WO2020027453A1 - 지면 이격형 지표투과레이다 안테나 - Google Patents

지면 이격형 지표투과레이다 안테나 Download PDF

Info

Publication number
WO2020027453A1
WO2020027453A1 PCT/KR2019/008343 KR2019008343W WO2020027453A1 WO 2020027453 A1 WO2020027453 A1 WO 2020027453A1 KR 2019008343 W KR2019008343 W KR 2019008343W WO 2020027453 A1 WO2020027453 A1 WO 2020027453A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
ground
transmitting
receiving
gpr
Prior art date
Application number
PCT/KR2019/008343
Other languages
English (en)
French (fr)
Inventor
강웅
김창렬
조성준
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to US17/256,140 priority Critical patent/US12032090B2/en
Priority to EP19845315.1A priority patent/EP3832803A4/en
Publication of WO2020027453A1 publication Critical patent/WO2020027453A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/885Radar or analogous systems specially adapted for specific applications for ground probing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • G01S7/032Constructional details for solid-state radar subsystems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop

Definitions

  • the present invention relates to a ground-spaced surface transmissive radar antenna, and more particularly, a directional antenna generally used for a ground-spaced surface transmissive radar is placed at a transmitter point, and then a loop antenna is transmitted to the receiver point and is perpendicular to the transmit / receive antenna plane.
  • the direction of feeding is orthogonal to the feeding direction of the transmitter, reducing the size of the direct wave signal that limits the imaging performance of the system when it is received at the receiving side of the ground penetrating radar antenna (hereinafter referred to as GPR).
  • GPR ground penetrating radar antenna
  • the present invention relates to a ground-spaced ground penetration radar antenna that can be fabricated.
  • GPR antennas are classified into a ground contact type and a ground separation type according to their shape.
  • Ground contact type is used to detect anomalies or discontinuities of relatively deep depths (1m to 10m), but planar antennas with relatively less directivity are used because they have to be attached to the ground.
  • Such ground-contact type GPR antennas include a dipole antenna and a bowtie antenna.
  • Ground-spaced type is used for the safety diagnosis of pavement, bridge, etc. with relatively shallow depth (0.3 ⁇ 1m), and because it operates away from the ground, a highly directional antenna is used.
  • Such ground-spaced GPR antennas include a horn antenna and a Vivaldi antenna.
  • FIG. 1 is a diagram schematically illustrating the flow of radio waves of a general bistatic antenna
  • FIG. 2 is a graph illustrating signals received at a receiving side antenna of the bistatic antenna.
  • the dynamic range is the ratio of the largest signal amplitude (usually near the direct wave peak) and the minimum recognizable amplitude (near the noise level), which is a significant indicator of system performance. have.
  • FIG 3 is a view showing the directions and propagation paths of electric and magnetic fields in a typical GPR antenna.
  • a transmitting antenna 10 and a receiving antenna 20 are shown and shown in a direction perpendicular to the figure shown visually. That is, the transmission antenna 10 and the reception antenna 20 are in a horizontal state.
  • the propagation path from the transmission antenna 10 to the reception antenna 20 is indicated by a thick solid line, and the propagation path is composed of a direct wave 12 and a reflected wave 14 on the radar discontinuous surface.
  • the transmitting antenna 10 and the receiving antenna 20 are horizontal on the xy plane, that is, the antenna plane 22.
  • the direction of the electric field (Ex field) 11 of the electromagnetic wave radiated from the transmission antenna 10 is the same x-axis direction Ex as the power feeding direction of the transmission antenna 10.
  • the direction Ex of the electric field 11 is indicated by concentric circles in FIG. 3, which means that the direction Ex is a direction coming out perpendicular to the drawing in the view shown visually.
  • the concentric circles drawn on the transmission antenna 10 means that the power feeding direction is a direction perpendicular to the drawing.
  • the direction of the electric field (Ex field) 15 is reversed. It will be in the vertical direction.
  • the electric field direction 11 of the direct wave 12 and the electric field direction 15 of the reflected wave 14 are opposite to each other in the situation of FIG. 3, but the component Ex remains unchanged.
  • the feeding direction of the receiving antenna 20 is also indicated by concentric circles in FIG. 3, which means that the feeding is in a direction perpendicular to the drawing shown visually.
  • the tangential component 14a of the reflected wave 14 is the y-axis direction in which the propagation direction is parallel to the antenna plane, and the magnetic field direction 16a is the z-axis direction because the electric field direction 15 is the x-axis direction.
  • the magnetic field direction 16b is in the y-axis direction.
  • the receiving antenna receives both the direct wave and the reflected wave signal.
  • the system dynamic range is fixed to a unique value for each GPR system, and in such a situation, in order to detect a radar signal having a smaller level in the GPR image obtained through the exploration, the transmission antenna 10 directly to the reception antenna 20 is detected. It is necessary to reduce the signal of the incoming direct wave 12.
  • the direct wave which is a signal other than the reflected wave 14 used to detect the underground structure, may act as a limiting factor in the imaging performance of the system, and thus it is preferable to minimize the data in the data acquisition step.
  • an object of the present invention is to solve the above-described problems of the prior art, and an object of the present invention is to place a directional antenna, which is generally used for a ground-spaced surface transmission radar, at a transmitter point, and then transmit a loop antenna to a receiver point.
  • the system is imaged when receiving at the receiving side of the ground penetrating radar antenna (hereinafter referred to as GPR) by setting the direction perpendicular to the plane of the transmitting / receiving antenna and making the feeding direction perpendicular to the feeding direction of the transmitting antenna.
  • GPR ground penetrating radar antenna
  • ground-spaced surface penetration radar antenna of the present invention for achieving the above object, in the ground-spaced bi-static GPR antenna configured to be spaced apart from the ground,
  • a transmitting antenna configured to direct to the ground and to penetrate radio waves into the ground
  • a reception antenna configured to receive the radio wave reflected from the ground and received from the transmission antenna, and the power feeding direction is perpendicular to each of the power feeding direction and the ground surface of the transmitting antenna.
  • the transmission antenna may be configured to use an antenna having directivity.
  • the receiving antenna may be configured as a loop antenna, and the loop antenna may be arranged to be parallel to the ground surface in a direction perpendicular to the feeding direction of the transmitting antenna and the ground plane.
  • the reception antenna may be configured as a loop antenna and the physical plane of the loop antenna may be perpendicular to the ground surface with respect to the polarization direction of the transmission antenna with respect to the transmission antenna.
  • It can be designed by adjusting the length or width of the antenna to match the frequency and bandwidth required for transmitting and receiving the electromagnetic pulse, and configured by loading an impedance element having a predetermined impedance value to the points inside the antenna as needed, the transmission It can be loaded and installed at a point inside the antenna to minimize ringing occurring inside the antenna and the receiving antenna.
  • the transmitting antenna and receiving antenna are The transmitting antenna and receiving antenna,
  • the radio wave absorber may be filled in the shielding box to prevent radio waves from being irradiated into the air.
  • the ground-spaced ground penetration radar antenna of the present invention has a loop antenna at the receiver point perpendicular to the transmit / receive antenna plane with the polarization direction of the transmit antenna as an axis, and the feed direction of the receive antenna is perpendicular to the feed direction of the transmit antenna and the ground.
  • Radar detection performance of ground-based surface penetration radar systems by reducing the direct wave reception level, which can limit the quality of exploration data when receiving at the receiving side of the ground penetrating radar antenna (hereinafter referred to as GPR). Has the effect of improving.
  • 1 is a view showing briefly the flow of radio waves of a transmitting and receiving antenna constituting a general bistatic radar.
  • FIG. 2 is a graph showing signals received at a receiving antenna of a bistatic GPR.
  • 3 is a view showing the propagation path and the direction of the electromagnetic field in the transmission and reception antenna constituting a general bistatic GPR.
  • FIG. 4 is a view showing the propagation path and the direction of the electromagnetic field according to the configuration of the transmitting antenna and the receiving antenna according to an embodiment of the present invention.
  • FIG. 5 is a diagram showing the arrangement of a transmission antenna and a reception antenna in a general ground spaced GPR.
  • FIG. 6 is a diagram illustrating the arrangement of a transmitting antenna and a receiving antenna in a spaced space GPR according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a signal obtained through the receiving antenna of the general ground-spaced GPR.
  • FIG. 8 is a graph showing a signal obtained through the receiving antenna of the ground-spaced GPR according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating propagation paths and directions of electromagnetic waves different from the configuration of a transmission antenna and a reception antenna according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an arrangement of a transmission antenna and a reception antenna in a general ground spaced GPR
  • FIG. 6 is a diagram illustrating an arrangement of a transmission antenna and a reception antenna in ground spaced GPR according to an embodiment of the present invention.
  • . 7 is a graph showing a signal obtained from the receiving antenna of the ground-spaced GPR configured as shown in Figure 5
  • Figure 8 is a signal obtained from the receiving antenna of the ground-spaced GPR according to an embodiment of the present invention as shown in FIG. It is a graph.
  • the ground-spaced ground penetration radar antenna of the present invention is composed of a transmitting antenna 100 and a receiving antenna 200.
  • a imaginary experiment was performed using a directional antenna having a high directivity as the transmission antenna 100 and a loop antenna as the reception antenna 200, and a horn antenna which is a general ground-spaced surface transmission radar antenna ( 10) and the reception (20) antenna was used to compare with the results of the virtual experiment.
  • the transmission antenna 100 is configured to direct the highly directional antenna to the ground and to penetrate radio waves into the ground.
  • the receiving antenna 200 receives the radio waves penetrating the ground from the transmitting antenna 100 and reflected back from the ground.
  • the feeding direction of the receiving antenna 200 is configured to be perpendicular to the feeding direction of the transmitting antenna 100 and the ground.
  • the transmission antenna 100 uses a horn antenna having directivity.
  • the power feeding direction of the transmitting antenna 100 and the electric field 224 (E field) direction of the electromagnetic wave radiated from the transmitting antenna 100 are both in the x-axis direction.
  • E field electric field 224
  • a part of the reflected wave 220 indicated by the thick dotted line indicated by the thick solid line becomes the normal component 222 of the antenna plane 110.
  • the direction of the normal component 222 becomes a z-axis direction perpendicular to the antenna plane 110. Since the electric field (E field) is in the x-axis direction, the magnetic field direction perpendicular to the electric and propagation directions is in the y-axis direction. (Hy).
  • both the direct wave 12 and the reflected wave 14 are completely received, whereas in one embodiment of the present invention, as shown in FIG.
  • a loop antenna is placed at a receiver point as shown in FIG. 6.
  • the polarization direction was set perpendicular to the antenna plane 110 along the axis (x-axis), and the feeding direction of the receiving antenna 200 was disposed to be orthogonal to the feeding direction of the transmitting antenna 100 and the antenna plane 110. In this way, only the magnetic field (Hy) signal in the y-axis direction in which the direct wave is excluded can be obtained.
  • FIGS. 7 and 8 are graphs showing the results of virtual experiments of the signals obtained from the receiving antenna of the ground-spaced GPR configured as shown in FIGS. 5 and 6, respectively.
  • the distance between the transmission and reception antennas is 60 cm
  • the height of the transmission and reception antennas is 1 m relative to the ground
  • a circular full conductor target having a radius of 5 cm is located at a depth of 80 cm underground.
  • the electrical properties of the underground medium has a dielectric constant of 10 and an electrical resistivity of 500 ⁇ m.
  • a monocycle pulse signal having a peak voltage of 2 V and a center frequency of 500 MHz is applied.
  • the direct wave 130 signal of FIG. 8 is all excluded and received, but in a virtual experiment, it is observed that the signal has a small magnitude due to the polarization loss of the directional antenna. It can be seen that the performance of detecting the weak signal coming has a significant effect compared to the results of FIG.
  • the directional antenna and the loop antenna are designed by adjusting parameters such as the length and width of the antenna to match the frequency and bandwidth required for transmitting and receiving electromagnetic pulses.
  • the impedance loading technique may be applied to the inside of the antenna.
  • the impedance loading technique receives an antenna design parameter, that is, an antenna length or width, as an input variable, and loads an impedance element having an impedance value calculated through a predetermined equation for each arbitrary point in the antenna to a corresponding point in the antenna.
  • the impedance element having an arbitrary value can be embodied by loading at points inside the antenna.
  • electromagnetic wave signals transmitted and received may be greatly distorted due to ringing occurring inside the antenna. The waveform distortion of the applied electromagnetic pulse signal can be minimized.
  • the transmission and reception antennas 100 and 200 of the present invention can be shielded around the antenna with a metal or non-metal box, and filled with a radio wave absorber inside the shielding box to suppress radio waves from being radiated into the air.
  • the ground antenna is configured to have a loop antenna at a receiver point perpendicular to the plane of the transmit / receive antenna with the polarization direction of the transmit antenna as an axis, and the feed direction of the receive antenna perpendicular to the feed direction of the transmit antenna and the ground.
  • GPR Ground Penetrating Radar

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명은 지면 이격형 바이스태틱 지표투과레이다 안테나에 관한 것으로서, 더욱 상세하게는 수신기 지점에 루프 안테나를 송신안테나의 편파방향을 축으로 안테나 평면에 수직이 되게 놓고 급전방향을 송신기의 급전방향 및 지표면과 직교가 되게 구성하여 지표투과레이다 안테나(Ground Penetrating Radar, 이하 GPR이라 칭함)의 수신측에서 수신하는 경우 시스템의 영상화 성능을 제한하는 요소인 직접파의 수신을 감소시킨 지면 이격형 지표투과레이다 안테나에 관한 것으로서, 지면에서 이격하여 구성된 지면 이격형 GPR 안테나에 있어서, 지면으로 지향시키고 내부로 전파를 침투시키도록 구성되는 송신안테나; 상기 송신안테나로부터 방사되어 상기 지중으로부터 반사되어 돌아오는 전파를 수신하고 상기 송신안테나의 급전 방향 및 지표면과 각각 직각이 되는 방향으로 급전되는 수신안테나;를 포함하고, 상기 송신안테나는 혼 안테나 등 지향성을 갖는 안테나를, 상기 수신안테나는 안테나의 물리적 평면이 송신안테나의 편파방향을 축으로 지표면과 수직을 이루도록 위치시킨 루프 안테나를 사용하도록 구성되어 지면 이격형 지표투과레이다 시스템의 레이다 탐지 성능을 향상시키는 효과가 있다.

Description

지면 이격형 지표투과레이다 안테나
본 발명은 지면 이격형 지표투과레이다 안테나에 관한 것으로서, 더욱 상세하게는 일반적으로 지면 이격형 지표투과레이다에 사용되는 방향성 안테나를 송신기 지점에 놓은 후, 수신기 지점에 루프 안테나를 송수신안테나 평면과 수직이 되게 놓고 급전방향을 송신기의 급전방향과 직교가 되게 구성하여 지표투과레이다 안테나(Ground Penetrating Radar, 이하 GPR이라 칭함)의 수신측에서 수신하는 경우 시스템의 영상화 성능을 제한하는 직접파 신호의 크기를 감소시킬 수 있는 지면 이격형 지표투과레이다 안테나에 관한 것이다.
일반적으로 GPR 안테나는 형태에 따라 지면 밀착형과 지면 이격형으로 구분된다.
지면밀착형은 상대적으로 깊은 심도(1m~10m)의 이상체나 불연속면을 탐지하는 데에 사용되지만, 땅에 붙여야 하므로 방향성이 상대적으로 떨어지는 평면형 안테나를 사용하게 된다. 이와 같은 지면밀착형 GPR 안테나로는 다이폴 안테나(Dipole antenna)와 보우타이 안테나(Bowtie antenna)가 대표적이다.
지면이격형은 상대적으로 얕은 심도(0.3~1m)의 포장체, 교량 등의 안전진단에 사용되며 지면에 떨어져서 운용하므로 방향성이 높은 안테나가 사용된다. 이와 같은 지면이격형 GPR 안테나로는 혼 안테나(Horn antenna)와 비발디 안테나(Vivaldi antenna)가 대표적이다.
도 1은 일반적인 바이스태틱 안테나의 전파의 흐름을 간략하게 나타낸 도면이고, 도 2는 바이스태틱 안테나의 수신측 안테나에서 수신되는 신호들을 나타낸 그래프이다.
도 1 및 도 2를 참조하면, 동적범위(Dynamic range)는 가장 큰 신호 진폭(보통 직접파 첨두값 부근)과 인식 가능한 최소 진폭(잡음레벨 부근)의 비율로서, 시스템 성능의 주요 지표로서의 의미가 있다.
도 3은 일반적인 GPR 안테나에서의 전기장과 자기장의 방향 및 전파경로를 나타낸 도면이다.
도 3을 참조하면, 송신안테나(10)와 수신안테나(20)가 도시되어 있으며 가시적으로 보여지는 도면에 수직으로 나오는 방향으로 표시되어있다. 즉, 송신안테나(10)와 수신안테나(20)는 수평인 상태이다.
송신안테나(10)로부터 수신안테나(20)로의 전파경로는 굵은 실선으로 표시되어 있으며 전파경로는 직접파(12)와 레이다 불연속면에 대한 반사파(14)로 구성되어 있다. 송신안테나(10)와 수신안테나(20)는 xy평면, 즉 안테나 평면(22) 상에서 수평한 상태이다.
송신안테나(10)에서 방사된 전자파의 전기장(Ex field)(11) 방향은 송신안테나(10)의 급전 방향과 동일한 x축 방향(Ex)이다. 전기장(11)의 방향(Ex)은 도 3에서는 동심원형으로 표시되어 있으며, 이 의미는 가시적으로 보여지는 도면에서 도면과 수직하게 나오는 방향임을 의미한다. 또한, 송신안테나(10)에 그려진 동심원형은 급전 방향이 도면과 수직하게 나오는 방향임을 의미한다. 송신안테나(10)에서 방사된 후, 레이다 불연속면에서 반사되어 돌아오는 전파(14)인 경우에는 레이다 불연속면이 완전도체로 이루어져 있을 때, 전기장(Ex field)(15) 방향이 반대로 바뀌므로, 도면과 수직하게 들어가는 방향이 된다. 이와 같이 직접파(12)의 전기장 방향(11)과 반사파(14)의 전기장 방향(15)은 도 3의 상황에서 서로 반대이나, 그 성분(Ex)은 변함없이 유지된다. 수신안테나(20)의 급전 방향 또한 도 3에서 동심원형으로 표시되어 있으며, 그 의미는 가시적으로 보여지는 도면에 수직으로 나오는 방향으로 급전되고 있음을 의미한다.
송신안테나(10)로부터 수신안테나(20)까지의 전파경로를 보면 굵은 실선으로 표시된 직접파(12)는 전부 안테나 평면(도 3에서 일점쇄선으로 표시된 xy 평면)에 대한 접선 성분이 되고, 굵은 실선으로 표시된 반사파(14) 중, 굵은 점선으로 표시된 일부(14a)는 반사파(14)의 안테나 평면에 대한 접선성분(14a)이 되며, 굵은 점선으로 표시된 나머지 일부(14b)는 반사파(14)의 안테나 평면에 대한 법선성분(14b)이 된다.
반사파(14)의 접선성분(14a)은 전파방향이 안테나 평면과 평행한 y축 방향이고, 전기장 방향(15)이 x축 방향이므로 자기장 방향(16a)은 z축 방향이 된다. 반면, 반사파(14)의 법선성분(14b)은 전파방향이 안테나 평면과 수직인 z축 방향이고, 전기장 방향(15)은 변함없이 x축 방향이므로 자기장 방향(16b)은 y축 방향이 된다. 이와 같이 송수신안테나가 동일한 형태로서 동일한 편파특성을 가질 때, 직접파와 반사파는 하나의 편파성분(Ex)만을 가지게 되므로, 이 경우 수신안테나는 직접파와 반사파 신호를 모두 온전히 수신하게 된다. 시스템 동적범위는 GPR 시스템마다 각각 고유한 값으로 고정되어 있고, 이와 같은 상황에서 탐사를 통해 얻어진 GPR 영상에서 보다 작은 레벨의 레이다 신호를 탐지하기 위해서는 송신안테나(10)에서 수신안테나(20)로 바로 들어오는 직접파(12)의 신호를 줄일 필요가 있다. 즉, 지중구조를 탐지하기 위해 사용되는 반사파(14) 이외의 신호인 직접파는 시스템의 영상화 성능을 제한하는 요소로 작용할 수 있으므로 데이터 취득 단계에서 최소화되는 것이 바람직하다.
따라서 본 발명은 전술한 종래기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 일반적으로 지면 이격형 지표투과레이다에 사용되는 방향성 안테나를 송신기 지점에 놓은 후, 수신기 지점에 루프 안테나를 송신안테나 편파방향을 축으로 송수신안테나 평면과 수직이 되게 놓고, 급전방향을 송신안테나의 급전방향과 직교가 되게 구성하여 지표투과레이다 안테나(Ground Penetrating Radar, 이하 GPR이라 칭함)의 수신측에서 수신하는 경우 시스템 영상화 성능을 제한할 수 있는 직접파 신호의 크기를 감소시켜 지면 이격형 지표투과레이다의 지중 불연속면에 대한 탐지성능을 향상시킨 지면 이격형 지표투과레이다 안테나를 제공하기 위한 것이다.
상술한 목적을 달성하기 위한 본 발명의 지면 이격형 지표투과레이다 안테나는, 지면에서 이격하여 구성된 지면 이격형 바이스태틱 GPR 안테나에 있어서,
지면으로 지향시키고 지중으로 전파를 침투시키도록 구성되는 송신안테나;
상기 송신안테나로부터 상기 지중으로부터 반사되어 수신되는 전파를 수신하고 상기 송신안테나의 급전방향 및 지표면 각각에 대응하여 급전방향이 모두 직각을 이루도록 구성되는 수신안테나;를 포함하고,
상기 송신안테나는 지향성을 갖는 안테나를 사용하도록 구성될 수 있다.
상기 수신안테나를 루프 안테나로 구성하고 상기 루프 안테나가 상기 송신안테나의 급전방향과 지표면 평면상에서 수직인 방향으로 지표면과 평행이 되게 배치하도록 구성될 수 있다.
상기 수신안테나를 루프 안테나로 구성하고 상기 송신안테나에 대하여 상기 루프안테나의 물리적 평면이 상기 송신안테나의 편파방향을 축으로 지표면에 대해 직각을 이루도록 구성될 수 있다.
상기 각각의 송신안테나와 수신안테나는,
전자파 펄스 송수신에 필요한 주파수와 대역폭에 부합하기 위해 안테나의 길이 또는 폭을 조정하여 설계될 수 있으며, 필요에 따라 소정의 임피던스 값을 가지는 임피던스 소자를 안테나 내부의 지점들에 로딩하여 구성하되, 상기 송신안테나와 수신안테나 내부에서 발생하는 링잉을 최소화시키도록 상기 안테나 내부의 지점에 로딩시켜 설치될 수 있다.
상기 송신안테나와 수신안테나는,
안테나 주변에 금속 또는 비금속 박스로 차폐를 한 후, 차폐 박스 내부에 전파 흡수재를 채워 넣어 전파가 공기중으로의 불요방사되는 것을 억제하도록 구성될 수 있다.
따라서 본 발명의 지면 이격형 지표투과레이다 안테나는 수신기 지점에 루프 안테나를 송신안테나의 편파방향을 축으로 송수신안테나 평면에 수직이 되게 놓고 수신안테나의 급전방향을 송신안테나의 급전방향 및 지면과 직교가 되게 구성하여 지표투과레이다 안테나(Ground Penetrating Radar, 이하 GPR 이라 칭함)의 수신측에서 수신하는 경우 탐사 데이터 퀄리티를 제한할 수 있는 직접파 수신레벨을 감소시켜 지면 이격형 지표투과레이다 시스템의 레이다 탐지 성능을 향상시키는 효과가 있다.
도 1은 일반적인 바이스태틱 레이다를 구성하는 송수신안테나의 전파의 흐름을 간략하게 나타낸 도면.
도 2는 바이스태틱 GPR의 수신측 안테나에서 수신되는 신호들을 나타낸 그래프.
도 3은 일반적인 바이스태틱 GPR을 구성하는 송수신안테나에서의 전파경로 및 전자기장의 방향을 나타낸 도면.
도 4는 본 발명의 일 실시예에 따른 송신안테나와 수신안테나의 구성에 따른 전파경로 및 전자기장의 방향을 나타낸 도면.
도 5는 일반적인 지면 이격형 GPR에서의 송신안테나와 수신안테나의 배치를 나타낸 도면.
도 6은 본 발명의 일 실시예에 따른 지면 이격형 GPR에서의 송신안테나와 수신안테나의 배치를 나타낸 도면.
도 7은 일반적인 지면 이격형 GPR의 수신안테나를 통해 얻어진 신호를 나타낸 그래프.
도 8은 본 발명의 일 실시예에 따른 지면 이격형 GPR의 수신안테나를 통해 얻어진 신호를 나타낸 그래프.
< 도면의 주요 부분에 대한 부호의 설명 >
100 : 송신안테나 200 : 수신안테나
이하, 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 본 발명을 더욱 상세히 설명한다.
도 4는 본 발명의 일 실시예에 따른 송신안테나와 수신안테나의 구성에 다른 전파경로 및 전자기파의 방향을 나타낸 도면이다. 도 5는 일반적인 지면 이격형 GPR에서의 송신안테나와 수신안테나의 배치를 나타낸 도면이고, 도 6은 본 발명의 일 실시예에 따른 지면 이격형 GPR에서의 송신안테나와 수신안테나의 배치를 나타낸 도면이다. 도 7은 도 5와 같이 구성된 지면 이격형 GPR의 수신안테나에서 얻은 신호를 나타낸 그래프이고, 도 8은 도 6과 같이 본 발명의 일 실시예에 따른 지면 이격형 GPR의 수신안테나에서 얻은 신호를 나타낸 그래프이다.
도 4 내지 도 6을 참조하면, 먼저 본 발명의 지면 이격형 지표투과레이다 안테나는 크게 송신안테나(100)와 수신안테나(200)로 구성된다.
본 발명의 실시예에서는 송신안테나(100)로 지향성이 높은 혼안테나를, 수신안테나(200)로 루프안테나를 사용하여 가상실험을 수행하였고, 일반적인 지면 이격형 지표투과레이다 안테나인 혼안테나를 송신(10) 및 수신(20) 안테나로 사용하여 가상실험을 수행한 결과와 비교하였다.
먼저, 송신안테나(100)는 지향성이 높은 안테나를 지면으로 지향시키도록 하고 지면의 내부로 전파를 침투시키도록 구성된다.
수신안테나(200)는 송신안테나(100)로부터 상기 지면을 침투하여 지중에서 반사되어 돌아오는 전파를 수신한다. 수신안테나(200)의 급전 방향은 송신안테나(100)의 급전 방향 및 지면과 직각을 이루도록 구성된다. 바람직하게는 송신안테나(100)는 지향성을 갖는 혼 안테나를 사용한다.
도 4의 본 발명의 일 실시예에 따른 송수신안테나의 구성에서, 송신안테나(100)의 급전 방향과 송신안테나(100)에서 방사되는 전자기파의 전기장(224)(E field) 방향은 모두 x축 방향(Ex)이다. 그리고 굵은 점선으로 표시된 반사파(220)중에 굵은 실선으로 표시된 일부가 안테나 평면(110)에 대한 법선성분(222)이 됨을 알 수 있다. 이와 같이 상기 법선성분(222)의 방향은 안테나 평면(110)과 수직인 z축 방향이 되고, 전기장(E field) 방향이 x축 방향이므로 전기장 및 전파방향과 직각을 이루는 자기장 방향은 y축 방향(Hy)이 된다.
도 3에서 전기장의 x축 성분(Ex)을 수신하는 일반적인 지면 이격형 GPR에서는 직접파(12)와 반사파(14)가 모두 온전히 수신되는 반면, 본 발명의 일실시예에서는 도 4와 같이 자기장의 y축 방향 성분(Hy), 즉 반사파(220) 중, 안테나 평면(110) 법선성분(222)만을 얻기 위해 도 6과 같이 수신기 지점에 루프 안테나를 루프 안테나의 물리적 평면이 송신안테나(100)의 편파방향을 축(x축)으로 안테나 평면(110)과 수직이 되게 놓고, 수신안테나(200)의 급전방향이 송신안테나(100)의 급전방향 및 안테나 평면(110)과 직교하도록 배치하였다. 이와 같이 구성함으로써, 직접파가 배제된 y축 방향의 자기장(Hy) 신호만을 획득할 수 있다.
도 7 및 도 8은 각각 도 5 및 도 6과 같이 구성된 지면 이격형 GPR의 수신안테나에서 얻은 신호의 가상실험 결과를 나타낸 그래프이다. 도 5 및 도 6의 가상실험을 수행하는데 있어서, 송수신안테나 사이의 거리는 60cm, 송수신안테나의 높이는 지면 기준 1m이고, 지하 80cm 깊이에 반경 5cm의 원형 완전도체 표적이 위치한다. 또한 지하 매질의 전기물성은 유전율 10, 전기비저항 500Ωm이고, 송신안테나로는 첨두전압 2V, 중심주파수 500MHz인 모노사이클 펄스신호가 인가되어 있다.
도 7에서, 일반적인 지면 이격형 GPR 안테나에서는 2nsec 부근에서 나타나는 직접파(120)와 24nsec 부근에서 나타나는 반사파(140) 신호가 모두 온전히 수신됨을 알 수 있다. 두 신호의 첨두값 비율은 0.109mV/20mV = 0.547%로 확인된다. 반면 도 8에서, 본 발명의 일실시예에 따른 지면 이격형 GPR 안테나에서는 반사파의 일부, 즉 안테나평면 법선성분만 제외하고는 전파가 대부분 배제된 상태로 수신되므로 직접파(130) 내지 지면반사파와 반사파의 법선성분(222)의 첨두값 비율(0.04mV/1.9mV = 2.102%)이 4배가량 증가하는 것으로 관찰된다. 이상적으로 도 8의 직접파(130) 신호는 모두 배제되어 수신되나, 가상실험에서는 지향성 안테나의 편파손실에 의해 미약한 크기를 가지는 것으로 관찰되는데, 이를 감안하더라도 도 8의 결과는 지중에서 반사되어 돌아오는 미약한 신호를 탐지하는 성능에 있어서 도 7의 결과 대비 현저한 효과를 가져옴을 확인할 수 있다.
상기 각각 송신안테나(100)와 수신안테나(200)로 사용되는 혼 안테나 등과 같은 지향성 안테나와 루프 안테나는 전자파 펄스 송수신에 필요한 주파수와 대역폭에 부합하기 위해 안테나의 길이와 폭 등의 파라미터를 조정하여 설계될 수 있으며, 필요에 따라 안테나 내부에 임피던스 로딩기법을 적용할 수 있다. 상기 임피던스 로딩 기법은 안테나 설계 파라미터, 즉 안테나의 길이 또는 폭 등을 입력변수로 받아 안테나 내부 임의 지점 각각에 대해 소정의 수식을 통해 계산되는 임피던스 값을 가지는 임피던스 소자를 안테나 내부 해당 지점에 로딩(loading)하는 형태로 구현할 수도 있고, 경험적으로 임의의 값을 가지는 임피던스 소자들을 안테나 내부의 지점들에 로딩하여 구현할 수도 있다. 상기 임피던스 로딩 기법이 적용되지 않은 일반적인 지향성 안테나(혼안테나) 및 루프 안테나 등에서는, 안테나 내부에서 발생하는 링잉으로 인해, 송수신되는 전자파 펄스 신호가 크게 왜곡될 수 있으나, 상기 임피던스 로딩 기법에 의해 안테나에 인가되는 전자파 펄스 신호의 파형 왜곡을 최소화할 수 있다.
또한, 본 발명의 송수신안테나(100, 200)는 안테나 주변을 금속 또는 비금속 박스로 차폐하고, 차폐 박스 내부에 전파 흡수재를 채워 넣어 구성하여 전파가 공기중으로의 불요방사되는 것을 억제시킬 수 있다.
상기 본 발명의 내용은 도면에 도식된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.
본 발명에 따르면, 수신기 지점에 루프 안테나를 송신안테나의 편파방향을 축으로 송수신안테나 평면에 수직이 되게 놓고 수신안테나의 급전방향을 송신안테나의 급전방향 및 지면과 직교가 되게 구성하여 지표투과레이다 안테나(Ground Penetrating Radar, 이하 GPR 이라 칭함)의 수신측에서 수신하는 경우 데이터 퀄리티를 제한할 수 있는 직접파 수신레벨을 감소시켜 지면 이격형 지표투과레이다 시스템의 레이다 탐지 성능을 향상시킬 수 있으므로, 레이다 탐지 분야에 있어서 보다 효과적으로 이용될 수 있다.

Claims (5)

  1. 지면에서 이격하여 구성된 지면 이격형 바이스태틱 GPR 안테나에 있어서,
    지면으로 지향시키고 지중으로 전파를 침투시키도록 구성되는 송신안테나;
    상기 송신안테나로부터 상기 지중으로부터 반사되어 수신되는 전파를 수신하고 상기 송신안테나의 급전방향 및 지표면 각각에 대응하여 급전방향이 모두 직각을 이루도록 구성되는 수신안테나;를 포함하고,
    상기 송신안테나는 지향성을 갖는 안테나를 사용하도록 구성되는 지면 이격형 지표투과레이다 안테나.
  2. 제1항에 있어서,
    상기 수신안테나를 루프 안테나로 구성하고 상기 루프 안테나가 상기 송신안테나의 급전방향과 지표면 평면상에서 수직인 방향으로 지표면과 평행이 되게 배치하는 것인 지면 이격형 지표투과레이다 안테나.
  3. 제1항에 있어서,
    상기 수신안테나를 루프 안테나로 구성하고 상기 송신안테나에 대하여 상기 루프안테나의 물리적 평면이 상기 송신안테나의 편파방향을 축으로 지표면에 대해 직각을 이루도록 구성하는 지면 이격형 지표투과레이다 안테나.
  4. 제1항에 있어서, 상기 각각의 송신안테나와 수신안테나는,
    전자파 펄스 송수신에 필요한 주파수와 대역폭에 부합하기 위해 안테나의 길이 또는 폭을 조정하여 설계될 수 있으며, 필요에 따라 소정의 임피던스 값을 가지는 임피던스 소자를 안테나 내부의 지점들에 로딩하여 구성하되, 상기 송신안테나와 수신안테나 내부에서 발생하는 링잉을 최소화시키도록 상기 안테나 내부의 지점에 로딩시켜 설치되는 것인 지면 이격형 지표투과레이다 안테나.
  5. 제1항에 있어서, 상기 송신안테나와 수신안테나는,
    안테나 주변에 금속 또는 비금속 박스로 차폐를 한 후, 차폐 박스 내부에 전파 흡수재를 채워 넣어 전파가 공기중으로의 불요방사되는 것을 억제하도록 구성되는 것인 지면 이격형 지표투과레이다 안테나.
PCT/KR2019/008343 2018-07-30 2019-07-08 지면 이격형 지표투과레이다 안테나 WO2020027453A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/256,140 US12032090B2 (en) 2018-07-30 2019-07-08 Air-coupled type ground penetrating radar antenna
EP19845315.1A EP3832803A4 (en) 2018-07-30 2019-07-08 AIR-COUPLED GROUND PENETRATION RADAR ANTENNA

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180088834A KR101945824B1 (ko) 2018-07-30 2018-07-30 지면 이격형 지표투과레이다 안테나
KR10-2018-0088834 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020027453A1 true WO2020027453A1 (ko) 2020-02-06

Family

ID=65367015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008343 WO2020027453A1 (ko) 2018-07-30 2019-07-08 지면 이격형 지표투과레이다 안테나

Country Status (3)

Country Link
EP (1) EP3832803A4 (ko)
KR (1) KR101945824B1 (ko)
WO (1) WO2020027453A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101945824B1 (ko) * 2018-07-30 2019-02-07 한국지질자원연구원 지면 이격형 지표투과레이다 안테나
KR102145558B1 (ko) * 2019-07-31 2020-08-18 한국지질자원연구원 고심도 지표투과레이다용 초광대역 v-급전형 안테나

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970701935A (ko) * 1994-03-18 1997-04-12 히사마쓰 나까노 원편파 루프 안테나(loop antenna for circularly polarized wave)
US20040183739A1 (en) * 2003-03-17 2004-09-23 Bisiules Peter John Folded dipole antenna, coaxial to microstrip transition, and retaining element
KR20160089814A (ko) * 2015-01-20 2016-07-28 한국과학기술원 SRR(split ring resonator)을 이용한 ESPAR(electronically steerable parasitic array radiator) 안테나
KR20160091846A (ko) * 2016-06-17 2016-08-03 충북대학교 산학협력단 저주파 송신 안테나
WO2016128952A1 (en) * 2015-02-15 2016-08-18 Tyco Electronics (Shanghai) Co. Ltd. Folding dipole antenna, wireless communication module and method of constructing the same
KR101945824B1 (ko) * 2018-07-30 2019-02-07 한국지질자원연구원 지면 이격형 지표투과레이다 안테나

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2292859B (en) * 1994-08-27 1997-11-05 Roke Manor Research Improvements in or relating to buried object detection systems
NO335197B1 (no) * 2011-10-07 2014-10-20 3D Radar As Georadarantenne
GB201302809D0 (en) * 2013-02-18 2013-04-03 Roke Manor Research An object detector

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970701935A (ko) * 1994-03-18 1997-04-12 히사마쓰 나까노 원편파 루프 안테나(loop antenna for circularly polarized wave)
US20040183739A1 (en) * 2003-03-17 2004-09-23 Bisiules Peter John Folded dipole antenna, coaxial to microstrip transition, and retaining element
KR20160089814A (ko) * 2015-01-20 2016-07-28 한국과학기술원 SRR(split ring resonator)을 이용한 ESPAR(electronically steerable parasitic array radiator) 안테나
WO2016128952A1 (en) * 2015-02-15 2016-08-18 Tyco Electronics (Shanghai) Co. Ltd. Folding dipole antenna, wireless communication module and method of constructing the same
KR20160091846A (ko) * 2016-06-17 2016-08-03 충북대학교 산학협력단 저주파 송신 안테나
KR101945824B1 (ko) * 2018-07-30 2019-02-07 한국지질자원연구원 지면 이격형 지표투과레이다 안테나

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3832803A4 *

Also Published As

Publication number Publication date
US20210124010A1 (en) 2021-04-29
EP3832803A4 (en) 2022-04-27
KR101945824B1 (ko) 2019-02-07
EP3832803A1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2020027453A1 (ko) 지면 이격형 지표투과레이다 안테나
Meaney et al. Surface Wave Multipath Signals in Near‐Field Microwave Imaging
CN107543975B (zh) 非全屏蔽式动车整车电磁辐射发射测试装置
KR20130030731A (ko) 컴팩트 3d 방향 탐지기
CN104678378A (zh) 一种基于非半波间距零陷权组合阵的拖船干扰抑制方法
Tellez et al. Ground‐penetrating radar for close‐in mine detection
WO2014185617A1 (ko) 안테나 장치 및 이의 제조 방법
KR102145558B1 (ko) 고심도 지표투과레이다용 초광대역 v-급전형 안테나
KR102187282B1 (ko) 로딩형 슬롯 안테나 및 로딩형 슬롯 안테나 기반 시추공 레이다 시스템
KR102026909B1 (ko) 지뢰와 같은 물체를 검출하는 장치
CN209119312U (zh) 一种用于矿山地质环境监测的探地雷达天线装置
US12032090B2 (en) Air-coupled type ground penetrating radar antenna
EP3574332B1 (en) System for testing wireless communication equipment employing antennas
US9797236B2 (en) Logging while drilling electrical imager and method for measurement in oil based mud
WO2011090237A1 (ko) 마이크로파 센서
Molchanov et al. Fly eye radar or micro-radar sensor technology
CN106415324B (zh) 用于探地雷达的天线系统
Irvine Experimental measurements of the response of a single-transmitter–receiver electromagnetic induction sensor to a linear conductor
CN212623072U (zh) 毫米波天线扫描系统
CN215953878U (zh) 一种用于废弃矿井生态修复的探地雷达装置
KR101917130B1 (ko) 단일루프로 구성된 바이스태틱 펄스 레이다 안테나
CN212694077U (zh) 一种用于矿山地质环境调查的探地雷达
Mokole et al. Detection of targets behind walls using ultra-wideband short pulse
KR20210102636A (ko) Fmcw용 레이더 장치
Smith et al. Ultra-wideband ground penetrating impulse radar

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019845315

Country of ref document: EP

Effective date: 20210301