WO2020027275A1 - Synchronous motor and motor assembly - Google Patents

Synchronous motor and motor assembly Download PDF

Info

Publication number
WO2020027275A1
WO2020027275A1 PCT/JP2019/030264 JP2019030264W WO2020027275A1 WO 2020027275 A1 WO2020027275 A1 WO 2020027275A1 JP 2019030264 W JP2019030264 W JP 2019030264W WO 2020027275 A1 WO2020027275 A1 WO 2020027275A1
Authority
WO
WIPO (PCT)
Prior art keywords
assembly
magnets
motor
synchronous motor
rotor
Prior art date
Application number
PCT/JP2019/030264
Other languages
French (fr)
Japanese (ja)
Inventor
哲夫 岡本
Original Assignee
トクデンコスモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トクデンコスモ株式会社 filed Critical トクデンコスモ株式会社
Publication of WO2020027275A1 publication Critical patent/WO2020027275A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present disclosure relates to a synchronous motor and a motor assembly including the synchronous motor.
  • Synchronous motors provide a rotor with a field that can rotate around a single axis of rotation and provide a field.
  • the field follows a fluctuating magnetic field that is applied from outside the rotor.
  • Motor that realizes.
  • Various techniques have been developed for this synchronous motor (see, for example, JP-A-54-0556114).
  • synchronous motors have a disadvantage that it is difficult to start rotating a stopped rotor by itself at the time of starting.
  • This disadvantage can be solved by, for example, incorporating a motor of a type different from that of the synchronous motor as a starting motor into a motor assembly having a synchronous motor.
  • electric energy for driving the starting motor is additionally required.
  • the present disclosure relates to a rotor capable of rotational movement rotating around one rotation axis, a stator disposed around the rotation axis, and a first field for generating a magnetic field in a state provided in the rotor.
  • a magnetic field generated by the first field and the magnetic field generated by the second field in which one of the magnetic field lines extends in the circumferential direction of the rotation axis.
  • a synchronous motor having the magnetic field lines in the direction along the radial direction toward the rotation axis.
  • the first field is in a magnetically unstable balance state.
  • the change becomes a perturbation that breaks the above-described balanced state, and serves as a trigger that gives angular momentum for rotating the rotor to the first field.
  • the rotor stopped in the synchronous motor can be easily moved, and the electric energy required for starting the synchronous motor can be reduced.
  • each of the magnetic fields of the first field and the second field generates a force having a component in a direction of moving the stator and the rotor away from each other.
  • the stator is arranged around the rotor and the first field is a first assembly having a plurality of magnets arranged around the axis of rotation in the rotor.
  • the second field is a second assembly having a plurality of magnets arranged around the rotor in the stator, and the exciter is disposed in the stator between the magnets of the second assembly.
  • a third assembly having a plurality of electromagnets, wherein the first assembly generates a magnetic field having lines of magnetic force in a direction along the circumferential direction of the rotation shaft, and the second assembly generates a magnetic field in the direction along the radial direction.
  • the electric wiring for supplying electric energy to the electromagnet can be simplified as compared with a synchronous motor in which the rotor is arranged around the stator.
  • the number of magnets in the first assembly is preferably equal to the number of magnets in the second assembly.
  • the magnets in the first assembly and the magnets in the second assembly can be associated with each other on a one-to-one basis, the pattern of the fluctuating magnetic field generated by each electromagnet for giving the perturbation should be simplified. Can be.
  • the number of magnets in the first assembly is smaller than the number of magnets in the second assembly, and is relatively prime to the number of magnets in the second assembly. preferable.
  • the number of magnets in the first assembly is one less than the number of magnets in the second assembly.
  • the output of the synchronous motor can be maintained at a large value by increasing the number of magnets of the first assembly to which the angular momentum for rotating the rotor is given as much as possible, while securing the above-described effects.
  • each magnet in the second assembly has at least one of the S pole and the N pole formed in a planar shape, and the magnetic pole formed in the planar shape faces the rotor side. What is arrange
  • the magnetic pole on the rotor side is unified to one of the S pole and the N pole.
  • the magnets in the first assembly are arranged such that the directions of the magnetic poles as viewed in the circumferential direction of the rotating shaft are unified.
  • the magnetic field of the first assembly surrounding the rotor eliminates the constriction of the lines of magnetic force, thereby reducing the possibility that the constriction and the magnetic field of the electromagnet interfere with each other to reduce the rotational motion of the rotor.
  • the present disclosure includes a motor assembly comprising a plurality of any of the synchronous motors described above.
  • the plurality of synchronous motors include a first motor and a second motor sharing one shaft as a rotation axis, and each magnet of the first assembly in the first motor, and The magnets of the first assembly of the second motor are fixed so that the first amount, which is the amount of misalignment seen in the circumferential direction of the shaft, does not change, and the magnets of the second assembly of the first motor are different.
  • each magnet of the second assembly in the second motor is fixed so that a second amount, which is the amount of displacement in the circumferential direction of the shaft, does not change, and the second amount is the first amount.
  • the amount is set to be different from the amount.
  • the phase between the rotation phase of the first assembly as viewed from the second assembly in the first motor and the rotation phase of the first assembly as viewed from the second assembly in the second motor. Deviation can be set. This phase shift occurs when one of the magnets of the first assembly in the first motor and the magnets of the first assembly in the second motor is in a stable balanced state, and the other is not in a balanced state. It is something that can be done. Therefore, it is possible to prevent both the first assembly of the first motor and the first assembly of the second motor from being in a stable balance state, and to easily rotate each rotor and the shaft.
  • FIG. 3 is an explanatory diagram illustrating a usage state of the synchronous motor 10 according to one embodiment.
  • FIG. 2 is an end view taken along line II-II of FIG. 1.
  • FIG. 9 is an explanatory diagram showing a usage state of a synchronous motor 30 according to another embodiment.
  • FIG. 4 is an end view taken along line IV-IV of FIG. 3.
  • FIG. 4 is an explanatory diagram illustrating a use state of the motor assembly 100 according to one embodiment.
  • FIG. 6 is an end view taken along line VI-VI of FIG. 5.
  • FIG. 7 is an end view taken along line VII-VII of FIG. 5.
  • the synchronous motor 10 rotates the shaft 10B by receiving supply of electric energy from a power supply device 20.
  • the power supply device 20 can output both an AC current and a DC current, and outputs a waveform of the output current, for example, an arbitrary waveform including a sine wave, a triangular wave, a rectangular wave, and a pulse wave.
  • the waveform can be set as follows.
  • the synchronous motor 10 includes a shaft 10B, a rotor 11 for rotating the shaft 10B, and a housing 13 disposed around the rotor 11.
  • the rotor 11 is integrated with the shaft 10B by a spline fit, so that the rotor 11 can rotate around the rotation axis 10A with the axis of the shaft 10B as the rotation axis 10A.
  • the outer surface of the housing 13 is formed in a columnar shape, and supports the shaft 10 ⁇ / b> B while the rotor 11 is housed inside.
  • the housing 13 is formed by projecting five salient poles 13A and five salient poles 13B having different shapes from the inner surface of the metal cylinder toward the inner side of the cylinder (in FIG. 2, toward the rotation axis 10A). Having a configuration.
  • Each of the five salient poles 13A is a rectangular parallelepiped inner peripheral rib extending in a height direction (a direction perpendicular to the paper surface in FIG. 2) of the cylinder of the housing 13, and is spaced from each other on the inner surface of the cylinder of the housing 13. Are arranged at equal intervals. These salient poles 13A protrude toward the inner side of the cylinder of the housing 13 (the side facing the rotation axis 10A in FIG. 2), and each protruding tip surface is a regular pentagonal prism having the rotation axis 10A as a central axis. It is a plane which makes each side of the.
  • the five salient poles 13B are plate-shaped inner peripheral ribs each extending in the height direction (the direction perpendicular to the paper surface in FIG. 2) of the cylinder of the housing 13, and are set between the five salient poles 13A. One piece is arranged in each gap. These salient poles 13A protrude toward the inner side of the cylinder of the housing 13 (the side toward the rotating shaft 10A in FIG. 2) longer than the protruding amount of the salient poles 13A, and each protruding tip end surface is protruded. , And are hollowed out so as to form a cylindrical surface with the rotation axis 10A as a central axis.
  • the rotor 11 has five dovetail grooves 11A extending in the height direction of the cylinder (the direction perpendicular to the paper in FIG. 2) on the outer surface of the metal cylinder to which the spline is fitted to the shaft 10B.
  • the five dovetail grooves 11A are cut so that the intervals between them are equal.
  • Five magnets 12A (specifically, for example, neodymium magnets) are attached to these dovetail grooves 11A one by one.
  • Each of the magnets 12A has a shape corresponding to the dovetail groove 11A, and is fitted over the entire length of the dovetail groove 11A so as not to be separated from the dovetail groove 11A.
  • the dovetail groove is a groove with a configuration in which the width of the opening is made narrower than the width of the bottom part by making the wall part beveled. It refers to a plate-like portion that can slide into the dovetail groove from the direction in which the dovetail groove extends and fit therewith.
  • the five magnets 12A form an assembly (hereinafter, also referred to as “first assembly 12”) arranged so as to surround the rotation axis 10A in the rotor 11.
  • first assembly 12 arranged so as to surround the rotation axis 10A in the rotor 11.
  • each end surface of the five magnets 12A is a surface that is rounded so as to form a cylindrical surface around the rotation shaft 10A so as not to come into contact with the housing 13 and the components provided in the housing 13. ing.
  • each magnet 12A of the first assembly 12 has an N pole 12B on one side (counterclockwise in FIG. 2) as viewed in the circumferential direction of the rotating shaft 10A, and the other side (FIG. 2).
  • the surface on the clockwise side is the S pole 12C.
  • the first assembly 12 exhibits a function as a field for generating a magnetic field 12D having the magnetic lines of force 12E in the direction along the circumferential direction of the rotating shaft 10A.
  • the first assembly 12 exhibits a function as a “first field” in the present disclosure.
  • the magnets 12A in the first assembly 12 are arranged in a state where the directions of the magnetic poles viewed in the circumferential direction of the rotating shaft 10A are unified.
  • Five magnets 14A (specifically, for example, neodymium magnets) each formed in a rectangular parallelepiped plate shape are attached to each end face of the five salient poles 13A. These magnets 14A are magnetized in the thickness direction of the flat plate, and have an S pole 14C and an N pole 14B.
  • the S pole 14C which appears on one plate surface of the flat plate, covers the entire end surface of the salient pole 13A, and the N pole 14B, which appears on one plate surface of the flat plate, faces the rotor 11 side.
  • Each of the five salient poles 13B is provided with an electromagnet 15A formed of a solenoid coil wound around the distal end, respectively.
  • These electromagnets 15A receive a current output from the power supply device 20 (see FIG. 1) and generate a fluctuating magnetic field or a steady magnetic field corresponding to the waveform of the current.
  • the magnetic field generated by each electromagnet 15A can have a strength capable of attracting or retreating the magnet 12A of the first assembly 12 by magnetic force.
  • the housing 13 surrounds the rotor 11 and the rotation shaft 10A, and functions as a stator.
  • the five magnets 14A form an assembly (hereinafter, also referred to as “second assembly 14”) arranged so as to surround the rotor 11 in the housing 13 functioning as a stator. Further, the second assembly 14 exerts a function as a field for generating a magnetic field 14D having magnetic lines of force 14E extending in a radial direction toward the rotation axis 10A. In other words, the second assembly 14 functions as a “second field” in the present disclosure.
  • the five electromagnets 15A attached to the five salient poles 13B are arranged one by one between the magnets 14A of the second assembly 14 in the housing 13 functioning as a stator, and the assembly (hereinafter referred to as “third electromagnet”). Assembly 15 "). Further, the third assembly 15 receives a current output from the power supply device 20 (see FIG. 1) and functions as an exciter that generates a fluctuating magnetic field that gives the first assembly 12 an angular momentum for rotating the rotor 11. Demonstrate.
  • one of the magnetic field 12D generated by the first assembly 12 and the magnetic field 14D generated by the second assembly 14 has the magnetic force line 12E in the direction along the circumferential direction of the rotation shaft 10A.
  • the other has a magnetic line of force 14E extending in the radial direction toward the rotation axis 10A. Therefore, when the rotor 11 is stationary, the magnets 12A of the first assembly 12 are in a magnetically unstable balance state. At this time, if the magnetic field generated by the electromagnet 15A fluctuates, this fluctuation becomes a perturbation that breaks the above-described balanced state, and serves as a trigger that gives the angular momentum for rotating the rotor 11 to the magnet 12A of the first assembly 12. Thus, the rotor 11 stopped in the synchronous motor 10 can be easily moved, and the electric energy required for starting the synchronous motor 10 can be reduced.
  • the housing 13 provided with the electromagnet 15A of the third assembly 15 and functioning as a stator is disposed around the rotor 11 to be rotated, the rotor is disposed around the stator.
  • the electric wiring for supplying electric energy to the electromagnet 15A can be simplified as compared with the synchronous motor (not shown) of the embodiment.
  • the present disclosure includes a synchronous motor in which the rotor is arranged around the stator.
  • the number (5) of the magnets 12A in the first assembly 12 is equal to the number (5) of the magnets 14A in the second assembly 14, and these magnets 12A and the magnets 14A can be associated one-to-one. Therefore, the pattern of the fluctuating magnetic field generated by each electromagnet 15A for giving the perturbation can be simplified.
  • each magnet 14A in the second assembly 14 is arranged with its planar magnetic pole facing the rotor 11, and an electromagnet 15A is arranged between these magnets 14A. Therefore, when the distance between the electromagnet 15A and the magnet 12A of the first assembly 12 is relatively short, the distance between the magnet 12A and the magnet 14A of the second assembly 14 from the magnetic pole is relatively long. Thus, when the magnet 12A of the first assembly 12 is attracted to the magnetic field of the electromagnet 15A, the influence of the magnetic field 14D of the magnet 14A of the second assembly 14 on the attraction can be reduced.
  • each magnet 14A of the second assembly 14 the magnetic poles on the rotor 11 side are unified to the N pole 14B, so that the lines of magnetic force 14E coming from each magnet 14A are concentrated between the magnets 14A, and the first assembly 12 It can be avoided that the effect of bringing each magnet 12A into an unstable balance state when viewed magnetically is weakened.
  • a synchronous motor (not shown) in which the rotor-side magnetic pole is unified to the S pole has the same effect, and the present disclosure relates to such a synchronous motor. Includes motor.
  • the magnets 12A of the first assembly 12 are arranged such that the magnetic poles viewed in the circumferential direction of the rotating shaft 10A are unified. Therefore, the magnetic field 12D of the first assembly 12 surrounding the rotor 11 eliminates the constriction of the lines of magnetic force, and the possibility that the constriction and the magnetic field of the electromagnet 15A interfere with each other to reduce the rotational motion of the rotor 11 can be reduced.
  • the synchronous motor 30 is an embodiment in which the synchronous motor 10 according to the first embodiment is modified. Therefore, the components common to the components used in the description of the synchronous motor 10 are denoted by the reference numerals obtained by adding “20” to the components used in the description of the synchronous motor 10. Corresponding, detailed description is omitted.
  • the synchronous motor 30 is a synchronous motor 10 according to the first embodiment (see FIG. 3) except that the rotating shaft 30B is thicker than the shaft 10B (see FIG. 1). 1).
  • the synchronous motor 30 has a four-groove Geneva gear connected to the shaft 30B in a metallurgical manner, instead of the rotor 11 (see FIG. 2) configured to be spline-fitted to the shaft 10B. It has a rotor 31 that is legally integrated.
  • Each of the four grooves 31A of the rotor 31 is provided with one of four magnets 32A formed in a plate shape.
  • One side (counterclockwise in FIG. 4) of the magnet 32A viewed in the circumferential direction of the rotating shaft 30A is an N pole 32B, and the other side (clockwise in FIG. 4) is an S pole. 32C.
  • the first assembly 32 exerts a function as a field for generating a magnetic field 32D having the magnetic lines of force 32E along the circumferential direction of the rotation shaft 30A.
  • the first assembly 32 exhibits a function as a “first field” in the present disclosure.
  • the magnets 32A in the first assembly 32 are arranged in a state where the magnetic poles viewed in the circumferential direction of the rotation shaft 30A are unified.
  • the number (4) of the magnets 32A in the first assembly 32 is smaller than the number (5) of the magnets 34A in the second assembly 34, and the number (5) is smaller than the number (5). Be disjointed. For this reason, it is possible to reduce the possibility that each magnet 32A of the first assembly 32 will be in a stable balanced state, make the rotor 31 easy to move, and reduce the electric energy required at the time of starting the synchronous motor 30. Becomes
  • the number (4) of the magnets 32A in the first assembly 32 is also a number that satisfies the relation that the number (5) of the magnets 34A in the second assembly 34 is smaller by one. For this reason, while securing the effect of the synchronous motor 30, the number of magnets 32A of the first assembly 32 to which the angular momentum for rotating the rotor 31 is given is increased as much as possible, and the output of the synchronous motor 30 is increased. Can be kept at a large value.
  • the motor assembly 100 includes a first motor 110 and a second motor 120 which are modifications of the synchronous motor 10 according to the first embodiment. Therefore, among the configurations of the first motor 110, the configurations common to the configurations used in the description of the synchronous motor 10 are denoted by the reference numerals assigned to the configurations used in the description of the synchronous motor 10. The reference numerals added with “100” are assigned to correspond, and the detailed description thereof is omitted. In addition, among the configurations of the second motor 120, the configurations common to the configurations used in the description of the synchronous motor 10 are denoted by the reference numerals assigned to the configurations used in the description of the synchronous motor 10. The reference numerals added with “110” are assigned to correspond, and the detailed description thereof is omitted.
  • the first motor 110 and the second motor 120 share a shaft 101 which is an object forming the rotation axis 100A.
  • the shaft 101 is a spline shaft in which one spline 101A extending linearly over the entire length is cut.
  • each magnet 112A of the first assembly 112 of the first motor 110 and each magnet 122A of the first assembly 122 of the second motor 120 cause the amount of displacement of the shaft 101 as viewed in the circumferential direction. Is fixed so as not to change.
  • the first motor 110 and the second motor 120 share the power supply device 102 that functions as a source of electric energy, as shown in FIG.
  • the power supply device 102 can output both an AC current and a DC current to each of the first motor 110 and the second motor 120, and outputs a waveform of the output current.
  • any waveform including a sine wave, a triangular wave, a rectangular wave, and a pulse wave can be set.
  • a recess 102A extending in parallel with the direction in which the axis of the shaft 101 extends (the left-right direction in FIG. 5).
  • the housing 113 of the first motor 110 and the housing 123 of the second motor 120 are attached to the outer surfaces of the cylinders of the housings 113 and 123 in the height direction of the cylinder.
  • the dovetail grooves 113C and 123C are provided one by one.
  • These dovetail grooves 113C and 123C are formed in a shape and a size corresponding to the shape 102A of the power supply device 102, and the housing 113 of the first motor 110 and the housing 123 of the second motor 120 are formed by the shape 102A.
  • the slidable engagement in the extending direction (the left-right direction in FIG. 5) is realized.
  • each magnet 114A of the second assembly 114 of the first motor 110 and each magnet 124A of the second assembly 124 of the second motor 120 cause the amount of displacement of the shaft 101 as viewed in the circumferential direction. Is fixed so as not to change.
  • the second amount (36 ° in FIGS. 6 and 7) is set to be different from the first amount (0 ° in FIGS. 6 and 7).
  • the rotation phase of the first assembly 112 as viewed from the second assembly 114 in the first motor 110 and the first assembly as viewed from the second assembly 124 in the second motor 120 A phase shift can be set between the rotation phase and the rotation phase of the motor 122.
  • This phase shift occurs when one of the magnets 112A of the first assembly 112 of the first motor 110 and the magnets 122A of the first assembly 122 of the second motor 120 is in a stable balance state. It is possible to prevent the other from being in a balanced state. Therefore, it is possible to avoid a situation where both the first assembly 112 of the first motor 110 and the first assembly 122 of the second motor 120 are in a stable equilibrium state, and connect the rotors 111 and 121 with the shaft 101. It can be easily rotated.
  • the rotor 111 of the first motor 110 and the rotor 121 of the second motor 120 are slidable along the shaft 101 by fitting the spline to the shaft 101. Further, the housing 113 of the first motor 110 and the housing 123 of the second motor 120 are slidable along a recess 102A parallel to the shaft 101. As a result, the positions of the first motor 110 and the second motor 120 in the motor assembly 100 are changed by sliding the first motor 110 and the second motor 120 in the direction along the shaft 101 and the groove 102A. (See FIG. 5).
  • a synchronous motor in which a rotor surrounds a stator and forms at least a part of a housing, and the rotor rotates around a center axis of the stator as a rotation axis.
  • the synchronous motor of this embodiment can be applied to, for example, a rotating display stand that displays small hobby products while rotating them.
  • Each magnet of the second assembly for generating a magnetic field having a magnetic field line in the radial direction toward the rotation axis is provided in the rotor as a first field, and the magnetic field lines in the direction along the circumferential direction of the rotation axis.
  • a synchronous motor in which each magnet of the first assembly for generating a magnetic field having a second field is provided on a stator.
  • a synchronous motor having a stator in which each assembly for generating a magnetic field is embedded in place of a stator having a configuration in which a plurality of salient poles project from the inner surface of a metal cylinder.
  • each of the electromagnets forming the third assembly is provided on a rotor or a mounting part other than the rotor or the stator.
  • the number of magnets forming the first assembly, the number of magnets forming the second assembly, and the number of electromagnets forming the third assembly are respectively changed to arbitrarily set numbers. Synchronous motor in form.
  • the added motor may share a shaft with the first motor and the second motor, or may rotate another shaft.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

A synchronous motor (10) is provided with: a rotor (11) which is rotatable around a rotating shaft (10A); a housing (13)(stator) disposed around the rotating shaft (10A); a first assembly (12)(first field magnet) which causes generation of a magnetic field (12D) in the rotor (11); a second assembly (14)(second field magnet) which is disposed around the rotating shaft (10A) in the housing (13) and causes generation of a magnetic field (14D) separately from the first assembly (12); and a third assembly (15)(exciting body) which causes generation of a varying magnetic field for providing the first assembly (12) with an angular momentum that causes rotation of the rotor (11). One of the magnetic field (12D) due to the first assembly (12) and the magnetic field (14D) due to the second assembly (14) has a magnetic field line (12E) in a direction along the circumference of the rotating shaft (10A), and the other has a magnetic field line (14E) in a direction along a moving radius direction toward the rotating shaft (10A).

Description

シンクロナスモーターおよびモーターアッセンブリSynchronous motor and motor assembly
 本開示は、シンクロナスモーターおよびこのシンクロナスモーターを備えたモーターアッセンブリに関する。 The present disclosure relates to a synchronous motor and a motor assembly including the synchronous motor.
 シンクロナスモーターとは、1本の回転軸のまわりに回転する回転運動が可能なローターに界磁を設け、この界磁をローターの外部から印加される変動磁場に追従させることで、ローターの回転を実現させるモーターのことをいう。このシンクロナスモーターに関しては、従前より種々の技術が開発されている(例えば特開昭54-056114号公報を参照)。 Synchronous motors provide a rotor with a field that can rotate around a single axis of rotation and provide a field. The field follows a fluctuating magnetic field that is applied from outside the rotor. Motor that realizes. Various techniques have been developed for this synchronous motor (see, for example, JP-A-54-0556114).
 一般に、シンクロナスモーターは、始動時において停止しているローターを自ら回転させ始めることが難しいというデメリットを有している。このデメリットは、例えばシンクロナスモーターを備えたモーターアッセンブリに、シンクロナスモーターとは異なる方式のモーターを始動用モーターとして組み込むことで解消することができる。しかしながら、この場合は始動用モーターを駆動させるための電気エネルギーが追加で必要となるというデメリットが新たに生じる。 Generally, synchronous motors have a disadvantage that it is difficult to start rotating a stopped rotor by itself at the time of starting. This disadvantage can be solved by, for example, incorporating a motor of a type different from that of the synchronous motor as a starting motor into a motor assembly having a synchronous motor. However, in this case, there is a new disadvantage that electric energy for driving the starting motor is additionally required.
 したがって、改良されたシンクロナスモーターが必要とされている。 Therefore, there is a need for an improved synchronous motor.
 本開示は、1本の回転軸のまわりに回転する回転運動が可能なローターと、回転軸の周りを取り巻いて配されるステーターと、ローターに設けられた状態で磁場を生じさせる第1の界磁と、ステーターにおいて回転軸の周りを取り巻いた状態に設けられて、第1の界磁とは別個に磁場を生じさせる第2の界磁と、ローターを回転させる角運動量を第1の界磁に与える変動磁場を発生させる励磁体と、を備え、第1の界磁が発生させる磁場、および、第2の界磁が発生させる磁場のうち、一方が回転軸の周方向に沿う方向の磁力線を有し、他方が回転軸に向かう動径方向に沿う方向の磁力線を有しているシンクロナスモーターを包含する。 The present disclosure relates to a rotor capable of rotational movement rotating around one rotation axis, a stator disposed around the rotation axis, and a first field for generating a magnetic field in a state provided in the rotor. A first magnetic field, a second magnetic field provided around the rotation axis in the stator and generating a magnetic field separately from the first magnetic field, and a second magnetic field for rotating the rotor by the first magnetic field. And a magnetic field generated by the first field and the magnetic field generated by the second field, in which one of the magnetic field lines extends in the circumferential direction of the rotation axis. And a synchronous motor having the magnetic field lines in the direction along the radial direction toward the rotation axis.
 上記シンクロナスモーターでは、ローターが静止している場合において、第1の界磁は、磁気的に見て不安定なつり合い状態となる。このとき、励磁体が発生させる磁場が変動されると、この変動は上記つり合い状態を崩す摂動となり、ローターを回転させる角運動量を第1の界磁に与えるトリガーとなる。これにより、シンクロナスモーターにおいて停止しているローターを動きやすくして、シンクロナスモーターの始動時に必要な電気エネルギーの低減をはかることが可能となる。 で は In the synchronous motor, when the rotor is stationary, the first field is in a magnetically unstable balance state. At this time, if the magnetic field generated by the exciter is changed, the change becomes a perturbation that breaks the above-described balanced state, and serves as a trigger that gives angular momentum for rotating the rotor to the first field. As a result, the rotor stopped in the synchronous motor can be easily moved, and the electric energy required for starting the synchronous motor can be reduced.
 また、上記シンクロナスモーターでは、ローターが回転している場合において、第1の界磁および第2の界磁の各磁場がステーターとローターとを互いに遠ざける向きの成分を有する力を発生させる。これにより、シンクロナスモーターにおいて回転しているローターのひっかかりを減らして、シンクロナスモーターの駆動に必要な電気エネルギーの低減をはかることが可能となる。 In the synchronous motor, when the rotor is rotating, each of the magnetic fields of the first field and the second field generates a force having a component in a direction of moving the stator and the rotor away from each other. As a result, it is possible to reduce the amount of electric energy required for driving the synchronous motor by reducing the catch of the rotating rotor in the synchronous motor.
 1つの好ましい実施態様では、ステーターは、ローターの周りを取り巻いて配され、第1の界磁は、ローターにおいて回転軸の周りを取り巻くように配された複数の磁石を有する第1のアッセンブリであり、第2の界磁は、ステーターにおいてローターの周りを取り巻くように配された複数の磁石を有する第2のアッセンブリであり、励磁体は、ステーターにおいて第2のアッセンブリの磁石の間に配される複数の電磁石を有する第3のアッセンブリであり、第1のアッセンブリは、回転軸の周方向に沿う方向の磁力線を有する磁場を発生させ、第2のアッセンブリは、上記動径方向に沿う方向の磁力線を有する磁場を発生させる。 In one preferred embodiment, the stator is arranged around the rotor and the first field is a first assembly having a plurality of magnets arranged around the axis of rotation in the rotor. , The second field is a second assembly having a plurality of magnets arranged around the rotor in the stator, and the exciter is disposed in the stator between the magnets of the second assembly. A third assembly having a plurality of electromagnets, wherein the first assembly generates a magnetic field having lines of magnetic force in a direction along the circumferential direction of the rotation shaft, and the second assembly generates a magnetic field in the direction along the radial direction. A magnetic field having
 この場合、ローターがステーターの周りを取り巻いて配される態様のシンクロナスモーターと比して、電磁石に電気エネルギーを供給する電気配線をシンプルにすることができる。 In this case, the electric wiring for supplying electric energy to the electromagnet can be simplified as compared with a synchronous motor in which the rotor is arranged around the stator.
 上記実施態様では、第1のアッセンブリにおける磁石の数は、第2のアッセンブリにおける磁石の数に等しいものが好ましい。 In the above embodiment, the number of magnets in the first assembly is preferably equal to the number of magnets in the second assembly.
 この場合、第1のアッセンブリにおける磁石と第2のアッセンブリにおける磁石とを1対1で対応付けることができるため、上記摂動を与えるために各電磁石にて発生される変動磁場のパターンを単純にすることができる。 In this case, since the magnets in the first assembly and the magnets in the second assembly can be associated with each other on a one-to-one basis, the pattern of the fluctuating magnetic field generated by each electromagnet for giving the perturbation should be simplified. Can be.
 あるいは、上記実施態様では、第1のアッセンブリにおける磁石の数は、第2のアッセンブリにおける磁石の数よりも少なく、かつ、第2のアッセンブリにおける磁石の数に対して互いに素となっているものが好ましい。 Alternatively, in the above embodiment, the number of magnets in the first assembly is smaller than the number of magnets in the second assembly, and is relatively prime to the number of magnets in the second assembly. preferable.
 この場合、第1のアッセンブリの各磁石が安定したつり合い状態となる可能性を低減させてローターを動きやすくし、シンクロナスモーターの始動時に必要な電気エネルギーの低減をはかることが可能となる。 In this case, it is possible to reduce the possibility that the magnets of the first assembly will be in a stable balanced state, make the rotor easier to move, and reduce the electric energy required when starting the synchronous motor.
 より好ましくは、第1のアッセンブリにおける磁石の数は、第2のアッセンブリにおける磁石の数よりも1だけ少なくなる。 More preferably, the number of magnets in the first assembly is one less than the number of magnets in the second assembly.
 この場合、上記した効果を確保しながら、ローターを回転させる角運動量が与えられる第1のアッセンブリの磁石の数を可能な限り多くして、シンクロナスモーターの出力を大きな値に保つことができる。 In this case, the output of the synchronous motor can be maintained at a large value by increasing the number of magnets of the first assembly to which the angular momentum for rotating the rotor is given as much as possible, while securing the above-described effects.
 また、上記実施態様では、第2のアッセンブリにおける各磁石は、S極またはN極のうちの少なくとも一方の磁極が平面状に構成され、かつ、この平面状に構成された磁極がローター側を向くように配されているものが好ましい。 In the above embodiment, each magnet in the second assembly has at least one of the S pole and the N pole formed in a planar shape, and the magnetic pole formed in the planar shape faces the rotor side. What is arrange | positioned like this is preferable.
 この場合、電磁石と第1のアッセンブリの磁石との距離が比較的近くなるときには、この磁石と第2のアッセンブリの磁石の磁極からの距離が比較的遠くなる。これにより、第1のアッセンブリの磁石が電磁石の磁場に引き寄せられるときに、この引き寄せに対して第2のアッセンブリの磁石の磁場がおよぼす影響を少なくすることができる。 In this case, when the distance between the electromagnet and the magnet of the first assembly is relatively short, the distance between the magnet and the magnet of the second assembly from the magnetic pole is relatively long. Thereby, when the magnet of the first assembly is attracted to the magnetic field of the electromagnet, the influence of the magnetic field of the magnet of the second assembly on the attraction can be reduced.
 より好ましくは、第2のアッセンブリにおける各磁石において、ローター側の磁極が、S極またはN極のうちのいずれか一方に統一されている。 More preferably, in each magnet in the second assembly, the magnetic pole on the rotor side is unified to one of the S pole and the N pole.
 この場合、第2のアッセンブリにおける各磁石から出る磁力線がこれらの磁石の間に集中して、第1のアッセンブリの各磁石を磁気的に見て不安定なつり合い状態にする作用が弱まることを回避することができる。 In this case, it is avoided that the lines of magnetic force emitted from the respective magnets in the second assembly are concentrated between these magnets, and the effect of causing the respective magnets of the first assembly to be in a magnetically unstable balance state is weakened. can do.
 また、上記実施態様では、第1のアッセンブリにおける各磁石は、回転軸の周方向で見た磁極の向きが統一された状態に配されているものが好ましい。 In the above embodiment, it is preferable that the magnets in the first assembly are arranged such that the directions of the magnetic poles as viewed in the circumferential direction of the rotating shaft are unified.
 この場合、ローターを取り巻く第1のアッセンブリの磁場から磁力線のくびれをなくして、このくびれと電磁石の磁場とが干渉してローターの回転運動が弱められるおそれを減らすことができる。 In this case, the magnetic field of the first assembly surrounding the rotor eliminates the constriction of the lines of magnetic force, thereby reducing the possibility that the constriction and the magnetic field of the electromagnet interfere with each other to reduce the rotational motion of the rotor.
 別の実施態様では、本開示は、上述したシンクロナスモーターのいずれかを複数備えたモーターアッセンブリを包含する。 In another embodiment, the present disclosure includes a motor assembly comprising a plurality of any of the synchronous motors described above.
 より詳細には、複数のシンクロナスモーターは、1本のシャフトを回転軸として共有する第1のモーターおよび第2のモーターを含み、第1のモーターにおける第1のアッセンブリの各磁石、および、第2のモーターにおける第1のアッセンブリの各磁石は、シャフトの周方向で見た位置ずれの量である第1の量が変化しないように固定され、第1のモーターにおける第2のアッセンブリの各磁石、および、第2のモーターにおける第2のアッセンブリの各磁石は、シャフトの周方向で見た位置ずれの量である第2の量が変化しないように固定され、第2の量が、第1の量とは異なる量となるように設定されている。 More specifically, the plurality of synchronous motors include a first motor and a second motor sharing one shaft as a rotation axis, and each magnet of the first assembly in the first motor, and The magnets of the first assembly of the second motor are fixed so that the first amount, which is the amount of misalignment seen in the circumferential direction of the shaft, does not change, and the magnets of the second assembly of the first motor are different. , And each magnet of the second assembly in the second motor is fixed so that a second amount, which is the amount of displacement in the circumferential direction of the shaft, does not change, and the second amount is the first amount. The amount is set to be different from the amount.
 上記モーターアッセンブリでは、第1のモーターにおける第2のアッセンブリから見た第1のアッセンブリの回転位相と、第2のモーターにおける第2のアッセンブリから見た第1のアッセンブリの回転位相との間に位相のずれを設定することができる。この位相のずれは、第1のモーターにおける第1のアッセンブリの各磁石および第2のモーターにおける第1のアッセンブリの各磁石のうち、一方が安定したつり合い状態となる場合に他方がつり合い状態とならないようにできるものである。したがって、第1のモーターにおける第1のアッセンブリおよび第2のモーターにおける第1のアッセンブリの両方が安定したつり合い状態となることを回避して、各ローターとシャフトとを回転させやすくすることができる。 In the motor assembly, the phase between the rotation phase of the first assembly as viewed from the second assembly in the first motor and the rotation phase of the first assembly as viewed from the second assembly in the second motor. Deviation can be set. This phase shift occurs when one of the magnets of the first assembly in the first motor and the magnets of the first assembly in the second motor is in a stable balanced state, and the other is not in a balanced state. It is something that can be done. Therefore, it is possible to prevent both the first assembly of the first motor and the first assembly of the second motor from being in a stable balance state, and to easily rotate each rotor and the shaft.
1つの実施態様にかかるシンクロナスモーター10の使用状態を表した説明図である。FIG. 3 is an explanatory diagram illustrating a usage state of the synchronous motor 10 according to one embodiment. 図1のII-II線端面図である。FIG. 2 is an end view taken along line II-II of FIG. 1. 他の1つの実施態様にかかるシンクロナスモーター30の使用状態を表した説明図である。FIG. 9 is an explanatory diagram showing a usage state of a synchronous motor 30 according to another embodiment. 図3のIV-IV線端面図である。FIG. 4 is an end view taken along line IV-IV of FIG. 3. 1つの実施態様にかかるモーターアッセンブリ100の使用状態を表した説明図である。FIG. 4 is an explanatory diagram illustrating a use state of the motor assembly 100 according to one embodiment. 図5のVI-VI線端面図である。FIG. 6 is an end view taken along line VI-VI of FIG. 5. 図5のVII-VII線端面図である。FIG. 7 is an end view taken along line VII-VII of FIG. 5.
〈第1の実施態様〉
 始めに、第1の実施態様であるシンクロナスモーター10の構成について、図1および図2を用いて説明する。このシンクロナスモーター10は、図1に示すように、電源装置20から電気エネルギーの供給を受けることで、シャフト10Bを回転させるものである。ここで、電源装置20は、交流電流および直流電流のいずれをも出力することが可能なものであり、かつ、出力する電流の波形を、例えば正弦波、三角波、矩形波、パルス波を含む任意の波形に設定することができるものである。
<First embodiment>
First, the configuration of the synchronous motor 10 according to the first embodiment will be described with reference to FIGS. As shown in FIG. 1, the synchronous motor 10 rotates the shaft 10B by receiving supply of electric energy from a power supply device 20. Here, the power supply device 20 can output both an AC current and a DC current, and outputs a waveform of the output current, for example, an arbitrary waveform including a sine wave, a triangular wave, a rectangular wave, and a pulse wave. The waveform can be set as follows.
 シンクロナスモーター10は、図2に示すように、シャフト10Bと、このシャフト10Bを回転させるローター11と、このローター11の周りを取り巻いて配されるハウジング13とを備える。ローター11は、シャフト10Bに対してスプラインはめあいで一体化されることで、このシャフト10Bの軸線を回転軸10Aとしてこの回転軸10Aのまわりに回転する回転運動が可能とされる。ハウジング13は、その外表面が円柱状に形成されて、内部にローター11を収納した状態でシャフト10Bを軸支する。 As shown in FIG. 2, the synchronous motor 10 includes a shaft 10B, a rotor 11 for rotating the shaft 10B, and a housing 13 disposed around the rotor 11. The rotor 11 is integrated with the shaft 10B by a spline fit, so that the rotor 11 can rotate around the rotation axis 10A with the axis of the shaft 10B as the rotation axis 10A. The outer surface of the housing 13 is formed in a columnar shape, and supports the shaft 10 </ b> B while the rotor 11 is housed inside.
 ハウジング13は、金属製の円筒の内側面から、この円筒の内部側(図2では回転軸10Aに向かう側)に向けて、異なる形状の突極13Aおよび突極13Bを5本ずつ突出させた構成を有する。 The housing 13 is formed by projecting five salient poles 13A and five salient poles 13B having different shapes from the inner surface of the metal cylinder toward the inner side of the cylinder (in FIG. 2, toward the rotation axis 10A). Having a configuration.
 5本の突極13Aは、それぞれがハウジング13の円筒における高さ方向(図2では紙面に垂直な方向)に延びる直方体形状の内周リブであり、ハウジング13の円筒の内側面において互いの間隔が等間隔となるように配される。これらの突極13Aは、ハウジング13の円筒の内部側(図2では回転軸10Aに向かう側)に向けて突出され、突出される各先端面が、回転軸10Aを中心軸とした正五角柱の各側面をなすような平面とされている。 Each of the five salient poles 13A is a rectangular parallelepiped inner peripheral rib extending in a height direction (a direction perpendicular to the paper surface in FIG. 2) of the cylinder of the housing 13, and is spaced from each other on the inner surface of the cylinder of the housing 13. Are arranged at equal intervals. These salient poles 13A protrude toward the inner side of the cylinder of the housing 13 (the side facing the rotation axis 10A in FIG. 2), and each protruding tip surface is a regular pentagonal prism having the rotation axis 10A as a central axis. It is a plane which makes each side of the.
 5本の突極13Bは、それぞれがハウジング13の円筒における高さ方向(図2では紙面に垂直な方向)に延びる板状の内周リブであり、5本の突極13A間に設定される各隙間に1本ずつ配される。これらの突極13Aは、ハウジング13の円筒の内部側(図2では回転軸10Aに向かう側)に向けて、突極13Aの突出量よりも長く突出され、かつ、突出される各先端面が、回転軸10Aを中心軸とした円筒面をなすようにえぐれた面とされている。 The five salient poles 13B are plate-shaped inner peripheral ribs each extending in the height direction (the direction perpendicular to the paper surface in FIG. 2) of the cylinder of the housing 13, and are set between the five salient poles 13A. One piece is arranged in each gap. These salient poles 13A protrude toward the inner side of the cylinder of the housing 13 (the side toward the rotating shaft 10A in FIG. 2) longer than the protruding amount of the salient poles 13A, and each protruding tip end surface is protruded. , And are hollowed out so as to form a cylindrical surface with the rotation axis 10A as a central axis.
 ローター11は、シャフト10Bに対してスプラインはめあいされる金属製の円筒の外側面に、この円筒の高さ方向(図2では紙面に垂直な方向)に延びる5本のあり溝11Aを有する。5本のあり溝11Aは、互いの間隔が等間隔となるように切られている。これらのあり溝11Aには、5つの磁石12A(具体的には例えばネオジム磁石)が1つずつ取り付けられている。これらの磁石12Aは、それぞれがあり溝11Aに対応したありさんの形状をなすことで、あり溝11Aの全長にわたってこのあり溝11Aから分離されないように嵌め合わされる。ここで、あり溝(dovetail groove)とは壁部分に傾斜がつけられることで開口部分の幅が底部分の幅よりも狭くされた構成の溝のことをいい、ありさん(sliding  dovetail)とはあり溝に対してこのあり溝が延びる方向から滑り込ませて嵌め合わすことが可能な板状の部位のことをいう。 The rotor 11 has five dovetail grooves 11A extending in the height direction of the cylinder (the direction perpendicular to the paper in FIG. 2) on the outer surface of the metal cylinder to which the spline is fitted to the shaft 10B. The five dovetail grooves 11A are cut so that the intervals between them are equal. Five magnets 12A (specifically, for example, neodymium magnets) are attached to these dovetail grooves 11A one by one. Each of the magnets 12A has a shape corresponding to the dovetail groove 11A, and is fitted over the entire length of the dovetail groove 11A so as not to be separated from the dovetail groove 11A. Here, the dovetail groove is a groove with a configuration in which the width of the opening is made narrower than the width of the bottom part by making the wall part beveled. It refers to a plate-like portion that can slide into the dovetail groove from the direction in which the dovetail groove extends and fit therewith.
 これにより、5つの磁石12Aは、ローター11において回転軸10Aの周りを取り巻くように配されたアッセンブリ(以下、「第1のアッセンブリ12」とも称する。)をなす。なお、5つの磁石12Aの各先端面は、ハウジング13およびこのハウジング13に設けられた各構成と接触されないように、回転軸10Aを中心軸とした円筒面をなすように丸められた面とされている。 Accordingly, the five magnets 12A form an assembly (hereinafter, also referred to as “first assembly 12”) arranged so as to surround the rotation axis 10A in the rotor 11. In addition, each end surface of the five magnets 12A is a surface that is rounded so as to form a cylindrical surface around the rotation shaft 10A so as not to come into contact with the housing 13 and the components provided in the housing 13. ing.
 ここで、第1のアッセンブリ12の各磁石12Aは、それぞれ、回転軸10Aの周方向で見た一方側(図2では反時計回り側)の面がN極12Bとされ、他方側(図2では時計回り側)の面がS極12Cとされる。これにより、第1のアッセンブリ12は、回転軸10Aの周方向に沿う方向の磁力線12Eを有する磁場12Dを発生させる界磁としての機能を発揮する。言いかえると、第1のアッセンブリ12は、本開示における「第1の界磁」としての機能を発揮する。また、第1のアッセンブリ12における各磁石12Aは、回転軸10Aの周方向で見た磁極の向きが統一された状態に配されることになる。 Here, each magnet 12A of the first assembly 12 has an N pole 12B on one side (counterclockwise in FIG. 2) as viewed in the circumferential direction of the rotating shaft 10A, and the other side (FIG. 2). The surface on the clockwise side is the S pole 12C. Thereby, the first assembly 12 exhibits a function as a field for generating a magnetic field 12D having the magnetic lines of force 12E in the direction along the circumferential direction of the rotating shaft 10A. In other words, the first assembly 12 exhibits a function as a “first field” in the present disclosure. Further, the magnets 12A in the first assembly 12 are arranged in a state where the directions of the magnetic poles viewed in the circumferential direction of the rotating shaft 10A are unified.
 また、5本の突極13Aの各先端面には、それぞれ、直方体の平板状に形成された5つの磁石14A(具体的には例えばネオジム磁石)が1つずつ取り付けられている。これらの磁石14Aは、その平板の板厚方向に磁化されており、S極14CとN極14Bとを有する。平板の一方側の板面にあらわれるS極14Cが突極13Aの先端面をくまなく覆い、平板の一方側の板面にあらわれるN極14Bがローター11側を向くように取り付けられる。 Five magnets 14A (specifically, for example, neodymium magnets) each formed in a rectangular parallelepiped plate shape are attached to each end face of the five salient poles 13A. These magnets 14A are magnetized in the thickness direction of the flat plate, and have an S pole 14C and an N pole 14B. The S pole 14C, which appears on one plate surface of the flat plate, covers the entire end surface of the salient pole 13A, and the N pole 14B, which appears on one plate surface of the flat plate, faces the rotor 11 side.
 また、5本の突極13Bの各先端部には、それぞれ、この先端部に巻き付けられるソレノイドコイルからなる電磁石15Aが取り付けられている。これらの電磁石15Aは、電源装置20(図1参照)が出力する電流を受けて、この電流の波形に対応した変動磁場または定常磁場を発生させるようになっている。ここで、各電磁石15Aが発生させる磁場は、第1のアッセンブリ12の磁石12Aを磁力により引き寄せあるいは退けることが可能な強さとすることができるものである。 Each of the five salient poles 13B is provided with an electromagnet 15A formed of a solenoid coil wound around the distal end, respectively. These electromagnets 15A receive a current output from the power supply device 20 (see FIG. 1) and generate a fluctuating magnetic field or a steady magnetic field corresponding to the waveform of the current. Here, the magnetic field generated by each electromagnet 15A can have a strength capable of attracting or retreating the magnet 12A of the first assembly 12 by magnetic force.
 上記構成により、ハウジング13は、ローター11および回転軸10Aの周りを取り巻いて、ステーターとしての機能を発揮する。また、5つの磁石14Aは、ステーターとして機能されるハウジング13においてローター11の周りを取り巻くように配されたアッセンブリ(以下、「第2のアッセンブリ14」とも称する。)をなす。また、第2のアッセンブリ14は、回転軸10Aに向かう動径方向に沿う方向の磁力線14Eを有する磁場14Dを発生させる界磁としての機能を発揮する。言いかえると、第2のアッセンブリ14は、本開示における「第2の界磁」としての機能を発揮する。 に よ り With the above configuration, the housing 13 surrounds the rotor 11 and the rotation shaft 10A, and functions as a stator. The five magnets 14A form an assembly (hereinafter, also referred to as “second assembly 14”) arranged so as to surround the rotor 11 in the housing 13 functioning as a stator. Further, the second assembly 14 exerts a function as a field for generating a magnetic field 14D having magnetic lines of force 14E extending in a radial direction toward the rotation axis 10A. In other words, the second assembly 14 functions as a “second field” in the present disclosure.
 また、5本の突極13Bに取り付けられる5つの電磁石15Aは、ステーターとして機能されるハウジング13において第2のアッセンブリ14の磁石14Aの間に1つずつ配されてアッセンブリ(以下、「第3のアッセンブリ15」とも称する。)をなす。また、第3のアッセンブリ15は、電源装置20(図1参照)が出力する電流を受けて、ローター11を回転させる角運動量を第1のアッセンブリ12に与える変動磁場を発生させる励磁体としての機能を発揮する。 Further, the five electromagnets 15A attached to the five salient poles 13B are arranged one by one between the magnets 14A of the second assembly 14 in the housing 13 functioning as a stator, and the assembly (hereinafter referred to as “third electromagnet”). Assembly 15 "). Further, the third assembly 15 receives a current output from the power supply device 20 (see FIG. 1) and functions as an exciter that generates a fluctuating magnetic field that gives the first assembly 12 an angular momentum for rotating the rotor 11. Demonstrate.
 上述した各構成によれば、第1のアッセンブリ12が発生させる磁場12D、および、第2のアッセンブリ14が発生させる磁場14Dのうち、一方が回転軸10Aの周方向に沿う方向の磁力線12Eを有し、他方が回転軸10Aに向かう動径方向に沿う方向の磁力線14Eを有する。このため、ローター11が静止している場合において、第1のアッセンブリ12の各磁石12Aは、磁気的に見て不安定なつり合い状態となる。このとき、電磁石15Aが発生させる磁場が変動されると、この変動は上記つり合い状態を崩す摂動となり、ローター11を回転させる角運動量を第1のアッセンブリ12の磁石12Aに与えるトリガーとなる。これにより、シンクロナスモーター10において停止しているローター11を動きやすくして、シンクロナスモーター10の始動時に必要な電気エネルギーの低減をはかることが可能となる。 According to each configuration described above, one of the magnetic field 12D generated by the first assembly 12 and the magnetic field 14D generated by the second assembly 14 has the magnetic force line 12E in the direction along the circumferential direction of the rotation shaft 10A. The other has a magnetic line of force 14E extending in the radial direction toward the rotation axis 10A. Therefore, when the rotor 11 is stationary, the magnets 12A of the first assembly 12 are in a magnetically unstable balance state. At this time, if the magnetic field generated by the electromagnet 15A fluctuates, this fluctuation becomes a perturbation that breaks the above-described balanced state, and serves as a trigger that gives the angular momentum for rotating the rotor 11 to the magnet 12A of the first assembly 12. Thus, the rotor 11 stopped in the synchronous motor 10 can be easily moved, and the electric energy required for starting the synchronous motor 10 can be reduced.
 また、上述した各構成によれば、ローター11が回転している場合において、第1のアッセンブリ12および第2のアッセンブリ14の各磁場12D、14Dがハウジング13とローター11とを互いに遠ざける向きの成分を有する力を発生させる。これにより、シンクロナスモーター10において回転しているローター11のひっかかりを減らして、シンクロナスモーター10の駆動に必要な電気エネルギーの低減をはかることが可能となる。 Further, according to each of the above-described configurations, when the rotor 11 is rotating, the components of the magnetic fields 12D and 14D of the first assembly 12 and the second assembly 14 move the housing 13 and the rotor 11 away from each other. To generate a force having Accordingly, it is possible to reduce the amount of electric energy required for driving the synchronous motor 10 by reducing the catch of the rotating rotor 11 in the synchronous motor 10.
 また、第3のアッセンブリ15の電磁石15Aが設けられてステーターとして機能されるハウジング13が、回転運動されるローター11の周りを取り巻いて配されるため、ローターがステーターの周りを取り巻いて配される態様のシンクロナスモーター(図示せず)と比して、電磁石15Aに電気エネルギーを供給する電気配線をシンプルにすることができる。ただし、本開示は、ローターがステーターの周りを取り巻いて配される態様のシンクロナスモーターを包含する。 Further, since the housing 13 provided with the electromagnet 15A of the third assembly 15 and functioning as a stator is disposed around the rotor 11 to be rotated, the rotor is disposed around the stator. The electric wiring for supplying electric energy to the electromagnet 15A can be simplified as compared with the synchronous motor (not shown) of the embodiment. However, the present disclosure includes a synchronous motor in which the rotor is arranged around the stator.
 また、第1のアッセンブリ12における磁石12Aの数(5)が、第2のアッセンブリ14における磁石14Aの数(5)に等しく、これらの磁石12Aと磁石14Aとを1対1で対応付けることができるため、上記摂動を与えるために各電磁石15Aにて発生される変動磁場のパターンを単純にすることができる。 Further, the number (5) of the magnets 12A in the first assembly 12 is equal to the number (5) of the magnets 14A in the second assembly 14, and these magnets 12A and the magnets 14A can be associated one-to-one. Therefore, the pattern of the fluctuating magnetic field generated by each electromagnet 15A for giving the perturbation can be simplified.
 また、第2のアッセンブリ14における各磁石14Aは、平面状に構成された磁極をローター11側に向けた状態に配され、かつ、これらの磁石14Aの間には電磁石15Aが配される。このため、電磁石15Aと第1のアッセンブリ12の磁石12Aとの距離が比較的近くなるときには、この磁石12Aと第2のアッセンブリ14の磁石14Aの磁極からの距離が比較的遠くなる。これにより、第1のアッセンブリ12の磁石12Aが電磁石15Aの磁場に引き寄せられるときに、この引き寄せに対して第2のアッセンブリ14の磁石14Aの磁場14Dがおよぼす影響を少なくすることができる。 磁石 Further, each magnet 14A in the second assembly 14 is arranged with its planar magnetic pole facing the rotor 11, and an electromagnet 15A is arranged between these magnets 14A. Therefore, when the distance between the electromagnet 15A and the magnet 12A of the first assembly 12 is relatively short, the distance between the magnet 12A and the magnet 14A of the second assembly 14 from the magnetic pole is relatively long. Thus, when the magnet 12A of the first assembly 12 is attracted to the magnetic field of the electromagnet 15A, the influence of the magnetic field 14D of the magnet 14A of the second assembly 14 on the attraction can be reduced.
 また、第2のアッセンブリ14における各磁石14Aにおいて、ローター11側の磁極がN極14Bに統一されるため、各磁石14Aから出る磁力線14Eが磁石14Aの間に集中して、第1のアッセンブリ12の各磁石12Aを磁気的に見て不安定なつり合い状態にする作用が弱まることを回避することができる。なお、第2のアッセンブリにおける各磁石において、ローター側の磁極がS極に統一される態様のシンクロナスモーター(図示せず)も同様の効能を有し、本開示はこのような態様のシンクロナスモーターを包含する。 Further, in each magnet 14A of the second assembly 14, the magnetic poles on the rotor 11 side are unified to the N pole 14B, so that the lines of magnetic force 14E coming from each magnet 14A are concentrated between the magnets 14A, and the first assembly 12 It can be avoided that the effect of bringing each magnet 12A into an unstable balance state when viewed magnetically is weakened. In each of the magnets in the second assembly, a synchronous motor (not shown) in which the rotor-side magnetic pole is unified to the S pole has the same effect, and the present disclosure relates to such a synchronous motor. Includes motor.
 また、シンクロナスモーター10において、第1のアッセンブリ12における各磁石12Aは、回転軸10Aの周方向で見た磁極の向きが統一された状態に配される。このため、ローター11を取り巻く第1のアッセンブリ12の磁場12Dから磁力線のくびれをなくして、このくびれと電磁石15Aの磁場とが干渉してローター11の回転運動が弱められるおそれを減らすことができる。 In the synchronous motor 10, the magnets 12A of the first assembly 12 are arranged such that the magnetic poles viewed in the circumferential direction of the rotating shaft 10A are unified. Therefore, the magnetic field 12D of the first assembly 12 surrounding the rotor 11 eliminates the constriction of the lines of magnetic force, and the possibility that the constriction and the magnetic field of the electromagnet 15A interfere with each other to reduce the rotational motion of the rotor 11 can be reduced.
〈第2の実施態様〉
 続いて、第2の実施態様であるシンクロナスモーター30の構成について、図3および図4を用いて説明する。このシンクロナスモーター30は、第1の実施態様であるシンクロナスモーター10を変形した実施態様である。したがって、上記シンクロナスモーター10の説明にて用いた各構成と共通する構成については、シンクロナスモーター10の説明にて用いた各構成に付した符号に「20」を加算した符号を付して対応させ、その詳細な説明を省略する。
<Second embodiment>
Next, a configuration of a synchronous motor 30 according to a second embodiment will be described with reference to FIGS. The synchronous motor 30 is an embodiment in which the synchronous motor 10 according to the first embodiment is modified. Therefore, the components common to the components used in the description of the synchronous motor 10 are denoted by the reference numerals obtained by adding “20” to the components used in the description of the synchronous motor 10. Corresponding, detailed description is omitted.
 シンクロナスモーター30は、図3に示すように、回転させるシャフト30Bの太さがシャフト10B(図1参照)よりも太いという点を除いて、第1の実施態様であるシンクロナスモーター10(図1参照)と同様の外観を呈する。 As shown in FIG. 3, the synchronous motor 30 is a synchronous motor 10 according to the first embodiment (see FIG. 3) except that the rotating shaft 30B is thicker than the shaft 10B (see FIG. 1). 1).
 また、シンクロナスモーター30は、図4に示すように、シャフト10Bに対してスプラインはめあいされる構成のローター11(図2参照)の代わりに、4本溝のジェネバ歯車をシャフト30Bに冶金的接合法で一体化させた構成のローター31を備える。このローター31の4本の溝31Aには、それぞれ平板状に形成された4枚の磁石32Aが1枚ずつ取り付けられている。これらの磁石32Aは、回転軸30Aの周方向で見た一方側(図4では反時計回り側)の面がN極32Bとされ、他方側(図4では時計回り側)の面がS極32Cとされる。 As shown in FIG. 4, the synchronous motor 30 has a four-groove Geneva gear connected to the shaft 30B in a metallurgical manner, instead of the rotor 11 (see FIG. 2) configured to be spline-fitted to the shaft 10B. It has a rotor 31 that is legally integrated. Each of the four grooves 31A of the rotor 31 is provided with one of four magnets 32A formed in a plate shape. One side (counterclockwise in FIG. 4) of the magnet 32A viewed in the circumferential direction of the rotating shaft 30A is an N pole 32B, and the other side (clockwise in FIG. 4) is an S pole. 32C.
 これにより、第1のアッセンブリ32は、回転軸30Aの周方向に沿う方向の磁力線32Eを有する磁場32Dを発生させる界磁としての機能を発揮する。言いかえると、第1のアッセンブリ32は、本開示における「第1の界磁」としての機能を発揮する。また、第1のアッセンブリ32における各磁石32Aは、回転軸30Aの周方向で見た磁極の向きが統一された状態に配されることになる。 Accordingly, the first assembly 32 exerts a function as a field for generating a magnetic field 32D having the magnetic lines of force 32E along the circumferential direction of the rotation shaft 30A. In other words, the first assembly 32 exhibits a function as a “first field” in the present disclosure. Further, the magnets 32A in the first assembly 32 are arranged in a state where the magnetic poles viewed in the circumferential direction of the rotation shaft 30A are unified.
 上述した各構成によれば、第1のアッセンブリ32における磁石32Aの数(4)が、第2のアッセンブリ34における磁石34Aの数(5)よりも少なく、かつ、この数(5)に対して互いに素となる。このため、第1のアッセンブリ32の各磁石32Aが安定したつり合い状態となる可能性を低減させてローター31を動きやすくし、シンクロナスモーター30の始動時に必要な電気エネルギーの低減をはかることが可能となる。 According to each configuration described above, the number (4) of the magnets 32A in the first assembly 32 is smaller than the number (5) of the magnets 34A in the second assembly 34, and the number (5) is smaller than the number (5). Be disjointed. For this reason, it is possible to reduce the possibility that each magnet 32A of the first assembly 32 will be in a stable balanced state, make the rotor 31 easy to move, and reduce the electric energy required at the time of starting the synchronous motor 30. Becomes
 ここで、第1のアッセンブリ32における磁石32Aの数(4)は、第2のアッセンブリ34における磁石34Aの数(5)に対して1だけ少ないという関係が成立する数でもある。このため、上記したシンクロナスモーター30の効果を確保しながら、ローター31を回転させる角運動量が与えられる第1のアッセンブリ32の磁石32Aの数を可能な限り多くして、シンクロナスモーター30の出力を大きな値に保つことができる。 Here, the number (4) of the magnets 32A in the first assembly 32 is also a number that satisfies the relation that the number (5) of the magnets 34A in the second assembly 34 is smaller by one. For this reason, while securing the effect of the synchronous motor 30, the number of magnets 32A of the first assembly 32 to which the angular momentum for rotating the rotor 31 is given is increased as much as possible, and the output of the synchronous motor 30 is increased. Can be kept at a large value.
 続いて、第3の実施態様であるモーターアッセンブリ100の構成について、図5ないし図7を用いて説明する。このモーターアッセンブリ100は、第1の実施態様であるシンクロナスモーター10の変形例である第1のモーター110および第2のモーター120を備える。したがって、第1のモーター110の構成のうち、上記シンクロナスモーター10の説明にて用いた各構成と共通する構成については、シンクロナスモーター10の説明にて用いた各構成に付した符号に「100」を加算した符号を付して対応させ、その詳細な説明を省略する。また、第2のモーター120の構成のうち、上記シンクロナスモーター10の説明にて用いた各構成と共通する構成については、シンクロナスモーター10の説明にて用いた各構成に付した符号に「110」を加算した符号を付して対応させ、その詳細な説明を省略する。 Next, the configuration of a motor assembly 100 according to a third embodiment will be described with reference to FIGS. The motor assembly 100 includes a first motor 110 and a second motor 120 which are modifications of the synchronous motor 10 according to the first embodiment. Therefore, among the configurations of the first motor 110, the configurations common to the configurations used in the description of the synchronous motor 10 are denoted by the reference numerals assigned to the configurations used in the description of the synchronous motor 10. The reference numerals added with “100” are assigned to correspond, and the detailed description thereof is omitted. In addition, among the configurations of the second motor 120, the configurations common to the configurations used in the description of the synchronous motor 10 are denoted by the reference numerals assigned to the configurations used in the description of the synchronous motor 10. The reference numerals added with “110” are assigned to correspond, and the detailed description thereof is omitted.
 第1のモーター110および第2のモーター120は、図5に示すように、回転軸100Aをなす対象物であるシャフト101を共有する。このシャフト101は、その全長にわたって直線状に延びる1本のスプライン101Aが切られたスプラインシャフトである。 As shown in FIG. 5, the first motor 110 and the second motor 120 share a shaft 101 which is an object forming the rotation axis 100A. The shaft 101 is a spline shaft in which one spline 101A extending linearly over the entire length is cut.
 シャフト101には、図6および図7に示すように、第1のモーター110のローター111と、第2のモーター120のローター121とがそれぞれスプラインはめあいで一体化される。これにより、第1のモーター110における第1のアッセンブリ112の各磁石112A、および、第2のモーター120における第1のアッセンブリ122の各磁石122Aは、シャフト101の周方向で見た位置ずれの量である第1の量が変化しないように固定される。 6 and 7, the rotor 111 of the first motor 110 and the rotor 121 of the second motor 120 are integrated with the shaft 101 by spline fitting. Thus, each magnet 112A of the first assembly 112 of the first motor 110 and each magnet 122A of the first assembly 122 of the second motor 120 cause the amount of displacement of the shaft 101 as viewed in the circumferential direction. Is fixed so as not to change.
 また、第1のモーター110および第2のモーター120は、図5に示すように、電気エネルギーの供給源として機能する電源装置102を共有する。この電源装置102は、第1のモーター110および第2のモーター120のそれぞれに対して、交流電流および直流電流のいずれをも出力することが可能なものであり、かつ、出力する電流の波形を、例えば正弦波、三角波、矩形波、パルス波を含む任意の波形に設定することができるものである。 The first motor 110 and the second motor 120 share the power supply device 102 that functions as a source of electric energy, as shown in FIG. The power supply device 102 can output both an AC current and a DC current to each of the first motor 110 and the second motor 120, and outputs a waveform of the output current. For example, any waveform including a sine wave, a triangular wave, a rectangular wave, and a pulse wave can be set.
 ここで、電源装置102の上面には、シャフト101の軸線が延びる方向(図5では左右方向)と並行に延びるありさん102Aが設けられる。また、第1のモーター110のハウジング113および第2のモーター120のハウジング123は、図6および図7に示すように、これらのハウジング113、123の円筒の外側面に、この円筒における高さ方向(図6および図7では紙面に垂直な方向)に延びるあり溝113C、123Cを1本ずつ備える。 Here, on the upper surface of the power supply device 102, there is provided a recess 102A extending in parallel with the direction in which the axis of the shaft 101 extends (the left-right direction in FIG. 5). As shown in FIGS. 6 and 7, the housing 113 of the first motor 110 and the housing 123 of the second motor 120 are attached to the outer surfaces of the cylinders of the housings 113 and 123 in the height direction of the cylinder. (In FIGS. 6 and 7, the dovetail grooves 113C and 123C are provided one by one.
 これらのあり溝113C、123Cは、電源装置102のありさん102Aに対応する形状およびサイズに形成されて、第1のモーター110のハウジング113および第2のモーター120のハウジング123を、ありさん102Aが延びる方向(図5では左右方向)にスライド可能に係合させることを実現させる。これにより、第1のモーター110における第2のアッセンブリ114の各磁石114A、および、第2のモーター120における第2のアッセンブリ124の各磁石124Aは、シャフト101の周方向で見た位置ずれの量である第2の量が変化しないように固定される。この第2の量(図6および図7では36°)は、上記第1の量(図6および図7では0°)とは異なる量となるように設定される。 These dovetail grooves 113C and 123C are formed in a shape and a size corresponding to the shape 102A of the power supply device 102, and the housing 113 of the first motor 110 and the housing 123 of the second motor 120 are formed by the shape 102A. The slidable engagement in the extending direction (the left-right direction in FIG. 5) is realized. As a result, each magnet 114A of the second assembly 114 of the first motor 110 and each magnet 124A of the second assembly 124 of the second motor 120 cause the amount of displacement of the shaft 101 as viewed in the circumferential direction. Is fixed so as not to change. The second amount (36 ° in FIGS. 6 and 7) is set to be different from the first amount (0 ° in FIGS. 6 and 7).
 上述した各構成によれば、第1のモーター110における第2のアッセンブリ114から見た第1のアッセンブリ112の回転位相と、第2のモーター120における第2のアッセンブリ124から見た第1のアッセンブリ122の回転位相との間に位相のずれを設定することができる。この位相のずれは、第1のモーター110における第1のアッセンブリ112の各磁石112Aおよび第2のモーター120における第1のアッセンブリ122の各磁石122Aのうち、一方が安定したつり合い状態となる場合に他方がつり合い状態とならないようにできるものである。したがって、第1のモーター110における第1のアッセンブリ112および第2のモーター120における第1のアッセンブリ122の両方が安定したつり合い状態となることを回避して、各ローター111、121とシャフト101とを回転させやすくすることができる。 According to each configuration described above, the rotation phase of the first assembly 112 as viewed from the second assembly 114 in the first motor 110 and the first assembly as viewed from the second assembly 124 in the second motor 120 A phase shift can be set between the rotation phase and the rotation phase of the motor 122. This phase shift occurs when one of the magnets 112A of the first assembly 112 of the first motor 110 and the magnets 122A of the first assembly 122 of the second motor 120 is in a stable balance state. It is possible to prevent the other from being in a balanced state. Therefore, it is possible to avoid a situation where both the first assembly 112 of the first motor 110 and the first assembly 122 of the second motor 120 are in a stable equilibrium state, and connect the rotors 111 and 121 with the shaft 101. It can be easily rotated.
 また、第1のモーター110のローター111と第2のモーター120のローター121とは、シャフト101にスプラインはめあいされることでこのシャフト101に沿ってスライド可能となる。また、第1のモーター110のハウジング113と第2のモーター120のハウジング123とは、シャフト101と平行なありさん102Aに沿ってスライド可能となる。これにより、モーターアッセンブリ100における第1のモーター110および第2のモーター120の位置を、これらの第1のモーター110および第2のモーター120をシャフト101およびありさん102Aに沿う方向にスライドさせて変更する(図5参照)ことが可能となる。 The rotor 111 of the first motor 110 and the rotor 121 of the second motor 120 are slidable along the shaft 101 by fitting the spline to the shaft 101. Further, the housing 113 of the first motor 110 and the housing 123 of the second motor 120 are slidable along a recess 102A parallel to the shaft 101. As a result, the positions of the first motor 110 and the second motor 120 in the motor assembly 100 are changed by sliding the first motor 110 and the second motor 120 in the direction along the shaft 101 and the groove 102A. (See FIG. 5).
 以上、上述した第1ないし第3の実施態様によって説明した。しかしながら、当業者であれば、本開示の目的を逸脱することなく種々の代用、手直し、変更が可能であることは明らかである。すなわち、本開示を実施するための形態は、本明細書に添付した請求の範囲の精神および目的を逸脱しない全ての代用、手直し、変更を含みうるものである。例えば、以下のような各種の形態を実施することができる。 The description has been made above with reference to the first to third embodiments. However, it will be apparent to those skilled in the art that various substitutions, modifications, and changes can be made without departing from the purpose of the present disclosure. That is, the modes for carrying out the present disclosure can include all substitutions, modifications, and changes that do not depart from the spirit and purpose of the claims appended hereto. For example, the following various modes can be implemented.
(1)ローターがステーターの周りを取り囲んでハウジングの少なくとも一部を構成し、かつ、ローターがステーターの中心軸を回転軸として回転する形態のシンクロナスモーター。この形態のシンクロナスモーターは、例えば小さなホビー商品を回転させながら展示する回転展示台に適用することができる。 (1) A synchronous motor in which a rotor surrounds a stator and forms at least a part of a housing, and the rotor rotates around a center axis of the stator as a rotation axis. The synchronous motor of this embodiment can be applied to, for example, a rotating display stand that displays small hobby products while rotating them.
(2)回転軸に向かう動径方向に沿う方向の磁力線を有する磁場を発生させる第2のアッセンブリの各磁石をローターに設けて第1の界磁とし、回転軸の周方向に沿う方向の磁力線を有する磁場を発生させる第1のアッセンブリの各磁石をステーターに設けて第2の界磁とした形態のシンクロナスモーター。 (2) Each magnet of the second assembly for generating a magnetic field having a magnetic field line in the radial direction toward the rotation axis is provided in the rotor as a first field, and the magnetic field lines in the direction along the circumferential direction of the rotation axis. A synchronous motor in which each magnet of the first assembly for generating a magnetic field having a second field is provided on a stator.
(3)金属製の円筒の内側面から複数の突極を突出させた構成のステーターの代わりに、磁場を発生させる各アッセンブリを埋め込まれた状態に備えたステーターを有する形態のシンクロナスモーター。 (3) A synchronous motor having a stator in which each assembly for generating a magnetic field is embedded in place of a stator having a configuration in which a plurality of salient poles project from the inner surface of a metal cylinder.
(4)第3のアッセンブリをなす各電磁石を、ローター、あるいは、ローターおよびステーターのいずれでもない取り付け部品に設けた形態のシンクロナスモーター。 (4) A synchronous motor in which each of the electromagnets forming the third assembly is provided on a rotor or a mounting part other than the rotor or the stator.
(5)第1のアッセンブリをなす各磁石の数、第2のアッセンブリをなす各磁石の数、および、第3のアッセンブリをなす各電磁石の数を、それぞれ、任意に設定された数に変更した形態のシンクロナスモーター。 (5) The number of magnets forming the first assembly, the number of magnets forming the second assembly, and the number of electromagnets forming the third assembly are respectively changed to arbitrarily set numbers. Synchronous motor in form.
(6)上述した第3の実施態様であるモーターアッセンブリ100において、第1のモーター110および第2のモーター120とは別のモーターを追加した形態のモーターアッセンブリ。この形態においては、追加されるモーターは、第1のモーターおよび第2のモーターとシャフトを共有するものであっても、このシャフトとは別のシャフトを回転させるものであってもよい。 (6) A motor assembly in which a motor different from the first motor 110 and the second motor 120 is added to the motor assembly 100 according to the third embodiment described above. In this embodiment, the added motor may share a shaft with the first motor and the second motor, or may rotate another shaft.

Claims (9)

  1.  1本の回転軸のまわりに回転する回転運動が可能なローターと、
     前記回転軸の周りを取り巻いて配されるステーターと、
     前記ローターに設けられた状態で磁場を生じさせる第1の界磁と、
     前記ステーターにおいて前記回転軸の周りを取り巻いた状態に設けられて、前記第1の界磁とは別個に磁場を生じさせる第2の界磁と、
     前記ローターを回転させる角運動量を前記第1の界磁に与える変動磁場を発生させる励磁体と、
    を備え、
     前記第1の界磁が発生させる磁場、および、前記第2の界磁が発生させる磁場のうち、一方が前記回転軸の周方向に沿う方向の磁力線を有し、他方が前記回転軸に向かう動径方向に沿う方向の磁力線を有している、
    シンクロナスモーター。
    A rotor capable of rotating around one rotation axis,
    A stator arranged around the rotation axis;
    A first field for generating a magnetic field in a state provided in the rotor;
    A second field which is provided in a state surrounding the rotation axis in the stator and generates a magnetic field separately from the first field;
    An exciter that generates a fluctuating magnetic field that gives an angular momentum for rotating the rotor to the first field;
    With
    One of the magnetic field generated by the first field and the magnetic field generated by the second field has a magnetic field line in a direction along a circumferential direction of the rotation axis, and the other is directed to the rotation axis. Having magnetic lines of force in the direction along the radial direction,
    Synchronous motor.
  2.  請求項1に記載されたシンクロナスモーターであって、
     前記ステーターは、前記ローターの周りを取り巻いて配され、
     前記第1の界磁は、前記ローターにおいて前記回転軸の周りを取り巻くように配された複数の磁石を有する第1のアッセンブリであり、
     前記第2の界磁は、前記ステーターにおいて前記ローターの周りを取り巻くように配された複数の磁石を有する第2のアッセンブリであり、
     前記励磁体は、前記ステーターにおいて前記第2のアッセンブリの磁石の間に配される複数の電磁石を有する第3のアッセンブリであり、
     前記第1のアッセンブリは、前記回転軸の周方向に沿う方向の磁力線を有する磁場を発生させ、
     前記第2のアッセンブリは、前記動径方向に沿う方向の磁力線を有する磁場を発生させる、
    シンクロナスモーター。
    The synchronous motor according to claim 1,
    The stator is arranged around the rotor,
    The first field is a first assembly having a plurality of magnets arranged around the rotation axis in the rotor;
    The second field is a second assembly having a plurality of magnets arranged around the rotor in the stator;
    The exciter is a third assembly having a plurality of electromagnets disposed between the magnets of the second assembly in the stator,
    The first assembly generates a magnetic field having magnetic lines of force in a direction along a circumferential direction of the rotation axis,
    The second assembly generates a magnetic field having magnetic lines of force in a direction along the radial direction,
    Synchronous motor.
  3.  請求項2に記載されたシンクロナスモーターであって、
     前記第1のアッセンブリにおける磁石の数は、前記第2のアッセンブリにおける磁石の数に等しい、
    シンクロナスモーター。
    A synchronous motor according to claim 2,
    The number of magnets in the first assembly is equal to the number of magnets in the second assembly;
    Synchronous motor.
  4.  請求項2に記載されたシンクロナスモーターであって、
     前記第1のアッセンブリにおける磁石の数は、前記第2のアッセンブリにおける磁石の数よりも少なく、かつ、前記第2のアッセンブリにおける磁石の数に対して互いに素となっている、
    シンクロナスモーター。
    A synchronous motor according to claim 2,
    The number of magnets in the first assembly is less than the number of magnets in the second assembly and is relatively prime to the number of magnets in the second assembly.
    Synchronous motor.
  5.  請求項4に記載されたシンクロナスモーターであって、
     前記第1のアッセンブリにおける磁石の数は、前記第2のアッセンブリにおける磁石の数よりも1だけ少ない、
    シンクロナスモーター。
    A synchronous motor according to claim 4,
    The number of magnets in the first assembly is one less than the number of magnets in the second assembly;
    Synchronous motor.
  6.  請求項2ないし請求項5のうちのいずれか1項に記載されたシンクロナスモーターであって、
     前記第2のアッセンブリにおける各磁石は、S極またはN極のうちの少なくとも一方の磁極が平面状に構成され、かつ、この平面状に構成された磁極が前記ローター側を向くように配されている、
    シンクロナスモーター。
    A synchronous motor according to any one of claims 2 to 5, wherein
    Each magnet in the second assembly is configured such that at least one magnetic pole of the S pole or the N pole is formed in a planar shape, and the magnetic pole formed in the planar shape is arranged so as to face the rotor side. Yes,
    Synchronous motor.
  7.  請求項6に記載されたシンクロナスモーターであって、
     前記第2のアッセンブリにおける各磁石において、前記ローター側の磁極が、S極またはN極のうちのいずれか一方に統一されている、
    シンクロナスモーター。
    A synchronous motor according to claim 6,
    In each magnet in the second assembly, the magnetic pole on the rotor side is unified to one of an S pole and an N pole,
    Synchronous motor.
  8.  請求項2ないし請求項7のうちのいずれか1項に記載されたシンクロナスモーターであって、
     前記第1のアッセンブリにおける各磁石は、前記回転軸の周方向で見た磁極の向きが統一された状態に配されている、
    シンクロナスモーター。
    A synchronous motor according to any one of claims 2 to 7, wherein:
    Each magnet in the first assembly is arranged in a state where the directions of magnetic poles viewed in the circumferential direction of the rotation axis are unified.
    Synchronous motor.
  9.  請求項2ないし請求項8のうちのいずれか1項に記載されたシンクロナスモーターを複数備えたモーターアッセンブリであって、
     複数の前記シンクロナスモーターは、1本のシャフトを前記回転軸として共有する第1のモーターおよび第2のモーターを含み、
     前記第1のモーターにおける前記第1のアッセンブリの各磁石、および、前記第2のモーターにおける前記第1のアッセンブリの各磁石は、前記シャフトの周方向で見た位置ずれの量である第1の量が変化しないように固定され、
     前記第1のモーターにおける前記第2のアッセンブリの各磁石、および、前記第2のモーターにおける前記第2のアッセンブリの各磁石は、前記シャフトの周方向で見た位置ずれの量である第2の量が変化しないように固定され、
     前記第2の量が、前記第1の量とは異なる量となるように設定されている、
    モーターアッセンブリ。
    A motor assembly comprising a plurality of synchronous motors according to any one of claims 2 to 8, wherein:
    The plurality of synchronous motors include a first motor and a second motor sharing one shaft as the rotation axis,
    Each of the magnets of the first assembly in the first motor and each of the magnets of the first assembly in the second motor have a first position, which is an amount of displacement in the circumferential direction of the shaft. Fixed so that the amount does not change,
    The magnets of the second assembly in the first motor and the magnets of the second assembly in the second motor each have a second position, which is the amount of positional deviation seen in the circumferential direction of the shaft. Fixed so that the amount does not change,
    The second amount is set to be different from the first amount,
    Motor assembly.
PCT/JP2019/030264 2018-08-01 2019-08-01 Synchronous motor and motor assembly WO2020027275A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018144890A JP6708858B2 (en) 2018-08-01 2018-08-01 Synchronous motors and motor assemblies
JP2018-144890 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027275A1 true WO2020027275A1 (en) 2020-02-06

Family

ID=69231224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030264 WO2020027275A1 (en) 2018-08-01 2019-08-01 Synchronous motor and motor assembly

Country Status (2)

Country Link
JP (1) JP6708858B2 (en)
WO (1) WO2020027275A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215033A1 (en) * 2020-04-24 2021-10-28 トクデンコスモ株式会社 Synchronous motor and motor assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136867A (en) * 1979-04-11 1980-10-25 Kure Tekkosho:Kk Magnetic power machine
JP2010029020A (en) * 2008-07-23 2010-02-04 Seiko Epson Corp Brushless electric machine and device using it
US20100314961A1 (en) * 2007-10-29 2010-12-16 An Jong-Suk Magnetic flux switching type electric generator using shielding member as permanent magnet
JP2013055789A (en) * 2011-09-02 2013-03-21 Yoshihide Ueda Motor generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55136867A (en) * 1979-04-11 1980-10-25 Kure Tekkosho:Kk Magnetic power machine
US20100314961A1 (en) * 2007-10-29 2010-12-16 An Jong-Suk Magnetic flux switching type electric generator using shielding member as permanent magnet
JP2010029020A (en) * 2008-07-23 2010-02-04 Seiko Epson Corp Brushless electric machine and device using it
JP2013055789A (en) * 2011-09-02 2013-03-21 Yoshihide Ueda Motor generator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215033A1 (en) * 2020-04-24 2021-10-28 トクデンコスモ株式会社 Synchronous motor and motor assembly

Also Published As

Publication number Publication date
JP6708858B2 (en) 2020-06-10
JP2020022280A (en) 2020-02-06

Similar Documents

Publication Publication Date Title
US5760503A (en) Stepping motor having rotor sections with permanent magnets disposed thereon at a constant pitch
US20020135242A1 (en) Electric motor utilizing convergence of magnetic flux
JP2010158130A (en) Permanent magnet type rotating electric machine and elevator device using the same
US9705391B2 (en) Stepping motor, lens apparatus, and image pickup apparatus
KR20080106493A (en) Stepping motor
JP4964496B2 (en) Vibration device
WO2017195263A1 (en) Permanent magnet motor
WO2020027275A1 (en) Synchronous motor and motor assembly
JP2014090574A (en) Rotor having projection for positioning permanent magnet, and motor equipped with such a rotor
JPWO2003065549A1 (en) Axial gap motor
JP2010154689A (en) Motor with speed reducer
JP2013059178A (en) Magnetic gear
KR20010075499A (en) Magnetic force rotating device
JP2019149891A (en) Hybrid magnetic field type double gap synchronous machine
JP2015095998A (en) Rotary electric machine
KR20030046763A (en) Stepping motor
JP2017063594A (en) Brushless motor
WO2021215033A1 (en) Synchronous motor and motor assembly
JP2019037033A (en) Motor device
JP3186600U (en) Magnetic levitation fan
JPH10174414A (en) Pulse-drive type brushless motor
JP2009207229A (en) Motor
CN117060609A (en) Single-phase motor and electric fan
JP2010252486A (en) Electromagnetic actuator
JP2014093825A (en) Rotor and motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844921

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844921

Country of ref document: EP

Kind code of ref document: A1