WO2020029881A1 - 通信方法和装置 - Google Patents

通信方法和装置 Download PDF

Info

Publication number
WO2020029881A1
WO2020029881A1 PCT/CN2019/099037 CN2019099037W WO2020029881A1 WO 2020029881 A1 WO2020029881 A1 WO 2020029881A1 CN 2019099037 W CN2019099037 W CN 2019099037W WO 2020029881 A1 WO2020029881 A1 WO 2020029881A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency hopping
ack
value
hopping resource
uci
Prior art date
Application number
PCT/CN2019/099037
Other languages
English (en)
French (fr)
Other versions
WO2020029881A9 (zh
Inventor
孙昊
黄雯雯
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BR112021002359-3A priority Critical patent/BR112021002359A2/pt
Priority to EP19848753.0A priority patent/EP3836710B1/en
Priority to AU2019318583A priority patent/AU2019318583B2/en
Priority to CA3109183A priority patent/CA3109183C/en
Priority to CN201980053990.6A priority patent/CN112586071B/zh
Priority to JP2021506735A priority patent/JP7384334B2/ja
Priority to ES19848753T priority patent/ES2937956T3/es
Publication of WO2020029881A1 publication Critical patent/WO2020029881A1/zh
Publication of WO2020029881A9 publication Critical patent/WO2020029881A9/zh
Priority to US17/172,396 priority patent/US11962522B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • H04L1/1819Hybrid protocols; Hybrid automatic repeat request [HARQ] with retransmission of additional or different redundancy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/0012Hopping in multicarrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data

Definitions

  • the present application relates to the field of communications, and in particular, to a communication method and device.
  • the 5th generation (5G) mobile communication system supports uplink control information (UCI) transmission on a physical uplink shared channel (physical uplink shared channel (PUSCH)), and there is only sending UCI and not uplink sharing channel.
  • UCI uplink control information
  • PUSCH physical uplink shared channel
  • UL-SCH uplink shared channel
  • the UCI sent in the UCI-only scenario includes a hybrid automatic repeat request confirmation response (HARQ-ACK), channel state information first part (channel state information part 1, CSI-part1), and channel state information part In the second part (CSI-part2), the requirements for the protection levels of these three types of information are reduced in the above order. Therefore, when the terminal device maps the above three types of information to resources, it will sequentially HARQ according to the quality of the channel estimation.
  • HARQ-ACK, CSI-part1 and CSI-part2 are mapped to resource elements (resource elements, RE) of the PUSCH that can carry data.
  • PUSCH can be divided into two parts before and after in the time domain. These two parts are called the first hop (hop1) and the second hop (hop2).
  • the frequency domain resources are generally far apart, at least not completely overlapping.
  • HARQ-ACK, CSI-part1, and CSI-part2 will also be mapped to hop1 and hop2 according to preset rules.
  • CSI-part1 mapped to frequency hopping resources will have incomplete information transmission That is, part of the CSI-part1 is not successfully transmitted, which adversely affects the application of transmitting UCI through frequency hopping in a UCI-only scenario.
  • This application provides a communication method and device. By changing the mapping rules of CSI-part1, the problem of incomplete information transmission of CSI-part1 caused by UCI transmission through frequency hopping in a UCI-only scenario can be solved.
  • a communication method including: receiving downlink control information, the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and a second frequency hopping resource, and The time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource; a first UCI is sent on the PUSCH, and the first UCI includes HARQ-ACK, CSI-part1, and CSI- at least one of part2; wherein the number of encoded bits mapped on the reserved RE in the first frequency hopping resource is a first value, and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value, The first value is not less than the second value.
  • the REs reserved in the first frequency hopping resource and the REs reserved in the second frequency hopping resource are REs reserved for potential HARQ-ACK transmission with the number of bits not greater than two.
  • the opposite device may perform the steps of sending downlink control information and receiving the first UCI on the PUSCH.
  • the PUSCH includes the first frequency hopping resource and the second frequency hopping resource, which means that when the frequency hopping identification field of the UL grant DCI indicated by the network device enables the PUSCH to perform frequency hopping
  • the time-frequency domain resources of the PUSCH in the first hop and the second hop are called first frequency hopping resources and second frequency hopping resources, respectively.
  • the first frequency hopping resource and the second frequency hopping resource of the PUSCH in this application have a sequential relationship in starting timing.
  • the value of the number of coding bits mapped on a certain number of REs on the PUSCH is equal to the number of REs times the number of transmission layers of the PUSCH and then the modulation order of UCI for potential transmission on the PUSCH.
  • the reason for the incomplete information transmission of CSI-part1 is that the number of encoded bits mapped by CSI-part1 on the second frequency hopping resource is small, that is, the number of REs used to map CSI-part1 on the second frequency hopping resource is relatively small.
  • the number of CSI-part1s cannot be mapped to the second frequency hopping resource.
  • the communication scheme provided in this application reduces the number of encoding bits that can be mapped to the RE reserved in the second frequency hopping resource, thereby increasing the number of coding bits.
  • the number of REs used to map CSI-part1 in the second frequency hopping resource solves the problem of incomplete information transmission in CSI-part1 caused by UCI transmission in frequency hopping in UCI-only scenarios.
  • the method further includes: determining a first number of encoded bits Is the sum of the number of encoded bits mapped on the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource, where the first value and the second value are both based on the determine.
  • the above “sum of the reserved RE in the first frequency hopping resource and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource” refers to the reserved RE in the first frequency hopping resource and the second frequency hopping
  • the sum of the number of coded bits that the reserved RE in the resource can be mapped should not be understood as the sum of the number of coded bits that are actually mapped by the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource .
  • the first value is And / or, the second value is Wherein, N L is the number of transmission layers of the PUSCH, and Q m is the modulation order of the first UCI, that is, the modulation order of the UCI transmitted on the PUSCH.
  • the method further includes: determining the number of encoded bits G ACK of the HARQ-ACK in the first UCI, where the number of encoded bits mapped by the HARQ-ACK in the first UCI on the first frequency hopping resource is G
  • the value of ACK (1) and G ACK (1) is the smaller of the following two values:
  • DMRS demodulation reference signal
  • the terminal device may determine the first UCI according to the carrying capacity of the first frequency hopping resource.
  • the number of encoded bits mapped on the first frequency hopping resource by the HARQ-ACK on the first and conversely, the terminal device can map the number of encoded bits (e.g., Determine the number of encoded bits mapped by the HARQ-ACK on the first frequency hopping resource.
  • the value of the number of encoded bits of the RE mapping that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource is equal to M 3 ⁇ N L ⁇ Q m , where M 3 is the The number of REs that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource, N L is the number of PUSCH transmission layers, Q m is the first UCI modulation order, and the third value is
  • the number of HARQ-ACK bits in the first UCI is not greater than two.
  • the present application also provides a communication method, including: receiving downlink control information, the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and A second frequency hopping resource, the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource; sending a first UCI on the PUSCH, the first UCI Contains at least one of HARQ-ACK, CSI-part1, and CSI-part2. For the opposite device, the steps of sending downlink control information and receiving the first UCI are performed accordingly.
  • the number of encoded bits G CSI-part1 (1) of the CSI-part1 in the first UCI mapped on the first frequency hopping resource is a smaller one of the fourth value and the fifth value
  • the first The four values are determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI
  • the fifth value is based on G ACK (1) and The larger of the two is determined, or the fifth value is determined based on G ACK (1), where G ACK (1) is the HARQ-ACK in the first UCI at the first frequency hopping
  • the number of encoded bits mapped on the resource The number of coded bits mapped on the reserved RE in the first frequency hopping resource.
  • the fifth value in the prior art is determined only based on G ACK (1).
  • the fifth value in the prior art is M 1 ⁇ N L ⁇ Q m -G ACK (1), which limits CSI-part1 in the first The upper limit of resources occupied by one frequency hopping resource (that is, the first upper limit).
  • G CSI-part1 (1) cannot occupy the RE of the first frequency hopping resource, that is, G CSI-part1 (1) should also satisfy This upper limit (ie, the second upper limit), when the number of HARQ-ACK information bits is 0 or 1 or 2, G ACK (1) is the number of encoded bits calculated according to the actual number of HARQ-ACK information bits, and Is the number of coding bits mapped to the reserved RE calculated based on the number of HARQ-ACK information bits being 2, so if the actual number of HARQ-ACK information bits is 0 or 1, Thus having That is, the first frequency hopping resource At this time, the first upper limit is greater than the second upper limit.
  • determining the fifth value based on G ACK (1) may cause the non-reserved RE on the first frequency hopping resource to be insufficient to carry CSI-part1 on the first frequency hopping resource.
  • the fifth value is based on G ACK (1) and The larger ones (where When the number of HARQ-ACK bits is greater than 2, it is equal to 0), to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission
  • the problem When the number of HARQ-ACK bits is greater than 2, it is equal to 0, to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission.
  • the fifth value is based on G ACK (1) and The larger of the two is determined, including: the fifth value is equal to or
  • the fifth value is determined based on G ACK (1), and includes: the fifth value is equal to M 1 ⁇ N L ⁇ Q m -G ACK (1) when the number of HARQ-ACK bits is greater than 2; further, in When the number of HARQ-ACK bits is less than or equal to 2, the fifth value is equal to
  • M 1 is the number of REs capable of carrying data in the first frequency hopping resource
  • N L is the number of PUSCH transmission layers
  • Q m is the modulation order of the first UCI.
  • the fourth value is determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI, and includes: the fourth value is equal to Wherein, N L is the number of transmission layers of the PUSCH, and Q m is the modulation order of the first UCI.
  • the solution provided by the second aspect may be implemented alone or jointly with the solution provided by the first aspect.
  • a communication method includes:
  • the instruction information is used to schedule a physical uplink shared channel PUSCH, the PUSCH includes a first frequency hopping resource and a second frequency hopping resource, and a time domain start symbol of the first frequency hopping resource is located in the first Before the time domain start symbol of the two frequency hopping resource; sending a first UCI on the PUSCH, the first UCI includes a transmission hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel At least one of the second part of the state information CSI-part2; wherein the number of coded bits mapped on the reserved resource element RE in the first frequency hopping resource is a first value, and the The number of coded bits mapped on the reserved RE is a second value, the first value is not less than the second value, the reserved RE in the first frequency hopping resource and the reservation in the second frequency hopping resource RE is a RE reserved for potential HARQ-ARK transmissions with a number of bits not greater than two.
  • the method may be executed by a terminal device, or executed by a device or chip integrated in the terminal device or independent of the terminal device.
  • a device corresponding to the present application is provided, which is characterized in that the device includes:
  • a receiving unit configured to receive instruction information for scheduling a physical uplink shared channel PUSCH, the PUSCH including a first frequency hopping resource and a second frequency hopping resource, and a time domain start of the first frequency hopping resource The symbol is located before the time domain start symbol of the second frequency hopping resource; the sending unit sends a first UCI on the PUSCH, the first UCI includes a transmission hybrid automatic repeat request confirmation response HARQ-ACK, channel status At least one of the first part of the information CSI-part1 and the second part of the channel state information CSI-part2; wherein the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is a first value, and The number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value, the first value is not less than the second value, the reserved RE in the first frequency hopping resource and the first The RE reserved in the two-hop frequency resource is a RE reserved for potential HARQ-ARK transmission with the number of bits not greater than two.
  • the present application further provides another communication method, which is characterized in that the method includes:
  • the number of encoded coding bits mapped on is a first value
  • the number of encoded coding bits mapped on a reserved RE in the second frequency hopping resource is a second value.
  • the first value is not less than the second value.
  • the reserved RE in one frequency hopping resource and the reserved RE in the second frequency hopping resource are REs reserved for potential HARQ-ARK transmission with a bit number of not more than two.
  • the method may be executed by a network device, or may be executed by a device or a chip integrated in the network device or independent from the network device.
  • a device corresponding to the present application is provided, which is characterized in that the device includes a sending unit and a receiving unit, and executes corresponding steps in the foregoing method.
  • the PUSCH includes an uplink shared channel UL-SCH
  • the first UCI includes HARQ-ACK
  • the number of encoded bits of the HARQ-ACK mapped on the first frequency hopping resource is a sixth value.
  • the number of encoded bits mapped on the second frequency hopping resource is a seventh value
  • the sixth value is not less than the seventh value.
  • the number of encoded bits of the HARQ-ACK mapping included in the first UCI is G ACK, with UL-SCH ,
  • the sixth value is G ACK, with UL-SCH (1),
  • the seventh value is G ACK, with UL-SCH (2),
  • N L is the number of transmission layers of the PUSCH
  • Q m is the modulation order of the UL-SCH and the first UCI.
  • the sixth value is a value
  • G ACK, withUL-SCH (2) G ACK, withUL-SCH -G ACK, withUL-SCH (1), or,
  • G ACK, withUL-SCH (1) G ACK, withUL-SCH -G ACK, withUL-SCH (2).
  • the solution provided by the third aspect may implement that when the number of HARQ-ACK bits is 2, on the first frequency hopping resource, the number of encoded bits of the HARQ-ACK is exactly equal to the number of encoded bits reserved for RE mapping, and , On the second frequency hopping resource, the number of encoded bits of the HARQ-ACK is exactly equal to the number of encoded bits of the reserved RE mapping.
  • the present application provides a device that can implement the functions corresponding to each step in the method according to the first aspect, the second aspect, and / or the third aspect, and the functions may be implemented by hardware.
  • Corresponding software can also be implemented by hardware.
  • the hardware or software includes one or more units or modules corresponding to the functions described above.
  • the apparatus includes a processor configured to support the apparatus to perform a corresponding function in the method according to the first aspect.
  • the device may also include a memory for coupling to the processor, which stores program instructions and data necessary for the device.
  • the device further includes a transceiver, and the transceiver is configured to support communication between the device and other network elements.
  • the transceiver may be an independent receiver, an independent transmitter, or a transceiver with integrated transceiver functions.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer program code.
  • the computer program code is executed by a processing unit or a processor, the first aspect and the second aspect are implemented. And / or the method described in the third aspect.
  • the present application provides a computer program product, the computer program product comprising: computer program code that, when the computer program code is run by a processing unit or a processor, implements the above-mentioned first aspect, second aspect, and / or The third method.
  • a communication method including: sending downlink control information, the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and a second frequency hopping resource.
  • the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource; a first UCI is received on the PUSCH, and the first UCI includes HARQ-ACK, CSI-part1, and CSI- at least one of part2; wherein the number of encoded bits mapped on the reserved RE in the first frequency hopping resource is a first value, and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value, The first value is not less than the second value.
  • the REs reserved in the first frequency hopping resource and the REs reserved in the second frequency hopping resource are REs reserved for potential HARQ-ACK transmission with the number of bits not greater than two.
  • the reason for the incomplete information transmission of CSI-part1 is that the number of encoded bits mapped by CSI-part1 on the second frequency hopping resource is small, that is, the number of REs used to map CSI-part1 on the second frequency hopping resource is relatively small.
  • the number of CSI-part1s cannot be mapped to the second frequency hopping resource.
  • the communication scheme provided in this application reduces the number of encoding bits that can be mapped to the RE reserved in the second frequency hopping resource, thereby increasing the number of coding bits.
  • the number of REs used to map CSI-part1 in the second frequency hopping resource solves the problem of incomplete information transmission in CSI-part1 caused by UCI transmission in frequency hopping in UCI-only scenarios.
  • the first value is and / or,
  • the second value is a
  • N L is the number of transmission layers of the PUSCH
  • Q m is the modulation order of the first UCI.
  • the number of encoded bits mapped from the HARQ-ACK in the first UCI on the first frequency hopping resource is G ACK (1), and the value of G ACK (1) is the smaller of the following two values:
  • the value of the number of coding bits of the RE mapping that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource is equal to M 3 ⁇ N L ⁇ Q m , where M 3 is the The number of REs that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource, N L is the number of PUSCH transmission layers, Q m is the first UCI modulation order, and the third value is The number of HARQ-ACK bits in the first UCI is not greater than two.
  • the present application further provides a communication method, including: sending downlink control information, the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and A second frequency hopping resource, the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource; receiving a first UCI on the PUSCH, the first UCI Contain at least one of HARQ-ACK, CSI-part1 and CSI-part2;
  • the number of encoded bits G CSI-part1 (1) of the CSI-part1 in the first UCI mapped on the first frequency hopping resource is a smaller one of the fourth value and the fifth value
  • the first The four values are determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI
  • the fifth value is based on G ACK (1) and The larger of the two is determined, or the fifth value is determined based on G ACK (1), where G ACK (1) is the HARQ-ACK in the first UCI at the first frequency hopping
  • the number of encoded bits mapped on the resource The number of coded bits mapped on the reserved RE in the first frequency hopping resource.
  • the fifth value in the prior art is determined only based on G ACK (1).
  • the fifth value in the prior art is M 1 ⁇ N L ⁇ Q m -G ACK (1), which limits CSI-part1 in the first The upper limit of resources occupied by one frequency hopping resource (that is, the first upper limit).
  • G CSI-part1 (1) cannot occupy the RE of the first frequency hopping resource, that is, G CSI-part1 (1) should also be no greater than This upper limit (ie, the second upper limit), when the number of HARQ-ACK information bits is 0 or 1 or 2, G ACK (1) is the number of encoded bits calculated according to the actual number of HARQ-ACK information bits, and Is the number of coding bits mapped to the reserved RE calculated based on the number of HARQ-ACK information bits being 2, so if the actual number of HARQ-ACK information bits is 0 or 1, Thus having That is, the first frequency hopping resource At this time, the first upper limit is greater than the second upper limit.
  • determining the fifth value based on G ACK (1) may cause the non-reserved RE on the first frequency hopping resource to be insufficient to carry CSI-part1 on the first frequency hopping resource.
  • the fifth value is based on G ACK (1) and The larger ones (where When the number of HARQ-ACK bits is greater than 2, it is equal to 0), to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission
  • the problem When the number of HARQ-ACK bits is greater than 2, it is equal to 0, to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission.
  • the fifth value is based on G ACK (1) and The larger of the two is determined, including: the fourth value is equal to or
  • the fifth value is determined based on G ACK (1), and includes: the fifth value is equal to M 1 ⁇ N L ⁇ Q m -G ACK (1) when the number of HARQ-ACK bits is greater than 2;
  • M 1 is the number of REs capable of carrying data in the first frequency hopping resource
  • N L is the number of PUSCH transmission layers
  • Q m is the modulation order of the first UCI.
  • the fourth value is determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI, and includes: the fourth value is equal to Wherein, N L is the number of transmission layers of the PUSCH, and Q m is the modulation order of the first UCI.
  • FIG. 1 is a schematic diagram of a communication system applicable to the present application
  • FIG. 2 is a schematic diagram of a UCI mapping manner in a UCI-only scenario provided by the present application
  • FIG. 3 is a schematic diagram of a UCI mapping manner in another UCI-only scenario provided by the present application.
  • FIG. 4 is a schematic diagram of a communication method provided by the present application.
  • FIG. 5 is a schematic diagram of a PUSCH resource allocation provided by the present application.
  • FIG. 6 is a schematic diagram of another communication method provided by the present application.
  • FIG. 7 is a schematic diagram of still another communication method provided by the present application.
  • FIG. 8 is a schematic diagram of still another communication method provided by the present application.
  • FIG. 9 is a schematic diagram of a communication device provided by the present application.
  • FIG. 10 is a schematic diagram of another communication device provided by the present application.
  • FIG. 11 is a schematic diagram of still another communication device provided by the present application.
  • FIG. 12 is a schematic diagram of still another communication device provided by the present application.
  • FIG. 13 is a schematic diagram of still another communication device provided by the present application.
  • 15 is a schematic diagram of still another communication device provided by the present application.
  • FIG. 16 is a schematic diagram of still another communication device provided by the present application.
  • FIG. 1 shows a communication system applicable to the present application.
  • the communication system includes network equipment and terminal equipment.
  • the network equipment communicates with the terminal equipment through a wireless network.
  • the wireless communication module of the terminal equipment can obtain information bits to be transmitted to the network equipment through the channel. These information bits For example, it is an information bit generated by a processing module of a terminal device, received from another device, or stored in a storage module of the terminal device.
  • a terminal device may be referred to as an access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless Communication equipment, user agent or user device.
  • the access terminal may be a cellular phone, a handheld device with a wireless communication function, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, and a user device in a 5G communication system.
  • the network device can be a base station (BTS) in a code division multiple access (CDMA) system, or a base station (WCDMA) system in a wideband code division multiple access (WCDMA) system.
  • node (B, NB) or an evolutionary base station (eNB) in a long term evolution (LTE) system, or a base station (gNB) in a 5G communication system.
  • eNB evolutionary base station
  • LTE long term evolution
  • gNB base station
  • the network device may also be a relay station, an access point, an in-vehicle device, a wearable device, and other types of devices.
  • the above communication system applicable to the present application is merely an example, and the communication system applicable to the present application is not limited thereto.
  • the number of network devices and terminal devices included in the communication system may be other numbers.
  • the UE sends UCI to the gNB through the PUSCH
  • the UE may miss the downlink control channel (physical uplink control channel, PDCCH)
  • PDCCH physical uplink control channel
  • the number of HARQ-ACK bits is less than the number of HARQ-ACK bits fed back by the gNB to schedule it; furthermore, all UCIs sent by the UE through the PUSCH may not be correctly received by the gNB.
  • the communication protocol defines a RE (reserved RE for HARQ-ACK) for HARQ-ACK in the scenario where the UE sends UCI to the gNB through PUSCH, that is RE reserved.
  • RE reserved RE for HARQ-ACK
  • the reserved RE can send CSI-part2 and UL-SCH (only possible to send CSI-part2 in UCI-only scenario).
  • the HARQ-ACK is transmitted on the reserved RE. At this time, it is equivalent to HARQ-ACK puncturing the CSI-part2 that has been mapped on the reserved RE.
  • the PUSCH can be divided into two parts in the time domain. These two parts are called the first hop (hop1) and the second hop (hop2).
  • the frequency domain resources of hop1 and hop2 are different.
  • HARQ-ACK, CSI-part1, and CSI-part2 are also mapped to hop1 and hop2 according to a preset rule.
  • mapping rules can be intuitively represented by FIG. 2.
  • CSI-part1 is only mapped to unreserved REs;
  • CSI-part2 has both mapped to unreserved REs and unreserved REs; if there is HARQ-ACK (that is, information bits 1 or 2), it is mapped on the reserved RE (equivalent to puncturing on the resource for which the coding bits of CSI-part2 have been mapped).
  • HARQ-ACK that is, information bits 1 or 2
  • the frequency hopping rule for the number of PUSCH symbols includes frequency hopping within a slot (slot) and frequency hopping between slots, specifically:
  • the number of hop1 symbols is half the total number of PUSCH symbols and rounded down, that is
  • the number of hop2 symbols is the total number of PUSCH symbols minus the number of hop1 symbols, that is, among them Is the total number of PUSCH symbols in a slot.
  • hop1 and hop2 are divided in time in the unit of slot. For example, if the slot number is even, it is hop1, and if the slot number is odd, it is hop2.
  • the possible frequency hopping situations in the slot include: the number of symbols that can carry data in hop1 and hop2 is equal; or, Hop1 has one fewer symbols of data that can be carried than hop2; in the case of inter-slot frequency hopping, the number of symbols that hop1 and hop2 can carry is the same.
  • the frequency hopping splitting rules for the number of coded bits mapped to the RE are as follows:
  • N L is the number of PUSCH transmission layers
  • Q m is the PUSCH modulation order
  • Number of REs that can carry data on hop1 among them Is the number of symbols in hop1, For collection Size, collection Is the number of REs that can carry data on l on the symbol.
  • Number of REs that can carry data on hop2 among them Is the number of symbols in hop2.
  • the definition of l (1) is the first DMRS-free symbol index after the first continuous DMRS symbol set; the continuous DMRS symbol set may include one DMRS symbol or multiple consecutive DMRS symbols.
  • the frequency hopping splitting rules of the coded bits of each part of the UCI are as follows.
  • the number of HARQ-ACK encoding bits sent on hop1 and hop2 are:
  • G ACK (2) G ACK -G ACK (1).
  • the number of encoded bits of CSI-part1 is G CSI-part1
  • the number of encoded CSI-part1 bits sent on hop1 and hop2 are:
  • G CSI-part1 (2) G CSI-part1 -G CSI-part1 (1) (6)
  • the number of encoded bits of CSI-part2 is G CSI-part2
  • the number of encoded CSI-part2 bits sent on hop1 and hop2 are:
  • G CSI-part2 (1) M 1 ⁇ N L ⁇ Q m -G CSI-part1 (1) (8)
  • G CSI-part2 (2) M 2 ⁇ N L ⁇ Q m -G CSI-part1 (2) (9)
  • the number of coded bits of CSI-part1 is exactly equal to the number of coded bits mapped to all REs that can carry data except for the RE reserved on hop1 and hop2 of the PUSCH, that is,
  • G CSI-part2 (1) + G CSI-part2 (2) (M 1 + M 2 ) ⁇ N L ⁇ Q m -G CSI-part1 (14)
  • the number of CSI-part1 encoded bits on hop2 is greater than the number of encoded bits mapped by non-reserved REs; CSI-part1 cannot be carried by reserved REs. Therefore, the transmission of CSI-part1 is incomplete.
  • PUSCH is single-carrier discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread orthogonal frequency division multiplexing
  • PAPR peak-to-average power ratio
  • the symbol involved in this application is a unit of time, and may be an orthogonal frequency-division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency-division multiplexing
  • this application provides a communication method, which can solve the above-mentioned incomplete transmission of CSI-part1, and can also solve the above-mentioned problem that the single carrier characteristic is damaged when a signal is sent on hop2 by using the DFT-s-OFDM waveform. .
  • the communication method includes:
  • the downlink control information is used to schedule a PUSCH.
  • the PUSCH is only used to carry UCI.
  • the PUSCH includes a first frequency hopping resource and a second frequency hopping resource. The time domain of the first frequency hopping resource starts. The symbol is located before the start symbol in the time domain of the second frequency hopping resource.
  • the first frequency hopping resource and the second frequency hopping resource are, for example, the aforementioned hop1 and hop2.
  • the frequency domain resources of the first frequency hopping resource and the frequency domain resources of the second frequency hopping resource are different, and the above-mentioned difference means that the frequency domain resources of the first frequency hopping resource and the frequency domain resources of the second frequency hopping resource partially overlap or No overlap at all.
  • a time-frequency end position of the first frequency hopping resource is adjacent to a time-domain start position of the second frequency hopping resource.
  • the first frequency hopping resource is a continuous or discontinuous resource in the time domain
  • the second frequency hopping resource is a continuous or discontinuous resource in the time domain.
  • the downlink control information described in S410 is, for example, downlink control information (DCI) transmitted through the PDCCH.
  • DCI downlink control information
  • the base station can indicate whether the PUSCH is only used to transmit UCI through a different state of 1 bit in the DCI, that is, the 1
  • the different states of the bits are used to indicate whether the current communication scenario is UCI-only.
  • S420 Send a first UCI on the PUSCH, where the first UCI includes at least one of HARQ-ACK, CSI-part1, and CSI-part2.
  • the number of encoded bits mapped on the reserved RE in the first frequency hopping resource is the first value
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is the second value
  • the first value is not less than the first value.
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are REs reserved for potential HARQ-ACK transmissions with a number of bits not greater than two.
  • the "potential HARQ-ACK transmission" is further explained.
  • HARQ-ACK may be transmitted on the PUSCH or may not be actually transmitted. Regardless of the transmission, these reserved REs are reserved. These reserved REs correspond to a certain number of coded bits mapped onto it.
  • the number of HARQ-ACK bits involved in the "potential HARQ-ACK transmission" is not greater than 2, and when calculating the number of mapped encoding bits, the reserved RE is calculated according to the number of HARQ-ACK bits equal to 2.
  • the number of mapped encoding bits When the number of coded bits mapped on the RE is involved in the embodiments of the present application, if there is no actual transmission, it can be understood as the number of coded bits that can be mapped on the reserved RE, or the corresponding number of coded bits. .
  • the reason for the incomplete information transmission of CSI-part1 is that the number of encoded bits mapped by CSI-part1 on the second frequency hopping resource is small, that is, the number of REs used to map CSI-part1 on the second frequency hopping resource is relatively small.
  • the number of CSI-part1s cannot be mapped to the second frequency hopping resource.
  • the communication scheme provided in this application reduces the number of encoding bits that can be mapped to the RE reserved in the second frequency hopping resource compared to the prior art, thereby increasing the number of The number of REs used to map CSI-part1 in the two-frequency hopping resource solves the problem of incomplete information transmission in CSI-part1 caused by UCI transmission in frequency hopping in UCI-only scenarios.
  • the method 400 solves the above incomplete CSI-part1 transmission While solving the problem shown in Figure 3.
  • the above-mentioned “number of encoded bits of reserved RE mapping in the first frequency hopping resource is the first value
  • the number of encoded bits of reserved RE mapping in the second frequency hopping resource is the second value
  • the first value “Not less than the second value” means that the second value is greater than or equal to the first value by reducing the number of REs reserved in the second frequency hopping resource.
  • the method 400 further includes:
  • the above “reserved RE in the first frequency hopping resource and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource” refer to the reserved RE and the second hop in the first frequency hopping resource.
  • the sum of the number of coding bits that can be mapped to the reserved RE in the frequency resource should not be understood as the number of coding bits actually mapped to the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource.
  • the first value is And / or, the second value is Wherein, N L is the number of transmission layers of the PUSCH, and Q m is the modulation order of the first UCI, that is, the modulation order of the UCI transmitted on the PUSCH.
  • the method 400 further includes:
  • G ACK Determine the number of encoded bits G ACK of the HARQ-ACK in the first UCI, where the number of encoded bits mapped by the HARQ-ACK in the first UCI on the first frequency hopping resource is G ACK (1), G ACK (1) Is the smaller of the following two values:
  • M 3 ⁇ N L ⁇ Q m represents the number of encoding bits for RE mapping that can be used to carry data after the first group of consecutive DMRS symbols is carried on the first frequency hopping resource, or is called the first frequency hopping
  • the DMRS symbols are symbols used to carry the DMRS.
  • M 3 is the number of REs that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource
  • N L is the number of PUSCH transmission layers
  • Q m is the modulation order of the first UCI.
  • the number of the first consecutive DMRS symbols may be one or more.
  • the explanation of the first group of consecutive DMRS symbols starts from the first DMRS symbol in the time domain of the corresponding resource and ends at the end of consecutive DMRS symbols.
  • FIG. 5 in FIG. 5, from top to bottom (the upper and lower order is only used to logically distinguish 4 PUSCH resources, and does not limit any frequency domain position relationship), four PUSCH resources-PUSCH1, PUSCH2, PUSCH3, and PUSCH4 are shown.
  • the starting symbols of PUSCH1 and PUSCH3 are DMRS symbols, and the starting symbols of PUSCH2 and PUSCH4 are not DMRS symbols.
  • the first consecutive DMRS symbols in PUSCH1 and PUSCH2 include only one symbol
  • the first consecutive DMRS symbols in PUSCH3 and PUSCH4 include multiple symbols.
  • Step 1 The gNB configures the scale parameter ⁇ and the code rate compensation parameter for the UE through RRC signaling. And other parameters, where the value of the scale parameter ⁇ is greater than 0 and less than or equal to 1, and the configuration method of the above-mentioned code rate compensation parameter may be configured with one set of values or multiple sets of values. If a set of values is configured, the values are directly regrouped in subsequent steps; if multiple sets of values are configured, the index can be indicated by the downlink control information (DCI) in step 2.
  • DCI downlink control information
  • Step 2 The gNB sends DCI to the UE through the PDCCH.
  • the DCI includes but is not limited to the following information: the PUSCH resources allocated for the UE, whether the PUSCH is UCI-only (or whether it includes UL-SCH), and whether the PUSCH Frequency hopping, number of PUSCH transmission layers, and modulation and coding strategy index (I MCS ), number of PUSCH transmission layers N L , with Index (optional) and other parameters.
  • Step 3 After receiving the DCI, the UE parses out the PUSCH resources allocated to the UE, whether the PUSCH is UCI-only, whether the PUSCH is frequency hopping, and I MCS , PUSCH transmission layer number N L and other parameters; the UE obtains the table through I MCS Code rate R and modulation order Q m ; if there is in DCI with Index, the UE parses out according to the index with Value and use it in subsequent steps.
  • Step 4 If the UE resolves that the PUSCH is UCI-only and the number of HARQ-ACK information bits that the UE needs to send is not greater than 2 (that is, the number of HARQ-ACK information bits is 0, 1, or 2), the UE uses Calculate the number of REs reserved for HARQ-ACK (in the following formula, the 2 on the denominator is calculated based on the HARQ-ACK information bit of 2):
  • the UE R, Q m , N L and other parameters, the number of HARQ-ACK encoded bits G ACK , the number of CSI-part1 encoded bits G CSI-part1 , and the number of CSI-part2 encoded bits G CSI-part2 are calculated .
  • Step 5 If the UE resolves that the PUSCH needs frequency hopping, the UE calculates the number of encoded bits of HARQ-ACK, CSI-part1, and CSI-part2 on hop1 and hop2, respectively, as follows:
  • G ACK (2) G ACK -G ACK (1)
  • G CSI-part1 (2) G CSI-part1 -G CSI-part1 (1);
  • G CSI-part2 (1) M 1 ⁇ N L ⁇ Q m -G CSI-part1 (1);
  • G CSI-part2 (2) M 2 ⁇ N L ⁇ Q m -G CSI-part1 (2);
  • the UE calculates the number of encoded bits mapped to the reserved REs reserved for HARQ-ACK on hop1 and hop2 according to the following formulas:
  • Step 6 The UE maps the HARQ-ACK, CSI-part1, and CSI-part2 encoding bits to the PUSCH according to the parameters calculated in step 5.
  • Table 1 shows the results obtained by using the method of the prior art
  • Table 2 shows the results obtained by using the method of the present application.
  • Table 2 is the calculation result using the communication method provided in this application. From the penultimate and third penultimate rows of Table 2, it can be seen that the number of encoded bits transmitted by non-reserved RE on hop2 and CSI-part1 are mapped to Leave the same number of encoded bits on the RE. From the penultimate line and the penultimate line in Table 2, we can see that the number of coding bits for the reserved RE mapping of hop2 is It is equal to the number of encoded bits mapped by CSI-part2 on hop2. All reserved REs have data to send.
  • the calculation method of the present invention aligns the number of encoded bits mapped by the non-reserved RE in the two hops with the number of encoded bits of the CSI-part1 in the two hops, which solves the problems of the prior art.
  • the number of HARQ-ACK encoding bits sent on hop1 and hop2 are:
  • G ACK (2) G ACK -G ACK (1).
  • the problem with the above split rule is that the non-reserved RE of hop1 is not enough to carry the number of encoded bits of CSI-part1 in hop1, resulting in incomplete CSI-part1 transmission.
  • G ACK is the number of encoded bits calculated based on the actual number of HARQ-ACK information bits, and Is the number of coding bits mapped to the reserved RE calculated based on the number of HARQ-ACK information bits being 2, so if the actual number of HARQ-ACK information bits is 0 or 1, there is Thus for hop1 there is At this time, the first upper limit is greater than the second upper limit, which may cause the non-reserved RE of hop1 to be insufficient to carry the number of encoded bits G CSI-part1 (1) of CSI-part1 in hop1.
  • this application provides another communication method 600, which can be implemented on the basis of the above method, or implemented in combination with the above method, or can be implemented independently. As shown in Figure 6, including:
  • S610 Receive downlink control information, where the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry a UCI, and the PUSCH includes a first frequency hopping resource and a second frequency hopping resource.
  • the time domain start symbol is located before the time domain start symbol of the second frequency hopping resource.
  • S620 Send a first UCI on the PUSCH, where the first UCI includes at least one of HARQ-ACK, CSI-part1, and CSI-part2.
  • the number of encoded bits G CSI-part1 (1) of the CSI-part1 in the first UCI mapped on the first frequency hopping resource is a smaller one of the fourth value and the fifth value
  • the first The four values are determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI
  • the fifth value is based on G ACK (1) and The larger of the two is determined, or the fifth value is determined based on G ACK (1), where G ACK (1) is the HARQ-ACK in the first UCI at the first frequency hopping
  • the number of encoded bits mapped on the resource The number of coded bits mapped on the reserved RE in the first frequency hopping resource.
  • the fifth value in the prior art is determined only based on G ACK (1).
  • the fifth value in the prior art is M 1 ⁇ N L ⁇ Q m -G ACK (1), which limits CSI-part1 in the first The upper limit of resources occupied by one frequency hopping resource (that is, the first upper limit).
  • G CSI-part1 (1) cannot occupy the RE of the first frequency hopping resource, that is, G CSI-part1 (1) should also be no greater than This upper limit (ie, the second upper limit), when the number of HARQ-ACK information bits is 0 or 1 or 2, G ACK (1) is the number of encoded bits calculated according to the actual number of HARQ-ACK information bits, and Is the number of coding bits mapped to the reserved RE calculated based on the number of HARQ-ACK information bits being 2, so if the actual number of HARQ-ACK information bits is 0 or 1, there is Thus having That is, the first frequency hopping resource At this time, the first upper limit is greater than the second upper limit.
  • determining the fifth value based on G ACK (1) may cause the non-reserved RE on the first frequency hopping resource to be insufficient to carry CSI-part1 on the first frequency hopping resource.
  • the fifth value is based on G ACK (1) and The larger ones (where When the number of HARQ-ACK bits is greater than 2, it is equal to 0), to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission
  • the problem When the number of HARQ-ACK bits is greater than 2, it is equal to 0, to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission.
  • the fifth value is based on G ACK (1) and The larger of the two is determined, including: the fifth value is equal to or
  • the fifth value is determined based on G ACK (1) and includes: the fifth value is equal to M 1 ⁇ N L ⁇ Q m -G ACK (1) when the number of HARQ-ACK bits is greater than 2; further, HARQ -When the number of ACK bits is less than or equal to 2, the fifth value is equal to
  • M 1 is the number of REs capable of carrying data in the first frequency hopping resource
  • N L is the number of PUSCH transmission layers
  • Q m is the modulation order of the first UCI.
  • the fourth value is determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI, and includes: the fourth value is equal to Wherein, N L is the number of transmission layers of the PUSCH, and Q m is the modulation order of the first UCI.
  • Method 600 may be implemented alone or in combination with method 400.
  • the method 700 includes:
  • the downlink control information is used to schedule a PUSCH.
  • the PUSCH is only used to carry UCI.
  • the PUSCH includes a first frequency hopping resource and a second frequency hopping resource. The time domain of the first frequency hopping resource starts. The symbol is located before the start symbol in the time domain of the second frequency hopping resource.
  • S720. Receive a first UCI on the PUSCH, where the first UCI includes at least one of HARQ-ACK, CSI-part1, and CSI-part2; wherein the number of encoded bits mapped on the reserved RE in the first frequency hopping resource is A value, the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value, the first value is not less than the second value, the reserved RE in the first frequency hopping resource and the second frequency hopping resource RE is a RE reserved for potential HARQ-ACK transmissions with a number of bits not greater than two.
  • the reason for the incomplete information transmission of CSI-part1 is that the number of encoded bits mapped by CSI-part1 on the second frequency hopping resource is small, that is, the number of REs used to map CSI-part1 on the second frequency hopping resource is relatively small.
  • the number of CSI-part1s cannot be mapped to the second frequency hopping resource.
  • the communication scheme provided in this application reduces the number of encoding bits that can be mapped to the RE reserved in the second frequency hopping resource, thereby increasing the number of coding bits.
  • the number of REs used to map CSI-part1 in the second frequency hopping resource solves the problem of incomplete information transmission in CSI-part1 caused by UCI transmission in frequency hopping in UCI-only scenarios.
  • the first value is and / or,
  • the second value is a
  • N L is the number of transmission layers of the PUSCH
  • Q m is the modulation order of the first UCI.
  • the number of encoded bits mapped from the HARQ-ACK in the first UCI on the first frequency hopping resource is G ACK (1), and the value of G ACK (1) is the smaller of the following two values:
  • the value of the number of coding bits of the RE mapping that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource is equal to M 3 ⁇ N L ⁇ Q m , where M 3 is the The number of REs that can be used to carry data after the first set of consecutive DMRS symbols on the first frequency hopping resource, N L is the number of PUSCH transmission layers, Q m is the first UCI modulation order, and the third value is The number of HARQ-ACK bits in the first UCI is not greater than two.
  • the method 800 includes:
  • S810 Send downlink control information, where the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and a second frequency hopping resource, where The time domain start symbol is located before the time domain start symbol of the second frequency hopping resource.
  • S820 Receive a first UCI on the PUSCH, where the first UCI includes at least one of HARQ-ACK, CSI-part1, and CSI-part2;
  • the number of encoded bits G CSI-part1 (1) of the CSI-part1 in the first UCI mapped on the first frequency hopping resource is a smaller one of the fourth value and the fifth value
  • the first The four values are determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI
  • the fifth value is based on G ACK (1) and The larger of the two is determined, or the fifth value is determined based on G ACK (1), where G ACK (1) is the HARQ-ACK in the first UCI at the first frequency hopping
  • the number of encoded bits mapped on the resource The number of coded bits mapped on the reserved RE in the first frequency hopping resource.
  • the fifth value in the prior art is determined only based on G ACK (1).
  • the fifth value in the prior art is M 1 ⁇ N L ⁇ Q m -G ACK (1), which limits CSI-part1 in the first The upper limit of resources occupied by one frequency hopping resource (that is, the first upper limit).
  • G CSI-part1 (1) cannot occupy the RE of the first frequency hopping resource, that is, G CSI-part1 (1) should also be no greater than This upper limit (ie, the second upper limit), when the number of HARQ-ACK information bits is 0 or 1 or 2, G ACK (1) is the number of encoded bits calculated according to the actual number of HARQ-ACK information bits, and Is the number of coding bits mapped to the reserved RE calculated based on the number of HARQ-ACK information bits being 2, so if the actual number of HARQ-ACK information bits is 0 or 1, there is Thus having That is, the first frequency hopping resource At this time, the first upper limit is greater than the second upper limit.
  • determining the fifth value based on G ACK (1) may cause the non-reserved RE on the first frequency hopping resource to be insufficient to carry CSI-part1 on the first frequency hopping resource.
  • the fifth value is based on G ACK (1) and The larger ones (where When the number of HARQ-ACK bits is greater than 2, it is equal to 0), to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission
  • the problem When the number of HARQ-ACK bits is greater than 2, it is equal to 0, to ensure that the actual non-reserved RE in the first frequency hopping resource is used as a reference when calculating G CSI-part1 (1), so as to avoid the above incomplete CSI-part1 transmission.
  • the fifth value is based on G ACK (1) and The larger of the two is determined, including: the fifth value is equal to or
  • the fifth value is determined based on G ACK (1) and includes: the fifth value is equal to M 1 ⁇ N L ⁇ Q m -G ACK (1) when the number of HARQ-ACK bits is greater than 2; further, HARQ -When the number of ACK bits is less than or equal to 2, the fifth value is equal to
  • M 1 is the number of REs capable of carrying data in the first frequency hopping resource
  • N L is the number of PUSCH transmission layers
  • Q m is the modulation order of the first UCI.
  • the fourth value is determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI, and includes: the fourth value is equal to Wherein, N L is the number of transmission layers of the PUSCH, and Q m is the modulation order of the first UCI.
  • a communication method includes:
  • the instruction information is used to schedule a physical uplink shared channel PUSCH, the PUSCH includes a first frequency hopping resource and a second frequency hopping resource, and a time domain start symbol of the first frequency hopping resource is located in the first Before the start symbol in the time domain of the frequency hopping resource;
  • the first UCI including at least one of a transmission hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel state information second part CSI-part2 ;
  • the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is a first value
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value.
  • the first value is not less than the second value
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ARKs with a number of bits not greater than 2. RE reserved for transmission.
  • the method may be executed by a terminal device, or executed by a device or chip integrated in the terminal device or independent of the terminal device.
  • This embodiment correspondingly provides a device, which is characterized in that the device includes:
  • a receiving unit configured to receive instruction information for scheduling a physical uplink shared channel PUSCH, the PUSCH including a first frequency hopping resource and a second frequency hopping resource, and a time domain start of the first frequency hopping resource A symbol is located before a time domain start symbol of the second frequency hopping resource;
  • the sending unit sends a first UCI on the PUSCH.
  • the first UCI includes a transmission hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel state information second part CSI-part2. At least one of
  • the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is the first number
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is the second number
  • the first number is not less than the second number
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ARKs with a number of bits not greater than 2.
  • RE reserved for transmission is the first number, and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource.
  • This embodiment also provides another communication method, which corresponds to the previous communication method provided by this embodiment and is executed by both parties of interaction.
  • the method includes:
  • the indication information is used to schedule a physical uplink shared channel PUSCH, the PUSCH includes a first frequency hopping resource and a second frequency hopping resource, and a time domain start symbol of the first frequency hopping resource is located in the first Before the start symbol in the time domain of the frequency hopping resource;
  • the first UCI including at least one of a transmission hybrid automatic repeat request acknowledgement HARQ-ACK, channel state information first part CSI-part1, and channel state information second part CSI-part2 ;
  • the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is the first number
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is the second number
  • the first number is not less than the second number
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ARKs with a number of bits not greater than 2.
  • RE reserved for transmission is the first number, and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource.
  • the method may be executed by a network device, or may be executed by a device or a chip integrated in the network device or independent from the network device.
  • This embodiment correspondingly provides a device, which is characterized in that the device includes:
  • a sending unit configured to send indication information, the indication information is used to schedule a physical uplink shared channel PUSCH, the PUSCH includes a first frequency hopping resource and a second frequency hopping resource, and a time domain start of the first frequency hopping resource A symbol is located before a time domain start symbol of the second frequency hopping resource;
  • a receiving unit configured to receive a first UCI on the PUSCH, where the first UCI includes a transmission hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel state information second part CSI- at least one of part2;
  • the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is the first number
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is the second number
  • the first number is not less than the second number
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ARKs with a number of bits not greater than 2.
  • RE reserved for transmission is the first number, and the number of encoded bits mapped on the reserved RE in the second frequency hopping resource.
  • the PUSCH includes an uplink shared channel UL-SCH
  • the first UCI includes HARQ-ACK
  • the number of encoded bits of the HARQ-ACK mapped on the first frequency hopping resource is a sixth value.
  • the number of encoded bits mapped on the second frequency hopping resource is a seventh value
  • the sixth value is not less than the seventh value.
  • the number of encoded bits of the HARQ-ACK mapping included in the first UCI is G ACK, with UL-SCH ,
  • the sixth value is G ACK, with UL-SCH (1),
  • the seventh value is G ACK, with UL-SCH (2),
  • N L is the number of transmission layers of the PUSCH
  • Q m is the modulation order of the UL-SCH and the first UCI.
  • the sixth value is a value
  • G ACK, withUL-SCH (2) G ACK, withUL-SCH -G ACK, withUL-SCH (1), or,
  • G ACK, withUL-SCH (1) G ACK, withUL-SCH -G ACK, withUL-SCH (2).
  • the communication device includes a hardware structure and / or a software module corresponding to each function.
  • this application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. Professional technicians can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of this application.
  • This application may divide the functional units of the communication device according to the above method examples. For example, each function may be divided into various functional units, or two or more functions may be integrated into one processing unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit. It should be noted that the division of the units in this application is schematic, and it is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 9 shows a possible structural diagram of a communication device provided by the present application.
  • the device 900 includes a processing unit 901, a receiving unit 902, and a sending unit 903.
  • the processing unit 901 is configured to control the device 900 to execute the steps of the communication method shown in FIG. 4.
  • the processing unit 901 may also be used to perform other processes of the techniques described herein.
  • the device 900 may further include a storage unit for storing program code and data of the device 900.
  • the processing unit 901 is configured to control the receiving unit 902 to perform: receiving downlink control information, the downlink control information is used to schedule a physical uplink shared channel PUSCH, the PUSCH is only used to carry uplink control information UCI, and the PUSCH includes a first A frequency hopping resource and a second frequency hopping resource, the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource.
  • the processing unit 901 is further configured to control the sending unit 903 to execute: sending a first UCI on the PUSCH, where the first UCI includes a hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel status Information at least one of the second part CSI-part2.
  • the first UCI includes a hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel status Information at least one of the second part CSI-part2.
  • the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is a first value
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value.
  • the first value is not less than the second value
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ACKs whose number of bits is not greater than 2.
  • RE reserved for transmission is a first value
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value.
  • the first value is not less than the second value
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ACKs whose number of bits is not greater than 2.
  • the processing unit 901 may be a processor or a controller, for example, it may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit (application-specific integrated circuit). , ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the sending unit 902 and the receiving unit 903 are, for example, transceivers, and the storage unit may be a memory.
  • the processing unit 901 is a processor
  • the sending unit 902 and the receiving unit 903 are transceivers
  • the storage unit is a memory
  • the communication device involved in this application may be the device shown in FIG. 10.
  • the device 1000 includes a processor 1001, a transceiver 1002, and a memory 1003 (optional).
  • the processor 1001, the transceiver 1002, and the memory 1003 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the communication device provided by the present application can solve the problem of incomplete information transmission in CSI-part1 caused by CSI-part1 transmission in UCI-only scenarios by changing UCI-only1 mapping rules.
  • FIG. 11 shows a possible structural schematic diagram of another communication device provided by the present application.
  • the device 1100 includes a processing unit 1101, a receiving unit 1102, and a sending unit 1103.
  • the processing unit 1101 is configured to control the device 1100 to execute the steps of the communication method shown in FIG. 6.
  • the processing unit 1101 may also be used to perform other processes for the techniques described herein.
  • the device 1100 may further include a storage unit for storing program code and data of the device 1100.
  • the processing unit 1101 is configured to control the receiving unit 1102 to perform: receiving downlink control information, the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and a second hop Frequency resource, the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource.
  • the processing unit 1101 is further configured to control the sending unit 1103 to execute: sending a first UCI on the PUSCH, where the first UCI includes at least one of HARQ-ACK, CSI-part1, and CSI-part2.
  • the number of encoded bits G CSI-part1 (1) of the CSI-part1 in the first UCI mapped on the first frequency hopping resource is a smaller one of the fourth value and the fifth value
  • the first The four values are determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI
  • the fifth value is based on G ACK (1) and The larger of the two is determined, or the fifth value is determined based on G ACK (1), where G ACK (1) is the HARQ-ACK in the first UCI at the first frequency hopping
  • the number of encoded bits mapped on the resource The number of coded bits mapped on the reserved RE in the first frequency hopping resource.
  • the processing unit 1101 may be a processor or a controller.
  • the processing unit 1101 may be a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the sending unit 1102 and the receiving unit 1103 are, for example, transceivers, and the storage unit may be a memory.
  • the processing unit 1101 is a processor
  • the sending unit 1102 and the receiving unit 1103 are transceivers
  • the storage unit is a memory
  • the communication device involved in this application may be the device shown in FIG. 12.
  • the device 1200 includes: a processor 1201, a transceiver 1202, and a memory 1203 (optional). Among them, the processor 1201, the transceiver 1202, and the memory 1203 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the communication device provided by the present application can solve the problem of incomplete information transmission in CSI-part1 caused by CSI-part1 transmission in UCI-only scenarios by changing UCI-only1 mapping rules.
  • FIG. 13 shows a possible structural diagram of a communication device provided by the present application.
  • the device 1300 includes a processing unit 1301, a receiving unit 1302, and a sending unit 1303.
  • the processing unit 1301 is configured to control the device 1300 to execute the steps of the communication method shown in FIG. 7.
  • the processing unit 1301 may also be used to perform other processes for the techniques described herein.
  • the device 1300 may further include a storage unit for storing program code and data of the device 1300.
  • the processing unit 1301 is configured to control the sending unit 1303 to execute: sending downlink control information, the downlink control information is used to schedule a physical uplink shared channel PUSCH, the PUSCH is only used to carry uplink control information UCI, and the PUSCH includes a first A frequency hopping resource and a second frequency hopping resource, the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource.
  • the processing unit 1301 is further configured to control the receiving unit 1302 to execute: receiving a first UCI on the PUSCH, where the first UCI includes a hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel state Information at least one of the second part CSI-part2.
  • the first UCI includes a hybrid automatic repeat request confirmation response HARQ-ACK, channel state information first part CSI-part1, and channel state Information at least one of the second part CSI-part2.
  • the number of encoded bits mapped on the reserved resource element RE in the first frequency hopping resource is a first value
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value.
  • the first value is not less than the second value
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ACKs whose number of bits is not greater than 2.
  • RE reserved for transmission is a first value
  • the number of encoded bits mapped on the reserved RE in the second frequency hopping resource is a second value.
  • the first value is not less than the second value
  • the reserved RE in the first frequency hopping resource and the reserved RE in the second frequency hopping resource are potential HARQ-ACKs whose number of bits is not greater than 2.
  • the processing unit 1301 may be a processor or a controller.
  • the processing unit 1301 may be a central processing unit (CPU), a general-purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit. , ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transmitting unit 1302 and the receiving unit 1303 are, for example, transceivers, and the storage unit may be a memory.
  • the processing unit 1301 is a processor
  • the sending unit 1302 and the receiving unit 1303 are transceivers
  • the storage unit is a memory
  • the communication device involved in this application may be the device shown in FIG. 14.
  • the device 1400 includes: a processor 1401, a transceiver 1402, and a memory 1403 (optional). Among them, the processor 1401, the transceiver 1402, and the memory 1403 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the communication device provided by the present application can solve the problem of incomplete information transmission in CSI-part1 caused by CSI-part1 transmission in UCI-only scenarios by changing UCI-only1 mapping rules.
  • FIG. 15 shows a possible structural schematic diagram of another communication device provided by the present application.
  • the device 1500 includes a processing unit 1501, a receiving unit 1502, and a sending unit 1503.
  • the processing unit 1501 is configured to control the device 1500 to execute the steps of the communication method shown in FIG. 8.
  • the processing unit 1501 may also be used to perform other processes for the techniques described herein.
  • the device 1500 may further include a storage unit for storing program code and data of the device 1500.
  • the processing unit 1501 is configured to control the sending unit 1503 to execute: sending downlink control information, the downlink control information is used to schedule a PUSCH, the PUSCH is only used to carry UCI, and the PUSCH includes a first frequency hopping resource and a second hop Frequency resource, the time domain start symbol of the first frequency hopping resource is located before the time domain start symbol of the second frequency hopping resource.
  • the processing unit 1501 is further configured to control the receiving unit 1503 to execute: receiving a first UCI on the PUSCH, where the first UCI includes at least one of HARQ-ACK, CSI-part1, and CSI-part2.
  • the number of encoded bits G CSI-part1 (1) of the CSI-part1 in the first UCI mapped on the first frequency hopping resource is a smaller one of the fourth value and the fifth value
  • the first The four values are determined based on the number of encoded bits G CSI-part1 of the CSI-part1 in the first UCI
  • the fifth value is based on G ACK (1) and The larger of the two is determined, or the fifth value is determined based on G ACK (1), where G ACK (1) is the HARQ-ACK in the first UCI at the first frequency hopping
  • the number of encoded bits mapped on the resource The number of coded bits mapped on the reserved RE in the first frequency hopping resource.
  • the processing unit 1501 may be a processor or a controller.
  • the processing unit 1501 may be a CPU, a general-purpose processor, a DSP, an ASIC, an FPGA, or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure.
  • the processor may also be a combination that implements computing functions, such as a combination including one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the transmitting unit 1502 and the receiving unit 1503 are, for example, transceivers, and the storage unit may be a memory.
  • the processing unit 1501 is a processor
  • the sending unit 1502 and the receiving unit 1503 are transceivers
  • the storage unit is a memory
  • the communication device involved in this application may be the device shown in FIG. 16.
  • the device 1600 includes: a processor 1601, a transceiver 1602, and a memory 1603 (optional).
  • the processor 1601, the transceiver 1602, and the memory 1603 can communicate with each other through an internal connection path, and transfer control and / or data signals.
  • the communication device provided by the present application can solve the problem of incomplete information transmission in CSI-part1 caused by CSI-part1 transmission in UCI-only scenarios by changing UCI-only1 mapping rules.
  • the device embodiment corresponds to the method embodiment completely.
  • the communication unit executes the obtaining step in the method embodiment. All steps other than the obtaining step and the sending step may be performed by a processing unit or a processor.
  • a processing unit or a processor.
  • the function of the specific unit reference may be made to the corresponding method embodiment, which will not be described in detail.
  • the size of the sequence number of each process does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of this application.
  • the steps of the method or algorithm described in combination with the disclosure of this application may be implemented in a hardware manner, or may be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (RAM), flash memory, read-only memory (ROM), and erasable programmable read-only memory (erasable (programmable ROM, EPROM), electrically erasable programmable read-only memory (EPROM), registers, hard disks, mobile hard disks, read-only optical disks (CD-ROMs), or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted through the computer-readable storage medium.
  • the computer instructions may be transmitted from a website site, computer, server, or data center through wired (for example, coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (for example, infrared, wireless, microwave, etc.) Another website site, computer, server, or data center for transmission.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, and the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD), or a semiconductor medium (for example, a solid state disk (SSD)) Wait.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)
  • Communication Control (AREA)

Abstract

本申请提供一种UCI-only场景中的通信方法,包括:接收用于调度PUSCH的下行控制信息,该PUSCH包含第一跳频资源和第二跳频资源,第一跳频资源的时域起始符号位于第二跳频资源的时域起始符号之前;在PUSCH上发送第一UCI,第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个;其中,第一跳频资源中预留RE上映射的编码比特数大于或等于第二跳频资源中预留RE上映射的编码比特数。上述方案减少了第二跳频资源中预留RE能够映射的编码比特数,从而增加了第二跳频资源中用于映射CSI-part1的RE的数量,解决了跳频传输UCI导致CSI-part1发送不完整的问题。

Description

通信方法和装置
本申请要求于2018年8月10日提交中国专利局、申请号为201810910306.9、申请名称为“通信方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种通信方法和装置。
背景技术
第五代(the 5th generation,5G)移动通信系统支持上行控制信息(uplink control information,UCI)在物理上行共享信道(physical uplink shared channel,PUSCH)上传输,并且存在只发送UCI不发送上行共享信道(uplink shared channel,UL-SCH)的场景,即,存在UCI-only场景。
在UCI-only场景中发送的UCI包括混合自动重传请求确认应答(hybrid automatic repeat request acknowledgement,HARQ-ACK)、信道状态信息第一部分(channel state information part 1,CSI-part1)和信道状态信息第二部分(CSI-part2),这三种信息对保护等级的要求按照上述顺序依次降低,因此,终端设备在将上述三种信息映射到资源上时,会按照信道估计质量的好坏依次将HARQ-ACK、CSI-part1和CSI-part2映射到PUSCH的可承载数据的资源元素(resource element,RE)上。
为了获得跳频增益,PUSCH可以在时域上分为前后两部分,该两部分分别称为第一跳(hop1)和第二跳(hop2),为了获得尽量大的跳频增益,hop1和hop2的频域资源一般相隔较远,至少不完全重叠。相应地,HARQ-ACK、CSI-part1和CSI-part2也会被按照预设的规则映射到hop1和hop2上,然而,被映射到跳频资源上的CSI-part1会出现信息发送不完整的现象,即,部分CSI-part1没有传输成功,这对UCI-only场景中通过跳频传输UCI的应用造成不利影响。
发明内容
本申请提供一种通信方法和装置,通过改变CSI-part1的映射规则,能够解决UCI-only场景中通过跳频传输UCI导致CSI-part1会出现信息发送不完整的问题。
第一方面,提供了一种通信方法,包括:接收下行控制信息,该下行控制信息用于调度PUSCH,PUSCH仅用于承载UCI,该PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;在PUSCH上发送第一UCI,第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个;其中,第一跳频资源中的预留RE上映射的编码比特数为第一数值,第二跳频资源中的预留RE上映射的编码比特数为第二数值,第一数值不小于第二数值,第一跳频资源中的预留RE和第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。 对于执行上述方法的设备的对侧设备来说,所述对侧设备可以相应的执行发送下行控制信息,并在所述PUSCH上接收第一UCI的步骤。这里需要说明的是,所述PUSCH包含第一跳频资源和第二跳频资源,是指,当网络设备指示的上行授权(UL grant)DCI的跳频标识字段使能该PUSCH做跳频时,PUSCH在第一跳和第二跳的时频域资源分别叫做第一跳频资源和第二跳频资源。为了进行区分,本申请中PUSCH的第一跳频资源和第二跳频资源有起始时序上的先后关系。另外,在PUSCH的一定数量的RE上映射的编码比特数的值,等于RE数量乘以所述PUSCH的传输层数再乘以所述PUSCH上潜在传输的UCI的调制阶数。
CSI-part1出现信息发送不完整的原因在于,CSI-part1映射在第二跳频资源上的编码比特数较少,也就是说,第二跳频资源上用于映射CSI-part1的RE数量较少,导致CSI-part1无法全部映射到第二跳频资源上,本申请提供的通信方案,相对于现有技术减少了第二跳频资源中预留RE能够映射的编码比特数,从而增加了第二跳频资源中用于映射CSI-part1的RE的数量,解决了UCI-only场景中通过跳频传输UCI导致CSI-part1出现信息发送不完整的问题。
可选地,所述方法还包括:确定第一编码比特数
Figure PCTCN2019099037-appb-000001
是第一跳频资源中的预留RE和第二跳频资源中的预留RE上映射的编码比特数之和,其中,所述第一数值和所述第二数值均基于所述
Figure PCTCN2019099037-appb-000002
确定。
上述“第一跳频资源中的预留RE和第二跳频资源中的预留RE上映射的编码比特数之和”指的是第一跳频资源中的预留RE和第二跳频资源中的预留RE能够映射的编码比特数之和,而不应被理解为第一跳频资源中的预留RE和第二跳频资源中的预留RE实际映射的编码比特数之和。
可选地,第一数值为
Figure PCTCN2019099037-appb-000003
和/或,第二数值为
Figure PCTCN2019099037-appb-000004
其中,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数,即,在PUSCH上传输的UCI的调制阶数。
可选地,
Figure PCTCN2019099037-appb-000005
且,
Figure PCTCN2019099037-appb-000006
或者,
Figure PCTCN2019099037-appb-000007
且,
Figure PCTCN2019099037-appb-000008
可选地,所述方法还包括:确定第一UCI中的HARQ-ACK的编码比特数G ACK,其中,第一UCI中的HARQ-ACK在第一跳频资源上映射的编码比特数为G ACK(1),G ACK(1)的值为下列两个数值中较小的一个:
第一跳频资源上第一组连续的解调参考信号(demodulation reference signal,DMRS)符号之后能够用于承载数据的RE映射的编码比特数,以及,基于G ACK确定的第三数值。
若第一UCI中的HARQ-ACK在第一跳频资源上能够映射的编码比特数超过第一跳频资源的承载能力,则终端设备可以按照第一跳频资源的承载能力确定第一UCI中的HARQ-ACK在第一跳频资源上映射的编码比特数,反之,则终端设备可以按照第一UCI中的HARQ-ACK在第一跳频资源上能够映射的编码比特数(例如,
Figure PCTCN2019099037-appb-000009
确定该HARQ-ACK在第一跳频资源上映射的编码比特数。
可选地,所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE 映射的编码比特数的值等于M 3·N L·Q m,其中M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数,上述第三数值为
Figure PCTCN2019099037-appb-000010
其中,所述第一UCI中的HARQ-ACK的比特数不大于2。
上述方案即公式
Figure PCTCN2019099037-appb-000011
所描述的内容。
可选地,第一UCI中的HARQ-ACK在第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
第二方面,本申请还提供了一种通信方法,包括:接收下行控制信息,所述下行控制信息用于调度PUSCH,所述PUSCH仅用于承载UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;在所述PUSCH上发送第一UCI,所述第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个。对于对侧设备来说,相应的执行发送下行控制信息以及接收第一UCI的步骤。
其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000012
两者中较大的值确定的,或者,所述第五数值是基于G ACK(1)确定的,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
Figure PCTCN2019099037-appb-000013
为所述第一跳频资源中的预留RE上映射的编码比特数。
现有技术中第五数值仅基于G ACK(1)确定,例如,现有技术的第五数值为M 1·N L·Q m-G ACK(1),该参数限制了CSI-part1在第一跳频资源上所占的资源上限(即,第一上限),此外,CSI-part1也不能占用第一跳频资源的预留RE,即,G CSI-part1(1)也应满足不大于
Figure PCTCN2019099037-appb-000014
这个上限(即,第二上限),在HARQ-ACK的信息比特数为0或1或2时,G ACK(1)为按照实际的HARQ-ACK信息比特数计算出的编码比特数,而
Figure PCTCN2019099037-appb-000015
是按HARQ-ACK信息比特数为2计算出的预留RE所映射的编码比特数,因此,如果实际的HARQ-ACK信息比特数为0或1,则有
Figure PCTCN2019099037-appb-000016
从而有
Figure PCTCN2019099037-appb-000017
即,第一跳频资源上
Figure PCTCN2019099037-appb-000018
这时候第一上限大于第二上限,现有技术仅根据G ACK(1)确定第五数值可能导致第一跳频资源上的非预留RE不足以承载CSI-part1在第一跳频资源上的编码比特数G CSI-part1(1)。
本申请提供的方案中,第五数值基于G ACK(1)和
Figure PCTCN2019099037-appb-000019
中较大的确定(其中
Figure PCTCN2019099037-appb-000020
在HARQ-ACK比特数大于2时等于0),保证在计算G CSI-part1(1)时以第一跳频资源中实际的非预留RE为基准,从而能够避免上述CSI-part1发送不完整的问题。
可选地:
所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000021
两者中较大的值确定的,包括:所述第五数值等于
Figure PCTCN2019099037-appb-000022
或者
所述第五数值是基于G ACK(1)确定的,包括:所述第五数值在HARQ-ACK比特数大于2时等于M 1·N L·Q m-G ACK(1);进一步,在在HARQ-ACK比特数小于或等于2时,所述 第五数值等于
Figure PCTCN2019099037-appb-000023
其中,M 1为所述第一跳频资源中能够承载数据的RE的数量,所述N L为PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
可选地,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,包括:所述第四数值等于
Figure PCTCN2019099037-appb-000024
其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
第二方面所提供的方案可以单独实施,也可以与第一方面所提供的方案联合实施。
第三方面,提供了一种通信方法,其特征在于,所述方法包括:
接收指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;在所述PUSCH上发送第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ARK传输预留的RE。
可选的,该方法可以由终端设备执行,或者由集成在终端设备中或者与终端设备独立的装置或者芯片执行。
本申请相应的提供一种装置,其特征在于,所述装置包括:
接收单元,用于接收指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;发送单元,在所述PUSCH上发送第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ARK传输预留的RE。
在该第三方面中,本申请还提供另一种通信方法,其特征在于,所述方法包括:
发送指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源;在所述PUSCH上接收第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ARK传输预留的RE。
可选的,该方法可以由网络设备执行,或者由集成在网络设备中,或者与网络设备独立的装置或者芯片执行。
本申请相应的提供一种装置,其特征在于,所述装置包括发送单元和接收单元,执行 与上述方法中相应的步骤。
在该第三方面中,进一步:
一种可选的设计中,所述PUSCH上包含上行共享信道UL-SCH,且第一UCI包括了HARQ-ACK,所述HARQ-ACK在第一跳频资源映射的编码比特数为第六数值,在第二跳频资源上映射的编码比特数为第七数值,所述第六数值不小于第七数值。
一种可选的设计中,所述第一UCI包括的所述HARQ-ACK映射的编码比特数为G ACK,withUL-SCH
所述第六数值为G ACK,withUL-SCH(1),
Figure PCTCN2019099037-appb-000025
和/或,
所述第七数值为G ACK,withUL-SCH(2),
Figure PCTCN2019099037-appb-000026
其中,所述N L为所述PUSCH的传输层数,所述Q m为所述UL-SCH和所述第一UCI的调制阶数。
一种可选的设计中,所述第六数值
Figure PCTCN2019099037-appb-000027
且所述第七数值
G ACK,withUL-SCH(2)=G ACK,withUL-SCH-G ACK,withUL-SCH(1),或者,
所述第七数值
Figure PCTCN2019099037-appb-000028
且所述第六数值G ACK,withUL-SCH(1)=G ACK,withUL-SCH-G ACK,withUL-SCH(2)。
该第三方面所提供的方案,可以实现在HARQ-ACK比特数为2时,在所述第一跳频资源上,HARQ-ACK的编码比特数刚好等于预留RE映射的编码比特数,且,在所述第二跳频资源上,HARQ-ACK的编码比特数刚好等于预留RE映射的编码比特数。
第四方面,本申请提供了一种装置,该装置可以实现上述第一方面、第二方面和/或第三方面所涉及的方法中各个步骤所对应的功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种可能的设计中,该装置包括处理器,该处理器被配置为支持该装置执行上述第一方面所涉及的方法中相应的功能。该装置还可以包括存储器,该存储器用于与处理器耦合,其保存该装置必要的程序指令和数据。可选地,该装置还包括收发器,该收发器用于支持该装置与其它网元之间的通信。其中,所述收发器可以为独立的接收器、独立的发射器或者集成收发功能的收发器。
第四方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质中存储了计算机程序代码,该计算机程序代码被处理单元或处理器执行时,实现第一方面、第二方面和/或第三方面所述的方法。
第五方面,本申请提供了一种计算机程序产品,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被处理单元或处理器运行时,实现上述第一方面、第二方面和/或第三方面的方法。
第六方面,提供了一种通信方法,包括:发送下行控制信息,所述下行控制信息用于调度PUSCH,PUSCH仅用于承载UCI,PUSCH包含第一跳频资源和第二跳频资源,所 述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;在PUSCH上接收第一UCI,第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个;其中,第一跳频资源中的预留RE上映射的编码比特数为第一数值,第二跳频资源中的预留RE上映射的编码比特数为第二数值,第一数值不小于第二数值,第一跳频资源中的预留RE和第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
CSI-part1出现信息发送不完整的原因在于,CSI-part1映射在第二跳频资源上的编码比特数较少,也就是说,第二跳频资源上用于映射CSI-part1的RE数量较少,导致CSI-part1无法全部映射到第二跳频资源上,本申请提供的通信方案,相对于现有技术减少了第二跳频资源中预留RE能够映射的编码比特数,从而增加了第二跳频资源中用于映射CSI-part1的RE的数量,解决了UCI-only场景中通过跳频传输UCI导致CSI-part1出现信息发送不完整的问题。
可选地,第一数值为
Figure PCTCN2019099037-appb-000029
和/或,
第二数值为
Figure PCTCN2019099037-appb-000030
Figure PCTCN2019099037-appb-000031
其中,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数。
可选地,
Figure PCTCN2019099037-appb-000032
且,
Figure PCTCN2019099037-appb-000033
或者,
Figure PCTCN2019099037-appb-000034
且,
Figure PCTCN2019099037-appb-000035
可选地,第一UCI中的HARQ-ACK在第一跳频资源上映射的编码比特数为G ACK(1),G ACK(1)的值为下列两个数值中较小的一个:
所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于G ACK确定的第三数值,G ACK为第一UCI中的HARQ-ACK的编码比特数。
可选地,所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数的值等于M 3·N L·Q m,其中M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数,第三数值为
Figure PCTCN2019099037-appb-000036
其中,第一UCI中的HARQ-ACK的比特数不大于2。
上述方案即公式
Figure PCTCN2019099037-appb-000037
所描述的内容。
可选地,第一UCI中的HARQ-ACK在第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
第七方面,本申请还提供了一种通信方法,包括:发送下行控制信息,所述下行控制信息用于调度PUSCH,所述PUSCH仅用于承载UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;在所述PUSCH上接收第一UCI,所述第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个;
其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000038
两者中较 大的值确定的,或者,所述第五数值是基于G ACK(1)确定的,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
Figure PCTCN2019099037-appb-000039
为所述第一跳频资源中的预留RE上映射的编码比特数。
现有技术中第五数值仅基于G ACK(1)确定,例如,现有技术的第五数值为M 1·N L·Q m-G ACK(1),该参数限制了CSI-part1在第一跳频资源上所占的资源上限(即,第一上限),此外,CSI-part1也不能占用第一跳频资源的预留RE,即,G CSI-part1(1)也应满足不大于
Figure PCTCN2019099037-appb-000040
这个上限(即,第二上限),在HARQ-ACK的信息比特数为0或1或2时,G ACK(1)为按照实际的HARQ-ACK信息比特数计算出的编码比特数,而
Figure PCTCN2019099037-appb-000041
是按HARQ-ACK信息比特数为2计算出的预留RE所映射的编码比特数,因此,如果实际的HARQ-ACK信息比特数为0或1,则有
Figure PCTCN2019099037-appb-000042
从而有
Figure PCTCN2019099037-appb-000043
即,第一跳频资源上
Figure PCTCN2019099037-appb-000044
这时候第一上限大于第二上限,现有技术仅根据G ACK(1)确定第五数值可能导致第一跳频资源上的非预留RE不足以承载CSI-part1在第一跳频资源上的编码比特数G CSI-part1(1)。
本申请提供的方案中,第五数值基于G ACK(1)和
Figure PCTCN2019099037-appb-000045
中较大的确定(其中
Figure PCTCN2019099037-appb-000046
在HARQ-ACK比特数大于2时等于0),保证在计算G CSI-part1(1)时以第一跳频资源中实际的非预留RE为基准,从而能够避免上述CSI-part1发送不完整的问题。
可选地,
所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000047
两者中较大的值确定的,包括:所述第四数值等于
Figure PCTCN2019099037-appb-000048
或者
所述第五数值是基于G ACK(1)确定的,包括:所述第五数值在HARQ-ACK比特数大于2时等于M 1·N L·Q m-G ACK(1);
其中,M 1为所述第一跳频资源中能够承载数据的RE的数量,所述N L为PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
可选地,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,包括:所述第四数值等于
Figure PCTCN2019099037-appb-000049
其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
附图说明
图1是一种适用于本申请的通信系统的示意图;
图2是本申请提供的一种UCI-only场景中UCI的映射方式的示意图;
图3是本申请提供的另一种UCI-only场景中UCI的映射方式的示意图;
图4是本申请提供的一种通信方法的示意图;
图5是本申请提供的一种PUSCH资源分配的示意图;
图6是本申请提供的另一种通信方法的示意图;
图7是本申请提供的再一种通信方法的示意图;
图8是本申请提供的再一种通信方法的示意图;
图9是本申请提供的一种通信装置的示意图;
图10是本申请提供的另一种通信装置的示意图;
图11是本申请提供的再一种通信装置的示意图;
图12是本申请提供的再一种通信装置的示意图;
图13是本申请提供的再一种通信装置的示意图;
图14是本申请提供的再一种通信装置的示意图;
图15是本申请提供的再一种通信装置的示意图;
图16是本申请提供的再一种通信装置的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1示出了一种适用本申请的通信系统。该通信系统包括网络设备和终端设备,网络设备与终端设备通过无线网络进行通信,当终端设备发送信息时,终端设备的无线通信模块可获取要通过信道发送至网络设备的信息比特,这些信息比特例如是终端设备的处理模块生成的、从其它设备接收的或者在终端设备的存储模块中保存的信息比特。
在本申请中,终端设备可称为接入终端、用户设备(user equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及5G通信系统中的用户设备。
网络设备可以是码分多址(code division multiple access,CDMA)系统中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(node B,NB),还可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional node B,eNB),还可以是5G通信系统中的基站(gNB),上述基站仅是举例说明,网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及其它类型的设备。
上述适用本申请的通信系统仅是举例说明,适用本申请的通信系统不限于此,例如,通信系统中包括的网络设备和终端设备的数量还可以是其它的数量。
为了便于理解本申请的技术方案,首先对本申请涉及的概念做简要介绍,以5G系统为例说明如下。
在UE通过PUSCH向gNB发送UCI的场景中,由于UE可能漏检下行控制信道(physical uplink control channel,PDCCH),从而对需要反馈的HARQ-ACK比特数的认知出现错误,即UE实际反馈的HARQ-ACK比特数比gNB调度其反馈的HARQ-ACK比特数少;进而还可能导致UE通过PUSCH发送的所有UCI都不能被gNB正确接收。为了避免CSI-part1受到UE少发送HARQ-ACK的影响,通信协议对UE通过PUSCH向gNB发送UCI的场景中定义了用于HARQ-ACK的预留RE(reserved RE for HARQ-ACK),即,预留RE。具体定义是:
(1)当HARQ-ACK信息比特数为0、1或2时,都按照HARQ-ACK信息比特数为2来生成预留RE。
(2)预留RE上不能发送保护等级要求较高的CSI-part1,因此HARQ-ACK在信息比特数不大于2时,其发送缺失不会对CSI-part1造成影响。
(3)预留RE上可以发送CSI-part2和UL-SCH(在UCI-only场景中只有发送CSI-part2的可能性)。
(4)如果有HARQ-ACK信息比特需要发送(即HARQ-ACK信息比特数为1或者2),则HARQ-ACK在预留RE上发送。此时相当于HARQ-ACK对已经映射在预留RE上的CSI-part2做了打孔。
为了获得跳频增益,PUSCH可以在时域上分为前后两部分,该两部分分别称为第一跳(hop1)和第二跳(hop2),hop1和hop2的频域资源相异。相应地,HARQ-ACK、CSI-part1和CSI-part2也会被按照预设的规则映射到hop1和hop2上。
上述映射规则可以通过图2直观的表示出来。如图2所示,CSI-part1只映射到非预留RE上;CSI-part2既有映射到预留RE的部分,也有映射到非预留RE的部分;如果有HARQ-ACK(即信息比特为1或2),则映射到预留RE上(相当于在已经映射了CSI-part2的编码比特的资源上进行打孔)。
对于PUSCH的跳频,有如下规定:
PUSCH符号数的跳频规则包含时隙(slot)内跳频,以及slot间跳频,具体为:
对于slot内跳频,hop1的符号数为PUSCH符号总数的一半且下取整,即
Figure PCTCN2019099037-appb-000050
hop2的符号数为PUSCH符号总数减去hop1符号数,即
Figure PCTCN2019099037-appb-000051
其中
Figure PCTCN2019099037-appb-000052
为PUSCH在一个slot内的符号总数。
对于slot间跳频,hop1和hop2以slot为单位在时间上划分。例如,slot号为偶数的为hop1,slot号为奇数的为hop2。
根据当前协议规定的PUSCH跳频情况下的解调参考信号(demodulation reference signal,DMRS)图样来看,slot内跳频可能出现的情况包括:hop1和hop2的可承载数据的符号数相等;或者,hop1比hop2的可承载数据的符号数少1;slot间跳频的情况下hop1和hop2可承载数据的符号数相等。
预留RE所映射的编码比特数的跳频拆分规则如下:
假设预留RE所映射的编码比特数为
Figure PCTCN2019099037-appb-000053
则hop1和hop2的预留RE所映射的编码比特数分别为
Figure PCTCN2019099037-appb-000054
Figure PCTCN2019099037-appb-000055
其中N L为PUSCH传输层数,Q m为PUSCH调制阶数。由式(1)和式(2)分别可知,
Figure PCTCN2019099037-appb-000056
Figure PCTCN2019099037-appb-000057
式(3)和式(4)中的等号都只有在
Figure PCTCN2019099037-appb-000058
可以整除(2·N L·Q m)时成立。
现有的标准规定,在UCI-only场景中,UCI各部分(HARQ-ACK、CSI-part1和CSI-part2)的编码比特数在跳频情况下也会按照一定规则拆分。在讲拆分之前,先给出如下三个参数的定义:
hop1上可承载数据的RE个数:
Figure PCTCN2019099037-appb-000059
其中
Figure PCTCN2019099037-appb-000060
为hop1的符号个数,
Figure PCTCN2019099037-appb-000061
为集合
Figure PCTCN2019099037-appb-000062
的大小,集合
Figure PCTCN2019099037-appb-000063
为符号上l上可承载数据的RE个数。
hop2上可承载数据的RE个数:
Figure PCTCN2019099037-appb-000064
其中
Figure PCTCN2019099037-appb-000065
为hop2的符号个数。
PUSCH hop1上第一个连续DMRS符号集合之后的PUSCH符号上可承载数据的RE个数:
Figure PCTCN2019099037-appb-000066
其中l (1)的定义是第一个连续DMRS符号集合之后的第一个不含DMRS的符号索引;连续的DMRS符号集合,可以包含1个DMRS符号,也可以包含多个连续的DMRS符号。
UCI各部分(HARQ-ACK、CSI-part1和CSI-part2)的编码比特数跳频拆分规则如下。
HARQ-ACK编码比特的跳频拆分规则:
假设HARQ-ACK的编码比特数为G ACK,则hop1和hop2上发送的HARQ-ACK编码比特数分别为:
Figure PCTCN2019099037-appb-000067
G ACK(2)=G ACK-G ACK(1)。
CSI-part1编码比特的跳频拆分规则:
假设CSI-part1的编码比特数为G CSI-part1,则hop1和hop2上发送的CSI-part1编码比特数分别为:
Figure PCTCN2019099037-appb-000068
G CSI-part1(2)=G CSI-part1-G CSI-part1(1)          (6)
当式(4)的取最小运算min(·,·)取逗号左边时,结合式(5)和(6)可知,
G CSI-part1(1)≤G CSI-part1(2)         (7)
其中等号只在G CSI-part1可以整除(2·N L·Q m)时成立。
CSI-part2编码比特的跳频拆分规则:
假设CSI-part2的编码比特数为G CSI-part2,则hop1和hop2上发送的CSI-part2编码比特数分别为:
G CSI-part2(1)=M 1·N L·Q m-G CSI-part1(1)        (8)
G CSI-part2(2)=M 2·N L·Q m-G CSI-part1(2)         (9)
当UCI-only场景中存在以下三个条件时,存在CSI-part1的发送不完整的问题。
条件1:CSI-part1的编码比特数刚好等于PUSCH的hop1和hop2上除了预留RE之外所有可承载数据的RE所映射的编码比特数,即
Figure PCTCN2019099037-appb-000069
条件2:G CSI-part1不能整除(2·N L·Q m)。因此,式(7)不能取等号,即
G CSI-part1(1)<G CSI-part1(2)         (11)
条件3:两个跳频资源的可用于承载数据的RE个数相等,即对于PUSCH hop1和hop2,有M 1=M 2        (12)
由式(8)(9)(11)(12)可知,
G CSI-part2(1)>G CSI-part2(2)       (13)
由式(8)(9)相加可得,
G CSI-part2(1)+G CSI-part2(2)=(M 1+M 2)·N L·Q m-G CSI-part1      (14)
由式(14)和(10)可得,
Figure PCTCN2019099037-appb-000070
由式(13)和(15)可得,
Figure PCTCN2019099037-appb-000071
由式(16)和(4)可得,
Figure PCTCN2019099037-appb-000072
因此,由式(9)和(17)可知,
Figure PCTCN2019099037-appb-000073
即hop2上的CSI-part1编码比特数,大于非预留RE所映射的编码比特数;而CSI-part1是不能用预留RE承载的。因此,CSI-part1的发送不完整。
除此之外,由于
Figure PCTCN2019099037-appb-000074
因此可能会有预留RE无任何数据可发送,如图3所示。如果PUSCH是单载波的离散傅里叶变换扩频的正交频分复用(discrete Fourier transform spread orthogonal frequency division multiplexing,DFT-s-OFDM),则上述不发送任何数据的RE可能破坏hop2一个或多个符号的上行发送单载波低峰均功率比(peak-to-average power ratio,PAPR)的特性。
另外,本申请中所涉及的符号为一个时间单位,可以为正交频分复用(orthogonal frequency-division multiplexing,OFDM)符号。
有鉴于此,本申请提供了一种通信方法,能够解决上述CSI-part1的发送不完整,此外,还能够解决上述采用DFT-s-OFDM波形在hop2上发送信号时单载波特性被破坏的问题。
如图4所示,该通信方法包括:
S410,接收下行控制信息,该下行控制信息用于调度PUSCH,PUSCH仅用于承载UCI,该PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
PUSCH仅用于承载UCI指的是通信协议中定义的UCI-only场景。第一跳频资源和第二跳频资源例如是上述hop1和hop2。可选的,第一跳频资源与第二跳频资源的频域资源相异,上述相异指的是第一跳频资源的频域资源与第二跳频资源的频域资源部分重叠或者完全不重叠。进一步可选的,所述第一跳频资源的时频结束位置与所述第二跳频资源的时域起始位置相邻。或者,所述第一跳频资源为时域上连续或者不连续的资源,所述第二跳频资源为时域上连续或不连续的资源。该跳频资源的解释可以应用于本申请中其它方法或者实施方式。
S410所述的下行控制信息例如是通过PDCCH传输的下行控制信息(downlink control information,DCI),基站可以通过DCI中的1个比特的不同状态指示PUSCH是否仅用于传输UCI,即,该1个比特的不同状态用于指示当前通信场景是否为UCI-only。
S420,在PUSCH上发送第一UCI,第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个;
其中,第一跳频资源中的预留RE上映射的编码比特数为第一数值,第二跳频资源中的预留RE上映射的编码比特数为第二数值,第一数值不小于第二数值,第一跳频资源中 的预留RE和第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。这里对“潜在HARQ-ACK传输”进行进一步解释说明,本申请实施例中,HARQ-ACK可能会在PUSCH上进行传输,也可能不进行实际传输,不论传输与否,这些预留RE都会预留,这些预留RE对应一定数量的、映射在其上的编码比特数。具体的,所述“潜在HARQ-ACK传输”中所涉及的HARQ-ACK比特数不大于2,并且,具体计算映射的编码比特数时,会按照HARQ-ACK比特数等于2来计算预留RE映射的编码比特数。本申请实施例中涉及预留RE上映射的编码比特数时,若不存在实际传输,则可以理解为所述预留RE上能够映射的编码比特数,或者说对应的相应数量的编码比特数。
CSI-part1出现信息发送不完整的原因在于,CSI-part1映射在第二跳频资源上的编码比特数较少,也就是说,第二跳频资源上用于映射CSI-part1的RE数量较少,导致CSI-part1无法全部映射到第二跳频资源上,本申请提供的通信方案,相对于现有技术减少第二跳频资源中预留RE能够映射的编码比特数,从而增加了第二跳频资源中用于映射CSI-part1的RE的数量,解决了UCI-only场景中通过跳频传输UCI导致CSI-part1出现信息发送不完整的问题。
此外,由于上述方案减少了第二跳频资源中预留RE的数量,避免了第二跳资源上存在无数据发送的预留RE的情况,因此,方法400解决了上述CSI-part1发送不完整的问题的同时解决了图3所示的问题。
需要说明的是,上述“第一跳频资源中的预留RE映射的编码比特数为第一数值,第二跳频资源中的预留RE映射的编码比特数为第二数值,第一数值不小于第二数值”指的是:通过减少第二跳频资源中预留RE的数量使得第二数值大于或等于第一数值。
可选地,方法400还包括:
确定第一编码比特数
Figure PCTCN2019099037-appb-000075
是第一跳频资源中的预留RE和第二跳频资源中的预留RE上能够映射的编码比特数之和,其中,所述第一数值和所述第二数值均基于所述
Figure PCTCN2019099037-appb-000076
确定。
具体的,上述“第一跳频资源中的预留RE和第二跳频资源中的预留RE上映射的编码比特数”指的是第一跳频资源中的预留RE和第二跳频资源中的预留RE能够映射的编码比特数之和,而不应被理解为第一跳频资源中的预留RE和第二跳频资源中的预留RE实际映射的编码比特数。
可选地,第一数值为
Figure PCTCN2019099037-appb-000077
和/或,第二数值为
Figure PCTCN2019099037-appb-000078
其中,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数,即,在PUSCH上传输的UCI的调制阶数。
通过对
Figure PCTCN2019099037-appb-000079
做下取整运算得到
Figure PCTCN2019099037-appb-000080
和/或,对
Figure PCTCN2019099037-appb-000081
做上取整运算得到
Figure PCTCN2019099037-appb-000082
使得第二跳频资源中的预留RE映射的编码比特数(即,预留RE的数量)小于或等于第一跳频资源中的预留RE映射的编码比特数(即,预留RE的数量)。
可选地,
Figure PCTCN2019099037-appb-000083
且,
Figure PCTCN2019099037-appb-000084
或者,
Figure PCTCN2019099037-appb-000085
且,
Figure PCTCN2019099037-appb-000086
可选地,方法400还包括:
确定第一UCI中的HARQ-ACK的编码比特数G ACK,其中,第一UCI中的HARQ-ACK在第一跳频资源上映射的编码比特数为G ACK(1),G ACK(1)的值为下列两个数值中较小的一个:
所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于G ACK确定的第三数值。
上述文字描述可通过下述公式表示:
Figure PCTCN2019099037-appb-000087
其中,
Figure PCTCN2019099037-appb-000088
表示上述第三数值,M 3·N L·Q m表示第一跳频资源上承载第一组连续的DMRS的符号之后能够用于承载数据的RE映射的编码比特数,或者叫做第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数,所述DMRS符号为用于承载DMRS的符号。其中M 3为第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数。其中,所述第一组连续的DMRS符号个数可以为1个或者多个。
本申请中需要说明的是,其中第一组连续的DMRS符号的解释是,从相应资源时域上的第一个DMRS符号开始,直到连续的DMRS符号结束。具体参见图5,图5中从上到下(上下顺序仅用于逻辑区分4个PUSCH资源,不限定任何频域位置关系)展示了4个PUSCH资源-PUSCH1、PUSCH2、PUSCH3以及PUSCH4,所述PUSCH1和PUSCH3的起始符号为DMRS符号,所述PUSCH2和PUSCH4的起始符号不是DMRS符号。另外,所述PUSCH1和PUSCH2中的第一组连续的DMRS符号仅包含1个符号,PUSCH3和PUSCH4中的第一组连续的DMRS符号包含多个符号。
可选地,第一UCI中的HARQ-ACK在第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
本申请中相关术语的解释可以参照通信协议(3GPP TS38.212 v15.2.0的6.2.7小节)中的定义。
下面,再给出了本申请提供的跳频传输的例子。
步骤一:gNB通过RRC信令为UE配置尺度参数α,码率补偿参数
Figure PCTCN2019099037-appb-000089
Figure PCTCN2019099037-appb-000090
等参数,其中,尺度参数α取值为大于0且小于等于1,上述码率补偿参数的配置方式可以是配一组值,也可以配多组值。如果配一组值,则直接在后续步骤中改组值;如果配置多组值,则可以由步骤二中的下行控制信息(downlink control information,DCI)来指示其索引。
步骤二:gNB通过PDCCH向UE发送DCI,所述DCI中包括但不限于以下信息:为所述UE分配的PUSCH资源,PUSCH是否为UCI-only(或者说,是否包含UL-SCH),PUSCH是否跳频,PUSCH传输层数,以及调制与编码策略索引(I MCS),PUSCH传输层数N L
Figure PCTCN2019099037-appb-000091
Figure PCTCN2019099037-appb-000092
的索引(可选)等参数。
步骤三:UE接收到DCI后,解析出为UE分配的PUSCH资源,PUSCH是否为UCI-only,PUSCH是否跳频,以及I MCS,PUSCH传输层数N L等参数;UE通过I MCS查表得到码率R和调制阶数Q m;如果DCI中有
Figure PCTCN2019099037-appb-000093
Figure PCTCN2019099037-appb-000094
的索引,则UE根据索引解析出
Figure PCTCN2019099037-appb-000095
Figure PCTCN2019099037-appb-000096
的值,并在后续步骤中使用。
步骤四:如果UE解析出PUSCH为UCI-only,且UE需要发送的HARQ-ACK信息比特数不大于2(即HARQ-ACK信息比特数为0、1或2),则UE按照如下式子来计算为HARQ-ACK保留的预留RE个数(下列式子中,分母上的2即为按照HARQ-ACK信息比特为2来计算):
Figure PCTCN2019099037-appb-000097
其中
Figure PCTCN2019099037-appb-000098
为PUSCH的符号l上可以承载UCI的RE个数,l 0为PUSCH第一个DMRS符号或第一组连续多个DMRS符号集后的第一个不含DMRS的符号索引;
Figure PCTCN2019099037-appb-000099
为PUSCH的符号数。
然后根据得到的Q′ ACK来计算可能需要为HARQ-ACK保留的预留RE所映射的编码比特数
Figure PCTCN2019099037-appb-000100
另外,UE根据α,
Figure PCTCN2019099037-appb-000101
R,Q m,N L等参数,计算得到HARQ-ACK编码比特数G ACK,CSI-part1编码比特数G CSI-part1,CSI-part2编码比特数G CSI-part2
步骤五:如果UE解析出PUSCH需要跳频,则UE按如下式子分别计算HARQ-ACK、CSI-part1和CSI-part2在hop1和hop2上的编码比特数:
Figure PCTCN2019099037-appb-000102
或者,
Figure PCTCN2019099037-appb-000103
G ACK(2)=G ACK-G ACK(1);
Figure PCTCN2019099037-appb-000104
G CSI-part1(2)=G CSI-part1-G CSI-part1(1);
G CSI-part2(1)=M 1·N L·Q m-G CSI-part1(1);
G CSI-part2(2)=M 2·N L·Q m-G CSI-part1(2);
UE按照如下式子分别计算hop1和hop2上为HARQ-ACK保留的预留RE所映射的编码比特数:
Figure PCTCN2019099037-appb-000105
Figure PCTCN2019099037-appb-000106
步骤六:UE按照步骤五计算得到的参数,将HARQ-ACK,CSI-part1和CSI-part2编码比特映射到PUSCH上。
下面,通过几个例子来说明采用本申请提供的通信方法(例如,采用
Figure PCTCN2019099037-appb-000107
进行跳频传输)计算在两个hop上的映射编码比特数所带来的有益效果。表1为使用现有技术的方法得到的结果,表2为使用本申请的方法得到的结果。
表1
Figure PCTCN2019099037-appb-000108
从表1的倒数第二行和倒数第三行可知,hop2上被非预留RE传输的编码比特数与CSI-part1映射在非预留RE上的编码比特数不同,可见CSI-part1在hop2上不能被非预留RE完全承载,会导致CSI-part1发送不完整;从表1的倒数第一行和倒数第四行可知,hop2的预留RE映射的编码比特数
Figure PCTCN2019099037-appb-000109
大于CSI-part2在hop2上映射的编码比特数,可见有些预留RE没有数据发送,在PUSCH使用DFT-s-OFDM时,会破坏其单载波低PAPR特性。
上述示例仅是举例说明。
表2为采用本申请提供的通信的方法计算的结果,从表2的倒数第二行和倒数第三行可知,hop2上被非预留RE传输的编码比特数与CSI-part1映射在非预留RE上的编码比特数相同。从表2的倒数第一行和倒数第四行可知,hop2的预留RE映射的编码比特数
Figure PCTCN2019099037-appb-000110
等于CSI-part2在hop2上映射的编码比特数,所有的预留RE均有数据发送。可见本发明的计算方法,分别对齐了两个hop中非预留RE所映射的编码比特数与CSI-part1在两个hop的编码比特数,解决了已有技术的问题。
表2
Figure PCTCN2019099037-appb-000111
Figure PCTCN2019099037-appb-000112
现有技术提供的HARQ-ACK编码比特的跳频拆分规则为:
假设HARQ-ACK的编码比特数为G ACK,则hop1和hop2上发送的HARQ-ACK编码比特数分别为:
Figure PCTCN2019099037-appb-000113
G ACK(2)=G ACK-G ACK(1)。
上述拆分规则存在的问题是hop1的非预留RE不足以承载CSI-part1在hop1的编码比特数,导致CSI-part1发送不完整。
原因如下:
公式(X)中,取最小函数min(·,·)右边的参数M 1·N L·Q m-G ACK(1)的作用是限制CSI-part1在hop1所占的资源上限(后面称其为第一上限),即不能占HARQ-ACK在hop1的资源。但是,基于通信协议的规定,CSI-part1也不能占hop1的预留RE资源,即也应该满足不大于
Figure PCTCN2019099037-appb-000114
这个上限(后面称其为第二上限)。
在HARQ-ACK信息比特数为0,1或2时,G ACK是按实际的HARQ-ACK信息比特数计算出的编码比特数,而
Figure PCTCN2019099037-appb-000115
是按HARQ-ACK信息比特数为2计算出的预留RE所映射的编码比特数,因此如果实际的HARQ-ACK信息比特数为0或1,则有
Figure PCTCN2019099037-appb-000116
从而对hop1有
Figure PCTCN2019099037-appb-000117
这时候第一上限大于第二上限,可能导致hop1的非预留RE不足以承载CSI-part1在hop1的编码比特数G CSI-part1(1)。
有鉴于此,本申请提供了另一种通信方法600,该方法600可以在上述方法的基础上实现,或者与上述方法结合实现,也可以独立实现。如图6所示,包括:
S610,接收下行控制信息,所述下行控制信息用于调度PUSCH,所述PUSCH仅用于承载UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
S620,在所述PUSCH上发送第一UCI,所述第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个。
其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000118
两者中较大的值确定的,或者,所述第五数值是基于G ACK(1)确定的,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
Figure PCTCN2019099037-appb-000119
为所述第一跳频资源中的预留RE上映射的编码比特数。
现有技术中第五数值仅基于G ACK(1)确定,例如,现有技术的第五数值为M 1·N L·Q m-G ACK(1),该参数限制了CSI-part1在第一跳频资源上所占的资源上限(即,第一上限),此外,CSI-part1也不能占用第一跳频资源的预留RE,即,G CSI-part1(1)也应满足不大于
Figure PCTCN2019099037-appb-000120
这个上限(即,第二上限),在HARQ-ACK的信息比特数为0或1或2时,G ACK(1)为按照实际的HARQ-ACK信息比特数计算出的编码比特数,而
Figure PCTCN2019099037-appb-000121
是按HARQ-ACK信息比特数为2计算出的预留RE所映射的编码比特数,因此,如果实际的HARQ-ACK信息比特数为0或1,则有
Figure PCTCN2019099037-appb-000122
从而有
Figure PCTCN2019099037-appb-000123
即,第一跳频资源上
Figure PCTCN2019099037-appb-000124
这时候第一上限大于第二上限,现有技术仅根据G ACK(1)确定第五数值可能导致第一跳频资源上的非预留RE不足以承载CSI-part1在第一跳频资源上的编码比特数G CSI-part1(1)。
本申请提供的方案中,第五数值基于G ACK(1)和
Figure PCTCN2019099037-appb-000125
中较大的确定(其中
Figure PCTCN2019099037-appb-000126
在HARQ-ACK比特数大于2时等于0),保证在计算G CSI-part1(1)时以第一跳频资源中实际的非预留RE为基准,从而能够避免上述CSI-part1发送不完整的问题。
可选地,
所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000127
两者中较大的值确定的,包括:所述第五数值等于
Figure PCTCN2019099037-appb-000128
或者
所述第五数值是基于G ACK(1)确定的,包括:所述第五数值在HARQ-ACK比特数大于2时等于M 1·N L·Q m-G ACK(1);进一步,HARQ-ACK比特数小于或等于2时,所述第五数值等于
Figure PCTCN2019099037-appb-000129
其中,M 1为所述第一跳频资源中能够承载数据的RE的数量,所述N L为PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
可选地,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,包括:所述第四数值等于
Figure PCTCN2019099037-appb-000130
其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
方法600可以单独实施,也可以与方法400联合实施。
本申请还提供了一种通信方法,如图7所示,该方法700包括:
S710,发送下行控制信息,所述下行控制信息用于调度PUSCH,PUSCH仅用于承载UCI,PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
S720,在PUSCH上接收第一UCI,第一UCI包含HARQ-ACK、CSI-part1和CSI-part2 中的至少一个;其中,第一跳频资源中的预留RE上映射的编码比特数为第一数值,第二跳频资源中的预留RE上映射的编码比特数为第二数值,第一数值不小于第二数值,第一跳频资源中的预留RE和第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
CSI-part1出现信息发送不完整的原因在于,CSI-part1映射在第二跳频资源上的编码比特数较少,也就是说,第二跳频资源上用于映射CSI-part1的RE数量较少,导致CSI-part1无法全部映射到第二跳频资源上,本申请提供的通信方案,相对于现有技术减少了第二跳频资源中预留RE能够映射的编码比特数,从而增加了第二跳频资源中用于映射CSI-part1的RE的数量,解决了UCI-only场景中通过跳频传输UCI导致CSI-part1出现信息发送不完整的问题。
本领域技术人员可以理解,方法700与方法400对应,为了简洁,在此不再赘述。
可选地,第一数值为
Figure PCTCN2019099037-appb-000131
Figure PCTCN2019099037-appb-000132
和/或,
第二数值为
Figure PCTCN2019099037-appb-000133
其中,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数。
可选地,
Figure PCTCN2019099037-appb-000134
且,
Figure PCTCN2019099037-appb-000135
或者,
Figure PCTCN2019099037-appb-000136
且,
Figure PCTCN2019099037-appb-000137
可选地,第一UCI中的HARQ-ACK在第一跳频资源上映射的编码比特数为G ACK(1),G ACK(1)的值为下列两个数值中较小的一个:
所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于G ACK确定的第三数值,G ACK为第一UCI中的HARQ-ACK的编码比特数。
可选地,所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数的值等于M 3·N L·Q m,其中M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,N L为PUSCH的传输层数,Q m为第一UCI的调制阶数,第三数值为
Figure PCTCN2019099037-appb-000138
其中,第一UCI中的HARQ-ACK的比特数不大于2。
上述方案即公式
Figure PCTCN2019099037-appb-000139
所描述的内容。
可选地,第一UCI中的HARQ-ACK在第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
本申请还提供了一种通信方法,如图8所示,该方法800包括:
S810,发送下行控制信息,所述下行控制信息用于调度PUSCH,所述PUSCH仅用于承载UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
S820,在所述PUSCH上接收第一UCI,所述第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个;
其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的 CSI-part1的编码比特数G CSI-part1确定的,所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000140
两者中较大的值确定的,或者,所述第五数值是基于G ACK(1)确定的,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
Figure PCTCN2019099037-appb-000141
为所述第一跳频资源中的预留RE上映射的编码比特数。
现有技术中第五数值仅基于G ACK(1)确定,例如,现有技术的第五数值为M 1·N L·Q m-G ACK(1),该参数限制了CSI-part1在第一跳频资源上所占的资源上限(即,第一上限),此外,CSI-part1也不能占用第一跳频资源的预留RE,即,G CSI-part1(1)也应满足不大于
Figure PCTCN2019099037-appb-000142
这个上限(即,第二上限),在HARQ-ACK的信息比特数为0或1或2时,G ACK(1)为按照实际的HARQ-ACK信息比特数计算出的编码比特数,而
Figure PCTCN2019099037-appb-000143
是按HARQ-ACK信息比特数为2计算出的预留RE所映射的编码比特数,因此,如果实际的HARQ-ACK信息比特数为0或1,则有
Figure PCTCN2019099037-appb-000144
从而有
Figure PCTCN2019099037-appb-000145
即,第一跳频资源上
Figure PCTCN2019099037-appb-000146
这时候第一上限大于第二上限,现有技术仅根据G ACK(1)确定第五数值可能导致第一跳频资源上的非预留RE不足以承载CSI-part1在第一跳频资源上的编码比特数G CSI-part1(1)。
本申请提供的方案中,第五数值基于G ACK(1)和
Figure PCTCN2019099037-appb-000147
中较大的确定(其中
Figure PCTCN2019099037-appb-000148
在HARQ-ACK比特数大于2时等于0),保证在计算G CSI-part1(1)时以第一跳频资源中实际的非预留RE为基准,从而能够避免上述CSI-part1发送不完整的问题。
本领域技术人员可以理解,方法800与方法600对应,为了简洁,在此不再赘述。
可选地,
所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000149
两者中较大的值确定的,包括:所述第五数值等于
Figure PCTCN2019099037-appb-000150
或者
所述第五数值是基于G ACK(1)确定的,包括:所述第五数值在HARQ-ACK比特数大于2时等于M 1·N L·Q m-G ACK(1);进一步,HARQ-ACK比特数小于或等于2时,所述第五数值等于
Figure PCTCN2019099037-appb-000151
其中,M 1为所述第一跳频资源中能够承载数据的RE的数量,所述N L为PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
可选地,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,包括:所述第四数值等于
Figure PCTCN2019099037-appb-000152
其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
在另一实施方式中,提供一种通信方法,其特征在于,所述方法包括:
接收指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
在所述PUSCH上发送第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述 第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ARK传输预留的RE。
可选的,该方法可以由终端设备执行,或者由集成在终端设备中或者与终端设备独立的装置或者芯片执行。
该实施方式相应的提供一种装置,其特征在于,所述装置包括:
接收单元,用于接收指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
发送单元,在所述PUSCH上发送第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数量,所述第二跳频资源中的预留RE上映射的编码比特数为第二数量,所述第一数量不小于所述第二数量,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ARK传输预留的RE。
该实施方式还提供另一种通信方法,与该实施方式提供的上一种通信方式相对应,分别由交互双方执行,所述方法包括:
发送指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
在所述PUSCH上接收第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数量,所述第二跳频资源中的预留RE上映射的编码比特数为第二数量,所述第一数量不小于所述第二数量,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ARK传输预留的RE。
可选的,该方法可以由网络设备执行,或者由集成在网络设备中,或者与网络设备独立的装置或者芯片执行。
该实施方式相应的提供一种装置,其特征在于,所述装置包括:
发送单元,用于发送指示信息,所述指示信息用于调度物理上行共享信道PUSCH,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
接收单元,用于在所述PUSCH上接收第一UCI,所述第一UCI包含传输混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数量,所述第二跳频资源中的预留RE上映射的编码比特数为第二数量,所述第一数量不小于所述第二数量,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数 不大于2的潜在HARQ-ARK传输预留的RE。
进一步,该实施方式:
一种可选的设计中,所述PUSCH上包含上行共享信道UL-SCH,且第一UCI包括了HARQ-ACK,所述HARQ-ACK在第一跳频资源映射的编码比特数为第六数值,在第二跳频资源上映射的编码比特数为第七数值,所述第六数值不小于第七数值。
一种可选的设计中,所述第一UCI包括的所述HARQ-ACK映射的编码比特数为G ACK,withUL-SCH
所述第六数值为G ACK,withUL-SCH(1),
Figure PCTCN2019099037-appb-000153
和/或,
所述第七数值为G ACK,withUL-SCH(2),
Figure PCTCN2019099037-appb-000154
其中,所述N L为所述PUSCH的传输层数,所述Q m为所述UL-SCH和所述第一UCI的调制阶数。
一种可选的设计中,所述第六数值
Figure PCTCN2019099037-appb-000155
且所述第七数值
G ACK,withUL-SCH(2)=G ACK,withUL-SCH-G ACK,withUL-SCH(1),或者,
所述第七数值
Figure PCTCN2019099037-appb-000156
且所述第六数值G ACK,withUL-SCH(1)=G ACK,withUL-SCH-G ACK,withUL-SCH(2)。
需要说明书的是,该实施方式中所涉及的参数定义可以参照上文中的阐述和解释。
上文详细介绍了本申请提供的通信方法示例。可以理解的是,通信装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对通信装置进行功能单元的划分,例如,可以将各个功能划分为各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图9示出了本申请提供的通信装置的一种可能的结构示意图。装置900包括:处理单元901和接收单元902和发送单元903。处理单元901用于控制装置900执行图4所示的通信方法的步骤。处理单元901还可以用于执行本文所描述的技术的其它过程。装置900还可以包括存储单元,用于存储装置900的程序代码和数据。
例如,处理单元901用于控制接收单元902执行:接收下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所 述第二跳频资源的时域起始符号之前。
处理单元901还用于控制发送单元903执行:在所述PUSCH上发送第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个。
其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
处理单元901可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元902和接收单元903例如是收发器,存储单元可以是存储器。
当处理单元901为处理器,发送单元902和接收单元903为收发器,存储单元为存储器时,本申请所涉及的通信装置可以为图10所示的装置。
参阅图10所示,该装置1000包括:处理器1001、收发器1002和存储器1003(可选的)。其中,处理器1001、收发器1002和存储器1003可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的通信装置,通过改变CSI-part1的映射规则,能够解决UCI-only场景中通过跳频传输UCI导致CSI-part1会出现信息发送不完整的问题。
在采用集成的单元的情况下,图11示出了本申请提供的另一种通信装置的一种可能的结构示意图。装置1100包括:处理单元1101和接收单元1102和发送单元1103。处理单元1101用于控制装置1100执行图6所示的通信方法的步骤。处理单元1101还可以用于执行本文所描述的技术的其它过程。装置1100还可以包括存储单元,用于存储装置1100的程序代码和数据。
例如,处理单元1101用于控制接收单元1102执行:接收下行控制信息,所述下行控制信息用于调度PUSCH,所述PUSCH仅用于承载UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
处理单元1101还用于控制发送单元1103执行:在所述PUSCH上发送第一UCI,所述第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个。
其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000157
两者中较大的值确定的,或者,所述第五数值是基于G ACK(1)确定的,G ACK(1)为所述第一UCI中的 HARQ-ACK在所述第一跳频资源上映射的编码比特数,
Figure PCTCN2019099037-appb-000158
为所述第一跳频资源中的预留RE上映射的编码比特数。
处理单元1101可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元1102和接收单元1103例如是收发器,存储单元可以是存储器。
当处理单元1101为处理器,发送单元1102和接收单元1103为收发器,存储单元为存储器时,本申请所涉及的通信装置可以为图12所示的装置。
参阅图12所示,该装置1200包括:处理器1201、收发器1202和存储器1203(可选的)。其中,处理器1201、收发器1202和存储器1203可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的通信装置,通过改变CSI-part1的映射规则,能够解决UCI-only场景中通过跳频传输UCI导致CSI-part1会出现信息发送不完整的问题。
在采用集成的单元的情况下,图13示出了本申请提供的通信装置的一种可能的结构示意图。装置1300包括:处理单元1301和接收单元1302和发送单元1303。处理单元1301用于控制装置1300执行图7所示的通信方法的步骤。处理单元1301还可以用于执行本文所描述的技术的其它过程。装置1300还可以包括存储单元,用于存储装置1300的程序代码和数据。
例如,处理单元1301用于控制发送单元1303执行:发送下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
处理单元1301还用于控制接收单元1302执行:在所述PUSCH上接收第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个。
其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
处理单元1301可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元1302和接收单元1303例如是收发器,存储单元可以是存储 器。
当处理单元1301为处理器,发送单元1302和接收单元1303为收发器,存储单元为存储器时,本申请所涉及的通信装置可以为图14所示的装置。
参阅图14所示,该装置1400包括:处理器1401、收发器1402和存储器1403(可选的)。其中,处理器1401、收发器1402和存储器1403可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的通信装置,通过改变CSI-part1的映射规则,能够解决UCI-only场景中通过跳频传输UCI导致CSI-part1会出现信息发送不完整的问题。
在采用集成的单元的情况下,图15示出了本申请提供的另一种通信装置的一种可能的结构示意图。装置1500包括:处理单元1501和接收单元1502和发送单元1503。处理单元1501用于控制装置1500执行图8所示的通信方法的步骤。处理单元1501还可以用于执行本文所描述的技术的其它过程。装置1500还可以包括存储单元,用于存储装置1500的程序代码和数据。
例如,处理单元1501用于控制发送单元1503执行:发送下行控制信息,所述下行控制信息用于调度PUSCH,所述PUSCH仅用于承载UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前。
处理单元1501还用于控制接收单元1503执行:在所述PUSCH上接收第一UCI,所述第一UCI包含HARQ-ACK、CSI-part1和CSI-part2中的至少一个。
其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的,所述第五数值是基于G ACK(1)和
Figure PCTCN2019099037-appb-000159
两者中较大的值确定的,或者,所述第五数值是基于G ACK(1)确定的,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
Figure PCTCN2019099037-appb-000160
为所述第一跳频资源中的预留RE上映射的编码比特数。
处理单元1501可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其它可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。发送单元1502和接收单元1503例如是收发器,存储单元可以是存储器。
当处理单元1501为处理器,发送单元1502和接收单元1503为收发器,存储单元为存储器时,本申请所涉及的通信装置可以为图16所示的装置。
参阅图16所示,该装置1600包括:处理器1601、收发器1602和存储器1603(可选的)。其中,处理器1601、收发器1602和存储器1603可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的通信装置,通过改变CSI-part1的映射规则,能够解决UCI-only场景中通过跳频传输UCI导致CSI-part1会出现信息发送不完整的问题。
装置实施例和方法实施例完全对应,例如通信单元执行方法实施例中的获取步骤,除获取步骤和发送步骤以外的其它步骤均可以由处理单元或处理器执行。具体单元的功能可以参考相应的方法实施例,不再详述。
在本申请各个实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read only memory,ROM)、可擦除可编程只读存储器(erasable programmable ROM,EPROM)、电可擦可编程只读存储器(electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者通过所述计算机可读存储介质进行传输。所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital versatile disc,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述的具体实施方式,对本申请的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本申请的具体实施方式而已,并不用于限定本申请的保护范围,凡在本申请的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本申请的保护范围之内。

Claims (42)

  1. 一种通信方法,其特征在于,包括:
    接收下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    在所述PUSCH上发送第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    确定第一编码比特数
    Figure PCTCN2019099037-appb-100001
    所述
    Figure PCTCN2019099037-appb-100002
    是所述第一跳频资源和所述第二跳频资源中的预留RE上映射的编码比特数之和,其中,所述第一数值和所述第二数值均基于所述
    Figure PCTCN2019099037-appb-100003
    确定。
  3. 根据权利要求2所述的方法,其特征在于,
    所述第一数值为
    Figure PCTCN2019099037-appb-100004
    和/或,
    所述第二数值为
    Figure PCTCN2019099037-appb-100005
    其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
  4. 根据权利要求3所述的方法,其特征在于,
    所述第一数值
    Figure PCTCN2019099037-appb-100006
    且,所述第二数值
    Figure PCTCN2019099037-appb-100007
    或者,
    所述第二数值
    Figure PCTCN2019099037-appb-100008
    且,所述第一数值
    Figure PCTCN2019099037-appb-100009
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    确定所述第一UCI中的HARQ-ACK的编码比特数G ACK
    其中,所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数为G ACK(1),所述G ACK(1)的值为下列两个数值中较小的一个:
    第一跳频资源上第一组连续的解调参考信号DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于所述G ACK确定的第三数值。
  6. 根据权利要求5所述的方法,其特征在于,
    第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数的值等于M 3·N L·Q m,其中所述M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数,所述第三数值为
    Figure PCTCN2019099037-appb-100010
    其中,所述第一UCI中的HARQ-ACK的比特数不大于2。
  7. 根据权利要求6所述的方法,其特征在于,所述第一UCI中的HARQ-ACK在所述第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
  8. 一种通信方法,其特征在于,包括:
    发送下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    在所述PUSCH上接收第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  9. 根据权利要求8所述的方法,其特征在于,其中:
    所述第一数值和所述第二数值均对应第一编码比特数
    Figure PCTCN2019099037-appb-100011
    所述
    Figure PCTCN2019099037-appb-100012
    是所述第一跳频资源和所述第二跳频资源中的预留RE上映射的编码比特数之和。
  10. 根据权利要求9所述的方法,其特征在于,
    所述第一数值为
    Figure PCTCN2019099037-appb-100013
    和/或,
    所述第二数值为
    Figure PCTCN2019099037-appb-100014
    其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
  11. 根据权利要求10所述的方法,其特征在于,
    所述第一数值
    Figure PCTCN2019099037-appb-100015
    且,所述第二数值
    Figure PCTCN2019099037-appb-100016
    或者,
    所述第二数值
    Figure PCTCN2019099037-appb-100017
    且,所述第一数值
    Figure PCTCN2019099037-appb-100018
  12. 根据权利要求8至11中任一项所述的方法,其特征在于,
    所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数为G ACK(1),所述G ACK(1)的值为下列两个数值中较小的一个:
    第一跳频资源上第一组连续的解调参考信号DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于G ACK确定的第三数值,所述G ACK为所述第一UCI中的HARQ-ACK的编码比特数。
  13. 根据权利要求12所述的方法,其特征在于,
    第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数的值等于M 3·N L·Q m,其中所述M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数,所述第三数值为
    Figure PCTCN2019099037-appb-100019
    其中,所述第一UCI中的HARQ-ACK的比特数不大于2。
  14. 根据权利要求13所述的方法,其特征在于,所述第一UCI中的HARQ-ACK在 所述第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
  15. 一种通信装置,其特征在于,包括接收单元和发送单元,
    所述接收单元用于:接收下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    所述发送单元用于:在所述PUSCH上发送第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  16. 根据权利要求15所述的装置,其特征在于,所述装置还包括处理单元,用于:
    确定第一编码比特数
    Figure PCTCN2019099037-appb-100020
    所述
    Figure PCTCN2019099037-appb-100021
    是所述第一跳频资源和所述第二跳频资源中的预留RE上映射的编码比特数之和,其中,所述第一数值和所述第二数值均基于所述
    Figure PCTCN2019099037-appb-100022
    确定。
  17. 根据权利要求16所述的装置,其特征在于,
    所述第一数值为
    Figure PCTCN2019099037-appb-100023
    和/或,
    所述第二数值为
    Figure PCTCN2019099037-appb-100024
    其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
  18. 根据权利要求17所述的装置,其特征在于,
    所述第一数值
    Figure PCTCN2019099037-appb-100025
    且,所述第二数值
    Figure PCTCN2019099037-appb-100026
    或者,
    所述第二数值
    Figure PCTCN2019099037-appb-100027
    且,所述第一数值
    Figure PCTCN2019099037-appb-100028
  19. 根据权利要求15至18中任一项所述的装置,其特征在于,所述装置还包括处理单元,用于:
    确定所述第一UCI中的HARQ-ACK的编码比特数G ACK
    其中,所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数为G ACK(1),所述G ACK(1)的值为下列两个数值中较小的一个:
    第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于所述G ACK确定的第三数值。
  20. 根据权利要求19所述的装置,其特征在于,
    第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数的值等于M 3·N L·Q m,其中所述M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数,所述第三数值为
    Figure PCTCN2019099037-appb-100029
    其中,所述第一UCI中的HARQ-ACK的比特数不大于2。
  21. 根据权利要求20所述的装置,其特征在于,所述第一UCI中的HARQ-ACK在所述第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
  22. 一种通信装置,其特征在于,包括发送单元和接收单元,
    所述发送单元用于:发送下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    所述接收单元用于:在所述PUSCH上接收第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一跳频资源中的预留资源元素RE上映射的编码比特数为第一数值,所述第二跳频资源中的预留RE上映射的编码比特数为第二数值,所述第一数值不小于所述第二数值,所述第一跳频资源中的预留RE和所述第二跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  23. 根据权利要求22所述的装置,其特征在于,其中:
    所述第一数值和所述第二数值均对应第一编码比特数
    Figure PCTCN2019099037-appb-100030
    所述
    Figure PCTCN2019099037-appb-100031
    是所述第一跳频资源和所述第二跳频资源中的预留RE上映射的编码比特数之和。
  24. 根据权利要求23所述的装置,其特征在于,
    所述第一数值为
    Figure PCTCN2019099037-appb-100032
    和/或,
    所述第二数值为
    Figure PCTCN2019099037-appb-100033
    其中,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数。
  25. 根据权利要求24所述的装置,其特征在于,
    所述第一数值
    Figure PCTCN2019099037-appb-100034
    且,所述第二数值
    Figure PCTCN2019099037-appb-100035
    或者,
    所述第二数值
    Figure PCTCN2019099037-appb-100036
    且,所述第一数值
    Figure PCTCN2019099037-appb-100037
  26. 根据权利要求22至25中任一项所述的装置,其特征在于,
    所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数为G ACK(1),所述G ACK(1)的值为下列两个数值中较小的一个:
    第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数,以及,基于G ACK确定的第三数值,所述G ACK为所述第一UCI中的HARQ-ACK的编码比特数。
  27. 根据权利要求26所述的装置,其特征在于,
    第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE映射的编码比特数的值等于M 3·N L·Q m,其中所述M 3为所述第一跳频资源上第一组连续的DMRS符号之后能够用于承载数据的RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述第一UCI的调制阶数,所述第三数值为
    Figure PCTCN2019099037-appb-100038
    其中,所述第一UCI中的HARQ-ACK的比特数不大于2。
  28. 根据权利要求27所述的装置,其特征在于,所述第一UCI中的HARQ-ACK在所述第二跳频资源上映射的编码比特数为G ACK(2),G ACK(2)=G ACK-G ACK(1)。
  29. 一种通信装置,包括处理器,其特征在于,当所述处理器执行存储器中存储的程序指令时,实现如权利要求1至7中任一项所述的方法,或者实现如权利要求8至14中任一项所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当处理器调用所述计算机程序时,实现权利要求1至7中任一项所述的方法,或者,实现权利要求8至14任一项所述的方法。
  31. 一种通信方法,其特征在于,包括:
    接收下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    在所述PUSCH上发送第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的;HARQ-ACK比特数大于2时,所述第五数值等于M 1·N L·Q m-G ACK(1);HARQ-ACK比特数小于或等于2时,所述第五数值等于
    Figure PCTCN2019099037-appb-100039
    其中,
    Figure PCTCN2019099037-appb-100040
    为所述第一跳频资源的符号个数,
    Figure PCTCN2019099037-appb-100041
    为符号l上可以承载UCI的资源单元RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述PUSCH的调制阶数,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
    Figure PCTCN2019099037-appb-100042
    为所述第一跳频资源中的预留RE上映射的编码比特数,所述第一跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  32. 根据权利要求31所述的方法,其特征在于:
    所述第四数值等于
    Figure PCTCN2019099037-appb-100043
  33. 一种通信方法,其特征在于,包括:
    发送下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    在所述PUSCH上接收第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的;HARQ-ACK比特数大于2时,所述第五数值等于 M 1·N L·Q m-G ACK(1);HARQ-ACK比特数小于或等于2时,所述第五数值等于
    Figure PCTCN2019099037-appb-100044
    其中,
    Figure PCTCN2019099037-appb-100045
    为所述第一跳频资源的符号个数,
    Figure PCTCN2019099037-appb-100046
    为符号l上可以承载UCI的资源单元RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述PUSCH的调制阶数,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
    Figure PCTCN2019099037-appb-100047
    为所述第一跳频资源中的预留RE上映射的编码比特数,所述第一跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  34. 根据权利要求33所述的方法,其特征在于:
    所述第四数值等于
    Figure PCTCN2019099037-appb-100048
  35. 一种通信装置,其特征在于,包括接收单元和发送单元,
    所述接收单元用于:接收下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    所述发送单元用于:在所述PUSCH上发送第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分CSI-part2中的至少一个;
    其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的;HARQ-ACK比特数大于2时,所述第五数值等于M 1·N L·Q m-G ACK(1);HARQ-ACK比特数小于或等于2时,所述第五数值等于
    Figure PCTCN2019099037-appb-100049
    其中,
    Figure PCTCN2019099037-appb-100050
    为所述第一跳频资源的符号个数,
    Figure PCTCN2019099037-appb-100051
    为符号l上可以承载UCI的资源单元RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述PUSCH的调制阶数,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
    Figure PCTCN2019099037-appb-100052
    为所述第一跳频资源中的预留RE上映射的编码比特数,所述第一跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  36. 根据权利要求35所述的装置,其特征在于:
    所述第四数值等于
    Figure PCTCN2019099037-appb-100053
  37. 一种通信装置,其特征在于,包括发送单元和接收单元,
    所述发送单元用于:发送下行控制信息,所述下行控制信息用于调度物理上行共享信道PUSCH,所述PUSCH仅用于承载上行控制信息UCI,所述PUSCH包含第一跳频资源和第二跳频资源,所述第一跳频资源的时域起始符号位于所述第二跳频资源的时域起始符号之前;
    所述接收单元用于:在所述PUSCH上接收第一UCI,所述第一UCI包含混合自动重传请求确认应答HARQ-ACK、信道状态信息第一部分CSI-part1和信道状态信息第二部分 CSI-part2中的至少一个;
    其中,所述第一UCI中的CSI-part1映射在所述第一跳频资源上的编码比特数G CSI-part1(1)为第四数值和第五数值中较小的一个,所述第四数值是基于所述第一UCI中的CSI-part1的编码比特数G CSI-part1确定的;HARQ-ACK比特数大于2时,所述第五数值等于M 1·N L·Q m-G ACK(1);HARQ-ACK比特数小于或等于2时,所述第五数值等于
    Figure PCTCN2019099037-appb-100054
    其中,
    Figure PCTCN2019099037-appb-100055
    为所述第一跳频资源的符号个数,
    Figure PCTCN2019099037-appb-100056
    为符号l上可以承载UCI的资源单元RE个数,所述N L为所述PUSCH的传输层数,所述Q m为所述PUSCH的调制阶数,G ACK(1)为所述第一UCI中的HARQ-ACK在所述第一跳频资源上映射的编码比特数,
    Figure PCTCN2019099037-appb-100057
    为所述第一跳频资源中的预留RE上映射的编码比特数,所述第一跳频资源中的预留RE是为比特数不大于2的潜在HARQ-ACK传输预留的RE。
  38. 根据权利要求37所述的装置,其特征在于:
    所述第四数值等于
    Figure PCTCN2019099037-appb-100058
  39. 一种通信装置,包括处理器,其特征在于,当所述处理器执行存储器中存储的程序指令时,实现权利要求31或32所述的方法。
  40. 一种通信装置,包括处理器,其特征在于,当所述处理器执行存储器中存储的程序指令时,实现权利要求33或34所述的方法。
  41. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当处理器调用所述计算机程序时,实现权利要求31或32所述的方法。
  42. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当处理器调用所述计算机程序时,实现权利要求33或34所述的方法。
PCT/CN2019/099037 2018-08-10 2019-08-02 通信方法和装置 WO2020029881A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112021002359-3A BR112021002359A2 (pt) 2018-08-10 2019-08-02 método de comunicação e aparelho de comunicações
EP19848753.0A EP3836710B1 (en) 2018-08-10 2019-08-02 Communication method and device
AU2019318583A AU2019318583B2 (en) 2018-08-10 2019-08-02 Communication method and device
CA3109183A CA3109183C (en) 2018-08-10 2019-08-02 Communication method and communications apparatus
CN201980053990.6A CN112586071B (zh) 2018-08-10 2019-08-02 通信方法和装置
JP2021506735A JP7384334B2 (ja) 2018-08-10 2019-08-02 通信方法及び通信装置
ES19848753T ES2937956T3 (es) 2018-08-10 2019-08-02 Método y dispositivo de comunicación
US17/172,396 US11962522B2 (en) 2018-08-10 2021-02-10 Communication method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810910306.9A CN110831214B (zh) 2018-08-10 2018-08-10 通信方法和装置
CN201810910306.9 2018-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/172,396 Continuation US11962522B2 (en) 2018-08-10 2021-02-10 Communication method and communications apparatus

Publications (2)

Publication Number Publication Date
WO2020029881A1 true WO2020029881A1 (zh) 2020-02-13
WO2020029881A9 WO2020029881A9 (zh) 2020-10-22

Family

ID=69413381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099037 WO2020029881A1 (zh) 2018-08-10 2019-08-02 通信方法和装置

Country Status (9)

Country Link
US (1) US11962522B2 (zh)
EP (1) EP3836710B1 (zh)
JP (1) JP7384334B2 (zh)
CN (2) CN110831214B (zh)
AU (1) AU2019318583B2 (zh)
BR (1) BR112021002359A2 (zh)
CA (1) CA3109183C (zh)
ES (1) ES2937956T3 (zh)
WO (1) WO2020029881A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387933B2 (en) * 2020-01-31 2022-07-12 Qualcomm Incorporated Dynamic transmission front end and digital-to-analog converter in modem
CN113632572B (zh) * 2021-07-08 2024-05-14 北京小米移动软件有限公司 一种跳频方法、装置、用户设备、基站及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464479A (zh) * 2015-04-03 2017-02-22 Lg 电子株式会社 在无线通信系统中发送和接收信号的方法及其装置
WO2017132593A1 (en) * 2016-01-29 2017-08-03 Ofinno Technologies, Llc Transmission of sounding reference signals for licensed assisted access
CN108111263A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 确认信息的反馈方法及装置,确认信息的接收方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120113831A1 (en) 2010-04-30 2012-05-10 Interdigital Patent Holdings, Inc. Determination of Carriers and Multiplexing for Uplink Control Information Transmission
US8422429B2 (en) 2010-05-04 2013-04-16 Samsung Electronics Co., Ltd. Method and system for indicating the transmission mode for uplink control information
JP5756100B2 (ja) * 2010-05-21 2015-07-29 シャープ株式会社 移動通信システム、基地局装置、移動局装置および通信方法
KR101923440B1 (ko) * 2011-02-15 2018-11-29 엘지전자 주식회사 무선접속시스템에서 채널품질제어정보 전송방법 및 장치
US9294230B2 (en) 2012-07-02 2016-03-22 Intel Corporation Multiplexing of channel state information and hybrid automatic repeat request—acknowledgement information
CN106165510B (zh) * 2014-03-30 2020-01-07 Lg电子株式会社 在支持设备到设备通信的无线通信系统中传输/接收下行链路控制信息的方法及其设备
CN106464455B (zh) * 2015-03-19 2019-11-29 华为技术有限公司 传输信息的方法、终端设备、网络设备和装置
EP4236545A3 (en) * 2015-07-30 2023-09-13 Apple Inc. Ofdma-based multiplexing of uplink control information
WO2017171307A1 (ko) * 2016-03-31 2017-10-05 엘지전자 주식회사 비주기적 채널 상태 정보-참조 신호를 이용한 채널 상태 보고를 위한 방법 및 이를 위한 장치
EP3468081A4 (en) * 2017-02-05 2020-02-19 LG Electronics Inc. -1- METHOD FOR TRANSMITTING UPLINK CONTROL INFORMATION IN A WIRELESS COMMUNICATION SYSTEM AND APPARATUS THEREFOR
CN108112076B (zh) * 2017-05-05 2023-11-21 中兴通讯股份有限公司 配置上行信号的方法及装置
US10980008B2 (en) * 2017-12-08 2021-04-13 Apple Inc. Determining resources for uplink control information on physical uplink shared channel and physical uplink control channel with frequency hopping
US10952186B2 (en) * 2018-01-12 2021-03-16 Apple Inc. Reserved resource elements for hybrid automatic repeat request bits
HUE057226T2 (hu) * 2018-01-12 2022-04-28 Ericsson Telefon Ab L M Felfelé irányuló kapcsolati megosztott csatorna hibrid automatikus kérelem visszaigazolással
US11239964B2 (en) * 2018-05-01 2022-02-01 Marvell Asia Pte, Ltd. Methods and apparatus for symbol-to-symbol multiplexing of control, data, and reference signals on a 5G uplink

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106464479A (zh) * 2015-04-03 2017-02-22 Lg 电子株式会社 在无线通信系统中发送和接收信号的方法及其装置
WO2017132593A1 (en) * 2016-01-29 2017-08-03 Ofinno Technologies, Llc Transmission of sounding reference signals for licensed assisted access
CN108111263A (zh) * 2017-06-16 2018-06-01 中兴通讯股份有限公司 确认信息的反馈方法及装置,确认信息的接收方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
3GPP TS38.212
HUAWEI: "CR to 38.212 capturing the RAN1#92bis and RAN1#93 meeting agreements", 3GPP TSG RAN WGI MEETING #93 R1-1807956, 7 June 2018 (2018-06-07), XP051463619 *
QUALCOMM INC.: "Summary or remaining issues for overlapping UL transmissions", 3GPP TSG RAN WG1 MEETING #93, R1-1807773, 24 May 2018 (2018-05-24), XP051442870 *

Also Published As

Publication number Publication date
EP3836710B1 (en) 2022-11-30
CN112586071A (zh) 2021-03-30
ES2937956T3 (es) 2023-04-03
CN112586071B (zh) 2022-09-02
US20210167906A1 (en) 2021-06-03
CN110831214B (zh) 2023-10-13
WO2020029881A9 (zh) 2020-10-22
AU2019318583A1 (en) 2021-04-01
JP2021534631A (ja) 2021-12-09
BR112021002359A2 (pt) 2021-05-04
CA3109183C (en) 2024-02-27
AU2019318583B2 (en) 2022-06-02
CA3109183A1 (en) 2020-02-13
JP7384334B2 (ja) 2023-11-21
EP3836710A4 (en) 2021-11-10
CN110831214A (zh) 2020-02-21
US11962522B2 (en) 2024-04-16
EP3836710A1 (en) 2021-06-16

Similar Documents

Publication Publication Date Title
US11265914B2 (en) Method, apparatus, and system for channel access in unlicensed band
US8400951B2 (en) PHICH resource signaling in a wireless communication system
US11039448B2 (en) Resource scheduling method and apparatus
WO2015139429A1 (zh) 控制信息的传输、接收方法、装置及系统
US20220312445A1 (en) MAPPING METHODS FOR URLLC HARQ-ACK MULTIPLEXING ON eMBB PUSCH
WO2016155305A1 (zh) 用户设备、网络设备和确定物理上行控制信道资源的方法
JP6306164B2 (ja) 無線通信システムにおける端末のack/nack送信方法及び装置
US20220150026A1 (en) COLLISION HANDLING and UCI MULTIPLEXING for URLLC PUCCH and eMBB PUSCH
WO2019184484A1 (zh) 资源指示、确定方法及装置
WO2019128386A1 (zh) 一种上行控制信息的传输方法及装置
WO2019196888A1 (zh) 物理上行信道的时隙确定方法及装置
WO2018137221A1 (zh) 发送及检测控制信息的方法、终端设备和网络设备
US20200021388A1 (en) Data Sending Method and Apparatus and Data Receiving Method and Apparatus
US20200337046A1 (en) Method and apparatus for transmitting uplink control information
CN110073690A (zh) 传输方法和装置
US20230088374A1 (en) Buffer determining method and apparatus
US11962522B2 (en) Communication method and communications apparatus
WO2021016968A1 (zh) 上行信道传输方式的确定方法、装置、设备及介质
CN110838904A (zh) 通信方法和装置
US20220174661A1 (en) Methods to determine the urllc uci multiplexing location on embb pusch
RU2786411C2 (ru) Способ связи и устройство связи
WO2018228456A1 (zh) 控制信息传输方法、终端及网络侧设备、通信系统
JP6480078B2 (ja) データ送信のための方法、ユーザ機器、および基地局
WO2018018609A1 (zh) 反馈信息的传输装置、方法以及通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19848753

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021506735

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3109183

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021002359

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019848753

Country of ref document: EP

Effective date: 20210310

ENP Entry into the national phase

Ref document number: 2019318583

Country of ref document: AU

Date of ref document: 20190802

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112021002359

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210208