WO2020029557A1 - 一种浅埋煤层开采潜水漏失致灾程度的划分方法 - Google Patents

一种浅埋煤层开采潜水漏失致灾程度的划分方法 Download PDF

Info

Publication number
WO2020029557A1
WO2020029557A1 PCT/CN2019/073162 CN2019073162W WO2020029557A1 WO 2020029557 A1 WO2020029557 A1 WO 2020029557A1 CN 2019073162 W CN2019073162 W CN 2019073162W WO 2020029557 A1 WO2020029557 A1 WO 2020029557A1
Authority
WO
WIPO (PCT)
Prior art keywords
water level
diving
leakage
phase
mining
Prior art date
Application number
PCT/CN2019/073162
Other languages
English (en)
French (fr)
Inventor
李文平
陈维池
杨志
王启庆
范开放
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Priority to AU2019253833A priority Critical patent/AU2019253833A1/en
Priority to US16/609,738 priority patent/US11060402B2/en
Priority to ZA2019/07139A priority patent/ZA201907139B/en
Publication of WO2020029557A1 publication Critical patent/WO2020029557A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/18Special adaptations of signalling or alarm devices
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C41/00Methods of underground or surface mining; Layouts therefor
    • E21C41/16Methods of underground mining; Layouts therefor
    • E21C41/18Methods of underground mining; Layouts therefor for brown or hard coal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/04Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by dip members, e.g. dip-sticks
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C39/00Devices for testing in situ the hardness or other properties of minerals, e.g. for giving information as to the selection of suitable mining tools

Definitions

  • the invention relates to the technical field of ecological protection, in particular to a method for dividing the degree of disaster caused by diving leakage in the mining of shallow coal seams.
  • the present invention aims to provide a method for dividing the damage caused by diving leakage in shallow coal seam mining, to solve the problem that it is impossible to accurately determine the leakage degree and disaster situation of overlying diving layers in coal mining areas; Strategies for layer loss and hazards are developed to develop corresponding water conservation mining schemes, so as to minimize the damage to the ecological environment caused by mining.
  • a method for dividing the degree of damage caused by diving leakage in shallow buried coal seams includes the following steps:
  • step S2 According to the monitoring points laid out in step S1, monitor the ground elevation of the monitoring points during the mining of the working face, calculate the ground subsidence and collect the footage of the working face;
  • step S3 According to the working surface footage, the ground subsidence obtained in step S2, and the water level monitoring data obtained in step 1, a relationship curve between the distance of the footage from the monitoring point, the ground subsidence, and the water level is produced;
  • the position of the monitoring point of the working face is located in the center of the working face, and the telemetering water level gauge used meets the requirements of "Water Level Measuring Instruments Part Six: Telemetering Water Level Gauge” (GB / T11828.6-2008), The buried depth of the water level gauge probe is below the monitoring water level during the mining process, and the water level monitoring will be performed after the water level gauge is installed.
  • step S2 when the distance from the monitoring point to the monitoring point is L, monitoring of ground subsidence at the monitoring point is started, and the end time is that the monitoring data tends to be stable, that is, the cumulative monitoring of ground subsidence for 5 consecutive days is less than 0.01m.
  • L is calculated as follows:
  • step S2 the calculation formula of the ground subsidence at the monitoring point is as follows:
  • the ground elevation monitoring accuracy of the monitoring point is 0.001m. With this accuracy, the accuracy of the ground elevation monitoring data at the monitoring point and subsequent judgment of the end time of the ground elevation monitoring is guaranteed.
  • step S4 the surface subsidence change curve of the diving no-loss chart, the diving micro-loss chart and the diving large-loss chart is divided into five stages, respectively: stage 1: unsettled stage, stage 2: slow subsidence stage , Phase 3: Acceleration of settlement, Phase 4: Moderate settlement and Phase 5: Stage of stable settlement;
  • phase a rapid decline of water level
  • phase b transient short-term stable water level
  • phase c rapid rise of water level
  • phase d slowly rising water level
  • phase e stable water level
  • the water level change curve in the diving micro-leakage chart is divided into: phase a: rapid water level decline phase, phase b: short-term stable water level phase, phase d: slowly rising water level phase and phase e: stable water level phase
  • water level change curve in diving large-loss chart Divided into: Phase a: the rapid decline of the water level.
  • the above division method further includes the following steps:
  • step S5 Defining the diving-free area as an environmentally friendly area, and diving a large amount of leakage area as an environmental catastrophe area.
  • step S4 the water level burial depth of the diving micro-leakage area is calculated.
  • the working face is divided into an environmental catastrophe area. If the water level burial depth is less than the local ecological water level burial depth, the mining coal seam working face is classified as an environmentally friendly area.
  • the ecological water level refers to the depth of groundwater level that can maintain the good development and growth of typical vegetation, and the ecological water level is determined according to the typical surface vegetation in the coal mining area.
  • the division method for the degree of disaster caused by diving leakage in the coal mining working face is applicable to the northwest coal field.
  • the method for classifying the degree of damage caused by diving leakage in shallow-buried coal seams intuitively judges and divides the degree of leakage of overlying aquifers in coal mining areas; and further divides the coal mining working surface into environmentally friendly areas and environments.
  • the catastrophic area provides a clear basis for the selection of mining schemes in the mining area.
  • the mining area can formulate corresponding water-retention mining schemes based on the degree of disaster caused by diving leakage, thereby minimizing the damage to the ecological environment caused by mining.
  • the division method of the present invention is simple and practical. From the perspective of ecological vegetation protection, it makes targeted judgments on the loss of shallow water resources and environmental catastrophes in northwest coal fields, and provides a basis for mining area planning and mining method selection. Ecological environment protection is of great significance in the mining process.
  • FIG. 1 is a flowchart of implementing the method of the present invention
  • Figure 2 is a diagram of the unmissed area of the dive. A negative value of the distance between the footage and the monitoring point indicates that the monitoring point has not been taken, and a positive value indicates that the monitoring point has been taken;
  • Figure 3 is a diagram of the micro-leakage zone of the diving. A negative value of the distance between the footage and the monitoring point indicates that the monitoring point has not been taken, and a positive value indicates that the monitoring point has been taken;
  • Figure 4 is a diagram of a large number of dives in the diving zone. A negative value of the distance between the footage and the monitoring point indicates that the monitoring point has not been taken, and a positive value indicates that the monitoring point has been taken;
  • Figure 5 is a plan position view of the working face of Jinjitan Coal Mine
  • Figure 6 shows the relationship between the distance from the monitoring point of the working face of the Jinjitan Coal Mine to the ground subsidence and the water level. A negative value of the distance from the monitoring point to the monitoring point indicates that the monitoring point has not been taken, and a positive value indicates that the monitoring point has been taken.
  • the present invention provides a method for dividing the degree of damage caused by diving leakage in the mining of shallow buried seams, as shown in FIG. 1, including the following steps:
  • This step is specifically: collecting the planed position of the working face, and arranging monitoring points in the center of the working face.
  • the telemetering water level gauge used meets the specification "Water Level Measuring Instruments Part Six: Telemetering Water Level Gauge" (GB / T11828.6-2008 ) Requirements, the buried depth of the water level gauge probe should be below the monitoring water level during the mining process, and the water level monitoring will be performed as soon as the water level gauge is installed.
  • step 1 According to the monitoring points laid out in step 1, observe the ground elevation of the monitoring points during the mining of the working face, calculate the ground subsidence, and collect the footage of the working face;
  • This step is specifically: the start time of the ground subsidence monitoring at the monitoring point is the distance from the footage to the monitoring point, and the end time is the stabilization of the monitoring data, that is, the cumulative monitoring settlement for less than 5 consecutive days is less than 0.01m; the accuracy of the ground subsidence monitoring is equal to 0.001m.
  • L is calculated as follows:
  • step S3 According to the working surface footage, the ground subsidence obtained in step S2, and the water level monitoring data obtained in step S1, a relationship curve between the distance from the monitoring point, the ground subsidence, and the water level is made.
  • the above-mentioned diving no-loss chart, diving micro-loss chart, and diving large-loss chart are based on the laws summarized by multiple coal mine monitoring data (face footage data, water level gauge data, and ground subsidence data) in the northwestern region, and are divided into ground subsidence and water level. Changing correspondence.
  • the curve of ground subsidence in the chart of diving without leakage is divided into five stages, namely: Stage 1: Unsettled stage, Stage 2: Slow subsidence stage, Stage 3: Acceleration subsidence stage, Stage 4: Gentle subsidence Stage and stage 5: stable settlement stage; the water level change curve is divided into: stage a: rapid decline of water level, stage b: transient stable stage of water level, stage c: rapid rise of water level, stage d: slow rise of water level and stage e: The water level is stable.
  • stage 1 unsettled stage
  • stage 2 slow subsidence stage
  • stage 3 subsidence acceleration stage
  • stage 4 gentle subsidence
  • stage 5 Settlement stable stage
  • the curve of water level change is divided into: stage a: rapid decline of water level
  • stage b temporary stable stage of water level
  • stage d slow rise of water level
  • stage e stable stage of water level.
  • the curve of ground subsidence in the diving loss chart is divided into five stages, which are: Stage 1: Unsettled stage, Stage 2: Slow subsidence stage, Stage 3: Accelerated subsidence stage, Stage 4: Gentle subsidence Stage and stage 5: The stage of stable settlement; the curve of water level change is divided into: stage a: stage of rapid decline of water level.
  • Phase 1 in the three basic diagrams corresponds to phase a, indicating that the coal mining activity in front of the mining area caused the water level at the monitoring point to drop. At this time, it is impossible to determine whether the water level decline is due to the loss of diving in the previous mining area or the side subsidence caused by ground subsidence.
  • Phase 2 of Phase 2 corresponds to phase b, that is, the ground at the monitoring point subsides slightly, and the water level of the water level meter does not drop. This indicates that no diving loss occurred in the mode of Figure 2.
  • stage 3 corresponds to stage c, the ground subsidence is violent, and the water level starts to rise sharply.
  • Phase 4 corresponds to stage d, the ground subsidence is slow, and the water level rises slowly.
  • Phase 5 corresponds to stage e, the land subsidence is over, and the water level is stable. These phenomena indicate monitoring. The change in the water level at the point is not caused by the loss but by the subsidence. Therefore, Fig. 2 is defined as the area where the diving is not lost.
  • Figure 3 and Figure 4 correspond to stage a, but stage 3 corresponds to stage b. That is to say, a large amount of lateral water replenishment can be used to ensure stability in the unexplored area. The balance of payments can be achieved through the replenishment of lateral water. A small amount of replenishment in stage 4 results in a slight increase in water volume. Therefore, Figure 3 defines the micro-leakage zone for diving. The water level in Fig. 4 never rises, indicating that the water level cannot be recovered despite receiving lateral replenishment, indicating that a large amount of leakage has occurred. Therefore, Fig. 4 is defined as a large leakage area for diving.
  • the above division method further includes the following steps:
  • step S4 Defining the diving-free area as an environmentally friendly area, and diving a large amount of leakage area as an environmental catastrophe area.
  • step S4 the water level burial depth of the diving micro-leakage area is calculated. If the water level burial depth is greater than the local ecological water level burial depth, the coal seam will be mined. The working face is divided into an environmental catastrophe area. If the water level burial depth is less than the local ecological water level burial depth, the mining coal seam working face is classified as an environmentally friendly area.
  • the formula for calculating the water level burial depth in the diving micro-leakage zone in step S4 is as follows:
  • the ecological water level refers to the depth of groundwater level that can maintain the good development and growth of typical vegetation, and the ecological water level is determined according to the typical surface vegetation of the mining area.
  • FIG. 5 shows the coal mining face of Jinjitan Coal Mine.
  • the mining face of Jinjitan Coal Mine is 5300m long and 300m wide.
  • the mining face was mined in June 2016.
  • the average mining speed is about 10m / d.
  • the monitoring point is located in the center of the working face.
  • the water level meter was installed on January 3, 2017 After the completion of the automatic water level monitoring, the water level probe is located 15m below the initial water level to ensure that the water level can be monitored at any time during the mining process. At this time, the distance from the monitoring point to the monitoring point is -265m. Monitoring point), the water level Hw record of the water level gauge is shown in Table 1.
  • the initial ground elevation HeO of the monitoring point is 1226.81; the average mining depth h of the first coal mining near the monitoring point is 280m, and the mining area's leading influence angle w is 62 °.
  • the leading impact distance L is calculated to be 148.87m, so the ground subsidence monitoring at the monitoring point is started before the advancement is advanced to 150m from the monitoring point; manual monitoring is used, the monitoring frequency is 2 times / d, and the monitoring times are 6:00 and 18:00, respectively
  • the monitoring data of the ground elevation He is shown in Table 1.
  • the formula ⁇ H HeO-He is used to calculate the ground settlement ⁇ H.
  • the data is shown in Table 1.
  • the total amount of ground subsidence monitored for 5 consecutive days was less than 0.01m. The ground subsidence became stable and the monitoring was stopped.
  • the water level burial depth during the leakage was calculated and compared with the local ecological water level burial depth.
  • the formula for calculating the buried depth of water level in the process of leakage is:
  • the water level buried depth S is calculated from 0.91 to 2.33, as shown in Table 1.
  • the Jinjitan Coal Mine is located on the edge of the Maowusu Desert.
  • the surface vegetation is mainly Salix sphaerocephala and Artemisia sphaerocephala.
  • "Research on Ecological Groundwater Level Depth in Windy Beach Areas in Northern Shaanxi” and "Northern Shaanxi Based on Ecological Water Level Protection determines that the local ecological water level burial depth is 3m.
  • the calculated value of the water level burial depth S is less than the local ecological water level burial depth of 3m.
  • the coal mining face of Jinjitan Coal Mine is further classified as environmentally friendly. It can be seen that although the water level has decreased during the mining process, it will not cause too much vegetation. influences.
  • the present invention divides the mining area into undivided diving areas, micro-lost diving areas and large-divided leakage areas according to the analysis of the ground subsidence of the observation area of the mining area during mining and the monitoring of water level changes by the telemetering water level gauge; By comparing the calculated water depth in the mining process with the local ecological water level, the diving micro-loss area is further divided into environmentally friendly areas and environmental disaster areas.
  • the division method used in the present invention is simple and practical. From the perspective of ecological vegetation protection, it makes targeted judgments on the loss of shallow water resources and environmental catastrophes in northwest coal fields, and provides a basis for mining area planning and mining method selection. Ecological environment protection is of great significance.

Abstract

公开了一种浅埋煤层开采潜水漏失致灾程度的划分方法,属于煤炭开采保护领域,用以解决目前无法准确判断采煤区上覆潜水层漏失致灾程度的问题。包括以下步骤:S1.在煤矿工作面布置监测点并埋设遥测水位计进行水位监测;S2.监测地面高程,计算地面沉降量并收集进尺资料;S3.由监测资料作进尺距监测点距离-地面沉降量-水位变化关系曲线;S4.将所作曲线与潜水未漏失图、微漏失图和大量漏失图比较并划分漏失程度;S5.进一步将研究区划分为环境灾变区或友好区。该划分方法简单实用,从生态保护的角度,针对性的对西北煤田浅层水资源漏失及环境灾变作出判断,为矿区开采方式地选择提供了依据,对西北煤田开采过程中生态环境保护具有重要意义。

Description

一种浅埋煤层开采潜水漏失致灾程度的划分方法 技术领域
本发明涉及生态保护技术领域,尤其涉及一种浅埋煤层开采潜水漏失致灾程度的划分方法。
背景技术
由于我国东部地区煤炭资源在逐渐枯竭,煤炭生产战略西移会不断加快,所以西部煤炭开采量会逐年攀升,预计未来西部地区煤炭产量将占全国煤炭总产量的70%以上。陕北煤炭资源储量极大,而且煤质好,开采前景广阔。同时陕北属于干旱-半干旱地区,水资源量总体严重不足,生态地质环境脆弱,给区域经济和社会发展带来严重制约和影响。陕北煤田毛乌素沙漠滩地大面积分布的上更新统萨拉乌苏组砂层潜水是维系生态植被的重要水源,但十多年来的采煤造成该地区潜水水资源大范围破坏、沟谷断流,泉水及湖泊水量减少甚至干涸,造成工农业用水困难,地表干旱、植被枯萎和荒漠化加剧等环境保护问题,因此萨拉乌苏组砂层潜水成为目前陕北干旱-半干旱地区生态环境保护的重要研究课题。
近些年来,国内地质界针对西部侏罗纪煤田保水采煤问题开展了大量研究工作,探讨了保水采煤的对策和方法,提出了保水采煤的核心是生态水位保护的新观点。关于如何处理好煤炭开采与地下水的协调关系,采取更合理的采煤方法和工程措施来实现保水采煤,即关于保水程度及保水采煤的途径等问题还需要进一步研究。利用遥测水位计监测水位并结合地面沉降量变化规律可以清楚判断浅层地下水位下降是侧向补给还是垂向渗漏导致,从而对潜水漏失程度及生态植被影响程度进行划分,为矿区规划及开采方式选择等工作提供了基础依据,对实现干旱-半干旱区生态环境保护开采具有重要意义。
发明内容
鉴于上述的分析,本发明旨在提供一种浅埋煤层开采潜水漏失致灾程度的划分方法,用以解决无法准确判断采煤区上覆潜水层漏失程度及致灾情况的问题;同时根据潜水层漏失及致灾划分程度制定相应的保水开采方案,从而将开采造成的生态环境破坏程度降到最低。
本发明的目的主要是通过以下技术方案实现的:
一种浅埋煤层开采潜水漏失致灾程度的划分方法,包括以下步骤:
S1.收集矿区将要开采煤层工作面的平面位置图,布置监测点并埋设遥测水位计进行水位监测;
S2.根据步骤S1布设的监测点,在工作面开采期间进行监测点地面高程监测,计算地面沉降量并收集工作面进尺资料;
S3.根据步骤S2获取的工作面进尺、地面沉降量及步骤1获取的水位监测资料制作进尺距监测点距离-地面沉降量-水位变化关系曲线;
S4.将所述曲线与潜水未漏失图、潜水微漏失图和潜水大量漏失图进行比较;将开采煤层工作面划分为潜水未漏失区、潜水微漏失区或潜水大量漏失区。
进一步地,所述步骤S1中,工作面监测点的布置位置位于工作面中央,所使用遥测水位计满足《水位测量仪器第六部分:遥测水位计》(GB/T11828.6-2008)要求,水位计探头埋深位于开采过程监测水位以下,水位计安装完成后即进行水位监测。
进一步地,所述步骤S2中,当进尺距监测点距离为L时开始监测点地面沉降观测,结束时间为监测数据趋于稳定,即连续5天监测地面沉降量累计小于0.01m。其中,L计算公式如下:
Figure PCTCN2019073162-appb-000001
式中:L为超前影响距,m;h为开采深度,m;w为超前影响角,°。根据不同开采工作面的开采深度和超前影响角,确定不同开采工作面的地面沉降观测开始时间,高效准确地判断地面沉降的第一阶段即未沉降阶段;监测结束时间为连续5天监测沉降量累计小于0.01m,这在本领域可以认为沉降结束,后续不需要继续监测。
进一步地,所述步骤S2中,监测点地面沉降量计算公式如下:
ΔH=HeO-He
式中:ΔH为地面沉降量,m;HeO为监测点地面初始高程,m;He为开采过程监测点地面高程,m。
进一步地,所述步骤S2中,监测点地面高程监测精度为0.001m。在这一精度下保证了监测点地面高程监测数据及后续判断地面高程监测结束时间的准确性。
进一步地,所述步骤S4中,潜水未漏失图、潜水微漏失图和潜水大量漏失图中地面沉降变化曲线划分为五个阶段,分别为:阶段1:未沉降阶段,阶段2:缓慢沉降阶段,阶段3:沉降加速阶段,阶段4:沉降平缓阶段和阶段5:沉降平稳阶段;
潜水未漏失图中水位变化曲线分为:阶段a:水位快速下降阶段,阶段b:水位短暂平稳阶段,阶段c:水位快速上升阶段,阶段d:水位缓慢上升阶段和阶段e:水位平稳阶段;潜水微漏失图中水位变化曲线分为:阶段a:水位快速下降阶段,阶段b:水位短暂平稳阶段,阶段d:水位缓慢上升阶段和阶段e:水位平稳阶段;潜水大量漏失图中水位变化曲线分为:阶段a:水位快速下降阶段。
进一步地,为了能够更好地划分开采煤层工作面的潜水漏失致灾程度,上述划分方法还包括如下步骤:
S5.将潜水未漏失区定义为环境友好区,潜水大量漏失区定义为环境灾变区,计算步骤S4中潜水微漏失区水位埋深,若水位埋深大于当地生态水位埋深,则将开采煤层工作面划分为环境灾变区,若水位埋深小于当地生态水位埋深,则将开采煤层工作面划分为环境友好区。
进一步地,计算步骤S4中潜水微漏失区水位埋深的公式如下:
S=HeO-Hw
式中:S为水位埋深,m;HeO为监测点地面初始高程,m;Hw为遥测水位计监测水位,m。
进一步地,生态水位是指能够保持典型植被良好发育生长的地下水水位埋深,生态水位根据煤矿开采区的典型地表植被进行确定。
进一步地,所述的煤矿开采工作面潜水漏失致灾程度的划分方法适用于西北煤 田。
本发明的有益效果:
(1)本发明提供的浅埋煤层开采潜水漏失致灾程度的划分方法,直观的对采煤区上覆潜水层漏失程度进行判断划分;并进一步将煤矿开采工作面划分为环境友好区和环境灾变区,为矿区开采方案的选择提供了明确的依据,矿区可根据潜水漏失致灾程度制定相应的保水开采方案,从而将开采造成的生态环境破坏降到最低。
(2)本发明划分方法简单实用,从生态植被保护的角度,针对性的对西北煤田浅层水资源漏失及环境灾变作出判断,为矿区规划及开采方式选择等工作提供了依据,对西北煤田开采过程中生态环境保护具有重要意义。
本发明中,上述各技术方案之间还可以相互组合,以实现更多的优选组合方案。本发明的其他特征和优点将在随后的说明书中阐述,并且,部分优点可从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过说明书、权利要求书以及附图中所特别指出的内容中来实现和获得。
附图说明
附图仅用于示出具体实施例的目的,而并不认为是对本发明的限制,在整个附图中,相同的参考符号表示相同的部件。
图1为本发明方法实施流程图;
图2为潜水未漏失区图,图中进尺距监测点距离为负值代表未采至监测点,正值代表采过监测点;
图3为潜水微漏失区图,图中进尺距监测点距离为负值代表未采至监测点,正值代表采过监测点;
图4为潜水大量漏失区图,图中进尺距监测点距离为负值代表未采至监测点,正值代表采过监测点;
图5为金鸡滩煤矿工作面平面位置图;
图6为金鸡滩煤矿工作面进尺距监测点距离-地面沉降量-水位变化关系曲线,图中进尺距监测点距离为负值代表未采至监测点,正值代表采过监测点。
具体实施方式
下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并与本发明的实施例一起用于阐释本发明的原理,并非用于限定本发明的范围。
本发明提供了一种浅埋煤层开采潜水漏失致灾程度的划分方法,如图1所示,包括如下步骤:
S1.收集矿区将要开采煤层工作面平面位置图,布置监测点并埋设遥测水位计;
该步骤具体为:收集将采工作面平面位置图,在工作面中央位置布置监测点,所使用遥测水位计满足规范《水位测量仪器第六部分:遥测水位计》(GB/T11828.6-2008)要求,水位计探头埋深应位于开采过程监测水位以下,水位计安装完成即进行水位监测。
S2.根据步骤1布设的监测点,对工作面开采期间监测点地面高程进行观测,计算地面沉降量,并收集工作面进尺资料;
该步骤具体为:监测点地面沉降监测开始时间为进尺距监测点距离为L,结束时间为监测数据趋于稳定,即连续5天监测沉降量累计小于0.01m;地面沉降监测精度等于0.001m。其中,L计算公式如下:
Figure PCTCN2019073162-appb-000002
式中:L为超前影响距,m;h为开采深度,m;w为超前影响角,°。
监测点地面沉降量计算公式如下:
ΔH=HeO-He
式中:ΔH为地面沉降量,m;HeO为监测点地面初始高程,m;He为开采过程监测点地面高程,m。
S3.根据步骤S2获取的工作面进尺、地面沉降量及步骤S1获取的水位监测资料作进尺距监测点距离-地面沉降量-水位变化关系曲线。
S4.将所述曲线与潜水未漏失图、潜水微漏失图和潜水大量漏失图比较;并将开采煤层工作面划分为潜水未漏失区、潜水微漏失区和潜水大量漏失区。
上述潜水未漏失图、潜水微漏失图和潜水大量漏失图是根据西北地区多个煤矿监测资料(工作面进尺数据、水位计数据和地面沉降数据)总结出来的规律,划分依据为地面沉降与水位变化的对应关系。
如图2所示,潜水未漏失图中地面沉降变化曲线划分为五个阶段,分别为:阶段1:未沉降阶段,阶段2:缓慢沉降阶段,阶段3:沉降加速阶段,阶段4:沉降平缓阶段和阶段5:沉降平稳阶段;水位变化曲线分为:阶段a:水位快速下降阶段,阶段b:水位短暂平稳阶段,阶段c:水位快速上升阶段,阶段d:水位缓慢上升阶段和阶段e:水位平稳阶段。
如图3所示,潜水微漏失图中地面沉降变化曲线划分为五个阶段,分别为:阶段1:未沉降阶段,阶段2:缓慢沉降阶段,阶段3:沉降加速阶段,阶段4:沉降平缓阶段和阶段5:沉降平稳阶段;水位变化曲线分为:阶段a:水位快速下降阶段,阶段b:水位短暂平稳阶段,阶段d:水位缓慢上升阶段和阶段e:水位平稳阶段。
如图4所示,潜水大量漏失图中地面沉降变化曲线划分为五个阶段,分别为:阶段1:未沉降阶段,阶段2:缓慢沉降阶段,阶段3:沉降加速阶段,阶段4:沉降平缓阶段和阶段5:沉降平稳阶段;水位变化曲线分为:阶段a:水位快速下降阶段。
三个基本图中阶段1都对应阶段a,说明开采区前面的采煤活动导致监测点水位下降,此时水位下降是由于前面采区潜水漏失还是地面沉降导致侧向补给引起的无法判断;图2中阶段2对应阶段b,即监测点地面稍微沉降,水位计水位就不下降了,说明图2模式没有发生潜水漏失,水位短暂平稳是地面沉降导致监测点接受未采区水位补给引起的,且阶段3对应阶段c,地面沉降剧烈,水位开始大幅度上升,阶段4对应阶段d,地面沉降缓慢,水位上升也缓慢,阶段5对应阶段e,地面沉降结束,水位也平稳,这些现象说明监测点水位变化并不是漏失而是沉降引起的,因此将图2定义为潜水未漏失区。图3与图4中阶段2都对应阶段a,但图3中阶段3对应阶段b,即在接受未采区大量侧向水补给水位才能保证稳定,说明图3模式发生漏失,但并不严重,经过侧向水的补给可以达到收支平衡,阶段4少量补给导致水量稍微上升,因此将图3定义潜水微漏失区。图4中水位始终没有上升,说明尽管在接受侧向补给,但水位仍不能恢复,说明发生了大量漏失,因此将图4定义为潜水大量漏失区。
为了能够更好地划分开采煤层工作面的潜水漏失致灾程度,上述划分方法还包括如下步骤:
S5.将潜水未漏失区定义为环境友好区,潜水大量漏失区定义为环境灾变区,计算步骤S4中潜水微漏失区水位埋深,若水位埋深大于当地生态水位埋深,则将开采煤层工作面划分为环境灾变区,若水位埋深小于当地生态水位埋深,则将开采煤层工作面划分为环境友好区。其中计算步骤S4中潜水微漏失区水位埋深的公式如下:
S=HeO-Hw
式中:S为水位埋深,m;HeO为监测点地面初始高程,m;Hw为遥测水位计监测水位,m。
需要说明的是生态水位是指能够保持典型植被良好发育生长的地下水水位埋深,生态水位根据煤矿开采区的典型地表植被进行确定。
实施例1
下面结合具体实例对本发明的技术方案作出详细说明。
如图5所示为金鸡滩煤矿采煤工作面。金鸡滩煤矿采煤工作面长5300m,宽300m,于2016年6月进行工作面回采,回采平均速度约为10m/d,布置监测点位于工作面中央,水位计于2017年1月3日安装完毕后进行自动水位监测,水位计探头位于初始水位下15m,保证开采过程时刻可以监测到水位变化,此时进尺距监测点距离-265m(负值代表未采至监测点,正值代表采过监测点),水位计水位Hw记录如表1所示。
表1金鸡滩煤矿工作面监测数据及计算数据
Figure PCTCN2019073162-appb-000003
Figure PCTCN2019073162-appb-000004
Figure PCTCN2019073162-appb-000005
Figure PCTCN2019073162-appb-000006
如表1所示,监测点地面初始高程HeO为1226.81;监测点附近首次采煤平均开采深度h为280m,矿区开采实践超前影响角w为62°,利用公式
Figure PCTCN2019073162-appb-000007
计算超前影响距L为148.87m,因此在进尺推进至距监测点前150m开始监测点地面沉降监测;采用人工监测,监测频率2次/d,监测时间分别为6:00与18:00,监测点地面高程He监测数据如表1所示,利用公式ΔH=HeO-He计算地面沉降量ΔH,数据如表1所示。2017年5月8日进尺线采过监测点300m时,连续5天监测地面沉降量累计小于0.01m,地面沉降趋于稳定,停止监测。
根据表1的监测数据作金鸡滩煤矿工作面进尺距监测点距离-地面沉降量-水位变化关系曲线,如图6所示。
将图6与图2、3及4比较,发现图6曲线变化规律与图3相似,因此可将金鸡滩煤矿工作面潜水漏失判断为潜水微漏失区。
同时为了进一步判断金鸡滩煤矿工作面潜水漏失致灾程度,计算漏失过程中水位埋深并与当地生态水位埋深进行比较。计算漏失过程中水位埋深公式为:
S=HeO-Hw
式中:S为水位埋深,m;HeO为监测点地面初始高程,m;Hw为遥测水位计监测水位,m。
水位埋深S计算数值范围为0.91~2.33,如表1所示。同时金鸡滩煤矿位于毛乌素沙漠边缘,地表植被主要为沙柳和松蒿,依据前人研究及已发表文章《陕北风沙滩地区生态安全地下水位埋深研究》和《基于生态水位保护的陕北煤炭开采条件分区》确定当地生态水位埋深为3m。通过分析,水位埋深S计算值小于当地生态水位埋深3m,进一步将金鸡滩煤矿采煤工作面划分为环境友好型,可知开采过程中虽然水位有所下降,但不会对植被造成太大影响。
综上所述,本发明根据分析采煤期间矿区观测点地面沉降量与遥测水位计监测水位变化的各个阶段,将采煤矿区划分为潜水未漏失区、潜水微漏失区及潜水大量漏失区;并通过将计算的采煤矿区漏失过程水位埋深与当地生态水位埋深相比较,将潜水微漏失区进 一步划分为环境友好区和环境灾变区。本发明使用的划分方法简单实用,从生态植被保护的角度,针对性的对西北煤田浅层水资源漏失及环境灾变作出判断,为矿区规划及开采方式选择等工作提供了依据,对西北煤田开采生态环境保护具有重要意义。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于:包括以下步骤:
    S1.收集矿区将要开采煤层工作面的平面位置图,布置监测点并埋设遥测水位计进行水位监测;
    S2.根据步骤S1布设的监测点,在工作面开采期间进行监测点地面高程监测,计算地面沉降量并收集工作面进尺资料;
    S3.根据步骤S2获取的工作面进尺、地面沉降量及步骤S1获取的水位监测资料制作进尺距监测点距离-地面沉降量-水位变化关系曲线;
    S4.将所述关系曲线与潜水未漏失图、潜水微漏失图和潜水大量漏失图进行比较;将开采煤层工作面划分为潜水未漏失区、潜水微漏失区或潜水大量漏失区。
  2. 根据权利要求1所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于:所述步骤S1中,工作面监测点的布置位置位于工作面中央,水位计探头埋深位于开采过程监测水位以下,水位计安装完成后即进行水位监测。
  3. 根据权利要求1所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于:所述步骤S2中,当进尺距监测点距离为L时开始监测点地面沉降观测,结束时间为监测数据趋于稳定,即连续5天监测地面沉降量累计小于0.01m。其中,L计算公式如下:
    Figure PCTCN2019073162-appb-100001
    式中:L为超前影响距,m;h为开采深度,m;w为超前影响角,°。
  4. 根据权利要求1所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于:所述步骤S2中,监测点地面沉降量计算公式如下:
    ΔH=He0-He
    式中:ΔH为地面沉降量,m;He0为监测点地面初始高程,m;He为开采过程监测点地面高程,m。
  5. 根据权利要求1所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于:所述步骤S2中,监测点地面高程监测精度为0.001m。
  6. 根据权利要求1所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于:所述步骤S4中,潜水未漏失图、潜水微漏失图和潜水大量漏失图中地面沉降变化曲线划分为五个阶段,分别为:阶段1:未沉降阶段,阶段2:缓慢沉降阶段,阶段3:沉降加速阶段,阶段4:沉降平缓阶段和阶段5:沉降平稳阶段;
    潜水未漏失图中水位变化曲线分为:阶段a:水位快速下降阶段,阶段b:水位短暂平稳阶段,阶段c:水位快速上升阶段,阶段d:水位缓慢上升阶段和阶段e:水位平稳阶段;潜水微漏失图中水位变化曲线分为:阶段a:水位快速下降阶段,阶段b:水位短暂平稳阶段,阶段d:水位缓慢上升阶段和阶段e:水位平稳阶段;潜水大量漏失图中水位变化曲线分为:阶段a:水位快速下降阶段。
  7. 根据权利要求1-6任一所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于,所述方法还包括如下步骤:
    S5.将潜水未漏失区定义为环境友好区,潜水大量漏失区定义为环境灾变区,计算步骤S4中潜水微漏失区水位埋深,若水位埋深大于当地生态水位埋深,则将开采煤层工作面划分为环境灾变区,若水位埋深小于当地生态水位埋深,则将开采煤层工作面划分为环境友 好区。
  8. 根据权利要求7所述的一种浅埋煤层开采潜水漏失致灾程度的划分方法,其特征在于,计算步骤S4中潜水微漏失区水位埋深的公式如下:
    S=He0-Hw
    式中:S为水位埋深,m;He0为监测点地面初始高程,m;Hw为遥测水位计监测水位,m。
  9. 根据权利要求7所述的一种浅埋煤层潜水漏失致灾的划分方法,其特征在于:生态水位是指能够保持典型植被良好发育生长的地下水水位埋深,生态水位根据煤矿开采区的典型地表植被进行确定。
  10. 根据权利要求1-9中任一所述的一种浅埋煤层潜水漏失致灾的划分方法,其特征在于:所述的煤矿开采工作面潜水漏失致灾程度的划分方法适用于西北煤田。
PCT/CN2019/073162 2018-08-09 2019-01-25 一种浅埋煤层开采潜水漏失致灾程度的划分方法 WO2020029557A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2019253833A AU2019253833A1 (en) 2018-08-09 2019-01-25 Method for classifying phreatic leakage disaster level in shallow coal seam mining
US16/609,738 US11060402B2 (en) 2018-08-09 2019-01-25 Method for classifying phreatic leakage disaster level in shallow coal seam mining
ZA2019/07139A ZA201907139B (en) 2018-08-09 2019-10-29 Method for classifying phreatic leakage disaster level in shallow coal seam mining

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810901441.7A CN109098753B (zh) 2018-08-09 2018-08-09 一种浅埋煤层开采潜水漏失致灾程度的划分方法
CN201810901441.7 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020029557A1 true WO2020029557A1 (zh) 2020-02-13

Family

ID=64849266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073162 WO2020029557A1 (zh) 2018-08-09 2019-01-25 一种浅埋煤层开采潜水漏失致灾程度的划分方法

Country Status (5)

Country Link
US (1) US11060402B2 (zh)
CN (1) CN109098753B (zh)
AU (1) AU2019253833A1 (zh)
WO (1) WO2020029557A1 (zh)
ZA (1) ZA201907139B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050173A (zh) * 2021-03-12 2021-06-29 中国电建集团贵阳勘测设计研究院有限公司 一种渣库渗漏通道口的电法测试方法
CN113781251A (zh) * 2021-09-03 2021-12-10 西安科技大学 基于粮-草-畜模式的采煤沉陷地的动态修复方法
CN117236723A (zh) * 2023-11-13 2023-12-15 深圳市城市公共安全技术研究院有限公司 岩溶区建设工程施工周边环境影响范围划定方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109098753B (zh) 2018-08-09 2019-07-26 中国矿业大学 一种浅埋煤层开采潜水漏失致灾程度的划分方法
CN111680896B (zh) * 2020-05-27 2023-06-20 北京科技大学 一种煤矿地下水库安全距离确定方法
CN112629485B (zh) * 2020-12-16 2022-10-14 中国神华能源股份有限公司 矿井地表沉陷监测方法
CN113585164A (zh) * 2021-08-31 2021-11-02 中煤科工集团北京土地整治与生态修复科技研究院有限公司 一种基于采煤工作面河下采煤工程的河流改道方法
CN113982681A (zh) * 2021-10-26 2022-01-28 中煤西安设计工程有限责任公司 一种煤矿采空区大面积悬顶灾害自动监测预警方法及系统
CN114412567B (zh) * 2021-12-08 2023-03-14 中国矿业大学 一种底板灰岩承压水上原位保水采煤预警方法
CN115235415B (zh) * 2022-06-09 2023-07-07 河南理工大学 一种基于水准点监测的区域沉降时空变化特征获取方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045459A1 (de) * 2008-09-02 2010-03-04 Chemson Polymer-Additive Ag Verfahren zur Vermeidung der Verbreitung von teilchenförmigem Material in Luft
RU2499142C2 (ru) * 2011-09-02 2013-11-20 Михаил Владимирович Попов Способ дегазации неразгруженных пластов в подземных условиях шахт
CN107764758A (zh) * 2017-09-26 2018-03-06 中国神华能源股份有限公司 矿区监测方法和装置、存储介质及处理器
CN108316924A (zh) * 2018-01-30 2018-07-24 中国矿业大学 一种保水采煤矿井/矿区等级划分方法
CN109098753A (zh) * 2018-08-09 2018-12-28 中国矿业大学 一种浅埋煤层开采潜水漏失致灾程度的划分方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101422094B (zh) * 2007-11-02 2012-07-04 煤炭科学研究总院唐山研究院 平原矿区厚煤层开采塌陷地动态预复垦方法
CN102094432B (zh) * 2011-03-07 2013-06-05 同济大学 一种由工程环境效应引起地面沉降的模型及其试验方法
CN104652302A (zh) * 2013-11-25 2015-05-27 天津城建隧道股份有限公司 一种超大型管幕箱涵顶进施工方法
CN103628467B (zh) * 2013-12-24 2015-10-28 山东大学 基于不均匀沉降动态精确控制的地基处理方法
CN104123470A (zh) * 2014-07-25 2014-10-29 首都师范大学 一种优化地面沉降监测网的方法
CN104632244B (zh) * 2014-12-16 2017-05-10 上海交通大学 确定地面沉降对地铁隧道沉降影响及保护隧道结构的方法
CN105239611B (zh) * 2015-10-22 2017-07-11 上海交通大学 确定基坑开挖面下方止水帷幕渗漏对周边环境影响的方法
CN106640076B (zh) * 2016-11-22 2018-07-24 陕西省地质环境监测总站 一种潜水含水层水位水量协同控制的保水采煤方法
CN106836171B (zh) * 2017-03-24 2018-05-04 中国矿业大学(北京) 露天煤矿排土场水位实时监测系统及其建立和使用方法
CN107480349B (zh) * 2017-07-26 2020-07-24 中国铁路总公司 基于三维地质模型和反分析的高铁沿线地面沉降预测方法
CN107882561A (zh) * 2017-11-10 2018-04-06 安徽省交通航务工程有限公司 一种高潜水位采煤沉陷区超前治理方法
CN107989612B (zh) * 2018-01-08 2019-11-15 西安科技大学 一种高潜水位煤矿区动态预复垦新方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008045459A1 (de) * 2008-09-02 2010-03-04 Chemson Polymer-Additive Ag Verfahren zur Vermeidung der Verbreitung von teilchenförmigem Material in Luft
RU2499142C2 (ru) * 2011-09-02 2013-11-20 Михаил Владимирович Попов Способ дегазации неразгруженных пластов в подземных условиях шахт
CN107764758A (zh) * 2017-09-26 2018-03-06 中国神华能源股份有限公司 矿区监测方法和装置、存储介质及处理器
CN108316924A (zh) * 2018-01-30 2018-07-24 中国矿业大学 一种保水采煤矿井/矿区等级划分方法
CN109098753A (zh) * 2018-08-09 2018-12-28 中国矿业大学 一种浅埋煤层开采潜水漏失致灾程度的划分方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113050173A (zh) * 2021-03-12 2021-06-29 中国电建集团贵阳勘测设计研究院有限公司 一种渣库渗漏通道口的电法测试方法
CN113050173B (zh) * 2021-03-12 2023-12-12 中国电建集团贵阳勘测设计研究院有限公司 一种渣库渗漏通道口的电法测试方法
CN113781251A (zh) * 2021-09-03 2021-12-10 西安科技大学 基于粮-草-畜模式的采煤沉陷地的动态修复方法
CN113781251B (zh) * 2021-09-03 2023-08-11 西安科技大学 基于粮-草-畜模式的采煤沉陷地的动态修复方法
CN117236723A (zh) * 2023-11-13 2023-12-15 深圳市城市公共安全技术研究院有限公司 岩溶区建设工程施工周边环境影响范围划定方法及装置
CN117236723B (zh) * 2023-11-13 2024-03-12 深圳市城市公共安全技术研究院有限公司 岩溶区建设工程施工周边环境影响范围划定方法及装置

Also Published As

Publication number Publication date
CN109098753B (zh) 2019-07-26
US11060402B2 (en) 2021-07-13
US20200378258A1 (en) 2020-12-03
ZA201907139B (en) 2021-04-28
AU2019253833A1 (en) 2020-02-27
CN109098753A (zh) 2018-12-28

Similar Documents

Publication Publication Date Title
WO2020029557A1 (zh) 一种浅埋煤层开采潜水漏失致灾程度的划分方法
CN102609782B (zh) 基于采煤沉陷模拟和复耕率的边采边复时机的优选方法
CN111750822B (zh) 一种采煤诱发的覆岩与地表沉陷协同动态预测方法
CN107589470B (zh) 小区域范围内岩溶古地貌恢复方法
CN104453834A (zh) 一种井组注采关系优化调整方法
CN102047145A (zh) 矿藏应力预测
CN106593526B (zh) 一种基于模糊判断的隧道地质岩溶风险评估方法
CN106528707A (zh) 一种煤层顶板砂岩含水层富水性评价方法
CN108316924B (zh) 一种保水采煤矿井/矿区等级划分方法
CN103744128A (zh) 一种用于地下洞室岩爆烈度等级的综合预报方法
CN106372810A (zh) 一种利用功效系数法的tbm定量化选型方法
CN111967631A (zh) 一种砂岩型铀矿勘探早期成矿远景区预测的方法
Khalaf et al. Estimation the hydrogeological characteristics of Al-Dammam confined aquifer in the west and southwest of Karbala city, Iraq
CN107506609B (zh) 一种干旱-半干旱区煤炭开采生态环境破坏等级划分方法
CN104297796A (zh) 巨厚黄土塬区地形剧烈变化区起伏地表小折射调查方法
CN112610277B (zh) 一种富水软弱围岩隧道地质灾害风险快速预测方法
CN107192326B (zh) 基于gps数据计算岩层矢量真厚度的方法
CN106649910A (zh) 结合边坡浅层滑动面的包络图判断边坡稳定性的方法
Gao et al. Development of cavity probability map for Abu Dhabi Municipality using GIS and decision tree modeling
CN107797148B (zh) 一种基于三维地质建模的航磁异常场分离方法及系统
Dafny et al. Identifying watershed-scale groundwater flow barriers: the Yoqne'am Fault in Israel
CN103091706A (zh) 一种淤泥沉淀池地震勘探方法
CN113250684B (zh) 一种侏罗系富水软岩的富水性评价及水害分级防控方法
CN109344445B (zh) 一种地下水封石洞油库扩建水封安全间距的计算方法
CN102914794B (zh) 南方海相地层近地表结构数据处理方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019253833

Country of ref document: AU

Date of ref document: 20190125

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19846448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19846448

Country of ref document: EP

Kind code of ref document: A1