WO2020029005A1 - 一种减小同频干扰的方法、装置及基站 - Google Patents

一种减小同频干扰的方法、装置及基站 Download PDF

Info

Publication number
WO2020029005A1
WO2020029005A1 PCT/CN2018/098941 CN2018098941W WO2020029005A1 WO 2020029005 A1 WO2020029005 A1 WO 2020029005A1 CN 2018098941 W CN2018098941 W CN 2018098941W WO 2020029005 A1 WO2020029005 A1 WO 2020029005A1
Authority
WO
WIPO (PCT)
Prior art keywords
renb
denb
propagation delay
timing
delay
Prior art date
Application number
PCT/CN2018/098941
Other languages
English (en)
French (fr)
Inventor
金磊
王宏岗
李琦
樊华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18929490.3A priority Critical patent/EP3823367A4/en
Priority to PCT/CN2018/098941 priority patent/WO2020029005A1/zh
Priority to CN201880096156.0A priority patent/CN112514467B/zh
Publication of WO2020029005A1 publication Critical patent/WO2020029005A1/zh
Priority to US17/169,407 priority patent/US11533696B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, a device, and a base station for reducing co-frequency interference.
  • LTE-A Long-Term Evolution-Advanced
  • 3GPP 3rd Generation Partnership Project
  • IMT-Advanced International Mobile Telecommunications Advanced
  • the capacity requirements of the LTE-A system are very high, and such capacity requires a higher frequency band. Therefore, the LTE-A system introduces the Relay technology to increase coverage and improve cell-edge throughput.
  • the Relay system includes two logical nodes: a host base station (Donor NodeB, DeNB) and a relay station (Relay Node, RN).
  • the DeNB does not The data needs to be sent directly to the user equipment (User Equipment, UE), by sending the data to the RN, and then being forwarded by the RN to the UE.
  • UE User Equipment
  • the RN is divided into a backhaul UE (Relay UE, RUE) and a backhaul base station (Relay eNodeB, ReNB).
  • the RUE has the basic functions of a standard UE and enhanced relay functions. , RRN), ReNB has standard eNodeB complete functions and Relay enhanced functions, and ReNB can also be called a RelayBase Transceiver Station (ReBTS).
  • ReBTS RelayBase Transceiver Station
  • the embodiments of the present application provide a method, a device, and a base station for reducing co-channel interference, so as to solve the problem of interference between symbols between RUE and ReNB during uplink and downlink data transmission in the prior art.
  • an embodiment of the present application provides a method for reducing co-channel interference, including:
  • the backhaul base station ReNB receives a propagation delay sent by the host base station DeNB, where the propagation delay is a propagation delay between the DeNB and the ReNB;
  • Timing parameter is a delay of the ReNB relative to the DeNB.
  • the adjusting the timing parameter for the ReNB to send uplink data and receive downlink data according to the propagation delay includes:
  • the set time value is the propagation delay
  • the propagation delay is determined in the following manner:
  • the DeNB Detecting, by the DeNB, the arrival time of the detection signal SRS sent by the user equipment UE to determine a timing advance TA value, and determining the propagation delay according to the TA value;
  • an embodiment of the present application provides a device for reducing co-frequency interference, including:
  • a receiving module configured to receive a propagation delay sent by a host base station DeNB, where the propagation delay is a propagation delay between the DeNB and the ReNB;
  • An adjustment module is configured to adjust a timing parameter for the ReNB to send uplink data and receive downlink data according to the propagation delay, wherein the timing parameter is a delay of the ReNB relative to the DeNB.
  • the adjustment module is configured to adjust a timing at which the ReNB receives downlink data to delay a set time value at which the DeNB receives downlink data, and adjust a timing at which the ReNB sends uplink data to The DeNB sends a set time value of uplink data in advance.
  • the set time value is the propagation delay
  • the propagation delay is determined in the following manner:
  • the DeNB Detecting, by the DeNB, the arrival time of the detection signal SRS sent by the user equipment UE to determine a timing advance TA value, and determining the propagation delay according to the TA value;
  • an embodiment of the present application provides a base station, including:
  • a transceiver configured to receive a propagation delay sent by a host base station DeNB, where the propagation delay is a propagation delay between the DeNB and the ReNB;
  • a processor configured to adjust a timing parameter for the ReNB to send uplink data and receive downlink data according to the propagation delay, wherein the timing parameter is a delay of the ReNB relative to the DeNB.
  • the processor is configured to adjust a timing at which the ReNB receives downlink data to delay a set time value for the DeNB to receive downlink data, and adjust a timing at which the ReNB sends uplink data to The DeNB sends a set time value of uplink data in advance.
  • the set time value is the propagation delay
  • the propagation delay is determined in the following manner:
  • the DeNB Detecting, by the DeNB, the arrival time of the detection signal SRS sent by the user equipment UE to determine a timing advance TA value, and determining the propagation delay according to the TA value;
  • an embodiment of the present application provides a computer program product containing instructions, and when the instructions are run on a computer, the computer is caused to execute the method according to any one of the first aspects.
  • an embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, the computer program according to any one of the first aspects is implemented. method.
  • an embodiment of the present application provides a base station, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, where the processor executes the computer program to implement: any of the first aspect Item.
  • an embodiment of the present application provides a device including a processing element and a storage element, where the storage element is used to store a program, and when the program is called by the processing element, used to execute any one of the first aspect The method described.
  • the solution for reducing co-channel interference uses DeNB as a reference through the propagation delay between the DeNB and the ReNB, and delays adjusting the timing of the ReNB receiving downlink data to ensure that the ReNB does not send downlink data to the RUE.
  • the reception of data causes interference; the timing of the uplink data sent by the ReNB in advance ensures that the ReNB does not interfere with the reception of the uplink data of the RUE when the uplink data is sent.
  • FIG. 1 is an application scenario diagram of a method for reducing co-channel interference provided by an embodiment of the present application
  • FIG. 4 is an interaction diagram of a method for reducing co-channel interference provided by an embodiment of the present application.
  • FIG. 6 is a timing relationship diagram of uplink data in a Relay scenario in this application.
  • FIG. 7 is a schematic structural diagram of an apparatus for reducing co-frequency interference provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a hardware structure of a base station according to an embodiment of the present application.
  • FIG. 1 is an application scenario diagram of a method for reducing co-channel interference provided by an embodiment of the present application.
  • UEs in the RN range interact with the DeNB through the RN and are in the DeNB range.
  • UEs that are not within the RN range interact directly with the DeNB.
  • UEs that are within the RN range interact with the DeNB through the RN.
  • the UE first establishes a communication connection with the ReNB within the RN.
  • the process for the UE to send uplink data to the DeNB is :
  • the UE's data is forwarded to the DeNB through the ReNB and RUE;
  • the DeNB forwards the data to the UE through the RUE and ReNB.
  • the clocks of DeNB, RUE, and ReNB are synchronized. At this time, the same frequency interference will occur between RUE and ReNB.
  • the existing scheme adopts adjusting the RUE timing.
  • the specific method is as follows: Referring to FIG. 2, because there is a propagation delay between the RUE and the DeNB, the RUE downlink is relatively delayed before receiving the downlink data of the DeNB.
  • the RUE uplink is advanced by the LTE uplink timing (Timing (Advance, TA) adjustment. It will send in advance. After a propagation delay, the DeNB can receive the uplink signal sent by the RUE.
  • Timing Advanced, TA
  • the downlink of the RUE will be interfered by the downlink data of the ReNB, that is, the downlink transmission of symbol 0 in Figure 2 will interfere with the downlink reception of symbol 13.
  • the uplink of the ReNB receives the uplink data of the user equipment, it will be interfered by the uplink data of the RUE. That is, the last symbol 13 of the previous subframe of the ReNB in FIG. 3 will be interfered by the uplink transmission data of the RUE on the next subframe.
  • FIG. 4 is a schematic interaction diagram of a method for reducing co-channel interference provided by an embodiment of the present application. As shown in FIG. 4, the method includes:
  • the DeNB determines a propagation delay between the DeNB and the ReNB.
  • the ReNB uses the DeNB as a reference, and adjusts the downlink and uplink timing of the ReNB relative to the DeNB according to the propagation delay between the DeNB and the ReNB to avoid interference between RUE and ReNB symbols.
  • the DeNB Synchronizing with the ReNB clock, the following two methods can be used to determine the propagation delay between the DeNB and the ReNB, which specifically include: The DeNB detects the arrival time of the sounding reference symbol (SRS) sent by the UE to determine the timing advance TA value. The TA value determines the propagation delay; or, the DeNB determines the propagation delay according to the physical distance between the ReNB and the backhaul UE.
  • SRS sounding reference symbol
  • How to determine the propagation delay by the TA value in this embodiment can be set according to actual needs, such as using one-half or one-third of the TA value as the propagation delay, which is not specifically limited in this embodiment.
  • the DeNB sends a propagation delay to the ReNB.
  • the ReNB adjusts the timing parameters of the ReNB sending uplink data and receiving downlink data according to the propagation delay.
  • the ReNB After the ReNB receives the propagation delay sent by the DeNB, the ReNB adjusts the timing parameters for the ReNB to send uplink data and receive the downlink data according to the propagation delay, and adjusts the timing for the ReNB to receive the downlink data to delay the DeNB receiving the downlink data setting time value. And adjusting the timing of the uplink data sent by the ReNB to a set time value of the uplink data sent by the DeNB in advance.
  • FIG. 5 shows a timing relationship diagram of downlink data in this embodiment.
  • the ReNB uses DeNB as a reference, and delays the timing of receiving downlink data by the ReNB.
  • the delay adjustment value is a set time value and a set time.
  • the value is the propagation delay ( ⁇ t) between DeNB and ReNB, that is, when ReNB and DeNB receive downlink data at the same time, the downlink data of ReNB starts to be received after ⁇ t is delayed when DeNB starts receiving downlink data, and the ReNB is delayed to send
  • the timing of the downlink data can prevent the downlink transmission of symbol 0 from interfering with the downlink reception of symbol 13.
  • FIG. 6 shows a timing relationship diagram of uplink data in this embodiment.
  • the timing of sending uplink data by the ReNB is adjusted in advance.
  • the value of the advance adjustment is a set time value, and the set time value is between DeNB and ReNB.
  • Propagation delay ( ⁇ t) that is, when the ReNB and the DeNB send uplink data at the same time, the time when the ReNB sends uplink data is ⁇ t ahead of the time when the DeNB sends uplink data.
  • the last symbol 13 of the previous subframe is not affected by the uplink transmission data of the RUE on the next subframe.
  • the method for reducing co-channel interference uses DeNB as a reference by using the propagation delay between DeNB and ReNB to delay adjusting the timing of receiving downlink data by ReNB to ensure that ReNB does not send downlink data to RUE when sending downlink data.
  • the reception of data causes interference; the timing of the uplink data sent by the ReNB in advance ensures that the ReNB does not interfere with the reception of the uplink data of the RUE when the uplink data is sent.
  • FIG. 7 is a schematic structural diagram of an apparatus for reducing co-frequency interference according to an embodiment of the present application. As shown in FIG. 7, the apparatus specifically includes:
  • the receiving module 701 is configured to receive a propagation delay sent by a host base station DeNB, where the propagation delay is a propagation delay between the DeNB and the ReNB;
  • An adjustment module 702 is configured to adjust a timing parameter for the ReNB to send uplink data and receive downlink data according to the propagation delay, where the timing parameter is a delay of the ReNB relative to the DeNB.
  • the adjustment module 702 is configured to adjust a timing at which the ReNB receives downlink data to delay a set time value for the DeNB to receive downlink data, and adjust a timing at which the ReNB sends uplink data to be set in advance.
  • the DeNB sends a set time value of uplink data.
  • the set time value is the propagation delay.
  • the propagation delay is determined in the following manner:
  • the DeNB Detecting, by the DeNB, the arrival time of the detection signal SRS sent by the user equipment UE to determine a timing advance TA value, and determining the propagation delay according to the TA value;
  • the device with small co-channel interference in this embodiment may be used as an execution subject of the method for reducing co-channel interference as shown in FIG. 4, and may perform all steps in the method shown in FIG. 4 to further implement the method for reducing co-channel interference.
  • the technical effects are described briefly for brevity.
  • FIG. 8 is a schematic structural diagram of a base station according to an embodiment of the present application. As shown in FIG. 8, the base station specifically includes a transceiver 801, a processor 802, and a memory 803.
  • the transceiver 801 may be an antenna.
  • the processor 802 may be a central processing unit (CPU), or a combination of a CPU and a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • the PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL), or any combination thereof.
  • the memory 803 is configured to store various applications, an operating system, and data.
  • the memory 803 may transmit the stored data to the processor 802.
  • the memory 803 may include volatile memory, such as nonvolatile dynamic random access memory (NVRAM), phase change random access memory (PRAM), magnetoresistive random access memory (magetoresistive RAM, MRAM), etc., may also include non-volatile memory, such as at least one disk storage device, electrically erasable programmable read-only memory (EEPROM), flash-memory (EEPROM), flash memory devices, such as flash memory (NOR flash memory) or anti-flash memory (NAND flash memory), semiconductor devices, such as solid state hard disk (solid state disk (SSD), etc.).
  • the memory 803 may also include a combination of the above-mentioned types of memories.
  • the memory 803 may be integrated in the processor 802 or may exist independently.
  • the transceiver 801 is configured to receive a propagation delay sent by a host base station DeNB, where the propagation delay is a propagation delay between the DeNB and the ReNB;
  • the processor 802 is configured to adjust a timing parameter for the ReNB to send uplink data and receive downlink data according to the propagation delay, where the timing parameter is a delay of the ReNB relative to the DeNB.
  • the processor 802 is configured to adjust a timing at which the ReNB receives downlink data to delay a set time value for the DeNB to receive downlink data, and adjust a timing at which the ReNB sends uplink data to be set in advance.
  • the DeNB sends a set time value of uplink data.
  • the processor 802 is configured to configure the set time value as the propagation delay.
  • the propagation delay is determined in the following manner:
  • the DeNB Detecting, by the DeNB, the arrival time of the detection signal SRS sent by the user equipment UE, determining a timing advance TA value, and determining the propagation delay according to the TA value; or, the DeNB according to the physics between the ReNB and the backhaul UE The distance determines the propagation delay.
  • the base station in this embodiment can be used as the execution subject of the method for reducing co-frequency interference as shown in FIG. 4, and can perform all steps in the method shown in FIG. 4, thereby realizing the technical effect of the method for reducing co-frequency interference. The description is not repeated here.
  • the integrated unit When the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium. Based on this understanding, all or part of the technical solution of this application may be embodied in the form of a software product.
  • the computer software product is stored in a storage medium and includes several instructions for making a computer device (which may be a personal computer, A server, or a network device, etc.) perform all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: flash disks, mobile hard disks, read-only memories (English: read-only memory, ROM), random access memories (English: random access memory, RAM), magnetic disks or optical disks, and various other types of storage media Program code medium.

Abstract

本申请实施例提供一种减小同频干扰的方法、装置及基站,所述方法包括:回传基站ReNB接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。通过DeNB与ReNB之间的传播时延以DeNB为基准,延后调整ReNB接收下行数据的定时,保证ReNB发送下行数据时不会对RUE下行数据的接收产生干扰;提前ReNB发送上行数据的定时,保证ReNB发送上行数据时不会对RUE上行数据的接收产生干扰。

Description

一种减小同频干扰的方法、装置及基站 技术领域
本申请涉及通信技术领域,尤其涉及一种减小同频干扰的方法、装置及基站。
背景技术
高级长期演进(Long-Term Evolution-Advanced,LTE-A)是第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)为了满足高级国际移动通信(International Mobile Telecommunications Advanced,IMT-Advanced)的需求而在LTE技术的基础上进行的技术演进。
LTE-A系统的容量要求很高,这样的容量需要较高的频段。因此LTE-A系统引入了Relay技术来增加覆盖,提高小区边缘吞吐量,Relay系统包含宿主基站(Donor eNodeB,DeNB)和中继站(Relay Node,RN)两个逻辑节点,在Relay场景下,DeNB不需要直接将数据发送给用户设备(User Equipment,UE),通过将数据发送给RN,再由RN转发给UE。
RN又划分为回传UE(Relay UE,RUE)和回传基站(Relay eNodeB,ReNB),RUE具有标准UE的基本功能和Relay增强功能,RUE又可以称为远端中继节点(Relay Remote Node,RRN),ReNB具有标准eNodeB完整功能和Relay增强功能,ReNB又可以称为被回传基站(RelayBase Transceiver Station,ReBTS)。
然而,采用Relay技术在提高小区边缘吞吐量的同时,也带来了RUE与ReNB在上行下行数据传输时符号间的干扰。
发明内容
本申请实施例提供一种减小同频干扰的方法、装置及基站,以解决现有技术中,RUE与ReNB在上行下行数据传输时符号间的干扰的问题。
第一方面,本申请实施例提供一种减小同频干扰的方法,包括:
回传基站ReNB接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
在一可能实现方式中,所述根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,包括:
将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
在一可能实现方式中,所述设定时间值为所述传播时延。
在一可能实现方式中,所述传播时延通过以下方式确定:
所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
或,
所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
第二方面,本申请实施例提供一种减小同频干扰的装置,包括:
接收模块,用于接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
调整模块,用于根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
在一可能实现方式中,所述调整模块,用于将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
在一可能实现方式中,所述设定时间值为所述传播时延。
在一可能实现方式中,所述传播时延通过以下方式确定:
所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
或,
所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
第三方面,本申请实施例提供一种基站,包括:
收发器,用于接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
处理器,用于根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
在一可能实现方式中,所述处理器,用于将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
在一可能实现方式中,所述设定时间值为所述传播时延。
在一可能实现方式中,所述传播时延通过以下方式确定:
所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
或,
所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
第四方面,本申请实施例提供一种包含指令的计算机程序产品,当所述指令在计算机上运行时,使得所述计算机执行如第一方面任一项所述的方法。
第五方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面任一项所述的方法。
第六方面,本申请实施例提供一种基站,包括:存储器、处理器以及存储在存储器并可在处理器上运行的计算机程序,所述处理器执行所述计算机程序实现:第一方面任一项所述的方法。
第七方面,本申请实施例提供一种装置,包括处理元件和存储元件,其中所述存储元件用于存储程序,当所述程序被所述处理元件调用时,用于执行第一方面任一所述的方法。
本申请实施例提供的减小同频干扰的方案,通过DeNB与ReNB之间的传播时延以DeNB为基准,延后调整ReNB接收下行数据的定时,保证ReNB发送下行数据时不会对RUE下行数据的接收产生干扰;提前ReNB发送上行数据的定时,保证ReNB发送上行数据时不会对RUE上行数据的接收产生干扰。
附图说明
图1为本申请实施例提供的一种减小同频干扰的方法的应用场景图;
图2为现有技术中Relay场景下下行数据定时关系图;
图3为现有技术中Relay场景下上行行数据定时关系图;
图4为本申请实施例提供的一种减小同频干扰的方法的交互示意图;
图5为本申请中Relay场景下下行数据定时关系图;
图6为本申请中Relay场景下上行行数据定时关系图;
图7为本申请实施例提供的一种减小同频干扰的装置的结构示意图;
图8为本申请实施例提供的一种基站的硬件结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图和实施例,对本申请实施例中的技术方案进行清楚地描述。
图1为本申请实施例提供的一种减小同频干扰的方法的应用场景图,如图1所示,在该场景下,处于RN范围内的UE通过RN与DeNB进行交互,处于DeNB范围内且不处于RN范围内的UE直接与DeNB进行交互,处于RN范围内的UE通过RN与DeNB进行交互具体包括:UE先与RN内的ReNB建立通信连接,UE向DeNB发送上行数据的流程为:UE的数据通过ReNB和RUE转发给DeNB;UE接收DeNB发送的下行数据为:DeNB将数据通过RUE和ReNB转发给UE。在整个上行数据和下行数据的交互过程中,DeNB、RUE和ReNB的时钟为同步状态,此时会出现RUE和ReNB之间产生同频干扰,为解决上述问题,现有方案中采用调整RUE定时的方式,具体为:参照图2,由于RUE和DeNB之间存在传播时延,因此RUE下行相对滞后才能收到DeNB的下行数据,同时,参照图3,RUE上行由LTE的上行定时提前(Timing Advance, TA)调整,会进行提前发送,经过一段传播时延,DeNB才能接收到RUE发送的上行信号。
然而,RUE下行会受到ReNB的下行数据的干扰,即图2中的符号0的下行发送会干扰符号13的下行接收,ReNB的上行接收用户设备的上行数据时,会受到RUE的上行数据的干扰,即图3中ReNB的前一个子帧的最后一个符号13会受到下一个子帧上RUE上行发送数据的干扰。
因此,由于传播时延的存在,即使调整RUE发送上行数据的时延,避免RUE和ReNB间同频子帧干扰的同时,仍无法规避符号间的干扰。
图4为本申请实施例提供的一种减小同频干扰的方法的交互示意图,如图4所示,该方法包括:
S401、DeNB确定DeNB与ReNB之间的传播时延。
在本申请实施例中,ReNB以DeNB为基准,根据DeNB与ReNB之间的传播时延调整ReNB相对于DeNB的下行和上行的定时,来避免RUE和ReNB符号间的干扰,初始状态下,DeNB与ReNB的时钟同步,可采用如下两种方式确定DeNB与ReNB之间的传播时延,具体包括:DeNB检测接收UE发送探测信号(sounding reference symbol,SRS)的到达时间确定定时提前TA值,根据TA值确定传播时延;或,DeNB根据ReNB与回传UE之间的物理距离确定传播时延。
例如,当RUE初始接入DeNB时,DeNB通过PRACH测量检测由UE发送的SRS的到达时间,根据到达时间确定TA值,将该TA的一半作为传播时延(△t=1/2TA),在本实施例中如何TA值确定传播时延,可根据实际需要进行设定,如将TA值的二分之一、三分之一等作为传播时延,本实施例不作具体限定。
又如,DeNB根据在RUE和ReNB在网规布置时的物理距离(L)以及光传播的速度(c)确定传播时延(△t=L/c)。
S402、DeNB将传播时延发送给ReNB。
S403、ReNB根据传播时延调整ReNB发送上行数据以及接收下行数据的定时参数。
ReNB在接收到DeNB发送的传播时延后,ReNB根据传播时延调整ReNB发送上行数据以及接收下行数据的定时参数,将ReNB接收下行数据的定时调整为延后DeNB接收下行数据设定时间值,以及将ReNB发送上行数据的定时调整为提前DeNB发送上行数据设定时间值。
图5示出了本实施例的下行数据定时关系图,对于下行数据,ReNB以DeNB为基准,将ReNB接收下行数据的定时进行延后调整,延后调整值为设定时间值,设定时间值为DeNB与ReNB之间的传播时延(△t),即,在ReNB和DeNB同时接收下行数据时,ReNB的下行数据在DeNB开始接收下行数据时延迟△t后开始接收,延后ReNB发送下行数据的定时可避免符号0的下行发送会干扰符号13的下行接收。
图6示出了本实施例的上行数据定时关系图,对于上行数据,将ReNB发送上行数据的定时进行提前调整,提前调整值为设定时间值,设定时间值为DeNB与ReNB之间的传播时延(△t),即,在ReNB和DeNB同时发送上行数据时,ReNB发送上行数据的时间相对于DeNB发送上行数据的时间提前△t,提前ReNB接收上行数据的 定时,可避免ReNB的前一个子帧的最后一个符号13不受下一个子帧上RUE上行发送数据的干扰。
本申请实施例提供的减小同频干扰的方法,通过DeNB与ReNB之间的传播时延以DeNB为基准,延后调整ReNB接收下行数据的定时,保证ReNB发送下行数据时不会对RUE下行数据的接收产生干扰;提前ReNB发送上行数据的定时,保证ReNB发送上行数据时不会对RUE上行数据的接收产生干扰。
图7为本申请实施例提供的一种减小同频干扰的装置的结构示意图,如图7所示,该装置具体包括:
接收模块701,用于接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
调整模块702,用于根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
可选地,所述调整模块702,用于将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
可选地,所述设定时间值为所述传播时延。
可选地,所述传播时延通过以下方式确定:
所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
或,
所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
本实施例的小同频干扰的装置可作为如图4所示减小同频干扰的方法的执行主体,可以执行图4所示方法中的所有步骤,进而实现减小同频干扰的方法的技术效果,为简洁描述,在此不作赘述。
图8为本申请实施例提供的一种基站的结构示意图,如图8所示,该基站具体包括:收发器801、处理器802、以及存储器803。
收发器801可以是天线。
处理器802可以是中央处理器(central processing unit,CPU),或者CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
存储器803用于存储各种应用,操作系统和数据。存储器803可以将存储的数据传输给处理器802。存储器803可以包括易失性存储器,例如非挥发性动态随机存取内存(nonvolatile random access memory,NVRAM)、相变化随机存取内存(phase change RAM,PRAM)、磁阻式随机存取内存(magetoresistive RAM,MRAM)等,还可以 包括非易失性存储器,例如至少一个磁盘存储器件、电子可擦除可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、闪存器件,例如反或闪存(NOR flash memory)或是反及闪存(NAND flash memory)、半导体器件,例如固态硬盘(solid state disk,SSD)等。存储器803还可以包括上述种类的存储器的组合。
可以理解的是,存储器803可以集成在处理器802中,也可以独立存在。
所述各器件的工作过程如下:
收发器801,用于接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
处理器802,用于根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
可选地,所述处理器802,用于将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
可选地,所述处理器802,用于配置所述设定时间值为所述传播时延。
可选地,所述传播时延通过以下方式确定:
所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;或,所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
本实施例的基站可作为如图4所示减小同频干扰的方法的执行主体,可以执行图4所示方法中的所有步骤,进而实现减小同频干扰的方法的技术效果,为简洁描述,在此不作赘述。
本领域技术人员应该还可以进一步意识到,结合本文中所公开的实施例描述的各示例的单元及步骤,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各示例的组成及步骤。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:闪存盘、移动硬盘、只读存储器(英文:read-only memory,ROM)、随机存取存储器(英文:random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保 护范围为准。

Claims (12)

  1. 一种减小同频干扰的方法,其特征在于,包括:
    回传基站ReNB接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
    根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,包括:
    将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
  3. 根据权利要求2所述的方法,其特征在于,所述设定时间值为所述传播时延。
  4. 根据权利要求1所述的方法,其特征在于,所述传播时延通过以下方式确定:
    所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
    或,
    所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
  5. 一种减小同频干扰的装置,其特征在于,包括:
    接收模块,用于接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
    调整模块,用于根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
  6. 根据权利要求5所述的装置,其特征在于,所述调整模块,用于将所述ReNB接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
  7. 根据权利要求6所述的装置,其特征在于,所述设定时间值为所述传播时延。
  8. 根据权利要求5所述的装置,其特征在于,所述传播时延通过以下方式确定:
    所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
    或,
    所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
  9. 一种基站,其特征在于,包括:
    收发器,用于接收宿主基站DeNB发送的传播时延,其中,所述传播时延为所述DeNB与所述ReNB之间传播的时延;
    处理器,用于根据所述传播时延调整所述ReNB发送上行数据以及接收下行数据的定时参数,其中,所述定时参数为所述ReNB相对于所述DeNB的时延。
  10. 根据权利要求9所述的基站,其特征在于,所述处理器,用于将所述ReNB 接收下行数据的定时调整为延后所述DeNB接收下行数据设定时间值,以及将所述ReNB发送上行数据的定时调整为提前所述DeNB发送上行数据设定时间值。
  11. 根据权利要求10所述的基站,其特征在于,所述设定时间值为所述传播时延。
  12. 根据权利要求11所述的基站,其特征在于,所述传播时延通过以下方式确定:
    所述DeNB检测接收用户设备UE发送探测信号SRS的到达时间确定定时提前TA值,根据所述TA值确定所述传播时延;
    或,
    所述DeNB根据所述ReNB与回传UE之间的物理距离确定所述传播时延。
PCT/CN2018/098941 2018-08-06 2018-08-06 一种减小同频干扰的方法、装置及基站 WO2020029005A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18929490.3A EP3823367A4 (en) 2018-08-06 2018-08-06 METHOD AND DEVICE FOR REDUCING INTERFERENCE IN THE SAME CHANNEL, AND BASE STATION
PCT/CN2018/098941 WO2020029005A1 (zh) 2018-08-06 2018-08-06 一种减小同频干扰的方法、装置及基站
CN201880096156.0A CN112514467B (zh) 2018-08-06 2018-08-06 一种减小同频干扰的方法、装置及基站
US17/169,407 US11533696B2 (en) 2018-08-06 2021-02-06 Method and apparatus for reducing co-channel interference, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098941 WO2020029005A1 (zh) 2018-08-06 2018-08-06 一种减小同频干扰的方法、装置及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,407 Continuation US11533696B2 (en) 2018-08-06 2021-02-06 Method and apparatus for reducing co-channel interference, and base station

Publications (1)

Publication Number Publication Date
WO2020029005A1 true WO2020029005A1 (zh) 2020-02-13

Family

ID=69413942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098941 WO2020029005A1 (zh) 2018-08-06 2018-08-06 一种减小同频干扰的方法、装置及基站

Country Status (4)

Country Link
US (1) US11533696B2 (zh)
EP (1) EP3823367A4 (zh)
CN (1) CN112514467B (zh)
WO (1) WO2020029005A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262691A (zh) * 2007-03-09 2008-09-10 大唐移动通信设备有限公司 支持中继的蜂窝系统避免上下行干扰的实现方法及装置
CN101932037A (zh) * 2009-06-19 2010-12-29 中兴通讯股份有限公司 保证业务承载传输时延的方法与装置
CN102291815A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种中继网络的定时配置方法及系统
WO2012138736A1 (en) * 2011-04-04 2012-10-11 Qualcomm Incorporated Apparatus and method for handling over relays

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2351401T3 (pl) * 2008-11-18 2017-08-31 Nokia Technologies Oy Przekazywanie w systemie komunikacji
CN102036382B (zh) * 2009-09-30 2014-09-03 华为技术有限公司 一种无线资源配置方法、系统和装置
WO2011043636A2 (ko) * 2009-10-09 2011-04-14 엘지전자 주식회사 무선 통신 시스템에서 상향링크 백홀 신호를 송신 및 수신을 위한 장치 및 그 방법
US9030977B2 (en) * 2009-10-15 2015-05-12 Qualcomm Incorporated Methods and apparatus for transport block size determination
US8576755B2 (en) * 2010-01-11 2013-11-05 Qualcomm Incorporated Apparatus and method for relay transition time
EP2378703A1 (en) * 2010-04-13 2011-10-19 Panasonic Corporation Mapping of control information to control channel elements
GB2491336B (en) * 2011-03-24 2015-12-16 Nvidia Corp Mobile radio network, relay node and method
MX2014001533A (es) * 2011-08-15 2014-02-27 Ericsson Telefon Ab L M Metodos y nodos para el manejo de las mediciones en un sistema de comunicacion inalambrico.
EP2639989A1 (en) * 2012-03-16 2013-09-18 Panasonic Corporation Search space for ePDCCH control information in an OFDM-based mobile communication system
US9814073B2 (en) * 2013-01-30 2017-11-07 Qualcomm Incorporated PRACH-based proximity detection
CN104185186B (zh) * 2013-05-23 2018-02-23 华为技术有限公司 信号干扰的抑制方法及网络设备
CN105659508B (zh) * 2013-10-18 2019-12-03 高通股份有限公司 用于配置针对3-d mimo的csi-rs的方法和计算机可读存储设备
US9516520B2 (en) * 2013-10-30 2016-12-06 Qualcomm Incorporated Enabling coexistence of differently-capable user equipment
US10149201B2 (en) * 2015-01-30 2018-12-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and network node for transmission coordination on wireless backhaul path
US10462724B2 (en) * 2015-06-09 2019-10-29 Qualcomm Incorporated Method and apparatus for minimizing/avoiding conflicts between different radio access technologies serving user equipment
EP3610590B1 (en) * 2017-04-13 2021-03-03 Telefonaktiebolaget LM Ericsson (publ) Distributed scheduling algorithm for cpri over ethernet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101262691A (zh) * 2007-03-09 2008-09-10 大唐移动通信设备有限公司 支持中继的蜂窝系统避免上下行干扰的实现方法及装置
CN101932037A (zh) * 2009-06-19 2010-12-29 中兴通讯股份有限公司 保证业务承载传输时延的方法与装置
CN102291815A (zh) * 2010-06-21 2011-12-21 中兴通讯股份有限公司 一种中继网络的定时配置方法及系统
WO2012138736A1 (en) * 2011-04-04 2012-10-11 Qualcomm Incorporated Apparatus and method for handling over relays

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3823367A4 *

Also Published As

Publication number Publication date
CN112514467B (zh) 2022-09-23
EP3823367A1 (en) 2021-05-19
US20210160806A1 (en) 2021-05-27
US11533696B2 (en) 2022-12-20
CN112514467A (zh) 2021-03-16
EP3823367A4 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
US10236933B2 (en) Timing offset compensation for inter-link interference cancellation
CN111357336B (zh) 特定于波束的定时提前组
US20200383073A1 (en) Timing Method and Apparatus
JP5890020B2 (ja) タイミング前進グループの決定
EP3100556B1 (en) Method and apparatus for x2 signalling
CN109565719B (zh) 用于主小区改变的方法、设备和计算机程序
WO2019055804A1 (en) SYNCHRONIZATION SIGNAL BLOCK AND MULTIPLEXING OF CONTROL RESOURCE SET
JP2017522760A (ja) 大きいセルのためのタイミングアドバンス技法
US9094905B2 (en) Method, apparatus and computer program product for triggering the determination of a timing advance for one component carrier based upon another component carrier
WO2019149023A1 (zh) 一种中继传输方法和装置
EP3603270B1 (en) Opportunistic and interference aware usage of tdd band
US20200112995A1 (en) Timing advance signaling in a physical downlink control channel
EP3692763B1 (en) User equipment overheating handling during lte-new radio simultaneous ul transmition.
WO2018045516A1 (zh) 一种通信方法及基站
EP3952425A1 (en) Communication method and communication device
JPWO2020166039A1 (ja) 無線ノード及び無線通信方法
US20200313754A1 (en) Closed loop frequency correction for non-terrestrial network systems
US11596017B2 (en) Automatic backoff of a spectrum allocation server heartbeat
CN111133784B (zh) 基站和用户设备
CN109952802B (zh) 用于发送下行链路控制信息的方法和设备
JP2021521707A (ja) アップリンク超高信頼性低レイテンシ通信のための反復ベースの送信
WO2020029005A1 (zh) 一种减小同频干扰的方法、装置及基站
CN112655240B (zh) 用户装置
WO2020057594A1 (en) Victim interference mitigation in remote interference management frameworks
WO2021012227A1 (zh) 一种无线信号的定时调整方法、用户设备、网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18929490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018929490

Country of ref document: EP

Effective date: 20210215