbols can be used to map multiple ports of the reference signal, which increases the flexibility of mapping the reference signal on the resource unit.
  • the location of the resource element corresponding to the at least one port group in the first PRB is different from the location of the corresponding resource element in the second PRB, and the first PRB and the The second PRB is two adjacent PRBs occupied by the reference signal.
  • At least one port group of the reference signal has different mapping modes, so that the mapping density and mapping efficiency of each port of the reference signal on all PRBs can be maximized.
  • an embodiment of the present application provides a communication device, including:
  • the processing module is configured to determine resource units occupied by reference signals.
  • the reference signal resource set includes T ⁇ K resource units.
  • the T ⁇ K resource units consist of each of the T consecutive symbols of a physical resource block PRB. Consisting of K consecutive resource units on two symbols, where one PRB includes N resource units on each of the T consecutive symbols, and T, N and K are positive integers and N>K ⁇ 1, T ⁇ 1, T ⁇ K resource units in the T consecutive symbols correspond to at least one port group of the reference signal, and each port group in the at least one port group includes at least two ports, and
  • the reference signal corresponding to the port in at least one port group is orthogonally multiplexed on the T ⁇ K resource units; the sending module is configured to send the reference signal on the T ⁇ K resource units.
  • the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units, including: corresponding to the ports in the at least one port group
  • the reference signal is orthogonally multiplexed on the T ⁇ K resource units through at least one of sequence cyclic shift, code division multiplexing, frequency division multiplexing and time division multiplexing.
  • the orthogonal code in the code division multiplexing is a time domain orthogonal spreading code and/or a frequency domain orthogonal spreading code.
  • the third aspect there are at least two different K values, and reference signals corresponding to ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units The way is different.
  • the positions of the K continuous resource units are the same as the positions of the K continuous resource units occupied by the transmitting end device on one symbol of data transmission in one PRB.
  • the reference signal corresponding to the port in the at least one port group is at the T
  • the cyclic shift of the sequence and frequency division multiplexing are orthogonal to ⁇ K resource units.
  • the reference signal corresponding to the port in the at least one port group is in the T ⁇ K
  • the two resource units are orthogonal through frequency domain orthogonal spreading codes and frequency division multiplexing.
  • the reference signal corresponding to the port in the at least one port group is On the T ⁇ K resource units, orthogonal through sequence cyclic shift, frequency division multiplexing and time domain orthogonal spreading code; or, orthogonal through time domain orthogonal spreading code and frequency division multiplexing; or , Through frequency domain orthogonal spreading code and time division multiplexing orthogonal; or through frequency domain orthogonal spreading code, frequency division multiplexing and time division multiplexing orthogonal.
  • the frequency division multiplexing is frequency division multiplexing with a comb of 2 or frequency division multiplexing with a comb of 3.
  • the frequency domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • the time-domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • the location of the resource element corresponding to the at least one port group in the first PRB is different from the location of the corresponding resource element in the second PRB, and the first PRB and the The second PRB is two adjacent PRBs occupied by the reference signal.
  • an embodiment of the present application provides a communication device, including: a processing module, configured to determine a resource unit occupied by a reference signal from a reference signal resource set, the reference signal resource set including T ⁇ K resource units, The T ⁇ K resource units are composed of K consecutive resource units on each of the T consecutive symbols of a physical resource block PRB, where one PRB is located on each of the T consecutive symbols.
  • each port group in the at least one port group includes at least two ports, and the reference signals corresponding to the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units; receiving; A module for receiving the reference signal on the T ⁇ K resource units.
  • the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units, including: the ports in the at least one port group correspond to The reference signal is orthogonally multiplexed on the T ⁇ K resource units through at least one of sequence cyclic shift, code division multiplexing, frequency division multiplexing and time division multiplexing.
  • the orthogonal code in the code division multiplexing is a time domain orthogonal spreading code and/or a frequency domain orthogonal spreading code.
  • the reference signals corresponding to the ports in the at least one port group are orthogonally complexed on the T ⁇ K resource units. Use different methods.
  • the positions of the K continuous resource units are the same as the positions of the K continuous resource units occupied by the transmitting end device on one symbol of data transmission in one PRB.
  • the reference signal corresponding to the port in the at least one port group is in the
  • the T ⁇ K resource units are orthogonal by sequence cyclic shift and frequency division multiplexing.
  • the reference signal corresponding to the port in the at least one port group is at the T ⁇
  • the K resource units are orthogonal through frequency domain orthogonal spreading codes and frequency division multiplexing.
  • the reference signal corresponding to the port in the at least one port group is On the T ⁇ K resource units, orthogonal through sequence cyclic shift, frequency division multiplexing and time domain orthogonal spreading code; or orthogonal through time domain orthogonal spreading code and frequency division multiplexing; Or, through frequency domain orthogonal spreading code and time division multiplexing orthogonal; or, through frequency domain orthogonal spreading code, frequency division multiplexing and time division multiplexing orthogonal.
  • the frequency division multiplexing is frequency division orthogonality with comb teeth of 2 or frequency division orthogonality with comb teeth of 3.
  • the frequency domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • the time-domain orthogonal spreading code is an orthogonal spreading code with a length of 2 or an orthogonal spreading code with a length of 4.
  • the location of the resource element corresponding to the at least one port group in the first PRB is different from the location of the corresponding resource element in the second PRB, and the first PRB and the The second PRB is two adjacent PRBs occupied by the reference signal.
  • an embodiment of the present application provides a communication device, which includes a module for executing the first aspect or any possible implementation manner of the first aspect.
  • the communication device of the fifth aspect may be a terminal, or may be a component (for example, a chip or a circuit, etc.) applicable to a terminal.
  • the communication device of the fifth aspect may be a base station, or may be a component (for example, a chip or a circuit, etc.) used in a base station.
  • an embodiment of the present application provides a communication device, which includes a module for executing the second aspect or any possible implementation manner of the second aspect.
  • the communication device of the sixth aspect may be a terminal, or may be a component (for example, a chip or a circuit, etc.) applicable to a terminal.
  • the communication device of the sixth aspect may be a base station, or may be a component (for example, a chip or a circuit, etc.) used in a base station.
  • an embodiment of the present application provides a storage medium that stores instructions for implementing the first aspect or any one of the possible implementation manners of the first aspect.
  • an embodiment of the present application provides a storage medium that stores instructions for implementing the second aspect or any one of the possible implementation manners of the second aspect.
  • this application provides a computer program product containing instructions, which when the computer program product runs on a computer, causes the computer to execute the method described in the first aspect or any one of the possible implementations of the first aspect .
  • this application provides a computer program product containing instructions, which when the computer program product runs on a computer, causes the computer to execute the method described in the second aspect or any one of the possible implementations of the second aspect .
  • the present application provides a communication device.
  • the communication device includes at least one processor and a communication interface.
  • the communication interface is used for information interaction between the communication device and other communication devices.
  • the communication apparatus When executed in the at least one processor, the communication apparatus is enabled to implement the function on the sending end device in the method described in the first aspect or any one of the possible implementation manners of the first aspect.
  • the present application provides a communication device.
  • the communication device includes at least one processor and a communication interface.
  • the communication interface is used for information interaction between the communication device and other communication devices.
  • the communication apparatus When executed in the at least one processor, the communication apparatus is enabled to implement the function on the receiving end device in the method described in the second aspect or any one of the possible implementation manners of the second aspect.
  • the present application provides a chip system, characterized in that the chip system includes at least one processor, and when the program instructions are executed in the at least one processor, such as the first aspect or the first In the method described in any possible implementation manner of the aspect, the function on the sending end device is implemented.
  • the present application provides a chip system, characterized in that the chip system includes at least one processor, and when the program instructions are executed in the at least one processor, such as the second aspect or the second aspect In any possible implementation manner of the aspect, the function on the receiving end device in the method described is implemented.
  • FIG. 1 is a schematic diagram of a scenario of a communication system applicable to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a data processing process according to an embodiment of the present application.
  • Fig. 3 is a schematic diagram of port mapping of a demodulation reference signal.
  • Fig. 4 is a schematic flowchart of a reference signal transmission method provided according to the present application.
  • Fig. 5 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 6 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 7 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 8 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 9 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 10 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 11 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • Fig. 12 is a schematic diagram of reference signal port mapping according to an embodiment provided by the present application.
  • FIG. 13 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects are in an "or” relationship.
  • At least one item (a) in the following” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c may represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • words such as “first” and “second” do not limit the number and execution order.
  • the words “401”, “402”, “403”, etc. are merely identifications for convenience of description, and do not limit the order of execution steps.
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • LTE frequency division duplex FDD
  • TDD LTE Time division duplex
  • UMTS universal mobile telecommunication system
  • WiMAX worldwide interoperability for microwave access
  • FIG. 1 is a schematic diagram of a scenario of a communication system applicable to an embodiment of the present application.
  • the communication system 100 includes a network device 102, and the network device 102 may include multiple antenna groups.
  • Each antenna group may include multiple antennas.
  • one antenna group may include antennas 104 and 106, another antenna group may include antennas 106 and 110, and an additional group may include antennas 112 and 114.
  • Figure 1 shows 2 antennas for each antenna group, however more or fewer antennas can be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain. Those of ordinary skill in the art can understand that they can each include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, and decoders). Tuner, demultiplexer or antenna, etc.).
  • the network device 102 may communicate with multiple terminal devices (for example, the terminal device 116 and the terminal device 122). However, it is understood that the network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable for communication on the wireless communication system 100 equipment.
  • the terminal device 116 communicates with antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link 116 and receive information from the terminal device 116 through the reverse link 120.
  • the terminal device 122 communicates with antennas 104 and 106, wherein the antennas 104 and 106 transmit information to the terminal device 122 through the forward link 124, and receive information from the terminal device 122 through the reverse link 126.
  • the forward link 116 can use a different frequency band than the reverse link 120, and the forward link 124 can use the same frequency band as the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 116 and the reverse link 120 can use a common frequency band, and the forward link 124 and the reverse link The link 126 may use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector of the area covered by the network device 102.
  • the transmitting antenna of the network device 102 can use beamforming to improve the signal-to-noise ratio of the forward links 116 and 124.
  • the network device 102 uses beamforming to send signals to terminal devices 116 and 122 that are randomly dispersed in the relevant coverage area, Mobile devices will experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication sending device and/or a wireless communication receiving device.
  • the wireless communication sending device can encode the data for transmission.
  • the wireless communication sending device may obtain (for example, generate, receive from other communication devices, or store in a memory, etc.) a certain number of data bits to be sent to the wireless communication receiving device through a channel.
  • Such data bits can be included in a transmission block (or multiple transmission blocks) of data, and the transmission block can be segmented to generate multiple code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device-to-device (D2D) network or a machine-to-machine (M2M) network or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • Figure 1 is only an example for ease of understanding
  • the simplified schematic diagram of the network can also include other network equipment, which is not shown in Figure 1.
  • the network equipment may be a global system of mobile communication (GSM) system or a base transceiver station (BTS) in code division multiple access (CDMA), or it may be
  • GSM global system of mobile communication
  • BTS base transceiver station
  • CDMA code division multiple access
  • NB wideband code division multiple access
  • WCDMA wideband code division multiple access
  • evolutional node B, eNB/eNodeB evolved base station
  • LTE long term evolution
  • the network device can be a relay station or an access point, or a network device in the future 5G network, such as an NR system Medium transmission point (transmission and reception point, TRP or transmission point TP), base station (gNB) in NR system, radio frequency unit in NR system, such as remote radio unit, one or a group of base stations in 5G system (including Multiple antenna panels) antenna panels, etc.
  • the embodiments of this application can be adapted to any of the aforementioned communication systems.
  • the embodiments of this application can be adapted to LTE systems and subsequent evolutionary systems such as 5G, etc., or other wireless communication systems that use various wireless access technologies, such as code division.
  • Multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access and other access technology systems especially suitable for scenarios that require channel information feedback and/or apply secondary precoding technology ,
  • M-MIMO massive-input multiple-output
  • the terminal equipment in the embodiments of the present application may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal , Wireless communication equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, and an augmented reality (AR) terminal Equipment, wireless terminals in industrial control, wireless terminals in unmanned driving (self-driving), wireless terminals in remote medical, wireless terminals in smart grid, transportation safety ( Wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, wireless terminals or manufacturing equipment in smart factories, and so on.
  • the embodiment of this application does not limit the application scenario.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • various aspects or features of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program that can be accessed from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • the terminal device or the network device includes a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system may be any one or more computer operating systems that implement business processing through processes, for example, Linux operating system, Unix operating system, Android operating system, iOS operating system, or windows operating system.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the embodiments of the application do not specifically limit the specific structure of the execution body of the method provided in the embodiments of the application, as long as the program that records the codes of the methods provided in the embodiments of the application can be provided according to the embodiments of the application.
  • the execution subject of the method provided in the embodiments of the present application may be a terminal device or a network device, or a functional module in the terminal device or network device that can call and execute the program.
  • FIG. 2 shows the main steps of the data processing process performed by the transmitting end device (for example, a network device) before data is transmitted through orthogonal frequency division multiplexing (OFDM) symbols.
  • the service stream from the upper layer for example, the media access control (MAC) layer
  • the codewords are mapped to one or more after being scrambled, modulated, and layer mapped. Layer, then undergo precoding processing, resource unit mapping, and finally send the modulated symbols through the antenna port.
  • the receiving end device (for example, the terminal device) can demodulate the data.
  • the sending end device may be a network device or a terminal device; the receiving end device may be a network device or a terminal device.
  • MIMO uses multiple transmitting antennas to transmit signals with the same information through different paths.
  • the receiving device can obtain multiple independent fading of the same data symbol.
  • the spatial diversity of MIMO technology can be used to combat channel fading.
  • the precoding technology not only can effectively suppress the interference of multiple users in the MIMO system, but also can significantly improve the system capacity while greatly simplifying the algorithm of the receiving end equipment.
  • the precoding technology can be to perform pre-processing on the signal to be transmitted on the transmitting end device when the channel state is known, that is, to process the signal to be transmitted with the help of a precoding matrix that matches the channel resources, so that the precoded
  • the signal to be transmitted is adapted to the channel, which reduces the complexity of the receiver device in eliminating the influence between channels. Therefore, by precoding the transmitted signal, the received signal quality (for example, the signal to interference plus noise ratio (SINR)) can be improved. Therefore, the use of precoding technology can realize the transmission on the same time-frequency resource between the transmitting end device and multiple receiving end devices, that is, multiple user multiple input multiple output (MU-MIMO) can be realized.
  • SINR signal to interference plus noise ratio
  • the sender In order to obtain a precoding matrix that can be adapted to the channel, the sender usually performs channel estimation in advance by sending a reference signal, and obtains feedback from the receiving end to determine a more accurate precoding matrix to precode the data to be sent .
  • the transmitting end may be a network device
  • the receiving end may be a terminal device.
  • the reference signal may be a reference signal used for downlink channel measurement, for example, a channel state information reference signal (CSI-RS).
  • CSI-RS channel state information reference signal
  • the terminal device can perform CSI measurement according to the received CSI-RS, and feed back the CSI of the downlink channel to the network device;
  • the transmitting end can also be a terminal device, the receiving end can be a network device, and the reference signal can be used for uplink A reference signal for channel measurement, for example, a sounding reference signal (SRS).
  • the network device may perform channel estimation and/or CSI measurement according to the received SRS, and indicate the CSI of the uplink channel to the terminal device.
  • CSI may include, for example, but not limited to, precoding matrix indicator (PMI), rank indicator (rank indicator, RI), channel quality indicator (channel quality indicator, CQI), etc.; in order to achieve the channel quality of high-order multi-antenna systems
  • PMI precoding matrix indicator
  • rank indicator rank indicator
  • CQI channel quality indicator
  • DMRS demodulation reference signals
  • PDSCH physical downlink share channel
  • PUSCH physical uplink shared channel
  • the present application does not specifically limit the communication mode applicable to the reference signal and the type of the reference signal.
  • the transmitting end may be, for example, a network device, and the receiving end may be, for example, a terminal device.
  • the reference signal may be, for example, a channel state information reference signal (CSI-RS);
  • CSI-RS channel state information reference signal
  • the sending end may be, for example, a terminal device, and the receiving end may be, for example, a network device.
  • the reference signal may be, for example, a sounding reference signal (SRS); for device-to-device (D2D) data transmission
  • SRS sounding reference signal
  • D2D device-to-device
  • the sending end may be a terminal device
  • the receiving end may also be a terminal device, for example, and the reference signal may be, for example, SRS or DMRS.
  • DMRS maps the mapping mode of the reference signal in the physical resource block.
  • DMRS supports two configuration methods.
  • Figure 3 shows the DMRS port mapping pattern. The following configuration methods are all based on the complete PRB port configuration pattern.
  • the FDM mode with two cyclic shifts of the sequence and 2 comb teeth in each RB is used and time-domain code division multiplexing (CDM) (for example, time-domain positive
  • CDM code division multiplexing
  • OCC orthogonal cover code
  • the length of the time domain OCC code is 2, and the corresponding code sequence is ⁇ 1 1 ⁇ and ⁇ 1 -1 ⁇ ;
  • port group 3 and port group 4 adopt a comb-tooth frequency division multiplexing method to achieve orthogonality, and ports 1 to 4 in port group 4 occupy the same time-frequency resources, passing through two cycles of the sequence Shift plus length 2 time domain OCC code to achieve orthogonality.
  • Ports 5 to 8 of port group 5 occupy the same time-frequency resources.
  • the orthogonality is achieved through two cyclic shifts of the sequence and time domain OCC code length 2 .
  • the frequency domain code sequence is ⁇ 1 1 ⁇ and ⁇ 1 -1 ⁇ ; among them, port group 1, port group 2, and port group 3 adopt a comb-tooth frequency division multiplexing method to achieve orthogonality, and port group 1 Port 1 and port 2 occupy the same time-frequency resource, and orthogonality is achieved through the frequency domain OCC code of length 2.
  • Port 3 and port 4 in port group 2 occupy the same time-frequency resource, and pass the frequency domain OCC of length 2.
  • the codes achieve orthogonality, and the ports 5 and 6 in the port group 3 occupy the same time-frequency resources, and the orthogonality is achieved through the frequency domain OCC code of length 2.
  • the maximum number of orthogonality is 12 Port support, where the length of the time domain OCC code and the frequency domain OCC code is 2, the code sequence corresponding to the time domain OCC code is ⁇ 1 1 ⁇ and ⁇ 1 -1 ⁇ , and the code sequence corresponding to the frequency domain OCC code is ⁇ 1 1 ⁇ and ⁇ 1 -1 ⁇ ; among them, port group 4, port group 5, and port group 6 adopt the frequency division multiplexing method with comb 3 to achieve orthogonality, and ports 1 to 4 in port group 4 occupy the same Time-frequency resources, through the frequency domain OCC code of length 2 plus the time domain OCC code of length 2 to achieve orthogonality, ports 5 to 8 of port group 5 occupy the same time-frequency resources, and pass the frequency domain OCC code of length 2 The time domain OCC code of length 2 is added to
  • the embodiments of the present application provide a method for transmitting DMRS, which can support DMRS port mapping in various situations.
  • FIG. 4 is a schematic flowchart of a communication method according to an embodiment of the present invention.
  • the transmitting end device determines the resource unit occupied by the reference signal from the reference signal resource set, where the reference signal resource set includes T ⁇ K resource units, and the T ⁇ K resource units consist of T Consecutive symbols consist of K consecutive resource units on each of the T consecutive symbols, where one PRB includes N resource units on each of the T consecutive symbols, and T, N, and K are positive integers and N>K ⁇ 1, T ⁇ 1, the T ⁇ K resource units in the T consecutive symbols correspond to at least one port group of the reference signal, and each port group in the at least one port group includes at least Two ports, the reference signals corresponding to the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units.
  • the receiving end device determines the resource unit occupied by the reference signal from the reference signal resource set.
  • the reference signal resource set is T ⁇ K resource units among the T ⁇ N resource units.
  • T ⁇ K resource units are located on the T consecutive symbols, and on each of the T consecutive symbols, there are K resource units belonging to the reference signal resource set.
  • the transmitting end device determines the resource units occupied by the reference signal on the T ⁇ K resource units, the ports in at least one port group of the reference signal can be mapped on the T ⁇ K resource units, and the at least one port group includes At least two ports.
  • the receiving end determines the resource units occupied by the reference signal on the T ⁇ K resource units.
  • a PRB consists of 4 consecutive symbols (as shown in horizontal sequence numbers 1-4 in Figure 5), and each symbol has 12 resource units (as shown in vertical sequence numbers 1-12 in Figure 5).
  • the reference signal resource set 510 is composed of 4 consecutive resource units on each of the 4 consecutive symbols, that is, T is equal to 4, N is equal to 12, and K is equal to 4.
  • the reference signal resource set 510 can be used for Mapping the reference signal; the transmitting end device determines in the reference signal resource set 510 that the resource unit occupied by the reference signal is resource unit 1 and resource unit 2 in symbol 1, and is used to map the port group 1 and port group 2 of the reference signal , Where port group 1 includes port 1 and port 2, port group 2 includes port 3 and port 4, ports of port group 1 are orthogonally multiplexed on resource unit 1, and ports of port group 2 are orthogonal on resource unit 2. Multiplexing; correspondingly, the receiving end device determines in the reference signal resource set 510 that the resource unit occupied by the reference signal is resource unit 1 and resource unit 2 in symbol 1.
  • the reference signal may include cell-specific reference signals (CRS), demodulation reference signal (DMRS), sounding reference signal (Sounding Reference Signal, SRS), and channel quality measurement reference At least one of the symbols (channel State Information-Reference Signal, CSI-RS).
  • CRS cell-specific reference signals
  • DMRS demodulation reference signal
  • SRS Sounding Reference Signal
  • CSI-RS channel quality measurement reference At least one of the symbols.
  • the sending end device and the receiving end device may determine the resource unit occupied by the reference signal according to the configuration.
  • the sending end device and the receiving end device may pre-set the information of resource units occupied by the reference signal in the reference signal resource set.
  • the sending end device and the receiving end device may predefine the reference signal to preferentially occupy the reference signal resource. Low-frequency band resources or high-frequency band resources in the set.
  • the sending end device and the receiving end device can explicitly configure the configuration information of the resource unit occupied by the reference signal in the reference signal resource set.
  • the sending end device can indicate the configuration information of the resource unit occupied by the reference signal
  • the receiving end determines the resource unit occupied by the reference signal according to the instruction of the sending end device.
  • the reference signals corresponding to the ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units, including: reference signals corresponding to some or all ports in the at least one port group Orthogonal multiplexing on the T ⁇ K resource units.
  • port group 1 includes port 1, port 2, port 3, and port 4.
  • T is 1
  • K is 2
  • port 1 and port 2 are orthogonally multiplexed on resource unit 1, resource unit 2, port 3, port 4 Orthogonal multiplexing on other resource units
  • the reference signals corresponding to some ports in the port group 1 are orthogonally multiplexed on the T ⁇ K resource units.
  • port group 1 includes port 1 and port 2, T is 1, K is 2, and port 1 and port 2 are orthogonally multiplexed on resource unit 1 and resource unit 2. Then, all ports in port group 1 correspond to The reference signal of is orthogonally multiplexed on the T ⁇ K resource units.
  • the orthogonal multiplexing of the ports in the at least one port group on the T ⁇ K resource units includes: the reference signals corresponding to the ports in the at least one port group are in the T ⁇ K resource units.
  • the resource units are orthogonally multiplexed by at least one of sequence cyclic shift, code division multiplexing, frequency division multiplexing and time division multiplexing.
  • the cyclic shift of the sequence refers to the linear phase rotation of the sequence in the frequency domain, which is equivalent to the cyclic shift of the sequence in the time domain, the phase refers to e ja , and a is the cyclic shift parameter.
  • Reference signals obtained by performing different cyclic shifts on the same basic reference signal sequence can be orthogonal to each other. For example, a is set to m ⁇ /6, m can be from 0 to 11, and 12 different orthogonal reference signals can be obtained from a basic reference signal sequence.
  • the two cyclic shifts of the sequence may be based on a basic reference signal sequence to perform two different cyclic shifts to obtain two different orthogonal reference signal sequences, and the two orthogonal reference signal sequences may be used for Map different ports.
  • the reference signal corresponding to port 1 occupies resource unit 1 and the corresponding phase is e j ⁇ /6 ; the reference signal corresponding to port 2 occupies resource unit 1 and the corresponding phase is e j ⁇ /3 , then port 1 and port 2 Orthogonal multiplexing on resource unit 1.
  • code division multiplexing distinguishes multiple signals through a set of mutually orthogonal sequences, and realizes multiplexing of multiple signals on the same resource.
  • the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ are orthogonal to each other, so that the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ can correspond to two different ports; for another example, the code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ and code sequence ⁇ 1 j -1 -j ⁇ are orthogonal to each other, code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , and code sequence ⁇ 1 j -1 -j ⁇ can correspond to four different ports.
  • the 4-length OCC code sequence is only an example.
  • the 4-length OCC code sequence may also be a code sequence ⁇ 1 1 1 1 ⁇ , a code sequence ⁇ 1 -1 1 -1 ⁇ , a code sequence ⁇ 1 1 -1 -1 ⁇ and code sequence ⁇ 1 -1 -1 1 ⁇ .
  • the orthogonal code in the code division multiplexing may be a time domain orthogonal spreading code and/or a frequency domain orthogonal spreading code.
  • the length of the frequency domain OCC code is 2, the frequency domain OCC code corresponding to port 1 is ⁇ 1 1 ⁇ , and the frequency domain OCC code corresponding to port 2 is ⁇ 1 -1 ⁇ , then port 1 and Port 2 can be orthogonally multiplexed on the same resource.
  • the length of the time domain OCC code is 4, the time domain OCC code corresponding to port 1 is ⁇ 1 1 1 1 ⁇ , and the time domain OCC code corresponding to port 2 is ⁇ 1 1 1 1 ⁇ . 3
  • the corresponding time domain OCC code is ⁇ j -1 -j 1 ⁇ , and the time domain OCC code corresponding to port 4 is ⁇ 1 j -1 -j ⁇ .
  • ports 1 to 4 can be positive on the same resource Alternate multiplexing. It should be understood that the aforementioned 4-length OCC code sequence is only an example.
  • the 4-length OCC code sequence may also be a code sequence ⁇ 1 1 1 1 ⁇ , a code sequence ⁇ 1 -1 1 -1 ⁇ , a code sequence ⁇ 1 1 -1 -1 ⁇ and code sequence ⁇ 1 -1 -1 1 ⁇ .
  • the length of the frequency domain OCC code is 2, the length of the time domain OCC code is 2, the time domain OCC code corresponding to port 1 is ⁇ 1 1 ⁇ , and the frequency domain OCC code corresponding to port 1 is ⁇ 1 1 ⁇ , the time domain OCC code corresponding to port 2 is ⁇ 1 -1 ⁇ , the frequency domain OCC code corresponding to port 2 is ⁇ 1 -1 ⁇ , and the time domain OCC code corresponding to port 3 is ⁇ 1 1 ⁇ ,
  • the frequency domain OCC code corresponding to port 3 is ⁇ -1 -1 ⁇
  • the time domain OCC code corresponding to port 4 is ⁇ 1 -1 ⁇
  • the frequency domain OCC code corresponding to port 4 is ⁇ -1 1 ⁇
  • frequency division multiplexing may be to divide frequency domain resources used for transmission channels into multiple non-overlapping subsets of frequency resources, and transmit multiple signals on the multiple frequency resource subsets.
  • a PRB includes 12 sub-carriers in one symbol, and the 12 sub-carriers can be divided into multiple sub-carrier groups that do not overlap each other, and are used to transmit multiple signals.
  • time division multiplexing may be to divide the time axis into several unit times (for example, time slots), and different unit times may be used to transmit different signals.
  • unit times for example, time slots
  • different unit times may be used to transmit different signals.
  • one PRB can be divided into multiple symbols, and the multiple symbols can be used to transmit multiple signals.
  • the reference signal passes through N cyclic shifts of the sequence on M resource units to obtain N mutually orthogonal reference signal sequences, then the reference signal can correspond to N ports on the M resource units, M and N are natural numbers.
  • the reference signal passes through N mutually orthogonal frequency domain OCC codes on N resource units of a symbol, and N reference signals orthogonal to each other can be obtained. Then the reference signal can be used on the N resource units.
  • N is a natural number.
  • the reference signal passes N mutually orthogonal time-domain OCC codes on N resource units of N symbols to obtain N mutually orthogonal reference signals, then the reference signals are on the N resource units Can correspond to N ports.
  • the reference signal may correspond to at least two ports through frequency division multiplexing on N resource units of one symbol, and N is a natural number greater than or equal to 2.
  • the reference signal is time-division multiplexed on N resource units of N symbols, and may correspond to at least two ports, and N is a natural number greater than or equal to 2.
  • the positions of the K continuous resource units are the same as the positions of the K continuous resource units occupied by the transmitting end device on one symbol of data transmission in one PRB.
  • the positions of K consecutive resource units on each of the T consecutive symbols in the reference signal resource set correspond to the positions of K consecutive resource units occupied by each symbol during data transmission .
  • the positions of the K continuous resource units on each symbol of the T ⁇ K resource units can be determined according to the positions of the K continuous resource units occupied during data transmission.
  • the resource unit occupied by the sending end device when sending data on one symbol is 4 consecutive resource units (resource unit 1 to resource unit 4)
  • the reference signal resource set includes T ⁇ 4 resource units
  • T ⁇ 4 resource units are composed of 4 consecutive resource units (resource unit 1 to resource unit 4) on each of the T consecutive symbols of a PRB.
  • the location and data of the resource unit 1 to resource unit 4 When sending, the positions of resource unit 1 to resource unit 4 in each symbol are the same.
  • the transmitting end device can determine the orthogonal multiplexing mode of the reference signal on the reference signal resource set according to the K value corresponding to the reference signal resource set.
  • K may be a configuration parameter corresponding to the reference signal resource set.
  • the sending end device can determine that the ports in port group 1 corresponding to the reference signal use sequence cyclic shift and frequency division multiplexing orthogonal complex on T ⁇ 3 resource units.
  • the sender device can determine that the ports in port group 1 corresponding to the reference signal use frequency domain OCC codes and orthogonal frequency division multiplexing on T ⁇ 4 resource units Multiplexing mode.
  • the reference signal corresponding to the port in the at least one port group passes the sequence on the T ⁇ K resource units
  • the cyclic shift and frequency division multiplexing are orthogonal.
  • the frequency division multiplexing is a frequency division multiplexing with a comb tooth of 2 or a frequency division multiplexing with a comb tooth of 3.
  • the granularity of the comb teeth can be one or more resource units.
  • “Comb” can also be expressed as "orthogonal factor” and other terms similar to the concept of "comb”, for example, frequency division multiplexing is a frequency division multiplexing with an orthogonal factor of 2, or an orthogonal factor of 3 Frequency division multiplexing. It should be understood that this application does not limit similar expressions related to "comb teeth”.
  • the granularity of the comb tooth is 1 resource unit
  • the comb tooth is 2, and a symbol includes 12 resource units.
  • the 12 resource units are resource unit 1 to resource unit 12, and the comb is 2 frequency division multiplexing Orthogonal multiplexing in a way, then the resource unit 1, 3, 5, 7, 9, 11 on this symbol corresponds to 1 comb, and the resource unit 2, 4, 6, 8, 10, 12 on this symbol corresponds to 2 Comb; the reference signal mapped on the resource unit corresponding to 1 comb and the reference signal mapped on the resource unit corresponding to 2 combs are orthogonal to each other, then resource units 1, 3, 5, 7, The combination of 9, 11 and the combination of resource units 2, 4, 6, 8, 10, and 12 are orthogonal to each other.
  • the granularity of the comb tooth is 2 resource units
  • the comb tooth is 2, and a symbol includes 12 resource units.
  • the 12 resource units are resource unit 1 to resource unit 12, and the comb tooth is 2 frequency division
  • the multiplexing mode is orthogonal multiplexing, then the resource units 1, 2, 5, 6, 9, 10 on the symbol correspond to 1 comb, and the resource units 3, 4, 7, 8, 11, 12 on the symbol correspond to 2 comb teeth; the reference signal mapped on the resource unit corresponding to 1 comb tooth and the reference signal mapped on the resource unit corresponding to 2 comb teeth are orthogonal to each other, then the resource units 1, 2, 5, 6
  • the combination of, 9, 10 and the combination of resource units 3, 4, 7, 8, 11, and 12 are orthogonal to each other.
  • the granularity of the comb tooth is 1 resource unit, the comb tooth is 3, and one symbol includes 12 resource units.
  • the 12 resource units are resource unit 1 to resource unit 12, and the comb tooth is 3 frequency division.
  • the multiplexing mode is orthogonal multiplexing.
  • the resource unit 1, 4, 7, 10 on the symbol corresponds to 1 comb
  • the resource unit 2, 5, 8, 11 on this symbol corresponds to 2 combs
  • the Resource units 3, 6, 9, and 12 correspond to 3 combs
  • the reference signal mapped on the resource unit corresponding to 1 comb and the reference signal mapped on the resource unit corresponding to 2 combs are orthogonal to each other
  • the reference signal on the resource unit corresponding to 2 comb teeth and the reference signal mapped on the resource unit corresponding to 3 comb teeth are orthogonal to each other
  • the reference signal and mapping on the resource unit corresponding to 1 comb tooth are orthogonal to each other.
  • the reference signals on the resource units corresponding to the 3 combs are orthogonal to each other.
  • the reference signal resource set includes 3 resource units, the 3 resource units are 3 consecutive resource units in 1 symbol of a PRB, and the reference signal is in the 3 resource units.
  • the resource units are orthogonally multiplexed by sequence cyclic shift and frequency division multiplexing, and the ports in at least one port group corresponding to the reference signal are supported to be orthogonally multiplexed on the resource unit corresponding to the reference signal resource set.
  • the reference signal resource set it is determined on the reference signal resource set that the reference signals are orthogonally multiplexed on three resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 2, which can achieve the maximum number of 4 orthogonal ports are supported.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 6), and the reference signal resource set 610 includes The three consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3.
  • the reference signal resource set 610 may correspond to the port group 1 and port group 2 of the reference signal, where the comb is 2.
  • the comb granularity is a frequency division multiplexing mode of 1 resource unit, then resource unit 1 is orthogonal to resource unit 2, and resource unit 2 is orthogonal to resource unit 3; two cycles of the sequence are passed on each resource unit Shift, that is, perform two different cyclic shifts based on a basic reference signal sequence to obtain two mutually orthogonal reference signals.
  • resource unit 1 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can Corresponding to port 3 and port 4 in port group 2
  • resource unit 3 can correspond to port 1 and port 2 in port group 1.
  • resource unit 1 in the next adjacent PRB, can correspond to port 3 and port 4 in port group 2, and resource unit 2 can correspond to port 1, port 2, and resource unit 3 in port group 1. It can correspond to port 3 and port 4 in port group 2, as shown in the reference signal resource set 620 in FIG. 6.
  • the reference signals are orthogonally multiplexed on the three resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 3, which can achieve the maximum number Support for 6 orthogonal ports.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 6), and the reference signal resource set 630 includes The three consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3.
  • the reference signal resource set 630 may correspond to the port group 1, port group 2, and port group 3 of the reference signal, where, Through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, resource unit 1 is orthogonal to resource unit 2, resource unit 2 is orthogonal to resource unit 3, and resource unit 1 and resource unit 3 are normal. Cross; Two cyclic shifts of the sequence are performed on each resource unit, that is, two different cyclic shifts are performed based on a basic reference signal sequence to obtain two mutually orthogonal reference signals.
  • Resource unit 1 can correspond to the port group Port 1 and port 2 in 1
  • resource unit 2 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 can correspond to port 5 and port 6 in port group 3.
  • the reference signal resource set includes 4 resource units, the 4 resource units are 4 consecutive resource units in 1 symbol of a PRB, and the reference signal is in the 4 resource units.
  • the resource units are orthogonally multiplexed by means of sequence cyclic shift and frequency division multiplexing to support orthogonality of ports in at least one port group corresponding to the reference signal on the four resource units.
  • the reference signals are orthogonally multiplexed on 4 resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 2, which can achieve the maximum number of 4 orthogonal ports are supported.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 6), and the reference signal resource set 640 includes The four consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3, and resource unit 4.
  • the reference signal resource set 640 may correspond to the port group 1 and port group 2 of the reference signal, where, Through the frequency division multiplexing mode with comb teeth 2 and comb granularity 1 resource unit, the combination of resource unit 1 and resource unit 3 is orthogonal to the combination of resource unit 2 and resource unit 4; on each resource unit Through two cyclic shifts of the sequence, that is, two different cyclic shifts based on a basic reference signal sequence to obtain two mutually orthogonal reference signals, resource unit 1 can correspond to port 1 and port 2 in port group 1 Resource unit 2 can correspond to port 3 and port 4 in port group 2, resource unit 3 can correspond to port 1 and port 2 in port group 1, and resource unit 4 can correspond to port 3 and port 4 in port group 2.
  • the reference signals are orthogonally multiplexed on the four resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 3, which can achieve the maximum number Support for 6 orthogonal ports.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 6).
  • the reference signal resource set 650 includes The four consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3, and resource unit 4.
  • the reference signal resource set 650 can be related to the port group 1, port group 2, and port group 3 of the reference signal.
  • resource unit 1 and resource unit 2 and resource unit 3 are all orthogonal, and resource unit 2 and resource unit 3, resource Unit 4 is orthogonal, resource unit 3 and resource unit 4 are orthogonal; each resource unit is subjected to two cyclic shifts of the sequence, that is, two different cyclic shifts are performed based on a basic reference signal sequence to obtain two Reference signals orthogonal to each other.
  • Resource unit 1 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 can correspond to port in port group 3. 5.
  • Port 6, resource unit 4 can correspond to port 1 and port 2 in port group 1.
  • a PRB includes 1 symbol, there are 12 resource units (resource unit 1 to resource unit 12) on the symbol, and the reference signal resource set includes 4 consecutive resource units on 1 symbol as resource unit 1, resource Unit 2, resource unit 3, resource unit 4.
  • the reference signal resource set can correspond to the port group 1, port group 2, port group 3, and port group 7 of the reference signal, where the comb tooth is 4 and the comb tooth granularity is The frequency division multiplexing mode of 1 resource unit, then resource unit 1, resource unit 2, resource unit 3 and resource unit 4 are orthogonal to each other; each resource unit is cyclically shifted twice by the sequence, which is based on one The basic reference signal sequence performs two different cyclic shifts to obtain two mutually orthogonal reference signals.
  • Resource unit 1 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can correspond to port in port group 2.
  • Resource unit 3 can correspond to port 5 and port 6 in port group 3
  • resource unit 4 can correspond to port 7 and port 8 in port group 7.
  • the reference signal resource set includes 6 resource units, and the 6 resource units are 6 consecutive resource units in 1 symbol of a PRB, and the reference signal is in the 6 resource units.
  • the resource units are orthogonally multiplexed by means of sequence cyclic shift and frequency division multiplexing to support orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the 6 resource units.
  • the reference signals are orthogonally multiplexed on 6 resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 2, which can achieve the maximum number of 4 orthogonal ports are supported.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 6), and the reference signal resource set 660 includes The 6 consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3, resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 660 can be the same as the reference signal port group 1.
  • Port group 2 corresponds, where the comb is 2 and the comb granularity is 1 resource unit frequency division multiplexing, then the combination of resource unit 1, resource unit 3, resource unit 5 and resource unit 2, resource unit
  • the combination of 4 and resource unit 6 is orthogonal; two cyclic shifts of the sequence are performed on each resource unit, that is, two different cyclic shifts are performed based on a basic reference signal sequence to obtain two mutually orthogonal reference signals ,
  • Resource unit 1 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 can correspond to port 1
  • port 2 and resource Unit 4 can correspond to port 3 and port 4 in port group 2
  • resource unit 5 can correspond to port 1 and port 2 in port group 1
  • resource unit 6 can correspond to port 3 and port 4 in port group 2.
  • the reference signals are orthogonally multiplexed on the 6 resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 3, which can achieve the maximum number Support for 6 orthogonal ports.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 6), and the reference signal resource set 670 includes The 6 consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3, resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 670 can be compared with the port group 1 of the reference signal.
  • Port group 2 and port group 3 correspond, where the comb is 3 and the comb granularity is 1 resource unit frequency division multiplexing, then the combination of resource unit 1, resource unit 4 and resource unit 2, resource unit
  • the combination of 5 and the combination of resource unit 3 and resource unit 6 are orthogonal, and the combination of resource unit 2 and resource unit 5 is orthogonal to the combination of resource unit 3 and resource unit 6; each resource unit passes through the sequence twice Cyclic shifting means performing two different cyclic shifts based on a basic reference signal sequence to obtain two mutually orthogonal reference signals.
  • Resource unit 1 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can Corresponding to port 3 and port 4 in port group 2
  • resource unit 3 can correspond to port 5 and port 6 in port group 3
  • resource unit 4 can correspond to port 1 and port 2 in port group 1
  • resource unit 5 can correspond to port Port 3
  • port 4 and resource unit 6 in group 2 can correspond to port 5 and port 6 in port group 3.
  • a PRB includes 1 symbol, there are 12 resource units (resource unit 1 to resource unit 12) on the symbol, and the reference signal resource set includes 6 consecutive resource units on 1 symbol as resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6.
  • the reference signal resource set may correspond to the port group 1, port group 2, port group 3, and port group 7 of the reference signal, wherein, through the comb If the frequency division multiplexing mode is 4, the combination of resource unit 1, resource unit 5 and resource unit 2, the combination of resource unit 6, and resource unit 3 and resource unit 4 are all orthogonal. The combination is orthogonal to resource unit 3 and resource unit 4, and resource unit 3 and resource unit 4 are orthogonal; each resource unit is subjected to two cyclic shifts of the sequence, that is, two different sequences are performed based on a basic reference signal sequence. Cyclic shift to obtain two mutually orthogonal reference signals.
  • Resource unit 1 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 can Corresponding to port 5 and port 6 in port group 3
  • resource unit 4 can correspond to port 7 and port 8 in port group 7
  • resource unit 5 can correspond to port 1 and port 2 in port group 1
  • resource unit 6 can correspond to port Port 3 and port 4 in group 2.
  • the reference signals are orthogonally multiplexed on the 6 resource units through two cyclic shifts of the sequence and frequency division multiplexing with a comb of 6 to achieve the maximum number of 12 orthogonal ports are supported.
  • a PRB includes 1 symbol, there are 12 resource units (resource unit 1 to resource unit 12) on the symbol, and the reference signal resource set includes 6 consecutive resource units on 1 symbol as resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6, the reference signal resource set can be combined with the reference signal port group 1, port group 2, port group 3, port group 7, port group 8, port Group 9 corresponds, where, through frequency division multiplexing with a comb tooth of 6 and a comb granularity of 1 resource unit, then resource unit 1, resource unit 2, resource unit 3, resource unit 4, resource unit 5, and resource unit 6 Pairwise orthogonality; Two cyclic shifts of the sequence are performed on each resource unit, that is, two different cyclic shifts are performed based on a basic reference signal sequence to obtain two mutually orthogonal reference signals, resource unit 1 It can correspond to port 1 and port 2 in port group 1, resource unit 2 can correspond to port 3 and port 4 in port group 2, resource unit 3 can correspond to port 5 and port 6 in port group 3, and resource unit 4 can correspond to Port 7
  • the reference signal corresponding to the port in the at least one port group passes through frequency domain orthogonality on the T ⁇ K resource units
  • the spreading code and frequency division multiplexing are orthogonal.
  • the frequency division multiplexing is a frequency division multiplexing with a comb tooth of 2 or a frequency division multiplexing with a comb tooth of 3.
  • the granularity of the comb teeth can be one or more resource units. It should be understood that the content related to the frequency division multiplexing comb has been described in detail above, and will not be repeated here.
  • the frequency domain orthogonal spreading code is an orthogonal spreading code with a length of 2.
  • the length of the frequency domain OCC code is 2, then the corresponding code sequence is ⁇ 1 1 ⁇ , ⁇ 1 -1 ⁇ .
  • the reference signal resource set includes 4 resource units, the 4 resource units are 4 consecutive resource units in 1 symbol of a PRB, and the reference signal is in the 4 resource units.
  • the resource units are orthogonally multiplexed by means of frequency domain orthogonal spreading codes and frequency division multiplexing to support orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the four resource units.
  • the reference signals are orthogonally multiplexed on 4 resource units by means of frequency domain orthogonal spreading codes and frequency division multiplexing with a comb of 2 to achieve the maximum number of 4 orthogonal ports are supported.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 7), and the reference signal resource set 710 includes The 4 consecutive resource units on 1 symbol are resource unit 1, resource unit 2, resource unit 3, and resource unit 4.
  • the reference signal resource set 710 may correspond to the port group 1 and port group 2 of the reference signal; among them, Through the frequency division multiplexing mode with comb teeth 2 and comb granularity 2 resource units, the combination of resource unit 1 and resource unit 2 is orthogonal to the combination of resource unit 3 and resource unit 4; the length of the frequency domain OCC code It is 2, the reference signal on resource unit 1 and resource unit 2 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, and the reference signal on resource unit 3 and resource unit 4 can correspond to code sequence respectively ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , then resource unit 1 and resource unit 2 can correspond to port 1 and port 2 in port group 1, and resource unit 3 and resource unit 4 can correspond to ports in port group 2. 3. Port 4.
  • the reference signal resource set includes 6 resource units, and the 6 resource units are 6 consecutive resource units in 1 symbol of a PRB, and the reference signal is in the 6 resource units.
  • the resource units are orthogonally multiplexed by means of frequency domain orthogonal spreading codes and frequency division multiplexing to support orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the 6 resource units.
  • the reference signals are orthogonally multiplexed on 6 resource units by means of frequency domain orthogonal spreading codes and frequency division multiplexing with a comb of 2, which can achieve the maximum number of 4 orthogonal ports are supported.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown in the vertical sequence number 1-12 in FIG. 7), and the reference signal resource set 720 includes The 6 consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3, resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 720 can be the same as the reference signal port group 1.
  • Port group 2 corresponds; wherein, through the frequency division multiplexing mode with comb teeth of 2 and comb granularity of 2 resource units, the combination of resource unit 1 and resource unit 2 and the combination of resource unit 3 and resource unit 4 are correct Cross, the combination of resource unit 3 and resource unit 4 is orthogonal to the combination of resource unit 5 and resource unit 6; the length of the frequency domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 2 can respectively correspond to code sequences ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , the reference signal on resource unit 3 and resource unit 4 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, in resource unit 5 and resource unit The reference signal on 6 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively.
  • resource unit 1 and resource unit 2 can correspond to port 1, port 2, resource unit 3, resource in port group 1.
  • Unit 4 can correspond to port 3 and port 4 in port group 2
  • resource unit 5 and resource unit 6 can correspond to port 1 and port 2 in
  • the reference signals are orthogonally multiplexed on 6 resource units through frequency domain orthogonal spreading codes and frequency division multiplexing with a comb of 3, and the maximum number can be achieved Support for 6 orthogonal ports.
  • a PRB includes 1 symbol, and there are 12 resource elements on the symbol (as shown by the vertical sequence numbers 1-12 in FIG. 7), and the reference signal resource set 730 includes The 6 consecutive resource units on one symbol are resource unit 1, resource unit 2, resource unit 3, resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 730 can be the same as the reference signal port group 1.
  • Port group 2 and port group 3 correspond; among them, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 2 resource units, then the combination of resource unit 1 and resource unit 2 and resource unit 3 and resource unit
  • the combination of resource unit 4, the combination of resource unit 5, and resource unit 6 are all orthogonal, and the combination of resource unit 3 and resource unit 4 is orthogonal to the combination of resource unit 5 and resource unit 6; the length of the frequency domain OCC code is 2, in the resource
  • the reference signals on unit 1 and resource unit 2 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , respectively, and the reference signals on resource unit 3 and resource unit 4 can correspond to code sequence ⁇ 1 1 ⁇ and Code sequence ⁇ 1 -1 ⁇ , the reference signal on resource unit 5 and resource unit 6 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, then resource unit 1 and resource unit 2 can correspond to ports Port 1, port 2, resource unit 3, and resource unit 4 in group 1 may correspond to port 3 and port 4 in
  • the reference signal corresponding to the port in the at least one port group is on the T ⁇ K resource units, Orthogonal through sequence cyclic shift, frequency division multiplexing and time-domain orthogonal spreading code; or orthogonal through time-domain orthogonal spreading code and frequency division multiplexing; or, through frequency-domain orthogonal spreading code Orthogonal to time division multiplexing; or orthogonal to frequency-domain orthogonal spreading codes, frequency division multiplexing and time division multiplexing.
  • the frequency division multiplexing is a frequency division multiplexing with a comb tooth of 2 or a frequency division multiplexing with a comb tooth of 3.
  • the granularity of the comb teeth can be one or more resource units. It should be understood that the content related to the frequency division multiplexing comb has been described in detail above, and will not be repeated here.
  • the frequency domain orthogonal spreading code is an orthogonal spreading code with a length of 2.
  • the length of the frequency domain OCC code is 2, then the corresponding code sequence is ⁇ 1 1 ⁇ , ⁇ 1 -1 ⁇ .
  • the length of the frequency domain OCC code is 4, then the corresponding code sequences are ⁇ 1 1 1 1 ⁇ , ⁇ 1 -1 1 -1 ⁇ , ⁇ j -1 -j 1 ⁇ , and ⁇ 1 j -1 -j ⁇ .
  • OCC code sequence can also be in other sequence forms, for example, a 4-length OCC code sequence can also be a code sequence ⁇ 1 1 1 1 ⁇ , a code sequence ⁇ 1 -1 1 -1 ⁇ , a code sequence ⁇ 1 1 -1 -1 ⁇ and code sequence ⁇ 1 -1 -1 1 ⁇ are not limited here.
  • the time domain orthogonal spreading code is an orthogonal spreading code with a length of 2.
  • the length of the time domain OCC code is 2, then the corresponding code sequence is ⁇ 1 1 ⁇ , ⁇ 1 -1 ⁇ .
  • the length of the time domain OCC code is 4, then the corresponding code sequences are ⁇ 1 1 1 1 ⁇ , ⁇ 1 -1 1 -1 ⁇ , ⁇ j -1 -j 1 ⁇ and ⁇ 1 j -1 -j ⁇ .
  • OCC code sequence can also be in other sequence forms, for example, a 4-length OCC code sequence can also be a code sequence ⁇ 1 1 1 1 ⁇ , a code sequence ⁇ 1 -1 1 -1 ⁇ , a code sequence ⁇ 1 1 -1 -1 ⁇ and code sequence ⁇ 1 -1 -1 1 ⁇ are not limited here.
  • the reference signal resource set includes 6 resource units.
  • the 6 resource units are 3 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal The six resource units are orthogonally multiplexed by sequence cyclic shift, frequency division multiplexing, and time-domain orthogonal spreading codes, and the ports in at least one port group corresponding to the reference signal are supported in the six Orthogonal multiplexing on resource units.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 810 may correspond to port group 4 and port group 5 of the reference signal , Where the comb is 2 and the comb granularity is 1 resource unit frequency division multiplexing, then the combination of resource unit 1, resource unit 3, resource unit 4, resource unit 6 and resource unit 2, resource unit 5
  • the combination of OCC is orthogonal; the length of the time-domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 4 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , respectively, in resource unit 2 and resource
  • the reference signal on unit 5 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇
  • the reference signal on resource unit 3 and resource unit 6 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , two cyclic shifts of the sequence are performed on each resource unit, that is, two different cyclic shifts are performed based on a basic reference signal sequence to obtain two mutually orthogonal reference signals.
  • Resource unit 1 Resource unit 4 can correspond to port 1, port 2, port 3, and port 4 in port group 4.
  • Resource unit 2 resource unit 5 can correspond to port 5, port 6, port 7, and port 8 in port group 5.
  • Resource Unit 3 and resource unit 6 may correspond to port 1, port 2, port 3, and port 4 in port group 4.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, and the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 820 can be related to the reference signal port group 4, port group 5, Port group 6 corresponds, where, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, the combination of resource unit 1, resource unit 4 and resource unit 2, resource unit 5, and resource
  • the combination of unit 3 and resource unit 6 are orthogonal, and the combination of resource unit 2 and resource unit 5 is orthogonal to the combination of resource unit 3 and resource unit 6; the length of the time domain OCC code is 2, and the combination of resource unit 1 and resource unit
  • the reference signal on 4 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇
  • the reference signal on the resource unit 2 and the resource unit 5 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1- 1 ⁇
  • the reference signal on the resource unit 3 and the resource unit 6 can correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ , respectively, through two cyclic shifts of the sequence on each resource
  • resource unit 1 and resource unit 4 can correspond to port 1, port 2, port 3, and port in port group 4.
  • Resource unit 2 resource unit 5 can correspond to port 5
  • resource unit 3 and resource unit 6 can correspond to port 9, port 10, and port 11 in port group 6 , Port 12.
  • the reference signal resource set includes 6 resource units.
  • the 6 resource units are 3 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal Orthogonal multiplexing on the 6 resource units by means of time-domain orthogonal spreading codes and frequency division multiplexing supports the orthogonality of ports in at least one port group corresponding to the reference signal on the 6 resource units Multiplexing.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 830 can correspond to the port group 1 and port group 2 of the reference signal ; Among them, through the comb-tooth frequency division multiplexing mode of 2, the comb-tooth granularity is 1 resource unit, then the combination of resource unit 1, resource unit 3, resource unit 4, resource unit 6 and resource unit 2, resource unit 5
  • the combination of OCC is orthogonal; the length of the time-domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 4 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , respectively, in resource unit 2 and resource
  • the reference signal on unit 5 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇
  • the reference signal on resource unit 3 and resource unit 6 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , then resource unit 1, resource unit 4 can correspond to port 1, port 2 in port group 1, resource unit 2, resource unit 5 can correspond to port 3, port 4, resource unit 3, Resource unit 6 may correspond to port 1 and port 2 in port group 1.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3. The three consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 840 can be related to the port group 1, port group 2, and Port group 3 corresponds; where, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, then the combination of resource unit 1, resource unit 4, the combination of resource unit 2, resource unit 5, and the resource
  • the combination of unit 3 and resource unit 6 is orthogonal; the length of the time domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 4 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1, respectively ⁇
  • the reference signals on the resource unit 2 and the resource unit 5 may correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively
  • the reference signals on the resource unit 3 and the resource unit 6 may correspond to the code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇
  • resource unit 1, resource unit 4 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can correspond to port 3 in port group 2.
  • Port 4, resource unit 3, resource unit 6 can correspond
  • the reference signal resource set includes 6 resource units.
  • the 6 resource units are 3 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal Orthogonal multiplexing on the 6 resource units by means of frequency domain orthogonal spreading codes and time division multiplexing supports the orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the 6 resource units .
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 850 may correspond to the port group 1 and port group 2 of the reference signal ; Among them, through time division multiplexing, then the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2; the length of the frequency domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 2 can respectively correspond Code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , the reference signals on resource unit 4 and resource unit 5 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, in resource unit 3 and Reference signal may not be mapped on resource unit 6, then resource unit 1 and resource unit 2 can correspond to port 1 and port 2 in port group 1, and resource unit 4 and resource unit 5 can correspond to port 3 and port in port group 2. 4.
  • the reference signal resource set includes 6 resource units.
  • the 6 resource units are 3 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal The six resource units are orthogonally multiplexed by frequency division multiplexing and time division multiplexing, and the ports in at least one port group corresponding to the reference signal are supported for orthogonal multiplexing on the six resource units.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3. The three consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 840 can be related to the port group 1, port group 2, and Port group 3 corresponds to; where, through time division multiplexing, the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2; through frequency division multiplexing with a comb tooth of 3 and a comb granularity of 1 resource unit , Then the combination of resource unit 1, resource unit 4, the combination of resource unit 2, resource unit 5, and the combination of resource unit 3 and resource unit 6 are orthogonal; then, resource unit 1, resource unit 4 can correspond to port group 1. Port 1, port 2, resource unit 2, and resource unit 5 in the port group can correspond to port 3 and port 4 in port group 2, and resource unit 3 and resource unit 6 can correspond to port 5 and port 6 in port group 3.
  • the reference signal resource set includes 6 resource units.
  • the 6 resource units are 3 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal The six resource units are orthogonally multiplexed by means of frequency domain orthogonal spreading codes, frequency division multiplexing and time division multiplexing to support that ports in at least one port group corresponding to the reference signal are in the reference signal resource set Orthogonal multiplexing on the corresponding resource unit.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3. The three consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6.
  • the reference signal resource set 860 can be connected to the port group 1, port group 2, and Port group 3 corresponds to; where, through time division multiplexing, the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2; through frequency division multiplexing with comb teeth of 2 and comb granularity of 2 resource units , Then the combination of resource unit 1 and resource unit 2 is orthogonal to resource unit 3, and the combination of resource unit 4 and resource unit 5 is orthogonal to resource unit 6; the length of the frequency domain OCC code is 2, in resource unit 1, resource unit
  • the reference signal on 2 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇
  • the reference signal on resource unit 4 and resource unit 5 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1- 1 ⁇
  • resource unit 1, resource unit 2 can correspond to port 1 and port 2 in port group 1
  • resource unit 4 can correspond to port 3
  • resource unit 6 can correspond to port 5 and port 6 in port group 3.
  • the reference signal resource set includes 12 resource units, and the 12 resource units are 3 consecutive resource units on each of the 4 symbols of a PRB.
  • the reference signal The 12 resource units are orthogonally multiplexed by time-domain orthogonal spreading codes and frequency division multiplexing to support that ports in at least one port group corresponding to the reference signal are in the resource unit corresponding to the reference signal resource set On orthogonal multiplexing.
  • a PRB includes 4 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3.
  • the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6, and the 3 consecutive resource units on symbol 3 are resource unit 7, resource unit 8.
  • Resource unit 9, the three consecutive resource units on symbol 4 are resource unit 10, resource unit 11, and resource unit 12.
  • the reference signal resource set 910 may correspond to port group 4 and port group 5 of the reference signal; where , Through the frequency division multiplexing mode with comb teeth 2 and comb granularity 1 resource unit, then the combination of resource unit 2, resource unit 5, resource unit 8, and resource unit 11 and resource unit 1, resource unit 4, resource The combination of unit 7, resource unit 10 and the combination of resource unit 3, resource unit 6, resource unit 9, and resource unit 12 are all orthogonal; the length of the time-domain OCC code is 4, resource unit 1, resource unit 4, resource unit 7 ,
  • the reference signal on the resource unit 10 can respectively correspond to the code sequence ⁇ 1 1 1 ⁇ , the code sequence ⁇ 1 -1 1 -1 ⁇ , the code sequence ⁇ j -1 -j 1 ⁇ , the code sequence ⁇ 1 j -1] j ⁇ , the reference signals on resource unit 2, resource unit 5, resource unit 8, and resource unit 11 may correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j- 1 -j 1 ⁇ , code sequence ⁇ 1
  • a PRB includes 4 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3.
  • the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6, and the 3 consecutive resource units on symbol 3 are resource unit 7, resource unit 8.
  • the three consecutive resource units on symbol 4 are resource unit 10, resource unit 11, and resource unit 12.
  • the reference signal resource set 920 can be related to the port group 4, port group 5, and port group of the reference signal. 6 corresponds to; where, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, then the combination of resource unit 2, resource unit 5, resource unit 8, and resource unit 11, and resource unit 1, resource
  • the combination of unit 4, resource unit 7, and resource unit 10 and the combination of resource unit 3, resource unit 6, resource unit 9, and resource unit 12 are orthogonal to each other; the length of the time domain OCC code is 4, and the resource unit 1,
  • the reference signals on resource unit 4, resource unit 7, and resource unit 10 can respectively correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code Sequence ⁇ 1 j -1 -j ⁇ , reference signals on resource unit 2, resource unit 5, resource unit 8, and resource unit 11 can respectively correspond to code sequence ⁇ 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j
  • Resource unit 10 can correspond to port 1, port 2, port 3, and port 4 in port group 4.
  • Resource unit 2 resource unit 5, resource unit 8, and resource unit 11 can correspond to port 5 and port in port group 5.
  • Port 7, port 8, resource unit 3, resource unit 6, resource unit 9, and resource unit 12 can correspond to port 9, port 10, port 11, and port 12 in port group 6.
  • the reference signal resource set includes 12 resource units, and the 12 resource units are 3 consecutive resource units on each of the 4 symbols of a PRB.
  • Signals are orthogonally multiplexed on the 12 resource units through frequency-domain orthogonal spreading codes and time division multiplexing to support that ports in at least one port group corresponding to the reference signal are in the resource unit corresponding to the reference signal resource set On orthogonal multiplexing.
  • the reference signals are orthogonally multiplexed on 12 resource units by means of frequency domain orthogonal spreading codes and time division multiplexing, which can achieve a maximum number of 8 orthogonal ports. stand by.
  • a PRB includes 4 symbols, each of which has 12 resource units.
  • the reference signal resource set includes: 3 consecutive resource units on symbol 1 are resource unit 1, resource unit 2, and resource unit 3. , The three consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6, and the three consecutive resource units on symbol 3 are resource unit 7, resource unit 8, and resource unit 9.
  • the three consecutive resource units on symbol 4 are resource unit 10, resource unit 11, and resource unit 12; the reference signal resource set may correspond to port group 1, port group 2, port group 3, and port group 7 of the reference signal; Among them, through time division multiplexing, the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2, symbol 3, and symbol 4, and the resource unit on symbol 2 is orthogonal to the resource unit on symbol 3 and symbol 4.
  • the resource unit on symbol 3 is orthogonal to the resource unit on symbol 4; the length of the frequency domain OCC code is 2, and the reference signal on resource unit 1 and resource unit 2 can respectively correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , the reference signals on resource unit 4 and resource unit 5 can respectively correspond to code sequences ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , and the reference signals on resource unit 7 and resource unit 8 can respectively correspond to code sequences ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , resource unit 10, reference signal on resource unit 11 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , resource unit 3, resource unit 6, resource Reference signals may not be mapped on unit 9 and resource unit 12.
  • resource unit 1 and resource unit 2 can correspond to port 1 and port 2 in port group 1
  • resource unit 4 and resource unit 5 can correspond to ports in port group 2.
  • Port 4 resource unit 7, and resource unit 8 can correspond to port 5 and port 6 in port group 3
  • resource unit 10 and resource unit 11 can correspond to port 7 and port 8 in port group 7.
  • the reference signal resource set includes 12 resource units, and the 12 resource units are 3 consecutive resource units on each of the 4 symbols of a PRB.
  • the reference signal The 12 resource units are orthogonally multiplexed by frequency division multiplexing and time division multiplexing to support the orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the resource unit corresponding to the reference signal resource set. use.
  • a PRB includes 4 symbols, each of which has 12 resource units, and the 3 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3.
  • the 3 consecutive resource units on symbol 2 are resource unit 4, resource unit 5, and resource unit 6, and the 3 consecutive resource units on symbol 3 are resource unit 7, resource unit 8.
  • Resource unit 9 the three consecutive resource units on symbol 4 are resource unit 10, resource unit 11, resource unit 12; the reference signal resource set 920 can be combined with the reference signal port group 4, port group 5, and port group 6 corresponds to; where, through time division multiplexing, then the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2, symbol 3, and symbol 4, and the resource unit on symbol 2 is the same as that on symbol 3 and symbol 4.
  • the resource unit on symbol 3 is orthogonal to the resource unit on symbol 4; through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, then resource unit 2, resource unit 5, resource
  • resource unit 2 resource unit 5
  • resource unit 3 resource unit 5, resource unit 6, resource unit 9, and resource unit 12
  • resource unit 3 resource unit 6, resource unit 9, and resource unit 12
  • Port 12 Port 12.
  • the reference signal resource set includes 8 resource units.
  • the 8 resource units are 4 consecutive resource units on each of the 2 symbols of a PRB.
  • the 8 resource units are orthogonally multiplexed by sequence cyclic shift, frequency division multiplexing, and time-domain orthogonal spreading codes to support that the ports in at least one port group corresponding to the reference signal are in the reference signal Orthogonal multiplexing on resource units corresponding to the resource set.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the reference signal resource set 1010 can be compared with the reference signal Port group 4 corresponds to port group 5, where the comb is 2 and the comb granularity is 1 resource unit frequency division multiplexing, then the combination of resource unit 1, resource unit 3, resource unit 5, and resource unit 7 Orthogonal to the combination of resource unit 2, resource unit 4, resource unit 6, and resource unit 8; the length of the time domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 5 can respectively correspond to the code sequence ⁇ 1 1 ⁇ , Code sequence ⁇ 1 -1 ⁇ , the reference signal on resource unit 2 and resource unit 6 can correspond to the code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , the reference signal on resource unit 3 and resource unit 7 can Corresponding to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively.
  • the reference signals on the resource unit 4 and the resource unit 8 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ ; in each resource Two cyclic shifts of the sequence are performed on the unit, that is, two different cyclic shifts are performed based on a basic reference signal sequence to obtain two mutually orthogonal reference signals.
  • resource unit 1 and resource unit 5 can correspond to port groups Port 1, port 2, port 3, port 4 in 4, resource unit 2, resource unit 6 can correspond to port 5, port 6, port 7, port 8 in port group 5, resource unit 3, resource unit 7 can correspond Port 1, port 2, port 3, port 4, resource unit 4, and resource unit 8 in port group 4 can correspond to port 5, port 6, port 7, and port 8 in port group 5.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the reference signal resource set 1020 can be compared with the reference signal Port group 4, port group 5, and port group 6 correspond, among which, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, then resource unit 1, resource unit 4, resource unit 5, resource
  • the combination of unit 8 is orthogonal to the combination of resource unit 2, resource unit 6, and the combination of resource unit 3 and resource unit 7, and the combination of resource unit 2 and resource unit 6 is orthogonal to the combination of resource unit 3 and resource unit 7;
  • the length of the domain OCC code is 2.
  • the reference signals on resource unit 1 and resource unit 5 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, and the reference signals on resource unit 2 and resource unit 6 can be respectively Corresponding to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇ , the reference signal on the resource unit 3 and the resource unit 7 can correspond to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇ , the resource unit 4 and the resource
  • the reference signal on unit 8 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ ; on each resource unit, two cyclic shifts of the sequence are used, that is, two different sequences are performed based on a basic reference signal sequence.
  • resource unit 1 resource unit 5 can correspond to port 1, port 2, port 3, port 4, resource unit 2, resource unit 6 in port group 4 It can correspond to port 5, port 6, port 7, and port 8 in port group 5.
  • Resource unit 3 and resource unit 7 can correspond to port 9, port 10, port 11, and port 12 in port group 6, resource unit 4, resource Unit 8 can correspond to port 1, port 2, port 3, and port 4 in port group 4.
  • the reference signal resource set includes 8 resource units.
  • the 8 resource units are 4 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal The eight resource units are orthogonally multiplexed by time-domain orthogonal spreading codes and frequency division multiplexing to support that ports in at least one port group corresponding to the reference signal are in the resource unit corresponding to the reference signal resource set On orthogonal multiplexing.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the reference signal resource set 1030 can be compared with the reference signal Port group 1 and port group 2 correspond; among them, the combination of resource unit 1, resource unit 3, resource unit 5, and resource unit 7 is based on the frequency division multiplexing mode with comb teeth of 2 and comb granularity of 1 resource unit Orthogonal to the combination of resource unit 2, resource unit 4, resource unit 6, and resource unit 8; the length of the time domain OCC code is 2, and the reference signals on resource unit 1 and resource unit 5 can respectively correspond to the code sequence ⁇ 1 1 ⁇ , Code sequence ⁇ 1 -1 ⁇ , the reference signal on resource unit 2 and resource unit 6 can correspond to the code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, the reference signal on resource unit 3 and resource unit 7 can Corresponding to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively.
  • the reference signals on the resource unit 4 and the resource unit 8 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ . Then, the resource unit 1.
  • Resource unit 5 can correspond to port 1 and port 2 in port group 1
  • resource unit 2 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 and resource unit 7 can correspond to port group 1.
  • Port 1, port 2, resource unit 4, and resource unit 8 in the port group can correspond to port 3 and port 4 in port group 2.
  • one PRB includes 2 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the reference signal resource set 1040 can be compared with the reference signal Port group 1, port group 2, and port group 3 correspond; among them, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, then resource unit 1, resource unit 4, resource unit 5, resource
  • resource unit 1 resource unit 4, resource unit 5, resource
  • resource unit 2 resource unit 3 and resource unit 7
  • the combination of resource unit 2 and resource unit 6 is orthogonal to the combination of resource unit 3 and resource unit 7;
  • the length of the time-domain OCC code is 2, the reference signals on resource unit 1 and resource unit 5 can correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ respectively, and the reference signals on resource unit 2 and resource unit 6 can Corresponding to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively.
  • the reference signals on the resource unit 3 and the resource unit 7 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇
  • the resource unit 4 and The reference signal on the resource unit 8 can correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively.
  • the resource unit 1 and the resource unit 5 can correspond to the port 1, port 2, and resource unit 2 in the port group 1.
  • Resource unit 6 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 and resource unit 7 can correspond to port 5 and port 6 in port group 3
  • resource unit 4 and resource unit 8 can correspond to port group 1 Port 1, port 2.
  • the reference signal resource set includes 8 resource units.
  • the 8 resource units are 4 consecutive resource units on each of the 2 symbols of a PRB.
  • the 8 resource units are orthogonally multiplexed by frequency domain orthogonal spreading codes and time division multiplexing to support that the ports in at least one port group corresponding to the reference signal are on the resource unit corresponding to the reference signal resource set Orthogonal multiplexing.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4. The four consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the reference signal resource set 1050 can be compared with the reference signal Port group 4 and port group 5 correspond; among them, through time division multiplexing, the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2; the length of the frequency domain OCC code is 4, resource unit 1, resource unit 2 ,
  • the reference signals on resource unit 3 and resource unit 4 can correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code sequence ⁇ 1 j -1 -j ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , the reference signals on resource unit 5, resource unit 6, resource unit 7, and resource unit 8 can respectively correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code Sequence ⁇ 1 j -1 -j ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ ; then, resource unit 1, resource unit 2, resource unit 3, and resource unit 4 can correspond to port 1, port 2 in port group 4 , Port 3, port 4, resource unit 5, resource unit 6, resource unit 7, and resource unit 8 can correspond
  • the reference signal resource set includes 8 resource units.
  • the 8 resource units are 4 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal The 8 resource units are orthogonally multiplexed by frequency domain orthogonal spreading codes, frequency division multiplexing, and time division multiplexing to support that the ports in at least one port group corresponding to the reference signal are in the reference signal resource set Orthogonal multiplexing on the corresponding resource unit.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the reference signal resource set 1060 can be compared with the reference signal Port group 4 and port group 5 correspond; among them, through time division multiplexing, the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2; the comb is 2, and the granularity of the comb is the frequency of 2 resource units.
  • the combination of resource unit 1, resource unit 2, resource unit 5, and resource unit 6 is orthogonal to the combination of resource unit 3, resource unit 4, resource unit 7, and resource unit 8; the length of the frequency domain OCC code It is 2, the reference signal on resource unit 1, resource unit 2 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , and the reference signal on resource unit 3 and resource unit 4 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , the reference signal on resource unit 5 and resource unit 6 can respectively correspond to the code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , the reference on resource unit 7, resource unit 8 The signals can respectively correspond to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇ , and the code sequence ⁇ 1 -1 ⁇ . Then, resource unit 1, resource unit 2, resource unit 5, and resource unit 6 can correspond to port group 4. Port 1, port 2, port 3, port 4, resource unit 3, resource unit 4, resource unit 7, and resource unit 8 in the port group can correspond to port 5, port 6, port 7, and port
  • the reference signal resource set includes 16 resource units, and the 16 resource units are 4 consecutive resource units on each of the 4 symbols of a PRB.
  • the 16 resource units are orthogonally multiplexed by time-domain orthogonal spreading codes and frequency division multiplexing to support that ports in at least one port group corresponding to the reference signal are in the resource unit corresponding to the reference signal resource set On orthogonal multiplexing.
  • a PRB includes 4 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8, and 4 consecutive resource units on symbol 3 Are resource unit 9, resource unit 10, resource unit 11, and resource unit 12.
  • the four consecutive resource units on symbol 4 are resource unit 13, resource unit 14, resource unit 15, and resource unit 16.
  • the reference signal resource set 1110 can correspond to the port group 4 and the port group 5 of the reference signal; among them, through the frequency division multiplexing mode with the comb tooth being 2 and the comb tooth granularity being 1 resource unit, then resource unit 1, resource unit 3, resource unit 5 , Resource Unit 7, Resource Unit 9, Resource Unit 11, Resource Unit 13, Resource Unit 15 Combination and Resource Unit 2, Resource Unit 4, Resource Unit 6, Resource Unit 8, Resource Unit 10, Resource Unit 12, Resource Unit 14
  • the combination of resource unit 16 is orthogonal; the length of the time-domain OCC code is 4, and the reference signals on resource unit 1, resource unit 5, resource unit 9, and resource unit 13 can respectively correspond to the code sequence ⁇ 1 1 1 1 ⁇ , code Sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code sequence ⁇ 1 j -1 -j ⁇ , reference on resource unit 2, resource unit 6, resource unit 10, resource unit 14
  • Signals can respectively correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j
  • Port 2, port 3, port 4, resource unit 2, resource unit 6, resource unit 10, resource unit 14 can correspond to port 5, port 6, port 7, port 8, resource unit 3, resource unit in port group 5 7.
  • Resource unit 11, resource unit 15 can correspond to port 1, port 2, port 3, port 4 in port group 4, resource unit 4, resource unit 8, resource unit 12, and resource unit 16 can correspond to port group 5 Port 5, Port 6, Port 7, Port 8.
  • a PRB includes 4 symbols, each of which has 12 resource units, and the 4 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, the 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8, and 4 consecutive resource units on symbol 3 Are resource unit 9, resource unit 10, resource unit 11, and resource unit 12.
  • the four consecutive resource units on symbol 4 are resource unit 13, resource unit 14, resource unit 15, and resource unit 16.
  • the reference signal resource set 1120 can correspond to port group 4, port group 5, and port group 6 of the reference signal; among them, through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 1 resource unit, then resource unit 1, resource unit 4 , Resource unit 5, resource unit 8, resource unit 9, resource unit 12, resource unit 13, resource unit 16 combination and resource unit 2, resource unit 6, resource unit 10, resource unit 14 and resource unit 3, resource
  • resource unit 7, resource unit 11, and resource unit 15 are orthogonal, and the combination of resource unit 2, resource unit 6, resource unit 10, and resource unit 14 is the same as resource unit 3, resource unit 7, resource unit 11, and resource unit 15.
  • the length of the time domain OCC code is 4, and the reference signals on resource unit 1, resource unit 5, resource unit 9, and resource unit 13 can correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code sequence ⁇ 1 j -1 -j ⁇ , the reference signals on resource unit 2, resource unit 6, resource unit 10, and resource unit 14 can respectively correspond to codes Sequence ⁇ 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code sequence ⁇ 1 j -1 -j ⁇ , resource unit 3, resource unit 7, resource
  • the reference signals on unit 11 and resource unit 15 may correspond to code sequence ⁇ 1 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code sequence ⁇ 1 j- 1 -j ⁇ , the reference signals on resource unit 4, resource unit 8, resource unit 12, and resource unit 16 can correspond to code sequence ⁇ 1 1 1 1 ⁇
  • Port 4, resource unit 2, resource unit 6, resource unit 10, and resource unit 14 can correspond to port 5, port 6, port 7, and port 8, resource unit 3, resource unit 7, and resource unit 11 in port group 5.
  • Resource unit 15 can correspond to port 9, port in port group 6 10.
  • Port 11, port 12, resource unit 4, resource unit 8, resource unit 12, and resource unit 16 can correspond to port 1, port 2, port 3, and port 4 in port group 4.
  • the reference signal resource set includes 16 resource units, and the 16 resource units are 4 consecutive resource units on each of the 4 symbols of a PRB.
  • the 16 resource units are orthogonally multiplexed by means of frequency-domain orthogonal spreading codes and time division multiplexing, and the ports in at least one port group corresponding to the reference signal are supported on the resource unit corresponding to the reference signal resource set Orthogonal multiplexing.
  • a PRB includes 4 symbols, each of which has 12 resource units, and the reference signal resource set includes: 4 consecutive resource units on symbol 1 are resource unit 1, resource unit 2, and resource unit 3. Resource unit 4. The 4 consecutive resource units on symbol 2 are resource unit 5, resource unit 6, resource unit 7, and resource unit 8.
  • the 4 consecutive resource units on symbol 3 are resource unit 9, Resource unit 10, resource unit 11, resource unit 12, the four consecutive resource units on symbol 4 are resource unit 13, resource unit 14, resource unit 15, and resource unit 16;
  • the reference signal resource set can be the same as the reference signal Port group 4, port group 5, port group 6, and port group 10 correspond; where, through time division multiplexing, the resource unit on symbol 1 is orthogonal to the resource unit on symbol 2, symbol 3, and symbol 4, and symbol 2
  • the resource unit on the above is orthogonal to the resource unit on symbol 3 and symbol 4, and the resource unit on symbol 3 is orthogonal to the resource unit on symbol 4;
  • the length of the frequency domain OCC code is 4, resource unit 1, resource unit 2,
  • the reference signals on resource unit 3 and resource unit 4 can respectively correspond to code sequence ⁇ 1 1 1 ⁇ , code sequence ⁇ 1 -1 1 -1 ⁇ , code sequence ⁇ j -1 -j 1 ⁇ , code sequence ⁇ 1 j -1 -j ⁇ , the reference signals on resource unit 5, resource unit 6, resource unit 7, and resource unit 8 can correspond to code
  • Resource unit 5 resource unit 6, resource unit 7, and resource unit 8 can be Corresponding to port 5, port 6, port 7, port 8 in port group 5, resource unit 9, resource unit 10, resource unit 11, and resource unit 12 can correspond to port 9, port 10, port 11, and port in port group 6 12.
  • the resource unit 13, the resource unit 14, the resource unit 15, and the resource unit 16 may correspond to the port 13, the port 14, the port 15, and the port 16 in the port group 10.
  • the reference signal resource set includes 12 resource units.
  • the 12 resource units are 6 consecutive resource units on each of the 2 symbols of a PRB.
  • the 12 resource units are orthogonally multiplexed by sequence cyclic shift, frequency division multiplexing, and time-domain orthogonal spreading codes to support that the ports in at least one port group corresponding to the reference signal are used in the reference signal Orthogonal multiplexing on resource units corresponding to the resource set.
  • the reference signal resource set it is determined on the reference signal resource set that the reference signal passes through two cyclic shifts of the sequence on 12 resource units and the comb is 2, and the comb granularity is frequency division multiplexing and time domain of 1 resource unit.
  • Orthogonal spreading codes are used for orthogonal multiplexing, which can support a maximum of 8 orthogonal ports.
  • a PRB includes 2 symbols, and each of the 2 symbols has 12 resource units.
  • the 6 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6, and the 6 consecutive resource units on symbol 2 are resource unit 7, resource unit 8, resource unit 9, resource unit 10, resource unit 11 ,
  • the resource unit 12, the reference signal resource set 1210 may correspond to the port group 4 and the port group 5 of the reference signal, where the comb is 2 and the comb granularity is 1 resource unit frequency division multiplexing mode, then the resource
  • the reference signal on resource unit 1 and resource unit 7 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , resource unit 2, resource unit 8
  • the reference signal can respectively correspond to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇ , the reference signal on the resource unit 3 and the resource unit 9 can respectively correspond
  • resource unit 1 and resource unit 7 can correspond to port 1, port 2, and port in port group 4.
  • Port 4, resource unit 2, and resource unit 8 can correspond to port 5, port 6, port 7, and port 8 in port group 5.
  • Resource unit 3 and resource unit 9 can correspond to port 1 and port 2 in port group 4.
  • Port 3, port 4, resource unit 4, resource unit 10 can correspond to port 5, port 6, port 7, port 8 in port group 5, resource unit 5, resource unit 11 can correspond to port 1 in port group 4 Port 2, port 3, port 4, resource unit 6, resource unit 12 can correspond to port 5, port 6, port 7, and port 8 in port group 5.
  • the reference signal resource set it is determined on the reference signal resource set that the reference signal passes through two cyclic shifts of the sequence on 12 resource units and the comb is 3 and the comb granularity is 1 resource unit frequency division multiplexing and time domain Orthogonal spreading codes are used for orthogonal multiplexing, which can support up to 12 orthogonal ports.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 6 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6, and the 6 consecutive resource units on symbol 2 are resource unit 7, resource unit 8, resource unit 9, resource unit 10, resource unit 11 ,
  • the resource unit 12, the reference signal resource set 1220 can correspond to the port group 4, port group 5, and port group 6 of the reference signal, where the comb is 3 and the comb granularity is 1 resource unit frequency division multiplexing Way, then the combination of resource unit 1, resource unit 4, resource unit 7, resource unit 10 and resource unit 2, resource unit 5, resource unit 8, resource unit 11, and resource unit 3, resource unit 6, resource unit 9 ,
  • the combination of resource unit 12 is orthogonal, the combination of resource unit 2, resource unit 5, resource unit 8, and resource unit 11 is orthogonal to the combination of resource unit 3, resource unit 6, resource unit 9, and resource unit 12; time domain
  • the length of the OCC code is 2.
  • the reference signal on resource unit 1 and resource unit 7 can correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively.
  • the reference signal on resource unit 2 and resource unit 8 can respectively correspond to Code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , reference signals on resource unit 3 and resource unit 9 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , resource unit 4, resource unit
  • the reference signal on 10 can respectively correspond to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇
  • the reference signal on the resource unit 5 and the resource unit 11 can respectively correspond to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇
  • the reference signals on the resource unit 6 and the resource unit 12 can correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively; each resource unit passes through the two cyclic shifts of the sequence, which is based on a basic The reference signal sequence performs two different cyclic shifts to obtain two mutually orthogonal reference
  • resource unit 1 and resource unit 7 can correspond to port 1, port 2, port 3, and port 4 in port group 4.
  • Resource unit 2 can correspond to port 5, port 6, port 7, and port 8 in port group 5.
  • Resource unit 3 and resource unit 9 can correspond to port 9, port 10, port 11, and port in port group 6 12.
  • Resource unit 4 and resource unit 10 can correspond to port 1, port 2, port 3, and port 4 in port group 4, and resource unit 5 and resource unit 11 can correspond to port 5, port 6, and port 7 in port group 5 ,
  • Port 8, resource unit 6, resource unit 12 can correspond to port 9, port 10, port 11, and port 12 in port group 6.
  • the reference signal resource set includes 12 resource units.
  • the 12 resource units are 6 consecutive resource units on each of the 2 symbols of a PRB.
  • the 12 resource units are orthogonally multiplexed by time-domain orthogonal spreading codes and frequency division multiplexing to support that ports in at least one port group corresponding to the reference signal are in the resource unit corresponding to the reference signal resource set On orthogonal multiplexing.
  • the reference signals are orthogonally multiplexed on 12 resource units through time-domain orthogonal spreading codes and frequency division multiplexing with a comb of 2 to achieve the maximum number of 4 orthogonal ports are supported.
  • one PRB includes 2 symbols, each of which has 12 resource units, and the 6 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6, and the 6 consecutive resource units on symbol 2 are resource unit 7, resource unit 8, resource unit 9, resource unit 10, resource unit 11 ,
  • the resource unit 12, the reference signal resource set 1230 may correspond to the port group 1 and the port group 2 of the reference signal; through the frequency division multiplexing mode with comb tooth 2, then the resource unit 1, the resource unit 3, the resource unit 5,
  • the combination of resource unit 7, resource unit 9, and resource unit 11 is orthogonal to the combination of resource unit 2, resource unit 4, resource unit 6, resource unit 8, resource unit 10, and resource unit 12; the length of the time domain OCC code is 2
  • the reference signal on resource unit 1, resource unit 7 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇
  • resource unit 8 can correspond to code sequence ⁇ 1 1 ⁇
  • the reference signal on resource unit 3 and resource unit 9 can correspond to
  • resource unit 1 and the resource unit 7 can correspond to the port 1, port 2, and resource unit 2 in the port group 1.
  • Resource unit 8 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 and resource unit 9 can correspond to port 1 and port 2 in port group 1
  • resource unit 4 and resource unit 10 can correspond to port group 2
  • Port 3 port 4
  • resource unit 5 can correspond to port 1 and port 2 in port group 1
  • resource unit 6 can correspond to port 3 and port 4 in port group 2.
  • the reference signals are orthogonally multiplexed on 12 resource units through time-domain orthogonal spreading codes and frequency division multiplexing with a comb of 3, which can achieve the maximum number of Support for 6 orthogonal ports.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 6 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6, and the 6 consecutive resource units on symbol 2 are resource unit 7, resource unit 8, resource unit 9, resource unit 10, resource unit 11 ,
  • the resource unit 12, the reference signal resource set 1240 may correspond to the port group 1, port group 2, and port group 3 of the reference signal; wherein, through the frequency division multiplexing with a comb tooth of 3 and a comb granularity of 1 resource unit Way, then the combination of resource unit 1, resource unit 4, resource unit 7, resource unit 10 and resource unit 2, resource unit 5, resource unit 8, resource unit 11, and resource unit 3, resource unit 6, resource unit 9 ,
  • the combination of resource unit 12 is orthogonal, the combination of resource unit 2, resource unit 5, resource unit 8, and resource unit 11 is orthogonal to the combination of resource unit 3, resource unit 6, resource unit 9, and resource unit 12; time domain
  • the length of the OCC code is 2.
  • the reference signal on resource unit 1 and resource unit 7 can correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ respectively.
  • the reference signal on resource unit 2 and resource unit 8 can respectively correspond to Code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , reference signals on resource unit 3 and resource unit 9 can correspond to code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , resource unit 4, resource unit
  • the reference signal on 10 can respectively correspond to the code sequence ⁇ 1 1 ⁇ , the code sequence ⁇ 1 -1 ⁇
  • the reference signal on the resource unit 5 and the resource unit 11 can respectively correspond to the code sequence ⁇ 1 1 ⁇
  • the reference signals on the resource unit 6 and the resource unit 12 can correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ , respectively.
  • the resource unit 1 and the resource unit 7 can correspond to the port 1 in the port group 1.
  • Port 2 resource unit 2, resource unit 8 can correspond to port 3 and port 4 in port group 2
  • resource unit 3 resource unit 9 can correspond to port 5, port 6, resource unit 4, resource unit 10 in port group 3 It can correspond to port 1 and port 2 in port group 1
  • resource unit 5 and resource unit 11 can correspond to port 3 and port 4 in port group 2
  • resource unit 6 and resource unit 12 can correspond to port 5 and port 3 in port group 3.
  • Port 6
  • the reference signal resource set includes 12 resource units.
  • the 12 resource units are 6 consecutive resource units on each of the 2 symbols of a PRB.
  • the 12 resource units are orthogonally multiplexed by frequency-domain orthogonal spreading codes and time division multiplexing to support that the ports in at least one port group corresponding to the reference signal are on the resource unit corresponding to the reference signal resource set Orthogonal multiplexing.
  • the reference signals are orthogonally multiplexed on 12 resource units through a frequency domain orthogonal spreading code of length 2 and time division multiplexing, and a maximum number of 4 can be achieved.
  • Orthogonal port support it is determined on the reference signal resource set that the reference signals are orthogonally multiplexed on 12 resource units through a frequency domain orthogonal spreading code of length 2 and time division multiplexing, and a maximum number of 4 can be achieved. Orthogonal port support.
  • the reference signals are orthogonally multiplexed on 12 resource units through a frequency domain orthogonal spreading code of length 4 and time division multiplexing, and a maximum number of 8 can be achieved.
  • Orthogonal port support it is determined on the reference signal resource set that the reference signals are orthogonally multiplexed on 12 resource units through a frequency domain orthogonal spreading code of length 4 and time division multiplexing, and a maximum number of 8 can be achieved. Orthogonal port support.
  • the reference signal resource set includes 12 resource units.
  • the 12 resource units are 6 consecutive resource units on each of the 2 symbols of a PRB.
  • the reference signal The 12 resource units are orthogonally multiplexed by means of frequency domain orthogonal spreading codes, frequency division multiplexing and time division multiplexing to support that the ports in at least one port group corresponding to the reference signal are in the reference signal resource set Orthogonal multiplexing on the corresponding resource unit.
  • the reference signals are orthogonally multiplexed by frequency domain orthogonal spreading codes, frequency division multiplexing, and time division multiplexing on 12 resource units, and the maximum number can be achieved as 12.
  • Orthogonal port support For example, in the reference signal resource set 1250 as shown in FIG.
  • a PRB includes 2 symbols, each of which has 12 resource units, and the 6 consecutive resource units on symbol 1 are resource unit 1, resource Unit 2, resource unit 3, resource unit 4, resource unit 5, resource unit 6, and the 6 consecutive resource units on symbol 2 are resource unit 7, resource unit 8, resource unit 9, resource unit 10, resource unit 11 ,
  • the resource unit 12, the reference signal resource set 1250 may correspond to the port group 4, port group 5, and port group 6 of the reference signal; wherein, through time division multiplexing, the resource unit on symbol 1 is the same as the resource on symbol 2 Units are orthogonal; through the frequency division multiplexing mode with comb teeth of 3 and comb granularity of 2 resource units, then the combination of resource unit 1, resource unit 2, resource unit 7, and resource unit 8 and resource unit 3, resource unit 4.
  • the combination of resource unit 9, resource unit 10 and the combination of resource unit 5, resource unit 6, resource unit 11, and resource unit 12 are all orthogonal; the length of the frequency domain OCC code is 2, and resource unit 1, resource unit 2
  • the reference signals of can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ , and the reference signals on the resource unit 3 and resource unit 4 can respectively correspond to the code sequence ⁇ 1 1 ⁇ and the code sequence ⁇ 1 -1 ⁇ ,
  • the reference signals on resource unit 5 and resource unit 6 can respectively correspond to code sequence ⁇ 1 1 ⁇ and code sequence ⁇ 1 -1 ⁇ , and the reference signals on resource unit 7 and resource unit 8 can respectively correspond to code sequence ⁇ 1 1 ⁇ , Code sequence ⁇ 1 -1 ⁇
  • the reference signal on resource unit 9 and resource unit 10 can correspond to the code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇
  • the reference signal on resource unit 11 and resource unit 12 can be respectively Corresponding code sequence ⁇ 1 1 ⁇ , code sequence ⁇ 1 -1 ⁇ , then resource unit 1,
  • the reference signal resource set includes 24 resource units.
  • the 24 resource units are 6 consecutive resource units on each of the 4 symbols of a PRB.
  • the reference signal Orthogonal multiplexing on the 24 resource units by means of time-domain orthogonal spreading codes and frequency division multiplexing supports orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the 24 resource units use.
  • the reference signal passes the time domain orthogonal spreading code of length 4 on 24 resource units and the comb tooth is 2, and the comb tooth density is 1 resource unit.
  • Frequency division multiplexing Orthogonal multiplexing can realize the support of a maximum of 8 orthogonal ports.
  • the reference signal passes the time-domain orthogonal spreading code of length 4 on 24 resource units and the comb tooth is 3 and the comb tooth density is 1 resource unit frequency division multiplexing Orthogonal multiplexing can realize the support of up to 12 orthogonal ports.
  • the reference signal resource set includes 24 resource units.
  • the 24 resource units are 6 consecutive resource units on each of the 4 symbols of a PRB.
  • the 24 resource units are orthogonally multiplexed by frequency domain orthogonal spreading codes and time division multiplexing to support orthogonal multiplexing of ports in at least one port group corresponding to the reference signal on the 24 resource units. use.
  • the reference signals are orthogonally multiplexed on 24 resource units through the frequency domain orthogonal spreading code of length 2 and time division multiplexing, and the maximum number of 8 can be achieved. Orthogonal port support.
  • the reference signals are orthogonally multiplexed on 24 resource units through a frequency domain orthogonal spreading code of length 4 and time division multiplexing, and a maximum number of 16 can be achieved.
  • Orthogonal port support it is determined on the reference signal resource set that the reference signals are orthogonally multiplexed on 24 resource units through a frequency domain orthogonal spreading code of length 4 and time division multiplexing, and a maximum number of 16 can be achieved. Orthogonal port support.
  • the location of the resource element corresponding to the at least one port group in the first PRB is different from the location of the corresponding resource element in the second PRB, and the first PRB and the second PRB are occupied by the reference signal Of two adjacent PRBs.
  • the transmitting-end device or the receiving-end device may determine that the positions of the reference signals mapped to the same group of antenna ports on two adjacent PRBs may be different.
  • the reference signal corresponding to port group 1 is mapped to resource unit 1 on the first PRB
  • the reference signal corresponding to port group 1 is mapped to resource unit 2 on the second PRB
  • the first PRB is adjacent to the second PRB
  • Resource unit 1 and resource unit 2 have different resource unit positions in the two PRBs.
  • the sending end device sends the reference signal on the T ⁇ K resource units.
  • the receiving end device receives the reference signal sent by the sending end device on the T ⁇ K resource units.
  • a new reference signal configuration pattern is designed, that is, through multiple orthogonal multiplexing methods, the reference signals corresponding to multiple ports can be orthogonalized on some resource units in a PRB.
  • Multiplexing can support more types of data transmission methods; moreover, part of the resource units that are continuous in the time domain and continuous in the frequency domain in a PRB are used for mapping reference signals, which can reduce the ability of the receiving device to detect reference signals.
  • the reference signal occupies part of the resources of the PRB, and other resource units on the PRB can be used to transmit other signaling or information, which is beneficial to improve the efficiency of resource use.
  • Fig. 13 is a schematic structural diagram of a sending end device according to an embodiment of the present application.
  • the sending end device may be a network device, or may be a component (for example, a chip or a circuit, etc.) for the network device.
  • the sending end device may be a terminal device, or a component (such as a chip or a circuit) that can be used in a terminal device.
  • the sending end device 1300 may include a processing module 1301 and a sending module 1302.
  • the processing module 1301 is configured to determine the resource unit occupied by the reference signal from the reference signal resource set.
  • the reference signal resource set includes T ⁇ K resource units.
  • the T ⁇ K resource units consist of one physical resource block PRB.
  • Each of the T consecutive symbols is composed of K consecutive resource units, where a PRB includes N resource units on each of the T consecutive symbols, and T, N, and K are positive integers And N>K ⁇ 1, T ⁇ 1, T ⁇ K resource units in the T consecutive symbols correspond to at least one port group of the reference signal, and each port group in the at least one port group includes At least two ports, and reference signals corresponding to ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units.
  • the sending module 1302 is configured to send the reference signal on the T ⁇ K resource units.
  • the processing module 1301 may be implemented by a processor.
  • the sending module 1302 can be implemented by a transmitter.
  • the specific functions and beneficial effects of the processing module 1301 and the sending module 1302 can be referred to the method shown in FIG. 4, which will not be repeated here.
  • a sender device is also provided, and the sender device may be a network device, or may be a component (for example, a chip or a circuit, etc.) for the network device.
  • the sending end device may be a terminal device, or a component (such as a chip or a circuit) that can be used in a terminal device.
  • the transmitting end device may include a transceiver and a processor, and optionally, may also include a memory.
  • the transceiver can be used to implement the corresponding functions and operations corresponding to the foregoing receiving module and the sending module, and the processor can be used to implement the corresponding functions and operations of the foregoing processing module.
  • the memory can be used to store execution instructions or application program codes, and the processor can control the execution to implement the communication methods provided in the above embodiments of the present application; and/or can also be used to temporarily store some data and instruction information.
  • the memory can exist independently of the processor. At this time, the memory can be connected to the processor through a communication line. In another possible design, the memory may also be integrated with the processor, which is not limited in the embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of a receiving end device according to an embodiment of the present application.
  • the receiving end device may be a network device, or may be a component (for example, a chip or a circuit, etc.) for the network device.
  • the receiving end device may be a terminal device, or a component (such as a chip or a circuit) that can be used in a terminal device.
  • the receiving end device 1400 may include a processing module 1401 and a receiving module 1402.
  • the processing module 1401 is configured to determine the resource unit occupied by the reference signal from the reference signal resource set.
  • the reference signal resource set includes T ⁇ K resource units, and the T ⁇ K resource units consist of one physical resource block PRB.
  • Each of the T consecutive symbols is composed of K consecutive resource units, where a PRB includes N resource units on each of the T consecutive symbols, and T, N, and K are positive integers And N>K ⁇ 1, T ⁇ 1, the T ⁇ K resource units in the T consecutive symbols correspond to at least one port group of the reference signal, and each port group in the at least one port group includes At least two ports, and reference signals corresponding to ports in the at least one port group are orthogonally multiplexed on the T ⁇ K resource units.
  • the receiving module 1402 is configured to receive the reference signal on the T ⁇ K resource units.
  • the processing module 1401 may be implemented by a processor.
  • the receiving module 1402 may be implemented by a receiver.
  • the specific functions and beneficial effects of the processing module 1401 and the receiving module 1402 can be referred to the method shown in FIG. 4, which will not be repeated here.
  • a receiving end device is also provided, and the receiving end device may be a network device, or may be a component (such as a chip or a circuit, etc.) used in the network device.
  • the receiving end device may be a terminal device, or a component (such as a chip or a circuit) that can be used in a terminal device.
  • the receiving end device may include a transceiver and a processor, and optionally, may also include a memory.
  • the transceiver can be used to implement the corresponding functions and operations corresponding to the foregoing receiving module and the sending module, and the processor can be used to implement the corresponding functions and operations of the foregoing processing module.
  • the memory can be used to store execution instructions or application program codes, and the processor can control the execution to implement the communication methods provided in the above embodiments of the present application; and/or can also be used to temporarily store some data and instruction information.
  • the memory can exist independently of the processor. At this time, the memory can be connected to the processor through a communication line. In another possible design, the memory may also be integrated with the processor, which is not limited in the embodiment of the present application.
  • Fig. 15 is a structural block diagram of a terminal device according to an embodiment of the present invention.
  • the terminal device includes a processor 1501, a memory 1502, a radio frequency circuit, an antenna, and an input and output device.
  • the processor 1501 may be used to process communication protocols and communication data, control terminal devices, execute software programs, and process data of the software programs.
  • the memory 1502 is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of terminal devices may not have input and output devices.
  • the processor 1501 When data needs to be sent, the processor 1501 performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and then sends the radio frequency signal out in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 15. In actual terminal equipment products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor or integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiver function may be regarded as the transceiver 1503 of the terminal device, and the processor with the processing function may be regarded as the processing unit of the terminal device.
  • the transceiver may also be called a transceiver unit, transceiver, transceiver device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver 1503 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver 1503 as the sending unit, that is, the transceiver 1503 includes the receiving unit and the sending unit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • the processor 1501, the memory 1502, and the transceiver 1503 communicate with each other through internal connection paths to transfer control and/or data signals
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1501 or implemented by the processor 1501.
  • the processor 1501 may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 1501 or instructions in the form of software.
  • the processors described in the embodiments of the present application may be general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), and field programmable gate arrays (field programmable gate arrays). , FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory, or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • RAM random access memory
  • flash memory read-only memory
  • read-only memory read-only memory
  • ROM programmable read-only memory
  • electrically erasable programmable memory registers, etc. mature in the field Storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory and completes the steps of the above method in combination with its hardware.
  • the memory 1502 may store instructions for executing the method executed by the terminal device in the method shown in FIG. 4.
  • the processor 1501 can execute the instructions stored in the memory 1502 in combination with other hardware (such as the transceiver 1503) to complete the steps executed by the terminal device in the method shown in FIG. 4, and the specific working process and beneficial effects can be referred to in the embodiment shown in FIG. description.
  • the embodiment of the present application also provides a chip, which includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the chip can execute the method on the terminal device side in the above method embodiment.
  • the embodiment of the present application also provides a computer-readable storage medium on which an instruction is stored.
  • the instruction is executed, the method on the terminal device side in the foregoing method embodiment is executed.
  • the embodiments of the present application also provide a computer program product containing instructions that, when executed, execute the method on the terminal device side in the foregoing method embodiments.
  • Fig. 16 is a structural block diagram of a network device according to an embodiment of the present invention.
  • the network device 1600 shown in FIG. 16 includes a processor 1601, a memory 1602, and a transceiver 1603.
  • the processor 1601, the memory 1602, and the transceiver 1603 communicate with each other through internal connection paths, and transfer control and/or data signals.
  • the method disclosed in the foregoing embodiment of the present invention may be applied to the processor 1601 or implemented by the processor 1601.
  • the processor 1601 may be an integrated circuit chip with signal processing capabilities.
  • the steps of the foregoing method can be completed by hardware integrated logic circuits in the processor 1601 or instructions in the form of software.
  • the above-mentioned processor 1601 may be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (field programmable gate array, FPGA) or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • Programmable logic devices discrete gate or transistor logic devices, discrete hardware components.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory, or electrically erasable programmable memory, registers, etc. mature in the field Storage medium.
  • the storage medium is located in the memory 1602, and the processor 1601 reads the instructions in the memory 1602, and completes the steps of the foregoing method in combination with its hardware.
  • the memory 1602 may store instructions for executing the method executed by the network device in the method shown in FIG. 4.
  • the processor 1601 can execute the instructions stored in the memory 1602 in combination with other hardware (for example, the transceiver 1603) to complete the steps of the network device in the method shown in FIG. 4.
  • other hardware for example, the transceiver 1603
  • the embodiment of the present application also provides a chip, which includes a transceiver unit and a processing unit.
  • the transceiver unit may be an input/output circuit or a communication interface;
  • the processing unit is a processor or microprocessor or integrated circuit integrated on the chip.
  • the chip can execute the method executed on the network device side in the foregoing embodiment.
  • a computer-readable storage medium is provided with instructions stored thereon, and when the instructions are executed, the method on the network device side in the foregoing method embodiment is executed.
  • a computer program product containing instructions is provided, and when the instructions are executed, the method on the network device side in the foregoing method embodiment is executed.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种参考信号的传输方法,包括:发送端设备从参考信号资源集合中确定参考信号所占用的资源单元,参考信号资源集合包括T×K个资源单元,T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在T个连续符号中的每个符号上包括N个资源单元,T个连续符号中的T×K个资源单元与参考信号的至少一个端口组对应,至少一个端口组中的每个端口组包括至少两个端口,至少一个端口组内的端口对应的参考信号在T×K个资源单元上正交复用;在T×K个资源单元上发送参考信号。本申请实施例设计了一种新的参考信号配置图样,支持更多类型的数据传输方式,降低检测参考信号的能耗,提高资源的使用效率。

Description

参考信号的传输方法及装置
本申请要求于2019年01月21日提交中国专利局、申请号为201910054751.4、申请名称为“参考信号的传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及一种参考信号的传输方法及装置。
背景技术
参考信号用于支持接收端设备进行信道估计。参考信号通常只在被调度的物理资源块上发送。参考信号可以占用物理资源块(physical resource block,PRB)中一个符号内的全部12个子载波,以支持最大数量的多个正交天线端口。随着通信技术的发展,出现了新的数据信道传输方式,数据信道及对应的参考信号只能占用PRB中一个符号内的部分子载波,继续沿用当前参考信号在PRB中资源映射的方式将无法支持到最大的正交端口数量。因此,需要设计新的参考信号的资源映射方式。
发明内容
本申请提供了参考信号的传输方法及装置,在新的数据信道传输方式下能够支持到最大数量的参考信号正交端口。
第一方面,本申请实施例提供一种参考信号的传输方法,包括:发送端设备从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用;在所述T×K个资源单元上发送所述参考信号。
在本申请实施例中,设计了一种新的参考信号配置图样,即通过多种正交复用方式,使得与多个端口对应的参考信号可以在一个PRB中的部分资源单元上实现正交复用,可以支持更多类型的数据传输方式;并且,在一个PRB中的连续的的部分资源单元上映射参考信号,可以降低检测参考信号的能耗;此外,参考信号占用PRB的部分资源,PRB上的其他资源单元可以用于传输其他信令或信息,有利于提高资源的使用效率。
在第一方面的一种可能的实现方式中,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
在本申请实施例中,可以通过一种正交复用方式或者多种正交复用方式的任意组合,灵活地实现参考信号在一个PRB的部分资源单元上正交复用。
在第一方面的一种可能的实现方式中,所述码分复用中的正交码为时域正交扩频码和/或频域正交扩频码。
在第一方面的一种可能的实现方式中,至少存在两个不同的K值,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。
在本申请实施例中,不同的参考信号资源集合可以对应不同的正交复用方式,发送端设备可以根据参考信号资源集合的配置参数确定参考信号在资源单元上的映射方式,可以降低发送端设备映射参考信号的复杂度。
在第一方面的一种可能的实现方式中,所述K个连续的资源单元的位置与发送端设备在一个PRB中数据发送的一个符号上占用的K个连续的资源单元的位置相同。
在本申请实施例中,用于传输数据的资源单元在频域上的位置与传输参考信号的资源单元在频域上的位置相同,接收端设备在接收数据的同时可以确定参考信号在频域上的位置,一方面可以降低发送端设备映射参考信号的复杂度,另一方面可以降低接收端设备检测参考信号所需的能耗。
在第一方面的一种可能的实现方式中,在所述T等于1,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
在本申请实施例中,对于一个符号中的3、4或6个资源单元用于映射参考信号的情况,可以实现最大数量为4或6的正交端口的支持。
在第一方面的一种可能的实现方式中,在所述T等于1,所述K等于4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
在本申请实施例中,对于一个符号中的4个资源单元用于映射参考信号的情况,可以实现最大数量为4的正交端口的支持;对于一个符号中的6个资源单元用于映射参考信号的情况,可以实现最大数量为4或6的正交端口的支持。
在第一方面的一种可能的实现方式中,在所述T等于2或4,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,通过序列的循环移位、频分复用和时域正交扩频码正交;或,通过时域正交扩频码和频分复用正交;或,通过频域正交扩频码和时分复用正交;或,通过频域正交扩频码、频分复用和时分复用正交。
在本申请实施例中,对于两个符号中的3、4或6个资源单元用于映射参考信号的情况,可以实现最大数量为4、6、8或12的正交端口的支持。
在第一方面的一种可能的实现方式中,所述频分复用为梳齿为2的频分复用,或梳齿为3的频分复用。
在本申请实施例中,例如对于不同的K值,采用不同的频分复用方式,将参考信号映射在一个PRB中的部分资源单元的方式更加灵活,可以实现不同的最大数量的正交端口的支持。
在第一方面的一种可能的实现方式中,所述频域正交扩频码为长度为2的正交扩 频码,或长度为4的正交扩频码。
在本申请实施例中,例如对于不同的K值,采用不同长度的正交扩频码,将参考信号映射在一个PRB中的部分资源单元,可以有效实现最大数量的正交端口的支持。对于频域正交扩频码的长度为2或4的情况,可以将多个子载波上的资源单元用于映射参考信号的多个端口,增加了参考信号在资源单元上映射的灵活性。
在第一方面的一种可能的实现方式中,所述时域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
在本申请实施例中,例如对于不同的K值,采用不同长度的正交扩频码,将参考信号映射在一个PRB中的部分资源单元,可以有效实现最大数量的正交端口的支持。对于时域正交扩频码的长度为2或4的情况,可以将多个符号上的资源单元用于映射参考信号的多个端口,增加了参考信号在资源单元上映射的灵活性。
在第一方面的一种可能的实现方式中,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的两个相邻PRB。
在本申请实施例中,不同的PRB上,参考信号的至少一个端口组的映射方式不同,从而可最大化参考信号的每个端口在所有PRB上的映射密度和映射效率。
第二方面,本申请实施例提供一种参考信号的传输方法,包括:接收端设备从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用;在所述T×K个资源单元上接收所述参考信号。
在本申请实施例中,设计了一种新的参考信号配置图样,即通过多种正交复用方式,使得与多个端口对应的参考信号可以在一个PRB中的部分资源单元上实现正交复用,可以支持更多类型的数据传输方式;并且,一个PRB中在时域上连续且在频域上连续的的部分资源单元用于映射参考信号,可以减少接收端设备检测参考信号的能耗;此外,参考信号占用PRB的部分资源,PRB上的其他资源单元可以用于传输其他信令或信息,有利于提高资源的使用效率。
在第二方面的一种可能的实现方式中,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
在本申请实施例中,可以通过一种正交复用方式或多种正交复用方式的任意组合,灵活实现参考信号在一个PRB的部分资源单元上正交复用。
在第二方面的一种可能的实现方式中,所述码分复用中的正交码为时域正交扩频码和/或频域正交扩频码。
在第二方面的一种可能的实现方式中,至少存在两个不同的K值,所述至少一个 端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。
在本申请实施例中,不同的参考信号资源集合可以对应不同的正交复用方式,接收端设备可以根据参考信号资源集合的配置参数确定参考信号在资源单元上的映射方式,可以降低接收端设备映射参考信号的复杂度。
在第二方面的一种可能的实现方式中,所述K个连续的资源单元的位置与接收端设备在一个PRB中数据接收的一个符号上占用的K个连续的资源单元的位置相同。
在本申请实施例中,用于传输数据的资源单元还用于传输参考信号,接收端设备在接收数据的同时可以在数据所占用的资源区域内检测到参考信号,一方面可以降低接收端设备映射参考信号的复杂度,另一方面可以降低接收端设备检测参考信号所需的能耗。
在第二方面的一种可能的实现方式中,在所述T等于1,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
在本申请实施例中,对于一个符号中的3、4或6个资源单元用于映射参考信号对应端口的情况,可以实现最大数量为4或6的正交端口的支持。
在第二方面的一种可能的实现方式中,在所述T等于1,所述K等于4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
在本申请实施例中,对于一个符号中的4个资源单元用于映射参考信号对应端口的情况,可以实现最大数量为4的正交端口的支持;对于一个符号中的6个资源单元用于映射参考信号对应端口的情况,可以实现最大数量为4或6的正交端口的支持。
在第二方面的一种可能的实现方式中,在所述T等于2或4,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,通过序列的循环移位、频分复用和时域正交扩频码正交;或,通过时域正交扩频码和频分复用正交;或,通过频域正交扩频码和时分复用正交;或,通过频域正交扩频码、频分复用和时分复用正交。
在本申请实施例中,对于两个符号中的3、4或6个资源单元用于映射参考信号对应端口的情况,可以实现最大数量为4、6、8或12的正交端口的支持。
在第二方面的一种可能的实现方式中,所述频分复用为梳齿为2的频分复用,或梳齿为3的频分复用。
在本申请实施例中,例如对于不同的K值,采用不同的频分复用方式,将参考信号映射在一个PRB中的部分资源单元,可以有效实现最大数量的正交端口的支持。
在第二方面的一种可能的实现方式中,所述频域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
在本申请实施例中,例如对于不同的K值,采用不同长度的正交扩频码,将参考信号映射在一个PRB中的部分资源单元,可以有效实现最大数量的正交端口的支持。对于频域正交扩频码的长度为2或4的情况,可以将多个子载波上的资源单元用于映射参考信号的多个端口,增加了参考信号在资源单元上映射的灵活性。
在第二方面的一种可能的实现方式中,所述时域正交扩频码为长度为2的正交扩 频码,或长度为4的正交扩频码。在本申请实施例中,例如对于不同的K值,采用不同长度的正交扩频码,将参考信号映射在一个PRB中的部分资源单元,可以有效实现最大数量的正交端口的支持。对于时域正交扩频码的长度为2或4的情况,可以将多个符号上的资源单元用于映射参考信号的多个端口,增加了参考信号在资源单元上映射的灵活性。
在第二方面的一种可能的实现方式中,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的两个相邻PRB。
在本申请实施例中,不同的PRB上,参考信号的至少一个端口组的映射方式不同,从而可最大化参考信号的每个端口在所有PRB上的映射密度和映射效率。
第三方面,本申请实施例提供一种通信设备,包括:
处理模块,用于确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用;发送模块,用于在所述T×K个资源单元上发送所述参考信号。
在第三方面的一种可能的实现方式中,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
在第三方面的一种可能的实现方式中,所述码分复用中的正交码为时域正交扩频码和/或频域正交扩频码。
在第三方面的一种可能的实现方式中,至少存在两个不同的K值,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。
在第三方面的一种可能的实现方式中,所述K个连续的资源单元的位置与发送端设备在一个PRB中数据发送的一个符号上占用的K个连续的资源单元的位置相同。
在第三方面的一种可能的实现方式中,在所述T等于1,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
在第三方面的一种可能的实现方式中,在所述T等于1,所述K等于4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
在第三方面的一种可能的实现方式中,在所述T等于2或4,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,通过序列的循环移位、频分复用和时域正交扩频码正交;或,通过时域正交扩频码和频分复用正交;或,通过频域正交扩频码和时分复用正交;或,通过频域正交扩 频码、频分复用和时分复用正交。
在第三方面的一种可能的实现方式中,所述频分复用为梳齿为2的频分复用,或梳齿为3的频分复用。
在第三方面的一种可能的实现方式中,所述频域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
在第三方面的一种可能的实现方式中,所述时域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
在第三方面的一种可能的实现方式中,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的两个相邻PRB。
第四方面,本申请实施例提供一种通信设备,包括:处理模块,用于从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用;接收模块,用于在所述T×K个资源单元上接收所述参考信号。
在第四方面的一种可能的实现方式中,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
在第四方面的一种可能的实现方式中,所述码分复用中的正交码为时域正交扩频码和/或频域正交扩频码。
在第四方面的一种可能的实现方式中,至少存在两个不同的K值,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。
在第四方面的一种可能的实现方式中,所述K个连续的资源单元的位置与发送端设备在一个PRB中数据发送的一个符号上占用的K个连续的资源单元的位置相同。
在第四方面的一种可能的实现方式中,在所述T等于1,所述K等于3、4或6的情况下,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
在第四方面的一种可能的实现方式中,在所述T等于1,所述K等于4或6的情况下,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
在第四方面的一种可能的实现方式中,在所述T等于2或4,所述K等于3、4或6的情况下,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,通过序列的循环移位、频分复用和时域正交扩频码正交;或,通过时域正交扩频码和频分复用正交;或,通过频域正交扩频码和时分复用正交;或,通过频域正交扩频码、频分复用和时分复用正交。
在第四方面的一种可能的实现方式中,所述频分复用为梳齿为2的频分正交,或梳齿为3的频分正交。
在第四方面的一种可能的实现方式中,所述频域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
在第四方面的一种可能的实现方式中,所述时域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
在第四方面的一种可能的实现方式中,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的两个相邻PRB。
第五方面,本申请实施例提供一种通信装置,该装置包括用于执行第一方面或第一方面的任一种可能的实现方式的模块。
可选的,第五方面的通信装置可以为终端,或者可以为可用于终端的部件(例如芯片或者电路等)。
可选的,第五方面的通信装置可以为基站、或者可以为用于基站的部件(例如芯片或者电路等)。
第六方面,本申请实施例提供一种通信装置,该装置包括用于执行第二方面或第二方面的任一种可能的实现方式的模块。
可选的,第六方面的通信装置可以为终端,或者可以为可用于终端的部件(例如芯片或者电路等)。
可选的,第六方面的通信装置可以为基站、或者可以为用于基站的部件(例如芯片或者电路等)。
第七方面,本申请实施例提供一种存储介质,该存储介质存储用于实现第一方面或第一方面的任一种可能的实现方式所述的方法的指令。
第八方面,本申请实施例提供一种存储介质,该存储介质存储用于实现第二方面或第二方面的任一种可能的实现方式所述的方法的指令。
第九方面,本申请提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第一方面或第一方面的任一种可能的实现方式所述的方法。
第十方面,本申请提供了一种包含指令的计算机程序产品,当该计算机程序产品在计算机上运行时,使得计算机执行第二方面或第二方面的任一种可能的实现方式所述的方法。
第十一方面,本申请提供了一种通信装置,所述通信装置包括至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置实现如第一方面或第一方面的任一种可能的实现方式所述的方法中在所述发送端设备上的功能。
第十二方面,本申请提供了一种通信装置,所述通信装置包括至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置实现如第二方面或第二方面的任一种可能的实现方式所述的方法中在所述接收端设备上的功能。
第十三方面,本申请提供了一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如第一方面或第一方面的任一种可能的实现方式所述的方法中在所述发送端设备上的功能得以实现。
第十四方面,本申请提供了一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如第二方面或第二方面的任一种可能的实现方式所述的方法中在所述接收端设备上的功能得以实现。
附图说明
图1是本申请实施例可应用的通信系统的场景示意图。
图2是根据本申请一个实施例数据处理过程示意图。
图3是一种解调参考信号的端口映射的示意图。
图4是根据本申请提供的一种参考信号的传输方法的示意性流程图。
图5是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图6是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图7是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图8是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图9是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图10是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图11是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图12是根据本申请提供的一个实施例的参考信号端口映射的示意图。
图13是本申请实施例的一种通信设备的示意性结构图。
图14是本申请实施例的一种通信设备的示意性结构图。
图15是本申请实施例的一种通信装置的示意性结构图。
图16是本申请实施例的一种通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下中的至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a、b、c、a-b、a-c、b-c、或a-b-c,其中a、b、c可以是单个,也可以是多个。另外,在本申请的实施例中,“第一”、“第二”等字样并不对数目和执行次序进行限定。此外,在本申请实施例中,“401”、“402”、“403”等字样仅为了描述方便作出的标识,并不是对执行步骤的次序进行限定。
需要说明的是,本申请中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通信(global system for mobile communications,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)、免授权频谱的无线通信系统、无线保真(wireless fidelity,WiFi)系统或免授权频谱下的新无线(Unlicensed New Radio,NR-U)等。
图1是本申请实施例可应用的通信系统的场景示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线106和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122可以是例如蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路116向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路116可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路116和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路116和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路116和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
本申请实施例中,网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB/eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站或接入点,或者未来5G网络中的网络设备,例如,NR系统中传输点(transmission and reception point,TRP或transmission point TP)、NR系统中的基站(gNB)、NR系统中的射频单元,如远端射频单元、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等。还可以是可穿戴设备或车载设备等。不同的网络设备可以位于同一个小区,也可以位于不同的小区,具体的在此不做限定。本申请实施例可以适应于上述任意通信系统,例如,本申请实施例可以适用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用大规模阵列天线(massive multiple-input multiple-output,M-MIMO)技术的无线网络、应用分布式天线技术的无线网络等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、智慧工厂(smart factory)中的无线终端或制造设备等等。本申请的实施例对应用场景不做限定。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central  processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
另外,本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
在本申请实施例中,终端设备或网络设备包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、即时通信软件等应用。并且,本申请实施例并未对本申请实施例提供的方法的执行主体的具体结构特别限定,只要能够通过运行记录有本申请实施例的提供的方法的代码的程序,以根据本申请实施例提供的方法进行通信即可,例如,本申请实施例提供的方法的执行主体可以是终端设备设备或网络设备,或者,是终端设备设备或网络设备中能够调用程序并执行程序的功能模块。
图2示出了数据通过正交频分复用(orthogonal frequency division multiplexing,OFDM)符号发送之前发送端设备(例如网络设备)所进行的数据处理过程的主要步骤。如图2所示,来自上层(例如,媒体接入控制(media access control,MAC)层)的业务流经过信道编码之后的得到的码字经过加扰、调制、层映射后映射到一个或多层,然后经过预编码处理、资源单元映射,最后将调制后的符号通过天线端口发送出去。相应地,接收端设备(例如终端设备)可以进行解调数据。具体的上述各个数据处理过程可以参见现有标准中的描述。在本申请中,发送端设备可以是网络设备,也可以是终端设备;接收端设备可以是网络设备,也可以是终端设备。
MIMO技术的主要作用是提供空间分集和空间复用增益,MIMO利用多根发射天线将具有相同信息的信号通过不同的路径发射出去,同时在接收端设备可以获取同一 个数据符号的多个独立衰落的信号,从而获得分集提高的接收可靠性,MIMO技术的空间分集可以用来对抗信道衰落。
预编码技术不仅能够有效抑制MIMO系统中的多个用户干扰,而且能在大大简化接收端设备算法的同时显著提升系统容量。预编码技术可以是在已知信道状态的情况下,通过在发送端设备对待发射信号做预先的处理,即借助与信道资源相匹配的预编码矩阵来对待发射信号进行处理,使得经过预编码的待发射信号与信道相适配,使得接收端设备消除信道间影响的复杂度降低。因此,通过对发射信号的预编码处理,接收信号质量(例如信号与干扰加噪声比(signal to interference plus noise ratio,SINR))得以提升。因此,采用预编码技术,可以实现发送端设备与多个接收端设备在相同的时频资源上传输,也就是实现了多用户多输入多输出(multiple user multiple input multiple output,MU-MIMO)。
发送端为了获取能够与信道相适配的预编码矩阵,通常通过发送参考信号的方式来预先进行信道估计,获取接收端的反馈,从而确定出较为准确的预编码矩阵来对待发送数据进行预编码处理。具体地,该发送端可以为网络设备,接收端可以为终端设备,该参考信号可以为用于下行信道测量的参考信号,例如,信道状态信息参考信号(channel state information reference signal,CSI-RS),终端设备可以根据接收到的CSI-RS,进行CSI测量,并向网络设备反馈下行信道的CSI;该发送端也可以为终端设备,接收端可以为网络设备,该参考信号可以为用于上行信道测量的参考信号,例如,探测参考信号(sounding reference signal,SRS)。网络设备可以根据接收到的SRS,进行信道估计和/或CSI测量,向终端设备指示上行信道的CSI。CSI可以包括例如但不限于预编码矩阵指示(precoding matrix indicator,PMI)、秩指示(rank indication,RI)和信道质量指示(channel quality indicator,CQI)等;为了实现高阶多天线系统的信道质量测量及数据解调,LTE-A系统定义了多种导频信号,其中,解调参考信号(demodulation reference signal,DMRS)用于数据信道,如,物理下行共享信道(physical downlink share channel,PDSCH)或物理上行共享信道(physical uplink shared channel,PUSCH)的解调。
应理解,本申请对于参考信号所适用的通信方式以及参考信号的类型并未特别限定。例如,对于下行数据传输,该发送端例如可以为网络设备,接收端例如可以为终端设备,该参考信号例如可以为信道状态信息参考信号(channel state information reference signal,CSI-RS);对于上行数据传输,该发送端例如可以为终端设备,接收端例如可以为网络设备,该参考信号例如可以为探测参考信号(sounding reference signal,SRS);对于设备到设备(device to device,D2D)的数据传输,发送端例如可以是终端设备,接收端例如也可以是终端设备,该参考信号例如可以为SRS或DMRS。
应理解,以上列举的参考信号的类型仅为示例性说明,而不应对本申请构成任何限定,本申请也并不排除采用其他的参考信号以实现相同或相似功能的可能。
下面以DMRS为例,说明参考信号在物理资源块的映射方式。在NR系统中,DMRS支持两种配置方式,图3所示为DMRS端口映射图样,下述配置方式均是基于完整的PRB的端口配置图样。
在第一种DMRS配置方式中:
(1)对于单符号DMRS端口配置图样310,通过序列的两个循环移位以及每个资源块(physical block,RB)中梳齿为2的频分复用(frequency-division multiplexing,FDM)方式,实现最大数量为4的正交端口的支持;其中,端口组1和端口组2采用梳齿为2的频分复用方式实现正交,端口组1中的端口1、端口2占用相同的时频资源,通过序列的两个循环移位实现正交,端口组2中的端口3、端口4占用相同的时频资源,通过序列的两个循环移位实现正交。
(2)对于双符号DMRS端口配置图样320,通过序列的两个循环移位、每个RB中梳齿为2的FDM方式及时域码分复用(code division multiplexing,CDM)(例如时域正交扩频码(orthogonal cover code,OCC)码)方式,实现最大数量为8的正交端口的支持,其中,时域OCC码的长度为2,对应的码序列为{1 1}和{1 -1};其中,端口组3和端口组4采用梳齿为2的频分复用方式实现正交,端口组4中的端口1至4占用相同的时频资源,通过序列的两个循环移位加长度为2的时域OCC码实现正交,端口组5的端口5至8占用相同的时频资源,通过序列的两个循环移位加长度为2的时域OCC码实现正交。
在第二种DMRS配置方式中:
(1)对于单符号DMRS端口配置图样330,通过频域OCC码、每个RB中梳齿为3的FDM方式,实现最大数量为6的正交端口的支持,频域OCC码的长度为2,频域码序列为{1 1}和{1 -1};其中,端口组1、端口组2、端口组3采用梳齿为3的频分复用方式实现正交,端口组1中的端口1、端口2占用相同的时频资源,通过长度为2的频域OCC码实现正交,端口组2中的端口3、端口4占用相同的时频资源,通过长度为2的频域OCC码实现正交,端口组3中的端口5、端口6占用相同的时频资源,通过长度为2的频域OCC码实现正交。
(2)对于双符号DMRS端口配置图样340,通过频域OCC码、每个RB中梳齿为3的FDM方式以及时域CDM方式(例如时域OCC码),实现最大数量为12的正交端口的支持,其中,时域OCC码和频域OCC码的长度为2,时域OCC码对应的码序列为{1 1}和{1 -1},频域OCC码对应的码序列为{1 1}和{1 -1};其中,端口组4、端口组5、端口组6采用梳齿为3的频分复用方式实现正交,端口组4中的端口1至4占用相同的时频资源,通过长度为2的频域OCC码加长度为2的时域OCC码实现正交,端口组5的端口5至8占用相同的时频资源,通过长度为2的频域OCC码加长度为2的时域OCC码实现正交,端口组6的端口9至12占用相同的时频资源,通过长度为2的频域OCC码加长度为2的时域OCC码实现正交。
对于一个PRB上所有子载波均用于映射DMRS端口的情形,上述DMRS端口映射图样可以实现最大数量的正交端口,但不适用于其他类型的数据信道传输方式,例如,无法支持子PRB的端口映射。鉴于上述问题,本申请实施例提供了一种传输DMRS的方法,能够支持多种情形下的DMRS端口映射。
下面结合图4描述本申请实施例的方法。图4是根据本发明一个实施例的通信的方法示意性流程图。
401,发送端设备从参考信号资源集合中确定参考信号所占用的资源单元,所述参 考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用。
402,接收端设备从所述参考信号资源集合中确定所述参考信号所占用的资源单元。
换句话说,一个PRB中有T个连续符号,在该T个连续符号上有T×N个资源单元,参考信号资源集合为该T×N个资源单元中的T×K个资源单元,该T×K个资源单元位于该T个连续符号上,在该T个连续符号中的每个符号上有K个资源单元属于该参考信号资源集合。发送端设备在该T×K个资源单元上确定参考信号占用的资源单元,该参考信号的至少一个端口组内的端口可以在所述T×K个资源单元上映射,该至少一个端口组包括至少两个端口。相应的,接收端在该T×K个资源单元上确定该参考信号占用的资源单元。
例如,如图5所示,一个PRB包括4个连续的符号(如图5中横向序号1-4所示),每个符号上有12个资源单元(如图5中纵向序号1-12所示),参考信号资源集合510由该4个连续符号中的每个符号上的4个连续资源单元组成,即T等于4,N等于12,K等于4,该参考信号资源集合510可以用于映射参考信号;发送端设备在该参考信号资源集合510中确定参考信号所占用的资源单元为符号1中的资源单元1、资源单元2,用于映射该参考信号的端口组1、端口组2,其中,端口组1包括端口1和端口2,端口组2包括端口3和端口4,端口组1的端口在资源单元1上正交复用,端口组2的端口在资源单元2上正交复用;相应的,接收端设备在该参考信号资源集合510中确定该参考信号所占用的资源单元为符号1中的资源单元1、资源单元2。
可选的,该参考信号可以包括小区公共参考信号(cell-specific reference signals,CRS),解调参考信号(demodulation reference signal,DMRS),探测参考信号(Sounding Reference Signal,SRS)和信道质量测量参考符号(channel State Information-Reference Signal,CSI-RS)中的至少一种。本申请以DMRS为例进行阐述,应理解,本申请实施例中的方法可以应用于上述参考信号中的至少一种,本申请对此不作限定。
可选的,发送端设备和接收端设备可以按照配置确定参考信号所占用的资源单元。
在一个示例中,发送端设备和接收端设备可以预先设定参考信号在参考信号资源集合中占用的资源单元的信息,例如,发送端设备和接收端设备可以预先定义参考信号优先占用参考信号资源集合中的低频段资源或高频段资源。
在一个示例中,发送端设备和接收端设备可以显式配置参考信号在参考信号资源集合中占用的资源单元的配置信息,例如,发送端设备可以将参考信号所占用的资源单元的配置信息指示给接收端设备,接收端根据发送端设备的指示,确定参考信号所占用的资源单元。
可选的,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用,包括:所述至少一个端口组内的部分或全部端口对应的参考信号在所述T×K 个资源单元上正交复用。例如,端口组1包括端口1、端口2、端口3、端口4,T为1,K为2,端口1、端口2在资源单元1、资源单元2上正交复用,端口3、端口4在其他资源单元上正交复用,那么,端口组1内的部分端口对应的参考信号在该T×K个资源单元上正交复用。再例如,端口组1包括端口1、端口2,T为1,K为2,端口1、端口2在资源单元1、资源单元2上正交复用,那么,端口组1内的全部端口对应的参考信号在该T×K个资源单元上正交复用。
可选的,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
其中,序列的循环移位是指序列在频域上进行线性相位旋转,相当于序列在时域上进行循环移位,相位指的是e ja,a为循环移位参数。由同一个基本参考信号序列进行不同的循环移位后得到的参考信号之间可以相互正交。例如,a设为mπ/6,m可以从0到11,可以从一个基本参考信号序列得到12个不同的正交参考信号。再例如,序列的两次循环移位可以是基于一个基本参考信号序列进行两次不同的循环移位,获得两个不同的正交参考信号序列,该两个正交的参考信号序列可以用于映射不同的端口。例如,与端口1对应的参考信号占用资源单元1且对应的相位为e jπ/6;与端口2对应的参考信号占用资源单元1且对应的相位为e jπ/3,那么,端口1与端口2在资源单元1上正交复用。
其中,码分复用是通过一组互相正交的序列来区分多路信号,实现多路信号在同一资源上复用。例如,码序列{1 1}与码序列{1 -1}之间相互正交,从而码序列{1 1}和码序列{1 -1}可以对应两个不同的端口;再例如,码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}和码序列{1 j -1 -j}之间相互正交,码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}和码序列{1 j -1 -j}可以对应四个不同的端口。应理解,上述4长的OCC码序列仅为示例,可选地,4长的OCC码序列还可以是码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{1 1 -1 -1}和码序列{1 -1 -1 1}。
可选的,码分复用中的正交码可以是时域正交扩频码和/或频域正交扩频码。
在一个示例中,频域OCC码的长度为2,与端口1对应的频域OCC码为{1 1},与端口2对应的频域OCC码为{1 -1},那么,端口1与端口2可以在相同的资源上正交复用。
在一个示例中,时域OCC码的长度为4,与端口1对应的时域OCC码为{1 1 1 1},与端口2对应的时域OCC码为{1 1 1 1},与端口3对应的时域OCC码为{j -1 -j 1},与端口4对应的时域OCC码为{1 j -1 -j},那么,端口1至端口4可以在相同的资源上正交复用。应理解,上述4长的OCC码序列仅为示例,可选地,4长的OCC码序列还可以是码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{1 1 -1 -1}和码序列{1 -1 -1 1}。
在一个示例中,频域OCC码的长度为2,时域OCC码的长度为2,与端口1对应的时域OCC码为{1 1},与端口1对应的频域OCC码为{1 1},与端口2对应的时域OCC码为{1 -1},与端口2对应的频域OCC码为{1 -1},与端口3对应的时域OCC码为{1 1},与端口3对应的频域OCC码为{-1 -1},与端口4对应的时域OCC码为{1 -1},与端口4对应的频域OCC码为{-1 1},那么,端口1至端口4可以在相同的资源上正 交复用。
其中,频分复用可以是将用于传输信道的频域资源划分成互不重叠的多个频率资源的子集,在该多个频率资源子集上传输多个信号。例如,一个PRB在一个符号内包括12个子载波,其中12个子载波可以被划分成互不重叠的多个子载波组,用于传输多个信号。
其中,时分复用可以是将时间轴划分成若干个单位时间(例如,时隙(slot)),不同的单位时间可以用于传输不同的信号。例如,一个PRB可以被划分为多个符号,该多个符号可以用于传输多个信号。
在一个示例中,参考信号在M个资源单元上通过序列的N次循环移位,可以获得N个相互正交的参考信号序列,那么参考信号在该M个资源单元上可以对应N个端口,M和N为自然数。
在一个示例中,参考信号在一个符号的N个资源单元上通过N个相互正交的频域OCC码,可以获得相互正交的N个参考信号,那么参考信号在该N个资源单元上可以对应N个端口,N为自然数。
在一个示例中,参考信号在N个符号的N个资源单元上通过N个相互正交的时域OCC码,可以获得相互正交的N个参考信号,那么参考信号在该N个资源单元上可以对应N个端口。
在一个示例中,参考信号在一个符号的N个资源单元上通过频分复用的方式,可以对应至少两个端口,N为大于等于2的自然数。
在一个示例中,参考信号在N个符号的N个资源单元上通过时分复用的方式,可以对应至少两个端口,N为大于等于2的自然数。
可选的,所述K个连续的资源单元的位置与发送端设备在一个PRB中数据发送的一个符号上占用的K个连续的资源单元的位置相同。换句话说,该参考信号资源集合中的T个连续符号中的每个符号上的K个连续的资源单元的位置,与数据发送时在每符号占用的K个连续的资源单元的位置相对应。也就是说,可以根据数据发送时所占用的K个连续的资源单元的位置,确定该T×K个资源单元中每个符号上的K个连续的资源单元的位置。例如,该发送端设备在一个符号上发送数据时所占用的资源单元为4个连续的资源单元(资源单元1至资源单元4),那么,参考信号资源集合包括T×4个资源单元,该T×4个资源单元由一个PRB的T个连续符号中的每个符号上的4个连续的资源单元(资源单元1至资源单元4)组成,该资源单元1至资源单元4的位置与数据发送时每符号内的资源单元1至资源单元4的位置相同。
可选的,至少存在两个不同的K值,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。换句话说,该发送端设备可以根据参考信号资源集合所对应的K值,确定参考信号在该参考信号资源集合上的正交复用方式。那么,K可以是与参考信号资源集合对应的配置参数。
例如,在K为3的情况下,该发送端设备可以确定参考信号所对应的端口组1内的端口在T×3个资源单元上使用序列的循环移位和频分复用的正交复用方式,而在K为4的情况下,该发送端设备可以确定参考信号所对应的端口组1内的端口在T×4个资源单元上使用频域OCC码和频分复用的正交复用方式。
可选的,在所述T等于1,所述K等于3、4或6的情况下,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
可选的,所述频分复用为梳齿为2的频分复用,或梳齿为3的频分复用。其中,梳齿的粒度可以是一个或多个资源单元。“梳齿”还可以被表述为“正交因子”等与“梳齿”概念类似的术语,例如,频分复用为正交因子为2的频分复用,或正交因子为3的频分复用。应理解,本申请对于“梳齿”相关的类似表述不作限定。
例如,梳齿的粒度为1个资源单元,梳齿为2,一个符号上包括12个资源单元,该12个资源单元分别为资源单元1至资源单元12,通过梳齿为2的频分复用方式正交复用,那么,该符号上的资源单元1、3、5、7、9、11对应1梳齿,该符号上的资源单元2、4、6、8、10、12对应2梳齿;映射在与1梳齿对应的资源单元上的参考信号与映射在与2梳齿对应的资源单元上的参考信号之间相互正交,那么,资源单元1、3、5、7、9、11的组合与资源单元2、4、6、8、10、12的组合之间相互正交。
再例如,梳齿的粒度为2个资源单元,梳齿为2,一个符号上包括12个资源单元,该12个资源单元分别为资源单元1至资源单元12,通过梳齿为2的频分复用方式正交复用,那么,该符号上的资源单元1、2、5、6、9、10对应1梳齿,该符号上的资源单元3、4、7、8、11、12对应2梳齿;映射在与1梳齿对应的资源单元上的参考信号与映射在与2梳齿对应的资源单元上的参考信号之间相互正交,那么,资源单元1、2、5、6、9、10的组合与资源单元3、4、7、8、11、12的组合之间相互正交。
再例如,梳齿的粒度为1个资源单元,梳齿为3,一个符号上包括12个资源单元,该12个资源单元分别为资源单元1至资源单元12,通过梳齿为3的频分复用方式正交复用,那么,该符号上的资源单元1、4、7、10对应1梳齿,该符号上的资源单元2、5、8、11对应2梳齿,该符号上的资源单元3、6、9、12对应3梳齿;映射在与1梳齿对应的资源单元上的参考信号与映射在与2梳齿对应的资源单元上的参考信号之间相互正交,映射在与2梳齿对应的资源单元上的参考信号与映射在与3梳齿对应的资源单元上的参考信号之间相互正交,映射在与1梳齿对应的资源单元上的参考信号与映射在与3梳齿对应的资源单元上的参考信号之间相互正交,那么,资源单元1、4、7、10的组合与资源单元2、5、8、11的组合以及资源单元3、6、9、12的组合均正交,资源单元2、5、8、11的组合与资源单元3、6、9、12的组合正交。
在T等于1,K等于3的情况下,所述参考信号资源集合包括3个资源单元,该3个资源单元为一个PRB的1个符号中的3个连续资源单元,参考信号在该3个资源单元上通过序列的循环移位和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在3个资源单元上通过序列的两个循环移位和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图6所示的参考信号资源集合610,一个PRB包括1个符号,该符号上有12个资源单元(如图6中纵向序号1-12所示),该参考信号资源集合610包括1个符号上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,该参考信号资源集合610可以与参考信号的端口组1、端口组2对应,其中,通过梳齿为2、 梳齿粒度为1个资源单元的频分复用方式,那么资源单元1与资源单元2正交,资源单元2与资源单元3正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,那么资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组1内的端口1、端口2。相应的,根据上述方式,在相邻的下一个PRB中资源单元1可以对应端口组2内的端口3、端口4,资源单元2可以对应端口组1内的端口1、端口2,资源单元3可以对应端口组2内的端口3、端口4,如图6所示的参考信号资源集合620。
在一个示例中,在参考信号资源集合内确定参考信号在该3个资源单元上通过序列的两个循环移位和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图6所示的参考信号资源集合630,一个PRB包括1个符号,该符号上有12个资源单元(如图6中纵向序号1-12所示),该参考信号资源集合630包括1个符号上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,该参考信号资源集合630可以与参考信号的端口组1、端口组2、端口组3对应,其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1与资源单元2正交,资源单元2与资源单元3正交,资源单元1与资源单元3正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组3内的端口5、端口6。
在T等于1,K等于4的情况下,所述参考信号资源集合包括4个资源单元,该4个资源单元为一个PRB的1个符号中的4个连续资源单元,参考信号在该4个资源单元上通过序列的循环移位和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该4个资源单元上的正交。
在一个示例中,在参考信号资源集合上确定参考信号在4个资源单元上通过序列的两个循环移位和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图6所示的参考信号资源集合640,一个PRB包括1个符号,该符号上有12个资源单元(如图6中纵向序号1-12所示),该参考信号资源集合640包括1个符号上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,该参考信号资源集合640可以与参考信号的端口组1、端口组2对应,其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3的组合与资源单元2、资源单元4的组合正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组1内的端口1、端口2,资源单元4可以对应端口组2内的端口3、端口4。
在一个示例中,在参考信号资源集合上确定参考信号在该4个资源单元上通过序列的两个循环移位和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图6所示的参考信号资源集合650,一个PRB包括1个符 号,该符号上有12个资源单元(如图6中纵向序号1-12所示),该参考信号资源集合650包括1个符号上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,该参考信号资源集合650可以与参考信号的端口组1、端口组2、端口组3对应,其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1与资源单元2、资源单元3均正交,资源单元2与资源单元3、资源单元4均正交,资源单元3与资源单元4正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组3内的端口5、端口6,资源单元4可以对应端口组1内的端口1、端口2。
在一个示例中,在参考信号资源集合上确定参考信号在该4个资源单元上通过序列的两个循环移位和梳齿为4的频分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,一个PRB包括1个符号,该符号上有12个资源单元(资源单元1至资源单元12),该参考信号资源集合包括1个符号上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,该参考信号资源集合可以与参考信号的端口组1、端口组2、端口组3、端口组7对应,其中,通过梳齿为4、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元2、资源单元3与资源单元4两两正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组3内的端口5、端口6,资源单元4可以对应端口组7内的端口7、端口8。
在T等于1,K等于6的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的1个符号中的6个连续资源单元,参考信号在该6个资源单元上通过序列的循环移位和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该6个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过序列的两个循环移位和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图6所示的参考信号资源集合660,一个PRB包括1个符号,该符号上有12个资源单元(如图6中纵向序号1-12所示),该参考信号资源集合660包括1个符号上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,该参考信号资源集合660可以与参考信号的端口组1、端口组2对应,其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3、资源单元5的组合与资源单元2、资源单元4与资源单元6的组合正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组1内的端口1、端口2,资源单元4可以对应端口组2内的端口3、端口4,资源单元5可以对应端口组1内的端口1、端口2,资源单元6可以 对应端口组2内的端口3、端口4。
在一个示例中,在参考信号资源集合上确定参考信号在该6个资源单元上通过序列的两个循环移位和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图6所示的参考信号资源集合670,一个PRB包括1个符号,该符号上有12个资源单元(如图6中纵向序号1-12所示),该参考信号资源集合670包括1个符号上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,该参考信号资源集合670可以与参考信号的端口组1、端口组2、端口组3对应,其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4的组合与资源单元2、资源单元5的组合以及资源单元3、资源单元6的组合均正交,资源单元2、资源单元5的组合与资源单元3、资源单元6的组合正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组3内的端口5、端口6,资源单元4可以对应端口组1内的端口1、端口2,资源单元5可以对应端口组2内的端口3、端口4,资源单元6可以对应端口组3内的端口5、端口6。
在一个示例中,在参考信号集合上确定参考信号在该6个资源单元上通过序列的两个循环移位和梳齿为4的频分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,一个PRB包括1个符号,该符号上有12个资源单元(资源单元1至资源单元12),该参考信号资源集合包括1个符号上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,该参考信号资源集合可以与参考信号的端口组1、端口组2、端口组3、端口组7对应,其中,通过梳齿为4的频分复用方式,那么资源单元1、资源单元5的组合与资源单元2、资源单元6的组合以及资源单元3以及资源单元4均正交,资源单元2、资源单元6的组合与资源单元3以及资源单元4均正交,资源单元3与资源单元4正交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组3内的端口5、端口6,资源单元4可以对应端口组7内的端口7、端口8,资源单元5可以对应端口组1内的端口1、端口2,资源单元6可以对应端口组2内的端口3、端口4。
在一个示例中,在参考信号集合上确定参考信号在该6个资源单元上通过序列的两个循环移位和梳齿为6的频分复用的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,一个PRB包括1个符号,该符号上有12个资源单元(资源单元1至资源单元12),该参考信号资源集合包括1个符号上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,该参考信号资源集合可以与参考信号的端口组1、端口组2、端口组3、端口组7、端口组8、端口组9对应,其中,通过梳齿为6、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元2、资源单元3、资源单元4、资源单元5与资源单元6两两正 交;在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,资源单元1可以对应端口组1内的端口1、端口2,资源单元2可以对应端口组2内的端口3、端口4,资源单元3可以对应端口组3内的端口5、端口6,资源单元4可以对应端口组7内的端口7、端口8,资源单元5可以对应端口组8内的端口9、端口10,资源单元6可以对应端口组9内的端口11、端口12。
可选的,在所述T等于1,所述K等于4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
可选的,所述频分复用为梳齿为2的频分复用,或梳齿为3的频分复用。其中,梳齿的粒度可以是一个或多个资源单元。应理解,与频分复用梳齿相关的内容已在上文中详细阐述,在此不再赘述。
可选的,所述频域正交扩频码为长度为2的正交扩频码。在一个示例中,频域OCC码的长度为2,那么对应的码序列为{1 1}、{1 -1}。
在T等于1,K等于4的情况下,所述参考信号资源集合包括4个资源单元,该4个资源单元为一个PRB的1个符号中的4个连续资源单元,参考信号在该4个资源单元上通过频域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该4个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在4个资源单元上通过频域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图7所示的参考信号资源集合710,一个PRB包括1个符号,该符号上有12个资源单元(如图7中纵向序号1-12所示),该参考信号资源集合710包括1个符号上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,该参考信号资源集合710可以与参考信号的端口组1、端口组2对应;其中,通过梳齿为2、梳齿粒度为2个资源单元的频分复用方式,那么资源单元1以及资源单元2的组合与资源单元3以及资源单元4的组合正交;频域OCC码的长度为2,在资源单元1与资源单元2上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},那么,资源单元1、资源单元2可以对应端口组1内的端口1、端口2,资源单元3、资源单元4可以对应端口组2内的端口3、端口4。
在T等于1,K等于6的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的1个符号中的6个连续资源单元,参考信号在该6个资源单元上通过频域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该6个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过频域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图7所示的参考信号资源集合720,一个PRB包括1个符号,该符号上有12个资源单元(如图7中纵向序号1-12所示),该参考信号资源集合720包括1个符号上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源 单元4、资源单元5、资源单元6,该参考信号资源集合720可以与参考信号的端口组1、端口组2对应;其中,通过梳齿为2、梳齿粒度为2个资源单元的频分复用方式,那么资源单元1以及资源单元2的组合与资源单元3以及资源单元4的组合正交,资源单元3以及资源单元4的组合与资源单元5以及资源单元6的组合正交;频域OCC码的长度为2,在资源单元1与资源单元2上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元5与资源单元6上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},那么,资源单元1、资源单元2可以对应端口组1内的端口1、端口2,资源单元3、资源单元4可以对应端口组2内的端口3、端口4,资源单元5、资源单元6可以对应端口组1内的端口1、端口2。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过频域正交扩频码和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图7所示的参考信号资源集合730,一个PRB包括1个符号,该符号上有12个资源单元(如图7中纵向序号1-12所示),该参考信号资源集合730包括1个符号上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,该参考信号资源集合730可以与参考信号的端口组1、端口组2、端口组3对应;其中,通过梳齿为3、梳齿粒度为2个资源单元的频分复用方式,那么资源单元1以及资源单元2的组合与资源单元3以及资源单元4的组合、资源单元5以及资源单元6的组合均正交,资源单元3以及资源单元4的组合与资源单元5以及资源单元6的组合正交;频域OCC码的长度为2,在资源单元1与资源单元2上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元5与资源单元6上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},那么,资源单元1、资源单元2可以对应端口组1内的端口1、端口2,资源单元3、资源单元4可以对应端口组2内的端口3、端口4,资源单元5、资源单元6可以对应端口组3内的端口5、端口6。
可选的,在所述T等于2或4,所述K等于3、4或6的情况下,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,通过序列的循环移位、频分复用和时域正交扩频码正交;或,通过时域正交扩频码和频分复用正交;或,通过频域正交扩频码和时分复用正交;或,通过频域正交扩频码、频分复用和时分复用正交。
可选的,所述频分复用为梳齿为2的频分复用,或梳齿为3的频分复用。其中,梳齿的粒度可以是一个或多个资源单元。应理解,与频分复用梳齿相关的内容已在上文中详细阐述,在此不再赘述。
可选的,所述频域正交扩频码为长度为2的正交扩频码。在一个示例中,频域OCC码的长度为2,那么对应的码序列为{1 1}、{1 -1}。在一个示例中,频域OCC码的长度为4,那么对应的码序列为{1 1 1 1}、{1 -1 1 -1}、{j -1 -j 1}和{1 j -1 -j}。应理解,上述OCC码序列也可以为其他序列形式,如,4长的OCC码序列还可以是码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{1 1 -1 -1}和码序列{1 -1 -1 1}这里不做限定。
可选的,所述时域正交扩频码为长度为2的正交扩频码。在一个示例中,时域OCC 码的长度为2,那么对应的码序列为{1 1}、{1 -1}。在一个示例中,时域OCC码的长度为4,那么对应的码序列为{1 1 1 1}、{1 -1 1 -1}、{j -1 -j 1}和{1 j -1 -j}。应理解,上述OCC码序列也可以为其他序列形式,如,4长的OCC码序列还可以是码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{1 1 -1 -1}和码序列{1 -1 -1 1}这里不做限定。
在T等于2,K等于3的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的2个符号中每个符号上的3个连续资源单元,参考信号在该6个资源单元上通过序列的循环移位、频分复用和时域正交扩频码的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该6个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过序列的两个循环移位和梳齿为2的频分复用和时域正交扩频码的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图8所示的参考信号资源集合810,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,该参考信号资源集合810可以与参考信号的端口组4、端口组5对应,其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3、资源单元4、资源单元6的组合与资源单元2、资源单元5的组合正交;时域OCC码的长度为2,在资源单元1与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元2与资源单元5上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元6上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,那么,资源单元1、资源单元4可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元5可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元6可以对应端口组4内的端口1、端口2、端口3、端口4。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过序列的两个循环移位和梳齿为3的频分复用和时域正交扩频码的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图8所示的参考信号资源集合820,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,该参考信号资源集合820可以与参考信号的端口组4、端口组5、端口组6对应,其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4的组合与资源单元2、资源单元5的组合以及资源单元3、资源单元6的组合均正交,资源单元2、资源单元5的组合与资源单元3、资源单元6的组合正交;时域OCC码的长度为2,在资源单元1与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元2与资源单元5上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元6上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相 互正交的参考信号,那么,资源单元1、资源单元4可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元5可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元6可以对应端口组6内的端口9、端口10、端口11、端口12。
在T等于2,K等于3的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的2个符号中每个符号上的3个连续资源单元,参考信号在该6个资源单元上通过时域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该6个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过时域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图8所示的参考信号资源集合830,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,该参考信号资源集合830可以与参考信号的端口组1、端口组2对应;其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3、资源单元4、资源单元6的组合与资源单元2、资源单元5的组合正交;时域OCC码的长度为2,在资源单元1与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元2与资源单元5上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元6上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},那么,资源单元1、资源单元4可以对应端口组1内的端口1、端口2,资源单元2、资源单元5可以对应端口组2内的端口3、端口4,资源单元3、资源单元6可以对应端口组1内的端口1、端口2。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过时域正交扩频码和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图8所示的参考信号资源集合840,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,该参考信号资源集合840可以与参考信号的端口组1、端口组2、端口组3对应;其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4的组合、资源单元2、资源单元5的组合以及资源单元3、资源单元6的组合两两正交;时域OCC码的长度为2,在资源单元1与资源单元4上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元2与资源单元5上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元6上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},那么,资源单元1、资源单元4可以对应端口组1内的端口1、端口2,资源单元2、资源单元5可以对应端口组2内的端口3、端口4,资源单元3、资源单元6可以对应端口组3内的端口5、端口6。
在T等于2,K等于3的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的2个符号中每个符号上的3个连续资源单元,参考信号在该6个资源单元上通过频域正交扩频码和时分复用的方式正交复用,支持该参考信号对 应的至少一个端口组内的端口在该6个资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图8所示的参考信号资源集合850,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,该参考信号资源集合850可以与参考信号的端口组1、端口组2对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2上的资源单元正交;频域OCC码的长度为2,在资源单元1与资源单元2上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元4与资源单元5上的参考信号可以分别对应码序列{1 1}与码序列{1 -1},在资源单元3与资源单元6上可以不映射参考信号,那么,资源单元1、资源单元2可以对应端口组1内的端口1、端口2,资源单元4、资源单元5可以对应端口组2内的端口3、端口4。
在T等于2,K等于3的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的2个符号中每个符号上的3个连续资源单元,参考信号在该6个资源单元上通过频分复用和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该6个资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过梳齿为3的频分复用和时分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图8所示的参考信号资源集合840,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,该参考信号资源集合840可以与参考信号的端口组1、端口组2、端口组3对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2上的资源单元正交;通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4的组合、资源单元2、资源单元5的组合以及资源单元3、资源单元6的组合两两正交;那么,资源单元1、资源单元4可以对应端口组1内的端口1、端口2,资源单元2、资源单元5可以对应端口组2内的端口3、端口4,资源单元3、资源单元6可以对应端口组3内的端口5、端口6。
在T等于2,K等于3的情况下,所述参考信号资源集合包括6个资源单元,该6个资源单元为一个PRB的2个符号中每个符号上的3个连续资源单元,参考信号在该6个资源单元上通过频域正交扩频码、频分复用和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在6个资源单元上通过频域正交扩频码、频分复用和时分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图8所示的参考信号资源集合860,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、 资源单元6,该参考信号资源集合860可以与参考信号的端口组1、端口组2、端口组3对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2上的资源单元正交;通过梳齿为2、梳齿粒度为2个资源单元的频分复用方式,那么资源单元1以及资源单元2的组合与资源单元3正交,资源单元4与资源单元5的组合与资源单元6正交;频域OCC码的长度为2,在资源单元1、资源单元2上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},在资源单元4、资源单元5上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},那么,资源单元1、资源单元2可以对应端口组1内的端口1、端口2,资源单元4、资源单元5可以对应端口组2内的端口3、端口4,资源单元3、资源单元6可以对应端口组3内的端口5、端口6。
在T等于4,K等于3的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的4个符号中每个符号上的3个连续资源单元,参考信号在该12个资源单元上通过时域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过时域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图9所示的参考信号资源集合910,一个PRB包括4个符号,该4个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,在符号3上的3个连续的资源单元为资源单元7、资源单元8、资源单元9,在符号4上的3个连续的资源单元为资源单元10、资源单元11、资源单元12,该参考信号资源集合910可以与参考信号的端口组4、端口组5对应;其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元2、资源单元5、资源单元8、资源单元11的组合与资源单元1、资源单元4、资源单元7、资源单元10的组合以及资源单元3、资源单元6、资源单元9、资源单元12的组合均正交;时域OCC码的长度为4,资源单元1、资源单元4、资源单元7、资源单元10上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元2、资源单元5、资源单元8、资源单元11上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元3、资源单元6、资源单元9、资源单元12上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},那么,资源单元1、资源单元4、资源单元7、资源单元10可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元5、资源单元8、资源单元11可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元6、资源单元9、资源单元12可以对应端口组4内的端口1、端口2、端口3、端口4。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过时域正交扩频码和梳齿为3的频分复用的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图9所示的参考信号资源集合920,一个PRB包括4个符号,该4个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、 资源单元6,在符号3上的3个连续的资源单元为资源单元7、资源单元8、资源单元9,在符号4上的3个连续的资源单元为资源单元10、资源单元11、资源单元12,该参考信号资源集合920可以与参考信号的端口组4、端口组5、端口组6对应;其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元2、资源单元5、资源单元8、资源单元11的组合以及资源单元1、资源单元4、资源单元7、资源单元10的组合以及资源单元3、资源单元6、资源单元9、资源单元12的组合之间两两正交;时域OCC码的长度为4,资源单元1、资源单元4、资源单元7、资源单元10上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元2、资源单元5、资源单元8、资源单元11上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元3、资源单元6、资源单元9、资源单元12上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},那么,资源单元1、资源单元4、资源单元7、资源单元10可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元5、资源单元8、资源单元11可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元6、资源单元9、资源单元12可以对应端口组6内的端口9、端口10、端口11、端口12。
在T等于4,K等于3的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的4个符号中每个符号上的的3个连续资源单元,参考信号在该12个资源单元上通过频域正交扩频码和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,一个PRB包括4个符号,该4个符号上各有12个资源单元,参考信号资源集合包括:在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,在符号3上的3个连续的资源单元为资源单元7、资源单元8、资源单元9,在符号4上的3个连续的资源单元为资源单元10、资源单元11、资源单元12;该参考信号资源集合可以与参考信号的端口组1、端口组2、端口组3、端口组7对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2、符号3、符号4上的资源单元正交,符号2上的资源单元与符号3、符号4上的资源单元正交,符号3上的资源单元与符号4上的资源单元正交;频域OCC码的长度为2,资源单元1、资源单元2上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元4、资源单元5上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元7、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元10、资源单元11上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元6、资源单元9、资源单元12上可以不映射参考信号,那么,资源单元1、资源单元2可以对应端口组1内的端口1、端口2,资源单元4、资源单元5可以对应端口组2内的端口3、端口4,资源单元7、资源单元8可以对应端口组3内的端口5、端口6,资源单元10、资源单元11可以对 应端口组7内的端口7、端口8。
在T等于4,K等于3的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的4个符号中每个符号上的3个连续资源单元,参考信号在该12个资源单元上通过频分复用和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过频分复用和时分复用的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图9所示的参考信号资源集合920,一个PRB包括4个符号,该4个符号上各有12个资源单元,在符号1上的3个连续的资源单元为资源单元1、资源单元2、资源单元3,在符号2上的3个连续的资源单元为资源单元4、资源单元5、资源单元6,在符号3上的3个连续的资源单元为资源单元7、资源单元8、资源单元9,在符号4上的3个连续的资源单元为资源单元10、资源单元11、资源单元12;该参考信号资源集合920可以与参考信号的端口组4、端口组5、端口组6对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2、符号3、符号4上的资源单元正交,符号2上的资源单元与符号3、符号4上的资源单元正交,符号3上的资源单元与符号4上的资源单元正交;通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元2、资源单元5、资源单元8、资源单元11的组合以及资源单元1、资源单元4、资源单元7、资源单元10的组合以及资源单元3、资源单元6、资源单元9、资源单元12的组合之间两两正交;那么,资源单元1、资源单元4、资源单元7、资源单元10可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元5、资源单元8、资源单元11可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元6、资源单元9、资源单元12可以对应端口组6内的端口9、端口10、端口11、端口12。
在T等于2,K等于4的情况下,所述参考信号资源集合包括8个资源单元,该8个资源单元为一个PRB的2个符号中每个符号上的4个连续资源单元,参考信号在该8个资源单元上通过序列的循环移位、频分复用和时域正交扩频码的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在8个资源单元上通过序列的两个循环移位和梳齿为2的频分复用和时域正交扩频码的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图10所示的参考信号资源集合1010,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,该参考信号资源集合1010可以与参考信号的端口组4、端口组5对应,其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3、资源单元5、资源单元7的组合与资源单元2、资源单元4、资源单元6、资源单元8的组合正交;时域OCC码的长度为2,资源单元1与资源单元5上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元2与资源单元6上的参考信号可以分别对应码序列{1 1}、码 序列{1 -1},资源单元3与资源单元7上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元4与资源单元8上的参考信号可以分别对应码序列{1 1}、码序列{1 -1};在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,那么,资源单元1、资源单元5可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元6可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元7可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元4、资源单元8可以对应端口组5内的端口5、端口6、端口7、端口8。
在一个示例中,在参考信号资源集合上确定参考信号在8个资源单元上通过序列的两个循环移位和梳齿为3的频分复用和时域正交扩频码的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图10所示的参考信号资源集合1020,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,该参考信号资源集合1020可以与参考信号的端口组4、端口组5、端口组6对应,其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4、资源单元5、资源单元8的组合与资源单元2、资源单元6的组合以及资源单元3、资源单元7的组合正交,资源单元2、资源单元6的组合与资源单元3、资源单元7的组合正交;时域OCC码的长度为2,资源单元1与资源单元5上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元2与资源单元6上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元3与资源单元7上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元4与资源单元8上的参考信号可以分别对应码序列{1 1}、码序列{1 -1};在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,那么,资源单元1、资源单元5可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元6可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元7可以对应端口组6内的端口9、端口10、端口11、端口12,资源单元4、资源单元8可以对应端口组4内的端口1、端口2、端口3、端口4。
在T等于2,K等于4的情况下,所述参考信号资源集合包括8个资源单元,该8个资源单元为一个PRB的2个符号中每个符号上的4个连续资源单元,参考信号在该8个资源单元上通过时域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在8个资源单元上通过时域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图10所示的参考信号资源集合1030,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,该参考信号资源集合1030可以与参考信号的端口组1、端口组2对应;其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复 用方式,那么资源单元1、资源单元3、资源单元5、资源单元7的组合与资源单元2、资源单元4、资源单元6、资源单元8的组合正交;时域OCC码的长度为2,资源单元1与资源单元5上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元2与资源单元6上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元3与资源单元7上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元4与资源单元8上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},那么,资源单元1、资源单元5可以对应端口组1内的端口1、端口2,资源单元2、资源单元6可以对应端口组2内的端口3、端口4,资源单元3、资源单元7可以对应端口组1内的端口1、端口2,资源单元4、资源单元8可以对应端口组2内的端口3、端口4。
在一个示例中,在参考信号资源集合上确定参考信号在8个资源单元上通过时域正交扩频码和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图10所示的参考信号资源集合1040,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,该参考信号资源集合1040可以与参考信号的端口组1、端口组2、端口组3对应;其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4、资源单元5、资源单元8的组合与资源单元2、资源单元6的组合以及资源单元3、资源单元7的组合均正交,资源单元2、资源单元6的组合与资源单元3、资源单元7的组合正交;时域OCC码的长度为2,资源单元1与资源单元5上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元2与资源单元6上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元3与资源单元7上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},资源单元4与资源单元8上的参考信号可以分别对应码序列{1 1}、码序列{1 -1},那么,资源单元1、资源单元5可以对应端口组1内的端口1、端口2,资源单元2、资源单元6可以对应端口组2内的端口3、端口4,资源单元3、资源单元7可以对应端口组3内的端口5、端口6,资源单元4、资源单元8可以对应端口组1内的端口1、端口2。
在T等于2,K等于4的情况下,所述参考信号资源集合包括8个资源单元,该8个资源单元为一个PRB的2个符号中每个符号上的4个连续资源单元,参考信号在该8个资源单元上通过频域正交扩频码和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在8个资源单元上通过频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图10所示的参考信号资源集合1050,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,该参考信号资源集合1050可以与参考信号的端口组4、端口组5对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2上的资源单元正交;频域OCC码的长度为4,资源单元1、资源单元2、资源单元3、资源单元4上的参考信号可以分别对应码序列{1 1 1 1}、码序列{j -1 -j 1}、码序列{1 j -1 -j}、 码序列{1 -1 1 -1},资源单元5、资源单元6、资源单元7、资源单元8上的参考信号可以分别对应码序列{1 1 1 1}、码序列{j -1 -j 1}、码序列{1 j -1 -j}、码序列{1 -1 1 -1};那么,资源单元1、资源单元2、资源单元3、资源单元4可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元5、资源单元6、资源单元7、资源单元8可以对应端口组5内的端口5、端口6、端口7、端口8。
在T等于2,K等于4的情况下,所述参考信号资源集合包括8个资源单元,该8个资源单元为一个PRB的2个符号中每个符号上的4个连续资源单元,参考信号在该8个资源单元上通过频域正交扩频码、频分复用和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在8个资源单元上通过频域正交扩频码、频分复用和时分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图10所示的参考信号资源集合1060,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,该参考信号资源集合1060可以与参考信号的端口组4、端口组5对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2上的资源单元正交;通过梳齿为2、梳齿粒度为2个资源单元的频分复用方式,那么资源单元1、资源单元2、资源单元5、资源单元6的组合与资源单元3、资源单元4、资源单元7、资源单元8的组合正交;频域OCC码的长度为2,资源单元1、资源单元2上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元4上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元5、资源单元6上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元7、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},,码序列{1 -1},那么,资源单元1、资源单元2、资源单元5、资源单元6可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元3、资源单元4、资源单元7、资源单元8可以对应端口组5内的端口5、端口6、端口7、端口8。
在T等于4,K等于4的情况下,所述参考信号资源集合包括16个资源单元,该16个资源单元为一个PRB的4个符号中每个符号上的4个连续资源单元,参考信号在该16个资源单元上通过时域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在16个资源单元上通过时域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图11所示的参考信号资源集合1110,一个PRB包括4个符号,该4个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,在符号3上的4个连续的资源单元为资源单元9、资源单元10、资源单元11、资源单元12,在符号4上的4个连续的资源单元为资源单元13、资源单元14、资源单元15、资源单元16,该参考信号资源集合1110 可以与参考信号的端口组4、端口组5对应;其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3、资源单元5、资源单元7、资源单元9、资源单元11、资源单元13、资源单元15的组合与资源单元2、资源单元4、资源单元6、资源单元8、资源单元10、资源单元12、资源单元14、资源单元16的组合正交;时域OCC码的长度为4,资源单元1、资源单元5、资源单元9、资源单元13上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元2、资源单元6、资源单元10、资源单元14上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元3、资源单元7、资源单元11、资源单元15上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元4、资源单元8、资源单元12、资源单元16上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},那么,资源单元1、资源单元5、资源单元9、资源单元13可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元6、资源单元10、资源单元14可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元7、资源单元11、资源单元15可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元4、资源单元8、资源单元12、资源单元16可以对应端口组5内的端口5、端口6、端口7、端口8。
在一个示例中,在参考信号资源集合上确定参考信号在16个资源单元上通过时域正交扩频码和梳齿为3的频分复用的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图11所示的参考信号资源集合1120,一个PRB包括4个符号,该4个符号上各有12个资源单元,在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,在符号3上的4个连续的资源单元为资源单元9、资源单元10、资源单元11、资源单元12,在符号4上的4个连续的资源单元为资源单元13、资源单元14、资源单元15、资源单元16,该参考信号资源集合1120可以与参考信号的端口组4、端口组5、端口组6对应;其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4、资源单元5、资源单元8、资源单元9、资源单元12、资源单元13、资源单元16的组合与资源单元2、资源单元6、资源单元10、资源单元14的组合以及资源单元3、资源单元7、资源单元11、资源单元15的组合均正交,资源单元2、资源单元6、资源单元10、资源单元14的组合与资源单元3、资源单元7、资源单元11、资源单元15的组合正交;时域OCC码的长度为4,资源单元1、资源单元5、资源单元9、资源单元13上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元2、资源单元6、资源单元10、资源单元14上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元3、资源单元7、资源单元11、资源单元15上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元4、资源单元8、资源单元12、资源单元16上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},那么,资源单元1、资源单元5、资源单元9、资 源单元13可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元6、资源单元10、资源单元14可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元7、资源单元11、资源单元15可以对应端口组6内的端口9、端口10、端口11、端口12,资源单元4、资源单元8、资源单元12、资源单元16可以对应端口组4内的端口1、端口2、端口3、端口4。
在T等于4,K等于4的情况下,所述参考信号资源集合包括16个资源单元,该16个资源单元为一个PRB的4个符号中每个符号上的4个连续资源单元,参考信号在该16个资源单元上通过频域正交扩频码和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在16个资源单元上通过频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为16的正交端口的支持。例如,,一个PRB包括4个符号,该4个符号上各有12个资源单元,参考信号资源集合包括:在符号1上的4个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4,在符号2上的4个连续的资源单元为资源单元5、资源单元6、资源单元7、资源单元8,在符号3上的4个连续的资源单元为资源单元9、资源单元10、资源单元11、资源单元12,在符号4上的4个连续的资源单元为资源单元13、资源单元14、资源单元15、资源单元16;该参考信号资源集合可以与参考信号的端口组4、端口组5、端口组6、端口组10对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2、符号3、符号4上的资源单元正交,符号2上的资源单元与符号3、符号4上的资源单元正交,符号3上的资源单元与符号4上的资源单元正交;频域OCC码的长度为4,资源单元1、资源单元2、资源单元3、资源单元4上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元5、资源单元6、资源单元7、资源单元8上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元9、资源单元10、资源单元11、资源单元12上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j},资源单元13、资源单元14、资源单元15、资源单元16上的参考信号可以分别对应码序列{1 1 1 1}、码序列{1 -1 1 -1}、码序列{j -1 -j 1}、码序列{1 j -1 -j};那么,资源单元1、资源单元2、资源单元3、资源单元4可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元5、资源单元6、资源单元7、资源单元8可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元9、资源单元10、资源单元11、资源单元12可以对应端口组6内的端口9、端口10、端口11、端口12,资源单元13、资源单元14、资源单元15、资源单元16可以对应端口组10内的端口13、端口14、端口15、端口16。
在T等于2,K等于6的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的2个符号中每个符号上的6个连续资源单元,参考信号在该12个资源单元上通过序列的循环移位、频分复用和时域正交扩频码的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过序列 的两个循环移位和梳齿为2、梳齿粒度为1个资源单元的频分复用和时域正交扩频码的方式正交复用,可以实现最大数量为8的正交端口的支持。例如,如图12所示的参考信号资源集合1210,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,在符号2上的6个连续的资源单元为资源单元7、资源单元8、资源单元9、资源单元10、资源单元11、资源单元12,该参考信号资源集合1210可以与参考信号的端口组4、端口组5对应,其中,通过梳齿为2、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元3、资源单元5、资源单元7、资源单元9、资源单元11的组合与资源单元2、资源单元4、资源单元6、资源单元8、资源单元10、资源单元12的组合正交;时域OCC码的长度为2,资源单元1、资源单元7上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元2、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元9上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元4、资源单元10上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元5、资源单元11上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元6、资源单元12上的参考信号可以分别对应码序列{1 1},码序列{1 -1};在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,那么,资源单元1、资源单元7可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元8可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元9可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元4、资源单元10可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元5、资源单元11可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元6、资源单元12可以对应端口组5内的端口5、端口6、端口7、端口8。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过序列的两个循环移位和梳齿为3、梳齿粒度为1个资源单元的频分复用和时域正交扩频码的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图12所示的参考信号资源集合1220,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,在符号2上的6个连续的资源单元为资源单元7、资源单元8、资源单元9、资源单元10、资源单元11、资源单元12,该参考信号资源集合1220可以与参考信号的端口组4、端口组5、端口组6对应,其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4、资源单元7、资源单元10的组合与资源单元2、资源单元5、资源单元8、资源单元11的组合以及资源单元3、资源单元6、资源单元9、资源单元12的组合均正交,资源单元2、资源单元5、资源单元8、资源单元11的组合与资源单元3、资源单元6、资源单元9、资源单元12的组合正交;时域OCC码的长度为2,资源单元1、资源单元7上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元2、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元9上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元4、资源单元10上的参考信号可以分别 对应码序列{1 1},码序列{1 -1},资源单元5、资源单元11上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元6、资源单元12上的参考信号可以分别对应码序列{1 1},码序列{1 -1};在每个资源单元上通过序列的两次循环移位,即基于一个基本参考信号序列进行两次不同的循环移位,获得两个相互正交的参考信号,那么,资源单元1、资源单元7可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元2、资源单元8可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元3、资源单元9可以对应端口组6内的端口9、端口10、端口11、端口12,资源单元4、资源单元10可以对应端口组4内的端口1、端口2、端口3、端口4,资源单元5、资源单元11可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元6、资源单元12可以对应端口组6内的端口9、端口10、端口11、端口12。
在T等于2,K等于6的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的2个符号中每个符号上的6个连续资源单元,参考信号在该12个资源单元上通过时域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过时域正交扩频码和梳齿为2的频分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。例如,如图12所示的参考信号资源集合1230,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,在符号2上的6个连续的资源单元为资源单元7、资源单元8、资源单元9、资源单元10、资源单元11、资源单元12,该参考信号资源集合1230可以与参考信号的端口组1、端口组2对应;通过梳齿为2的频分复用方式,那么资源单元1、资源单元3、资源单元5、资源单元7、资源单元9、资源单元11的组合与资源单元2、资源单元4、资源单元6、资源单元8、资源单元10、资源单元12的组合正交;时域OCC码的长度为2,资源单元1、资源单元7上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元2、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元9上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元4、资源单元10上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元5、资源单元11上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元6、资源单元12上的参考信号可以分别对应码序列{1 1},码序列{1 -1},那么,资源单元1、资源单元7可以对应端口组1内的端口1、端口2,资源单元2、资源单元8可以对应端口组2内的端口3、端口4,资源单元3、资源单元9可以对应端口组1内的端口1、端口2,资源单元4、资源单元10可以对应端口组2内的端口3、端口4,资源单元5、资源单元11可以对应端口组1内的端口1、端口2,资源单元6、资源单元12可以对应端口组2内的端口3、端口4。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过时域正交扩频码和梳齿为3的频分复用的方式正交复用,可以实现最大数量为6的正交端口的支持。例如,如图12所示的参考信号资源集合1240,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的6个连续的资源单元为资源单元1、 资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,在符号2上的6个连续的资源单元为资源单元7、资源单元8、资源单元9、资源单元10、资源单元11、资源单元12,该参考信号资源集合1240可以与参考信号的端口组1、端口组2、端口组3对应;其中,通过梳齿为3、梳齿粒度为1个资源单元的频分复用方式,那么资源单元1、资源单元4、资源单元7、资源单元10的组合与资源单元2、资源单元5、资源单元8、资源单元11的组合以及资源单元3、资源单元6、资源单元9、资源单元12的组合均正交,资源单元2、资源单元5、资源单元8、资源单元11的组合与资源单元3、资源单元6、资源单元9、资源单元12的组合正交;时域OCC码的长度为2,资源单元1、资源单元7上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元2、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元9上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元4、资源单元10上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元5、资源单元11上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元6、资源单元12上的参考信号可以分别对应码序列{1 1},码序列{1 -1},那么,资源单元1、资源单元7可以对应端口组1内的端口1、端口2,资源单元2、资源单元8可以对应端口组2内的端口3、端口4,资源单元3、资源单元9可以对应端口组3内的端口5、端口6,资源单元4、资源单元10可以对应端口组1内的端口1、端口2,资源单元5、资源单元11可以对应端口组2内的端口3、端口4,资源单元6、资源单元12可以对应端口组3内的端口5、端口6。
在T等于2,K等于6的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的2个符号中每个符号上的6个连续资源单元,参考信号在该12个资源单元上通过频域正交扩频码和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过长度为2的频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为4的正交端口的支持。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过长度为4的频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。
在T等于2,K等于6的情况下,所述参考信号资源集合包括12个资源单元,该12个资源单元为一个PRB的2个符号中每个符号上的6个连续资源单元,参考信号在该12个资源单元上通过频域正交扩频码、频分复用和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该参考信号资源集合对应的资源单元上正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在12个资源单元上通过频域正交扩频码、频分复用和时分复用的方式正交复用,可以实现最大数量为12的正交端口的支持。例如,如图12所示的参考信号资源集合1250,一个PRB包括2个符号,该2个符号上各有12个资源单元,在符号1上的6个连续的资源单元为资源单元1、资源单元2、资源单元3、资源单元4、资源单元5、资源单元6,在符号2上的6个 连续的资源单元为资源单元7、资源单元8、资源单元9、资源单元10、资源单元11、资源单元12,该参考信号资源集合1250可以与参考信号的端口组4、端口组5、端口组6对应;其中,通过时分复用方式,那么符号1上的资源单元与符号2上的资源单元正交;通过梳齿为3、梳齿粒度为2个资源单元的频分复用方式,那么资源单元1、资源单元2、资源单元7、资源单元8的组合与资源单元3、资源单元4、资源单元9、资源单元10的组合以及资源单元5、资源单元6、资源单元11、资源单元12的组合均正交;频域OCC码的长度为2,资源单元1、资源单元2上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元3、资源单元4上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元5、资源单元6上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元7、资源单元8上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元9、资源单元10上的参考信号可以分别对应码序列{1 1},码序列{1 -1},资源单元11、资源单元12上的参考信号可以分别对应码序列{1 1},码序列{1 -1},那么,资源单元1、资源单元2、资源单元7、资源单元8可以对应端口组4内的端口1、端口2,、端口3、端口4,资源单元3、资源单元4、资源单元9、资源单元10可以对应端口组5内的端口5、端口6、端口7、端口8,资源单元5、资源单元6、资源单元11、资源单元12可以对应端口组6内的端口9、端口10、端口11、端口12。
在T等于4,K等于6的情况下,所述参考信号资源集合包括24个资源单元,该24个资源单元为一个PRB的4个符号中每个符号上的6个连续资源单元,参考信号在该24资源单元上通过时域正交扩频码和频分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该24个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在24个资源单元上通过长度为4的时域正交扩频码和梳齿为2、梳齿密度为1个资源单元频分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。
在一个示例中,在参考信号资源集合上确定参考信号在24个资源单元上通过长度为4的时域正交扩频码和梳齿为3、梳齿密度为1个资源单元频分复用的方式正交复用,可以实现最大数量为12的正交端口的支持。
在T等于4,K等于6的情况下,所述参考信号资源集合包括24个资源单元,该24个资源单元为一个PRB的4个符号中每个符号上的6个连续资源单元,参考信号在该24个资源单元上通过频域正交扩频码和时分复用的方式正交复用,支持该参考信号对应的至少一个端口组内的端口在该24个资源单元上的正交复用。
在一个示例中,在参考信号资源集合上确定参考信号在24个资源单元上通过长度为2的频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为8的正交端口的支持。
在一个示例中,在参考信号资源集合上确定参考信号在24个资源单元上通过长度为4的频域正交扩频码和时分复用的方式正交复用,可以实现最大数量为16的正交端口的支持。
可选的,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的 两个相邻PRB。换句话说,发送端设备或接收端设备可以确定映射同一组天线端口的参考信号在相邻的两个PRB上的位置可以不同。例如,与端口组1对应的参考信号映射在第一PRB上的资源单元1,与该端口组1对应的参考信号映射在第二PRB上的资源单元2,第一PRB与第二PRB相邻,资源单元1与资源单元2的在两个PRB中的资源单元位置不同。
403,该发送端设备在所述T×K个资源单元上发送所述参考信号。相应的,接收端设备在该T×K个资源单元上接收该发送端设备发送的该参考信号。
在本申请实施例中,设计了一种新的参考信号配置图样,即通过多种正交复用方式,使得与多个端口对应的参考信号可以在一个PRB中的部分资源单元上实现正交复用,可以支持更多类型的数据传输方式;并且,一个PRB中在时域上连续且在频域上连续的的部分资源单元用于映射参考信号,可以减少接收端设备检测参考信号的能耗;此外,参考信号占用PRB的部分资源,PRB上的其他资源单元可以用于传输其他信令或信息,有利于提高资源的使用效率。
图13是根据本申请实施例提供的发送端设备的结构示意图。该发送端设备可以为网络设备、或者可以为用于网络设备的部件(例如芯片或者电路等)。该发送端设备可以为终端设备,也可以为可用于终端设备的部件(例如芯片或者电路)。如图13所示,发送端设备1300可以包括处理模块1301和发送模块1302。
处理模块1301,用于从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用。
发送模块1302,用于在所述T×K个资源单元上发送所述参考信号。
处理模块1301可以由处理器实现。发送模块1302可以由发送器实现。处理模块1301和发送模块1302的具体功能和有益效果可以参见图4所示的方法,在此就不再赘述。
一种可能的实施例中,还提供了一种发送端设备,该发送端设备可以为网络设备、或者可以为用于网络设备的部件(例如芯片或者电路等)。该发送端设备可以为终端设备,也可以为可用于终端设备的部件(例如芯片或者电路)。该发送端设备可以包括收发器和处理器,可选的,还可以包括存储器。其中收发器可以用于实现对应于上述接收模块和发送模块的相应功能和操作,处理器可以用于实现上述处理模块的相应功能和操作。存储器可以用于存储执行指令或者应用程序代码,并由处理器来控制执行,实现本申请上述实施例提供的通信方法;和/或,也可以用于暂存一些数据和指令信息等。存储器可以独立于处理器存在,此时,存储器可以通过通信线路与处理器相连接。又一种可能的设计中,存储器也可以和处理器集成在一起,本申请实施例对此不作限定。
图14是根据本申请实施例提供的接收端设备的结构示意图。该接收端设备可以为 网络设备、或者可以为用于网络设备的部件(例如芯片或者电路等)。该接收端设备可以为终端设备,也可以为可用于终端设备的部件(例如芯片或者电路)。如图14所示,接收端设备1400可以包括处理模块1401和接收模块1402。
处理模块1401,用于从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用。
接收模块1402,用于在所述T×K个资源单元上接收所述参考信号。
处理模块1401可以由处理器实现。接收模块1402可以由接收器实现。处理模块1401和接收模块1402的具体功能和有益效果可以参见图4所示的方法,在此就不再赘述。
一种可能的实施例中,还提供了一种接收端设备,该接收端设备可以为网络设备、或者可以为用于网络设备的部件(例如芯片或者电路等)。该接收端设备可以为终端设备,也可以为可用于终端设备的部件(例如芯片或者电路)。该接收端设备可以包括收发器和处理器,可选的,还可以包括存储器。其中收发器可以用于实现对应于上述接收模块和发送模块的相应功能和操作,处理器可以用于实现上述处理模块的相应功能和操作。存储器可以用于存储执行指令或者应用程序代码,并由处理器来控制执行,实现本申请上述实施例提供的通信方法;和/或,也可以用于暂存一些数据和指令信息等。存储器可以独立于处理器存在,此时,存储器可以通过通信线路与处理器相连接。又一种可能的设计中,存储器也可以和处理器集成在一起,本申请实施例对此不作限定。
图15是根据本发明实施例提供的终端设备的结构框图。如图15所示,终端设备包括处理器1501、存储器1502、射频电路、天线以及输入输出装置。处理器1501可以用于对通信协议以及通信数据进行处理,以及对终端设备进行控制,执行软件程序,处理软件程序的数据等。存储器1502主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端设备可以不具有输入输出装置。
当需要发送数据时,处理器1501对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图15中仅示出了一个存储器和处理器。在实际的终端设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集 成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端设备的收发器1503,将具有处理功能的处理器视为终端设备的处理单元。收发器也可以称为收发单元、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发器1503中用于实现接收功能的器件视为接收单元,将收发器1503中用于实现发送功能的器件视为发送单元,即收发器1503包括接收单元和发送单元。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
处理器1501、存储器1502和收发器1503之间通过内部连接通路互相通信,传递控制和/或数据信号
上述本发明实施例揭示的方法可以应用于处理器1501中,或者由处理器1501实现。处理器1501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1501中的硬件的集成逻辑电路或者软件形式的指令完成。
本申请各实施例所述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器1502可以存储用于执行如图4所示方法中终端设备执行的方法的指令。处理器1501可以执行存储器1502中存储的指令结合其他硬件(例如收发器1503)完成如图4所示方法中终端设备执行的步骤,具体工作过程和有益效果可以参见图4所示实施例中的描述。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行上述方法实施例中终端设备侧的方法。
本申请实施例还提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中终端设备侧的方法。
本申请实施例还提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中终端设备侧的方法。
图16是根据本发明实施例提供的网络设备的结构框图。图16所示的网络设备1600包括:处理器1601、存储器1602和收发器1603。
处理器1601、存储器1602和收发器1603之间通过内部连接通路互相通信,传递 控制和/或数据信号。
上述本发明实施例揭示的方法可以应用于处理器1601中,或者由处理器1601实现。处理器1601可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器1601中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器1601可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1602,处理器1601读取存储器1602中的指令,结合其硬件完成上述方法的步骤。
可选的,在一些实施例中,存储器1602可以存储用于执行如图4所示方法中网络设备执行的方法的指令。处理器1601可以执行存储器1602中存储的指令结合其他硬件(例如收发器1603)完成如图4所示方法中网络设备的步骤,具体工作过程和有益效果可以参见图4所示实施例中的描述。
本申请实施例还提供一种芯片,该芯片包括收发单元和处理单元。其中,收发单元可以是输入输出电路、通信接口;处理单元为该芯片上集成的处理器或者微处理器或者集成电路。该芯片可以执行上述实施例中网络设备侧执行的方法。
作为本实施例的另一种形式,提供一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中网络设备侧的方法。
作为本实施例的另一种形式,提供一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中网络设备侧的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种参考信号的传输方法,其特征在于,包括:
    发送端设备从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用;
    在所述T×K个资源单元上发送所述参考信号。
  2. 如权利要求1所述的方法,其特征在于,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:
    所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
  3. 如权利要求2所述的方法,其特征在于,所述码分复用中的正交码为时域正交扩频码和/或频域正交扩频码。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,至少存在两个不同的K值,所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述K个连续的资源单元的位置与发送端设备在一个PRB中数据发送的一个符号上占用的K个连续的资源单元的位置相同。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,在所述T等于1,所述K等于3、4或6的情况下,
    所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
  7. 如权利要求1至5中任一项所述的方法,其特征在于,在所述T等于1,所述K等于4或6的情况下,
    所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
  8. 如权利要求1至5中任一项所述的方法,其特征在于,在所述T等于2或4,所述K等于3、4或6的情况下,
    所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,
    通过序列的循环移位、频分复用和时域正交扩频码正交;或,
    通过时域正交扩频码和频分复用正交;或,
    通过频域正交扩频码和时分复用正交;或,
    通过频域正交扩频码、频分复用和时分复用正交。
  9. 如权利要求6至8中任一项所述的方法,其特征在于,所述频分复用为梳齿为 2的频分复用,或梳齿为3的频分复用。
  10. 如权利要求7或8所述的方法,其特征在于,所述频域正交扩频码为长度为2的正交扩频码。
  11. 如权利要求8所述的方法,其特征在于,所述时域正交扩频码或所述频域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
  12. 如权利要求1至11中任一项所述的方法,其特征在于,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的两个相邻PRB。
  13. 一种参考信号的传输方法,其特征在于,包括:
    接收端设备从参考信号资源集合中确定参考信号所占用的资源单元,所述参考信号资源集合包括T×K个资源单元,所述T×K个资源单元由一个物理资源块PRB的T个连续符号中的每个符号上的K个连续的资源单元组成,其中,一个PRB在所述T个连续符号中的每个符号上包括N个资源单元,T、N和K为正整数且N>K≥1,T≥1,所述T个连续符号中的T×K个资源单元与所述参考信号的至少一个端口组对应,所述至少一个端口组中的每个端口组包括至少两个端口,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上正交复用;
    在所述T×K个资源单元上接收所述参考信号。
  14. 如权利要求13所述的方法,其特征在于,所述至少一个端口组内的端口在所述T×K个资源单元上正交复用,包括:
    所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位、码分复用、频分复用和时分复用中的至少一种方式正交复用。
  15. 如权利要求14所述的方法,其特征在于,所述码分复用中的正交码为时域正交扩频码和/或频域正交扩频码。
  16. 如权利要求13至15中任一项所述的方法,其特征在于,至少存在两个不同的K值,与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上的正交复用方式不同。
  17. 如权利要求13至16中任一项所述的方法,其特征在于,所述K个连续的资源单元的位置与发送端设备在一个PRB中数据发送的一个符号上占用的K个连续的资源单元的位置相同。
  18. 如权利要求13至17中任一项所述的方法,其特征在于,在所述T等于1,所述K等于3、4或6的情况下,
    与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过序列的循环移位和频分复用正交。
  19. 如权利要求13至17中任一项所述的方法,其特征在于,在所述T等于1,所述K等于4或6的情况下,
    与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上通过频域正交扩频码和频分复用正交。
  20. 如权利要求13至17中任一项所述的方法,其特征在于,在所述T等于2或4,所述K等于3、4或6的情况下,
    与所述至少一个端口组内的端口对应的参考信号在所述T×K个资源单元上,
    通过序列的循环移位、频分复用和时域正交扩频码正交;或,
    通过时域正交扩频码和频分复用正交;或,
    通过频域正交扩频码和时分复用正交;或,
    通过频域正交扩频码、频分复用和时分复用正交。
  21. 如权利要求18至20中任一项所述的方法,其特征在于,所述频分复用为梳齿为2的频分正交,或梳齿为3的频分正交。
  22. 如权利要求19或20所述的方法,其特征在于,所述频域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
  23. 如权利要求20所述的方法,其特征在于,所述时域正交扩频码为长度为2的正交扩频码,或长度为4的正交扩频码。
  24. 如权利要求13至23中任一项所述的方法,其特征在于,所述至少一个端口组在第一PRB中对应的资源单元位置与在第二PRB中对应的资源单元位置不同,所述第一PRB和所述第二PRB为所述参考信号占用的两个相邻PRB。
  25. 一种通信设备,其特征在于,包括用于执行如权利要求1至12中任一项所述的方法的模块。
  26. 一种通信设备,其特征在于,包括用于执行如权利要求13至24中任一项所述的方法的模块。
  27. 一种通信装置,其特征在于,所述通信装置包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置实现如权利要求1至12中任一项所述的方法中在所述发送端设备上的功能。
  28. 一种通信装置,其特征在于,所述通信装置包括:至少一个处理器和通信接口,所述通信接口用于所述通信装置与其他通信装置进行信息交互,当程序指令在所述至少一个处理器中执行时,使得所述通信装置实现如权利要求13至24中任一项所述的方法中在所述接收端设备上的功能。
  29. 一种计算机程序存储介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求1至12中任一项所述的方法。
  30. 一种计算机程序存储介质,其特征在于,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得计算机执行如权利要求13至24中任一项所述的方法。
  31. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如权利要求1至12中任一项所述的方法中在所述发送端设备上的功能得以实现。
  32. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,使得如权利要求13至24中任一项所述的方法中在所述接收端设备上的功能得以实现。
PCT/CN2020/071991 2019-01-21 2020-01-14 参考信号的传输方法及装置 WO2020151531A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910054751.4 2019-01-21
CN201910054751.4A CN111541526B (zh) 2019-01-21 2019-01-21 参考信号的传输方法及装置

Publications (1)

Publication Number Publication Date
WO2020151531A1 true WO2020151531A1 (zh) 2020-07-30

Family

ID=71735512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071991 WO2020151531A1 (zh) 2019-01-21 2020-01-14 参考信号的传输方法及装置

Country Status (2)

Country Link
CN (1) CN111541526B (zh)
WO (1) WO2020151531A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189845A (zh) * 2021-04-06 2022-10-14 维沃移动通信有限公司 Pucch资源的分配方法、装置及设备
WO2023202667A1 (zh) * 2022-04-20 2023-10-26 大唐移动通信设备有限公司 一种参考信号传输方法、装置及存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023070547A1 (zh) * 2021-10-29 2023-05-04 Oppo广东移动通信有限公司 无线通信方法、第一终端设备及第二终端设备
WO2023164948A1 (zh) * 2022-03-04 2023-09-07 Oppo广东移动通信有限公司 一种无线通信方法及终端设备
WO2024065729A1 (en) * 2022-09-30 2024-04-04 Lenovo (Beijing) Limited Method and apparatus for port adaptation indication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140348012A1 (en) * 2013-05-27 2014-11-27 Htc Corporation Small cell communication system and operating method thefeof
US20150036606A1 (en) * 2012-01-25 2015-02-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control channel signal in orthogonal frequency division multiplexing communication system
CN108282308A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 参考信号的处理方法及装置、设备
CN109150429A (zh) * 2017-06-15 2019-01-04 电信科学技术研究院 相位跟踪参考信号的传输方法、接收方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313273B (zh) * 2012-03-13 2018-04-27 中兴通讯股份有限公司 一种信道发送方法、检测方法、基站及终端
US20150003405A1 (en) * 2013-06-26 2015-01-01 Mediatek Inc. Enhanced Broadcast Channel for Primary System Information acquisition in OFDM/OFDMA Systems
CN107046431B (zh) * 2016-02-05 2021-09-03 中兴通讯股份有限公司 信息的传输、接收方法及装置
CN108111279B (zh) * 2017-08-21 2022-06-03 中兴通讯股份有限公司 参考信号传输、参数发送方法及装置、终端、基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150036606A1 (en) * 2012-01-25 2015-02-05 Samsung Electronics Co., Ltd. Method and apparatus for transmitting control channel signal in orthogonal frequency division multiplexing communication system
US20140348012A1 (en) * 2013-05-27 2014-11-27 Htc Corporation Small cell communication system and operating method thefeof
CN108282308A (zh) * 2017-01-06 2018-07-13 中兴通讯股份有限公司 参考信号的处理方法及装置、设备
CN109150429A (zh) * 2017-06-15 2019-01-04 电信科学技术研究院 相位跟踪参考信号的传输方法、接收方法及装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189845A (zh) * 2021-04-06 2022-10-14 维沃移动通信有限公司 Pucch资源的分配方法、装置及设备
WO2023202667A1 (zh) * 2022-04-20 2023-10-26 大唐移动通信设备有限公司 一种参考信号传输方法、装置及存储介质

Also Published As

Publication number Publication date
CN111541526A (zh) 2020-08-14
CN111541526B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US10912044B2 (en) Method and apparatus for measurement reference signal and synchronization
CN108476049B (zh) 用于信道状态信息参考信号(csi-rs)的方法和装置
EP3433970B1 (en) Method and apparatus for transmitting and receiving reference signals in wireless communication
WO2020151531A1 (zh) 参考信号的传输方法及装置
US11063723B2 (en) Communication method, network device, terminal device, and system
CN108293251B (zh) 利用群组参考信号进行控制和数据信道的传输和接收的系统和方法
KR102120959B1 (ko) Tdd 협력 다중-포인트 및 캐리어 집성 시나리오를 위한 공간 피드백(pmi/ri)없이 cqi 피드백하기 위한 방법
KR20200035300A (ko) 기준 신호 구성 정보를 나타내기 위한 방법, 기지국 및 단말
CN110247749B (zh) 资源指示方法、网络设备、装置和存储介质
CN115765927A (zh) 用于多流传输的方法和设备
CN111357361B (zh) 信息传输的方法和通信设备
WO2010120089A2 (en) Uplink signal transmission and reception using optimized rank 3 codebook
US11101957B2 (en) Reference signal sending method and apparatus
CN112311513B (zh) 一种dmrs端口指示方法及装置
CN110557348B (zh) 用于解调数据的方法和通信装置
CN111971905B (zh) 用于动态传输分集回退的方法和装置
CN116325877A (zh) 一种信道状态信息上报方法及装置
CN108023720B (zh) 一种发送和获取参考信号的方法和装置
CN117121414A (zh) 用于传输参考信号的方法和装置
US10277371B2 (en) System and method for handling orphan resource elements
CN108370517A (zh) 参考信号发送和信道测量的方法、发送设备和终端设备
CN115913494A (zh) 参考信号的传输方法和通信装置
CN117793905A (zh) 单载波通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20744453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20744453

Country of ref document: EP

Kind code of ref document: A1