WO2020029296A1 - 一种信道状态信息上报方法、终端设备及网络设备 - Google Patents

一种信道状态信息上报方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020029296A1
WO2020029296A1 PCT/CN2018/100089 CN2018100089W WO2020029296A1 WO 2020029296 A1 WO2020029296 A1 WO 2020029296A1 CN 2018100089 W CN2018100089 W CN 2018100089W WO 2020029296 A1 WO2020029296 A1 WO 2020029296A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam information
csi report
csi
information included
terminal device
Prior art date
Application number
PCT/CN2018/100089
Other languages
English (en)
French (fr)
Inventor
陈文洪
史志华
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880092306.0A priority Critical patent/CN111972024B/zh
Priority to PCT/CN2018/100089 priority patent/WO2020029296A1/zh
Priority to TW108128381A priority patent/TW202013917A/zh
Publication of WO2020029296A1 publication Critical patent/WO2020029296A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to the field of information processing technologies, and in particular, to a method for reporting channel state information (CSI, Channel State Information), a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program.
  • CSI channel state information
  • a terminal device a network device
  • a chip a computer-readable storage medium
  • a computer program product a computer program product
  • the type II codebook is used to determine the beam information.
  • the current type II codebook supports aperiodic reporting and quasi-continuous reporting. Each time a terminal device reports, it needs to report beam information of all L beams, and the number of all L beams is configured by high-level signaling. However, the feedback signaling overhead required by this reporting method is relatively large and requires a large amount of uplink resources.
  • embodiments of the present invention provide a method for reporting channel state information, a terminal device, a network device, a chip, a computer-readable storage medium, a computer program product, and a computer program, which can reduce the overhead of feedback signaling and avoid occupation A lot of uplink resources.
  • a CSI reporting method is provided, which is applied to a terminal device and includes:
  • the at least one preset condition includes at least one of the following:
  • DCI Downlink Control Information
  • the CSI reports corresponding physical resources.
  • a CSI reporting method which is applied to network equipment and includes:
  • a terminal device including:
  • a first processing unit according to at least one preset condition, determining a quantity of beam information included in a CSI report
  • the first communication unit reports CSI according to the determined quantity of beam information
  • the at least one preset condition includes at least one of the following:
  • the CSI reports corresponding physical resources.
  • a network device including:
  • a second processing unit determining a quantity of beam information included in a CSI report of the terminal device
  • the second communication unit receives the CSI report of the terminal device according to the determined quantity of the beam information.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory, and execute the method in the above-mentioned first aspect or its implementations.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the second aspect or the implementations thereof.
  • a chip is provided for implementing any one of the foregoing first to second aspects or a method in each implementation thereof.
  • the chip includes a processor for invoking and running a computer program from a memory, so that a device installed with the chip executes any one of the first aspect to the second aspect described above or implementations thereof. method.
  • a computer-readable storage medium for storing a computer program that causes a computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • a computer program product including computer program instructions that cause a computer to execute the method in any one of the first to second aspects described above or in various implementations thereof.
  • a computer program that, when run on a computer, causes the computer to execute the method in any one of the first to second aspects described above or in its implementations.
  • the quantity of beam information included in the CSI report by the terminal device can be determined according to a preset condition; thus, the terminal device can flexibly adjust the beam included in the CSI report when performing the CSI report.
  • the amount of information can further avoid the problems of CSI reporting according to the amount of beam information configured by the high-level signaling on the network side, which results in excessive feedback signaling overhead and occupying a large amount of uplink resources.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture according to an embodiment of the present application.
  • FIG. 2 is a first schematic flowchart of a CSI reporting method according to an embodiment of the present invention
  • FIG. 3 is a second schematic flowchart of a CSI reporting method according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a terminal device according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present invention.
  • FIG. 7 is a schematic block diagram of a chip according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram 2 of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • Wideband Code Division Multiple Access Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or a communication terminal or a terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located within the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device may be a mobile switching center, relay station, access point, vehicle equipment, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in public land mobile networks (PLMN) that will evolve in the future.
  • PLMN public land mobile networks
  • the communication system 100 further includes at least one terminal device 120 located within a coverage area of the network device 110.
  • terminal equipment used herein includes, but is not limited to, connection via wired lines, such as via Public Switched Telephone Networks (PSTN), Digital Subscriber Line (DSL), digital cable, direct cable connection ; And / or another data connection / network; and / or via a wireless interface, such as for cellular networks, Wireless Local Area Networks (WLAN), digital television networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and / or another terminal device configured to receive / transmit communication signals; and / or Internet of Things (IoT) devices.
  • PSTN Public Switched Telephone Networks
  • DSL Digital Subscriber Line
  • WLAN Wireless Local Area Networks
  • DVB-H Digital Video Broadband
  • satellite networks satellite networks
  • AM- FM broadcast transmitter AM- FM broadcast transmitter
  • IoT Internet of Things
  • a terminal device configured to communicate through a wireless interface may be referred to as a “wireless communication terminal”, a “wireless terminal”, or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; personal communications systems (PCS) terminals that can combine cellular radiotelephones with data processing, facsimile, and data communications capabilities; can include radiotelephones, pagers, Internet / internal PDA with network access, web browser, notepad, calendar, and / or Global Positioning System (GPS) receiver; and conventional laptop and / or palm-type receivers or others including radiotelephone transceivers Electronic device.
  • PCS personal communications systems
  • GPS Global Positioning System
  • a terminal device can refer to an access terminal, user equipment (User Equipment), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Processing (PDA), and wireless communication.
  • terminal devices 120 may perform terminal direct device (D2D) communication.
  • D2D terminal direct device
  • the 5G system or the 5G network may also be referred to as a New Radio (NR) system or an NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may further include other network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like in this embodiment of the present application is not limited thereto.
  • the device having a communication function in the network / system in the embodiments of the present application may be referred to as a communication device.
  • the communication device may include a network device 110 and a terminal device 120 having a communication function, and the network device 110 and the terminal device 120 may be specific devices described above, and are not described herein again
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller, a mobile management entity, and the like, which is not limited in the embodiments of the present application.
  • An embodiment of the present invention provides a method for reporting channel state information (CSI, Channel State Information), which is applied to a terminal device. As shown in FIG. 2, the method includes:
  • Step 201 Determine the quantity of beam information included in the CSI report according to at least one preset condition
  • Step 202 Report CSI according to the determined quantity of beam information.
  • the at least one preset condition includes at least one of the following:
  • the CSI reports corresponding physical resources.
  • the quantity of beam information corresponding to the beam reported by the CSI may be the quantity of beam information corresponding to some of the beams.
  • the amount of information corresponding to only a part of the beams of all the beams reported by the terminal device can be determined through preset conditions.
  • the at least one preset condition includes downlink control information (DCI, Downlink Control Information) that triggers the CSI report,
  • DCI Downlink Control Information
  • the determining the quantity of beam information included in the CSI report includes one of the following:
  • the DCI can be used to trigger periodic CSI reporting or continuous CSI reporting.
  • aperiodic reporting is to trigger a single CSI reporting by the terminal through DCI; continuous CSI reporting can be quasi-continuous reporting.
  • Quasi-persistent reporting is to trigger the terminal to perform periodic CSI reporting through DCI or MAC signaling until the deactivation signaling is received.
  • the quantity of beam information included in the CSI report is determined according to a Radio Network Temporary Identity (RNTI) used for CRC scrambling of the DCI.
  • RNTI Radio Network Temporary Identity
  • the first RNTI or the second RNTI is used to determine the amount of beam information included in the CSI report; the first RNTI and the second RNTI correspond to different amounts of beam information.
  • the first RNTI and the second RNTI may be an SP-CSI RNTI and a cell radio network temporary identifier (C-RNTI, Cell Radio Network Temporary Identifier).
  • the first RNTI and the second RNTI can be SP-CSI, RNTI, and C-RNTI, respectively.
  • the DCI using SP-CSI and RNTI for CRC scrambling, and the DCI using C-RNTI for CRC scrambling can use different numbers. Because SP-CSI RNTI is used for quasi-continuous CSI reporting, and C-RNTI is used for non-periodic CSI reporting, so different CSI reporting methods can use different amounts of beam information, thereby flexibly adjusting the accuracy and overhead of reporting. .
  • the determining the amount of beam information included in the CSI report according to the DCI format of the DCI may be Is different.
  • the indication information included in the DCI is the information content contained in the information field of the DCI. For example, a certain field may be preset for the number of beam information included in the DCI report.
  • the indication information of the DCI may directly include the quantity of beam information. It can be directly indicated by the quantity indication information dedicated to the beam information in the DCI. For example, if there are 4 beams, it is indicated by 2 bits.
  • the quantity of beam information included in the CSI report may be determined according to other information fields in the DCI.
  • the CSI request information field in the DCI is used to indicate a currently used CSI reporting configuration from multiple CSI reporting configurations, and each CSI reporting configuration may include a quantity of beam information.
  • the target CSI report configuration is obtained through this information field, and the quantity of beam information is obtained at the same time.
  • the at least one preset condition includes the DCI that triggers the CSI report
  • a value is selected from the number of at least one beam information configured by high-level signaling based on the DCI, and the selected value is used as the number of beam information included in the CSI report.
  • the bit information in the DCI may be used to indicate whether the number of beam information in the current CSI report is 2 or 4.
  • the number of bits of the bit information indicated in the DCI may be set according to actual conditions. For example, in the above example, one bit may be used to indicate the number of selected beam values to be reported from the candidate values.
  • the number of the beam information included in the CSI report is selected from the number of 1 to the maximum beam information.
  • the maximum number of beam information configured by high-level signaling is L, that is, the number of beam information that a terminal device can report is any one of 1-L.
  • log2 (L) Round up bits to obtain the number of beam information, these bits are used to indicate that the number of beam information of the beam information currently reported by the CSI is one of 1,2, ... L.
  • the CSI can report the beam information corresponding to the 3 beams.
  • Scenario 3 When the at least one preset condition includes transmission parameters reported by the CSI,
  • the determining the quantity of beam information included in the CSI report includes one of the following:
  • the determining the quantity of beam information included in the CSI report according to the time slot used for the CSI report may be specifically: calculating according to the index of the time slot used for the CSI report and the period of the CSI report to obtain the beam information. Or the correspondence between the timeslots and the number of beam information may be predetermined in advance between the network side and the terminal device.
  • the determining the quantity of beam information included in the CSI report according to the current number of CSI reports includes:
  • the quantity L of the beam information may be determined according to the value of n.
  • n and L are positive numbers, and the corresponding relationship can be predetermined by the network side and the terminal.
  • the CSI reporting is periodic or quasi-continuous CSI reporting.
  • the determining the quantity of beam information included in the CSI report according to whether the CSI report is multiplexed with data for transmission may include: if the CSI report is multiplexed with data on the same channel, such as a physical uplink shared channel (PUSCH, Physical Uplink, Shared Channel), the quantity of the beam information is the first quantity; if the CSI report and data are multiplexed in a different channel, that is, the CSI is transmitted independently, the The quantity is the second quantity; wherein the first quantity and the second quantity are both integers, and the first quantity ⁇ the second quantity.
  • PUSCH Physical Uplink shared channel
  • the determining the quantity of beam information included in the CSI report according to the CSI reported bearer channel may be: assuming that there are two bearer channels, then it is determined according to the CSI report as the first bearer signal or the second bearer channel. The corresponding amount of beam information.
  • the number of the beam information is a third amount; if the CSI report is carried on a PUSCH, the beam information Is the fourth quantity, and the third quantity is less than the fourth quantity.
  • PUCCH Physical Uplink Control CHannel
  • the at least one preset condition includes a physical resource corresponding to the CSI report
  • the determining the quantity of beam information included in the CSI report includes: determining the CSI report according to one of the following physical resources corresponding to the CSI report: a subband, a bandwidth part (BWP, Bandwidth Part), and a time slot. The amount of beam information contained in.
  • the terminal determines the quantity of the beam information according to the subband corresponding to the CSI report. Specifically, for the amplitude information and phase information that need to be reported for a subband, the quantity of amplitude information and phase information of the subband can be determined according to the subband corresponding to the current CSI.
  • the amplitude and phase information of L beams can be reported; for other subbands, only the amplitude and phase information of M beams can be reported, where M ⁇ L.
  • the first subband may be determined according to the number of the subband.
  • the first subband may be the first one of the eight subbands identified as 0-7, that is, subband 0 is the first subband.
  • it can be the first subband in a subband group.
  • One subband can be one of them 8.
  • the aforementioned best-quality subband may be determined according to indicators such as transmission rate, CQI, or SINR.
  • the subband with the highest transmission rate or CQI or SINR is used as the best-quality subband, or the subbands may also be The load size and the like are not exhaustive in this embodiment.
  • the quantity of the beam information of the BWP can be determined according to the corresponding BWP reported by the current CSI. For example, the number of beam information may be determined according to the index of the BWP.
  • the network side may pre-configure a corresponding quantity of beam information for each BWP.
  • the quantity of beam information of the time slot can be determined according to the time slot corresponding to the current CSI. For example, if CSI0 is the CSI of slot 0 and CSI1 is the CSI of slot 1, then CSI0 and CSI1 may have different amounts of beam information.
  • the time slot corresponding to the CSI may be a time slot for measuring the CSI, or may be a time slot where a CSI reference resource of the CSI is located.
  • the beam information includes at least one of the following: beam vector, bandwidth amplitude information, subband amplitude information, and phase information.
  • the beam vector can be expressed as m1 and m2 respectively correspond to the horizontal and vertical dimensions of the beam, i can represent the identification or number of the beam;
  • the broadband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i over the entire bandwidth;
  • the subband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i on each subband;
  • the phase information can be expressed as with with Corresponding to the phases in the two polarization directions, corresponding to layer l and beam i, respectively.
  • the CSI reporting according to the determined quantity of beam information includes:
  • the preset codebook may be a type II codebook; correspondingly, the beam information in the codebook is determined based on the determined number L of the beam information, and the beam information is reported. For example, the beam vectors, wideband amplitude information, and phase information corresponding to the L beams in the multiple beams are determined, and then these beam information are reported.
  • the value of the quantity L of beam information is the same as the quantity of beam information in the foregoing embodiment;
  • the codebook vector for each layer consists of two parts: with Codebook vectors corresponding to two polarization directions respectively; with Corresponds to the amplitude coefficients of the wideband and subband, respectively, corresponding to layer l and beam i; with Corresponding to the phases in the two polarization directions, corresponding to layer l and beam i; the number of available phases can be 4, corresponding to Quadrature Phase Shift Keyin (QPSK), or 8, corresponding to 8 phase shifts Keyed modulation (PSK, Phase Shift Keyin).
  • QPSK Quadrature Phase Shift Keyin
  • PSK Phase Shift Keyin
  • the specific information types contained in the beam information reported by each beam are the same, for example, all beam vectors and bandwidths are reported. Amplitude and phase information; or, set to report beam vector, wideband amplitude information, subband amplitude information, and phase information.
  • the type of the reported information can be configured by the network side according to the actual situation, and it is not exhaustive in this embodiment.
  • the CSI here includes at least one of CRI, RI, PMI, and CQI.
  • the quantity of beam information included in the CSI report by the terminal device can be determined according to the preset conditions; thus, the terminal device can flexibly adjust the beam information included in the CSI report when performing the CSI report.
  • the number of beams which can avoid the problem that the CSI reporting is always performed according to the amount of beam information configured by the high-level signaling on the network side, which results in excessive feedback signaling overhead and occupying a large amount of uplink resources.
  • An embodiment of the present invention provides a CSI reporting method, which is applied to a network device. As shown in FIG. 3, the method includes:
  • Step 301 Determine the amount of beam information included in the CSI report of the terminal device.
  • Step 302 Receive the CSI report of the terminal device according to the determined quantity of the beam information.
  • the following two methods may also be included: After the network side itself determines the quantity of beam information reported by the terminal device CSI, the terminal device is instructed to perform DCI reporting by the terminal device to indicate the beam information to the terminal device. And the network side itself determines the number of beam information included in the CSI report according to the transmission parameters reported by the terminal device CSI or the physical resources corresponding to the CSI report, and waits for receiving the CSI report from the terminal device based on the determined amount. . specific:
  • the method further includes:
  • the terminal device By triggering the DCI reported by the CSI, the terminal device is instructed to indicate the quantity of beam information included in the CSI report.
  • the indicating to the terminal device the quantity of the beam information included in the CSI report is to make the terminal device report the CSI according to the quantity of the beam information.
  • the indication of the quantity of beam information included in the CSI report to the terminal device by triggering the DCI reported by the CSI includes one of the following:
  • the terminal device By triggering the DCI reported by the CSI and the number of beam information configured through high-level signaling, the terminal device is instructed to perform the number of beam information included in the CSI report.
  • the DCI can be used to trigger periodic CSI reporting or continuous CSI reporting.
  • aperiodic reporting is to trigger a single CSI reporting by the terminal through DCI; continuous CSI reporting can be quasi-continuous reporting.
  • Quasi-persistent reporting is to trigger the terminal to perform periodic CSI reporting through DCI or Media Access Control (MAC, Media Access Control) signaling until the deactivation signaling is received.
  • MAC Media Access Control
  • the RNTI adopted by performing CRC scrambling on the DCI instructs the terminal device to perform a quantity of beam information included in a CSI report.
  • the terminal device may determine the number of beam information included in the CSI report based on the first RNTI or the second RNTI used for CRC scrambling in the DCI; the first RNTI and the second RNTI correspond to different beams The amount of information.
  • the first RNTI and the second RNTI may be an SP-CSI RNTI and a cell radio network temporary identifier (C-RNTI, Cell Radio Network Temporary Identifier).
  • the first RNTI and the second RNTI can be SP-CSI, RNTI, and C-RNTI, respectively.
  • the DCI using SP-CSI and RNTI for CRC scrambling, and the DCI using C-RNTI for CRC scrambling can use different numbers. Because SP-CSI RNTI is used for quasi-continuous CSI reporting, and C-RNTI is used for non-periodic CSI reporting, so different CSI reporting methods can use different amounts of beam information, thereby flexibly adjusting the accuracy and overhead of reporting. .
  • the CSI report triggered by the DCI format 0_0 and the CSI report triggered by the DCI format 0_1 are corresponding beam information.
  • the number can be different.
  • the indication information included in the DCI is the information content contained in the information field of the DCI. For example, a certain field may be preset for the number of beam information included in the DCI report.
  • the indication information of the DCI may directly include the quantity of beam information. It can be directly indicated by the quantity indication information dedicated to the beam information in the DCI. For example, if there are 4 beams, it is indicated by 2 bits.
  • the terminal device may also determine the quantity of beam information according to other information fields in the DCI.
  • the CSI request information field in the DCI is used to indicate a currently used CSI reporting configuration from multiple CSI reporting configurations, and each CSI reporting configuration may include a quantity of beam information.
  • the target CSI report configuration is obtained through this information field, and the quantity of beam information is obtained at the same time.
  • the number of beam information configured by triggering the CSI reporting by the CSI and the high-level signaling instructs the terminal device to perform the quantity of beam information included in the CSI reporting. corresponding,
  • the quantity of beam information configured by the high-level signaling is a beam of at least one beam information.
  • the terminal device selects a value from the quantity of at least one beam information configured by high-level signaling based on the DCI, and uses the selected value as the quantity of beam information included in the CSI report.
  • the bit information in the DCI may be used to indicate whether the number of beam information in the current CSI report is 2 or 4.
  • the number of bits of the bit information indicated in the DCI may be set according to actual conditions. For example, in the above example, one bit may be used to indicate the number of selected beam values to be reported from the candidate values.
  • the number of at least one beam information configured in the high-level signaling is only the number of one maximum beam information.
  • the terminal device may select the number of beam information included in the CSI report from 1 to the maximum beam information based on the number of the maximum beam information and the DCI.
  • the determining the quantity of beam information included in the CSI report of the terminal device includes:
  • the quantity of beam information included in the CSI report is determined according to transmission parameters reported by the CSI of the terminal device or physical resources corresponding to the CSI report.
  • the network side determines the number of beam information included in the CSI report by the terminal device, it receives the CSI report of the terminal device according to the determined number.
  • the determining the quantity of beam information included in the CSI report according to the transmission parameters reported by the terminal device or the physical resources corresponding to the CSI report includes one of the following:
  • the quantity of beam information included in the CSI report is determined.
  • determining the quantity of beam information included in the CSI report according to a time slot used by the CSI report of the terminal device may specifically include: according to an index of a time slot used by the CSI report and a period of the CSI report Perform calculation to obtain the quantity of beam information; or, the correspondence between the timeslot and the quantity of beam information may be predetermined by the network side and the terminal device.
  • the determining the number of beam information included in the CSI report according to the current number of CSI reports of the terminal device includes: if the current CSI report is the n-th report, the beam information may be determined according to the value of n The number L.
  • n and L are positive numbers, and the corresponding relationship can be predetermined by the network side and the terminal.
  • the CSI reporting is periodic or quasi-persistent CSI reporting.
  • the determining the quantity of beam information included in the CSI report according to whether the CSI report of the terminal device is transmitted with data multiplexing may include: if the CSI report is multiplexed with data on the same channel, Multiplexed in an uplink shared channel (PUSCH, Physical Uplink, Shared Channel), the quantity of the beam information is the first quantity; if the CSI report and data are multiplexed in a different channel, that is, the CSI is transmitted independently, the The number of beam information is a second number; wherein the first number and the second number are both integers, and the first number ⁇ the second number.
  • PUSCH Physical Uplink, Shared Channel
  • the determining the quantity of beam information included in the CSI report according to the CSI report bearer channel may be: assuming that there are two bearer channels, then the corresponding CSI is determined according to the CSI report as the first bearer signal or the second bearer channel. The amount of beam information.
  • the number of the beam information is a third amount; if the CSI report is carried on a PUSCH, the beam information Is the fourth quantity, and the third quantity is less than the fourth quantity.
  • PUCCH Physical Uplink Control CHannel
  • the determining the quantity of beam information included in the CSI report according to the transmission parameters reported by the terminal device or the physical resources corresponding to the CSI report includes:
  • the number of beam information included in the CSI report is determined according to one of the following physical resources corresponding to the CSI report of the terminal device: subband, BWP, and time slot.
  • the terminal determines the quantity of the beam information according to the subband corresponding to the CSI report. Specifically, for the amplitude information and phase information that need to be reported for a subband, the quantity of amplitude information and phase information of the subband can be determined according to the subband corresponding to the current CSI.
  • the amplitude and phase information of L beams can be reported; for other subbands, only the amplitude and phase information of M beams can be reported, where M ⁇ L.
  • the first subband may be determined according to the number of the subband.
  • the first subband may be the first one of the eight subbands identified as 0-7, that is, subband 0 is the first subband.
  • it can be the first subband in a subband group.
  • One subband can be one of them 8.
  • the aforementioned best-quality subband may be determined according to indicators such as transmission rate, CQI, or SINR.
  • the subband with the highest transmission rate or CQI or SINR is used as the best-quality subband, or the subbands may also be The load size and the like are not exhaustive in this embodiment.
  • the quantity of the beam information of the BWP can be determined according to the corresponding BWP reported by the current CSI. For example, the number of beam information may be determined according to the index of the BWP.
  • the network side may pre-configure a corresponding quantity of beam information for each BWP.
  • the quantity of beam information of the time slot can be determined according to the time slot corresponding to the current CSI. For example, if CSI0 is the CSI of slot 0 and CSI1 is the CSI of slot 1, then CSI0 and CSI1 may have different amounts of beam information.
  • the time slot corresponding to the CSI may be a time slot for measuring the CSI, or may be a time slot where a CSI reference resource of the CSI is located.
  • the beam information includes at least one of the following: beam vector, bandwidth amplitude information, subband amplitude information, and phase information.
  • the beam vector can be expressed as m1 and m2 respectively correspond to the horizontal and vertical dimensions of the beam, i can represent the identification or number of the beam;
  • the broadband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i over the entire bandwidth;
  • the subband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i on each subband;
  • the phase information can be expressed as with with Corresponding to the phases in the two polarization directions, corresponding to layer l and beam i, respectively.
  • the CSI here includes at least one of CRI, RI, PMI, and CQI.
  • the quantity of beam information included in the CSI report by the terminal device can be determined according to the preset conditions; thus, the terminal device can flexibly adjust the beam information included in the CSI report when performing the CSI report.
  • the number of beams which can avoid the problem that the CSI reporting is always performed according to the amount of beam information configured by the high-level signaling on the network side, which results in excessive feedback signaling overhead and occupying a large amount of uplink resources.
  • An embodiment of the present invention provides a terminal device, as shown in FIG. 4, including:
  • the first processing unit 41 determines the quantity of beam information included in the CSI report according to at least one preset condition
  • the first communication unit 42 performs CSI reporting according to the determined quantity of beam information
  • the at least one preset condition includes at least one of the following:
  • the CSI reports corresponding physical resources.
  • the quantity of beam information corresponding to the beam reported by the CSI may be the quantity of beam information corresponding to some of the beams.
  • the first processing unit 41 executes one of the following processes:
  • the DCI can be used to trigger periodic CSI reporting or continuous CSI reporting.
  • aperiodic reporting is to trigger a single CSI reporting by the terminal through DCI; continuous CSI reporting can be quasi-continuous reporting.
  • Quasi-persistent reporting is to trigger the terminal to perform periodic CSI reporting through DCI or MAC signaling until the deactivation signaling is received.
  • the first processing unit 41 determines the quantity of beam information included in the CSI report according to an RNTI used for performing CRC scrambling on the DCI.
  • the first RNTI or the second RNTI is used to determine the amount of beam information included in the CSI report; the first RNTI and the second RNTI correspond to different amounts of beam information.
  • the first RNTI and the second RNTI may be an SP-CSI RNTI and a cell radio network temporary identifier (C-RNTI, Cell Radio Network Temporary Identifier).
  • the first RNTI and the second RNTI can be SP-CSI, RNTI, and C-RNTI, respectively.
  • the DCI using SP-CSI and RNTI for CRC scrambling, and the DCI using C-RNTI for CRC scrambling can use different numbers. Because SP-CSI RNTI is used for quasi-continuous CSI reporting, and C-RNTI is used for non-periodic CSI reporting, so different CSI reporting methods can use different amounts of beam information, thereby flexibly adjusting the accuracy and overhead of reporting. .
  • the determining the amount of beam information included in the CSI report according to the DCI format of the DCI may be Is different.
  • the indication information included in the DCI is the information content contained in the information field of the DCI. For example, a certain field may be preset for the number of beam information included in the DCI report.
  • the indication information of the DCI may directly include the quantity of beam information. It can be directly indicated by the quantity indication information dedicated to the beam information in the DCI. For example, if there are 4 beams, it is indicated by 2 bits.
  • the quantity of beam information may be determined according to other information fields in the DCI.
  • the CSI request information field in the DCI is used to indicate a currently used CSI reporting configuration from multiple CSI reporting configurations, and each CSI reporting configuration may include a quantity of beam information.
  • the target CSI report configuration is obtained through this information field, and the quantity of beam information is obtained at the same time.
  • the first processing unit 41 determines that the CSI report is being reported according to the DCI that triggers the CSI report and a quantity of beam information configured by high-level signaling. The amount of beam information contained.
  • the first processing unit 41 selects a value from the number of at least one beam information configured by high-level signaling based on the DCI, and uses the selected value as the number of beam information included in the CSI report.
  • the bit information in the DCI may be used to indicate whether the number of beam information in the current CSI report is 2 or 4.
  • the number of bits of the bit information indicated in the DCI may be set according to actual conditions. For example, in the above example, one bit may be used to indicate the number of selected beam values to be reported from the candidate values.
  • the first processing unit 41 When the number of at least one beam information configured by high-level signaling is only one of the maximum beam information, the first processing unit 41, based on the number of the maximum beam information and the DCI, from 1 to the maximum beam information And selecting the quantity of beam information included in the CSI report.
  • the maximum number of beam information configured by high-level signaling is L, that is, the maximum number of beam information that a terminal device can configure for high-level signaling is L, that is, the number of beam information that can be reported by the terminal device is one.
  • the number of beam information can be obtained by log2 (L) (rounded up) bits in DCI, these bits are used to indicate that the number of beam information of the current CSI report beam information is 1 , 2, ... L.
  • the CSI can report the beam information corresponding to the 3 beams.
  • Scenario 3 When the at least one preset condition includes transmission parameters reported by the CSI,
  • the first processing unit 41 executes one of the following processes:
  • the determining the quantity of beam information included in the CSI report according to the time slot used for the CSI report may be specifically: a first processing unit 41, according to an index of the time slot used for the CSI report, and the The period reported by the CSI is calculated to obtain the number of beam information; or the correspondence between the time slot and the number of beam information may be predetermined in advance between the network side and the terminal device.
  • the first processing unit 41 may determine the quantity L of the beam information according to the value of n if the current CSI report is the n-th report.
  • n and L are positive numbers, and the corresponding relationship can be predetermined by the network side and the terminal.
  • the CSI reporting is periodic or quasi-persistent CSI reporting.
  • the first processing unit 41 if the CSI report and data are multiplexed in the same channel, for example, in a physical uplink shared channel (PUSCH, Physical Uplink, Shared Channel), the quantity of the beam information is the first A quantity; if the CSI report and data are multiplexed in a different channel, that is, the CSI is transmitted independently, the quantity of the beam information is a second quantity; wherein the first quantity and the second quantity are integers, and One quantity ⁇ second quantity.
  • PUSCH Physical Uplink shared channel
  • the determining the quantity of beam information included in the CSI report according to the CSI reported bearer channel may be: assuming that there are two bearer channels, then it is determined according to the CSI report as the first bearer signal or the second bearer channel. The corresponding amount of beam information.
  • the number of the beam information is a third amount; if the CSI report is carried on a PUSCH, the beam information Is the fourth quantity, and the third quantity is less than the fourth quantity.
  • PUCCH Physical Uplink Control CHannel
  • the at least one preset condition includes a physical resource corresponding to the CSI report
  • the first processing unit 41 determines the quantity of beam information included in the CSI report according to one of the following physical resources corresponding to the CSI report: subband, BWP, and time slot.
  • the first processing unit 41 determines the quantity of the beam information according to the subband corresponding to the CSI report. Specifically, for the amplitude information and phase information that need to be reported for a subband, the quantity of amplitude information and phase information of the subband can be determined according to the subband corresponding to the current CSI.
  • the amplitude and phase information of L beams can be reported; for other subbands, only the amplitude and phase information of M beams can be reported, where M ⁇ L.
  • the first subband may be determined according to the number of the subband.
  • the first subband may be the first one of the eight subbands identified as 0-7, that is, subband 0 is the first subband.
  • it can be the first subband in a subband group.
  • One subband can be one of them 8.
  • the aforementioned best-quality subband may be determined according to indicators such as transmission rate, CQI, or SINR.
  • the subband with the highest transmission rate or CQI or SINR is used as the best-quality subband, or the subbands may also be The load size and the like are not exhaustive in this embodiment.
  • the quantity of the beam information of the BWP can be determined according to the corresponding BWP reported by the current CSI. For example, the number of beam information may be determined according to the index of the BWP.
  • the network side may pre-configure a corresponding quantity of beam information for each BWP.
  • the quantity of beam information of the time slot can be determined according to the time slot corresponding to the current CSI. For example, if CSI0 is the CSI of slot 0 and CSI1 is the CSI of slot 1, then CSI0 and CSI1 may have different amounts of beam information.
  • the time slot corresponding to the CSI may be a time slot for measuring the CSI, or may be a time slot where a CSI reference resource of the CSI is located.
  • the beam information includes at least one of the following: beam vector, bandwidth amplitude information, subband amplitude information, and phase information.
  • the beam vector can be expressed as m1 and m2 respectively correspond to the horizontal and vertical dimensions of the beam, i can represent the identification or number of the beam;
  • the broadband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i over the entire bandwidth;
  • the subband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i on each subband;
  • the phase information can be expressed as with with Corresponding to the phases in the two polarization directions, corresponding to layer l and beam i, respectively.
  • the first communication unit 42 determines beam information in the preset codebook based on the determined number of beam information, and reports the beam information.
  • the preset codebook may be a type II codebook.
  • the first communication unit 32 determines the beam information in the codebook based on the determined number of beam information L, and reports the beam information in the codebook based on the type II codebook.
  • Beam information For example, the beam vectors, wideband amplitude information, and phase information corresponding to the L beams in the multiple beams are determined, and then these beam information are reported.
  • the codebook vector for each layer consists of two parts: with Codebook vectors corresponding to two polarization directions respectively; with Corresponds to the amplitude coefficients of the wideband and subband, respectively, corresponding to layer l and beam i; with Corresponding to the phases in the two polarization directions, corresponding to layer l and beam i; the number of available phases can be 4, corresponding to Quadrature Phase Shift Keyin (QPSK), or 8, corresponding to 8 phase shifts Keyed modulation (PSK, Phase Shift Keyin).
  • QPSK Quadrature Phase Shift Keyin
  • PSK Phase Shift Keyin
  • the specific information types contained in the beam information reported by each beam are the same, for example, all beam vectors and bandwidths are reported. Amplitude and phase information; or, set to report beam vector, wideband amplitude information, subband amplitude information, and phase information.
  • the type of the reported information can be configured by the network side according to the actual situation, and it is not exhaustive in this embodiment.
  • the CSI here includes at least one of CRI, RI, PMI, and CQI.
  • the quantity of beam information included in the CSI report by the terminal device can be determined according to the preset conditions; thus, the terminal device can flexibly adjust the beam information included in the CSI report when performing the CSI report.
  • the number of beams which can avoid the problem that the CSI reporting is always performed according to the amount of beam information configured by the high-level signaling on the network side, which results in excessive feedback signaling overhead and occupying a large amount of uplink resources.
  • An embodiment of the present invention provides a network device, as shown in FIG. 5, including:
  • the second processing unit 51 determines the quantity of beam information included in the CSI report of the terminal device
  • the second communication unit 52 receives the CSI report of the terminal device according to the determined quantity of the beam information.
  • the following two methods may also be included: After the network side itself determines the quantity of beam information reported by the terminal device CSI, the terminal device is instructed to perform DCI reporting by the terminal device to indicate the beam information to the terminal device. And the network side itself determines the number of beam information included in the CSI report according to the transmission parameters reported by the terminal device CSI or the physical resources corresponding to the CSI report, and waits for receiving the CSI report from the terminal device based on the determined amount. . specific:
  • the second communication unit 52 instructs the terminal device about the quantity of beam information included in the CSI report by triggering the DCI reported by the CSI.
  • the indicating to the terminal device the quantity of the beam information included in the CSI report is to make the terminal device report the CSI according to the quantity of the beam information.
  • the second communication unit 52 performs one of the following processes:
  • the terminal device By triggering the DCI reported by the CSI and the number of beam information configured through high-level signaling, the terminal device is instructed to perform the number of beam information included in the CSI report.
  • the DCI can be used to trigger periodic CSI reporting or continuous CSI reporting.
  • aperiodic reporting is to trigger a single CSI reporting by the terminal through DCI; continuous CSI reporting can be quasi-continuous reporting.
  • Quasi-persistent reporting is to trigger the terminal to perform periodic CSI reporting through DCI or Media Access Control (MAC, Media Access Control) signaling until the deactivation signaling is received.
  • MAC Media Access Control
  • the RNTI adopted by performing CRC scrambling on the DCI instructs the terminal device to perform a quantity of beam information included in a CSI report.
  • the terminal device may determine the number of beam information included in the CSI report based on the first RNTI or the second RNTI used for CRC scrambling in the DCI; the first RNTI and the second RNTI correspond to different beams The amount of information.
  • the first RNTI and the second RNTI may be an SP-CSI RNTI and a cell radio network temporary identifier (C-RNTI, Cell Radio Network Temporary Identifier).
  • the first RNTI and the second RNTI can be SP-CSI, RNTI, and C-RNTI, respectively.
  • the DCI using SP-CSI and RNTI for CRC scrambling, and the DCI using C-RNTI for CRC scrambling can use different numbers. Because SP-CSI RNTI is used for quasi-continuous CSI reporting, and C-RNTI is used for non-periodic CSI reporting, so different CSI reporting methods can use different amounts of beam information, thereby flexibly adjusting the accuracy and overhead of reporting. .
  • the CSI report triggered by the DCI format 0_0 and the CSI report triggered by the DCI format 0_1 are corresponding beam information.
  • the number can be different.
  • the indication information included in the DCI is the information content contained in the information field of the DCI. For example, a certain field may be preset for the number of beam information included in the DCI report.
  • the indication information of the DCI may directly include the quantity of beam information. It can be directly indicated by the quantity indication information dedicated to the beam information in the DCI. For example, if there are 4 beams, it is indicated by 2 bits.
  • the terminal device may also determine the quantity of beam information according to other information fields in the DCI.
  • the CSI request information field in the DCI is used to indicate a currently used CSI reporting configuration from multiple CSI reporting configurations, and each CSI reporting configuration may include a quantity of beam information.
  • the target CSI report configuration is obtained through this information field, and the quantity of beam information is obtained at the same time.
  • the number of beam information configured by triggering the CSI reporting by the CSI and the high-level signaling instructs the terminal device to perform the quantity of beam information included in the CSI reporting. corresponding,
  • the quantity of beam information configured by the high-level signaling is a beam of at least one beam information.
  • the terminal device selects a value from the quantity of at least one beam information configured by high-level signaling based on the DCI, and uses the selected value as the quantity of beam information included in the CSI report.
  • the bit information in the DCI may be used to indicate whether the number of beam information in the current CSI report is 2 or 4.
  • the number of bits of the bit information indicated in the DCI may be set according to actual conditions. For example, in the above example, one bit may be used to indicate the number of selected beam values to be reported from the candidate values.
  • the number of at least one beam information configured in the high-level signaling is only the number of one maximum beam information.
  • the terminal device may select the number of beam information included in the CSI report from 1 to the maximum beam information based on the number of the maximum beam information and the DCI.
  • the second processing unit 51 determines the quantity of beam information included in the CSI report according to a transmission parameter reported by the CSI of the terminal device or a physical resource corresponding to the CSI report.
  • the second communication unit 52 causes the second communication unit 52 to receive the CSI report of the terminal device according to the determined quantity.
  • the second processing unit 51 executes one of the following processes:
  • the quantity of beam information included in the CSI report is determined.
  • determining the quantity of beam information included in the CSI report according to a time slot used by the CSI report of the terminal device may specifically include: according to an index of a time slot used by the CSI report and a period of the CSI report Perform calculation to obtain the quantity of beam information; or, the correspondence between the timeslot and the quantity of beam information may be predetermined by the network side and the terminal device.
  • the determining the number of beam information included in the CSI report according to the current number of CSI reports of the terminal device includes: if the current CSI report is the n-th report, the beam information may be determined according to the value of n The number L.
  • n and L are positive numbers, and the corresponding relationship can be predetermined by the network side and the terminal.
  • the CSI reporting is periodic or quasi-persistent CSI reporting.
  • the determining the quantity of beam information included in the CSI report according to whether the CSI report of the terminal device is transmitted with data multiplexing may include: if the CSI report is multiplexed with data on the same channel, Multiplexed in an uplink shared channel (PUSCH, Physical Uplink, Shared Channel), the quantity of the beam information is the first quantity; if the CSI report and data are multiplexed in a different channel, that is, the CSI is transmitted independently, the The number of beam information is a second number; wherein the first number and the second number are both integers, and the first number ⁇ the second number.
  • PUSCH Physical Uplink, Shared Channel
  • the determining the quantity of beam information included in the CSI report according to the CSI report bearer channel may be: assuming that there are two bearer channels, then the corresponding CSI is determined according to the CSI report as the first bearer signal or the second bearer channel. The amount of beam information.
  • the number of the beam information is a third amount; if the CSI report is carried on a PUSCH, the beam information Is the fourth quantity, and the third quantity is less than the fourth quantity.
  • PUCCH Physical Uplink Control CHannel
  • the second processing unit 51 determines the number of beam information included in the CSI report according to one of the following physical resources corresponding to the CSI report of the terminal device: subband, BWP, and time slot.
  • the terminal determines the quantity of the beam information according to the subband corresponding to the CSI report. Specifically, for the amplitude information and phase information that need to be reported for a subband, the quantity of amplitude information and phase information of the subband can be determined according to the subband corresponding to the current CSI.
  • the amplitude and phase information of L beams can be reported; for other subbands, only the amplitude and phase information of M beams can be reported, where M ⁇ L.
  • the first subband may be determined according to the number of the subband.
  • the first subband may be the first one of the eight subbands identified as 0-7, that is, subband 0 is the first subband.
  • it can be the first subband in a subband group.
  • One subband can be one of them 8.
  • the aforementioned best-quality subband may be determined according to indicators such as transmission rate, CQI, or SINR.
  • the subband with the highest transmission rate or CQI or SINR is used as the best-quality subband, or the subbands may also be The load size and the like are not exhaustive in this embodiment.
  • the quantity of the beam information of the BWP can be determined according to the corresponding BWP reported by the current CSI. For example, the number of beam information may be determined according to the index of the BWP.
  • the network side may pre-configure a corresponding quantity of beam information for each BWP.
  • the quantity of beam information of the time slot can be determined according to the time slot corresponding to the current CSI. For example, if CSI0 is the CSI of slot 0 and CSI1 is the CSI of slot 1, then CSI0 and CSI1 may have different amounts of beam information.
  • the time slot corresponding to the CSI may be a time slot for measuring the CSI, or may be a time slot where a CSI reference resource of the CSI is located.
  • the beam information includes at least one of the following: beam vector, bandwidth amplitude information, subband amplitude information, and phase information.
  • the beam vector can be expressed as m1 and m2 respectively correspond to the horizontal and vertical dimensions of the beam, i can represent the identification or number of the beam;
  • the broadband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i over the entire bandwidth;
  • the subband amplitude information can be expressed as Corresponds to the amplitude coefficients of layer l and beam i on each subband;
  • the phase information can be expressed as with with Corresponding to the phases in the two polarization directions, corresponding to layer l and beam i, respectively.
  • the CSI here includes at least one of CRI, RI, PMI, and CQI.
  • the amount of beam information included in the CSI report by the terminal device can be determined according to the preset conditions; thus, the terminal device can flexibly adjust the amount of beam information included in the CSI report when performing the CSI report Therefore, it is possible to avoid the problems that the CSI reporting is always performed according to the amount of beam information configured by the high-level signaling on the network side, which results in excessive feedback signaling overhead and occupies a large amount of uplink resources.
  • FIG. 6 is a schematic structural diagram of a communication device 600 according to an embodiment of the present application.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the processor 610 may control the transceiver 630 to communicate with other devices, and specifically, may send information or data to other devices, or receive other Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 530 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be the network device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method in the embodiment of the present application. For brevity, details are not described herein again. .
  • the communication device 600 may specifically be a terminal device or a network device in the embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the mobile terminal / terminal device in each method in the embodiment of the present application. Concise, I won't repeat them here.
  • FIG. 7 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 may call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 may control the input interface 730 to communicate with other devices or chips. Specifically, the processor 710 may obtain information or data sent by the other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 may control the output interface 740 to communicate with other devices or chips. Specifically, the processor 710 may output information or data to the other devices or chips.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the network device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip may be applied to the terminal device in the embodiment of the present application, and the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip may implement the corresponding process implemented by the terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-level chip, a system chip, a chip system or a system-on-chip.
  • FIG. 8 is a schematic block diagram of a communication system 800 according to an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 may be used to implement the corresponding functions implemented by the terminal device in the foregoing method
  • the network device 820 may be used to implement the corresponding functions implemented by the network device in the foregoing method. For brevity, details are not repeated here. .
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (Field, Programmable Gate Array, FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electronic memory. Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchronous DRAM Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM Enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Synchrobus RAM, SLDRAM
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous Dynamic Random Access Memory (SDRAM), Double Data Rate Synchronous Dynamic Random Access Memory (Double SDRAM, DDR SDRAM), Enhanced Synchronous Dynamic Random Access Memory (Enhanced SDRAM, ESDRAM), Synchronous Connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct RAMbus RAM, DR RAM) and so on. That is, the memories in the embodiments of the present application are intended to include, but not limited to, these and any other suitable types of memories.
  • An embodiment of the present application further provides a computer-readable storage medium for storing a computer program.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method in the embodiment of the present application. For simplicity, here No longer.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal / terminal device in each method of the embodiment of the present application, for the sake of brevity , Will not repeat them here.
  • An embodiment of the present application further provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instruction causes the computer to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. More details.
  • the computer program product can be applied to a mobile terminal / terminal device in the embodiments of the present application, and the computer program instructions cause the computer to execute a corresponding process implemented by the mobile terminal / terminal device in each method in the embodiments of the present application, For brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program may be applied to a network device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer is caused to execute a corresponding process implemented by the network device in each method in the embodiment of the present application. , Will not repeat them here.
  • the computer program may be applied to a mobile terminal / terminal device in the embodiment of the present application.
  • the computer program When the computer program is run on a computer, the computer executes each method in the embodiment of the application by the mobile terminal / terminal device. The corresponding processes are not repeated here for brevity.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种信道状态信息上报方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,能够降低反馈信令的开销,并避免占用大量上行资源,其中方法包括:根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;其中,所述波束信息的数量为全部波束中的部分波束对应的波束信息的数量;根据确定的波束信息的数量,进行CSI上报;其中,所述至少一个预设条件包括以下至少之一:触发所述CSI上报的DCI;所述CSI上报的传输参数;所述CSI上报对应的物理资源。

Description

一种信道状态信息上报方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种信道状态信息(CSI,Channel State Information)上报方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在新无线(NR,New Radio)系统中,采用类型type II码本确定波束信息,目前的type II码本支持非周期上报和准持续性上报两种方式。终端设备每次上报都需要上报全部L个波束的波束信息,其中,全部L个波束的数量由高层信令配置。但是,这种上报方式需要的反馈信令开销较大,需要占用大量上行资源。
发明内容
为解决上述技术问题,本发明实施例提供了信道状态信息上报方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,能够降低反馈信令的开销,并避免占用大量上行资源。
本发明实施例第一方面,提供了一种CSI上报方法,应用于终端设备,包括:
根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;
根据确定的波束信息的数量,进行CSI上报;
其中,所述至少一个预设条件包括以下至少之一:
触发所述CSI上报的下行控制信息(DCI,Downlink Control Information);
所述CSI上报的传输参数;
所述CSI上报对应的物理资源。
第二方面,提供了一种CSI上报方法,应用于网络设备,包括:
确定终端设备的CSI上报中所包含的波束信息的数量,根据确定的所述波束信息的数量接收所述终端设备的所述CSI上报。
第三方面,提供了一种终端设备,包括:
第一处理单元,根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;
第一通信单元,根据确定的波束信息的数量,进行CSI上报;
其中,所述至少一个预设条件包括以下至少之一:
触发所述CSI上报的DCI;
所述CSI上报的传输参数;
所述CSI上报对应的物理资源。
第四方面,提供了一种网络设备,包括:
第二处理单元,确定终端设备的CSI上报中所包含的波束信息的数量,
第二通信单元,根据确定的所述波束信息的数量接收所述终端设备的所述CSI上报。
第五方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第六方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第七方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式 中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第八方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本发明实施例的技术方案,能够根据预设条件确定终端设备进行CSI上报中所包含的波束信息的数量;从而,使得终端设备在进行CSI上报时,能够灵活调整所述CSI上报中包含的波束信息的数量,进而能够避免一直按照网络侧高层信令配置的波束信息的数量进行CSI上报,所带来的反馈信令的开销过大以及占用大量的上行资源的问题。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2为本发明实施例提供的一种CSI上报方法流程示意图一;
图3为本发明实施例提供的一种CSI上报方法流程示意图二;
图4为本发明实施例提供的一种终端设备组成结构示意图;
图5为本发明实施例提供的一种网络设备组成结构示意图;
图6为本发明实施例提供的一种通信设备组成结构示意图;
图7是本申请实施例提供的一种芯片的示意性框图;
图8是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用 的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
实施例一、
本发明实施例提供了一种信道状态信息(CSI,Channel State Information)上报方法,应用于终端设备,如图2所示,包括:
步骤201:根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;
步骤202:根据确定的波束信息的数量,进行CSI上报;
其中,所述至少一个预设条件包括以下至少之一:
触发所述CSI上报的DCI;
所述CSI上报的传输参数;
所述CSI上报对应的物理资源。
其中,CSI上报的波束对应的波束信息的数量,可以为全部波束中的部分波束对应的波束信息的数量。
通过采用上述方案,可以通过预设条件,确定终端设备仅上报全部波束中的部分波束所对应的信息的数量。
下面针对前述几种预设条件的场景进行详细说明:
场景一、
当所述至少一个预设条件包含触发所述CSI上报的下行控制信息(DCI,Downlink Control  Information)时,
所述确定CSI上报中所包含的波束信息的数量,包括以下之一:
根据对所述DCI进行CRC加扰所采用的RNTI,确定所述CSI上报中所包含的波束信息的数量;
根据所述DCI的DCI格式,确定所述CSI上报中所包含的波束信息的数量;
根据所述DCI中包含的指示信息,确定所述CSI上报中所包含的波束信息的数量。
其中,所述DCI可以用于触发周期性CSI上报,也可以触发持续性CSI上报;其中,非周期上报为通过DCI触发终端进行单次的CSI上报;持续性CSI上报可以为准持续性上报,准持续性上报为通过DCI或者MAC信令触发终端进行周期性的CSI上报,直到收到去激活信令为止。
具体的,所述根据对所述DCI进行CRC加扰所采用的无线网络临时标识(RNTI,Radio Network Temporary Identity),确定CSI上报中所包含的波束信息的数量。
比如,基于所述DCI中进行CRC加扰采用的为第一RNTI或第二RNTI,确定CSI上报中所包含的波束信息的数量;所述第一RNTI以及第二RNTI对应不同的波束信息的数量。其中,第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)。
假设第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、C-RNTI,采用SP-CSI RNTI进行CRC加扰的DCI、与采用C-RNTI进行CRC加扰的DCI可以采用不同的数量。由于,SP-CSI RNTI用于准持续性的CSI上报,C-RNTI用于非周期性的CSI上报,这样不同CSI上报方式就可以采用不同的波束信息数量,从而灵活的调整上报的精度和开销。
所述根据所述DCI的DCI格式,确定所述CSI上报中包含的波束信息的数量,比如,采用DCI格式0_0触发的CSI上报与采用DCI格式0_1触发的CSI上报,对应的波束信息的数量可以是不同的。
所述根据所述DCI中包含的指示信息,确定所述CSI上报中所包含的波束信息的数量。其中,所述DCI中包含的指示信息为DCI的信息域中所包含的信息内容,比如,可以预设某一个字段用于进行DCI上报所包含的波束信息的数量。
具体的,所述DCI的指示信息中可以直接包含波束信息的数量。可以用DCI中的专门用于进行波束信息的数量指示信息直接指示,比如有4个波束,就用2比特指示。
或者,可以根据所述DCI中的其他信息域,确定所述CSI上报中所包含的波束信息的数量。例如,所述DCI中的CSI请求信息域用于从多个CSI上报配置中指示当前使用的CSI上报配置,每个CSI上报配置中可以包含波束信息的数量。通过该信息域获得目标CSI上报配置,同时也就获得了波束信息的数量。
场景二、
当所述至少一个预设条件包含触发所述CSI上报的DCI时,根据触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,确定所述CSI上报中所包含的波束信息的数量。
这里包含两种子场景:
子场景1、
基于所述DCI从高层信令配置的至少一个波束信息的数量中选取数值,将选取的数值作为所述CSI上报中所包含的波束信息的数量。
例如,高层信令配置的波束信息数量的候选值为{2,4},则可以通过DCI中的比特信息来指示当前CSI上报中的波束信息的数量为2还是4。
其中,在DCI中进行指示的比特信息的位数可以根据实际情况进行设置,比如,上述示例中可以采用1个比特来指示从候选值中选择第几个值作为上报的波束信息的数量。
子场景2、
当高层信令配置的至少一个波束信息的数量中仅为一个最大波束信息的数量时:
基于所述最大波束信息的数量以及所述DCI,从1至最大波束信息的数量中选取所述CSI上报中所包含的波束信息的数量。
例如,高层信令配置的最大波束信息的数量为L,也就是说,终端设备可以上报的波束信息的 数量为1-L个中的任意一个,此时可以通过DCI中的log2(L)(上取整)个比特来获取波束信息的数量,这些比特用于指示当前CSI上报波束信息的波束信息的数量为1,2,…L中的一个。
比如,高层信令配置的最大波束信息的数量为L=4,DCI中指示的信息为10,那么就可以CSI上报3个波束对应的波束信息。
场景三、当所述至少一个预设条件包含所述CSI上报的传输参数时,
所述确定CSI上报中所包含的波束信息的数量,包括以下之一:
根据CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
根据CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
根据CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
根据CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
所述根据CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量,可以具体的为:根据CSI上报所用的时隙的索引、以及CSI上报的周期进行计算,得到波束信息的数量;或者,所述时隙和波束信息的数量的对应关系可以由网络侧和终端设备之间预先约定好。
例如,假设所述时隙的索引为S,所述CSI上报的周期为T,则终端可以根据n=S/T(下取整)所得到的结果为奇数还是偶数来确定所用的波束信息的数量L,可以设定偶数则对应L=4,奇数则对应L=2。
或者,在计算得到了n的基础之上,进一步根据k=n mod N来确定所用的波束信息的数量L,如果k=0则L=4,否则L=2;其中,N可以为约定整数值,mod为取模的操作。
所述根据CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量,包括:
如果当前CSI上报为第n次上报,则可以根据n的取值确定所述波束信息的数量L。这里n和L均为正数、且对应关系可以由网络侧与终端预先约定好。其中,CSI上报为周期性或者准持续性CSI上报。
进一步的,还可以根据预设的计算公式,以及当前的上报次数n以及预设的数值N计算得到波束信息的数量L;比如,可以采用k=n mod N来确定所用的波束信息的数量L,例如得到的结果中k=0则L=4,否则L=2,N为约定整数值。
所述根据CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量,可以包括:如果所述CSI上报与数据在同一个信道中复用,比如在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)中复用,则所述波束信息的数量为第一数量;如果所述CSI上报与数据在不同一个信道中复用,即CSI独立传输,则所述波束信息的数量为第二数量;其中,第一数量和第二数量均为整数,且第一数量<第二数量。
所述根据CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量,可以为:假设存在两个承载信道,那么根据CSI上报为第一承载信号或第二承载信道,来确定对应的波束信息的数量。
例如,如果所述CSI上报通过物理上行链路控制信道(PUCCH,Physical Uplink Control CHannel)承载,则所述波束信息的数量为第三数量;如果所述CSI上报通过PUSCH承载,则所述波束信息的数量为第四数量,且第三数量<第四数量。
场景四、
当所述至少一个预设条件包含所述CSI上报对应的物理资源时,
所述确定CSI上报中所包含的波束信息的数量,包括:根据所述CSI上报所对应的以下物理资源之一:子带、带宽部分(BWP,Bandwidth Part)、时隙,确定所述CSI上报中所包含的波束信息的数量。
当物理资源为子带时,终端根据进行所述CSI上报所对应的子带,确定所述波束信息的数量。具体的,对于需要针对子带进行上报的幅度信息和相位信息,可以根据当前CSI对应的子带,来确定该子带的幅度信息和相位信息的数量。
例如,对于配置的第一个子带或者终端选择的最好的子带,可以上报L个波束的幅度和相位信息;对于其他子带,可以只上报M个波束的幅度和相位信息,其中M<L。
其中,所述第一个子带,可以为根据子带的编号来确定,比如,可以为标识为0-7的8个子带中的第一个子带,即子带0为第一个子带;或者,可以为一个子带组中的第一个子带,比如,一共可以存在16个子带分别可以标识为0-15子带,其中指定的一组子带为8-15,那么第一个子带就可以为其中的子带8.
另外,前述质量最好的子带可以为根据传输速率、CQI或SINR等指标来确定,比如,传输速率或CQI或SINR最高的子带作为质量最好的子带,或者,还可以根据子带的负荷大小等等,本实施例中不再进行穷举。
当物理资源为带宽部分(BWP)时,对于需要针对BWP进行上报的波束信息,可以根据当前CSI上报对应的BWP,来确定该BWP的波束信息的数量。例如,可以根据BWP的索引来确定波束信息的数量。其中,网络侧可以为每个BWP预先配置一个对应的波束信息的数量。
当物理资源为时隙时,对于需要针对时隙进行上报的波束信息,可以根据当前CSI所对应的时隙,来确定该时隙的波束信息的数量。例如,CSI0为时隙0的CSI,CSI1为时隙1的CSI,则CSI0和CSI1可以有不同的波束信息的数量。其中,CSI对应的时隙可以是用于测量该CSI的时隙,也可以是该CSI的CSI参考资源所在的时隙。
本实施例中,所述波束信息,包括以下至少之一:波束向量、带宽幅度信息、子带幅度信息、相位信息。
其中,波束向量可以表示为
Figure PCTCN2018100089-appb-000001
m1和m2分别对应该波束的水平垂直两个维度,i可以表示波束的标识或者编号;宽带幅度信息可以表示为
Figure PCTCN2018100089-appb-000002
对应于层l和波束i在整个带宽上的幅度系数;子带幅度信息可以表示为
Figure PCTCN2018100089-appb-000003
应于层l和波束i在每个子带上的幅度系数;相位信息可以表示为
Figure PCTCN2018100089-appb-000004
Figure PCTCN2018100089-appb-000005
Figure PCTCN2018100089-appb-000006
分别对应两个极化方向上的相位,对应于层l和波束i。
所述根据确定的波束信息的数量,进行CSI上报,包括:
根据确定的波束信息的数量,基于预设码本确定所述预设码本中的波束信息,并上报所述波束信息。
其中,预设码本可以为type II码本;相应的,根据确定的波束信息的数量L,基于type II码本确定码本中的波束信息,并上报所述波束信息。比如,确定多个波束中的L个波束分别对应的波束向量,宽带幅度信息和相位信息,再上报这些波束信息。
关于前述type II码本可以支持最高两层传输,其中层(Rank)1和Rank 2的码本如下:
对于Rank1,
Figure PCTCN2018100089-appb-000007
对于Rank2,
Figure PCTCN2018100089-appb-000008
其中,
Figure PCTCN2018100089-appb-000009
在上面的公式中,
Figure PCTCN2018100089-appb-000010
是归一化系数;
其中,波束信息的数量L的取值与本实施例前述波束信息的数量相同;
Figure PCTCN2018100089-appb-000011
对应波束i,是二维DFT波束向量,m1和m2分别对应该波束的水平垂直两个维度;l=1,2分别对应两个层各自的码本向量;
每个层的码本向量由两部分组成:
Figure PCTCN2018100089-appb-000012
Figure PCTCN2018100089-appb-000013
分别对应两 个极化方向的码本向量;
Figure PCTCN2018100089-appb-000014
Figure PCTCN2018100089-appb-000015
分别对应宽带和子带的幅度系数,对应于层l和波束i;
Figure PCTCN2018100089-appb-000016
Figure PCTCN2018100089-appb-000017
分别对应两个极化方向上的相位,对应于层l和波束i;可用的相位数量可以是4,对应正交相移键控(QPSK,Quadrature Phase Shift Keyin),或者8,对应8相移键控调制(PSK,Phase Shift Keyin)。
需要指出的是,本实施例中进行包含多个波束对应的波束信息的所述CSI上报时,每一个波束所上报的波束信息包含的具体信息类型是一样的,比如,均上报波束向量、带宽幅度和相位信息;或者,设置为均上报波束向量、宽带幅度信息、子带幅度信息和相位信息。具体的,上报的信息类型可以根据实际情况由网络侧配置,本实施例中不进行穷举。
这里的CSI包括CRI、RI、PMI、CQI中的至少一项。
可见,通过采用上述方案,能够根据预设条件确定终端设备进行CSI上报中所包含的波束信息的数量;从而,使得终端设备在进行CSI上报时,能够灵活调整所述CSI上报中包含的波束信息的数量,进而能够避免一直按照网络侧高层信令配置的波束信息的数量进行CSI上报,所带来的反馈信令的开销过大以及占用大量的上行资源的问题。
实施例二、
本发明实施例提供了一种CSI上报方法,应用于网络设备,如图3所示,包括:
步骤301:确定终端设备的CSI上报中所包含的波束信息的数量;
步骤302:根据确定的所述波束信息的数量接收所述终端设备的所述CSI上报。
在本实施例的处理中,也可以包括有以下两种方式:由网络侧自身确定了终端设备CSI上报的波束信息的数量之后,通过触发终端设备进行CSI上报的DCI来指示给终端设备波束信息的数量;以及,网络侧自身根据终端设备CSI上报的传输参数、或者、CSI上报对应的物理资源,确定CSI上报中所包含的波束信息的数量,并基于确定的数量等待接收终端设备的CSI上报。具体的:
方式1、
所述确定终端设备的CSI上报中所包含的波束信息的数量之后,所述方法还包括:
通过触发所述CSI上报的DCI,向所述终端设备指示所述CSI上报中所包含的波束信息的数量。
其中,所述向所述终端设备指示所述CSI上报中所包含的波束信息的数量,其作用为使得终端设备根据所述波束信息的数量进行CSI上报。
所述通过触发所述CSI上报的DCI,向所述终端设备指示所述CSI上报中所包含的波束信息的数量,包括以下之一:
通过对所述DCI进行CRC加扰所采用的无线网络临时标识RNTI,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
通过所述DCI的DCI格式,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
通过所述DCI中包含的指示信息,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
通过触发所述CSI上报的DCI、以及通过高层信令配置的波束信息的数量,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量。
其中,所述DCI可以用于触发周期性CSI上报,也可以触发持续性CSI上报;其中,非周期上报为通过DCI触发终端进行单次的CSI上报;持续性CSI上报可以为准持续性上报,准持续性上报为通过DCI或者介质访问控制(MAC,Media Access Control)信令触发终端进行周期性的CSI上报,直到收到去激活信令为止。
具体的,所述通过对所述DCI进行CRC加扰所采用的RNTI,指示所述终端设备进行CSI上报中所包含的波束信息的数量。
比如,终端设备可以基于所述DCI中进行CRC加扰采用的为第一RNTI或第二RNTI,确定CSI上报中所包含的波束信息的数量;所述第一RNTI以及第二RNTI对应不同的波束信息的数量。其中,第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)。
假设第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、C-RNTI,采用SP-CSI RNTI进行CRC加扰的DCI、与采用C-RNTI进行CRC加扰的DCI可以采用不同的数量。由于,SP-CSI RNTI用于准持续性的CSI上报,C-RNTI用于非周期性的CSI上报,这样不同CSI上报方式就可以采用不同的波束信息数量,从而灵活的调整上报的精度和开销。
所述通过所述DCI的DCI格式,指示所述终端设备进行CSI上报中包含的波束信息的数量,比如,采用DCI格式0_0触发的CSI上报与采用DCI格式0_1触发的CSI上报,对应的波束信息的数量可以是不同的。
所述通过所述DCI中包含的指示信息,指示所述终端设备进行CSI上报中所包含的波束信息的数量。其中,所述DCI中包含的指示信息为DCI的信息域中所包含的信息内容,比如,可以预设某一个字段用于进行DCI上报所包含的波束信息的数量。
具体的,所述DCI的指示信息中可以直接包含波束信息的数量。可以用DCI中的专门用于进行波束信息的数量指示信息直接指示,比如有4个波束,就用2比特指示。
或者,终端设备还可以根据所述DCI中的其他信息域,确定波束信息的数量。例如,所述DCI中的CSI请求信息域用于从多个CSI上报配置中指示当前使用的CSI上报配置,每个CSI上报配置中可以包含波束信息的数量。通过该信息域获得目标CSI上报配置,同时也就获得了波束信息的数量。
所述通过触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,指示所述终端设备进行CSI上报中所包含的波束信息的数量。相应的,
可以包含两种子场景:、一个最大波束信息的波束
子场景1、
所述高层信令配置的波束信息的数量为至少一个波束信息的波束。
相应的,终端设备基于所述DCI从高层信令配置的至少一个波束信息的数量中选取数值,将选取的数值作为CSI上报中所包含的波束信息的数量。
例如,高层信令配置的波束信息数量的候选值为{2,4},则可以通过DCI中的比特信息来指示当前CSI上报中的波束信息的数量为2还是4。
其中,在DCI中进行指示的比特信息的位数可以根据实际情况进行设置,比如,上述示例中可以采用1个比特来指示从候选值中选择第几个值作为上报的波束信息的数量。
子场景2、
高层信令配置的至少一个波束信息的数量中仅为一个最大波束信息的数量。
终端设备可以基于所述最大波束信息的数量以及所述DCI,从1至最大波束信息的数量中选取CSI上报中所包含的波束信息的数量。
方式2、
所述确定终端设备的CSI上报中所包含的波束信息的数量,包括:
根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量。
这种方式,网络侧确定了终端设备进行CSI上报中包含的波束信息的数量之后,根据确定的数量接收终端设备的CSI上报。
所述根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量,包括以下之一:
根据终端设备的CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
根据终端设备的CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
根据终端设备的CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
根据终端设备的CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
其中,所述根据终端设备的CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量,可以具体为:根据CSI上报所用的时隙的索引、以及所述CSI上报的周期进行计算,得到波束信息的数量;或者,所述时隙和波束信息的数量的对应关系可以由网络侧和终端设备之间预先约定 好。
例如,假设所述时隙的索引为S,所述CSI上报的周期为T,则终端可以根据n=S/T(下取整)所得到的结果为奇数还是偶数来确定所用的波束信息的数量L,可以设定偶数则对应L=4,奇数则对应L=2。
或者,在计算得到了n的基础之上,进一步根据k=n mod N来确定所用的波束信息的数量L,如果k=0则L=4,否则L=2;其中,N可以为约定整数值,mod为取模的操作。
所述根据终端设备的CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量,包括:如果当前CSI上报为第n次上报,则可以根据n的取值确定所述波束信息的数量L。这里n和L均为正数、且对应关系可以由网络侧与终端预先约定好。其中,所述CSI上报为周期性或者准持续性CSI上报。
进一步的,还可以根据预设的计算公式,以及当前的上报次数n以及预设的数值N计算得到波束信息的数量L;比如,可以采用k=n mod N来确定所用的波束信息的数量L,例如得到的结果中k=0则L=4,否则L=2,N为约定整数值。
所述根据终端设备的CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量,可以包括:如果所述CSI上报与数据在同一个信道中复用,比如在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)中复用,则所述波束信息的数量为第一数量;如果所述CSI上报与数据在不同一个信道中复用,即CSI独立传输,则所述波束信息的数量为第二数量;其中,第一数量和第二数量均为整数,且第一数量<第二数量。
所述根据CSI上报的承载信道,确定CSI上报中所包含的波束信息的数量,可以为:假设存在两个承载信道,那么根据CSI上报为第一承载信号或第二承载信道,来确定对应的波束信息的数量。
例如,如果所述CSI上报通过物理上行链路控制信道(PUCCH,Physical Uplink Control CHannel)承载,则所述波束信息的数量为第三数量;如果所述CSI上报通过PUSCH承载,则所述波束信息的数量为第四数量,且第三数量<第四数量。
所述根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量,包括:
根据终端设备的CSI上报所对应的以下物理资源之一:子带、BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
当物理资源为子带时,终端根据进行CSI上报所对应的子带,确定所述波束信息的数量。具体的,对于需要针对子带进行上报的幅度信息和相位信息,可以根据当前CSI对应的子带,来确定该子带的幅度信息和相位信息的数量。
例如,对于配置的第一个子带或者终端选择的最好的子带,可以上报L个波束的幅度和相位信息;对于其他子带,可以只上报M个波束的幅度和相位信息,其中M<L。
其中,所述第一个子带,可以为根据子带的编号来确定,比如,可以为标识为0-7的8个子带中的第一个子带,即子带0为第一个子带;或者,可以为一个子带组中的第一个子带,比如,一共可以存在16个子带分别可以标识为0-15子带,其中指定的一组子带为8-15,那么第一个子带就可以为其中的子带8.
另外,前述质量最好的子带可以为根据传输速率、CQI或SINR等指标来确定,比如,传输速率或CQI或SINR最高的子带作为质量最好的子带,或者,还可以根据子带的负荷大小等等,本实施例中不再进行穷举。
当物理资源为带宽部分(BWP)时,对于需要针对BWP进行上报的波束信息,可以根据当前CSI上报对应的BWP,来确定该BWP的波束信息的数量。例如,可以根据BWP的索引来确定波束信息的数量。其中,网络侧可以为每个BWP预先配置一个对应的波束信息的数量。
当物理资源为时隙时,对于需要针对时隙进行上报的波束信息,可以根据当前CSI所对应的时隙,来确定该时隙的波束信息的数量。例如,CSI0为时隙0的CSI,CSI1为时隙1的CSI,则CSI0和CSI1可以有不同的波束信息的数量。其中,CSI对应的时隙可以是用于测量该CSI的时隙,也可以是该CSI的CSI参考资源所在的时隙。
本实施例中,所述波束信息,包括以下至少之一:波束向量、带宽幅度信息、子带幅度信息、相位信息。
其中,波束向量可以表示为
Figure PCTCN2018100089-appb-000018
m1和m2分别对应该波束的水平垂直两个维度,i可以表示波束的标识或者编号;宽带幅度信息可以表示为
Figure PCTCN2018100089-appb-000019
对应于层l和波束i在整个带宽上的幅度系数;子带幅度信息可以表示为
Figure PCTCN2018100089-appb-000020
应于层l和波束i在每个子带上的幅度系数;相位信息可以表示为
Figure PCTCN2018100089-appb-000021
Figure PCTCN2018100089-appb-000022
Figure PCTCN2018100089-appb-000023
分别对应两个极化方向上的相位,对应于层l和波束i。
这里的CSI包括CRI、RI、PMI、CQI中的至少一项。
可见,通过采用上述方案,能够根据预设条件确定终端设备进行CSI上报中所包含的波束信息的数量;从而,使得终端设备在进行CSI上报时,能够灵活调整所述CSI上报中包含的波束信息的数量,进而能够避免一直按照网络侧高层信令配置的波束信息的数量进行CSI上报,所带来的反馈信令的开销过大以及占用大量的上行资源的问题。
实施例三、
本发明实施例提供了一种终端设备,如图:4所示,包括:
第一处理单元41,根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;
第一通信单元42,根据确定的波束信息的数量,进行CSI上报;
其中,所述至少一个预设条件包括以下至少之一:
触发所述CSI上报的DCI;
所述CSI上报的传输参数;
所述CSI上报对应的物理资源。
其中,CSI上报的波束对应的波束信息的数量,可以为全部波束中的部分波束对应的波束信息的数量。
通过采用上述方案,可以通过预设条件,仅上报全部波束中的部分波束所对应的信息的数量。
下面针对前述几种预设条件的场景进行详细说明:
场景一、
当所述至少一个预设条件包含触发所述CSI上报的下行控制信息(DCI,Downlink Control Information)时,
所述第一处理单元41,执行以下处理之一:
根据对所述DCI进行CRC加扰所采用的RNTI,确定所述CSI上报中所包含的波束信息的数量;
根据所述DCI的DCI格式,确定所述CSI上报中所包含的波束信息的数量;
根据所述DCI中包含的指示信息,确定所述CSI上报中所包含的波束信息的数量。
其中,所述DCI可以用于触发周期性CSI上报,也可以触发持续性CSI上报;其中,非周期上报为通过DCI触发终端进行单次的CSI上报;持续性CSI上报可以为准持续性上报,准持续性上报为通过DCI或者MAC信令触发终端进行周期性的CSI上报,直到收到去激活信令为止。
具体的,所述第一处理单元41,根据对所述DCI进行CRC加扰所采用的RNTI,确定所述CSI上报中所包含的波束信息的数量。
比如,基于所述DCI中进行CRC加扰采用的为第一RNTI或第二RNTI,确定CSI上报中所包含的波束信息的数量;所述第一RNTI以及第二RNTI对应不同的波束信息的数量。其中,第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)。
假设第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、C-RNTI,采用SP-CSI RNTI进行CRC加扰的DCI、与采用C-RNTI进行CRC加扰的DCI可以采用不同的数量。由于,SP-CSI RNTI用于准持续性的CSI上报,C-RNTI用于非周期性的CSI上报,这样不同CSI上报方式就可以采用不同的波束信息数量,从而灵活的调整上报的精度和开销。
所述根据所述DCI的DCI格式,确定所述CSI上报中包含的波束信息的数量,比如,采用DCI格式0_0触发的CSI上报与采用DCI格式0_1触发的CSI上报,对应的波束信息的数量可以是不同的。
所述根据所述DCI中包含的指示信息,确定所述CSI上报中所包含的波束信息的数量。其中,所述DCI中包含的指示信息为DCI的信息域中所包含的信息内容,比如,可以预设某一个字段用于进行DCI上报所包含的波束信息的数量。
具体的,所述DCI的指示信息中可以直接包含波束信息的数量。可以用DCI中的专门用于进行波束信息的数量指示信息直接指示,比如有4个波束,就用2比特指示。
或者,可以根据所述DCI中的其他信息域,确定波束信息的数量。例如,所述DCI中的CSI请求信息域用于从多个CSI上报配置中指示当前使用的CSI上报配置,每个CSI上报配置中可以包含波束信息的数量。通过该信息域获得目标CSI上报配置,同时也就获得了波束信息的数量。
场景二、
当所述至少一个预设条件包含触发所述CSI上报的DCI时,第一处理单元41,根据触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,确定所述CSI上报中所包含的波束信息的数量。
这里包含两种子场景:
子场景1、
第一处理单元41,基于所述DCI从高层信令配置的至少一个波束信息的数量中选取数值,将选取的数值作为所述CSI上报中所包含的波束信息的数量。
例如,高层信令配置的波束信息数量的候选值为{2,4},则可以通过DCI中的比特信息来指示当前CSI上报中的波束信息的数量为2还是4。
其中,在DCI中进行指示的比特信息的位数可以根据实际情况进行设置,比如,上述示例中可以采用1个比特来指示从候选值中选择第几个值作为上报的波束信息的数量。
子场景2、
当高层信令配置的至少一个波束信息的数量中仅为一个最大波束信息的数量时,第一处理单元41,基于所述最大波束信息的数量以及所述DCI,从1至最大波束信息的数量中选取所述CSI上报中所包含的波束信息的数量。
例如,高层信令配置的最大波束信息的数量为L,也就是说,终端设备可以高层信令配置的最大波束信息的数量为L,也就是说,终端设备可以上报的波束信息的数量为1-L个中的任意一个,此时可以通过DCI中的log2(L)(上取整)个比特来获取波束信息的数量,这些比特用于指示当前CSI上报波束信息的波束信息的数量为1,2,…L中的一个。
比如,高层信令配置的最大波束信息的数量为L=4,DCI中指示的信息为10,那么就可以CSI上报3个波束对应的波束信息。
场景三、当所述至少一个预设条件包含所述CSI上报的传输参数时,
所述第一处理单元41,执行以下处理之一:
根据CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
根据CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
根据CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
根据CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
所述根据CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量,可以具体的为:第一处理单元41,根据所述CSI上报所用的时隙的索引、以及所述CSI上报的周期进行计算,得到波束信息的数量;或者,所述时隙和波束信息的数量的对应关系可以由网络侧和终端设备之间预先约定好。
例如,假设所述时隙的索引为S,所述CSI上报的周期为T,则终端可以根据n=S/T(下取整)所得到的结果为奇数还是偶数来确定所用的波束信息的数量L,可以设定偶数则对应L=4,奇数则对应L=2。
或者,第一处理单元41,在计算得到了n的基础之上,进一步根据k=n mod N来确定所用的波束信息的数量L,如果k=0则L=4,否则L=2;其中,N可以为约定整数值。
所述第一处理单元41,如果当前CSI上报为第n次上报,则可以根据n的取值确定所述波束信 息的数量L。这里n和L均为正数、且对应关系可以由网络侧与终端预先约定好。其中,所述CSI上报为周期性或者准持续性CSI上报。
进一步的,还可以根据预设的计算公式,以及当前的上报次数n以及预设的数值N计算得到波束信息的数量L;比如,可以采用k=n mod N来确定所用的波束信息的数量L,例如得到的结果中k=0则L=4,否则L=2,N为约定整数值,mod为取模的操作。
所述第一处理单元41,如果所述CSI上报与数据在同一个信道中复用,比如在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)中复用,则所述波束信息的数量为第一数量;如果所述CSI上报与数据在不同一个信道中复用,即CSI独立传输,则所述波束信息的数量为第二数量;其中,第一数量和第二数量均为整数,且第一数量<第二数量。
所述根据CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量,可以为:假设存在两个承载信道,那么根据CSI上报为第一承载信号或第二承载信道,来确定对应的波束信息的数量。
例如,如果所述CSI上报通过物理上行链路控制信道(PUCCH,Physical Uplink Control CHannel)承载,则所述波束信息的数量为第三数量;如果所述CSI上报通过PUSCH承载,则所述波束信息的数量为第四数量,且第三数量<第四数量。
场景四、
当所述至少一个预设条件包含所述CSI上报对应的物理资源时,
所述第一处理单元41,根据所述CSI上报所对应的以下物理资源之一:子带、BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
当物理资源为子带时,第一处理单元41,根据进行所述CSI上报所对应的子带,确定所述波束信息的数量。具体的,对于需要针对子带进行上报的幅度信息和相位信息,可以根据当前CSI对应的子带,来确定该子带的幅度信息和相位信息的数量。
例如,对于配置的第一个子带或者终端选择的最好的子带,可以上报L个波束的幅度和相位信息;对于其他子带,可以只上报M个波束的幅度和相位信息,其中M<L。
其中,所述第一个子带,可以为根据子带的编号来确定,比如,可以为标识为0-7的8个子带中的第一个子带,即子带0为第一个子带;或者,可以为一个子带组中的第一个子带,比如,一共可以存在16个子带分别可以标识为0-15子带,其中指定的一组子带为8-15,那么第一个子带就可以为其中的子带8.
另外,前述质量最好的子带可以为根据传输速率、CQI或SINR等指标来确定,比如,传输速率或CQI或SINR最高的子带作为质量最好的子带,或者,还可以根据子带的负荷大小等等,本实施例中不再进行穷举。
当物理资源为带宽部分(BWP)时,对于需要针对BWP进行上报的波束信息,可以根据当前CSI上报对应的BWP,来确定该BWP的波束信息的数量。例如,可以根据BWP的索引来确定波束信息的数量。其中,网络侧可以为每个BWP预先配置一个对应的波束信息的数量。
当物理资源为时隙时,对于需要针对时隙进行上报的波束信息,可以根据当前CSI所对应的时隙,来确定该时隙的波束信息的数量。例如,CSI0为时隙0的CSI,CSI1为时隙1的CSI,则CSI0和CSI1可以有不同的波束信息的数量。其中,CSI对应的时隙可以是用于测量该CSI的时隙,也可以是该CSI的CSI参考资源所在的时隙。
本实施例中,所述波束信息,包括以下至少之一:波束向量、带宽幅度信息、子带幅度信息、相位信息。
其中,波束向量可以表示为
Figure PCTCN2018100089-appb-000024
m1和m2分别对应该波束的水平垂直两个维度,i可以表示波束的标识或者编号;宽带幅度信息可以表示为
Figure PCTCN2018100089-appb-000025
对应于层l和波束i在整个带宽上的幅度系数;子带幅度信息可以表示为
Figure PCTCN2018100089-appb-000026
应于层l和波束i在每个子带上的幅度系数;相位信息可以表示为
Figure PCTCN2018100089-appb-000027
Figure PCTCN2018100089-appb-000028
Figure PCTCN2018100089-appb-000029
分别对应两个极化方向上的相位,对应于层l和波束i。
所述第一通信单元42,根据确定的波束信息的数量,基于预设码本确定所述预设码本中的波束信息,并上报所述波束信息。
其中,预设码本可以为type II码本;相应的,所述第一通信单元32,根据确定的波束信息的数量L,基于type II码本确定码本中的波束信息,并上报所述波束信息。比如,确定多个波束中的L个波束分别对应的波束向量,宽带幅度信息和相位信息,再上报这些波束信息。
关于前述type II码本可以支持最高两层传输,其中层(Rank)1和Rank 2的码本如下:
对于Rank1,
Figure PCTCN2018100089-appb-000030
对于Rank2,
Figure PCTCN2018100089-appb-000031
其中,
Figure PCTCN2018100089-appb-000032
在上面的公式中,
Figure PCTCN2018100089-appb-000033
是归一化系数;
其中,波束信息的数量L的取值与本实施例前述波束信息的数量相同;
Figure PCTCN2018100089-appb-000034
对应波束i,是二维DFT波束向量,m1和m2分别对应该波束的水平垂直两个维度;l=1,2分别对应两个层各自的码本向量;
每个层的码本向量由两部分组成:
Figure PCTCN2018100089-appb-000035
Figure PCTCN2018100089-appb-000036
分别对应两个极化方向的码本向量;
Figure PCTCN2018100089-appb-000037
Figure PCTCN2018100089-appb-000038
分别对应宽带和子带的幅度系数,对应于层l和波束i;
Figure PCTCN2018100089-appb-000039
Figure PCTCN2018100089-appb-000040
分别对应两个极化方向上的相位,对应于层l和波束i;可用的相位数量可以是4,对应正交相移键控(QPSK,Quadrature Phase Shift Keyin),或者8,对应8相移键控调制(PSK,Phase Shift Keyin)。
需要指出的是,本实施例中进行包含多个波束对应的波束信息的所述CSI上报时,每一个波束所上报的波束信息包含的具体信息类型是一样的,比如,均上报波束向量、带宽幅度和相位信息;或者,设置为均上报波束向量、宽带幅度信息、子带幅度信息和相位信息。具体的,上报的信息类型可以根据实际情况由网络侧配置,本实施例中不进行穷举。
这里的CSI包括CRI、RI、PMI、CQI中的至少一项。
可见,通过采用上述方案,能够根据预设条件确定终端设备进行CSI上报中所包含的波束信息的数量;从而,使得终端设备在进行CSI上报时,能够灵活调整所述CSI上报中包含的波束信息的数量,进而能够避免一直按照网络侧高层信令配置的波束信息的数量进行CSI上报,所带来的反馈信令的开销过大以及占用大量的上行资源的问题。
实施例四、
本发明实施例提供了一种网络设备,如图5所示,包括:
第二处理单元51,确定终端设备的CSI上报中所包含的波束信息的数量;
第二通信单元52,根据确定的所述波束信息的数量接收所述终端设备的所述CSI上报。
在本实施例的处理中,也可以包括有以下两种方式:由网络侧自身确定了终端设备CSI上报的波束信息的数量之后,通过触发终端设备进行CSI上报的DCI来指示给终端设备波束信息的数量;以及,网络侧自身根据终端设备CSI上报的传输参数、或者、CSI上报对应的物理资源,确定CSI上报中所包含的波束信息的数量,并基于确定的数量等待接收终端设备的CSI上报。具体的:
方式1、
所述第二通信单元52,通过触发所述CSI上报的DCI,向所述终端设备指示所述CSI上报中所包含的波束信息的数量。
其中,所述向所述终端设备指示所述CSI上报中所包含的波束信息的数量,其作用为使得终端设备根据所述波束信息的数量进行CSI上报。
所述第二通信单元52,执行以下处理之一:
通过对所述DCI进行CRC加扰所采用的无线网络临时标识RNTI,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
通过所述DCI的DCI格式,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
通过所述DCI中包含的指示信息,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
通过触发所述CSI上报的DCI、以及通过高层信令配置的波束信息的数量,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量。
其中,所述DCI可以用于触发周期性CSI上报,也可以触发持续性CSI上报;其中,非周期上报为通过DCI触发终端进行单次的CSI上报;持续性CSI上报可以为准持续性上报,准持续性上报为通过DCI或者介质访问控制(MAC,Media Access Control)信令触发终端进行周期性的CSI上报,直到收到去激活信令为止。
具体的,所述通过对所述DCI进行CRC加扰所采用的RNTI,指示所述终端设备进行CSI上报中所包含的波束信息的数量。
比如,终端设备可以基于所述DCI中进行CRC加扰采用的为第一RNTI或第二RNTI,确定CSI上报中所包含的波束信息的数量;所述第一RNTI以及第二RNTI对应不同的波束信息的数量。其中,第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、小区无线网络临时标识(C-RNTI,Cell Radio Network Temporary Identifier)。
假设第一RNTI以及第二RNTI可以分别为SP-CSI RNTI、C-RNTI,采用SP-CSI RNTI进行CRC加扰的DCI、与采用C-RNTI进行CRC加扰的DCI可以采用不同的数量。由于,SP-CSI RNTI用于准持续性的CSI上报,C-RNTI用于非周期性的CSI上报,这样不同CSI上报方式就可以采用不同的波束信息数量,从而灵活的调整上报的精度和开销。
所述通过所述DCI的DCI格式,指示所述终端设备进行CSI上报中包含的波束信息的数量,比如,采用DCI格式0_0触发的CSI上报与采用DCI格式0_1触发的CSI上报,对应的波束信息的数量可以是不同的。
所述通过所述DCI中包含的指示信息,指示所述终端设备进行CSI上报中所包含的波束信息的数量。其中,所述DCI中包含的指示信息为DCI的信息域中所包含的信息内容,比如,可以预设某一个字段用于进行DCI上报所包含的波束信息的数量。
具体的,所述DCI的指示信息中可以直接包含波束信息的数量。可以用DCI中的专门用于进行波束信息的数量指示信息直接指示,比如有4个波束,就用2比特指示。
或者,终端设备还可以根据所述DCI中的其他信息域,确定波束信息的数量。例如,所述DCI中的CSI请求信息域用于从多个CSI上报配置中指示当前使用的CSI上报配置,每个CSI上报配置中可以包含波束信息的数量。通过该信息域获得目标CSI上报配置,同时也就获得了波束信息的数量。
所述通过触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,指示所述终端设备进行CSI上报中所包含的波束信息的数量。相应的,
可以包含两种子场景:、一个最大波束信息的波束
子场景1、
所述高层信令配置的波束信息的数量为至少一个波束信息的波束。
相应的,终端设备基于所述DCI从高层信令配置的至少一个波束信息的数量中选取数值,将选取的数值作为CSI上报中所包含的波束信息的数量。
例如,高层信令配置的波束信息数量的候选值为{2,4},则可以通过DCI中的比特信息来指示当前CSI上报中的波束信息的数量为2还是4。
其中,在DCI中进行指示的比特信息的位数可以根据实际情况进行设置,比如,上述示例中可以采用1个比特来指示从候选值中选择第几个值作为上报的波束信息的数量。
子场景2、
高层信令配置的至少一个波束信息的数量中仅为一个最大波束信息的数量。
终端设备可以基于所述最大波束信息的数量以及所述DCI,从1至最大波束信息的数量中选取CSI上报中所包含的波束信息的数量。
方式2、
所述第二处理单元51,根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量。
这种方式,所述第二处理单元51,确定了终端设备进行CSI上报中包含的波束信息的数量之后,使得第二通信单元52根据确定的数量接收终端设备的CSI上报。
所述第二处理单元51,执行以下处理之一:
根据终端设备的CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
根据终端设备的CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
根据终端设备的CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
根据终端设备的CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
其中,所述根据终端设备的CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量,可以具体为:根据CSI上报所用的时隙的索引、以及所述CSI上报的周期进行计算,得到波束信息的数量;或者,所述时隙和波束信息的数量的对应关系可以由网络侧和终端设备之间预先约定好。
例如,假设所述时隙的索引为S,所述CSI上报的周期为T,则终端可以根据n=S/T(下取整)所得到的结果为奇数还是偶数来确定所用的波束信息的数量L,可以设定偶数则对应L=4,奇数则对应L=2。
或者,在计算得到了n的基础之上,进一步根据k=n mod N来确定所用的波束信息的数量L,如果k=0则L=4,否则L=2;其中,N可以为约定整数值,mod为取模的操作。
所述根据终端设备的CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量,包括:如果当前CSI上报为第n次上报,则可以根据n的取值确定所述波束信息的数量L。这里n和L均为正数、且对应关系可以由网络侧与终端预先约定好。其中,所述CSI上报为周期性或者准持续性CSI上报。
进一步的,还可以根据预设的计算公式,以及当前的上报次数n以及预设的数值N计算得到波束信息的数量L;比如,可以采用k=n mod N来确定所用的波束信息的数量L,例如得到的结果中k=0则L=4,否则L=2,N为约定整数值。
所述根据终端设备的CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量,可以包括:如果所述CSI上报与数据在同一个信道中复用,比如在物理上行共享信道(PUSCH,Physical Uplink Shared Channel)中复用,则所述波束信息的数量为第一数量;如果所述CSI上报与数据在不同一个信道中复用,即CSI独立传输,则所述波束信息的数量为第二数量;其中,第一数量和第二数量均为整数,且第一数量<第二数量。
所述根据CSI上报的承载信道,确定CSI上报中所包含的波束信息的数量,可以为:假设存在两个承载信道,那么根据CSI上报为第一承载信号或第二承载信道,来确定对应的波束信息的数量。
例如,如果所述CSI上报通过物理上行链路控制信道(PUCCH,Physical Uplink Control CHannel)承载,则所述波束信息的数量为第三数量;如果所述CSI上报通过PUSCH承载,则所述波束信息的数量为第四数量,且第三数量<第四数量。
所述第二处理单元51,根据终端设备的CSI上报所对应的以下物理资源之一:子带、BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
当物理资源为子带时,终端根据进行CSI上报所对应的子带,确定所述波束信息的数量。具体的,对于需要针对子带进行上报的幅度信息和相位信息,可以根据当前CSI对应的子带,来确定该子带的幅度信息和相位信息的数量。
例如,对于配置的第一个子带或者终端选择的最好的子带,可以上报L个波束的幅度和相位信息;对于其他子带,可以只上报M个波束的幅度和相位信息,其中M<L。
其中,所述第一个子带,可以为根据子带的编号来确定,比如,可以为标识为0-7的8个子带中的第一个子带,即子带0为第一个子带;或者,可以为一个子带组中的第一个子带,比如,一共可以存在16个子带分别可以标识为0-15子带,其中指定的一组子带为8-15,那么第一个子带就可以为其中的子带8.
另外,前述质量最好的子带可以为根据传输速率、CQI或SINR等指标来确定,比如,传输速率或CQI或SINR最高的子带作为质量最好的子带,或者,还可以根据子带的负荷大小等等,本实施例中不再进行穷举。
当物理资源为带宽部分(BWP)时,对于需要针对BWP进行上报的波束信息,可以根据当前CSI上报对应的BWP,来确定该BWP的波束信息的数量。例如,可以根据BWP的索引来确定波束信息的数量。其中,网络侧可以为每个BWP预先配置一个对应的波束信息的数量。
当物理资源为时隙时,对于需要针对时隙进行上报的波束信息,可以根据当前CSI所对应的时隙,来确定该时隙的波束信息的数量。例如,CSI0为时隙0的CSI,CSI1为时隙1的CSI,则CSI0和CSI1可以有不同的波束信息的数量。其中,CSI对应的时隙可以是用于测量该CSI的时隙,也可以是该CSI的CSI参考资源所在的时隙。
本实施例中,所述波束信息,包括以下至少之一:波束向量、带宽幅度信息、子带幅度信息、相位信息。
其中,波束向量可以表示为
Figure PCTCN2018100089-appb-000041
m1和m2分别对应该波束的水平垂直两个维度,i可以表示波束的标识或者编号;宽带幅度信息可以表示为
Figure PCTCN2018100089-appb-000042
对应于层l和波束i在整个带宽上的幅度系数;子带幅度信息可以表示为
Figure PCTCN2018100089-appb-000043
应于层l和波束i在每个子带上的幅度系数;相位信息可以表示为
Figure PCTCN2018100089-appb-000044
Figure PCTCN2018100089-appb-000045
Figure PCTCN2018100089-appb-000046
分别对应两个极化方向上的相位,对应于层l和波束i。
这里的CSI包括CRI、RI、PMI、CQI中的至少一项。
可见,通过采用上述方案,能够根据预设条件确定终端设备进行CSI上报中所包含的波束信息的数量;从而,使得终端设备在进行CSI上报时,能够灵活调整CSI上报中包含的波束信息的数量,进而能够避免一直按照网络侧高层信令配置的波束信息的数量进行CSI上报,所带来的反馈信令的开销过大以及占用大量的上行资源的问题。
图6是本申请实施例提供的一种通信设备600示意性结构图。图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器530还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、 同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或 者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (42)

  1. 一种信道状态信息CSI上报方法,应用于终端设备,包括:
    根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;根据确定的波束信息的数量,进行CSI上报;
    其中,所述至少一个预设条件包括以下至少之一:
    触发所述CSI上报的DCI;
    所述CSI上报的传输参数;
    所述CSI上报对应的物理资源。
  2. 根据权利要求1所述的方法,其中,当所述至少一个预设条件包含触发所述CSI上报的DCI时,
    所述确定CSI上报中所包含的波束信息的数量,包括以下之一:
    根据对所述DCI进行CRC加扰所采用的无线网络临时标识RNTI,确定所述CSI上报中所包含的波束信息的数量;
    根据所述DCI的DCI格式,确定所述CSI上报中所包含的波束信息的数量;
    根据所述DCI中包含的指示信息,确定所述CSI上报中所包含的波束信息的数量。
  3. 根据权利要求1所述的方法,其中,当所述至少一个预设条件包含触发所述CSI上报的DCI时,
    所述确定CSI上报中所包含的波束信息的数量,还包括:
    根据触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,确定所述CSI上报中所包含的波束信息的数量。
  4. 根据权利要求3所述的方法,其中,所述根据触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,确定CSI上报中所包含的波束信息的数量,包括:
    基于所述DCI从高层信令配置的至少一个波束信息的数量中选取数值,将选取的数值作为所述CSI上报中所包含的波束信息的数量。
  5. 根据权利要求2-4中任一项所述的方法,其中,所述DCI用于触发非周期性CSI上报,或者,用于触发准持续性CSI上报。
  6. 根据权利要求1所述的方法,其中,当所述至少一个预设条件包含所述CSI上报的传输参数时,
    所述确定CSI上报中所包含的波束信息的数量,包括以下之一:
    根据CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
    根据CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
    根据CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
    根据CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
  7. 根据权利要求1所述的方法,其中,当所述至少一个预设条件包含所述CSI上报对应的物理资源时,
    所述确定CSI上报中所包含的波束信息的数量,包括:
    根据所述CSI上报所对应的以下物理资源之一:子带、带宽部分BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
  8. 根据权利要求1-7任一项所述的方法,其中,所述波束信息,包括以下至少之一:
    波束向量、带宽幅度信息、子带幅度信息、相位信息。
  9. 根据权利要求1所述的方法,其中,所述根据确定的波束信息的数量,进行CSI上报,包括:
    根据确定的波束信息的数量,基于预设码本确定所述预设码本中的波束信息,并上报所述波束信息。
  10. 一种CSI上报方法,应用于网络设备,包括:
    确定终端设备的CSI上报中所包含的波束信息的数量,根据确定的所述波束信息的数量接收所述终端设备的所述CSI上报。
  11. 根据权利要求10所述的方法,其中,所述确定终端设备的CSI上报中所包含的波束信息的数量之后,所述方法还包括:
    通过触发所述CSI上报的DCI,向所述终端设备指示所述CSI上报中所包含的波束信息的数量。
  12. 根据权利要求11所述的方法,其中,通过触发所述CSI上报的DCI,向所述终端设备指示所述CSI上报中所包含的波束信息的数量,包括以下之一:
    通过对所述DCI进行CRC加扰所采用的无线网络临时标识RNTI,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
    通过所述DCI的DCI格式,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
    通过所述DCI中包含的指示信息,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
    通过触发所述CSI上报的DCI、以及通过高层信令配置的波束信息的数量,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量。
  13. 根据权利要求11或12所述的方法,其中,所述DCI用于触发非周期性CSI上报,或者,用于触发准持续性CSI上报。
  14. 根据权利要求10所述的方法,其中,所述确定终端设备的CSI上报中所包含的波束信息的数量,包括:
    根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量。
  15. 根据权利要求14所述的方法,其中,所述根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量,包括以下之一:
    根据终端设备的CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
    根据终端设备的CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
    根据终端设备的CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
    根据终端设备的CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
  16. 根据权利要求14所述的方法,其中,所述根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量,包括:
    根据终端设备的CSI上报所对应的以下物理资源之一:子带、带宽部分BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
  17. 根据权利要求10-16任一项所述的方法,其中,所述波束信息,包括以下至少之一:
    波束向量、带宽幅度信息、子带幅度信息、相位信息。
  18. 一种终端设备,包括:
    第一处理单元,根据至少一个预设条件,确定CSI上报中所包含的波束信息的数量;
    第一通信单元,根据确定的波束信息的数量,进行CSI上报;
    其中,所述至少一个预设条件包括以下至少之一:
    触发所述CSI上报的DCI;
    所述CSI上报的传输参数;
    所述CSI上报对应的物理资源。
  19. 根据权利要求18所述的终端设备,其中,当所述至少一个预设条件包含触发所述CSI上报 的DCI时,
    所述第一处理单元,执行以下处理之一:
    根据对所述DCI进行CRC加扰所采用的无线网络临时标识RNTI,确定所述CSI上报中所包含的波束信息的数量;
    根据所述DCI的DCI格式,确定所述CSI上报中所包含的波束信息的数量;
    根据所述DCI中包含的指示信息,确定所述CSI上报中所包含的波束信息的数量。
  20. 根据权利要求18所述的终端设备,其中,当所述至少一个预设条件包含触发所述CSI上报的DCI时,
    所述第一处理单元,根据触发所述CSI上报的DCI、以及高层信令配置的波束信息的数量,确定所述CSI上报中所包含的波束信息的数量。
  21. 根据权利要求18所述的终端设备,其中,所述第一处理单元,基于所述DCI从高层信令配置的至少一个波束信息的数量中选取数值,将选取的数值作为所述CSI上报中所包含的波束信息的数量。
  22. 根据权利要求21所述的终端设备,其中,所述至少一个波束信息的数量为:一个最大波束信息的数量;
    所述第一处理单元,基于所述最大波束信息的数量以及所述DCI,从1至最大波束信息的数量中选取所述CSI上报中所包含的波束信息的数量。
  23. 根据权利要求19-22中任一项所述的终端设备,其中,所述DCI用于触发非周期性CSI上报,或者,用于触发准持续性CSI上报。
  24. 根据权利要求18所述的终端设备,其中,当所述至少一个预设条件包含所述CSI上报的传输参数时,
    所述第一处理单元,执行以下处理之一:
    根据CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
    根据CSI上报的次数,确定所述CSI上报中所包含的波束信息的数量;
    根据CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
    根据CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
  25. 根据权利要求18所述的终端设备,其中,当所述至少一个预设条件包含所述CSI上报对应的物理资源时,
    所述第一处理单元,根据所述CSI上报所对应的以下物理资源之一:子带、带宽部分BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
  26. 根据权利要求18-25任一项所述的终端设备,其中,所述波束信息,包括以下至少之一:
    波束向量、带宽幅度信息、子带幅度信息、相位信息。
  27. 根据权利要求18所述的终端设备,其中,所述第一通信单元,根据确定的波束信息的数量,基于预设码本确定所述预设码本中的波束信息,并上报所述波束信息。
  28. 一种网络设备,包括:
    第二处理单元,确定终端设备的CSI上报中所包含的波束信息的数量;
    第二通信单元,根据确定的所述波束信息的数量接收所述终端设备的所述CSI上报。
  29. 根据权利要求28所述的网络设备,其中,所述第二通信单元,通过触发所述CSI上报的DCI,向所述终端设备指示所述CSI上报中所包含的波束信息的数量。
  30. 根据权利要求29所述的网络设备,其中,所述第二通信单元,还执行以下处理之一:
    通过对所述DCI进行CRC加扰所采用的无线网络临时标识RNTI,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
    通过所述DCI的DCI格式,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
    通过所述DCI中包含的指示信息,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量;
    通过触发所述CSI上报的DCI、以及通过高层信令配置的波束信息的数量,指示所述终端设备进行所述CSI上报中所包含的波束信息的数量。
  31. 根据权利要求29或30所述的网络设备,其中,所述DCI用于触发非周期性CSI上报,或者,用于触发准持续性CSI上报。
  32. 根据权利要求28所述的网络设备,其中,所述第一处理单元,根据终端设备的CSI上报的传输参数、或CSI上报对应的物理资源,确定所述CSI上报中所包含的波束信息的数量。
  33. 根据权利要求32所述的网络设备,其中,所述第一处理单元,执行以下处理之一:
    根据终端设备的CSI上报所用的时隙,确定所述CSI上报中所包含的波束信息的数量;
    根据终端设备的CSI上报的当前次数,确定所述CSI上报中所包含的波束信息的数量;
    根据终端设备的CSI上报是否与数据复用传输,确定所述CSI上报中所包含的波束信息的数量;
    根据终端设备的CSI上报的承载信道,确定所述CSI上报中所包含的波束信息的数量。
  34. 根据权利要求32所述的网络设备,其中,所述第一处理单元,根据终端设备的CSI上报所对应的以下物理资源之一:子带、带宽部分BWP、时隙,确定所述CSI上报中所包含的波束信息的数量。
  35. 根据权利要求28-34任一项所述的网络设备,其中,所述波束信息,包括以下至少之一:
    波束向量、带宽幅度信息、子带幅度信息、相位信息。
  36. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-9任一项所述方法的步骤。
  37. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求10-17任一项所述方法的步骤。
  38. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-9中任一项所述的方法。
  39. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求10-17中任一项所述的方法。
  40. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-17任一项所述方法的步骤。
  41. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-17中任一项所述的方法。
  42. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-17中任一项所述的方法。
PCT/CN2018/100089 2018-08-10 2018-08-10 一种信道状态信息上报方法、终端设备及网络设备 WO2020029296A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880092306.0A CN111972024B (zh) 2018-08-10 2018-08-10 一种信道状态信息上报方法、终端设备及网络设备
PCT/CN2018/100089 WO2020029296A1 (zh) 2018-08-10 2018-08-10 一种信道状态信息上报方法、终端设备及网络设备
TW108128381A TW202013917A (zh) 2018-08-10 2019-08-08 一種通道狀態訊息上報方法、終端設備及網路設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/100089 WO2020029296A1 (zh) 2018-08-10 2018-08-10 一种信道状态信息上报方法、终端设备及网络设备

Publications (1)

Publication Number Publication Date
WO2020029296A1 true WO2020029296A1 (zh) 2020-02-13

Family

ID=69414421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100089 WO2020029296A1 (zh) 2018-08-10 2018-08-10 一种信道状态信息上报方法、终端设备及网络设备

Country Status (3)

Country Link
CN (1) CN111972024B (zh)
TW (1) TW202013917A (zh)
WO (1) WO2020029296A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207412A1 (zh) * 2022-04-28 2023-11-02 中兴通讯股份有限公司 波束管理方法、用户装置、基站、存储介质及程序产品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022198643A1 (zh) * 2021-03-26 2022-09-29 Oppo广东移动通信有限公司 信息报告方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106301692A (zh) * 2015-05-21 2017-01-04 电信科学技术研究院 一种信道状态信息获取方法及装置
CN106455091A (zh) * 2015-08-13 2017-02-22 中兴通讯股份有限公司 一种信道状态信息csi的上报方法和装置
CN106712895A (zh) * 2015-07-31 2017-05-24 电信科学技术研究院 一种反馈csi的方法和传输下行数据的方法及装置
US20180092149A1 (en) * 2014-11-18 2018-03-29 Intel Corporation Apparatus configured to report aperiodic channel state information for dual connectivity

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9629095B2 (en) * 2015-03-24 2017-04-18 Ofinno Technologies, Llc Control channel power control in a wireless network using primary and secondary transmit power control indexes
CN106488573A (zh) * 2015-08-31 2017-03-08 北京信威通信技术股份有限公司 叠加编码的多用户mimo的控制信息发送和接收方法
CN106487433A (zh) * 2015-08-31 2017-03-08 北京信威通信技术股份有限公司 用于传输多用户mimo控制信息的装置和系统
US10122430B2 (en) * 2015-09-18 2018-11-06 Lg Electronics Inc. Method of transmitting channel state information and apparatus therefor
US11129152B2 (en) * 2016-02-04 2021-09-21 Lg Electronics Inc. Method and user equipment for receiving dowlink control information, and method and base station for transmitting dowlink control information
CN107733595B (zh) * 2016-08-11 2021-01-08 上海诺基亚贝尔股份有限公司 用于信道状态信息参考信号的传输和报告的方法和设备
CN108024377B (zh) * 2016-11-04 2022-10-18 中兴通讯股份有限公司 一种空间信息的处理方法及装置
CN108347274B (zh) * 2017-01-25 2021-07-16 华为技术有限公司 一种指示反馈的波束数量的方法及装置
CN117061078A (zh) * 2018-06-04 2023-11-14 大唐移动通信设备有限公司 一种参考信号的发送方法、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180092149A1 (en) * 2014-11-18 2018-03-29 Intel Corporation Apparatus configured to report aperiodic channel state information for dual connectivity
CN106301692A (zh) * 2015-05-21 2017-01-04 电信科学技术研究院 一种信道状态信息获取方法及装置
CN106712895A (zh) * 2015-07-31 2017-05-24 电信科学技术研究院 一种反馈csi的方法和传输下行数据的方法及装置
CN106455091A (zh) * 2015-08-13 2017-02-22 中兴通讯股份有限公司 一种信道状态信息csi的上报方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207412A1 (zh) * 2022-04-28 2023-11-02 中兴通讯股份有限公司 波束管理方法、用户装置、基站、存储介质及程序产品

Also Published As

Publication number Publication date
CN111972024B (zh) 2022-02-08
CN111972024A (zh) 2020-11-20
TW202013917A (zh) 2020-04-01

Similar Documents

Publication Publication Date Title
US11405896B2 (en) Sidelink communication method and terminal device
US20220110074A1 (en) Method for transmitting sidelink data, terminal device, and network device
CN116390214A (zh) 功率控制参数确定方法、终端、网络设备及存储介质
CN113285794B (zh) 传输上行反馈信息的方法、终端设备和网络设备
US11653404B2 (en) Information indication method and apparatus
CN113475128B (zh) 一种信息传输方法及装置、通信设备
CN112703779B (zh) 一种上行传输的功率控制方法及终端设备
KR102635875B1 (ko) 사이드 링크에 사용되는 통신 방법 및 장치
CN113424621B (zh) 上报csi的方法和终端设备
EP3907898B1 (en) Codebook information processing method, terminal device, and network device
US11800543B2 (en) Communication method in V2X system, terminal device and network device
US20220085949A1 (en) Information configuration method and apparatus, and terminal
JP7426983B2 (ja) 信号報告の方法、端末装置、及びネットワーク装置
US11991729B2 (en) Resource configuration method and apparatus, and communication device
US20210211175A1 (en) Method for feeding back and receiving information, and device
CA3098094A1 (en) Feedback information transmission method and apparatus and communications device
CN115039348A (zh) 码本反馈方法、网络设备、终端设备及计算机存储介质
US20220053484A1 (en) Wireless communication method, terminal apparatus, and network apparatus
WO2020029296A1 (zh) 一种信道状态信息上报方法、终端设备及网络设备
WO2020220333A1 (zh) 通信方法和设备
WO2020029201A1 (zh) 信号上报的方法、终端设备和网络设备
JP7254834B2 (ja) トリガ状態の確定方法及び装置、端末、ネットワーク装置
CN112237024B (zh) 无线通信方法、终端设备和网络设备
CN112262589B (zh) 一种信息传输方法、设备及存储介质
WO2020061942A1 (zh) 功率分配的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929152

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18929152

Country of ref document: EP

Kind code of ref document: A1