WO2020027290A1 - One-converter-type insulated switching power source - Google Patents

One-converter-type insulated switching power source Download PDF

Info

Publication number
WO2020027290A1
WO2020027290A1 PCT/JP2019/030311 JP2019030311W WO2020027290A1 WO 2020027290 A1 WO2020027290 A1 WO 2020027290A1 JP 2019030311 W JP2019030311 W JP 2019030311W WO 2020027290 A1 WO2020027290 A1 WO 2020027290A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
current
switching element
primary
switching
Prior art date
Application number
PCT/JP2019/030311
Other languages
French (fr)
Japanese (ja)
Inventor
羽田 正二
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019030142A external-priority patent/JP7160719B2/en
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2020027290A1 publication Critical patent/WO2020027290A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • the present invention relates to a one-converter type insulated switching power supply.
  • a two-converter isolated switching power supply including a non-insulated boost converter as a power factor correction circuit and an isolated DC / DC converter at a subsequent stage is known.
  • Typical methods of the isolated DC / DC converter at the subsequent stage include a forward method and a flyback method. The forward method is suitable for a large output power supply.
  • Patent Documents 1 and 2 a one-converter type switching power supply in which a non-insulated boost converter and an insulated DC / DC converter at the subsequent stage are integrated into one is also known.
  • the number of switching elements on the primary side of the insulated switching power supply may be one in principle. However, in order to increase the output and reduce the withstand voltage characteristics of the switching elements, a plurality of switching elements as disclosed in Patent Document 3 and the like are used. Are known.
  • the conventional one-converter isolated switching power supply described above has several problems.
  • a large spike voltage is added to the flyback voltage generated when the switching element is turned off, so that the switching element on the primary side is required to have a breakdown voltage characteristic.
  • the output current is only generated when the electromotive voltage generated in the secondary coil of the transformer when the switching element is turned on exceeds the voltage of the smoothing capacitor at the output end. Flows. Therefore, no current is output in a range where the electromotive voltage of the secondary coil is small, which deteriorates the power factor.
  • the present invention provides a one-converter isolated switching power supply that suppresses a spike voltage generated when a switching element is turned off, simplifies switching control between a primary side and a secondary side, and improves power factor.
  • the purpose is to do.
  • a transformer having a primary coil and a secondary coil wound in the same polarity, At least one primary side switching element controlled to conduct or cut off a current path including the primary coil; At least one reactor connected to the secondary side of the transformer, A smoothing capacitor connected between an output terminal on the secondary side of the transformer and a reference potential terminal; One end of the reactor is connected to one end of the secondary coil, and further, A first rectifying element connected between one end of the reactor and the reference potential end; A second rectifying element connected between the other end of the reactor and the output end; A third rectifying element connected between the other end of the secondary coil and the reference potential end; And at least one secondary-side switching element controlled at the same timing as the primary-side switching element to conduct or cut off a current path between the other end of the reactor and the reference potential end.
  • the at least one primary-side switching element is reciprocally controlled to conduct or interrupt the current of the primary coil, respectively, in at least one first group of primary-side switching.
  • a second reactor having one end connected to the other end of the secondary coil;
  • a fourth rectifying element connected between the other end of the second reactor and the output end;
  • a second secondary-side switching element that is controlled to conduct or cut off a current path between the other end of the second reactor and the reference potential end,
  • One of the secondary switching elements is controlled at the same timing as the primary switching element of the first group, and the other secondary switching element is controlled at the same timing as the primary switching element of the second group. Is done.
  • the power supply apparatus further includes a fourth rectifying element connected between the other end of the secondary coil and an output end.
  • the third rectifying element is a switching element controlled in synchronization with the primary-side switching element.
  • the second preferred embodiment further preferably, further comprising a second reactor and a fifth rectifying element, one end of the second reactor is connected to one end of the secondary coil, A fifth rectifying element is connected between the other end of the second reactor and the output end.
  • the one-converter isolated switching power supply according to the present invention can suppress the spike voltage generated when the switching element is turned off, simplify the switching control between the primary side and the secondary side, and improve the power factor.
  • FIG. 1 is a schematic configuration diagram of a circuit example of a first embodiment of the insulated switching power supply of the present invention.
  • FIG. 2 is a timing chart in the circuit of FIG.
  • FIGS. 3A and 3B schematically show currents flowing during the modes Ia and IIa in the circuit of FIG.
  • FIGS. 4A and 4B schematically show currents flowing during the modes Ib and IIb in the circuit of FIG.
  • FIG. 5 is a diagram schematically illustrating a circuit example of a second embodiment of the insulated switching power supply of the present invention.
  • FIG. 6 is a timing chart in the circuit of FIG.
  • FIGS. 7A and 7B schematically show currents flowing during the modes I and II in the circuit of FIG. FIG.
  • FIG. 8 is a schematic configuration diagram of a circuit example of a third embodiment of the insulated switching power supply of the present invention.
  • FIG. 9 is a timing chart in the circuit of FIG. FIGS. 10A and 10B schematically show currents flowing during the modes Ia and IIa in the circuit of FIG.
  • FIGS. 11A and 11B schematically show currents flowing during the modes Ib and IIb in the circuit of FIG.
  • FIG. 12 is a diagram schematically showing a circuit example of a fourth embodiment of the insulated switching power supply of the present invention.
  • FIG. 13 is a timing chart of the circuit of FIG. FIGS. 14A and 14B schematically show currents flowing during the modes I and II in the circuit of FIG.
  • the one-converter isolated switching power supply of the present invention is preferably an AC / DC converter.
  • a typical input voltage is a rectified sine wave AC voltage.
  • the switching power supply of the present invention can similarly function when the input voltage is a square wave or a triangular wave voltage other than a sine wave, or a constant voltage.
  • FIG. 1 schematically illustrates a circuit example of a first embodiment of a one-converter insulated switching power supply of the present invention. ing.
  • an input voltage obtained by full-wave rectifying a sine wave AC voltage is input to input terminals 1 and 2.
  • the AC voltage here is, for example, a sine wave having a frequency of several Hz to several tens Hz generated by a system power supply or various power generation devices.
  • the waveform of the input voltage is not limited to a sine wave, and may be any waveform having a positive potential.
  • an input voltage that has been half-wave rectified instead of full-wave rectification may be used. Since a rectifying unit for rectifying an AC voltage is well known, its illustration and description are omitted.
  • the transformer T is a transformer in which the primary coil N1 and the secondary coil N2 are wound in the same polarity (the winding start end of the coil is indicated by a black circle). This is a so-called forward transformer.
  • a switching unit including a plurality of switching elements, each of which is on / off controlled to conduct or cut off a current flowing through the primary coil N1 by an input voltage.
  • the switching unit in FIG. 1 forms a full bridge circuit.
  • This full bridge circuit has four switching elements A1, A2, B1, and B2, and here is an N-channel MOSFET as an example.
  • the full bridge circuit is suitable for a high-output switching power supply.
  • the switching elements A1 and A2 constitute a first group (hereinafter, referred to as “group A”) that is simultaneously controlled on and off, and the switching elements B1 and B2 are simultaneously controlled on and off (second group) (hereinafter, “group B”). ").
  • Each switching element of the switching unit is controlled on / off by a control voltage applied to a gate which is a control terminal.
  • the control voltage is preferably a PWM signal (here, a case where the control voltage is a PWM signal will be described as an example).
  • the frequency of the PWM signal is higher than the frequency of the input AC, for example, several tens to several hundreds of kHz.
  • Each switching element of the group A is on-off controlled by a control voltage V A, the switching elements of group B, on-off controlled by a control voltage V B.
  • control voltage V A generates a predetermined PWM signal as V B, the control unit outputs are separately provided.
  • One end of the secondary coil N2 of the transformer T (the winding start end) is connected to one end of the first reactor LA and the cathode of the diode D1.
  • the anode of the diode D1 is connected to a ground terminal n which is a negative output terminal.
  • the ground terminal n is a reference potential terminal on the secondary side.
  • the other end of the first reactor LA is connected to the anode of the diode D2.
  • the cathode of the diode D2 is connected to the positive output terminal p (hereinafter, simply referred to as "output terminal" means the positive output terminal p).
  • the switching element A3 is connected between the other end of the reactor LA and the ground end n.
  • the switching element A3 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the reactor LA and a source connected to the ground end n. Gate of the switching element A3 is on-off controlled by a control voltage V a.
  • One end of the second reactor LB and the cathode of the diode D3 are connected to the other end of the secondary coil N2 of the transformer T.
  • the anode of the diode D3 is connected to the ground terminal n.
  • the other end of the second reactor LB is connected to the anode of the diode D4.
  • the cathode of the diode D4 is connected to the output terminal p.
  • the switching element B3 is connected between the other end of the reactor LB and the ground end n.
  • the switching element B3 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the reactor LB and a source connected to the ground end n.
  • the gate of the switching element B3 is on / off controlled by the control voltage Vb .
  • a smoothing capacitor C is connected between the output terminal p and the ground terminal n.
  • Control voltage V a of the switching device A3 is basically the PWM signal for turning on and off at the same timing as the control voltage V A of the switching element on the primary side of the A group.
  • the control voltage V b of the switching element B3 is basically a PWM signal for turning on and off at the same timing as the control voltage V B of the switching element on the primary side of the B group.
  • the control voltage V A of the switching element on the primary side, directly V B it is not preferable to be applied to the gate of the switching element A3, B3. Therefore, when used as a control voltage V a, V b of the control voltage V A, the switching element of the V B secondary A3, B3 transmits those voltage signals via an insulating means.
  • the control voltage V A the same timing as V B independent control voltage V a, V b was generated respectively, is transmitted to the switching elements A3, B3. The securing of insulation between the primary side and the secondary side with respect to this control voltage is the same in each embodiment described later.
  • Figure 2 (a) is a control voltage V A of the switching elements of the group A of the full bridge circuit.
  • Figure 2 (b) is a control voltage V B of the switching elements of the group B of the full bridge circuit.
  • the switching elements of group A and the switching elements of group B are on / off controlled reciprocally. That is, the control voltage V A and V B have the same frequency and duty ratio, the phase difference therebetween is 180 °. However, if the switching elements of group A and group B are turned on at the same time, a short circuit occurs, so a dead time (a period during which both are turned off) is provided.
  • Figure 2 (c) is a control voltage V a of the switching element A3 of the secondary side.
  • FIG. 2D shows the control voltage Vb of the secondary-side switching element B3.
  • the switching elements A3 and B3 on the secondary side are basically turned on and off at the same timing as the switching elements in the A and B groups on the primary side. Therefore, the switching element A3 and the switching element B3 are also turned on and off contrary to each other.
  • 2 (e) (f) (g) (h) is a timing chart showing an example of a waveform of a current flowing through each component.
  • 2 (e), (f), (g), and (h) show the current in the discontinuous mode, the current may be in the critical mode or the continuous mode depending on the load of the load (see the following). The same applies to the timing chart of each embodiment.)
  • the on period of the switching elements of the A group is referred to as mode Ia, and the off period is referred to as mode IIa.
  • the on period of the switching elements in the B group is referred to as mode Ib, and the off period is referred to as mode IIb.
  • the two modes may overlap in time, but the circuit operation in each mode is performed independently.
  • FIG. 3A shows the current in the mode Ia (the flow of the current is indicated by a solid line with an arrow, and so on).
  • a current ia1 flows through the primary coil N1 due to the input voltage (see FIG. 2E).
  • the smoothing capacitor C in the steady state is charged with a substantially constant voltage except for ripple fluctuations.
  • a forward current in a general forward power supply flows only when the electromotive voltage of the secondary coil N2 exceeds the voltage of the smoothing capacitor C.
  • the forward voltage cannot flow because the secondary coil N2 also has a small electromotive voltage. This causes a decrease in the power factor in a general forward type power supply.
  • the current ia2 can flow through the reactor LA regardless of the magnitude of the electromotive voltage of the secondary coil N2. Therefore, regardless of the magnitude of the input voltage, power is transmitted from the primary side to the secondary side of the transformer T during the ON period of the switching element, and the power is stored in the reactor LA. This contributes to a good power factor.
  • FIG. 3B shows the current in the mode IIa.
  • the switching elements A1 and A2 are turned off on the primary side, the current ia1 on the primary side is cut off, and the current ia2 on the secondary side is also cut off (see FIGS. 2E and 2F).
  • a counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor LA of the transformer T.
  • the diodes D1 and D2 are forward biased. Therefore, the current ia3 flows through the path of the diode D1, the reactor LA, the diode D2, and the output terminal p (see FIG. 2G).
  • the magnetic energy accumulated in the reactor LA in the mode Ia is released by the current ia3.
  • the diode D1 functions as a freewheeling diode.
  • FIGS. 4A and 4B show currents in the mode Ib and the mode IIb, respectively.
  • the circuit operations in the modes Ib and IIb have the opposite polarities and are almost symmetrical to the circuit operations in the modes Ia and IIa, respectively, but are substantially the same.
  • a current ib2 symmetrical to the current ia2 in the mode Ia flows (see FIG. 2F).
  • a current ib3 symmetrical to the current ia3 in the mode IIa flows.
  • the on / off of the switching elements A3 and B3 on the secondary side is basically the same timing as the on / off of the switching elements of the A group and the B group on the primary side, but it is not necessary to strictly synchronize them. As a result, the configuration for on / off control of the switching element can be simplified.
  • the short circuit of the switching element A3 does not occur.
  • FIG. 2 (b) With reference to FIG. 2 (d), the a time t B of the switching element on the primary side of the B group is turned on, and the time point t b of the switching element B3 is on the secondary side
  • the current ib2 shown in FIG. 4A only starts to flow from the point when both are turned on even if they are slightly different.
  • the “same timing” as that of the switching element on the primary side has the same meaning as described above.
  • "synchronous" means that the on / off timing is strictly controlled so as not to cause a short circuit of the switching element as in, for example, the synchronous rectification method (for example, one is turned off first and then the other is turned off). Means that.
  • FIG. 5 schematically shows a circuit example of a second embodiment of a one-converter type insulated switching power supply of the present invention. I have.
  • ⁇ Configuration of primary side of transformer T> In the insulated switching power supply of FIG. 5, for example, an input voltage obtained by full-wave rectifying a sine wave AC voltage is input to input terminals 1 and 2. The input voltage is the same as in the first embodiment. Further, a transformer T having a primary coil N1 and a secondary coil N2 is a forward transformer similar to that of the first embodiment. The input terminal 1 is connected to one end (starting end) of the primary coil N1 of the transformer T.
  • the switching element Q1 on the primary side of the transformer T, there is one switching element Q1 that is on / off controlled to conduct or cut off the current flowing through the primary coil N1 by the input voltage.
  • the switching element Q1 is, for example, an N-channel MOSFET here.
  • the drain is connected to the other end of the primary coil N1, and the source is connected to the input terminal 2 which is the primary-side reference potential end (ground end).
  • the switching element Q1 is on-off controlled by a control voltage V Q which is applied to the gate is the control terminal.
  • the control voltage VQ is preferably a PWM signal, and is the same as in the first embodiment.
  • control unit outputs are separately provided.
  • One end of the secondary coil N2 of the transformer T (the winding start end) is connected to one end of the reactor L and the cathode of the diode D1.
  • the anode of the diode D1 is connected to a ground terminal n which is a negative output terminal.
  • the ground terminal n is a reference potential terminal on the secondary side.
  • the other end of the reactor L is connected to the anode of the diode D2.
  • the cathode of the diode D2 is connected to an output terminal p which is a positive output terminal.
  • the switching element Q2 is connected between the other end of the reactor L and the ground end n.
  • the switching element Q2 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the reactor L and a source connected to the ground end n.
  • Gate of the switching element Q2 is on-off controlled by a control voltage V q.
  • Control voltage V q of the switching element Q2 is basically a PWM signal for turning on and off at the same timing as the control voltage V Q of the switching element Q1 on the primary side.
  • the other end of the secondary coil N2 of the transformer T is connected to the cathode of a diode D3.
  • the anode of the diode D3 is connected to the ground terminal n.
  • the other end of the secondary coil N2 is also connected to the anode of the diode D4.
  • the cathode of the diode D4 is connected to the output terminal p.
  • a switching element Q3 shown in a portion surrounded by a chain line can be provided instead of the diode D3.
  • the switching element Q3 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the secondary coil N2 and a source connected to the ground end n.
  • Gate of the switching element Q3 is on-off controlled by a control voltage V q3 synchronized with the control voltage V Q of the switching element Q1 on the primary side.
  • the use of the switching element Q3 is advantageous in that there is no loss due to the forward voltage drop of the diode when the diode D3 is used.
  • a diode is used as a typical example of the rectifying element.
  • an element that functions like a diode by control such as the switching element Q3, is also included in the category of the rectifying element.
  • a smoothing capacitor C is connected between the output terminal p and the ground terminal n.
  • FIGS. 6A and 6B schematically show ON / OFF control signals of each switching element in the circuit of FIG.
  • 6 (a) is a control voltage V Q of the primary side of the switching element Q1.
  • 6 (b) is a control voltage V q of the secondary side of the switching element Q2.
  • the switching element Q2 on the secondary side is basically turned on and off at the same timing as the switching element Q1 on the primary side.
  • the switching element Q3 is used instead of the diode D3, on / off control is performed so as to synchronize with the switching element Q1 on the primary side.
  • mode I the ON period of the switching element
  • mode II the OFF period
  • FIG. 7A shows a current flow in the mode I.
  • a current i1 flows through the primary coil N1 due to the input voltage (see FIG. 6C).
  • an electromotive force is generated in the secondary coil N2 by mutual induction, and the current i2 flows through the secondary coil N2 through the diode D3 (or the switching element Q3) that becomes forward biased (FIG. 6D). reference).
  • the diodes D1, D2, D4 are reverse biased.
  • the current i2 flows through the path of the diode D3 (or the switching element Q3) ⁇ the secondary coil N2 ⁇ the reactor L ⁇ the switching element Q2 ⁇ the ground terminal n (see FIGS. 6D and 6E). Although the current i2 is not supplied to the load, the reactor L is excited by the current i2 and magnetic energy is accumulated.
  • FIG. 7B shows the current in mode II.
  • the switching element Q1 When the switching element Q1 is turned off on the primary side, the current i1 of the primary coil N1 is cut off, and the current i2 on the secondary side is also cut off (see FIGS. 6C and 6D).
  • a counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor L of the transformer T.
  • the diodes D1 and D4 become forward-biased, and a current i4 flows through a path from the diode D1, the secondary coil N2, the diode D4, and the output terminal p (see FIG. 6D). Thereby, the magnetic energy remaining in the transformer T is emitted to the secondary side.
  • the diode D2 becomes forward biased. Therefore, the current i3 flows through the path from the diode D1, the reactor L, the diode D2, and the output terminal p (see FIG. 6E). The magnetic energy accumulated in the reactor L in the mode I is released by the current i3.
  • the diode D1 functions as a freewheeling diode.
  • the on / off of the switching element Q2 on the secondary side is at the same timing as the on / off of the switching element Q1 on the primary side, but it is not necessary to strictly synchronize them.
  • the configuration for on / off control can be simplified. This is as described in the first embodiment with reference to the symbols tA and ta and the symbols tB and tb in FIGS. 2A to 2D.
  • Synchronous control is required for the switching element Q3 functioning as a rectifying element to avoid a short circuit.
  • the switching element Q3 must be turned off before the switching element Q1 is turned off.
  • the third embodiment is a modification of the first embodiment, and therefore only the parts different from the first embodiment will be described.
  • FIG. 8 schematically shows a circuit example of a third embodiment of a one-converter insulated switching power supply of the present invention.
  • the third embodiment has all of the components of the first embodiment on the secondary side of the transformer T. Furthermore, the third embodiment has additional components on the secondary side of the transformer T. As an additional component, it has a reactor LA1 and a diode D5, one end of the reactor LA1 is connected to one end of the secondary coil N2 of the transformer T, and the diode D5 is connected between the other end of the reactor LA1 and the output end p. It is connected.
  • reactor LB1 has a reactor LB1 and a diode D6, one end of the reactor LB1 is connected to the other end of the secondary coil N2 of the transformer T, and the diode D6 is connected between the other end of the reactor LB1 and the output end p. It is connected to the.
  • FIGS. 9A to 9D schematically show ON / OFF control signals of each switching element in the circuit of FIG. These are exactly the same as FIGS. 2 (a) to 2 (d).
  • the current of the primary coil N1 of the transformer T shown in FIG. 9E is substantially the same as that of FIG. 2E with respect to timing and waveform (change in increase and decrease).
  • the currents ia4 and ib4 flowing through the reactor LA1 may be added to the currents ia2 and ib2 shown in FIG. 2 (f).
  • the currents ia4 and ib4 may or may not flow depending on the magnitude of the input voltage, and are shown in parentheses.
  • the currents flowing through the reactors LA and LB shown in FIGS. 9 (g) and 9 (h) are the same as the currents ia2, ia3, ib2 and ib3 shown in FIGS. 2 (g) and 2 (h).
  • FIGS. 9 (i) and (j) show currents flowing through the added reactors LA1 and LB1. Since the currents ia5 and ib5 flow only when the currents ia4 and ib4 flow, they are shown in parentheses.
  • the ON period of the switching element of Group A is referred to as mode Ia, and the OFF period is referred to as mode IIa.
  • the on period of the switching elements in the B group is referred to as mode Ib, and the off period is referred to as mode IIb.
  • FIG. 10A shows the current in the mode Ia.
  • a current ia1 flows through the primary coil N1 due to the input voltage (see FIG. 9E).
  • a current ia4 can flow to the output terminal p through the reactor LA1 and the diode D5.
  • the current ia4 flows through a path from the diode D3 ⁇ the secondary coil N2 ⁇ the reactor LA1 ⁇ the diode D5 ⁇ the output terminal p (see FIG. 9 (i)).
  • the current ia4 corresponds to a forward current in a forward switching power supply.
  • the current ia4 is supplied to the load, and the reactor LA1 is excited by the current ia4 to store magnetic energy.
  • the current ia4 does not flow. Whether the current ia4 flows depends on the magnitude of the input voltage.
  • FIG. 10B shows the current in the mode IIa.
  • the switching elements A1 and A2 are turned off on the primary side, the current ia1 on the primary side is cut off, and the current ia2 on the secondary side is also cut off (see FIGS. 9E and 9F).
  • a counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor LA of the transformer T.
  • the diodes D1 and D2 are forward biased. Therefore, the current ia3 flows through the path of the diode D1, the reactor LA, the diode D2, and the output terminal p (see FIG. 9G).
  • the magnetic energy accumulated in the reactor LA in the mode Ia is released by the current ia3.
  • the diode D1 functions as a freewheeling diode.
  • the current ia5 flows in the mode IIa.
  • the current ia5 flows through a path from the diode D1, the reactor LA1, the diode D5, and the output terminal p (see FIG. 9 (i)).
  • the current ia5 flows, the magnetic energy accumulated in the reactor LA1 in the mode Ia is released.
  • the current ia4 does not flow in the mode Ia, the current ia5 does not naturally flow in the mode IIa.
  • FIGS. 11A and 11B show currents in the mode Ib and the mode IIb, respectively.
  • the circuit operation in the mode Ib and the mode IIb has a polarity opposite to that of the circuit operation in the mode Ia and the mode IIa and is almost symmetric, but is substantially the same.
  • the third embodiment when the input voltage is large, that is, when the electromotive voltage of the secondary coil N2 of the transformer T exceeds the voltage of the smoothing capacitor C, the forward voltage is passed through the reactor LA1 and the diode D5 or through the reactor LB1 and the diode D6. A current can be output. Therefore, the third embodiment has the same features as those described above with respect to the first embodiment, and can output higher power than the first embodiment.
  • the fourth embodiment is a modification of the second embodiment, and therefore, only different points from the second embodiment will be described.
  • FIG. 12 schematically shows a circuit example of a fourth embodiment of a one-converter insulated switching power supply of the present invention.
  • the fourth embodiment has all of the components of the second embodiment on the secondary side of the transformer T. Furthermore, the fourth embodiment has a reactor L1 and a diode D5 as additional components on the secondary side of the transformer T. One end of reactor L1 is connected to one end of secondary coil N2 of transformer T, and diode D5 is connected between the other end of reactor L1 and output end p.
  • FIGS. 13A and 13B schematically show ON / OFF control signals of each switching element in the circuit of FIG. These are exactly the same as FIGS. 6 (a) and 6 (b).
  • the current of the primary coil N1 of the transformer T shown in FIG. 13C is basically the same as that of FIG. 6C with respect to timing and waveform (increase / decrease of current).
  • a current i5 flowing through the reactor L1 may be added to the current i2 shown in FIG. 6D.
  • the current i5 is shown in parentheses because it may or may not flow depending on the magnitude of the input voltage.
  • FIG. 13 (f) shows a current flowing through the reactor L1. Since the current i6 also flows only when the current i5 flows, it is shown in parentheses.
  • the ON period of the switching element is referred to as mode I, and the OFF period is referred to as mode II.
  • FIG. 14A shows the current in the mode I.
  • a current i1 flows through the primary coil N1 due to the input voltage (see FIG. 13C).
  • the current i5 can flow to the output terminal p through the reactor L1 and the diode D5.
  • the current i5 flows through a path from the diode D3, the secondary coil N2, the reactor L1, the diode D5, and the output terminal p (see FIG. 13E).
  • the current i5 corresponds to a forward current in a forward-type switching power supply.
  • the current i5 is supplied to the load, and the reactor L1 is excited by the current i5 to store magnetic energy.
  • the current i5 does not flow. Whether the current i5 flows depends on the magnitude of the input voltage.
  • FIG. 14B shows the current in mode II.
  • the switching element Q1 When the switching element Q1 is turned off on the primary side, the current i1 on the primary side is cut off, and the current i2 on the secondary side is also cut off (see FIGS. 13C and 13D).
  • a counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor L of the transformer T.
  • the diodes D1 and D2 are forward biased. Therefore, the current i3 flows through the path of the diode D1, the reactor L, the diode D2, and the output terminal p (see FIG. 13E).
  • the magnetic energy accumulated in the reactor L in the mode I is released by the current i3.
  • the diode D1 functions as a freewheeling diode.
  • the current i6 flows in the mode II.
  • the current i6 flows through a path from the diode D1, the reactor L1, the diode D5, and the output terminal p (see FIG. 13E).
  • the current i6 flows, the magnetic energy stored in the reactor L1 in the mode I is released.
  • the current i6 naturally does not flow in the mode II.
  • the fourth embodiment when the input voltage is large, that is, when the electromotive voltage of the secondary coil N2 of the transformer T exceeds the voltage of the smoothing capacitor C, a forward current can be output through the reactor L1 and the diode D5. Therefore, the fourth embodiment has the same features as those described above with respect to the second embodiment, and can output higher power than the second embodiment.
  • a push-pull circuit or a half-bridge circuit can be applied as another configuration of the primary-side switching unit in the circuit of the above-described first or third embodiment.
  • the switching element in the switching unit may be an IGBT or a bipolar transistor other than the MOSFET.
  • each diode is an example of a rectifying element that can conduct current in one direction and block current in the opposite direction. Therefore, another element or circuit having a similar function can be used.
  • insulated switching power supply of the present invention is not limited to the configuration example shown in the drawings, but can be variously modified within the scope of the gist of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

Provided is a one-converter-type insulated switching power source wherein spike voltage is suppressed and switching control is simplified. This one-converter-type insulated switching power source comprises: a transformer, a primary-side switching element, at least one reactor connected to the secondary side of the transformer, and a smoothing capacitor connected to the secondary side of the transformer, wherein one end of the reactor is connected to one end of a secondary coil. The one-converter-type insulated switching power source further comprises: a first rectification element connected between the one end of the reactor and a reference potential end; a second rectification element connected between the other end of the reactor and an output end; a third rectification element connected between the other end of the secondary coil and the reference potential end; and a secondary-side switching element that is controlled with the same timing as the primary-side switching element so as allow or block conduction on a current path between the other end of the reactor and the reference potential end.

Description

ワンコンバータ方式の絶縁型スイッチング電源One converter type isolated switching power supply
 本発明は、ワンコンバータ方式の絶縁型スイッチング電源に関する。 The present invention relates to a one-converter type insulated switching power supply.
 交流を直流に電力変換するスイッチング電源として、力率改善回路としての非絶縁型昇圧コンバータとその後段の絶縁型DC/DCコンバータとからなるツーコンバータ方式の絶縁型スイッチング電源が知られている。後段の絶縁型DC/DCコンバータの代表的な方式として、フォワード方式とフライバック方式がある。大出力電源にはフォワード方式が適している。 2. Description of the Related Art As a switching power supply that converts AC power into DC power, a two-converter isolated switching power supply including a non-insulated boost converter as a power factor correction circuit and an isolated DC / DC converter at a subsequent stage is known. Typical methods of the isolated DC / DC converter at the subsequent stage include a forward method and a flyback method. The forward method is suitable for a large output power supply.
 一方、特許文献1、2等のように、非絶縁型昇圧コンバータと後段の絶縁型DC/DCコンバータを1つに統合したワンコンバータ方式のスイッチング電源も知られている。 On the other hand, as in Patent Documents 1 and 2, etc., a one-converter type switching power supply in which a non-insulated boost converter and an insulated DC / DC converter at the subsequent stage are integrated into one is also known.
 また、絶縁型スイッチング電源の一次側のスイッチング素子は、原理的には1つでよいが、大出力化やスイッチング素子の耐圧特性の軽減のために、特許文献3等のように複数のスイッチング素子からなるフルブリッジ回路やプッシュプル回路等が知られている。 The number of switching elements on the primary side of the insulated switching power supply may be one in principle. However, in order to increase the output and reduce the withstand voltage characteristics of the switching elements, a plurality of switching elements as disclosed in Patent Document 3 and the like are used. Are known.
特開平5-236749号公報JP-A-5-236747 特開2002-300780号公報JP-A-2002-300780 特開2015-70716号公報JP-A-2015-70716
 上述した従来のワンコンバータ方式の絶縁型スイッチング電源には、幾つかの問題点がある。力率を良好とするフライバック方式を採用した場合、スイッチング素子のオフ時に生じるフライバック電圧に大きなスパイク電圧が加重されるため、一次側のスイッチング素子に耐圧特性が要求される。 The conventional one-converter isolated switching power supply described above has several problems. When the flyback method for improving the power factor is adopted, a large spike voltage is added to the flyback voltage generated when the switching element is turned off, so that the switching element on the primary side is required to have a breakdown voltage characteristic.
 また、スイッチング電源の大出力化を図るためにフォワード方式を採用した場合、スイッチング素子のオン時にトランスの二次コイルに生じる起電圧が、出力端の平滑コンデンサの電圧を超えたときにのみ出力電流が流れる。従って、二次コイルの起電圧が小さい範囲では電流が出力されず、このことが力率を悪化させる。 When the forward method is used to increase the output of the switching power supply, the output current is only generated when the electromotive voltage generated in the secondary coil of the transformer when the switching element is turned on exceeds the voltage of the smoothing capacitor at the output end. Flows. Therefore, no current is output in a range where the electromotive voltage of the secondary coil is small, which deteriorates the power factor.
 さらに、フルブリッジ方式及び/又は同期整流方式等を採用した場合、一次側と二次側のスイッチングタイミングの調整やデッドタイム制御等の精密かつ煩雑な制御が必要であった。 Furthermore, when the full bridge method and / or the synchronous rectification method are adopted, precise and complicated control such as adjustment of the switching timing of the primary side and the secondary side and dead time control are required.
 以上の現状から、本発明は、ワンコンバータ方式の絶縁型スイッチング電源において、スイッチング素子のオフ時に生じるスパイク電圧を抑制し、一次側と二次側のスイッチング制御を簡素化し、かつ力率を良好とすることを目的とする。 From the above situation, the present invention provides a one-converter isolated switching power supply that suppresses a spike voltage generated when a switching element is turned off, simplifies switching control between a primary side and a secondary side, and improves power factor. The purpose is to do.
 上記の目的を達成するべく、本発明は、以下の構成を提供する。
・本発明の態様は、同極性に巻かれた一次コイルと二次コイルとを有するトランスと、
 前記一次コイルを含む電流路を導通又は遮断するべく制御される少なくとも1つの一次側スイッチング素子と、
 前記トランスの二次側に接続された少なくとも1つのリアクトルと、
 前記トランスの二次側の出力端と基準電位端との間に接続された平滑コンデンサと、を有するワンコンバータ方式の絶縁型スイッチング電源において、
 前記リアクトルの一端が前記二次コイルの一端に接続されており、さらに、
 前記リアクトルの一端と前記基準電位端との間に接続された第1の整流要素と、
 前記リアクトルの他端と前記出力端との間に接続された第2の整流要素と、
 前記二次コイルの他端と前記基準電位端との間に接続された第3の整流要素と、
 前記リアクトルの他端と前記基準電位端との間の電流路を導通又は遮断するべく前記一次側スイッチング素子と同じタイミングで制御される少なくとも1つの二次側スイッチング素子と、を有する。
・ 第1の好適な形態では、前記少なくとも1つの一次側スイッチング素子が、前記一次コイルの電流をそれぞれ導通又は遮断するように互いに背反的に制御される、少なくとも1つの第1グループの一次側スイッチング素子及び少なくとも1つの第2グループの一次側スイッチング素により構成され、
 前記二次コイルの他端にその一端を接続された第2のリアクトルと、
 前記第2のリアクトルの他端と前記出力端との間に接続された第4の整流要素と、
 前記第2のリアクトルの他端と前記基準電位端との間の電流路を導通又は遮断するべく制御される第2の二次側スイッチング素子と、をさらに有し、
 一方の前記二次側スイッチング素子が前記第1グループの一次側スイッチング素子と同じタイミングで制御されると共に、他方の前記二次側スイッチング素子が前記第2グループの一次側スイッチング素子と同じタイミングで制御される。
・ 上記第1の好適な形態において、さらに好適には、さらに第3のリアクトルと第5の整流要素とを有し、前記第3のリアクトルの一端が前記二次コイルの一端に接続され、前記第5の整流要素が、前記第3のリアクトルの他端と前記出力端との間に接続されており、かつ、
 さらに第4のリアクトルと第6の整流要素とを有し、前記第4のリアクトルの一端が前記二次コイルの他端に接続され、前記第6の整流要素が、前記第4のリアクトルの他端と前記出力端との間に接続されている。
・ 第2の好適な形態では、前記二次コイルの他端と出力端との間に接続された第4の整流要素をさらに有する。
・ 上記第2の好適な形態において、さらに好適には、前記第3の整流要素が、前記一次側スイッチング素子と同期して制御されるスイッチング素子である。
・ 上記第2の好適な形態において、さらに好適には、さらに第2のリアクトルと第5の整流要素とを有し、前記第2のリアクトルの一端が前記二次コイルの一端に接続され、前記第5の整流要素が、前記第2のリアクトルの他端と前記出力端との間に接続されている。
In order to achieve the above object, the present invention provides the following configurations.
An aspect of the present invention, a transformer having a primary coil and a secondary coil wound in the same polarity,
At least one primary side switching element controlled to conduct or cut off a current path including the primary coil;
At least one reactor connected to the secondary side of the transformer,
A smoothing capacitor connected between an output terminal on the secondary side of the transformer and a reference potential terminal;
One end of the reactor is connected to one end of the secondary coil, and further,
A first rectifying element connected between one end of the reactor and the reference potential end;
A second rectifying element connected between the other end of the reactor and the output end;
A third rectifying element connected between the other end of the secondary coil and the reference potential end;
And at least one secondary-side switching element controlled at the same timing as the primary-side switching element to conduct or cut off a current path between the other end of the reactor and the reference potential end.
In a first preferred form, the at least one primary-side switching element is reciprocally controlled to conduct or interrupt the current of the primary coil, respectively, in at least one first group of primary-side switching. An element and at least one second group of primary switching elements;
A second reactor having one end connected to the other end of the secondary coil;
A fourth rectifying element connected between the other end of the second reactor and the output end;
A second secondary-side switching element that is controlled to conduct or cut off a current path between the other end of the second reactor and the reference potential end,
One of the secondary switching elements is controlled at the same timing as the primary switching element of the first group, and the other secondary switching element is controlled at the same timing as the primary switching element of the second group. Is done.
-In the first preferred embodiment, further preferably, further comprising a third reactor and a fifth rectifying element, one end of the third reactor is connected to one end of the secondary coil, A fifth rectifying element is connected between the other end of the third reactor and the output end, and
Furthermore, a fourth reactor and a sixth rectifier element are provided, one end of the fourth reactor is connected to the other end of the secondary coil, and the sixth rectifier element is connected to the other of the fourth reactor. Terminal and the output terminal.
-In the second preferred embodiment, the power supply apparatus further includes a fourth rectifying element connected between the other end of the secondary coil and an output end.
In the second preferred embodiment, more preferably, the third rectifying element is a switching element controlled in synchronization with the primary-side switching element.
In the second preferred embodiment, further preferably, further comprising a second reactor and a fifth rectifying element, one end of the second reactor is connected to one end of the secondary coil, A fifth rectifying element is connected between the other end of the second reactor and the output end.
 本発明によるワンコンバータ方式の絶縁型スイッチング電源は、スイッチング素子のオフ時に生じるスパイク電圧を抑制し、一次側と二次側のスイッチング制御を簡素化し、力率を良好とすることができる。 (4) The one-converter isolated switching power supply according to the present invention can suppress the spike voltage generated when the switching element is turned off, simplify the switching control between the primary side and the secondary side, and improve the power factor.
図1は、本発明の絶縁型スイッチング電源の第1の実施形態の回路例の概略構成図である。FIG. 1 is a schematic configuration diagram of a circuit example of a first embodiment of the insulated switching power supply of the present invention. 図2は、図1の回路におけるタイミング図である。FIG. 2 is a timing chart in the circuit of FIG. 図3(a)(b)は、図1の回路におけるモードIaとモードIIaの期間に流れる電流を概略的に示している。FIGS. 3A and 3B schematically show currents flowing during the modes Ia and IIa in the circuit of FIG. 図4(a)(b)は、図1の回路におけるモードIbとモードIIbの期間に流れる電流を概略的に示している。FIGS. 4A and 4B schematically show currents flowing during the modes Ib and IIb in the circuit of FIG. 図5は、本発明の絶縁型スイッチング電源の第2の実施形態の回路例を概略的に示した図である。FIG. 5 is a diagram schematically illustrating a circuit example of a second embodiment of the insulated switching power supply of the present invention. 図6は、図5の回路におけるタイミング図である。FIG. 6 is a timing chart in the circuit of FIG. 図7(a)(b)は、図5の回路におけるモードIとモードIIの期間に流れる電流を概略的に示している。FIGS. 7A and 7B schematically show currents flowing during the modes I and II in the circuit of FIG. 図8は、本発明の絶縁型スイッチング電源の第3の実施形態の回路例の概略構成図である。FIG. 8 is a schematic configuration diagram of a circuit example of a third embodiment of the insulated switching power supply of the present invention. 図9は、図8の回路におけるタイミング図である。FIG. 9 is a timing chart in the circuit of FIG. 図10(a)(b)は、図8の回路におけるモードIaとモードIIaの期間に流れる電流を概略的に示している。FIGS. 10A and 10B schematically show currents flowing during the modes Ia and IIa in the circuit of FIG. 図11(a)(b)は、図8の回路におけるモードIbとモードIIbの期間に流れる電流を概略的に示している。FIGS. 11A and 11B schematically show currents flowing during the modes Ib and IIb in the circuit of FIG. 図12は、本発明の絶縁型スイッチング電源の第4の実施形態の回路例を概略的に示した図である。FIG. 12 is a diagram schematically showing a circuit example of a fourth embodiment of the insulated switching power supply of the present invention. 図13は、図12の回路におけるタイミング図である。FIG. 13 is a timing chart of the circuit of FIG. 図14(a)(b)は、図12の回路におけるモードIとモードIIの期間に流れる電流を概略的に示している。FIGS. 14A and 14B schematically show currents flowing during the modes I and II in the circuit of FIG.
 以下、例として示した図面を参照して本発明の実施形態を説明する。図面中、各実施形態における同一又は類似の構成要素については、同一又は類似の符号を付している。また、本明細書では、各実施形態に共通する説明は、初出の実施形態でのみ行う場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings shown as examples. In the drawings, the same or similar components in each embodiment are denoted by the same or similar reference numerals. In this specification, description common to each embodiment may be made only in the first embodiment.
 本発明のワンコンバータ方式の絶縁型スイッチング電源は、好適例ではAC/DCコンバータである。従って、典型的な入力電圧は、正弦波の交流電圧を整流したものである。しかしながら、本発明のスイッチング電源は、入力電圧が、正弦波以外の方形波若しくは三角波の電圧、又は一定電圧のときも、同様に機能することができる。 ワ ン The one-converter isolated switching power supply of the present invention is preferably an AC / DC converter. Thus, a typical input voltage is a rectified sine wave AC voltage. However, the switching power supply of the present invention can similarly function when the input voltage is a square wave or a triangular wave voltage other than a sine wave, or a constant voltage.
(1)第1の実施形態
(1-1)第1の実施形態の回路構成
 図1は、本発明のワンコンバータ方式の絶縁型スイッチング電源の第1の実施形態の回路例を概略的に示している。
(1) First Embodiment (1-1) Circuit Configuration of First Embodiment FIG. 1 schematically illustrates a circuit example of a first embodiment of a one-converter insulated switching power supply of the present invention. ing.
<トランスTの一次側の構成>
 図1の絶縁型スイッチング電源は、一例として正弦波の交流電圧を全波整流した入力電圧が入力端子1、2に入力される。ここでの交流電圧は、例えば、系統電源又は各種の発電装置で生成される数Hz~数十Hz程度の周波数を有する正弦波である。しかしながら、入力電圧の波形は正弦波に限られず、正の電位をもつ任意の波形とすることができる。また、全波整流に替えて半波整流した入力電圧でもよい。なお、交流電圧を整流する整流部は、周知であるので図示及び説明を省略する。
<Configuration of primary side of transformer T>
In the insulated switching power supply of FIG. 1, for example, an input voltage obtained by full-wave rectifying a sine wave AC voltage is input to input terminals 1 and 2. The AC voltage here is, for example, a sine wave having a frequency of several Hz to several tens Hz generated by a system power supply or various power generation devices. However, the waveform of the input voltage is not limited to a sine wave, and may be any waveform having a positive potential. Also, an input voltage that has been half-wave rectified instead of full-wave rectification may be used. Since a rectifying unit for rectifying an AC voltage is well known, its illustration and description are omitted.
 トランスTは、一次コイルN1と二次コイルN2が同極性に巻かれたトランスである(コイルの巻き始端を黒丸で示す)。これは、いわゆるフォワードトランスである。トランスTの一次側には、入力電圧により一次コイルN1に流れる電流を導通又は遮断するべくそれぞれオンオフ制御される複数のスイッチング素子を含むスイッチング部が設けられている。 The transformer T is a transformer in which the primary coil N1 and the secondary coil N2 are wound in the same polarity (the winding start end of the coil is indicated by a black circle). This is a so-called forward transformer. On the primary side of the transformer T, there is provided a switching unit including a plurality of switching elements, each of which is on / off controlled to conduct or cut off a current flowing through the primary coil N1 by an input voltage.
 図1のスイッチング部は、フルブリッジ回路を構成している。このフルブリッジ回路は、4個のスイッチング素子A1、A2、B1、B2を有し、ここでは一例としてNチャネルMOSFETである。フルブリッジ回路は、大出力のスイッチング電源に好適である。スイッチング素子A1、A2が、同時にオンオフ制御される第1のグループ(以下「グループA」と称する)を構成し、スイッチング素子B1、B2が、同時にオンオフ制御される第2のグループ(以下「グループB」と称する)を構成する。 ス イ ッ チ ン グ The switching unit in FIG. 1 forms a full bridge circuit. This full bridge circuit has four switching elements A1, A2, B1, and B2, and here is an N-channel MOSFET as an example. The full bridge circuit is suitable for a high-output switching power supply. The switching elements A1 and A2 constitute a first group (hereinafter, referred to as “group A”) that is simultaneously controlled on and off, and the switching elements B1 and B2 are simultaneously controlled on and off (second group) (hereinafter, “group B”). ").
 スイッチング部の各スイッチング素子は、制御端であるゲートに印加される制御電圧によりオンオフ制御される。制御電圧は、好適にはPWM信号である(ここでは、制御電圧がPWM信号である場合を例として説明する)。PWM信号の周波数は、入力交流の周波数よりも高い、例えば数十kH~数百kHである。グループAの各スイッチング素子は、制御電圧Vによりオンオフ制御され、グループBの各スイッチング素子は、制御電圧Vによりオンオフ制御される。 Each switching element of the switching unit is controlled on / off by a control voltage applied to a gate which is a control terminal. The control voltage is preferably a PWM signal (here, a case where the control voltage is a PWM signal will be described as an example). The frequency of the PWM signal is higher than the frequency of the input AC, for example, several tens to several hundreds of kHz. Each switching element of the group A is on-off controlled by a control voltage V A, the switching elements of group B, on-off controlled by a control voltage V B.
 図示しないが、制御電圧V、Vとしての所定のPWM信号を生成し、出力する制御部が別途設けられている。 Although not shown, the control voltage V A, generates a predetermined PWM signal as V B, the control unit outputs are separately provided.
<トランスTの二次側の構成>
 トランスTの二次コイルN2の一端(巻き始端)には、第1のリアクトルLAの一端とダイオードD1のカソードが接続されている。ダイオードD1のアノードは、負の出力端である接地端nに接続されている。接地端nは、二次側の基準電位端である。第1のリアクトルLAの他端にはダイオードD2のアノードが接続されている。ダイオードD2のカソードは、正の出力端pに接続されている(以下で単に「出力端」というときは正の出力端pを意味する。)。
<Configuration on the secondary side of transformer T>
One end of the secondary coil N2 of the transformer T (the winding start end) is connected to one end of the first reactor LA and the cathode of the diode D1. The anode of the diode D1 is connected to a ground terminal n which is a negative output terminal. The ground terminal n is a reference potential terminal on the secondary side. The other end of the first reactor LA is connected to the anode of the diode D2. The cathode of the diode D2 is connected to the positive output terminal p (hereinafter, simply referred to as "output terminal" means the positive output terminal p).
 リアクトルLAの他端と接地端nとの間にはスイッチング素子A3が接続されている。スイッチング素子A3は、一例としてNチャネルMOSFETであり、ドレインがリアクトルLAの他端に、ソースが接地端nに接続されている。スイッチング素子A3のゲートは、制御電圧Vによりオンオフ制御される。 The switching element A3 is connected between the other end of the reactor LA and the ground end n. The switching element A3 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the reactor LA and a source connected to the ground end n. Gate of the switching element A3 is on-off controlled by a control voltage V a.
 トランスTの二次コイルN2の他端には、第2のリアクトルLBの一端とダイオードD3のカソードが接続されている。ダイオードD3のアノードは、接地端nに接続されている。第2のリアクトルLBの他端にはダイオードD4のアノードが接続されている。ダイオードD4のカソードは、出力端pに接続されている。 一端 One end of the second reactor LB and the cathode of the diode D3 are connected to the other end of the secondary coil N2 of the transformer T. The anode of the diode D3 is connected to the ground terminal n. The other end of the second reactor LB is connected to the anode of the diode D4. The cathode of the diode D4 is connected to the output terminal p.
 リアクトルLBの他端と接地端nとの間にはスイッチング素子B3が接続されている。スイッチング素子B3は、一例としてNチャネルMOSFETであり、ドレインがリアクトルLBの他端に、ソースが接地端nに接続されている。スイッチング素子B3のゲートは、制御電圧Vによりオンオフ制御される。 The switching element B3 is connected between the other end of the reactor LB and the ground end n. The switching element B3 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the reactor LB and a source connected to the ground end n. The gate of the switching element B3 is on / off controlled by the control voltage Vb .
 出力端pと接地端nの間には平滑コンデンサCが接続されている。 平滑 A smoothing capacitor C is connected between the output terminal p and the ground terminal n.
 スイッチング素子A3の制御電圧Vは、基本的に、一次側のAグループのスイッチング素子の制御電圧Vと同じタイミングでオンオフするPWM信号である。同様に、スイッチング素子B3の制御電圧Vは、基本的に、一次側のBグループのスイッチング素子の制御電圧Vと同じタイミングでオンオフするPWM信号である。 Control voltage V a of the switching device A3 is basically the PWM signal for turning on and off at the same timing as the control voltage V A of the switching element on the primary side of the A group. Similarly, the control voltage V b of the switching element B3 is basically a PWM signal for turning on and off at the same timing as the control voltage V B of the switching element on the primary side of the B group.
 但し、トランスTの一次側と二次側の絶縁を確保するために、一次側のスイッチング素子の制御電圧V、Vを直接、スイッチング素子A3、B3のゲートに印加することは好ましくない。従って、制御電圧V、Vを二次側のスイッチング素子A3、B3の制御電圧V、Vとして用いる場合は、絶縁手段を介してそれらの電圧信号を伝達する。別の例として、制御電圧V、Vと同じタイミングの独立した制御電圧V、Vをそれぞれ生成し、スイッチング素子A3、B3に伝達する。この制御電圧に関する一次側と二次側の絶縁の確保については、後述する各実施形態でも同様である。 However, in order to ensure the insulation of the primary side and the secondary side of the transformer T, the control voltage V A of the switching element on the primary side, directly V B, it is not preferable to be applied to the gate of the switching element A3, B3. Therefore, when used as a control voltage V a, V b of the control voltage V A, the switching element of the V B secondary A3, B3 transmits those voltage signals via an insulating means. As another example, the control voltage V A, the same timing as V B independent control voltage V a, V b was generated respectively, is transmitted to the switching elements A3, B3. The securing of insulation between the primary side and the secondary side with respect to this control voltage is the same in each embodiment described later.
(1-2)第1の実施形態の回路動作
 図2、図3及び図4を参照して、図1に示した第1の実施形態の回路の動作を説明する。
(1-2) Circuit Operation of First Embodiment The operation of the circuit of the first embodiment shown in FIG. 1 will be described with reference to FIGS. 2, 3, and 4.
 図2(a)~(d)は、図1の回路における各スイッチング素子のオンオフ制御信号を模式的に示している。 2 (a) to 2 (d) schematically show ON / OFF control signals of each switching element in the circuit of FIG.
 図2(a)は、フルブリッジ回路のグループAのスイッチング素子の制御電圧Vである。図2(b)は、フルブリッジ回路のグループBのスイッチング素子の制御電圧Vである。 Figure 2 (a) is a control voltage V A of the switching elements of the group A of the full bridge circuit. Figure 2 (b) is a control voltage V B of the switching elements of the group B of the full bridge circuit.
 図2(a)(b)に示すように、グループAのスイッチング素子とグループBのスイッチング素子とは、互いに背反的にオンオフ制御される。すなわち、制御電圧VとVは、同じ周波数とデューティ比を有し、互いの位相差は180°である。但し、グループAとグループBのスイッチング素子が同時にオンとなると短絡するので、デッドタイム(双方がオフになる期間)を設けている。 As shown in FIGS. 2A and 2B, the switching elements of group A and the switching elements of group B are on / off controlled reciprocally. That is, the control voltage V A and V B have the same frequency and duty ratio, the phase difference therebetween is 180 °. However, if the switching elements of group A and group B are turned on at the same time, a short circuit occurs, so a dead time (a period during which both are turned off) is provided.
 図2(c)は、二次側のスイッチング素子A3の制御電圧Vである。図2(d)は、二次側のスイッチング素子B3の制御電圧Vである。 Figure 2 (c) is a control voltage V a of the switching element A3 of the secondary side. FIG. 2D shows the control voltage Vb of the secondary-side switching element B3.
 図2(c)(d)に示すように、二次側のスイッチング素子A3、B3は、基本的に、一次側のAグループ、Bグループの各スイッチング素子とそれぞれ同じタイミングでオンオフ制御される。従って、スイッチング素子A3とスイッチング素子B3も、互いに背反的にオンオフ制御されることになる。 2) As shown in FIGS. 2 (c) and 2 (d), the switching elements A3 and B3 on the secondary side are basically turned on and off at the same timing as the switching elements in the A and B groups on the primary side. Therefore, the switching element A3 and the switching element B3 are also turned on and off contrary to each other.
 図2(e)(f)(g)(h)は、各構成要素に流れる電流波形の一例を示すタイミング図である。なお、図2(e)(f)(g)(h)では、不連続モードの電流を示しているが、負荷の軽重に応じて電流が臨界モード又は連続モードとなることも有り得る(以下の各実施形態のタイミング図についても同様)。 2 (e) (f) (g) (h) is a timing chart showing an example of a waveform of a current flowing through each component. 2 (e), (f), (g), and (h) show the current in the discontinuous mode, the current may be in the critical mode or the continuous mode depending on the load of the load (see the following). The same applies to the timing chart of each embodiment.)
 図2に示すように、回路動作に関して、Aグループのスイッチング素子のオン期間をモードIaと称し、オフ期間をモードIIaと称する。また、Bグループのスイッチング素子のオン期間をモードIbと称し、オフ期間をモードIIbと称する。図示の通り、2つのモード(例えばモードIIaとモードIb)が時間的に重なる場合があるが、各モードの回路動作はそれぞれ独立して行われる。 に 関 し て As shown in FIG. 2, regarding the circuit operation, the on period of the switching elements of the A group is referred to as mode Ia, and the off period is referred to as mode IIa. Further, the on period of the switching elements in the B group is referred to as mode Ib, and the off period is referred to as mode IIb. As shown in the figure, the two modes (for example, mode IIa and mode Ib) may overlap in time, but the circuit operation in each mode is performed independently.
<モードIaの動作>
 図3(a)は、モードIaにおける電流を示している(電流の流れを矢印付き実線で示している。以下同様)。図3(a)を参照すると、一次側においてスイッチング素子A1、A2がオンになると、入力電圧により一次コイルN1に電流ia1が流れる(図2(e)参照)。
<Operation of Mode Ia>
FIG. 3A shows the current in the mode Ia (the flow of the current is indicated by a solid line with an arrow, and so on). Referring to FIG. 3A, when the switching elements A1 and A2 are turned on on the primary side, a current ia1 flows through the primary coil N1 due to the input voltage (see FIG. 2E).
 一次コイルに電流ia1が流れると、相互誘導により二次コイルN2に起電圧を生じ、順バイアスとなるダイオードD3を通して二次コイルN2に電流ia2が流れる(図2(f)参照)。このとき、スイッチング素子A3もオンとなっているので、リアクトルLAの出力側の端子は接地電位となる。ダイオードD1、D2は逆バイアスとなる。従って、電流ia2は、ダイオードD3→二次コイルN2→リアクトルLA→スイッチング素子A3→接地端nの経路で流れる(図2(f)(g)参照)。電流ia2は負荷に供給されないが、電流ia2によりリアクトルLAが励磁されて磁気エネルギーが蓄積される。 (4) When the current ia1 flows through the primary coil, an electromotive voltage is generated in the secondary coil N2 by mutual induction, and the current ia2 flows through the secondary coil N2 through the diode D3 which becomes forward biased (see FIG. 2 (f)). At this time, since the switching element A3 is also on, the output terminal of the reactor LA is at the ground potential. The diodes D1 and D2 are reverse biased. Therefore, the current ia2 flows through the path of the diode D3 → the secondary coil N2 → the reactor LA → the switching element A3 → the ground end n (see FIGS. 2 (f) and 2 (g)). The current ia2 is not supplied to the load, but the reactor LA is excited by the current ia2 to store magnetic energy.
 ここで、定常状態における平滑コンデンサCは、リップル変動を除いてほぼ一定の電圧で充電されている。一般的なフォワード方式の電源におけるフォワード電流は、二次コイルN2の起電圧が平滑コンデンサCの電圧を超えたときにのみ流れる。入力端子1、2に、例えば正弦波の入力電圧が印加される場合、入力電圧の小さい範囲では、二次コイルN2の起電圧も小さいため、フォワード電流が流れることができない。このことが、一般的なフォワード方式の電源において力率を低下させる原因となる。 Here, the smoothing capacitor C in the steady state is charged with a substantially constant voltage except for ripple fluctuations. A forward current in a general forward power supply flows only when the electromotive voltage of the secondary coil N2 exceeds the voltage of the smoothing capacitor C. When a sine wave input voltage is applied to the input terminals 1 and 2, for example, in a small input voltage range, the forward voltage cannot flow because the secondary coil N2 also has a small electromotive voltage. This causes a decrease in the power factor in a general forward type power supply.
 それに対し、図1の回路では、二次コイルN2の起電圧の大きさに関わらず、リアクトルLAに電流ia2が流れることができる。従って、入力電圧の大きさに関係なく、スイッチング素子のオン期間にトランスTの一次側から二次側に電力が伝達され、その電力はリアクトルLAに蓄積される。このことは、良好な力率に寄与する。 In contrast, in the circuit of FIG. 1, the current ia2 can flow through the reactor LA regardless of the magnitude of the electromotive voltage of the secondary coil N2. Therefore, regardless of the magnitude of the input voltage, power is transmitted from the primary side to the secondary side of the transformer T during the ON period of the switching element, and the power is stored in the reactor LA. This contributes to a good power factor.
<モードIIaの動作>
 図3(b)は、モードIIaにおける電流を示している。一次側において、スイッチング素子A1、A2がオフになると、一次側の電流ia1が遮断され、二次側の電流ia2も遮断される(図2(e)(f)参照)。トランスTの一次コイルN1、二次コイルN2及びリアクトルLAには逆起電圧が生じる。ダイオードD1、D2が順バイアスとなる。従って、電流ia3が、ダイオードD1→リアクトルLA→ダイオードD2→出力端pの経路で流れる(図2(g)参照)。電流ia3により、モードIaにおいてリアクトルLAに蓄積された磁気エネルギーが放出される。ダイオードD1は、フリーホイーリングダイオードの役割を果たす。
<Operation of Mode IIa>
FIG. 3B shows the current in the mode IIa. When the switching elements A1 and A2 are turned off on the primary side, the current ia1 on the primary side is cut off, and the current ia2 on the secondary side is also cut off (see FIGS. 2E and 2F). A counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor LA of the transformer T. The diodes D1 and D2 are forward biased. Therefore, the current ia3 flows through the path of the diode D1, the reactor LA, the diode D2, and the output terminal p (see FIG. 2G). The magnetic energy accumulated in the reactor LA in the mode Ia is released by the current ia3. The diode D1 functions as a freewheeling diode.
<モードIb及びモードIIbの動作>
 図4(a)(b)は、モードIb及びモードIIbにおける電流をそれぞれ示している。モードIb及びモードIIbにおける回路動作は、それぞれ上述したモードIa及びモードIIaにおける回路動作とは極性が逆になり、ほぼ対称的となるが、実質的に同じである。
<Operation of Mode Ib and Mode IIb>
FIGS. 4A and 4B show currents in the mode Ib and the mode IIb, respectively. The circuit operations in the modes Ib and IIb have the opposite polarities and are almost symmetrical to the circuit operations in the modes Ia and IIa, respectively, but are substantially the same.
 図4(a)に示すように、モードIbでは、モードIaにおける電流ia2と対称的な電流ib2が流れる(図2(f)参照)。また、図4(b)に示すように、モードIIbでは、モードIIaにおける電流ia3と対称的な電流ib3が流れる。 電流 As shown in FIG. 4A, in the mode Ib, a current ib2 symmetrical to the current ia2 in the mode Ia flows (see FIG. 2F). Further, as shown in FIG. 4B, in the mode IIb, a current ib3 symmetrical to the current ia3 in the mode IIa flows.
<回路動作の特徴>
 本回路においては、入力電圧の大きさに関わらず、トランスTの一次コイルに電流が流れると二次コイルN2に電流が流れることができ、その電流により、二次コイルN2に直列接続されたリアクトルLA、LBに磁気エネルギーが蓄積される。この結果、入力電圧の大きさに関わらず、トランスTにおいて一次側から二次側に相互誘導によって常に電力が伝達される。従って、トランスTにはほとんど磁気エネルギーが蓄積されない。この結果、トランスTの一次側及び二次側の双方においてスパイク電圧が発生しないことから、スナバ回路等のスパイク抑制手段又は磁束リセット手段が不要となるか、又は、それらを極めて小規模とすることができる。同じ理由から、フルブリッジ回路における入力側への還流電流もほとんど発生しない。これらにより、電力損失が低減され、電力変換効率を向上させることができる。
<Characteristics of circuit operation>
In this circuit, regardless of the magnitude of the input voltage, when a current flows in the primary coil of the transformer T, a current can flow in the secondary coil N2, and the reactor connected in series to the secondary coil N2 by the current. Magnetic energy is stored in LA and LB. As a result, regardless of the magnitude of the input voltage, power is always transmitted from the primary side to the secondary side of the transformer T by mutual induction. Therefore, almost no magnetic energy is stored in the transformer T. As a result, since no spike voltage is generated on both the primary side and the secondary side of the transformer T, a spike suppressing means such as a snubber circuit or a magnetic flux resetting means becomes unnecessary, or they are made extremely small. Can be. For the same reason, almost no return current to the input side in the full bridge circuit is generated. As a result, power loss is reduced, and power conversion efficiency can be improved.
 さらに、二次側のスイッチング素子A3及びB3のオンオフは、それぞれ一次側のAグループ及びBグループの各スイッチング素子のオンオフと、基本的に同じタイミングであるが、厳密に同期させる必要はない。この結果、スイッチング素子のオンオフ制御のための構成を簡素化できる。 Furthermore, the on / off of the switching elements A3 and B3 on the secondary side is basically the same timing as the on / off of the switching elements of the A group and the B group on the primary side, but it is not necessary to strictly synchronize them. As a result, the configuration for on / off control of the switching element can be simplified.
 例えば、図2(a)及び図2(c)を参照すると、一次側のAグループのスイッチング素子がオフになる時点tよりも、二次側のスイッチング素子A3がオフになる時点tが若干早かったとする。その場合、スイッチング素子A3がオフになった時点tで、図3(a)の電流ia2が、図3(b)の電流ia3に転流してリアクトルLAから磁気エネルギーが早めに放出されるだけである。 For example, referring to FIGS. 2 (a) and 2 (c), than the time t A of the switching element on the primary side of the A group is turned off, the time t a when the switching element A3 of the secondary side becomes off Suppose it was a little faster. In that case, at the time t a when the switching element A3 is turned off, only the current ia2 in FIG. 3 (a), commutated by magnetic energy from the reactor LA current ia3 in FIG. 3 (b) is discharged as soon as possible It is.
 逆に、一次側のAグループのスイッチング素子がオフになる時点tよりも、二次側のスイッチング素子A3がオフになる時点tが若干遅かったとする。その場合、図3(a)の電流ia2はゼロになるが、スイッチング素子A3がオフになるまでリアクトルLAに磁気エネルギーが保持され、スイッチング素子A3がオフになった時点で図3(b)の電流ia3が流れ、リアクトルLAから磁気エネルギーが放出される。 Conversely, the switching element on the primary side of the A group than the time t A turns off, the switching element A3 of the secondary side when t a turns off was slow somewhat. In this case, the current ia2 in FIG. 3A becomes zero, but the magnetic energy is held in the reactor LA until the switching element A3 is turned off, and when the switching element A3 is turned off, the current ia2 in FIG. Current ia3 flows, and magnetic energy is released from reactor LA.
 このように、スイッチング素子A3のオンオフのタイミングが、一次側のAグループのスイッチング素子のオンオフと多少ずれても、スイッチング素子A3の短絡の問題は生じない。 As described above, even if the on / off timing of the switching element A3 slightly deviates from the on / off of the switching elements of the primary A group, the short circuit of the switching element A3 does not occur.
 また、例えば図2(b)と図2(d)を参照すると、一次側のBグループのスイッチング素子がオンになる時点tと、二次側のスイッチング素子B3がオンになる時点tとが、多少前後しても、双方がオンになった時点から図4(a)の電流ib2が流れ始めるだけである。 Further, for example, FIG. 2 (b) With reference to FIG. 2 (d), the a time t B of the switching element on the primary side of the B group is turned on, and the time point t b of the switching element B3 is on the secondary side However, the current ib2 shown in FIG. 4A only starts to flow from the point when both are turned on even if they are slightly different.
 本明細書において、二次側のスイッチング素子のオンオフ制御に関し、一次側のスイッチング素子と「同じタイミング」とは上記のような意味で用いている。それに対し「同期」とは、例えば同期整流方式におけるように、スイッチング素子の短絡を生じないように厳密にオンオフのタイミングを制御する(例えば一方を先にオフとした後に他方をオフにする等)ことを意味する。 に お い て In the present specification, regarding the on / off control of the switching element on the secondary side, the “same timing” as that of the switching element on the primary side has the same meaning as described above. On the other hand, "synchronous" means that the on / off timing is strictly controlled so as not to cause a short circuit of the switching element as in, for example, the synchronous rectification method (for example, one is turned off first and then the other is turned off). Means that.
(2)第2の実施形態
(2-1)第2実施形態の回路構成
 図5は、本発明のワンコンバータ方式の絶縁型スイッチング電源の第2の実施形態の回路例を概略的に示している。
(2) Second Embodiment (2-1) Circuit Configuration of Second Embodiment FIG. 5 schematically shows a circuit example of a second embodiment of a one-converter type insulated switching power supply of the present invention. I have.
<トランスTの一次側の構成>
 図5の絶縁型スイッチング電源は、一例として正弦波の交流電圧を全波整流した入力電圧が入力端子1、2に入力される。入力電圧については、第1の実施形態と同様である。また、一次コイルN1と二次コイルN2を有するトランスTについても、第1の実施形態と同様のフォワードトランスである。入力端子1は、トランスTの一次コイルN1の一端(巻き始端)に接続されている。
<Configuration of primary side of transformer T>
In the insulated switching power supply of FIG. 5, for example, an input voltage obtained by full-wave rectifying a sine wave AC voltage is input to input terminals 1 and 2. The input voltage is the same as in the first embodiment. Further, a transformer T having a primary coil N1 and a secondary coil N2 is a forward transformer similar to that of the first embodiment. The input terminal 1 is connected to one end (starting end) of the primary coil N1 of the transformer T.
 第2の実施形態では、トランスTの一次側において、入力電圧により一次コイルN1に流れる電流を導通又は遮断するべくオンオフ制御される1つのスイッチング素子Q1を有する。スイッチング素子Q1は、ここでは一例としてNチャネルMOSFETである。ドレインが一次コイルN1の他端に、ソースが一次側の基準電位端(接地端)である入力端子2に接続されている。スイッチング素子Q1は、制御端であるゲートに印加される制御電圧Vによりオンオフ制御される。制御電圧Vは、好適にはPWM信号であり、第1の実施形態と同様である。 In the second embodiment, on the primary side of the transformer T, there is one switching element Q1 that is on / off controlled to conduct or cut off the current flowing through the primary coil N1 by the input voltage. The switching element Q1 is, for example, an N-channel MOSFET here. The drain is connected to the other end of the primary coil N1, and the source is connected to the input terminal 2 which is the primary-side reference potential end (ground end). The switching element Q1 is on-off controlled by a control voltage V Q which is applied to the gate is the control terminal. The control voltage VQ is preferably a PWM signal, and is the same as in the first embodiment.
 図示しないが、制御電圧Vとしての所定のPWM信号を生成し、出力する制御部が別途設けられている。 Although not shown, it generates a predetermined PWM signal as the control voltage V Q, the control unit outputs are separately provided.
<トランスTの二次側の構成>
 トランスTの二次コイルN2の一端(巻き始端)には、リアクトルLの一端とダイオードD1のカソードが接続されている。ダイオードD1のアノードは、負の出力端である接地端nに接続されている。接地端nは、二次側の基準電位端である。リアクトルLの他端にはダイオードD2のアノードが接続されている。ダイオードD2のカソードは、正の出力端子である出力端pに接続されている。
<Configuration on the secondary side of transformer T>
One end of the secondary coil N2 of the transformer T (the winding start end) is connected to one end of the reactor L and the cathode of the diode D1. The anode of the diode D1 is connected to a ground terminal n which is a negative output terminal. The ground terminal n is a reference potential terminal on the secondary side. The other end of the reactor L is connected to the anode of the diode D2. The cathode of the diode D2 is connected to an output terminal p which is a positive output terminal.
 リアクトルLの他端と接地端nとの間にはスイッチング素子Q2が接続されている。スイッチング素子Q2は、一例としてNチャネルMOSFETであり、ドレインがリアクトルLの他端に、ソースが接地端nに接続されている。スイッチング素子Q2のゲートは、制御電圧Vによりオンオフ制御される。スイッチング素子Q2の制御電圧Vは、基本的に、一次側のスイッチング素子Q1の制御電圧Vと同じタイミングでオンオフするPWM信号である。 The switching element Q2 is connected between the other end of the reactor L and the ground end n. The switching element Q2 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the reactor L and a source connected to the ground end n. Gate of the switching element Q2 is on-off controlled by a control voltage V q. Control voltage V q of the switching element Q2 is basically a PWM signal for turning on and off at the same timing as the control voltage V Q of the switching element Q1 on the primary side.
 トランスTの二次コイルN2の他端には、ダイオードD3のカソードが接続されている。ダイオードD3のアノードは、接地端nに接続されている。また、二次コイルN2の他端には、ダイオードD4のアノードも接続されている。ダイオードD4のカソードは、出力端pに接続されている。 カ ソ ー ド The other end of the secondary coil N2 of the transformer T is connected to the cathode of a diode D3. The anode of the diode D3 is connected to the ground terminal n. Further, the other end of the secondary coil N2 is also connected to the anode of the diode D4. The cathode of the diode D4 is connected to the output terminal p.
 好適例では、ダイオードD3の替わりに、鎖線で囲った部分に示したスイッチング素子Q3を設けることができる。スイッチング素子Q3は、一例としてNチャネルMOSFETであり、ドレインが二次コイルN2の他端に、ソースが接地端nに接続されている。スイッチング素子Q3のゲートは、一次側のスイッチング素子Q1の制御電圧Vと同期した制御電圧Vq3によりオンオフ制御される。スイッチング素子Q3を用いた場合は、ダイオードD3を用いた場合におけるダイオードの順方向電圧降下による損失がない点で有利である。 In a preferred example, a switching element Q3 shown in a portion surrounded by a chain line can be provided instead of the diode D3. The switching element Q3 is, for example, an N-channel MOSFET, and has a drain connected to the other end of the secondary coil N2 and a source connected to the ground end n. Gate of the switching element Q3 is on-off controlled by a control voltage V q3 synchronized with the control voltage V Q of the switching element Q1 on the primary side. The use of the switching element Q3 is advantageous in that there is no loss due to the forward voltage drop of the diode when the diode D3 is used.
 本発明の各実施形態では、整流要素の典型例としてダイオードを用いているが、スイッチング素子Q3のように制御によりダイオードと同様に機能する素子も、整流要素の範疇に含まれるものとする In each embodiment of the present invention, a diode is used as a typical example of the rectifying element. However, an element that functions like a diode by control, such as the switching element Q3, is also included in the category of the rectifying element.
 出力端pと接地端nの間には平滑コンデンサCが接続されている。 平滑 A smoothing capacitor C is connected between the output terminal p and the ground terminal n.
(2-2)第2実施形態の回路動作
 図6及び図7を参照して、図5に示した第2の実施形態の回路の動作を説明する。
(2-2) Circuit Operation of Second Embodiment The operation of the circuit of the second embodiment shown in FIG. 5 will be described with reference to FIGS.
 図6(a)(b)は、図5の回路における各スイッチング素子のオンオフ制御信号を模式的に示している。 FIGS. 6A and 6B schematically show ON / OFF control signals of each switching element in the circuit of FIG.
 図6(a)は、一次側のスイッチング素子Q1の制御電圧VQである。図6(b)は、二次側のスイッチング素子Q2の制御電圧Vである。二次側のスイッチング素子Q2は、基本的に一次側のスイッチング素子Q1と同じタイミングでオンオフ制御される。図5の回路において、ダイオードD3に替えてスイッチング素子Q3を用いる場合、一次側のスイッチング素子Q1と同期するようにオンオフ制御される。 6 (a) is a control voltage V Q of the primary side of the switching element Q1. 6 (b) is a control voltage V q of the secondary side of the switching element Q2. The switching element Q2 on the secondary side is basically turned on and off at the same timing as the switching element Q1 on the primary side. In the circuit of FIG. 5, when the switching element Q3 is used instead of the diode D3, on / off control is performed so as to synchronize with the switching element Q1 on the primary side.
 図6(c)(d)(e)は、各構成要素に流れる電流波形の一例を示すタイミング図である。 6 (c), (d) and (e) are timing charts showing an example of a waveform of a current flowing through each component.
 図6に示すように、回路動作に関して、スイッチング素子のオン期間をモードIと称し、オフ期間をモードIIと称する。モードIとモードIIは、交互に繰り返される。 As shown in FIG. 6, regarding the circuit operation, the ON period of the switching element is referred to as mode I, and the OFF period is referred to as mode II. Mode I and mode II are repeated alternately.
<モードIの動作>
 図7(a)は、モードIにおける電流の流れを示している。一次側においてスイッチング素子Q1がオンになると、入力電圧により一次コイルN1に電流i1が流れる(図6(c)参照)。一次コイルに電流i1が流れると、相互誘導により二次コイルN2に起電圧を生じ、順バイアスとなるダイオードD3(又はスイッチング素子Q3)を通して二次コイルN2に電流i2が流れる(図6(d)参照)。このとき、スイッチング素子Q2がオンであるのでリアクトルLの出力側の端子は接地電位となる。ダイオードD1、D2、D4は逆バイアスとなる。従って、電流i2は、ダイオードD3(又はスイッチング素子Q3)→二次コイルN2→リアクトルL→スイッチング素子Q2→接地端nの経路で流れる(図6(d)(e)参照)。電流i2は負荷には供給されないが、電流i2によりリアクトルLが励磁されて磁気エネルギーが蓄積される。
<Operation of Mode I>
FIG. 7A shows a current flow in the mode I. When the switching element Q1 is turned on on the primary side, a current i1 flows through the primary coil N1 due to the input voltage (see FIG. 6C). When the current i1 flows through the primary coil, an electromotive force is generated in the secondary coil N2 by mutual induction, and the current i2 flows through the secondary coil N2 through the diode D3 (or the switching element Q3) that becomes forward biased (FIG. 6D). reference). At this time, since the switching element Q2 is on, the output side terminal of the reactor L is at the ground potential. The diodes D1, D2, D4 are reverse biased. Therefore, the current i2 flows through the path of the diode D3 (or the switching element Q3) → the secondary coil N2 → the reactor L → the switching element Q2 → the ground terminal n (see FIGS. 6D and 6E). Although the current i2 is not supplied to the load, the reactor L is excited by the current i2 and magnetic energy is accumulated.
 図5の回路においても、図1の回路と同様に、二次コイルN2の起電圧の大きさに関わらず、リアクトルLに電流ia2が流れることができる。従って、入力電圧の大きさに関係なく、スイッチング素子のオン期間にトランスTの一次側から二次側に電力が伝達され、その電力はリアクトルLに蓄積される。このことは、良好な力率に寄与する。 (5) In the circuit of FIG. 5, similarly to the circuit of FIG. 1, the current ia2 can flow through the reactor L regardless of the magnitude of the electromotive voltage of the secondary coil N2. Therefore, power is transmitted from the primary side to the secondary side of the transformer T during the ON period of the switching element, regardless of the magnitude of the input voltage, and the power is stored in the reactor L. This contributes to a good power factor.
 <モードIIの動作>
 図7(b)は、モードIIにおける電流を示している。一次側においてスイッチング素子Q1がオフになると、一次コイルN1の電流i1が遮断され、二次側の電流i2も遮断される(図6(c)(d)参照)。トランスTの一次コイルN1、二次コイルN2及びリアクトルLには逆起電圧が生じる。ダイオードD1、D4が順バイアスとなり、ダイオードD1→二次コイルN2→ダイオードD4→出力端pの経路で電流i4が流れる(図6(d)参照)。これにより、トランスTに残留する磁気エネルギーが二次側に放出される。
<Mode II operation>
FIG. 7B shows the current in mode II. When the switching element Q1 is turned off on the primary side, the current i1 of the primary coil N1 is cut off, and the current i2 on the secondary side is also cut off (see FIGS. 6C and 6D). A counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor L of the transformer T. The diodes D1 and D4 become forward-biased, and a current i4 flows through a path from the diode D1, the secondary coil N2, the diode D4, and the output terminal p (see FIG. 6D). Thereby, the magnetic energy remaining in the transformer T is emitted to the secondary side.
 一方、スイッチング素子Q2がオフとなり、リアクトルLの出力側の端子が高電位となると、ダイオードD2が順バイアスとなる。従って、電流i3が、ダイオードD1→リアクトルL→ダイオードD2→出力端pの経路で流れる(図6(e)参照)。電流i3により、モードIにおいてリアクトルLに蓄積された磁気エネルギーが放出される。ダイオードD1は、フリーホイーリングダイオードの役割を果たす。 On the other hand, when the switching element Q2 is turned off and the terminal on the output side of the reactor L becomes high potential, the diode D2 becomes forward biased. Therefore, the current i3 flows through the path from the diode D1, the reactor L, the diode D2, and the output terminal p (see FIG. 6E). The magnetic energy accumulated in the reactor L in the mode I is released by the current i3. The diode D1 functions as a freewheeling diode.
 <回路動作の特徴>
 本回路においては、入力電圧の大きさに関わらず、トランスTの一次コイルに電流が流れると二次コイルN2に電流が流れることができ、その電流により、二次コイルN2に直列接続されたリアクトルLに磁気エネルギーが蓄積される。この結果、入力電圧の大きさに関わらず、トランスTにおいて一次側から二次側に相互誘導によって常に電力が伝達される。従って、トランスTにはほとんど磁気エネルギーが蓄積されない。この結果、トランスTの一次側及び二次側の双方においてスパイク電圧が発生しないことから、スナバ回路等のスパイク抑制手段又は磁束リセット手段が不要となるか、又は、それらを極めて小規模とすることができる。この結果、電力損失が低減され、電力変換効率を向上させることができる。
<Characteristics of circuit operation>
In this circuit, regardless of the magnitude of the input voltage, when a current flows in the primary coil of the transformer T, a current can flow in the secondary coil N2, and the reactor connected in series to the secondary coil N2 by the current. Magnetic energy is stored in L. As a result, regardless of the magnitude of the input voltage, power is always transmitted from the primary side to the secondary side of the transformer T by mutual induction. Therefore, almost no magnetic energy is stored in the transformer T. As a result, since no spike voltage is generated on both the primary side and the secondary side of the transformer T, a spike suppressing means such as a snubber circuit or a magnetic flux resetting means becomes unnecessary, or they are made extremely small. Can be. As a result, power loss is reduced, and power conversion efficiency can be improved.
 さらに、二次側のスイッチング素子Q2のオンオフは、一次側のスイッチング素子Q1のオンオフと同じタイミングであるが、厳密に同期させる必要がない。この結果、オンオフ制御のための構成を簡素化できる。これについては、上述した第1の実施形態において、図2(a)~(d)の符号tA、ta及び符号tB、tbを参照して説明した通りである。 Furthermore, the on / off of the switching element Q2 on the secondary side is at the same timing as the on / off of the switching element Q1 on the primary side, but it is not necessary to strictly synchronize them. As a result, the configuration for on / off control can be simplified. This is as described in the first embodiment with reference to the symbols tA and ta and the symbols tB and tb in FIGS. 2A to 2D.
 なお、整流要素として機能するスイッチング素子Q3については、短絡を避けるために同期制御が必要である。スイッチング素子Q3は、スイッチング素子Q1がオフになる前にオフとしなければならない。 (4) Synchronous control is required for the switching element Q3 functioning as a rectifying element to avoid a short circuit. The switching element Q3 must be turned off before the switching element Q1 is turned off.
(3)第3の実施形態
 第3の実施形態は、第1の実施形態の変形形態であるので、第1の実施形態と異なる部分についてのみ説明する。
(3) Third Embodiment The third embodiment is a modification of the first embodiment, and therefore only the parts different from the first embodiment will be described.
(3-1)第3の実施形態の回路構成
 図8は、本発明のワンコンバータ方式の絶縁型スイッチング電源の第3の実施形態の回路例を概略的に示している。
(3-1) Circuit Configuration of Third Embodiment FIG. 8 schematically shows a circuit example of a third embodiment of a one-converter insulated switching power supply of the present invention.
<トランスTの一次側の構成>
 トランスTの一次側の構成は、第1の実施形態と同じである。
<Configuration of primary side of transformer T>
The configuration of the primary side of the transformer T is the same as that of the first embodiment.
<トランスTの二次側の構成>
 第3の実施形態は、トランスTの二次側において、第1の実施形態が有する構成要素の全てを有する。さらに第3の実施形態は、トランスTの二次側において、付加的な構成要素を有する。付加的な構成要素として、リアクトルLA1とダイオードD5を有し、リアクトルLA1の一端がトランスTの二次コイルN2の一端に接続され、ダイオードD5がリアクトルLA1の他端と出力端pとの間に接続されている。さらなる付加的構成要素として、リアクトルLB1とダイオードD6を有し、リアクトルLB1の一端がトランスTの二次コイルN2の他端に接続され、ダイオードD6がリアクトルLB1の他端と出力端pとの間に接続されている。
<Configuration on the secondary side of transformer T>
The third embodiment has all of the components of the first embodiment on the secondary side of the transformer T. Furthermore, the third embodiment has additional components on the secondary side of the transformer T. As an additional component, it has a reactor LA1 and a diode D5, one end of the reactor LA1 is connected to one end of the secondary coil N2 of the transformer T, and the diode D5 is connected between the other end of the reactor LA1 and the output end p. It is connected. As a further additional component, it has a reactor LB1 and a diode D6, one end of the reactor LB1 is connected to the other end of the secondary coil N2 of the transformer T, and the diode D6 is connected between the other end of the reactor LB1 and the output end p. It is connected to the.
(3-2)第3の実施形態の回路動作
  図9、図10及び図11を参照して、図8に示した第3の実施形態の回路の動作を説明する。
(3-2) Circuit Operation of Third Embodiment The operation of the circuit of the third embodiment shown in FIG. 8 will be described with reference to FIGS. 9, 10, and 11.
 図9(a)~(d)は、図8の回路における各スイッチング素子のオンオフ制御信号を模式的に示している。これらは、図2(a)~(d)と全く同じである。 FIGS. 9A to 9D schematically show ON / OFF control signals of each switching element in the circuit of FIG. These are exactly the same as FIGS. 2 (a) to 2 (d).
 図9(e)に示すトランスTの一次コイルN1の電流は、タイミングと波形(増減の変化)に関して図2(e)と実質的に同じである。 電流 The current of the primary coil N1 of the transformer T shown in FIG. 9E is substantially the same as that of FIG. 2E with respect to timing and waveform (change in increase and decrease).
 図9(f)に示すトランスTの二次コイルN2の電流は、図2(f)に示した電流ia2、ib2に対し、リアクトルLA1に流れる電流ia4、ib4が加わる場合がある。但し、電流ia4、ib4は、入力電圧の大きさに応じて流れるときと流れないときがあるので、括弧付きで示している。 電流 In the current of the secondary coil N2 of the transformer T shown in FIG. 9 (f), the currents ia4 and ib4 flowing through the reactor LA1 may be added to the currents ia2 and ib2 shown in FIG. 2 (f). However, the currents ia4 and ib4 may or may not flow depending on the magnitude of the input voltage, and are shown in parentheses.
 図9(g)(h)に示すリアクトルLA、LBに流れる電流は、図2(g)(h)に示した電流ia2、ia3、ib2、ib3と同じである。 The currents flowing through the reactors LA and LB shown in FIGS. 9 (g) and 9 (h) are the same as the currents ia2, ia3, ib2 and ib3 shown in FIGS. 2 (g) and 2 (h).
 図9(i)(j)は、追加されたリアクトルLA1、LB1に流れる電流を示している。なお、電流ia5、ib5は、電流ia4、ib4が流れるときにのみ流れるので、括弧付きで示している。 FIGS. 9 (i) and (j) show currents flowing through the added reactors LA1 and LB1. Since the currents ia5 and ib5 flow only when the currents ia4 and ib4 flow, they are shown in parentheses.
 図9においても、図2と同様に、回路動作に関して、Aグループのスイッチング素子のオン期間をモードIaと称し、オフ期間をモードIIaと称する。また、Bグループのスイッチング素子のオン期間をモードIbと称し、オフ期間をモードIIbと称する。 9, also in FIG. 9, as in FIG. 2, regarding the circuit operation, the ON period of the switching element of Group A is referred to as mode Ia, and the OFF period is referred to as mode IIa. Further, the on period of the switching elements in the B group is referred to as mode Ib, and the off period is referred to as mode IIb.
<モードIaの動作>
 図10(a)は、モードIaにおける電流を示している。一次側においてスイッチング素子A1、A2がオンになると、入力電圧により一次コイルN1に電流ia1が流れる(図9(e)参照)。
<Operation of Mode Ia>
FIG. 10A shows the current in the mode Ia. When the switching elements A1 and A2 are turned on on the primary side, a current ia1 flows through the primary coil N1 due to the input voltage (see FIG. 9E).
 一次コイルに電流ia1が流れると、相互誘導により二次コイルN2に起電圧を生じ、順バイアスとなるダイオードD3を通して二次コイルN2に電流ia2が流れる(図9(f)参照)。電流ia2は、ダイオードD3→二次コイルN2→リアクトルLA→スイッチング素子A3→接地端nの経路で流れる(図9(f)(g)参照)。電流ia2は負荷に供給されないが、電流ia2によりリアクトルLAが励磁されて磁気エネルギーが蓄積される。電流ia2は、二次コイルN2の起電圧の大きさに関係なく流れる。 (4) When the current ia1 flows through the primary coil, an electromotive force is generated in the secondary coil N2 by mutual induction, and the current ia2 flows through the secondary coil N2 through the diode D3 that becomes forward-biased (see FIG. 9F). The current ia2 flows through a path from the diode D3, the secondary coil N2, the reactor LA, the switching element A3, and the ground terminal n (see FIGS. 9F and 9G). The current ia2 is not supplied to the load, but the reactor LA is excited by the current ia2 to store magnetic energy. The current ia2 flows regardless of the magnitude of the electromotive voltage of the secondary coil N2.
 さらに、二次コイルN2の起電圧が、平滑コンデンサCの電圧を超えるときは、リアクトルLA1及びダイオードD5を通して出力端pへ電流ia4が流れることができる。電流ia4は、ダイオードD3→二次コイルN2→リアクトルLA1→ダイオードD5→出力端pの経路で流れる(図9(i)参照)。電流ia4は、フォワード方式のスイッチング電源におけるフォワード電流に相当する。電流ia4は負荷に供給されると共に、電流ia4によりリアクトルLA1が励磁されて磁気エネルギーが蓄積される。一方、二次コイルN2の起電圧が、平滑コンデンサCの電圧を超えないときは、電流ia4は流れない。電流ia4が流れるか否かは、入力電圧の大きさに依存する。 (4) When the electromotive voltage of the secondary coil N2 exceeds the voltage of the smoothing capacitor C, a current ia4 can flow to the output terminal p through the reactor LA1 and the diode D5. The current ia4 flows through a path from the diode D3 → the secondary coil N2 → the reactor LA1 → the diode D5 → the output terminal p (see FIG. 9 (i)). The current ia4 corresponds to a forward current in a forward switching power supply. The current ia4 is supplied to the load, and the reactor LA1 is excited by the current ia4 to store magnetic energy. On the other hand, when the electromotive voltage of the secondary coil N2 does not exceed the voltage of the smoothing capacitor C, the current ia4 does not flow. Whether the current ia4 flows depends on the magnitude of the input voltage.
<モードIIaの動作>
 図10(b)は、モードIIaにおける電流を示している。一次側において、スイッチング素子A1、A2がオフになると、一次側の電流ia1が遮断され、二次側の電流ia2も遮断される(図9(e)(f)参照)。トランスTの一次コイルN1、二次コイルN2及びリアクトルLAには逆起電圧が生じる。ダイオードD1、D2が順バイアスとなる。従って、電流ia3が、ダイオードD1→リアクトルLA→ダイオードD2→出力端pの経路で流れる(図9(g)参照)。電流ia3により、モードIaにおいてリアクトルLAに蓄積された磁気エネルギーが放出される。ダイオードD1は、フリーホイーリングダイオードの役割を果たす。
<Operation of Mode IIa>
FIG. 10B shows the current in the mode IIa. When the switching elements A1 and A2 are turned off on the primary side, the current ia1 on the primary side is cut off, and the current ia2 on the secondary side is also cut off (see FIGS. 9E and 9F). A counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor LA of the transformer T. The diodes D1 and D2 are forward biased. Therefore, the current ia3 flows through the path of the diode D1, the reactor LA, the diode D2, and the output terminal p (see FIG. 9G). The magnetic energy accumulated in the reactor LA in the mode Ia is released by the current ia3. The diode D1 functions as a freewheeling diode.
 上述したモードIaにおいて電流ia4が流れる場合、モードIIaにおいて電流ia5が流れる。電流ia5は、ダイオードD1→リアクトルLA1→ダイオードD5→出力端pの経路で流れる(図9(i)参照)。電流ia5が流れることにより、モードIaでリアクトルLA1に蓄積された磁気エネルギーが放出される。モードIaにおいて電流ia4が流れないときは、当然にモードIIaにおいて電流ia5も流れない。 場合 When the current ia4 flows in the mode Ia described above, the current ia5 flows in the mode IIa. The current ia5 flows through a path from the diode D1, the reactor LA1, the diode D5, and the output terminal p (see FIG. 9 (i)). When the current ia5 flows, the magnetic energy accumulated in the reactor LA1 in the mode Ia is released. When the current ia4 does not flow in the mode Ia, the current ia5 does not naturally flow in the mode IIa.
<モードIb及びモードIIbの動作>
 図11(a)(b)は、モードIb及びモードIIbにおける電流をそれぞれ示している。モードIb及びモードIIbにおける回路動作は、上述したモードIa及びモードIIaにおける回路動作とは極性が逆になり、ほぼ対称的となるが、実質的に同じである。
<Operation of Mode Ib and Mode IIb>
FIGS. 11A and 11B show currents in the mode Ib and the mode IIb, respectively. The circuit operation in the mode Ib and the mode IIb has a polarity opposite to that of the circuit operation in the mode Ia and the mode IIa and is almost symmetric, but is substantially the same.
 図11(a)に示すように、モードIbでは、モードIaにおける電流ia2、ia4と対称的な電流ib2、ib4が流れる(図9(f)(j)参照)。また、図11(b)に示すように、モードIIbでは、モードIIaにおける電流ia3、ia5と対称的な電流ib3、ib5が流れる(図9(f)(j))。但し、ib4、ib5は、二次コイルN2の起電圧が平滑コンデンサCの電圧を超えたときにのみ流れることができる。 電流 As shown in FIG. 11A, in the mode Ib, currents ib2 and ib4 symmetric to the currents ia2 and ia4 in the mode Ia flow (see FIGS. 9F and 9J). In addition, as shown in FIG. 11B, in the mode IIb, currents ib3 and ib5 symmetric to the currents ia3 and ia5 in the mode IIa flow (FIGS. 9F and 9J). However, ib4 and ib5 can flow only when the electromotive voltage of the secondary coil N2 exceeds the voltage of the smoothing capacitor C.
<回路動作の特徴>
 第3の実施形態では、入力電圧が大きいとき、すなわちトランスTの二次コイルN2の起電圧が平滑コンデンサCの電圧を超えるとき、リアクトルLA1及びダイオードD5を通して、又はリアクトルLB1及びダイオードD6を通して、フォワード電流を出力することができる。従って、第3の実施形態は、第1の実施形態について上述した特徴と同じ特徴を有すると共に、第1の実施形態よりも大きな電力を出力することが可能となる。
<Characteristics of circuit operation>
In the third embodiment, when the input voltage is large, that is, when the electromotive voltage of the secondary coil N2 of the transformer T exceeds the voltage of the smoothing capacitor C, the forward voltage is passed through the reactor LA1 and the diode D5 or through the reactor LB1 and the diode D6. A current can be output. Therefore, the third embodiment has the same features as those described above with respect to the first embodiment, and can output higher power than the first embodiment.
(4)第4の実施形態
 第4の実施形態は、第2の実施形態の変形形態であるので、第2の実施形態と異なる部分についてのみ説明する。
(4) Fourth Embodiment The fourth embodiment is a modification of the second embodiment, and therefore, only different points from the second embodiment will be described.
(4-1)第4の実施形態の回路構成
 図12は、本発明のワンコンバータ方式の絶縁型スイッチング電源の第4の実施形態の回路例を概略的に示している。
(4-1) Circuit Configuration of Fourth Embodiment FIG. 12 schematically shows a circuit example of a fourth embodiment of a one-converter insulated switching power supply of the present invention.
<トランスTの一次側の構成>
 トランスTの一次側の構成は、第2の実施形態と同じである。
<Configuration of primary side of transformer T>
The configuration of the primary side of the transformer T is the same as that of the second embodiment.
<トランスTの二次側の構成>
 第4の実施形態は、トランスTの二次側において、第2の実施形態が有する構成要素の全てを有する。さらに第4の実施形態は、トランスTの二次側において、付加的な構成要素として、リアクトルL1とダイオードD5を有する。リアクトルL1の一端がトランスTの二次コイルN2の一端に接続され、ダイオードD5がリアクトルL1の他端と出力端pとの間に接続されている。
<Configuration on the secondary side of transformer T>
The fourth embodiment has all of the components of the second embodiment on the secondary side of the transformer T. Furthermore, the fourth embodiment has a reactor L1 and a diode D5 as additional components on the secondary side of the transformer T. One end of reactor L1 is connected to one end of secondary coil N2 of transformer T, and diode D5 is connected between the other end of reactor L1 and output end p.
(4-2)第4の実施形態の回路動作
  図13及び図14を参照して、図12に示した第4の実施形態の回路の動作を説明する。
(4-2) Circuit Operation of Fourth Embodiment The operation of the circuit of the fourth embodiment shown in FIG. 12 will be described with reference to FIGS.
 図13(a)(b)は、図12の回路における各スイッチング素子のオンオフ制御信号を模式的に示している。これらは、図6(a)(b)と全く同じである。 FIGS. 13A and 13B schematically show ON / OFF control signals of each switching element in the circuit of FIG. These are exactly the same as FIGS. 6 (a) and 6 (b).
 図13(c)に示すトランスTの一次コイルN1の電流は、タイミングと波形(電流の増減)に関して図6(c)と基本的に同じである。 The current of the primary coil N1 of the transformer T shown in FIG. 13C is basically the same as that of FIG. 6C with respect to timing and waveform (increase / decrease of current).
 図13(d)に示すトランスTの二次コイルN2の電流は、図6(d)に示した電流i2に対し、リアクトルL1に流れる電流i5が加わる場合がある。但し、電流i5は、入力電圧の大きさに応じて流れるときと流れないときがあるので、括弧付きで示している。 電流 In the current of the secondary coil N2 of the transformer T shown in FIG. 13D, a current i5 flowing through the reactor L1 may be added to the current i2 shown in FIG. 6D. However, the current i5 is shown in parentheses because it may or may not flow depending on the magnitude of the input voltage.
 図13(e)に示すリアクトルLに流れる電流は、図6(e)に示した電流i2、i3と同じである。 電流 The current flowing through reactor L shown in FIG. 13 (e) is the same as currents i2 and i3 shown in FIG. 6 (e).
 図13(f)は、リアクトルL1に流れる電流を示している。電流i6も、電流i5が流れるときにのみ流れるので、括弧付きで示している。 FIG. 13 (f) shows a current flowing through the reactor L1. Since the current i6 also flows only when the current i5 flows, it is shown in parentheses.
 図13においても、図6と同様に、回路動作に関して、スイッチング素子のオン期間をモードIと称し、オフ期間をモードIIと称する。 13, in FIG. 13, as in FIG. 6, regarding the circuit operation, the ON period of the switching element is referred to as mode I, and the OFF period is referred to as mode II.
<モードIの動作>
 図14(a)は、モードIにおける電流を示している。一次側においてスイッチング素子Q1がオンになると、入力電圧により一次コイルN1に電流i1が流れる(図13(c参照)。
<Operation of Mode I>
FIG. 14A shows the current in the mode I. When the switching element Q1 is turned on on the primary side, a current i1 flows through the primary coil N1 due to the input voltage (see FIG. 13C).
 一次コイルに電流i1が流れると、相互誘導により二次コイルN2に起電圧を生じ、順バイアスとなるダイオードD3を通して二次コイルN2に電流i2が流れる(図13(d)参照)。電流i2は、ダイオードD3→二次コイルN2→リアクトルL→スイッチング素子Q2→接地端nの経路で流れる(図13(d)(e)参照)。電流i2は負荷に供給されないが、電流i2によりリアクトルLが励磁されて磁気エネルギーが蓄積される。電流i2は、二次コイルN2の起電圧の大きさに関係なく流れる。 (4) When the current i1 flows through the primary coil, an electromotive force is generated in the secondary coil N2 by mutual induction, and the current i2 flows through the secondary coil N2 through the diode D3 that becomes forward biased (see FIG. 13D). The current i2 flows through a path from the diode D3, the secondary coil N2, the reactor L, the switching element Q2, and the ground terminal n (see FIGS. 13D and 13E). Although the current i2 is not supplied to the load, the reactor L is excited by the current i2 and magnetic energy is accumulated. The current i2 flows regardless of the magnitude of the electromotive voltage of the secondary coil N2.
 さらに、二次コイルN2の起電圧が、平滑コンデンサCの電圧を超えるときは、リアクトルL1及びダイオードD5を通して出力端pへ電流i5が流れることができる。電流i5は、ダイオードD3→二次コイルN2→リアクトルL1→ダイオードD5→出力端pの経路で流れる(図13(e)参照)。電流i5は、フォワード方式のスイッチング電源におけるフォワード電流に相当する。電流i5は負荷に供給されると共に、電流i5によりリアクトルL1が励磁されて磁気エネルギーが蓄積される。一方、二次コイルN2の起電圧が、平滑コンデンサCの電圧を超えないときは、電流i5は流れない。電流i5が流れるか否かは、入力電圧の大きさに依存する。 (4) Further, when the electromotive voltage of the secondary coil N2 exceeds the voltage of the smoothing capacitor C, the current i5 can flow to the output terminal p through the reactor L1 and the diode D5. The current i5 flows through a path from the diode D3, the secondary coil N2, the reactor L1, the diode D5, and the output terminal p (see FIG. 13E). The current i5 corresponds to a forward current in a forward-type switching power supply. The current i5 is supplied to the load, and the reactor L1 is excited by the current i5 to store magnetic energy. On the other hand, when the electromotive voltage of the secondary coil N2 does not exceed the voltage of the smoothing capacitor C, the current i5 does not flow. Whether the current i5 flows depends on the magnitude of the input voltage.
<モードIIの動作>
 図14(b)は、モードIIにおける電流を示している。一次側において、スイッチング素子Q1がオフになると、一次側の電流i1が遮断され、二次側の電流i2も遮断される(図13(c)(d)参照)。トランスTの一次コイルN1、二次コイルN2及びリアクトルLには逆起電圧が生じる。ダイオードD1、D2が順バイアスとなる。従って、電流i3が、ダイオードD1→リアクトルL→ダイオードD2→出力端pの経路で流れる(図13(e)参照)。電流i3により、モードIにおいてリアクトルLに蓄積された磁気エネルギーが放出される。ダイオードD1は、フリーホイーリングダイオードの役割を果たす。
<Mode II operation>
FIG. 14B shows the current in mode II. When the switching element Q1 is turned off on the primary side, the current i1 on the primary side is cut off, and the current i2 on the secondary side is also cut off (see FIGS. 13C and 13D). A counter electromotive voltage is generated in the primary coil N1, the secondary coil N2, and the reactor L of the transformer T. The diodes D1 and D2 are forward biased. Therefore, the current i3 flows through the path of the diode D1, the reactor L, the diode D2, and the output terminal p (see FIG. 13E). The magnetic energy accumulated in the reactor L in the mode I is released by the current i3. The diode D1 functions as a freewheeling diode.
 上述したモードIにおいて電流i5が流れるときは、モードIIにおいて電流i6が流れる。電流i6は、ダイオードD1→リアクトルL1→ダイオードD5→出力端pの経路で流れる(図13(e)参照)。電流i6が流れることにより、モードIでリアクトルL1に蓄積された磁気エネルギーが放出される。モードIにおいて電流i5が流れないときは、当然にモードIIにおいて電流i6も流れない。 When the current i5 flows in the mode I described above, the current i6 flows in the mode II. The current i6 flows through a path from the diode D1, the reactor L1, the diode D5, and the output terminal p (see FIG. 13E). When the current i6 flows, the magnetic energy stored in the reactor L1 in the mode I is released. When the current i5 does not flow in the mode I, the current i6 naturally does not flow in the mode II.
<回路動作の特徴>
 第4の実施形態では、入力電圧が大きいとき、すなわちトランスTの二次コイルN2の起電圧が平滑コンデンサCの電圧を超えるとき、リアクトルL1及びダイオードD5を通してフォワード電流を出力することができる。従って、第4の実施形態は、第2の実施形態について上述した特徴と同じ特徴を有すると共に、第2の実施形態よりも大きな電力を出力することが可能となる。
<Characteristics of circuit operation>
In the fourth embodiment, when the input voltage is large, that is, when the electromotive voltage of the secondary coil N2 of the transformer T exceeds the voltage of the smoothing capacitor C, a forward current can be output through the reactor L1 and the diode D5. Therefore, the fourth embodiment has the same features as those described above with respect to the second embodiment, and can output higher power than the second embodiment.
(5)その他の実施形態
 図示しないが、上述した第1又は第3の実施形態の回路における一次側のスイッチング部の別の構成として、プッシュプル回路又はハーフブリッジ回路を適用することができる。
(5) Other Embodiments Although not shown, a push-pull circuit or a half-bridge circuit can be applied as another configuration of the primary-side switching unit in the circuit of the above-described first or third embodiment.
 上述した各実施形態おいて、スイッチング部におけるスイッチング素子は、MOSFET以外にIGBT又はバイポーラトランジスタでもよい。 In each of the above embodiments, the switching element in the switching unit may be an IGBT or a bipolar transistor other than the MOSFET.
 上述した各実施形態おいて、各ダイオードは、一方向への電流を導通可能でありかつ逆方向の電流を遮断する整流要素の一例である。従って、同様の機能を有する他の素子又は回路に置き換えることができる。 In each of the above embodiments, each diode is an example of a rectifying element that can conduct current in one direction and block current in the opposite direction. Therefore, another element or circuit having a similar function can be used.
 以上に説明した本発明の絶縁型スイッチング電源は、図示の構成例に限られず、本発明の主旨に沿う範囲において多様な変形が可能である。 絶 縁 The above-described insulated switching power supply of the present invention is not limited to the configuration example shown in the drawings, but can be variously modified within the scope of the gist of the present invention.
 p 正の出力端
 n 接地端
 T トランス
 LA、LB、L、LA1、LB1、L、L1 リアクトル
 N1 一次コイル
 N2 二次コイル
 A1、A2、A3、B1、B2、B3、Q1、Q2、Q3 スイッチング素子(MOSFET)
 D1、D2、D3、D4、D5、D6 ダイオード
 C 平滑コンデンサ
p Positive output terminal n Ground terminal T Transformer LA, LB, L, LA1, LB1, L, L1 Reactor N1 Primary coil N2 Secondary coil A1, A2, A3, B1, B2, B3, Q1, Q2, Q3 Switching element (MOSFET)
D1, D2, D3, D4, D5, D6 Diode C Smoothing capacitor

Claims (6)

  1.  同極性に巻かれた一次コイルと二次コイルとを有するトランスと、
     前記一次コイルを含む電流路を導通又は遮断するべく制御される少なくとも1つの一次側スイッチング素子と、
     前記トランスの二次側に接続された少なくとも1つのリアクトルと、
     前記トランスの二次側の出力端と基準電位端との間に接続された平滑コンデンサと、を有するワンコンバータ方式の絶縁型スイッチング電源において、
     前記リアクトルの一端が前記二次コイルの一端に接続されており、さらに、
     前記リアクトルの一端と前記基準電位端との間に接続された第1の整流要素と、
     前記リアクトルの他端と前記出力端との間に接続された第2の整流要素と、
     前記二次コイルの他端と前記基準電位端との間に接続された第3の整流要素と、
     前記リアクトルの他端と前記基準電位端との間の電流路を導通又は遮断するべく前記一次側スイッチング素子と同じタイミングで制御される少なくとも1つの二次側スイッチング素子と、を有することを特徴とするワンコンバータ方式の絶縁型スイッチング電源。
    A transformer having a primary coil and a secondary coil wound in the same polarity,
    At least one primary side switching element controlled to conduct or cut off a current path including the primary coil;
    At least one reactor connected to the secondary side of the transformer,
    A smoothing capacitor connected between an output terminal on the secondary side of the transformer and a reference potential terminal;
    One end of the reactor is connected to one end of the secondary coil, and further,
    A first rectifying element connected between one end of the reactor and the reference potential end;
    A second rectifying element connected between the other end of the reactor and the output end;
    A third rectifying element connected between the other end of the secondary coil and the reference potential end;
    And at least one secondary-side switching element controlled at the same timing as the primary-side switching element to conduct or cut off a current path between the other end of the reactor and the reference potential end. One-converter isolated switching power supply.
  2.  前記少なくとも1つの一次側スイッチング素子が、前記一次コイルの電流をそれぞれ導通又は遮断するように互いに背反的に制御される、少なくとも1つの第1グループの一次側スイッチング素子及び少なくとも1つの第2グループの一次側スイッチング素により構成され、
     前記二次コイルの他端にその一端を接続された第2のリアクトルと、
     前記第2のリアクトルの他端と前記出力端との間に接続された第4の整流要素と、
     前記第2のリアクトルの他端と前記基準電位端との間の電流路を導通又は遮断するべく制御される第2の二次側スイッチング素子と、をさらに有し、
     一方の前記二次側スイッチング素子が前記第1グループの一次側スイッチング素子と同じタイミングで制御されると共に、他方の前記二次側スイッチング素子が前記第2グループの一次側スイッチング素子と同じタイミングで制御されることを特徴
    The at least one first group of primary switching elements and the at least one second group of at least one first group, wherein the at least one primary side switching element is reciprocally controlled to conduct or block the current of the primary coil, respectively; It is composed of a primary side switching element,
    A second reactor having one end connected to the other end of the secondary coil;
    A fourth rectifying element connected between the other end of the second reactor and the output end;
    A second secondary-side switching element that is controlled to conduct or cut off a current path between the other end of the second reactor and the reference potential end,
    One of the secondary switching elements is controlled at the same timing as the primary switching element of the first group, and the other secondary switching element is controlled at the same timing as the primary switching element of the second group. Characterized to be
  3.  さらに第3のリアクトルと第5の整流要素とを有し、前記第3のリアクトルの一端が前記二次コイルの一端に接続され、前記第5の整流要素が、前記第3のリアクトルの他端と前記出力端との間に接続されており、かつ、
     さらに第4のリアクトルと第6の整流要素とを有し、前記第4のリアクトルの一端が前記二次コイルの他端に接続され、前記第6の整流要素が、前記第4のリアクトルの他端と前記出力端との間に接続されていることを特徴とする請求項2に記載のワンコンバータ方式の絶縁型スイッチング電源。
    Furthermore, a third reactor and a fifth rectifying element are provided, one end of the third reactor is connected to one end of the secondary coil, and the fifth rectifying element is connected to the other end of the third reactor. And the output terminal, and
    Furthermore, a fourth reactor and a sixth rectifier element are provided, one end of the fourth reactor is connected to the other end of the secondary coil, and the sixth rectifier element is connected to the other of the fourth reactor. The one-converter type insulated switching power supply according to claim 2, wherein the one-converter type switching power supply is connected between an output terminal and the output terminal.
  4.  前記二次コイルの他端と出力端との間に接続された第4の整流要素をさらに有することを特徴とする請求項1に記載のワンコンバータ方式の絶縁型スイッチング電源。 The one-switching type insulated switching power supply according to claim 1, further comprising a fourth rectifying element connected between the other end of the secondary coil and an output end.
  5.  前記第3の整流要素が、前記一次側スイッチング素子と同期して制御されるスイッチング素子であることを特徴とする請求項4に記載のワンコンバータ方式の絶縁型スイッチング電源。 5. The one-converter type insulated switching power supply according to claim 4, wherein the third rectifying element is a switching element controlled in synchronization with the primary-side switching element.
  6.  さらに第2のリアクトルと第5の整流要素とを有し、前記第2のリアクトルの一端が前記二次コイルの一端に接続され、前記第5の整流要素が、前記第2のリアクトルの他端と前記出力端との間に接続されていることを特徴とする請求項4又は5に記載のワンコンバータ方式の絶縁型スイッチング電源。 Furthermore, a second reactor and a fifth rectifying element are provided, one end of the second reactor is connected to one end of the secondary coil, and the fifth rectifying element is connected to the other end of the second reactor. 6. The one-converter type insulated switching power supply according to claim 4, wherein the switching power supply is connected between the power supply and the output terminal.
PCT/JP2019/030311 2018-08-03 2019-08-01 One-converter-type insulated switching power source WO2020027290A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-146839 2018-08-03
JP2018146839 2018-08-03
JP2019030142A JP7160719B2 (en) 2018-08-03 2019-02-22 Single-converter isolated switching power supply
JP2019-030142 2019-02-22

Publications (1)

Publication Number Publication Date
WO2020027290A1 true WO2020027290A1 (en) 2020-02-06

Family

ID=69232176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030311 WO2020027290A1 (en) 2018-08-03 2019-08-01 One-converter-type insulated switching power source

Country Status (1)

Country Link
WO (1) WO2020027290A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000830A1 (en) * 2005-06-29 2007-01-04 Murata Manufacturing Co., Ltd. Dc/dc converter
JP2008043060A (en) * 2006-08-07 2008-02-21 Sony Corp Switching power supply circuit
JP2011166949A (en) * 2010-02-10 2011-08-25 Hitachi Ltd Power-supply device, hard disk drive, and switching method of power-supply device
CN102497106A (en) * 2011-12-05 2012-06-13 北京新雷能科技股份有限公司 Single-end forward power inverter
JP2013158122A (en) * 2012-01-30 2013-08-15 Hitachi Ltd Power conversion device, method of controlling power conversion device, and hard disk device
WO2017212843A1 (en) * 2016-06-10 2017-12-14 Ntn株式会社 Dc/dc converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007000830A1 (en) * 2005-06-29 2007-01-04 Murata Manufacturing Co., Ltd. Dc/dc converter
JP2008043060A (en) * 2006-08-07 2008-02-21 Sony Corp Switching power supply circuit
JP2011166949A (en) * 2010-02-10 2011-08-25 Hitachi Ltd Power-supply device, hard disk drive, and switching method of power-supply device
CN102497106A (en) * 2011-12-05 2012-06-13 北京新雷能科技股份有限公司 Single-end forward power inverter
JP2013158122A (en) * 2012-01-30 2013-08-15 Hitachi Ltd Power conversion device, method of controlling power conversion device, and hard disk device
WO2017212843A1 (en) * 2016-06-10 2017-12-14 Ntn株式会社 Dc/dc converter

Similar Documents

Publication Publication Date Title
US10581334B2 (en) DC-DC converter and control method
US8780585B2 (en) Double phase-shifting full-bridge DC-to-DC converter
JP4840617B2 (en) Half-bridge LLC resonant converter with self-driven synchronous rectifier
JP4910525B2 (en) Resonant switching power supply
US9118259B2 (en) Phase-shifted dual-bridge DC/DC converter with wide-range ZVS and zero circulating current
US7405955B2 (en) Switching power supply unit and voltage converting method
WO2015106701A1 (en) Ac-dc conversion circuit and control method therefor
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
JP2001351789A (en) Drive device for light-emitting diode
JP6512064B2 (en) Switching power supply
US20120294047A1 (en) Resonant Converter
JP2008289228A (en) Power conversion device
US20170155325A1 (en) Resonant power supply device
US9130472B2 (en) High efficient single switch single stage power factor correction power supply
JP6241334B2 (en) Current resonance type DCDC converter
US9768699B2 (en) Switching power supply unit
US6999325B2 (en) Current/voltage converter arrangement
JPH0417567A (en) Switching power supply circuit
US20140133190A1 (en) Isolated switch-mode dc/dc converter with sine wave transformer voltages
JP2007060890A (en) Switching power supply device
KR20160011497A (en) High-efficiency single-stage ac/dc converter for power factor correction
WO2020027290A1 (en) One-converter-type insulated switching power source
JP7160719B2 (en) Single-converter isolated switching power supply
JP6270753B2 (en) Power converter
JP2021035077A (en) Wireless power supply device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843693

Country of ref document: EP

Kind code of ref document: A1