WO2020029324A1 - 一种基于独立变桨的风电机组控制和制动方法 - Google Patents

一种基于独立变桨的风电机组控制和制动方法 Download PDF

Info

Publication number
WO2020029324A1
WO2020029324A1 PCT/CN2018/101650 CN2018101650W WO2020029324A1 WO 2020029324 A1 WO2020029324 A1 WO 2020029324A1 CN 2018101650 W CN2018101650 W CN 2018101650W WO 2020029324 A1 WO2020029324 A1 WO 2020029324A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
pitch
pitch angle
change
braking
Prior art date
Application number
PCT/CN2018/101650
Other languages
English (en)
French (fr)
Inventor
蒋致禹
任政儒
施伟
宁德志
Original Assignee
大连理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大连理工大学 filed Critical 大连理工大学
Priority to US16/762,045 priority Critical patent/US20200340447A1/en
Publication of WO2020029324A1 publication Critical patent/WO2020029324A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/0244Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor for braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/04Automatic control; Regulation
    • F03D7/042Automatic control; Regulation by means of an electrical or electronic controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D17/00Monitoring or testing of wind motors, e.g. diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/309Rate of change of parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/328Blade pitch angle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/30Control parameters, e.g. input parameters
    • F05B2270/331Mechanical loads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2270/00Control
    • F05B2270/80Devices generating input signals, e.g. transducers, sensors, cameras or strain gauges
    • F05B2270/808Strain gauges; Load cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention belongs to the technical field of wind power and relates to a method for controlling and braking a wind turbine based on an independent pitch.
  • Horizontal shaft fans can be roughly divided into two types, stall type and variable pitch, according to their blade control methods. Stall type fans have a fixed pitch and speed during operation. They are simple in type and are mostly used in early kilowatt-class fans. In order to improve the efficiency of power generation, large megawatt fans have variable pitch and variable speed characteristics.
  • the structural design of the horizontal axis fan needs to meet the limit and fatigue load under a series of working conditions.
  • the operating conditions included in international design codes include normal operating conditions, shutdown conditions and braking conditions.
  • braking conditions usually mean that the three blades of the fan increase to the maximum pitch angle (90 degrees) at the same rate in a short time. In this process, due to the sudden increase in the pitch angle of the blade, the direction of the aerodynamic torque received by the impeller is reversed, causing the impeller to stop rotating in a short time.
  • the braking reason of the fan may be stopped on the one hand to avoid structural strain due to excessive wind speed.
  • a key part of the fan may fail and need to be stopped for maintenance.
  • a large impact load is often caused on the fan shaft.
  • the local inflow wind speeds of the three fan blades in the blade disk surface are not equal, which results in uneven force on the blades and the bending moments of the three blade roots are not balanced. This phenomenon often leads to structural fatigue and strain of the main shaft bearings of wind turbine gearboxes, which is not conducive to controlling maintenance costs of wind power operations.
  • the purpose of the present invention is to propose a method for reducing the unbalanced load on the blade root during the braking process of the fan, thereby improving the reliability of the fan operation and reducing the maintenance cost.
  • a method for braking a wind turbine based on independent pitch the steps are as follows: when the wind turbine adopts variable pitch braking, the pitch angle of each blade is increased by a pitch adjuster installed on each blade; Because the wind turbine is an independent pitch system, the rate of change of the pitch angle of each blade is different; the pitch angle of each blade is adjusted according to the rate of change of the pitch angle of each blade;
  • a strain sensor is installed at the root of each blade, a sensor for measuring blade pitch is installed on the inner edge of the hub, and a pitch adjuster and controller are installed in the cabin;
  • Is the rate of change of the pitch angle of the blade k, k 1 , 2 , 3; ⁇ 1 , ⁇ 2 , and ⁇ 3 are the tensile stresses at the blades 1 , 2 , and 3 at a certain moment; ⁇ is the coefficient, and The size is determined by numerical simulation.
  • the wind turbine is a horizontal axis variable pitch wind turbine, an onshore or offshore wind turbine.
  • the components of the device including stress strain gauges, sensors, and pitch adjustment systems are mature industrial products, which are easy to implement.
  • Figure 1 is a schematic diagram of an onshore three-blade horizontal axis fan.
  • Figure 2 (a) is a schematic diagram of the pitch position of the blades on the top of the fan before braking.
  • Figure 2 (b) is a schematic diagram of the pitch position of the blades on the top of the fan after braking.
  • Fig. 3 (a) is the schematic diagram of the change of the fan pitch angle during braking with conventional braking.
  • Fig. 3 (b) is a schematic diagram of the change of the pitch angle of the fan during braking when the independent pitch braking of the method of the present invention is applied.
  • Figure 4 (a) is the schematic diagram of the change of the unbalanced load bending moment in the fan disc surface during braking during conventional braking.
  • Fig. 4 (b) is a schematic diagram of the change of the unbalanced load bending moment in the fan disc surface during the braking process when the method of the present invention is used for independent pitch braking.
  • Fig. 5 is a control block diagram of an independent pitch suitable for a fan braking process.
  • Fig. 6 is a braking flowchart of the method of the present invention.
  • a method for braking a wind turbine based on independent pitch the steps are as follows: when the wind turbine adopts variable pitch braking, the pitch angle of each blade is increased by a pitch adjuster installed on each blade; Because the wind turbine is an independent pitch system, the rate of change of the pitch angle of each blade is different; the pitch angle of each blade is adjusted according to the rate of change of the pitch angle of each blade;
  • a strain sensor is installed at the root of each blade, a sensor for measuring blade pitch is installed on the inner edge of the hub, and a pitch adjuster and controller are installed in the cabin;
  • Is the rate of change of the pitch angle of the blade k, k 1 , 2 , 3; ⁇ 1 , ⁇ 2 , and ⁇ 3 are the tensile stresses at the blades 1 , 2 , and 3 at a certain moment; ⁇ is the coefficient, and The size is determined by numerical simulation.
  • the fan shown in Figure 1 belongs to the 6MW class, with a cabin length of 10 meters and a weight of 360 tons.
  • the cabin level is 100 meters above the ground level.
  • a strain sensor is connected to the root of each blade to measure the tensile stress and calculate the bending moment load on the blade during braking.
  • Figure 2 shows the position of a blade at the beginning and end of braking.
  • ⁇ 1 15 degrees
  • Figure 3 shows the pitch angle changes of the three blades during braking.
  • the conventional braking method is adopted.
  • the three blades are unified pitch control, and the pitch angle is increased to 90 degrees at the same rate at time t0.
  • braking is complete.
  • the figure on the right shows the effect of using independent pitch braking. Because the three blades are controlled independently, their changing paths are not the same, and the three blades reach the maximum angle at time t1, t2, and t3, respectively.
  • Figure 4 shows the change of unbalanced load that has a damaging effect on the fan's main shaft.
  • conventional braking is applied (left picture)
  • the bending moment remains at a high level after the braking occurs until the braking is completed.
  • independent pitch braking due to By adjusting the pitch angles of the three blades, the three blades can be uniformly stressed, thereby maintaining a low unbalanced load.
  • Figure 5 shows a block diagram of the independent pitch control system. As shown in the figure, one of the keys of this system is to calculate the pitch angle change rate of each blade based on the measured value of the blade root strain sensor, and adjust the blade angle change through the independent pitch regulator of each blade.
  • Figure 6 shows the system working flow chart of the independent pitch control system during fan braking.
  • the air load on a single blade is different.
  • the pitch change rate at the next moment is calculated.
  • the impeller speed is reduced to meet the requirements.

Abstract

一种基于独立变桨的风电机组控制和制动方法,在风电机组采取变桨距制动时,通过安装在每个叶片上的桨距调节器来增大每个叶片的桨距角;根据每个叶片桨距角的变化速率分别调节各个叶片的桨距角;每个叶片根部安装应变传感器,在轮毂内缘安装用于测量叶片桨距的传感器,在机舱内安装桨距调节器和控制器;通过位于三个叶片根部的应变传感器测量得到各自对应拉伸应力大小,并计算出每个叶片桨距角的响应变化速率;在不同时刻,通过桨距调节器增大每个叶片的桨距角,直至达到最大角度90度。本方法减少了风机在制动时由于不平衡载荷带来的冲击载荷,能够提高风机主轴和轴承的寿命。

Description

一种基于独立变桨的风电机组控制和制动方法 技术领域
本发明属于风电技术领域,涉及一种基于独立变桨的风电机组控制和制动方法。
背景技术
世界上的风机,根据其叶轮主轴的方向,可以分为水平轴和垂直轴式。目前已经建成的陆上或海上风电场,都由水平轴式风机组成。水平轴式风机,根据其叶片控制方式,又可大致分为失速型和变桨距两种。失速型风机,在运行时具有固定的桨距和转速,型式简单,多应用在早期的千瓦级风机上。大型兆瓦级别的风机,为了提高发电效率,具有变桨距和变速的特性。
水平轴风机的结构设计,需要满足一系列的工况下的极限和疲劳载荷。国际设计规范中包含的工况有正常运行工况,停机工况和制动工况等。对于变桨距风机,制动工况通常意味着风机三个桨叶在短时间内以相同的速率增加到最大桨距角(90度)。在此过程中,由于叶片的桨距角突然增大,叶轮所受的气动力扭矩方向反转,使叶轮在短时间内停止转动。
风机的制动原因,一方面可能由于风速过大,需要停止运行来避免结构劳损,另一方面可能是风机的关键部位发生故障,需要停止运行来检修。在上述的制动过程中,由于叶片桨距角的迅速增大,往往会对风机主轴造成较大的冲击载荷。此外,由于湍流风的存在,叶片盘面内三个风机叶片的局部进流风速并不相等,从而导致叶片的受力不均,三个叶片根部的弯矩也不平衡。这一现象常导致风机齿轮箱主轴轴承的结构疲劳劳损,不利于控制风电运营的维护成本。
发明内容
本发明目的在于提出一种减少风机制动过程中叶片根部不平衡载荷的方法,从而提高风机运行的可靠性,降低维护成本。
一种基于独立变桨的风电机组制动方法,步骤如下:在风电机组采取变桨距制动时,通过安装在每个叶片上的桨距调节器来增大每个叶片的桨距角;由于风电机组是独立变桨系统,每个叶片桨距角的变化速率不同;根据每个叶片桨距角的变化速率分别调节各个叶片的桨距角;
每个叶片根部安装应变传感器,在轮毂内缘安装用于测量叶片桨距的传感器,在机舱内安装桨距调节器和控制器;
通过位于三个叶片根部的应变传感器测量得到各自对应拉伸应力大小,并计算出每个叶片桨距角的响应变化速率;
对于第k个叶片,其桨距角的响应变化速率和拉伸应力的关系:
Figure PCTCN2018101650-appb-000001
其中,
Figure PCTCN2018101650-appb-000002
为叶片k的桨距角的响应变化速率,k=1、2、3;σ 123分别为在某时刻叶片1、2、3根部的拉伸应力;μ为系数,通过数值模拟确定大小;从关系式看出,当叶片k的拉伸应力σ k过大时,应维持较小的桨距角响应变化速率,反之则采用较大的桨距角响应变化速率,但桨距角的响应变化速率不可超过桨距调节系统的限制
Figure PCTCN2018101650-appb-000003
在不同时刻,通过桨距调节器增大每个叶片的桨距角,直至达到最大角度90度;当叶轮转速小于1rpm,风机制动完成,叶片桨距角停止变化。
所述的风机是水平轴变桨距风力发电机、陆上或海上风机。
本发明的有益效果:
(1)该装置组成部件,包括应力应变片,传感器,桨距调节系统均为成熟的工业产品,容易实施。
(2)减少了风机在制动时由于不平衡载荷带来的冲击载荷,提高风机主轴和轴承的寿命。
(3)提高风机可靠性的同时降低了维护成本。
附图说明
图1是一个陆上三叶片水平轴风机的示意图。
图2(a)是位于风机顶部的叶片在制动前的桨距位置示意图。
图2(b)是位于风机顶部的叶片在制动后的桨距位置示意图。
图3(a)是常规制动,风机桨距角在制动时的变化示意图。
图3(b)是本发明方法独立变桨制动,风机桨距角在制动时的变化示意图。
图4(a)是常规制动,风机盘面内的不平衡载荷弯矩在制动过程中的变化示意图。
[根据细则26改正11.09.2018] 
图4(b)是本发明方法独立变桨制动,风机盘面内的不平衡载荷弯矩在制动过程中的变化示意图。
图5是适用于风机制动过程的独立变桨的控制框图。
图6是本发明方法的制动流程图。
图中:1叶片;2应变传感器;3海床;4叶片剖面;5风轮平面。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
一种基于独立变桨的风电机组制动方法,步骤如下:在风电机组采取变桨距制动时,通过安装在每个叶片上的桨距调节器来增大每个叶片的桨距角;由于风电机组是独立变桨系统,每个叶片桨距角的变化速率不同;根据每个叶片桨距角的变化速率分别调节各个叶片的桨距角;
每个叶片根部安装应变传感器,在轮毂内缘安装用于测量叶片桨距的传感器,在机舱内安装桨距调节器和控制器;
通过位于三个叶片根部的应变传感器测量得到各自对应拉伸应力大小,并计算出每个叶片桨距角的响应变化速率;
对于第k个叶片,其桨距角的响应变化速率和拉伸应力的关系:
Figure PCTCN2018101650-appb-000004
其中,
Figure PCTCN2018101650-appb-000005
为叶片k的桨距角的响应变化速率,k=1、2、3;σ 123分别为在某时刻叶片1、2、3根部的拉伸应力;μ为系数,通过数值模拟确定大小;从关系式看出,当叶片k的拉伸应力σ k过大时,应维持较小的桨距角响应变化速率,反之则采用较大的桨距角响应变化速率,但桨距角的响应变化速率不可超过桨距调节系统的限制
Figure PCTCN2018101650-appb-000006
在不同时刻,通过桨距调节器增大每个叶片的桨距角,直至达到最大角度90度;当叶轮转速小于1rpm,风机制动完成,叶片桨距角停止变化。
图1所示的风机属于6MW级别,机舱长度为10米,重量360顿,机舱水平高于地平面100米。在每个叶片的根部连接有应变传感器,用以测量拉应力,并计算叶片在制动时受到的弯矩载荷。
图2所示是某个叶片在制动初始和结束时的位置。叶片初始桨距角θ 1=15度,在桨距调节器的作用下,角度不断变大直至θ 2=90。在这一过程中,作用在叶轮上的空气扭矩反转,使叶轮慢慢停止。
图3所示三个叶片在制动过程中的桨距角变化。左图中,采用的是常规的制动方式,三个叶片为统一变桨控制,桨距角在t0时刻以相同速率增加到90度。在t1时刻,制动已经完成。图右所示的是采用独立变桨制动的效果。由于三个叶片采用独立控制,其变化路径并不相同,三个叶片分别在t1,t2,t3时刻达到最大角度。
图4所示是对风机主轴起到破坏作用的不平衡载荷变化示意。当采用常规制动时(左图),由于三个叶片上受到空气载荷的不均匀,弯矩在制动发生后保持较高水平,直至制动结束,当采用独立变桨制动时,由于通过调整三个叶片的桨距角,可使三个叶片受力均匀,从而保持较低的不平衡载荷。
图5所示是该独立变桨控制系统的框图。如图所示,该系统的关键之一是根据叶根应变传感器的测量值计算出每个叶片的桨距角变化率,并通过每个叶片的独立桨距调节器来调整叶片角度变化。
图6所示的是该独立变桨控制系统在风机制动过程中的系统工作流程图。随着风速变化和叶片转速的变化,单个叶片所受到的空气载荷不同,根据叶片根部应变片采集到的数据信号来计算下一时刻的桨距变化率,变桨驱动器不断调节桨距角,直至叶轮速度降低到满足要求。

Claims (1)

  1. 一种基于独立变桨的风电机组制动方法,在风电机组采取变桨距制动时,通过安装在每个叶片上的桨距调节器来增大每个叶片的桨距角;由于风电机组是独立变桨系统,每个叶片桨距角的变化速率不同;根据每个叶片桨距角的变化速率分别调节各个叶片的桨距角;其特征在于,步骤如下:
    每个叶片根部安装应变传感器,在轮毂内缘安装用于测量叶片桨距的传感器,在机舱内安装桨距调节器和控制器;
    通过位于三个叶片根部的应变传感器测量得到各自对应拉伸应力大小,并计算出每个叶片桨距角的响应变化速率;
    对于第k个叶片,其桨距角的响应变化速率和拉伸应力的关系:
    Figure PCTCN2018101650-appb-100001
    其中,
    Figure PCTCN2018101650-appb-100002
    为叶片k的桨距角的响应变化速率,k=1、2、3;σ 123分别为在某时刻叶片1、2、3根部的拉伸应力;μ为系数,通过数值模拟确定大小;从关系式看出,当叶片k的拉伸应力σ k过大时,应维持较小的桨距角响应变化速率,反之则采用较大的桨距角响应变化速率,但桨距角的响应变化速率不可超过桨距调节系统的限制
    Figure PCTCN2018101650-appb-100003
    在不同时刻,通过桨距调节器增大每个叶片的桨距角,直至达到最大角度90度;当叶轮转速小于1rpm,风机制动完成,叶片桨距角停止变化。
PCT/CN2018/101650 2018-08-06 2018-08-22 一种基于独立变桨的风电机组控制和制动方法 WO2020029324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/762,045 US20200340447A1 (en) 2018-08-06 2018-08-22 Method for controlling and braking wind turbine based on individual pitch control

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810884863.8 2018-08-06
CN201810884863.8A CN109139372B (zh) 2018-08-06 2018-08-06 一种基于独立变桨的风电机组控制和制动方法

Publications (1)

Publication Number Publication Date
WO2020029324A1 true WO2020029324A1 (zh) 2020-02-13

Family

ID=64791756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/101650 WO2020029324A1 (zh) 2018-08-06 2018-08-22 一种基于独立变桨的风电机组控制和制动方法

Country Status (3)

Country Link
US (1) US20200340447A1 (zh)
CN (1) CN109139372B (zh)
WO (1) WO2020029324A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3961028A1 (en) * 2020-08-28 2022-03-02 Siemens Gamesa Renewable Energy A/S Reduction of a pitch bearing damage
EP4130461A4 (en) * 2020-06-15 2023-09-13 Beijing Goldwind Science & Creation Windpower Equipment Co. Ltd. LOAD REDUCTION CONTROL METHOD FOR WIND GENERATOR AND DEVICE

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112412698B (zh) * 2020-11-18 2021-12-21 中国船舶重工集团海装风电股份有限公司 基于轮毂不平衡载荷特征量的独立变桨控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966973A (zh) * 2005-11-18 2007-05-23 通用电气公司 用于风力涡轮制动的方法和设备
EP2256342A1 (de) * 2009-05-28 2010-12-01 Nordex Energy GmbH Verfahren zur Notbremsung einer Windenergieanlage sowie Windenergieanlage mit einer Rotorblattverstellung zur Notbremsung
EP2963286A1 (en) * 2014-07-03 2016-01-06 Hitachi Ltd. Windturbine and method for stopping the same
WO2016091945A1 (de) * 2014-12-12 2016-06-16 Robert Bosch Gmbh Verfahren und vorrichtung zum überwachen einer windenergieanlage
CN106460793A (zh) * 2014-06-19 2017-02-22 维斯塔斯风力系统集团公司 响应于风切变而对风力涡轮机的控制
CN108350861A (zh) * 2015-11-18 2018-07-31 乌本产权有限公司 控制具有可调整的转子叶片的风能设施

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8070439B2 (en) * 2009-10-29 2011-12-06 General Electric Company Systems and methods for testing a wind turbine pitch control system
US8202049B2 (en) * 2010-08-31 2012-06-19 Catch the Wind, Inc. Independent blade pitch control
CN202117846U (zh) * 2011-06-07 2012-01-18 浙江运达风电股份有限公司 一种大型风电机组独立变桨控制装置
US8240991B2 (en) * 2011-06-23 2012-08-14 General Electric Company Method and system for operating a wind turbine
CN102418663B (zh) * 2011-12-29 2013-12-04 一重集团大连设计研究院有限公司 一种用于海上大功率风电机组的变桨系统及控制方法
US9605558B2 (en) * 2013-08-20 2017-03-28 General Electric Company System and method for preventing excessive loading on a wind turbine
CN106968886A (zh) * 2017-05-18 2017-07-21 国电联合动力技术有限公司 一种风电机组的紧急收桨方法
CN108150350A (zh) * 2017-11-24 2018-06-12 南京风电科技有限公司 一种风力发电机组变速率收桨控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1966973A (zh) * 2005-11-18 2007-05-23 通用电气公司 用于风力涡轮制动的方法和设备
EP2256342A1 (de) * 2009-05-28 2010-12-01 Nordex Energy GmbH Verfahren zur Notbremsung einer Windenergieanlage sowie Windenergieanlage mit einer Rotorblattverstellung zur Notbremsung
CN106460793A (zh) * 2014-06-19 2017-02-22 维斯塔斯风力系统集团公司 响应于风切变而对风力涡轮机的控制
EP2963286A1 (en) * 2014-07-03 2016-01-06 Hitachi Ltd. Windturbine and method for stopping the same
WO2016091945A1 (de) * 2014-12-12 2016-06-16 Robert Bosch Gmbh Verfahren und vorrichtung zum überwachen einer windenergieanlage
CN108350861A (zh) * 2015-11-18 2018-07-31 乌本产权有限公司 控制具有可调整的转子叶片的风能设施

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4130461A4 (en) * 2020-06-15 2023-09-13 Beijing Goldwind Science & Creation Windpower Equipment Co. Ltd. LOAD REDUCTION CONTROL METHOD FOR WIND GENERATOR AND DEVICE
EP3961028A1 (en) * 2020-08-28 2022-03-02 Siemens Gamesa Renewable Energy A/S Reduction of a pitch bearing damage
WO2022043144A1 (en) * 2020-08-28 2022-03-03 Siemens Gamesa Renewable Energy A/S Reduction of a pitch bearing damage

Also Published As

Publication number Publication date
CN109139372B (zh) 2020-01-10
CN109139372A (zh) 2019-01-04
US20200340447A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
EP2306003B1 (en) System and methods for controlling a wind turbine
EP3056726B1 (en) System and method for operating a wind turbine based on rotor blade margin
EP2927486B1 (en) Fatigue in wind turbines
CN105971821B (zh) 一种风力发电机组基于风轮推力预估的控制方法
US8096761B2 (en) Blade pitch management method and system
EP3607198B1 (en) Air density dependent turbine operation
US9551321B2 (en) System and method for controlling a wind turbine
US8267651B2 (en) Pitch of blades on a wind power plant
WO2020029324A1 (zh) 一种基于独立变桨的风电机组控制和制动方法
WO2016058115A1 (zh) 一种风力发电机组偏航控制方法及系统
CA2810157C (en) Method of rotor-stall prevention in wind turbines
EP2053240A1 (en) Wind turbine with boundary layer control
US9556850B2 (en) Method of controlling a wind turbine
EP2848805A1 (en) Method of operating a wind turbine
EP3643914B1 (en) System and method for protecting wind turbines from extreme and fatigue loads
EP3514373B1 (en) Twist correction factor for aerodynamic performance map used in wind turbine control
EP3599375A1 (en) System and method for protecting wind turbines during extreme wind direction change
US10669988B2 (en) System and method for operating wind turbines to avoid stall during derating
US11608811B2 (en) System and method for mitigating loads acting on a rotor blade of a wind turbine
EP2927483A1 (en) Noise control in wind turbines
JP6865672B2 (ja) 風力発電装置の評価方法および設計方法
CN103835880B (zh) 基于液压有效阻尼的独立变桨系统及变桨方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929233

Country of ref document: EP

Kind code of ref document: A1