WO2020029304A1 - 一种肿瘤定位方法及装置 - Google Patents

一种肿瘤定位方法及装置 Download PDF

Info

Publication number
WO2020029304A1
WO2020029304A1 PCT/CN2018/100103 CN2018100103W WO2020029304A1 WO 2020029304 A1 WO2020029304 A1 WO 2020029304A1 CN 2018100103 W CN2018100103 W CN 2018100103W WO 2020029304 A1 WO2020029304 A1 WO 2020029304A1
Authority
WO
WIPO (PCT)
Prior art keywords
offset
tumor localization
cumulative
virtual
reference image
Prior art date
Application number
PCT/CN2018/100103
Other languages
English (en)
French (fr)
Inventor
李久良
闫浩
王中亚
Original Assignee
西安大医集团有限公司
深圳市奥沃医学新技术发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安大医集团有限公司, 深圳市奥沃医学新技术发展有限公司 filed Critical 西安大医集团有限公司
Priority to EP18929819.3A priority Critical patent/EP3834883A4/en
Priority to PCT/CN2018/100103 priority patent/WO2020029304A1/zh
Priority to CN201880095527.3A priority patent/CN112384278B/zh
Publication of WO2020029304A1 publication Critical patent/WO2020029304A1/zh
Priority to US17/171,460 priority patent/US11628311B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • A61N5/1049Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
    • A61N2005/1061Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source
    • A61N2005/1062Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam using an x-ray imaging system having a separate imaging source using virtual X-ray images, e.g. digitally reconstructed radiographs [DRR]

Definitions

  • the embodiments of the present application relate to the field of radiation therapy, and in particular, to a tumor localization method and device.
  • Radiation therapy is one of the main methods for treating malignant tumors, which can locate the location of the tumor and use radiation to make cancer cells in that location apoptotic. If there is a deviation in the location of the tumor, not only will the cancer cells not be effectively killed, but the risk of secondary cancer will be increased. Therefore, it is important to accurately locate the location of the tumor before and during radiation therapy.
  • the location of a tumor is guided by X-ray projection image guidance, which specifically includes: using detectors, X-ray bulbs, and other devices to collect X-ray projection images at different angles (for example, 90 degrees), and to collect X-rays collected at different angles
  • the projection images are registered with their corresponding Digitally Reconstructed Radiograph (DRR) images, respectively, to obtain offsets, wherein the DRR images are generated based on computerized tomography (CT) images in the treatment plan.
  • CT computerized tomography
  • the above tumor localization method has at least the following technical problems: when locating the location of the tumor, it is necessary to repeatedly move the treatment bed and repeatedly acquire X-ray projection images of different angles, which not only takes a long time, affects the user's treatment experience, and shortens The service life of the treatment table and detectors, bulbs and other components.
  • the present application provides a tumor localization method and device, which solves the problem of long time consuming due to repeated movement of the treatment bed and repeated acquisition of X-ray projection images of different angles, and shortening of the service life of the treatment bed and detectors, bulbs and other devices. .
  • the present application provides a tumor localization method.
  • the method may include: acquiring projection images of a tumor at different angles, registering the projection image with a reference image to obtain a first offset, and according to the first offset
  • a reference image is regenerated according to the first offset
  • the projection image is registered with the regenerated reference image to obtain a second offset.
  • a first cumulative offset is output, and the first cumulative offset is the sum of the first offset and the second offset.
  • the method may further include: determining a first cumulative offset.
  • the method may further include: when determining that a virtual re-acquisition operation needs to be performed according to the second offset, according to the first cumulative offset Regenerate a reference image, and register the projected image with the regenerated reference image to obtain a third offset; when it is determined according to the third offset that a virtual re-acquisition operation is not required, output a second cumulative offset,
  • the second cumulative offset is the sum of the first offset, the second offset, and the third offset.
  • the method may further include: determining a second cumulative offset.
  • determining that a virtual re-acquisition operation needs to be performed may specifically include: the offset is not within a preset offset range, or the operation is received The user determines an instruction for performing a virtual re-acquisition operation according to the offset; the offset is the first offset, the second offset, or the third offset.
  • the method may further include: displaying the cumulative offset, the cumulative offset being the first cumulative offset Shift or second cumulative offset.
  • generating a reference image may specifically include: generating a reference image using a preset algorithm according to an offset and pre-stored geometric information; the offset Is the first offset, the first cumulative offset, or the second cumulative offset.
  • the method may further include: acquiring a reference image.
  • the tumor localization device may include: an acquisition unit, a registration unit, a determination unit, a generation unit, and an output unit; the acquisition unit is configured to acquire projection images of the tumor at different angles; A registration unit for registering the projection image with a reference image to obtain a first offset; a determination unit for determining that a virtual re-acquisition operation needs to be performed according to the first offset; a generating unit for using the first When the offset is determined to need to perform a virtual re-acquisition operation, a reference image is regenerated based on the first offset; the registration unit is further configured to register the projection image with the regenerated reference image to obtain a second offset; The determining unit is further configured to determine that a virtual re-sampling operation is not required to be performed according to the second offset; and the output unit is configured to output the first cumulative offset when it is determined that the virtual re-sampling operation is not required to be performed according to the second offset,
  • the first cumulative offset is the
  • the determining unit is further configured to determine a first cumulative offset.
  • the determining unit is further configured to determine that a virtual re-acquisition operation needs to be performed according to the second offset; the generating unit is further configured to perform When the offset is determined to need to perform a virtual re-acquisition operation, the reference image is regenerated based on the first cumulative offset; the registration unit is further configured to register the projection image with the regenerated reference image to obtain a third offset ; The determining unit is further configured to determine that a virtual re-acquisition operation is not required to be performed according to the third offset; the output unit is further configured to output a second cumulative offset when the virtual re-acquisition operation is not required to be performed according to the third offset The second cumulative offset is the sum of the first offset, the second offset, and the third offset.
  • the determining unit is further configured to determine a second cumulative offset.
  • the determining unit is specifically configured to: the offset is not within a preset offset range, or the operator determines that An indication that a virtual resampling operation needs to be performed; the offset is the first offset, the second offset, or the third offset.
  • the tumor localization device further includes: a display unit; a display unit for displaying a cumulative offset, where the cumulative offset is the first cumulative offset Shift or second cumulative offset.
  • the generating unit is specifically configured to: use a preset algorithm to generate a reference image according to the offset and the pre-stored geometric information; the offset is the first An offset, a first cumulative offset, or a second cumulative offset.
  • a tumor localization device includes at least one processor, a memory, a communication interface, and a communication bus.
  • the processor is connected to the memory and the communication interface through a communication bus.
  • the memory is used to store computer execution instructions.
  • the processor executes the computer execution instructions stored in the memory to make the tumor localization device execute the first aspect or Methods for tumor localization in possible implementations of aspects.
  • a computer storage medium is stored on which computer-executable instructions are stored.
  • the computer is caused to execute the tumor localization method as in the first aspect or a possible implementation manner of the first aspect. .
  • the tumor localization device after the tumor localization device registers the projection image with the reference image to obtain the first offset, it can regenerate the reference according to the first offset when it is determined that a virtual re-acquisition operation is required Image, and registering the projected image with the regenerated reference image to obtain a second offset.
  • the first offset and the second offset are output. The sum of the quantities is to output the first cumulative offset in order to move the treatment bed according to the first cumulative offset.
  • the time for repeatedly generating the reference image is less than the time for repeatedly acquiring the X-ray projection images of different angles, and the tumor position correction is performed only once in this application (for example, the treatment bed is moved only once), the tumor is collected only once in Compared with the conventional technology of repeatedly moving the treatment bed and repeatedly acquiring X-ray projection images of different angles, it not only shortens the tumor localization time, but also extends the treatment bed and detectors, bulbs and other devices. Service life.
  • FIG. 1 is a schematic structural diagram of a tumor localization device according to an embodiment of the present application.
  • FIG. 2 is a flowchart of a tumor localization method according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another tumor localization device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of another tumor localization device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another tumor localization device according to an embodiment of the present application.
  • FIG. 1 is a schematic composition diagram of a tumor localization device according to an embodiment of the present application.
  • the tumor localization device may include at least one processor 11, a memory 12, a communication interface 13, and a communication bus 14.
  • the processor 11 is a control center of the tumor localization device, and may be a processor or a collective name of a plurality of processing elements.
  • the processor 11 is a central processing unit (CPU), may also be a specific integrated circuit (Application Specific Integrated Circuit, ASIC), or one or more integrated circuits configured to implement the embodiments of the present application.
  • CPU central processing unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital signal processors
  • FPGAs field programmable gate arrays
  • the processor 11 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 1.
  • the tumor localization device may include multiple processors, such as the processor 11 and the processor 15 shown in FIG. 1.
  • processors can be a single-core processor (Single-CPU) or a multi-core processor (Multi-CPU).
  • a processor herein may refer to one or more devices, circuits, and / or processing cores for processing data (such as computer program instructions).
  • the memory 12 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, a random access memory (Random Access Memory, RAM), or other types that can store information and instructions
  • the dynamic storage device can also be Electrically Erasable Programmable Read-Only Memory (EEPROM), Compact Disc (Read-Only Memory, CD-ROM) or other optical disk storage, optical disk storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), disk storage media or other magnetic storage devices, or can be used to carry or store desired program code in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 12 may exist independently, and is connected to the processor 11 through a communication bus 14.
  • the memory 12 may also be integrated with the processor 11.
  • the memory 12 is configured to store data in the present application and a software program for executing the present application.
  • the processor 11 can execute various functions of the tumor localization device by running or executing a software program stored in the memory 12 and calling data stored in the memory 12.
  • the communication interface 13 uses any device such as a transceiver to communicate with other devices or communication networks, such as a control system, a radio access network (RAN), a wireless local area network (WLAN), etc. .
  • the communication interface 13 may include a receiving unit to implement a receiving function, and a transmitting unit to implement a transmitting function.
  • the communication bus 14 may be an Industry Standard Architecture (ISA) bus, an External Component Interconnect (PCI) bus, or an Extended Industry Standard Architecture (EISA) bus.
  • ISA Industry Standard Architecture
  • PCI External Component Interconnect
  • EISA Extended Industry Standard Architecture
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 1, but it does not mean that there is only one bus or one type of bus.
  • an embodiment of the present application provides a tumor localization
  • the method may include:
  • the tumor localization device can obtain a reference image and acquire projection images of the tumor at different angles according to the pre-stored geometric information, wherein the geometric information includes angle information used to acquire the projection image.
  • the projection image may be a two-dimensional image, such as a KV-level X-ray projection image, or a three-dimensional image, such as a three-dimensional image generated by reconstructing a two-dimensional image of a tumor at different angles.
  • a tumor localization device is used to collect a KV-level X-ray projection image of a tumor at two angles as an example for description.
  • the tumor localization device may acquire KV-level X-rays at two angles in the following two ways: Projected image:
  • the tumor localization device may control the flat-panel detector to acquire a KV-level X-ray projection image at a first angle according to the first angle information included in the geometric information, and according to the second angle information , Control the flat-panel detector to rotate randomly to a second angle, and collect KV-level X-ray projection images at the second angle.
  • the tumor localization device may control the first flat panel detector to acquire a KV-level X-ray projection image at a first angle according to the first angle information included in the geometric information, and according to the first Two-angle information (set a preset angle with the first angle, such as 90 degrees), control the second flat panel detector to collect KV-level X-ray projection images at the second angle, so as to obtain KV-level X-rays at two angles Projected image.
  • the tumor localization device can register the projection image with the reference image to obtain the first offset.
  • the reference image may be a CT image in a treatment plan, a two-dimensional DRR image, an MRI image, or a PET image generated based on the CT image and one-to-one correspondence with projection images at different angles.
  • the tumor localization device when the reference image is a CT image, registers the reference image and the projection image to obtain a first offset. Specifically, the tumor localization device will collect the tumors at different angles. The projection image is reconstructed to obtain a target image, the dimension of the target image is the same as the dimension of the CT image, and the CT image and the target image are registered to obtain a first offset.
  • the reference image is a DRR image
  • the tumor localization device registers the reference image and the projection image to obtain a first offset. Specifically, the tumor localization device registers projection images of different angles with respective corresponding DRR images. To obtain the two-dimensional offsets of different angles, and calculate the first offset according to the two-dimensional offsets of different angles.
  • the first offset can be three-dimensional, four-dimensional, five-dimensional, and six-dimensional offsets. Any of them.
  • the tumor localization device can determine whether to perform a virtual re-acquisition operation according to the first offset.
  • the tumor localization device can use both automatic and manual methods to determine whether a virtual re-sampling operation needs to be performed.
  • the tumor localization device may perform the following step 205 when receiving an instruction that the operator determines that a virtual re-sampling operation is required according to the first offset; upon receiving the operator determining that virtual execution is not required according to the first offset When the operation is repeated, the following step 204 is performed.
  • the tumor localization device can determine whether the first offset is within the preset offset range. If the first offset is within the preset offset range, it is determined that a virtual re-sampling operation is not required. The following step 204 may be performed. If the first offset is not within the preset offset range, it is determined that a virtual re-acquisition operation needs to be performed. At this time, the following step 205 may be performed.
  • the tumor localization device may output a first offset and perform tumor position correction according to the first offset, such as controlling a mobile treatment bed.
  • a reference image is generated again according to the first offset.
  • the tumor localization device when it determines that a virtual re-acquisition operation needs to be performed according to the first offset, it may generate a reference image by using a preset algorithm according to the first offset and the pre-stored geometric information. For example, when the reference image is a DRR image, the tumor localization device may use the DRR algorithm to generate DRR images corresponding to the projection images at different angles according to the first offset, the CT image, and the pre-stored geometric information.
  • the tumor localization device may register the projection image collected in step 201 with the generated reference image in the manner of step 202 to obtain a second offset amount, and determine a first accumulated offset amount, the first accumulated offset amount. Is the sum of the first offset and the second offset. Then, according to the method of step 203, it is determined whether a virtual re-acquisition operation needs to be performed according to the second offset. If it is determined according to the second offset that it is not necessary to perform a virtual re-acquisition operation, the tumor localization device may output the first cumulative offset in a display manner.
  • the tumor localization device may regenerate a reference image according to the first cumulative offset, and register the projection image with the regenerated reference image to obtain a third offset And determine a second cumulative offset that is the sum of the first, second, and third offsets.
  • the tumor localization device may output the second cumulative offset in a display manner.
  • a reference image is regenerated based on the second cumulative offset, and the projection image is registered with the regenerated reference image to obtain a fourth offset. , In this cycle.
  • the tumor localization device can generate two DRR images according to the CT image in the treatment plan and preset geometric information. And collect two KV-level X-ray projection images that are approximately orthogonal, and register the KV-level X-ray projection images acquired at two angles with their corresponding DRR images, respectively, to obtain a first offset and offset the first offset.
  • the displacement is cumulatively displayed (the initial offset is accumulated with the zero offset to obtain the cumulative offset), and according to the first offset, it is determined whether a virtual re-acquisition operation needs to be performed.
  • the tumor localization device If it is not necessary to perform a virtual re-acquisition operation, the tumor localization device outputs a first offset to the control system to control the mobile treatment bed. If a virtual re-acquisition operation is required, two DRRs can be regenerated according to the first offset Image, and register the KV-level X-ray projection images acquired at two angles with the corresponding, regenerated DRR images, respectively, to obtain a second offset, determine and display the first cumulative offset, that is, the first offset Sum of displacement and second offset. The tumor localization device may then continue to determine whether a virtual re-acquisition operation is required based on the second offset. If the virtual re-acquisition operation is not required, the first cumulative offset is output in a displayed manner. In operation, the DRR image is regenerated according to the first cumulative offset, and is repeated in this cycle.
  • the tumor localization device after the tumor localization device registers the projection image with the reference image to obtain the first offset, it can regenerate the reference based on the first offset when it is determined that a virtual reacquisition operation needs to be performed.
  • Image and registering the projected image with the regenerated reference image to obtain a second offset.
  • the first offset and the second offset are output. The sum of the quantities is to output the first cumulative offset in order to move the treatment bed according to the first cumulative offset.
  • the time for repeatedly generating the reference image is less than the time for repeatedly acquiring the X-ray projection images of different angles, and the tumor position correction is performed only once in this application (for example, the treatment bed is moved only once), the tumor is collected only once in Compared with the conventional technology of repeatedly moving the treatment bed and repeatedly acquiring X-ray projection images of different angles, it not only shortens the tumor localization time, but also extends the treatment bed and detectors, bulbs and other devices. Service life.
  • the tumor localization device determines that a virtual reacquisition operation needs to be performed according to the offset amount, a reference image is generated according to the accumulated offset amount, and the projection image is registered with the generated reference image.
  • the cumulative offset is taken into account when the tumor localization device generates a reference image.
  • the displacement includes not only the offset information in the X, Y, and Z directions, but also the angle information.
  • the angle information contained in the offset cannot be accurately compensated.
  • the cumulative offset based on the moving three-dimensional bed in the embodiment of the application is more accurate than the offset in the prior art, thereby improving the accuracy of tumor localization.
  • the tumor localization device includes a hardware structure and / or a software module corresponding to each function.
  • the present invention can be implemented in hardware or a combination of hardware and computer software in combination with the algorithm steps of the examples described in the embodiments disclosed herein. Whether a certain function is performed by hardware or computer software-driven hardware depends on the specific application of the technical solution and design constraints. A person skilled in the art can use different methods to implement the described functions for each specific application, but such implementation should not be considered to be beyond the scope of the present invention.
  • each functional module may be divided corresponding to each function, or two or more functions may be integrated into one processing module.
  • the above integrated modules may be implemented in the form of hardware or software functional modules. It should be noted that the division of the modules in the embodiments of the present application is schematic, and is only a logical function division. In actual implementation, there may be another division manner.
  • FIG. 3 shows another possible composition diagram of the tumor localization device involved in the above embodiment.
  • the tumor localization device may include: The unit 31, the registration unit 32, the determination unit 33, the generation unit 34, and the output unit 35.
  • the acquisition unit 31 is configured to support the tumor localization device to perform step 201 in the tumor localization method shown in FIG. 2.
  • the registration unit 32 is configured to support the tumor localization device to execute step 202 in the tumor localization method shown in FIG. 2.
  • a determining unit 33 is configured to support the tumor localization device to perform the first offset according to step 204 in the tumor localization method shown in FIG. 2 to determine that a virtual re-acquisition operation is not required to be performed, and the first offset according to step 205 is not required.
  • the displacement determines the need for a virtual reclamation operation.
  • the generating unit 34 is configured to support the tumor localization device to execute the tumor localization method shown in step 205 in the tumor localization method to regenerate the reference image according to the first offset.
  • the output unit 35 is configured to support the tumor localization device to output the first cumulative offset or output the second cumulative offset in the tumor localization method shown in FIG. 2.
  • the tumor localization device may further include a display unit 36 and an acquisition unit 37.
  • the display unit 36 is configured to support the tumor localization device to perform the display of the cumulative offset described in step 204 in the tumor localization method shown in FIG. 2.
  • the obtaining unit 37 is configured to support the tumor localization device to execute a reference image obtained in the tumor localization method shown in FIG. 2.
  • the tumor localization device provided in the embodiment of the present application is configured to execute the above-mentioned tumor localization method, and therefore the same effect as the above-mentioned tumor localization method can be achieved.
  • FIG. 5 shows another possible composition diagram of the tumor localization device involved in the above embodiment.
  • the tumor localization device includes a processing module 41, a communication module 42, and a storage module 43.
  • the processing module 41 is used to control and manage the actions of the tumor localization device.
  • the processing module 41 is used to support the tumor localization device to perform steps 201, 202, 203, 204, 205, and / or in FIG. 2.
  • the communication module 42 is used to support the tumor localization device and other network entities.
  • the storage module 43 is configured to store program codes and data of the tumor localization device.
  • the processing module 41 may be a processor in FIG. 1. It may implement or execute various exemplary logical blocks, modules, and circuits described in connection with the present disclosure. A processor may also be a combination that implements computing functions, such as a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the communication module 42 may be a communication interface in FIG. 1.
  • the storage module 43 may be a memory in FIG. 1.
  • the disclosed apparatus and method may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the modules or units is only a logical function division.
  • multiple units or components may be divided.
  • the combination can either be integrated into another device, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may be one physical unit or multiple physical units, that is, may be located in one place, or may be distributed to multiple different places. . Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or in the form of software functional unit.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a readable storage medium.
  • the technical solution of the embodiments of the present application is essentially a part that contributes to the existing technology or all or part of the technical solution may be embodied in the form of a software product that is stored in a storage medium.
  • the instructions include a number of instructions for causing a device (which can be a single-chip microcomputer, a chip, or the like) or a processor to perform all or part of the steps of the method described in each embodiment of the present invention.
  • the foregoing storage medium includes various media that can store program codes, such as a U disk, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

一种肿瘤定位方法及装置,该方法包括:采集肿瘤在不同角度的投影图像(201);将投影图像与基准图像进行配准,得到第一偏移量(202);根据第一偏移量确定需要执行虚拟重采操作时,根据第一偏移量重新产生基准图像(205);并将投影图像与重新产生的基准图像进行配准,得到第二偏移量;根据第二偏移量确定不需要执行虚拟重采操作时,输出第一累积偏移量,该第一累积偏移量为第一偏移量与第二偏移量的和。该方法涉及放射治疗领域,用于肿瘤定位中,解决了由于反复移动治疗床,重复采集不同角度的X光投影图像导致耗时较长,治疗床以及探测器、球管等器件的使用寿命缩小的问题。

Description

一种肿瘤定位方法及装置 技术领域
本申请实施例涉及放射治疗领域,尤其涉及一种肿瘤定位方法及装置。
背景技术
放射治疗是治疗恶性肿瘤的主要手段之一,其可以定位肿瘤的位置,并利用放射线使该位置的癌症细胞凋亡。若在定位肿瘤的位置时产生偏差,则不仅会导致癌症细胞不能被有效杀灭,且会增加二次癌的风险,因此在放射治疗前和放射治疗过程中精确定位肿瘤的位置至关重要。
通常,通过X光投影图像引导来定位肿瘤的位置,具体包括:利用探测器、X光球管等器件,在不同角度(例如90度)分别采集X光投影图像,将不同角度采集的X光投影图像分别与各自对应的数字重建投影(Digitally Reconstructed Radiograph,DRR)图像进行配准,得到偏移量,其中,DRR图像是根据治疗计划中的计算机断层扫描(Computed Tomography,CT)图像生成的。若该偏移量未在预设范围内,则根据该偏移量移动治疗床。移动后,重新在不同角度采集X光投影图像,并与各自对应的DRR图像进行配准,得到新的偏移量,若该新的偏移量仍未在预设范围内,则继续移动治疗床,并重新在不同角度采集X光投影图像,获得新的偏移量,直到新的偏移量在预设范围内为止。
上述肿瘤定位方法至少存在以下技术问题:在定位肿瘤的位置时,需要反复移动治疗床,并重复采集不同角度的X光投影图像,这样不仅耗时较长,影响用户的治疗体验,且会缩短治疗床以及探测器、球管等器件的使用寿命。
发明内容
本申请提供一种肿瘤定位方法及装置,解决了由于反复移动治疗床,重复采集不同角度的X光投影图像导致耗时较长,治疗床以及探测器、球管等器件的使用寿命缩小的问题。
为达到上述目的,本申请采用如下技术方案:
第一方面,本申请提供一种肿瘤定位方法,该方法可以包括:采集肿 瘤在不同角度的投影图像,将投影图像与基准图像进行配准,得到第一偏移量,根据第一偏移量确定需要执行虚拟重采操作时,根据第一偏移量重新产生基准图像,并将投影图像与重新产生的基准图像进行配准,得到第二偏移量,根据第二偏移量确定不需要执行虚拟重采操作时,输出第一累积偏移量,该第一累积偏移量为第一偏移量与第二偏移量的和。
结合第一方面,在一种可能的实现方式中,得到第二偏移量之后,所述方法还可以包括:确定第一累积偏移量。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,所述方法还可以包括:根据第二偏移量确定需要执行虚拟重采操作时,根据第一累积偏移量重新产生基准图像,并将投影图像与重新产生的基准图像进行配准,得到第三偏移量;根据第三偏移量确定不需要执行虚拟重采操作时,输出第二累积偏移量,第二累积偏移量为第一偏移量、第二偏移量和第三偏移量的和。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,得到第三偏移量之后,所述方法还可以包括:确定第二累积偏移量。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,确定需要执行虚拟重采操作具体的可以包括:偏移量不在预设偏移量范围内,或者,接收到操作者根据偏移量确定需要执行虚拟重采操作的指示;偏移量为第一偏移量、第二偏移量或第三偏移量。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,确定累积偏移量之后,所述方法还可以包括:显示累积偏移量,累积偏移量为第一累积偏移量或第二累积偏移量。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,产生基准图像具体的可以包括:根据偏移量和预存的几何信息,采用预设算法产生基准图像;偏移量为第一偏移量、第一累积偏移量或第二累积偏移量。
结合第一方面和上述可能的实现方式,在另一种可能的实现方式中,采集肿瘤在不同角度的投影图像之前,所述方法还可以包括:获取基准图像。
第二方面,本申请提供一种肿瘤定位装置,该肿瘤定位装置可以包括:采集单元、配准单元、确定单元、生成单元和输出单元;采集单元,用于 采集肿瘤在不同角度的投影图像;配准单元,用于将投影图像与基准图像进行配准,得到第一偏移量;确定单元,用于根据第一偏移量确定需要执行虚拟重采操作;生成单元,用于根据第一偏移量确定需要执行虚拟重采操作时,根据第一偏移量重新产生基准图像;配准单元,还用于将投影图像与重新产生的基准图像进行配准,得到第二偏移量;确定单元,还用于根据第二偏移量确定不需要执行虚拟重采操作;输出单元,用于根据第二偏移量确定不需要执行虚拟重采操作时,输出第一累积偏移量,第一累积偏移量为第一偏移量与第二偏移量的和。
结合第二方面,在一种可能的实现方式中,确定单元,还用于确定第一累积偏移量。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,确定单元,还用于根据第二偏移量确定需要执行虚拟重采操作;生成单元,还用于根据第二偏移量确定需要执行虚拟重采操作时,根据第一累积偏移量重新产生基准图像;配准单元,还用于将投影图像与重新产生的基准图像进行配准,得到第三偏移量;确定单元,还用于根据第三偏移量确定不需要执行虚拟重采操作;输出单元,还用于根据第三偏移量确定不需要执行虚拟重采操作时,输出第二累积偏移量,第二累积偏移量为第一偏移量、第二偏移量和第三偏移量的和。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,确定单元,还用于确定第二累积偏移量。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,确定单元具体用于:偏移量不在预设偏移量范围内,或者,接收到操作者根据偏移量确定需要执行虚拟重采操作的指示;偏移量为第一偏移量、第二偏移量或第三偏移量。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,肿瘤定位装置还包括:显示单元;显示单元,用于显示累积偏移量,累积偏移量为第一累积偏移量或第二累积偏移量。
结合第二方面和上述可能的实现方式,在另一种可能的实现方式中,生成单元具体用于:根据偏移量和预存的几何信息,采用预设算法产生基准图像;偏移量为第一偏移量、第一累积偏移量或第二累积偏移量。
具体的实现方式可以参考第一方面或第一方面的可能的实现方式提供 的肿瘤定位方法中肿瘤定位装置的行为功能。
第三方面,提供一种肿瘤定位装置,该肿瘤定位装置包括:至少一个处理器、存储器、通信接口和通信总线。处理器与存储器、通信接口通过通信总线连接,存储器用于存储计算机执行指令,当肿瘤定位装置运行时,处理器执行存储器存储的计算机执行指令,以使肿瘤定位装置执行如第一方面或第一方面的可能的实现方式中的肿瘤定位方法。
第四方面,提供一种计算机存储介质,其上存储有计算机执行指令,当计算机执行指令在计算机上运行时,使得计算机执行如第一方面或第一方面的可能的实现方式中的肿瘤定位方法。
本申请提供的肿瘤定位方法,肿瘤定位装置在将投影图像与基准图像进行配准,得到第一偏移量后,可以在确定需要执行虚拟重采操作时,根据第一偏移量重新产生基准图像,并将投影图像与重新产生的基准图像进行配准,得到第二偏移量,根据第二偏移量确定不需要执行虚拟重采操作时,输出第一偏移量与第二偏移量的和,即输出第一累积偏移量,以便根据第一累积偏移量移动治疗床。这样,由于重复产生基准图像使用的时间小于重复采集不同角度的X光投影图像的时间,且本申请中仅进行一次肿瘤位置校正(如仅移动了一次治疗床),仅采集了一次肿瘤在不同角度的投影图像,因此与现有技术的反复移动治疗床,重复采集不同角度的X光投影图像相比,不仅减短了肿瘤定位时间,而且延长了治疗床以及探测器、球管等器件的使用寿命。
附图说明
图1为本申请实施例提供的一种肿瘤定位装置的组成示意图;
图2为本申请实施例提供的一种肿瘤定位方法的流程图;
图3为本申请实施例提供的另一种肿瘤定位装置的组成示意图;
图4为本申请实施例提供的另一种肿瘤定位装置的组成示意图;
图5为本申请实施例提供的另一种肿瘤定位装置的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本申请实施例提供的一种肿瘤定位装置的组成示意图,如图1所示,该肿瘤定位装置可以包括:至少一个处理器11、存储器12、通信接口13和通信总线14。
下面结合图1对肿瘤定位装置的各个构成部件进行具体的介绍:
其中,处理器11是肿瘤定位装置的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器11是一个中央处理器(Central Processing Unit,CPU),也可以是特定集成电路(Application Specific Integrated Circuit,ASIC),或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个数字信号处理器(Digital Signal Processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)。
在具体的实现中,作为一种实施例,处理器11可以包括一个或多个CPU,例如图1中所示的CPU0和CPU1。且,作为一种实施例,肿瘤定位装置可以包括多个处理器,例如图1中所示的处理器11和处理器15。这些处理器中的每一个可以是一个单核处理器(Single-CPU),也可以是一个多核处理器(Multi-CPU)。这里的处理器可以指一个或多个设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
存储器12可以是只读存储器(Read-Only Memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(Random Access Memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器12可以是独立存在,通过通信总线14与处理器11相连接。存储器12也可以和处理器11集成在一起。
在具体的实现中,存储器12,用于存储本申请中的数据和执行本申请 的软件程序。处理器11可以通过运行或执行存储在存储器12内的软件程序,以及调用存储在存储器12内的数据,执行肿瘤定位装置的各种功能。
通信接口13,使用任何收发器一类的装置,用于与其他设备或通信网络通信,如控制系统、无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口13可以包括接收单元实现接收功能,以及发送单元实现发送功能。
通信总线14,可以是工业标准体系结构(Industry Standard Architecture,ISA)总线、外部设备互连(Peripheral Component Interconnect,PCI)总线或扩展工业标准体系结构(Extended Industry Standard Architecture,EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图1中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
为了解决由于反复移动治疗床,重复采集不同角度的X光投影图像导致耗时较长,治疗床以及探测器、球管等器件的使用寿命缩小的问题,本申请实施例提供了一种肿瘤定位方法,如图2所示,该方法可以包括:
201、采集肿瘤在不同角度的投影图像。
其中,当需要进行肿瘤定位时,肿瘤定位装置可以获取基准图像,并根据预存的几何信息,采集肿瘤在不同角度的投影图像,其中,几何信息中包括用于采集投影图像的角度信息。在具体的实现中,投影图像可以为二维图像,例如KV级X光投影图像,也可以为三维图像,例如肿瘤在不同角度下的二维图像进行重建后生成的三维图像。
在本申请实施例中,以肿瘤定位装置采集肿瘤在两个角度的KV级X光投影图像为例进行说明,具体的,肿瘤定位装置可以采用以下两种方式采集两个角度的KV级X光投影图像:
方式1,在采用单个平板探测器的情况下,肿瘤定位装置可以根据几何信息包括的第一角度信息,控制平板探测器采集第一角度下的KV级X光投影图像,并根据第二角度信息,控制平板探测器随机架旋转至第二角度,采集第二角度下的KV级X光投影图像。
方式2,在采用双平板探测器的情况下,肿瘤定位装置可以根据几何信息包括的第一角度信息,控制第一个平板探测器采集第一角度下的KV级X光投影图像,并根据第二角度信息(与第一角度成预设夹角,如90度),控制第二个平板探测器采集在第二角度下的KV级X光投影图像,从而得 到两个角度的KV级X光投影图像。
202、将投影图像与基准图像进行配准,得到第一偏移量。
其中,肿瘤定位装置在获取到基准图像,并采集到肿瘤在不同角度的投影图像之后,可以将投影图像与基准图像进行配准,得到第一偏移量。其中,基准图像可以为治疗计划中的CT图像,根据CT图像生成的、与不同角度的投影图像一一对应的二维DRR图像、MRI图像或PET图像等。
例如,在具体的实现中,当基准图像为CT图像时,肿瘤定位装置将基准图像和投影图像进行配准,得到第一偏移量,具体为:肿瘤定位装置将采集的肿瘤在不同角度的投影图像进行重建,得到目标图像,该目标图像的维数与CT图像的维数相同,并将CT图像与目标图像进行配准,得到第一偏移量。当基准图像为DRR图像时,肿瘤定位装置将基准图像和投影图像进行配准,得到第一偏移量,具体为:肿瘤定位装置将不同角度的投影图像分别与各自对应的DRR图像进行配准,得到不同角度的二维偏移量,并根据不同角度的二维偏移量,计算第一偏移量,该第一偏移量可以为三维、四维、五维、六维偏移量中的任意一种。
203、根据第一偏移量,判断是否需要执行虚拟重采操作。
其中,肿瘤定位装置在得到第一偏移量之后,可以根据该第一偏移量,判断是否需要执行虚拟重采操作。在具体的实现中,肿瘤定位装置可以采用自动和手动两种方式,判断是否需要执行虚拟重采操作。
手动方式:肿瘤定位装置可以在接收到操作者根据第一偏移量确定需要执行虚拟重采操作的指示时,执行以下步骤205;在接收到操作者根据第一偏移量确定不需要执行虚拟重采操作的指示时,执行以下步骤204。
自动方式:肿瘤定位装置可以判断第一偏移量是否在预设偏移量范围内,若第一偏移量在预设偏移量范围内,则确定不需要执行虚拟重采操作,此时可以执行以下步骤204,若第一偏移量不在预设偏移量范围内时,则确定需要执行虚拟重采操作,此时可以执行以下步骤205。
204、根据第一偏移量确定不需要执行虚拟重采操作时,输出第一偏移量。
其中,肿瘤定位装置确定不需要执行虚拟重采操作时,可以输出第一偏移量,并根据第一偏移量,进行肿瘤位置校正,例如控制移动治疗床。
205、根据第一偏移量确定需要执行虚拟重采操作时,根据第一偏移量 重新产生基准图像。
其中,肿瘤定位装置根据第一偏移量确定需要执行虚拟重采操作时,可以根据第一偏移量和预存的几何信息,采用预设算法产生基准图像。例如,当基准图像为DRR图像时,肿瘤定位装置可以根据第一偏移量、CT图像和预存的几何信息,采用DRR算法产生与不同角度的投影图像一一对应的DRR图像。
且,肿瘤定位装置可以按照步骤202的方式将步骤201采集的投影图像与产生的基准图像进行配准,得到第二偏移量,并确定第一累积偏移量,该第一累积偏移量为第一偏移量与第二偏移量的和。然后按照步骤203的方式根据第二偏移量,判断是否需要执行虚拟重采操作。若根据第二偏移量确定不需要执行虚拟重采操作,则肿瘤定位装置可以以显示的方式输出第一累积偏移量。若根据第二偏移量确定需要执行虚拟重采操作,则肿瘤定位装置可以根据第一累积偏移量重新产生基准图像,并将投影图像与重新产生的基准图像进行配准,得到第三偏移量,并确定第二累积偏移量,该第二累积偏移量为第一偏移量、第二偏移量和第三偏移量的和。肿瘤定位装置根据第三偏移量确定不需要执行虚拟重采操作时,可以以显示的方式输出第二累积偏移量。肿瘤定位装置根据第三偏移量确定需要执行虚拟重采操作时,根据第二累积偏移量重新产生基准图像,并将投影图像与重新产生的基准图像进行配准,得到第四偏移量,以此循环往复。
以下将举示例说明上述方法,假设投影图像为KV级X光投影图像,基准图像为DRR图像,那么肿瘤定位装置可以根据治疗计划中的CT图像,以及预设的几何信息产生两个DRR图像,并采集近似正交的两个KV级X光投影图像,将两个角度采集的KV级X光投影图像分别与各自对应的DRR图像进行配准,得到第一偏移量,并对第一偏移量进行累计显示(初始时第一偏移量与零偏移量进行累积得到累积偏移量),根据第一偏移量,判断是否需要执行虚拟重采操作。若不需要执行虚拟重采操作,则肿瘤定位装置输出第一偏移量到控制系统,来控制移动治疗床,若需要执行虚拟重采操作,则可以根据第一偏移量重新产生两个DRR图像,并将两个角度采集的KV级X光投影图像分别与对应的、重新产生的DRR图像进行配准,得到第二偏移量,确定并显示第一累积偏移量,即第一偏移量与第二偏移量之和。然后肿瘤定位装置可以继续根据第二偏移量,判断是否需要执行虚拟重采操作,若不需要执行虚拟重采操作,则以显示的方式输出第一累积 偏移量,若需要执行虚拟重采操作,则根据第一累积偏移量重新产生DRR图像,并以此循环往复。
本申请提供的肿瘤定位方法,肿瘤定位装置在将投影图像与基准图像进行配准,得到第一偏移量后,可以在确定需要执行虚拟重采操作时,根据第一偏移量重新产生基准图像,并将投影图像与重新产生的基准图像进行配准,得到第二偏移量,根据第二偏移量确定不需要执行虚拟重采操作时,输出第一偏移量与第二偏移量的和,即输出第一累积偏移量,以便根据第一累积偏移量移动治疗床。这样,由于重复产生基准图像使用的时间小于重复采集不同角度的X光投影图像的时间,且本申请中仅进行一次肿瘤位置校正(如仅移动了一次治疗床),仅采集了一次肿瘤在不同角度的投影图像,因此与现有技术的反复移动治疗床,重复采集不同角度的X光投影图像相比,不仅减短了肿瘤定位时间,而且延长了治疗床以及探测器、球管等器件的使用寿命。
并且,肿瘤定位装置根据偏移量确定需要执行虚拟重采操作时,根据累积偏移量产生基准图像,并将投影图像与产生的基准图像进行配准。这样,在治疗床为三维床,偏移量为四维、五维、六维偏移量中的任意一种的情况下,由于肿瘤定位装置产生基准图像时考虑了累积偏移量,该累积偏移量不仅包含了X、Y、Z方向的偏移信息,且包含角度信息,而现有技术中在反复移动三维床的过程中,无法准确补偿偏移量中包含的角度信息,因此,本申请实施例中移动三维床依据的累积偏移量比现有技术的偏移量更准确,从而提升了肿瘤定位的精确度。
上述主要从肿瘤定位装置对本申请实施例提供的方案进行了介绍。可以理解的是,肿瘤定位装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的算法步骤,本发明能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
本申请实施例可以根据上述方法示例对肿瘤定位装置进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个 以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用对应各个功能划分各个功能模块的情况下,图3示出了上述实施例中涉及的肿瘤定位装置的另一种可能的组成示意图,如图3所示,该肿瘤定位装置可以包括:采集单元31、配准单元32、确定单元33、生成单元34和输出单元35。
其中,采集单元31,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的步骤201。
配准单元32,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的步骤202。
确定单元33,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的步骤204所述的根据第一偏移量确定不需要执行虚拟重采操作、步骤205所述的根据第一偏移量确定需要执行虚拟重采操作。
生成单元34,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的步骤205所述的根据第一偏移量重新产生基准图像。
输出单元35,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的输出第一累积偏移量,或输出第二累积偏移量。
进一步的,在本申请实施例中,如图4所示,肿瘤定位装置还可以包括:显示单元36和获取单元37。
显示单元36,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的步骤204所述的显示累积偏移量。
获取单元37,用于支持肿瘤定位装置执行图2所示的肿瘤定位方法中的获取基准图像。
需要说明的是,上述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
本申请实施例提供的肿瘤定位装置,用于执行上述肿瘤定位方法,因此可以达到与上述肿瘤定位方法相同的效果。
在采用集成的单元的情况下,图5示出了上述实施例中所涉及的肿瘤 定位装置的另一种可能的组成示意图。如图5所示,该肿瘤定位装置包括:处理模块41、通信模块42和存储模块43。
处理模块41用于对肿瘤定位装置的动作进行控制管理,例如,处理模块41用于支持肿瘤定位装置执行图2中的步骤201、步骤202、步骤203、步骤204、步骤205,和/或用于本文所描述的技术的其它过程。通信模块42用于支持肿瘤定位装置与其他网络实体。存储模块43,用于存储肿瘤定位装置的程序代码和数据。
其中,处理模块41可以是图1中的处理器。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。通信模块42可以是图1中的通信接口。存储模块43可以是图1中的存储器。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何在本发明揭露的技术范围内的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种肿瘤定位方法,其特征在于,所述方法包括:
    采集所述肿瘤在不同角度的投影图像;
    将所述投影图像与基准图像进行配准,得到第一偏移量;
    根据所述第一偏移量确定需要执行虚拟重采操作时,根据所述第一偏移量重新产生基准图像,并将所述投影图像与重新产生的基准图像进行配准,得到第二偏移量;
    根据所述第二偏移量确定不需要执行所述虚拟重采操作时,输出第一累积偏移量,所述第一累积偏移量为所述第一偏移量与所述第二偏移量的和。
  2. 根据权利要求1所述的肿瘤定位方法,其特征在于,所述得到第二偏移量之后,所述方法还包括:
    确定所述第一累积偏移量。
  3. 根据权利要求2所述的肿瘤定位方法,其特征在于,所述方法还包括:
    根据所述第二偏移量确定需要执行所述虚拟重采操作时,根据所述第一累积偏移量重新产生基准图像,并将所述投影图像与重新产生的基准图像进行配准,得到第三偏移量;
    根据所述第三偏移量确定不需要执行所述虚拟重采操作时,输出第二累积偏移量,所述第二累积偏移量为所述第一偏移量、所述第二偏移量和所述第三偏移量的和。
  4. 根据权利要求3所述的肿瘤定位方法,其特征在于,所述得到第三偏移量之后,所述方法还包括:
    确定所述第二累积偏移量。
  5. 根据权利要求4所述的肿瘤定位方法,其特征在于,所述确定需要执行虚拟重采操作包括:
    偏移量不在预设偏移量范围内,或者,接收到操作者根据偏移量确定需要执行虚拟重采操作的指示;
    所述偏移量为所述第一偏移量、所述第二偏移量或所述第三偏移量。
  6. 根据权利要求4所述的肿瘤定位方法,其特征在于,所述确定累积偏移量之后,所述方法还包括:
    显示所述累积偏移量;
    所述累积偏移量为所述第一累积偏移量或所述第二累积偏移量。
  7. 根据权利要求4所述的肿瘤定位方法,其特征在于,所述产生基准图像包括:
    根据偏移量和预存的几何信息,采用预设算法产生基准图像;
    所述偏移量为所述第一偏移量、所述第一累积偏移量或所述第二累积偏移量。
  8. 根据权利要求1所述的肿瘤定位方法,其特征在于,所述采集所述肿瘤在不同角度的投影图像之前,所述方法还包括:
    获取所述基准图像。
  9. 一种肿瘤定位装置,其特征在于,所述肿瘤定位装置包括:采集单元、配准单元、确定单元、生成单元和输出单元;
    所述采集单元,用于采集所述肿瘤在不同角度的投影图像;
    所述配准单元,用于将所述投影图像与基准图像进行配准,得到第一偏移量;
    所述确定单元,用于根据所述第一偏移量确定需要执行虚拟重采操作;
    所述生成单元,用于根据所述第一偏移量确定需要执行虚拟重采操作时,根据所述第一偏移量重新产生基准图像;
    所述配准单元,还用于将所述投影图像与重新产生的基准图像进行配准,得到第二偏移量;
    所述确定单元,还用于根据所述第二偏移量确定不需要执行所述虚拟重采操作;
    所述输出单元,用于根据所述第二偏移量确定不需要执行所述虚拟重采操作时,输出第一累积偏移量,所述第一累积偏移量为所述第一偏移量与所述第二偏移量的和。
  10. 根据权利要求9所述的肿瘤定位装置,其特征在于,
    所述确定单元,还用于确定所述第一累积偏移量。
  11. 根据权利要求10所述的肿瘤定位装置,其特征在于,
    所述确定单元,还用于根据所述第二偏移量确定需要执行所述虚拟重采操作;
    所述生成单元,还用于根据所述第二偏移量确定需要执行所述虚拟重采操作时,根据所述第一累积偏移量重新产生基准图像;
    所述配准单元,还用于将所述投影图像与重新产生的基准图像进行配准,得到第三偏移量;
    所述确定单元,还用于根据所述第三偏移量确定不需要执行所述虚拟重采操作;
    所述输出单元,还用于根据所述第三偏移量确定不需要执行所述虚拟重采操作时,输出第二累积偏移量,所述第二累积偏移量为所述第一偏移量、所述第二偏移量和所述第三偏移量的和。
  12. 根据权利要求11所述的肿瘤定位装置,其特征在于,
    所述确定单元,还用于确定所述第二累积偏移量。
  13. 根据权利要求12所述的肿瘤定位装置,其特征在于,所述确定单元具体用于:
    偏移量不在预设偏移量范围内,或者,接收到操作者根据偏移量确定需要执行虚拟重采操作的指示;
    所述偏移量为所述第一偏移量、所述第二偏移量或所述第三偏移量。
  14. 根据权利要求12所述的肿瘤定位装置,其特征在于,所述肿瘤定位装置还包括:显示单元;
    所述显示单元,用于显示所述累积偏移量;
    所述累积偏移量为所述第一累积偏移量或所述第二累积偏移量。
  15. 根据权利要求12所述的肿瘤定位装置,其特征在于,所述生成单元具体用于:
    根据偏移量和预存的几何信息,采用预设算法产生基准图像;
    所述偏移量为所述第一偏移量、所述第一累积偏移量或所述第二累积 偏移量。
  16. 根据权利要求9所述的肿瘤定位装置,其特征在于,所述肿瘤定位装置还包括:获取单元;
    所述获取单元,用于获取所述基准图像。
  17. 一种肿瘤定位装置,其特征在于,所述肿瘤定位装置包括:处理器、存储器;
    所述存储器用于存储计算机执行指令,当所述肿瘤定位装置运行时,所述处理器用于执行所述存储器存储的计算机执行指令,以使所述肿瘤定位装置执行如权利要求1-8任一项所述的肿瘤定位方法。
  18. 一种计算机存储介质,其特征在于,所述计算机存储介质包括计算机执行指令,当所述计算机执行指令在计算机上运行时,使得所述计算机执行如权利要求1-8任一项所述肿瘤定位方法。
PCT/CN2018/100103 2018-08-10 2018-08-10 一种肿瘤定位方法及装置 WO2020029304A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18929819.3A EP3834883A4 (en) 2018-08-10 2018-08-10 METHOD AND DEVICE FOR TUMOR POSITIONING
PCT/CN2018/100103 WO2020029304A1 (zh) 2018-08-10 2018-08-10 一种肿瘤定位方法及装置
CN201880095527.3A CN112384278B (zh) 2018-08-10 2018-08-10 一种肿瘤定位方法及装置
US17/171,460 US11628311B2 (en) 2018-08-10 2021-02-09 Tumor positioning method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100103 WO2020029304A1 (zh) 2018-08-10 2018-08-10 一种肿瘤定位方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/171,460 Continuation-In-Part US11628311B2 (en) 2018-08-10 2021-02-09 Tumor positioning method and apparatus

Publications (1)

Publication Number Publication Date
WO2020029304A1 true WO2020029304A1 (zh) 2020-02-13

Family

ID=69413346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100103 WO2020029304A1 (zh) 2018-08-10 2018-08-10 一种肿瘤定位方法及装置

Country Status (4)

Country Link
US (1) US11628311B2 (zh)
EP (1) EP3834883A4 (zh)
CN (1) CN112384278B (zh)
WO (1) WO2020029304A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573776A (zh) * 2020-02-14 2021-10-29 西安大医集团股份有限公司 图像引导方法、装置、放疗设备和计算机存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175406A1 (en) * 2008-01-07 2009-07-09 Hui Zhang Target tracking using surface scanner and four-dimensional diagnostic imaging data
US20110194745A1 (en) * 2008-04-10 2011-08-11 Arineta Ltd. Apparatus and method for tracking feature's position in human body
CN102222331A (zh) * 2011-05-16 2011-10-19 付东山 一种基于双平板的二维-三维医学图像配准方法及系统
US20140228678A1 (en) * 2013-02-14 2014-08-14 Andreas Meyer Registration for Tracked Medical Tools and X-Ray Systems
CN104587609A (zh) * 2015-02-03 2015-05-06 瑞地玛医学科技有限公司 放射治疗摆位定位装置及静态、动态靶区摆位方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2362094T3 (es) * 2004-12-23 2011-06-28 Arjowiggins Security Elemento de seguridad que presenta una marca digitalizada y soporte de seguridad o documento que comprende la misma.
US7835500B2 (en) * 2005-11-16 2010-11-16 Accuray Incorporated Multi-phase registration of 2-D X-ray images to 3-D volume studies
US20080037843A1 (en) * 2006-08-11 2008-02-14 Accuray Incorporated Image segmentation for DRR generation and image registration
JP4956458B2 (ja) * 2008-02-13 2012-06-20 三菱電機株式会社 患者位置決め装置及びその方法
JP2010246883A (ja) * 2009-03-27 2010-11-04 Mitsubishi Electric Corp 患者位置決めシステム
US8559596B2 (en) * 2010-06-08 2013-10-15 Accuray Incorporated Target Tracking for image-guided radiation treatment
CN103221976A (zh) * 2010-08-04 2013-07-24 P治疗有限公司 远程治疗的控制系统和方法
US9108048B2 (en) * 2010-08-06 2015-08-18 Accuray Incorporated Systems and methods for real-time tumor tracking during radiation treatment using ultrasound imaging
CN102440789B (zh) * 2011-09-08 2014-07-09 付东山 一种基于双能x射线图像的软组织病灶定位系统
JP2013099431A (ja) * 2011-11-08 2013-05-23 Natl Inst Of Radiological Sciences 放射線治療における患者自動位置決め装置及び方法並びに患者自動位置決め用プログラム
US9672640B2 (en) * 2013-01-24 2017-06-06 Varian Medical Systems International Ag Method for interactive manual matching and real-time projection calculation in imaging
US9844358B2 (en) * 2014-06-04 2017-12-19 Varian Medical Systems, Inc. Imaging-based self-adjusting radiation therapy systems, devices, and methods
DE102015208929B3 (de) * 2015-05-13 2016-06-09 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur 2D-3D-Registrierung, Recheneinrichtung und Computerprogramm
JP6281849B2 (ja) * 2016-04-22 2018-02-21 国立研究開発法人量子科学技術研究開発機構 放射線治療における患者自動位置決め装置及び方法並びに患者自動位置決め用プログラム
US10713801B2 (en) * 2017-01-06 2020-07-14 Accuray Incorporated Image registration of treatment planning image, intrafraction 3D image, and intrafraction 2D x-ray image

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090175406A1 (en) * 2008-01-07 2009-07-09 Hui Zhang Target tracking using surface scanner and four-dimensional diagnostic imaging data
US20110194745A1 (en) * 2008-04-10 2011-08-11 Arineta Ltd. Apparatus and method for tracking feature's position in human body
CN102222331A (zh) * 2011-05-16 2011-10-19 付东山 一种基于双平板的二维-三维医学图像配准方法及系统
US20140228678A1 (en) * 2013-02-14 2014-08-14 Andreas Meyer Registration for Tracked Medical Tools and X-Ray Systems
CN104587609A (zh) * 2015-02-03 2015-05-06 瑞地玛医学科技有限公司 放射治疗摆位定位装置及静态、动态靶区摆位方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3834883A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573776A (zh) * 2020-02-14 2021-10-29 西安大医集团股份有限公司 图像引导方法、装置、放疗设备和计算机存储介质
US11883684B2 (en) 2020-02-14 2024-01-30 Our United Corporation Image-guided method, radio therapy device, and computer storage medium

Also Published As

Publication number Publication date
EP3834883A4 (en) 2022-03-23
US20210162235A1 (en) 2021-06-03
US11628311B2 (en) 2023-04-18
EP3834883A1 (en) 2021-06-16
CN112384278B (zh) 2023-06-16
CN112384278A (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
CN109464756B (zh) 验证放射治疗剂量的方法、装置和放射治疗设备
JP6139361B2 (ja) 医用画像処理装置、治療システム及び医用画像処理方法
JP4190194B2 (ja) 断層撮影法によって得た像から3次元モデルを再構成するための較正方法
CN107928694B (zh) Ct剂量调制方法、装置、ct扫描方法及ct系统
US20120170820A1 (en) Methods and apparatus for comparing 3d and 2d image data
WO2021159519A1 (zh) 图像引导方法、装置、放疗设备和计算机存储介质
JP2016510410A (ja) 合成無放射による自動化された三次元患者体型のシンチグラフィーでの画像化
US20210137454A1 (en) Method and apparatus of locating tumor
CN103028195A (zh) 用于辐射治疗计划的组合成像模式
CN106859684A (zh) 用于确定呼吸相位的方法和系统
EP3935641A1 (en) System and method for biological treatment planning and decision support
Mitrović et al. Simultaneous 3D–2D image registration and C‐arm calibration: Application to endovascular image‐guided interventions
WO2020029304A1 (zh) 一种肿瘤定位方法及装置
JP7463625B2 (ja) ナビゲーションサポート
JP6713092B2 (ja) 仮想ステント設置装置、方法およびプログラム
Kwon et al. CT-free quantitative SPECT for automatic evaluation of% thyroid uptake based on deep-learning
US20230067048A1 (en) Methods for radiation delivery in emission-guided radiotherapy
KR20150065611A (ko) Cbct/mr 하이브리드 시뮬레이션 시스템 및 방사선 치료를 위한 기준영상 생성 방법
EP3910589A1 (en) Image registration method and apparatus, radiotherapy device and computer readable storage medium
WO2021007849A1 (zh) 肿瘤定位方法、装置及放射治疗系统
CN112971823B (zh) 一种校正杂散射线的方法
Núñez et al. Attenuation correction for lung SPECT: evidence of need and validation of an attenuation map derived from the emission data
Hayashi et al. Simple quality assurance based on filtered back projection for geometrical/irradiation accuracy in single-isocenter multiple-target stereotactic radiotherapy
CN114901191A (zh) 描述骨变形的方法和装置
JP5669118B1 (ja) 三次元脳状態画像解析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929819

Country of ref document: EP

Effective date: 20210310