JP2010158130A - Permanent magnet type rotating electric machine and elevator device using the same - Google Patents

Permanent magnet type rotating electric machine and elevator device using the same Download PDF

Info

Publication number
JP2010158130A
JP2010158130A JP2008335608A JP2008335608A JP2010158130A JP 2010158130 A JP2010158130 A JP 2010158130A JP 2008335608 A JP2008335608 A JP 2008335608A JP 2008335608 A JP2008335608 A JP 2008335608A JP 2010158130 A JP2010158130 A JP 2010158130A
Authority
JP
Japan
Prior art keywords
permanent magnet
stator
rotor
rotor core
type rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008335608A
Other languages
Japanese (ja)
Other versions
JP5210150B2 (en
Inventor
Hideki Kitamura
英樹 北村
Masaji Kitamura
正司 北村
Fumio Tajima
文男 田島
Hideki Nihei
秀樹 二瓶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008335608A priority Critical patent/JP5210150B2/en
Publication of JP2010158130A publication Critical patent/JP2010158130A/en
Application granted granted Critical
Publication of JP5210150B2 publication Critical patent/JP5210150B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a step skew at which the arrangement of permanent magnets is shifted in the circumferential direction while suppressing cost. <P>SOLUTION: This permanent magnet type rotating electric machine (1) includes: a stator core (4) in which a plurality of stator salient poles (42) are radially protruded; a stator (2) having a stator winding (5) accommodated into a slot (44) which is formed between the adjacent stator salient poles; a stator core (7); and a rotor having a plurality of the permanent magnets (6) which are arranged at equal intervals in the circumferential direction of the stator core. In the stator core, a plurality of grooves (31) which are longer than the permanent magnets in width are formed in the circumferential direction, the permanent magnet is formed into a flat shape at a rotor core side, and the groove is formed into a flat shape at a side face and a bottom face. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、回転子をスキューした永久磁石式回転電機、及びこれを用いたエレベータ装置に関する。   The present invention relates to a permanent magnet type rotating electrical machine having a skewed rotor and an elevator apparatus using the same.

永久磁石式回転電機は、コギングトルクによるトルク脈動が問題となる。特に、エレベータの巻上機に適用される永久磁石式回転電機は、定格トルク時から最大トルク時までの幅広い領域における低トルク脈動(p−pで1%以下)が要求されるため、問題は深刻である。加えて、矩形状の永久磁石は、磁束分布が正弦波に近似せず、高調波成分を有した矩形状の磁束分布になりやすい。トルク脈動に対する対策として、一般によく用いられるのが、かまぼこ状の永久磁石を用いたり、固定子又は回転子のスキューを行ったりする。スキューを行うことで、コギングトルクによるトルク脈動を低減することができる。
永久磁石式回転電機は、トルク脈動、電磁騒音を防止するために、段スキューを行うことができ、例えば、特許文献1,2には、永久磁石を段スキューする方法が開示されている。特許文献1,2に開示された永久磁石式回転電機は、磁束分布の高調波を低減させるため、複数の永久磁石を、各回転子鉄心の磁石貼付け面上に互いに回転子の軸方向及び周方向にずらされて配設した構成をなしている。
特に、特許文献2には、コギングトルクは正弦波状に発生するので、波形を1/2周期分だけずらして足しあわせれば2つのコギングトルクが打ち消しあって合成コギングトルクを小さくできる旨が記載されている。
特開2006−304407号公報 特開2008−48481号公報(段落0023)
In the permanent magnet type rotating electric machine, torque pulsation due to cogging torque becomes a problem. In particular, the permanent magnet type rotating electrical machine applied to an elevator hoisting machine requires low torque pulsation (1% or less at pp) in a wide range from the rated torque to the maximum torque. Serious. In addition, the rectangular permanent magnets tend to have a rectangular magnetic flux distribution having a harmonic component because the magnetic flux distribution does not approximate a sine wave. As countermeasures against torque pulsation, generally used is a kamaboko-shaped permanent magnet or skews a stator or a rotor. By performing the skew, torque pulsation due to cogging torque can be reduced.
The permanent magnet type rotating electrical machine can perform step skew in order to prevent torque pulsation and electromagnetic noise. For example, Patent Documents 1 and 2 disclose a method of step skewing a permanent magnet. In the permanent magnet type rotating electrical machines disclosed in Patent Documents 1 and 2, in order to reduce the harmonics of the magnetic flux distribution, a plurality of permanent magnets are mutually connected to the axial direction and the circumference of the rotor on the magnet attaching surface of each rotor core. It is configured to be shifted in the direction.
In particular, Patent Document 2 describes that since cogging torque is generated in a sine wave shape, if the waveforms are shifted by ½ period and added together, the two cogging torques cancel each other and the combined cogging torque can be reduced. ing.
JP 2006-304407 A JP 2008-48481 A (paragraph 0023)

ここで、回転子鉄心の磁石貼付け面の製造方法としてフライス加工が利用される。すなわち、回転子鉄心は、回転子の軸方向及び周方向に段スキューされた磁石配置に沿って、磁石貼付け面が切削され、磁石貼付け面の回転子の周方向の溝の幅は永久磁石が嵌り込む大きさで形成されている。
この、段スキューを行うことで問題となるのが回転子鉄心の磁石貼付け面の加工によるコストの上昇である。その例として特許文献1の永久磁石回転電機は、回転子鉄心の磁石貼付け面のフライス加工において、回転子の軸方向及び周方向に段スキューされた溝形状で切削される。すなわち、矩形状の永久磁石を用いる場合、周方向及び軸方向に複数の矩形状の複数の底面を溝に形成しなければならない。また、コギングトルクを正弦波状に発生させるために、この溝の各々の底面は径方向に垂直の接平面に平行にした方がコギングトルクを低減できるとされている。
このため、複数の永久磁石を周方向及び径方向ににずらして配置する場合には、この溝は、磁極数によって定まる角度で交わる複数の底面が形成されるのが通常であった。
すなわち、1つの溝を形成するため、各々の底面をフライス加工する必要が有り、切削加工に手間がかかりコスト上昇につながる。
Here, milling is used as a manufacturing method of the magnet sticking surface of the rotor core. That is, in the rotor core, the magnet attaching surface is cut along the magnet arrangement skewed stepwise in the axial direction and the circumferential direction of the rotor, and the width of the circumferential groove of the rotor on the magnet attaching surface is determined by the permanent magnet. It is formed in a size that fits.
The problem caused by this step skew is an increase in cost due to the processing of the magnet attachment surface of the rotor core. As an example, the permanent magnet rotating electric machine of Patent Document 1 is cut in a groove shape that is step-skewed in the axial direction and the circumferential direction of the rotor in the milling of the magnet attachment surface of the rotor core. That is, when a rectangular permanent magnet is used, a plurality of rectangular bottom surfaces must be formed in the groove in the circumferential direction and the axial direction. Further, in order to generate cogging torque in a sine wave shape, it is said that the cogging torque can be reduced by making the bottom surface of each groove parallel to a tangential plane perpendicular to the radial direction.
For this reason, when a plurality of permanent magnets are arranged shifted in the circumferential direction and the radial direction, this groove usually has a plurality of bottom surfaces that intersect at an angle determined by the number of magnetic poles.
That is, in order to form one groove, it is necessary to mill each bottom surface, which takes time for cutting and leads to an increase in cost.

そこで、本発明は前記課題を解決するためになされたものであり、コストを抑えつつ、永久磁石の配置を周方向にずらすことができる永久磁石式回転電機を提供することを目的とする。   Accordingly, the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a permanent magnet type rotating electrical machine capable of shifting the arrangement of permanent magnets in the circumferential direction while suppressing cost.

前記目的を達成するため、本発明の永久磁石式回転電機は、複数の固定子突極(42)が径方向に突出した固定子鉄心(4)と、互いに隣接する前記固定子突極の間に形成されたスロット(44)に収納された固定子巻線(5)とを備える固定子(2)と、回転子鉄心(7)と、この回転子鉄心の周方向に等間隔で配置された複数の永久磁石(6)とを備える回転子と、を有する永久磁石式回転電機において、前記回転子鉄心は、前記永久磁石より幅が長い溝(31)が周方向に複数形成され、前記永久磁石は、回転子鉄心側の面が平面状に形成され、周方向にずれて複数個が各々の前記溝に配設され、前記溝は、側面及び底面が平面状に形成されたことを特徴とする。また、前記溝に配設された複数個の複数個の永久磁石が互いに周方向にずれている。なお、括弧内の数字は例示である。   In order to achieve the above object, a permanent magnet type rotating electrical machine according to the present invention includes a stator core (4) having a plurality of stator salient poles (42) projecting in a radial direction and the stator salient poles adjacent to each other. The stator (2) having a stator winding (5) housed in a slot (44) formed on the rotor core (7), the rotor core (7), and the rotor core are arranged at equal intervals in the circumferential direction. A rotor provided with a plurality of permanent magnets (6), wherein the rotor iron core is formed with a plurality of grooves (31) having a longer width than the permanent magnets in the circumferential direction, In the permanent magnet, the rotor core side surface is formed in a flat shape, and a plurality of the magnets are displaced in the circumferential direction and arranged in each of the grooves, and the groove has a side surface and a bottom surface formed in a flat shape. Features. Further, the plurality of permanent magnets disposed in the groove are displaced from each other in the circumferential direction. The numbers in parentheses are examples.

これによれば、回転子鉄心の溝に配置された複数の永久磁石は、軸方向、及び周方向にずれて配設される。これにより、段スキューが実現されて、コギングトルクによるトルク脈動が低減する。
また、永久磁石の回転子鉄心側の面が平面状に形成され、溝の側面、及び底面が平面状であるので、回転子の軸方向に沿ってストレートに切削加工することができ、コストが抑えられる。
According to this, the several permanent magnet arrange | positioned at the groove | channel of a rotor core is shifted | deviated and arrange | positioned in the axial direction and the circumferential direction. Thereby, step skew is realized and torque pulsation due to cogging torque is reduced.
Further, since the surface of the permanent magnet on the rotor core side is formed in a flat shape, and the side surface and bottom surface of the groove are flat, it can be cut straight along the axial direction of the rotor. It can be suppressed.

本発明によれば、コストを抑えつつ、永久磁石の配置を周方向にずらすことができる。これにより、段スキューが実現され、コギングトルクによるトルク脈動が低減する。   According to the present invention, it is possible to shift the arrangement of the permanent magnets in the circumferential direction while suppressing costs. Thereby, step skew is realized and torque pulsation due to cogging torque is reduced.

(第1実施形態)
図1の横断面図を用いて、本発明の一実施形態である永久磁石式回転電機について説明する。
図1において、永久磁石式回転電機1は、円柱状の固定子2と、この固定子2の外周側に空隙33を介して対向配置されている円筒状の回転子3とを同軸状に備えた外転型の回転電機である。永久磁石式回転電機1は、固定子2が回転磁界を発生し、回転子3と固定子2との磁気的相互作用により回転子3が回転するように構成されている。
本実施形態は外転型の永久磁石式回転電機1を示しているが、本発明は内転型の永久磁石式回転電機も同様に実施することができる。なお、内転型の永久磁石式回転電機(図11(b)(d)参照)は、外転型と同様に固定子と回転子を備えているが、固定子と回転子との対向配置が逆になっており、回転子が固定子の内周側に空隙33を介して回転可能なように、固定子に対向配置されている。
(First embodiment)
A permanent magnet type rotating electrical machine according to an embodiment of the present invention will be described with reference to the cross-sectional view of FIG.
In FIG. 1, a permanent magnet type rotating electrical machine 1 includes a columnar stator 2 and a cylindrical rotor 3 that is disposed opposite to the outer peripheral side of the stator 2 via a gap 33. This is an abduction type rotating electrical machine. The permanent magnet type rotating electrical machine 1 is configured such that the stator 2 generates a rotating magnetic field, and the rotor 3 rotates due to the magnetic interaction between the rotor 3 and the stator 2.
Although the present embodiment shows an outer rotation type permanent magnet type rotating electrical machine 1, the present invention can also be implemented in an inner rotation type permanent magnet type rotating electrical machine. In addition, the inner rotation type permanent magnet type rotating electrical machine (see FIGS. 11B and 11D) includes a stator and a rotor as in the outer rotation type, but the stator and the rotor are opposed to each other. Are reversed, and the rotor is arranged to face the stator so that the rotor can rotate on the inner peripheral side of the stator via the gap 33.

固定子2は、径方向に設けられた複数の固定子突極(ティース)42を備えた固定子鉄心4と、隣接する固定子突起物43の間に形成された固定子スロット44を用いて巻回された固定子巻線5と、を備えている。なお、固定子突極42はヨーク部41の外周面に沿って周方向に等間隔で配置されている。   The stator 2 uses a stator core 4 having a plurality of stator salient poles (teeth) 42 provided in the radial direction and a stator slot 44 formed between adjacent stator protrusions 43. And a wound stator winding 5. The stator salient poles 42 are arranged at equal intervals in the circumferential direction along the outer peripheral surface of the yoke portion 41.

固定子鉄心4は、円筒状のヨーク部41(「コアバック部」という。)と、このヨーク部41の外周表面から径方向外側に突出し、ヨーク部41の外周面に沿って軸方向に延在する複数の固定子突極42(「ティース部」という)と、固定子突極42の先端の周方向両側に形成された固定子突起物43とを備え、互いに隣接する固定子突極42の間に固定子スロット44が形成されている。   The stator core 4 protrudes radially outward from a cylindrical yoke portion 41 (referred to as a “core back portion”) and an outer peripheral surface of the yoke portion 41, and extends in the axial direction along the outer peripheral surface of the yoke portion 41. A plurality of existing stator salient poles 42 (referred to as “teeth portions”) and stator protrusions 43 formed on both sides in the circumferential direction of the tip of the stator salient pole 42, and adjacent stator salient poles 42. A stator slot 44 is formed therebetween.

なお、固定子突極42は、周方向両側に形成された固定子突起物43を備えず、固定子スロット44を全開スロットとすることができる。なお、固定子突極42の数は、相数3の倍数である12である。
固定子鉄心4は、板状の磁性部材(電磁鋼板)を打ち抜いて形成した複数の板状の成型部材を軸方向に積層することにより形成される。この積層構造により、渦電流損が低減し、発熱が減少する。
The stator salient poles 42 do not include the stator protrusions 43 formed on both sides in the circumferential direction, and the stator slot 44 can be a fully open slot. The number of stator salient poles 42 is 12, which is a multiple of the number of phases 3.
The stator core 4 is formed by laminating a plurality of plate-shaped molding members formed by punching a plate-shaped magnetic member (electromagnetic steel plate) in the axial direction. This laminated structure reduces eddy current loss and heat generation.

固定子突極42は、絶縁部材(図示省略した巻線ボビン)を介して固定子巻線5の対応する相巻線34が集中的に巻回されている。この集中巻は、固定子突極42の4つの側面に対して巻線導体を複数巻回する巻線方式である。相巻線34のコイルエンド部は、固定子鉄心4の軸方向両端から軸方向外側に突出している。固定子巻線5の各相巻線をY字状に結線するスター結線方式と、Δ状に結線するデルタ結線方式との何れを採用してもよい。固定子鉄心4は、固定子側の磁路を構成し、固定子巻線5は、通電により固定子突極42に磁束を発生させる。回転子鉄心7は、回転側の磁路として機能し、永久磁石6は、回転磁極として機能する。   The stator salient poles 42 are concentratedly wound with corresponding phase windings 34 of the stator windings 5 via insulating members (winding bobbins (not shown)). This concentrated winding is a winding method in which a plurality of winding conductors are wound around the four side surfaces of the stator salient pole 42. Coil end portions of the phase winding 34 protrude outward in the axial direction from both axial ends of the stator core 4. Either a star connection method in which the respective phase windings of the stator winding 5 are connected in a Y shape or a delta connection method in which the stator windings 5 are connected in a Δ shape may be employed. The stator core 4 constitutes a magnetic path on the stator side, and the stator winding 5 generates a magnetic flux in the stator salient pole 42 by energization. The rotor core 7 functions as a magnetic path on the rotation side, and the permanent magnet 6 functions as a rotating magnetic pole.

回転子3は、内周部に周方向に沿って、等間隔の複数の溝31が軸方向に形成された円筒状の回転子鉄心7と、溝31に貼設されている、かまぼこ状の複数の永久磁石6と、回転子鉄心7の側板(図11)に設けられたシャフト8とを備えている。この永久磁石6は、周方向にN極とS極とが交互に貼設されており、その数は偶数個である10個である。   The rotor 3 has a cylindrical rotor core 7 in which a plurality of equally spaced grooves 31 are formed in the axial direction along the circumferential direction on the inner peripheral portion, and a semi-cylindrical shape pasted on the grooves 31. A plurality of permanent magnets 6 and a shaft 8 provided on a side plate (FIG. 11) of the rotor core 7 are provided. The permanent magnet 6 has N poles and S poles alternately stuck in the circumferential direction, and the number thereof is ten, which is an even number.

回転子鉄心7は、鋳鉄などの鋳物で形成され、シャフト8とは固定子2の側板(図12参照)を介して結合される。永久磁石6は、永久磁石式回転電機の小型化,高効率化に寄与する希土類系磁石を用いて、N極とS極との磁極が径方向になるように配置されている。また、永久磁石6は、かまぼこ状に形成されており、回転子鉄心7の内周面の回転子鉄心7の溝31に接着剤を用いて貼設されている。なお、永久磁石6は、かまぼこ状の円弧部が回転子鉄心7の内周面よりも径方向内側に若干突出している。   The rotor core 7 is formed of a casting such as cast iron, and is coupled to the shaft 8 via a side plate of the stator 2 (see FIG. 12). The permanent magnet 6 is arranged so that the magnetic poles of the N pole and the S pole are in the radial direction using a rare earth magnet that contributes to downsizing and high efficiency of the permanent magnet type rotating electrical machine. The permanent magnet 6 is formed in a kamaboko shape, and is affixed to the groove 31 of the rotor core 7 on the inner peripheral surface of the rotor core 7 using an adhesive. In the permanent magnet 6, a semi-cylindrical arc portion slightly protrudes radially inward from the inner peripheral surface of the rotor core 7.

本実施形態の回転子3について、図2から図8までを用いて詳細に説明する。
図2は、永久磁石式回転電機1の回転子3の構成を示す部分斜視図である。図3,4は、回転子3を固定子2側から径方向外側に視た部分展開図である。図5は永久磁石6を取り付ける溝31を凹設するためフライス加工で切削する方法を示す回転子3を固定子2側から視た部分図である。図6は、回転子鉄心7から永久磁石6を取り外したときの回転子鉄心7の斜視図である。図7は、回転子鉄心7から永久磁石6を取り外したときの回転子鉄心7を固定子2側から径方向外側に視た部分展開図である。
The rotor 3 according to this embodiment will be described in detail with reference to FIGS.
FIG. 2 is a partial perspective view showing the configuration of the rotor 3 of the permanent magnet type rotating electrical machine 1. 3 and 4 are partial development views of the rotor 3 as viewed radially outward from the stator 2 side. FIG. 5 is a partial view of the rotor 3 as seen from the stator 2 side, showing a method of cutting by milling in order to recess the groove 31 for attaching the permanent magnet 6. FIG. 6 is a perspective view of the rotor core 7 when the permanent magnet 6 is removed from the rotor core 7. FIG. 7 is a partial development view of the rotor core 7 when the permanent magnet 6 is removed from the rotor core 7 as viewed radially outward from the stator 2 side.

回転子3は、回転子鉄心7の溝31の各々に、複数の永久磁石6が同一極性となるように軸方向に貼設されている(図2,3)。また、複数の永久磁石6は、溝31の幅よりも短く形成されており、周方向にずらして配置されている。すなわち、複数の永久磁石6は、一の側面及び底面が溝31に当接しており、他の側面は溝31の側面と離間し、離間部32を形成している。すなわち、溝31は、幅が永久磁石6の幅よりも長く形成されている。なお、永久磁石6の他の側面と溝31の側面との間の離間部32は、非磁性体を装填することができる。
図4において、永久磁石6は、幅がXpmであり、ピッチ幅がXppであり、溝31は、幅がXであるとすると、Xpm、Xpp、及びXの関係は、
Xpm<X<Xpp ・・・・・・・・・・・・・・・・・・・(1)式
となっている。
このとき、永久磁石6をずらす角度は、コギングトルク一周期の角度の1/2であることが好ましい。
また、図2,3は、永久磁石6a,6bの双方を径方向に垂直な接平面から傾斜させているが、永久磁石6a,6bの何れか一方を接平面に平行にして、他方を傾斜させてもよい。
The rotor 3 is affixed in the axial direction so that the plurality of permanent magnets 6 have the same polarity in each of the grooves 31 of the rotor core 7 (FIGS. 2 and 3). Further, the plurality of permanent magnets 6 are formed shorter than the width of the groove 31 and are shifted in the circumferential direction. That is, the plurality of permanent magnets 6 have one side surface and a bottom surface in contact with the groove 31, and the other side surface is separated from the side surface of the groove 31 to form a separation portion 32. That is, the groove 31 is formed longer than the width of the permanent magnet 6. In addition, the separation part 32 between the other side surface of the permanent magnet 6 and the side surface of the groove 31 can be loaded with a nonmagnetic material.
In FIG. 4, if the permanent magnet 6 has a width of Xpm, the pitch width is Xpp, and the groove 31 has a width of X, the relationship between Xpm, Xpp, and X is
Xpm <X <Xpp (1) Equation (1)
At this time, the angle by which the permanent magnet 6 is shifted is preferably ½ of the angle of one period of the cogging torque.
2 and 3, both the permanent magnets 6a and 6b are inclined from the tangential plane perpendicular to the radial direction, but one of the permanent magnets 6a and 6b is parallel to the tangential plane and the other is inclined. You may let them.

また、図5に示すように、永久磁石6を取り付ける溝31は、フライス加工により回転子鉄心7の軸方向に沿ってストレートに切削加工することができる。すなわち、従来技術のように、周方向及び軸方向に複数の矩形状の底面を有した溝を形成する必要がない。
なお、外転型であっても回転子3がお椀状のものについては、このような加工法は困難となるため、回転子3の側面部と回転子3の径方向外周部とを分離するなどの工夫が必要である。
Moreover, as shown in FIG. 5, the groove | channel 31 which attaches the permanent magnet 6 can be cut straightly along the axial direction of the rotor core 7 by milling. That is, unlike the prior art, it is not necessary to form a groove having a plurality of rectangular bottom surfaces in the circumferential direction and the axial direction.
In addition, even if it is an outer rotation type | mold, since the processing method becomes difficult when the rotor 3 is bowl-shaped, the side part of the rotor 3 and the radial direction outer peripheral part of the rotor 3 are separated. Etc. are necessary.

図6,7において、回転子鉄心7の溝31の側面、及び底面が平面状に形成され、溝31の両側面が平行に形成されている。これにより、永久磁石6の直方体形状の台部の取付けが容易となる。また、第2実施形態に示すように(図9、10参照)、回転子3は、直方体状(矩形状)の永久磁石16を使用することが可能となり、コスト低減につながる。   6 and 7, the side surface and bottom surface of the groove 31 of the rotor core 7 are formed in a flat shape, and both side surfaces of the groove 31 are formed in parallel. Thereby, attachment of the rectangular parallelepiped base part of the permanent magnet 6 becomes easy. Further, as shown in the second embodiment (see FIGS. 9 and 10), the rotor 3 can use a rectangular parallelepiped (rectangular) permanent magnet 16, which leads to cost reduction.

図8(a)において、回転子鉄心7の溝31には、永久磁石6aと、永久磁石6aに対して回転子3の軸方向及び周方向にずらして配置された永久磁石6bとが配設されている。永久磁石6aと永久磁石6bとの間の周方向のずれ幅Xsは、永久磁石6a,6bの幅をXpm、溝31の幅をXとすると、
0<Xs≦X−Xpm ・・・・・・・・・・・・・・・・・・・(2)式
である。ただし、(X−Xpm)の値がスキュー角より小さい場合は本発明は適用できない。
8A, in the groove 31 of the rotor core 7, a permanent magnet 6a and a permanent magnet 6b arranged so as to be shifted in the axial direction and the circumferential direction of the rotor 3 with respect to the permanent magnet 6a are arranged. Has been. The circumferential displacement width Xs between the permanent magnet 6a and the permanent magnet 6b is as follows. The width of the permanent magnets 6a and 6b is Xpm and the width of the groove 31 is X.
0 <Xs ≦ X−Xpm (2). However, the present invention is not applicable when the value of (X−Xpm) is smaller than the skew angle.

また、本実施形態では、永久磁石6を軸方向に2分割しているが、これだけに限定されるものではなく、3分割以上も可能である。図8(b)に示されるように、3分割の場合、前段部、及び後段部に配置される永久磁石6a,6cは、何れかの端面が溝31の側面に当接するが、中間部に配置される永久磁石6bは端面が溝31の側面に当接しない。   In the present embodiment, the permanent magnet 6 is divided into two parts in the axial direction, but the present invention is not limited to this, and three or more parts are possible. As shown in FIG. 8B, in the case of three divisions, the permanent magnets 6a and 6c arranged in the front and rear stages have either end face abutting against the side surface of the groove 31, but in the middle part. An end surface of the arranged permanent magnet 6 b does not contact the side surface of the groove 31.

これらは、回転子鉄心7の磁石貼付け面の加工において、回転子3の軸方向に沿ってストレートに切削するため、簡単な加工で段スキューを行うことができ、生産性向上、及びコスト低減となる。本実施形態によれば、回転子鉄心の磁石貼付け面の加工において、回転子の軸方向に沿ってストレートに切削するため、簡単な加工で段スキューを行うことができ、コギングトルクが低減する。また、溝の側面、底面が平面状であることから、取付け部が矩形状の永久磁石を使用でき、生産性向上およびコスト低減を可能とした永久磁石式回転電機を提供できる。   Since these are cut straight along the axial direction of the rotor 3 in the processing of the magnet attachment surface of the rotor core 7, a step skew can be performed by simple processing, improving productivity and reducing costs. Become. According to the present embodiment, in processing the magnet attachment surface of the rotor core, cutting is performed straight along the axial direction of the rotor, so that step skew can be performed by simple processing and cogging torque is reduced. In addition, since the side surface and bottom surface of the groove are flat, a permanent magnet having a rectangular mounting portion can be used, and a permanent magnet type rotating electrical machine that can improve productivity and reduce costs can be provided.

なお、永久磁石式回転電機1は、無通電状態で外部から回転トルクを与えて回転子3を低速回転させようとした場合、回転に必要なトルクに回転むらが生じる。コギングトルクとは、この回転むらのことをいい、回転子と固定子との間に働く性的な磁気吸引力が回転位置により異なることにより生じる。   In the permanent magnet type rotating electrical machine 1, when an attempt is made to rotate the rotor 3 at a low speed by applying a rotational torque from the outside in a non-energized state, uneven rotation occurs in the torque necessary for the rotation. The cogging torque refers to this rotation unevenness, and is generated when the sexual magnetic attraction force acting between the rotor and the stator varies depending on the rotation position.

(第2実施形態)
図9は、本発明の第2実施形態の永久磁石式回転電機1aの回転子3aの構成を示す斜視図であり、図10は、永久磁石式回転電機1aの構成を示す横断面図である。
第2実施形態の永久磁石式回転電機1は、永久磁石6がかまぼこ形状でなく、直方体形状であることが特徴である。また、第1実施形態の永久磁石式回転電機1は、外転型を原則とし、内転型も適用可能であったが、この第2実施形態の永久磁石式回転電機1aは、外転型に限定される。
(Second Embodiment)
FIG. 9 is a perspective view showing the configuration of the rotor 3a of the permanent magnet type rotating electrical machine 1a according to the second embodiment of the present invention, and FIG. 10 is a cross-sectional view showing the configuration of the permanent magnet type rotating electrical machine 1a. .
The permanent magnet type rotating electrical machine 1 according to the second embodiment is characterized in that the permanent magnet 6 has a rectangular parallelepiped shape instead of a kamaboko shape. In addition, the permanent magnet type rotating electrical machine 1 of the first embodiment is based on the outer rotation type, and the inner rotation type is also applicable. However, the permanent magnet type rotating electrical machine 1a of the second embodiment is an outer rotation type. It is limited to.

これは、外転型であるため、固定子2と回転子3aとの間の空隙33中の磁束密度が正弦波により近づくためトルク脈動を低減する効果を有する(特願2008−161801明細書参照)。
また、直方体形状の永久磁石は、加工数が少ないので、コスト低減につながる。逆に、内転型に直方体形状の永久磁石を適用すると、逆にトルク脈動は上昇するため本実施形態は外転型に限られる。
Since this is an abduction type, the magnetic flux density in the gap 33 between the stator 2 and the rotor 3a approaches the sine wave, so that it has an effect of reducing torque pulsation (see Japanese Patent Application No. 2008-161801). ).
In addition, a rectangular parallelepiped permanent magnet has a small number of processing, leading to cost reduction. On the contrary, when a rectangular parallelepiped permanent magnet is applied to the inner rotation type, the torque pulsation rises conversely, so that this embodiment is limited to the outer rotation type.

また、図10に示すように固定子突極42は、先端部に周方向の突起物43がない全開スロットであることを特徴とする。これは、最大トルク領域では図1に示す固定子鉄心4の固定子突極42の先端の周方向の固定子突起物43は磁気飽和を起こし、トルク脈動の上昇の要因となるため、固定子突起物43を備えない全開スロットにすることで、最大トルク領域においてトルク脈動の上昇を防ぐ効果を有する。また、永久磁石6の数と固定子2の固定子スロット44の数との組み合わせは、永久磁石6の数10とスロット数12とを基本単位とする。   Further, as shown in FIG. 10, the stator salient pole 42 is a fully open slot without a circumferential projection 43 at the tip. This is because the stator protrusion 43 in the circumferential direction at the tip of the stator salient pole 42 of the stator core 4 shown in FIG. 1 causes magnetic saturation in the maximum torque region, which causes an increase in torque pulsation. By making the slot fully open without the protrusion 43, there is an effect of preventing an increase in torque pulsation in the maximum torque region. The combination of the number of permanent magnets 6 and the number of stator slots 44 of the stator 2 is based on the number of permanent magnets 6 and the number of slots 12 as basic units.

(比較例1)
図11は、外転型の回転子鉄心7の溝に直方体状の永久磁石16a,16bを貼設した場合と、内転型の回転子鉄心15に直方体状の永久磁石16c,16dを貼設した場合とを比較するための説明図である。
図11(a)に示される外転型の場合、回転子鉄心7の内周に沿って、同極の永久磁石16a,16bが周方向にずらされて、回転子鉄心7に貼設されるので、永久磁石16a,16bの磁極の方向Pa,Pbと、合成磁極の方向Peとは中心軸方向を向いて、固定子磁極と対向している。このため、永久磁石16a,16bの磁極の方向Pa,Pbは、互いに内向きとなっている。回転子鉄心7と固定子磁極との間の空隙の幅は磁石中央下では小さく、端下は大きくなる。磁気回路で考えると、磁石中央下は磁気抵抗が小さく、端下は磁気抵抗が大きい。従って、空隙中の台形状の磁束分布が正弦波分布に近づく。
(Comparative Example 1)
FIG. 11 shows a case in which the rectangular parallelepiped permanent magnets 16 a and 16 b are pasted on the grooves of the outer rotation type rotor core 7, and a case in which the rectangular parallelepiped permanent magnets 16 c and 16 d are pasted on the inner rotation type rotor core 15. It is explanatory drawing for comparing with the case where it did.
In the case of the abduction type shown in FIG. 11 (a), the permanent magnets 16 a and 16 b having the same polarity are shifted in the circumferential direction along the inner periphery of the rotor core 7, and are affixed to the rotor core 7. Therefore, the directions Pa and Pb of the magnetic poles of the permanent magnets 16a and 16b and the direction Pe of the composite magnetic pole face the central axis direction and face the stator magnetic pole. For this reason, the directions Pa and Pb of the magnetic poles of the permanent magnets 16a and 16b are inward of each other. The width of the gap between the rotor core 7 and the stator magnetic pole is small below the center of the magnet and large below the end. Considering a magnetic circuit, the magnetoresistance is small below the center of the magnet, and the magnetoresistance is large below the edge. Therefore, the trapezoidal magnetic flux distribution in the gap approaches the sine wave distribution.

一方、図11(b)に示される内転型の場合、同極の永久磁石16c,16dが周方向にずらされて、回転子鉄心15の外周に沿って貼設されているが、永久磁石16c,16dの磁極の方向Pc,Pdと、合成磁極の方向Pfは径方向外側を向いて、固定子磁極と対向している。このため、永久磁石16c,16dの磁極の方向Pc,Pdは、互いに外向きとなっている。なお、回転子鉄心15の外周に固定子鉄心14が同心円状に配置されている。回転子鉄心7と固定子磁極との間の空隙の幅は磁石中央下では大きく、端下は小さくなる。磁気回路で考えると、磁石中央下は磁気抵抗が大きく、端下は磁気抵抗が小さい。従って、空隙中の台形状の磁束分布が磁石中央下が凹んだ台形状の分布に近づく。
したがって、磁極の方向が内向きの外転型の方が、内転型よりも磁束分布が正弦波に近づく。また、磁極の方向が内向きの外転型の方が、合成磁極Peの大きさが、内転型の合成磁極Pfの大きさよりも大きい。
On the other hand, in the case of the add-on type shown in FIG. 11 (b), the permanent magnets 16c and 16d having the same polarity are shifted in the circumferential direction and pasted along the outer periphery of the rotor core 15. The magnetic pole directions Pc and Pd of 16c and 16d and the direction Pf of the composite magnetic pole face radially outward and face the stator magnetic pole. For this reason, the directions Pc and Pd of the magnetic poles of the permanent magnets 16c and 16d are outward. A stator core 14 is concentrically arranged on the outer periphery of the rotor core 15. The width of the gap between the rotor core 7 and the stator magnetic pole is large below the center of the magnet and small below the end. Considering the magnetic circuit, the magnetoresistance is large below the center of the magnet, and the magnetoresistance is small below the edge. Therefore, the trapezoidal magnetic flux distribution in the air gap approaches the trapezoidal distribution with the center bottom recessed.
Therefore, the magnetic flux distribution is closer to a sine wave in the outer rotation type in which the direction of the magnetic pole is inward than in the inner rotation type. In addition, the size of the composite magnetic pole Pe is larger than the size of the composite magnetic pole Pf of the inversion type in the outer rotation type in which the magnetic pole direction is inward.

次に、第2実施形態のように、永久磁石16a,16bを貼設する溝31の底面が平面状である場合について考える。
図11(c)に示される外転型の場合、永久磁石16a,16bの磁極の方向は何れもPeであり、磁束分布は正弦波状に近づかないが、溝31の周方向中心の深さを永久磁石6a,6bの厚さに一致させて、回転子鉄心7の内周面と永久磁石16a,16bの周方向中心の表面とが一致したとき、永久磁石16a,16bの周方向端部の表面と回転子鉄心7の内周面との間で段差d1が生じる。
Next, consider a case where the bottom surface of the groove 31 where the permanent magnets 16a and 16b are pasted is planar as in the second embodiment.
In the case of the abduction type shown in FIG. 11C, the directions of the magnetic poles of the permanent magnets 16a and 16b are both Pe, and the magnetic flux distribution does not approach a sine wave shape, but the depth of the center in the circumferential direction of the groove 31 is set. When the inner peripheral surface of the rotor core 7 and the circumferential center surface of the permanent magnets 16a and 16b coincide with the thickness of the permanent magnets 6a and 6b, the circumferential ends of the permanent magnets 16a and 16b A step d1 occurs between the surface and the inner peripheral surface of the rotor core 7.

一方、図11(d)に示される内転型の場合には、永久磁石16c、16dの端部の表面が回転子鉄心15の外周面に一致するようにすれば、永久磁石16c、16dの周方向中心の表面と、外周面との間で段差d2が生じる。
したがって、外転型の場合は周方向にずらされて貼設された永久磁石の周方向中心の表面が回転子鉄心7の内周表面に一致するが、内転型の場合は、永久磁石の端部の表面が外周表面に一致し、永久磁石の周方向中心に段差d2ができる。
On the other hand, in the case of the adduction type shown in FIG. 11D, if the surfaces of the end portions of the permanent magnets 16c and 16d coincide with the outer peripheral surface of the rotor core 15, the permanent magnets 16c and 16d A step d2 occurs between the surface in the circumferential center and the outer peripheral surface.
Therefore, in the case of the outer rotation type, the circumferential center surface of the permanent magnet that is offset in the circumferential direction coincides with the inner peripheral surface of the rotor core 7, but in the case of the inner rotation type, the permanent magnet The surface of the end coincides with the outer peripheral surface, and a step d2 is formed at the circumferential center of the permanent magnet.

このため、外転型の方が、回転子鉄心の内周表面に磁極中心が存在するので内転型よりも好ましい。
また、図11(a)及び図11(b)のように、溝の底面が永久磁石16a、16b,16c,16dの底面にあわせて研削する場合、1つの溝に、周方向及び軸方向に複数の矩形状の底面を形成する必要があるが、図11(c)及び図11(d)のように前記各実施形態の場合には、1つの溝に1つの底面を軸方向に沿ってストレートに形成すればよい。
For this reason, the outer rotation type is preferable to the inner rotation type because the magnetic pole center exists on the inner peripheral surface of the rotor core.
Further, as shown in FIGS. 11A and 11B, when the bottom surface of the groove is ground in accordance with the bottom surfaces of the permanent magnets 16a, 16b, 16c, and 16d, one groove is formed in the circumferential direction and the axial direction. Although it is necessary to form a plurality of rectangular bottom surfaces, in the case of each of the embodiments as shown in FIGS. 11C and 11D, one bottom surface is provided along the axial direction in one groove. What is necessary is just to form straightly.

(比較例2)
次に、図12を用いて、2極3スロットモータのトルク脈動について説明すると共に、このトルク脈動が段スキューにより打ち消されることを説明する。
図12(a)は、2極3スロットモータの概念図であり、回転子の周方向にN極とS極との永久磁石が配設され、径方向に対向して、T字状の固定子突極が3極形成されている。
一般にコギングトルクの周期数は、突極数と磁極数との最小公倍数になることが知られている。突極数3、磁極数2の最小公倍数は6であり、図12(b)に示すように、電気角360度だけ回転子が回転すると大きなコギングトルクの変動が6回生じる。すなわち、1つの変動は、電気角にすると360度/6=60度である。
(Comparative Example 2)
Next, the torque pulsation of the two-pole three-slot motor will be described with reference to FIG. 12, and the fact that this torque pulsation is canceled by the step skew will be described.
FIG. 12A is a conceptual diagram of a 2-pole 3-slot motor, in which permanent magnets of N-pole and S-pole are arranged in the circumferential direction of the rotor, and are fixed in a T shape so as to face each other in the radial direction. Three child salient poles are formed.
In general, it is known that the number of cycles of the cogging torque is the least common multiple of the number of salient poles and the number of magnetic poles. The least common multiple of the number of salient poles 3 and the number of magnetic poles 2 is 6. As shown in FIG. 12B, when the rotor rotates by an electrical angle of 360 degrees, a large cogging torque fluctuation occurs six times. That is, one variation is 360 degrees / 6 = 60 degrees in terms of electrical angle.

図13(a)は、第1、2実施形態のように周方向にずらして永久磁石を配設された状態を示す図であり、図13(b)はトルク脈動の様子を示した図である。
図13(a)において、永久磁石6a,6bが軸方向に2段に配設されており、周方向に1/2周期分ずらしたスキュー角は、電気角で30度である。図13(b)において、永久磁石6aのトルク脈動(実線)と、永久磁石6bのトルク脈動(破線)とは正弦波状を呈しており、互いに位相が反転している。したがって、永久磁石6a,6bを周方向に1/2周期だけずらすことにより、トルク脈動は打ち消される。
FIG. 13A is a diagram showing a state in which permanent magnets are arranged shifted in the circumferential direction as in the first and second embodiments, and FIG. 13B is a diagram showing a state of torque pulsation. is there.
In FIG. 13A, the permanent magnets 6a and 6b are arranged in two stages in the axial direction, and the skew angle shifted by ½ period in the circumferential direction is 30 degrees in electrical angle. In FIG. 13B, the torque pulsation (solid line) of the permanent magnet 6a and the torque pulsation (broken line) of the permanent magnet 6b are sinusoidal, and the phases are reversed. Therefore, the torque pulsation is canceled by shifting the permanent magnets 6a and 6b by 1/2 cycle in the circumferential direction.

言い換えれば、永久磁石を貼設する溝は、各々の底面が径方向に垂直の接平面に平行に形成されている方が、コギングトルクを正弦波状に発生することができるので、コギングトルクを低減できる。すなわち、永久磁石を貼設する溝は、各々の底面が径方向に垂直の接平面に平行に形成する方が好ましいされている一方、本願実施形態は、永久磁石6a,6bの何れか一方又は双方を接平面から傾斜させることにより、回転子鉄心7の軸方向に沿ってストレートに溝31を切削加工することができるようにしたものである。   In other words, the grooves for attaching the permanent magnets can generate cogging torque in a sinusoidal shape when the bottom surface of each groove is formed in parallel to the tangential plane perpendicular to the radial direction. it can. That is, it is preferable that the groove for attaching the permanent magnet is formed so that each bottom surface is parallel to the tangential plane perpendicular to the radial direction, while in the embodiment of the present invention, either one of the permanent magnets 6a and 6b or By inclining both from the tangent plane, the groove 31 can be cut straight along the axial direction of the rotor core 7.

(第3実施形態)
前記各実施形態の永久磁石式回転電機1,1aをエレベータ装置に適用した場合の巻上機の構成について、図12を用いて説明する。
図14において、巻上機9は、永久磁石式回転電機1と、永久磁石式回転電機1が生み出す動力をロープに伝達するシーブ10と、回転子3に制動力を与えるブレーキ11と、シャフト8を支えるベアリング13と、これらを支えるハウジング12を備え、永久磁石式回転電機1とシーブ10とが一体となって構成されている。なお、前記したように、永久磁石式回転電機1は、固定子2と回転子3とシャフト8とを備えている。また、ブレーキ11は、径の大きな回転子3を制動することができるので、シャフト8を制動する内転型よりも強い制動力を与えることができる。
(Third embodiment)
A configuration of the hoisting machine when the permanent magnet type rotating electrical machines 1 and 1a of the respective embodiments are applied to an elevator apparatus will be described with reference to FIG.
In FIG. 14, the hoisting machine 9 includes a permanent magnet type rotating electrical machine 1, a sheave 10 that transmits power generated by the permanent magnet type rotating electrical machine 1 to a rope, a brake 11 that applies a braking force to the rotor 3, and a shaft 8. The permanent magnet type rotating electrical machine 1 and the sheave 10 are integrally formed. As described above, the permanent magnet type rotating electrical machine 1 includes the stator 2, the rotor 3, and the shaft 8. Further, since the brake 11 can brake the rotor 3 having a large diameter, the brake 11 can apply a braking force stronger than that of the inner rotation type that brakes the shaft 8.

本実施形態の永久磁石式回転電機1をエレベータ装置の巻上機に適用することで、定格トルク時から最大トルクまでの幅広い領域における低トルク脈動(p−pで1%程度)が可能となり、かごに伝わる振動、及びエレベータ機構の騒音の低減に寄与する。さらに、回転子3を段スキューするための回転子鉄心7の磁石貼付け面の加工を簡単に行い、また矩形型の永久磁石を使用することにより磁石の加工数が少なく、コスト低減に寄与する。   By applying the permanent magnet type rotating electrical machine 1 of the present embodiment to a hoisting machine of an elevator device, low torque pulsation (about 1% at pp) in a wide range from the rated torque to the maximum torque becomes possible. Contributes to the reduction of vibrations transmitted to the car and the noise of the elevator mechanism. Furthermore, the processing of the magnet affixing surface of the rotor core 7 for skewing the rotor 3 is simply performed, and the use of a rectangular permanent magnet reduces the number of magnets processed, contributing to cost reduction.

本発明の第1実施形態の永久磁石式回転電機の構成を示す横断面図である。It is a cross-sectional view showing the configuration of the permanent magnet type rotating electrical machine of the first embodiment of the present invention. 本発明の第1実施形態の永久磁石式回転電機の回転子の構成を示す斜視図である。It is a perspective view which shows the structure of the rotor of the permanent magnet type rotary electric machine of 1st Embodiment of this invention. 回転子の一部を固定子側から視た展開図である。It is the expanded view which looked at a part of rotor from the stator side. 各種記号を記した回転子の一部を固定子側から視た展開図である。It is the expanded view which looked at some rotors which described various symbols from the stator side. 永久磁石を取り付ける溝を設けるためフライス加工で切削する方法を示す回転子の一部を固定子側から視た展開図である。It is the expanded view which looked at a part of rotor from the stator side which shows the method cut by milling in order to provide the groove | channel which attaches a permanent magnet. 図2において回転子鉄心から永久磁石を取り外したときの回転子鉄心の斜視図である。FIG. 3 is a perspective view of a rotor core when a permanent magnet is removed from the rotor core in FIG. 2. 図2において回転子鉄心から永久磁石を取り外したときの回転子鉄心の一部を固定子側から視た展開図である。FIG. 3 is a development view of a part of the rotor core as viewed from the stator side when the permanent magnet is removed from the rotor core in FIG. 2. 図3において磁石をずらす際の各種記号を記した回転子の一部を固定子側から視た展開図である。It is the expanded view which looked at a part of rotor which showed various symbols at the time of shifting a magnet in Drawing 3 from the stator side. 本発明の第2実施形態の永久磁石式回転電機の回転子の構成を示す斜視図である。It is a perspective view which shows the structure of the rotor of the permanent magnet type rotary electric machine of 2nd Embodiment of this invention. 本発明の第2実施形態の永久磁石式回転電機の構成を示す横断面図である。It is a cross-sectional view which shows the structure of the permanent-magnet-type rotary electric machine of 2nd Embodiment of this invention. 外転型と内転型とを比較するための説明図である。It is explanatory drawing for comparing an outer rotation type | mold and an inner rotation type | mold. 比較例として2極3スロットモータのトルク脈動について説明するための図である。It is a figure for demonstrating the torque pulsation of a 2 pole 3 slot motor as a comparative example. トルク脈動が段スキューにより打ち消されることを説明するための図である。It is a figure for demonstrating that torque pulsation is canceled by step skew. 本発明の第3実施形態のエレベータの巻上機の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the elevator hoisting machine of 3rd Embodiment of this invention.

符号の説明Explanation of symbols

1 永久磁石式回転電機
2 固定子
3 回転子
4 固定子鉄心
5 固定子巻線
6,6a,6b,6c 永久磁石
7 回転子鉄心
8 シャフト
9 巻上機
10 シーブ
11 ブレーキ
12 ハウジング
13 ベアリング
14 固定子鉄心(内転型)
15 回転子鉄心(内転型)
16 永久磁石
31 溝
32 離間部
33 空隙
34 相巻線
41 ヨーク部(コアバック)
42 固定子突極(ティース)
43 固定子突起物
44 固定子スロット(スロット)
DESCRIPTION OF SYMBOLS 1 Permanent magnet type rotary electric machine 2 Stator 3 Rotor 4 Stator core 5 Stator winding 6, 6a, 6b, 6c Permanent magnet 7 Rotor core 8 Shaft 9 Hoisting machine 10 Sheave 11 Brake 12 Housing 13 Bearing 14 Fixed Child core (adduct type)
15 Rotor core (adduct type)
16 Permanent magnet 31 Groove 32 Spacing part 33 Air gap 34 Phase winding 41 Yoke part (core back)
42 Stator salient pole (tooth)
43 Stator projection 44 Stator slot

Claims (10)

複数の固定子突極が径方向に突出した固定子鉄心と、互いに隣接する前記固定子突極の間に形成されたスロットに収納された固定子巻線とを備える固定子と、
回転子鉄心と、この回転子鉄心の周方向に等間隔で配置された複数の永久磁石とを備える回転子と、
を有する永久磁石式回転電機において、
前記回転子鉄心は、前記永久磁石より幅が長い溝が周方向に複数形成され、
前記永久磁石は、回転子鉄心側の面が平面状に形成され、周方向にずれて複数個が各々の前記溝に配設され、
前記溝は、側面及び底面が平面状に形成されたことを特徴とする永久磁石式回転電機。
A stator comprising a stator core in which a plurality of stator salient poles project in the radial direction, and a stator winding housed in a slot formed between the stator salient poles adjacent to each other;
A rotor comprising a rotor core and a plurality of permanent magnets arranged at equal intervals in the circumferential direction of the rotor core;
In the permanent magnet type rotating electrical machine having
The rotor core has a plurality of grooves in the circumferential direction that are longer than the permanent magnet,
The permanent magnet has a surface on the rotor core side formed in a flat shape, and a plurality of the permanent magnets are disposed in the grooves in a circumferential direction.
The groove has a side surface and a bottom surface formed in a planar shape.
前記永久磁石は、直方体形状であることを特徴とする請求項1に記載の永久磁石式回転電機。   The permanent magnet rotating electric machine according to claim 1, wherein the permanent magnet has a rectangular parallelepiped shape. 前記永久磁石は、かまぼこ形状であることを特徴とする請求項1に記載の永久磁石式回転電機。   The permanent magnet type rotating electric machine according to claim 1, wherein the permanent magnet has a kamaboko shape. 前記永久磁石は、一の端面が前記溝の側面に当接していることを特徴とする請求項2又は請求項3に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to claim 2, wherein one end surface of the permanent magnet is in contact with a side surface of the groove. 前記回転子が前記固定子の外周部に配置された外転型として構成されていることを特徴とする請求項1乃至請求項4の何れか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 4, wherein the rotor is configured as an abduction type disposed on an outer peripheral portion of the stator. 前記固定子突極の先端部は、周方向の突起物がない全開スロットとして構成されていることを特徴とする請求項1乃至請求項5の何れか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 5, wherein a tip portion of the stator salient pole is configured as a fully open slot having no circumferential protrusion. 前記永久磁石の数と前記固定子鉄心のスロット数との組み合わせは、前記永久磁石の数10と前記スロット数12とを基本単位とすることを特徴とする請求項1乃至請求項6の何れか1項に記載の永久磁石式回転電機。   The combination of the number of the permanent magnets and the number of slots of the stator core is based on the number of the permanent magnets of 10 and the number of slots of 12 as basic units. The permanent magnet type rotating electrical machine according to item 1. 前記回転子鉄心は、前記永久磁石との間で磁路として機能することを特徴とする請求項1乃至請求項7の何れか1項に記載の永久磁石式回転電機。   The permanent magnet type rotating electrical machine according to any one of claims 1 to 7, wherein the rotor core functions as a magnetic path between the rotor core and the permanent magnet. 複数の固定子突極が径方向に突出した固定子鉄心と、前記固定子突極の間に形成されたスロットに収納された固定子巻線とを備える固定子と、
回転子鉄心の周方向に等間隔で配置された複数の永久磁石を備える回転子と、
を有する永久磁石式回転電機において、
前記回転子鉄心は、前記永久磁石より幅が長い溝が周方向に複数形成され、
前記永久磁石は、直方体形状であり、
前記回転子が前記固定子の外周部に配置された外転型であり、
前記固定子突極の先端部は、周方向の突起物がない全開スロットとして構成され、
前記永久磁石の数と前記固定子鉄心のスロット数との組み合わせは、前記永久磁石の数10と前記スロット数12とを基本単位とし、
前記永久磁石は、回転子鉄心側の面が平面状に形成され、周方向にずれて複数個が各々の前記溝に配設され、
前記溝は、側面及び底面が平面状に形成されたことを特徴とする永久磁石式回転電機。
A stator comprising a stator core having a plurality of stator salient poles projecting in a radial direction, and a stator winding housed in a slot formed between the stator salient poles;
A rotor comprising a plurality of permanent magnets arranged at equal intervals in the circumferential direction of the rotor core;
In the permanent magnet type rotating electrical machine having
The rotor core has a plurality of grooves in the circumferential direction that are longer than the permanent magnet,
The permanent magnet has a rectangular parallelepiped shape,
The rotor is an abduction type disposed on the outer periphery of the stator,
The tip of the stator salient pole is configured as a fully open slot without a circumferential protrusion,
The combination of the number of permanent magnets and the number of slots of the stator core is based on the number of permanent magnets 10 and the number of slots 12 as basic units,
The permanent magnet has a surface on the rotor core side formed in a flat shape, and a plurality of the permanent magnets are disposed in the grooves in a circumferential direction.
The groove has a side surface and a bottom surface formed in a planar shape.
請求項1乃至請求項9の何れか1項に記載の永久磁石式回転電機を用いることを特徴とするエレベータ装置。   An elevator apparatus using the permanent magnet type rotating electrical machine according to any one of claims 1 to 9.
JP2008335608A 2008-12-29 2008-12-29 Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine Expired - Fee Related JP5210150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008335608A JP5210150B2 (en) 2008-12-29 2008-12-29 Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008335608A JP5210150B2 (en) 2008-12-29 2008-12-29 Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine

Publications (2)

Publication Number Publication Date
JP2010158130A true JP2010158130A (en) 2010-07-15
JP5210150B2 JP5210150B2 (en) 2013-06-12

Family

ID=42575590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008335608A Expired - Fee Related JP5210150B2 (en) 2008-12-29 2008-12-29 Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine

Country Status (1)

Country Link
JP (1) JP5210150B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110219A (en) * 2010-11-18 2012-06-07 General Electric Co <Ge> Rotor structure for fault-tolerant permanent magnet electromotive machine
WO2013001557A1 (en) * 2011-06-27 2013-01-03 株式会社 日立製作所 Magnetic gear type electric rotating machine
JP2013046571A (en) * 2011-08-26 2013-03-04 Johnson Electric Sa Brushless motor
JP2013099095A (en) * 2011-10-31 2013-05-20 Taiho Kogyo Co Ltd Motor
WO2015068749A1 (en) * 2013-11-08 2015-05-14 株式会社 明電舎 Magnet-securing structure for surface permanent magnet motor, and method for designing said structure
CN107659012A (en) * 2017-10-25 2018-02-02 常州威灵电机制造有限公司 Rotor punching, rotor and motor
WO2018180379A1 (en) * 2017-03-27 2018-10-04 岡山県 In-wheel motor
US10637305B2 (en) 2014-10-17 2020-04-28 Ihi Corporation Double stator-type rotary machine
CN115580045A (en) * 2022-11-11 2023-01-06 杭州恒业电机制造有限公司 Oblique pole permanent magnet structure, permanent magnet stator, permanent magnet rotor and manufacturing method thereof
WO2023026675A1 (en) * 2021-08-26 2023-03-02 株式会社神戸製鋼所 Rotary electrical machine
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
EP4195460A1 (en) * 2021-12-07 2023-06-14 Siemens Gamesa Renewable Energy A/S Rotor for a permanent magnet electrical machine
CN107086747B (en) * 2017-05-19 2024-01-12 宁波欣达电梯配件厂 Outer rotor traction machine rotor
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105365U (en) * 1987-12-28 1989-07-17
JPH0486058U (en) * 1990-11-28 1992-07-27
JPH11500897A (en) * 1994-12-02 1999-01-19 イドロ−ケベック Polyphase brushless AC electric machine
JP2000014111A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Outer-side rotation type permanent-magnet motor and elevator
JP2002142426A (en) * 2000-10-30 2002-05-17 Hitachi Ltd Permanent magnet type rotary electric machine
JP2002281722A (en) * 2001-03-22 2002-09-27 Matsushita Electric Ind Co Ltd Outer rotor motor and electric bicycle
JP2006304407A (en) * 2005-04-15 2006-11-02 Mitsubishi Electric Corp Permanent magnet type rotary electric machine, and method for producing rotor of the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105365U (en) * 1987-12-28 1989-07-17
JPH0486058U (en) * 1990-11-28 1992-07-27
JPH11500897A (en) * 1994-12-02 1999-01-19 イドロ−ケベック Polyphase brushless AC electric machine
JP2000014111A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Outer-side rotation type permanent-magnet motor and elevator
JP2002142426A (en) * 2000-10-30 2002-05-17 Hitachi Ltd Permanent magnet type rotary electric machine
JP2002281722A (en) * 2001-03-22 2002-09-27 Matsushita Electric Ind Co Ltd Outer rotor motor and electric bicycle
JP2006304407A (en) * 2005-04-15 2006-11-02 Mitsubishi Electric Corp Permanent magnet type rotary electric machine, and method for producing rotor of the same

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012110219A (en) * 2010-11-18 2012-06-07 General Electric Co <Ge> Rotor structure for fault-tolerant permanent magnet electromotive machine
WO2013001557A1 (en) * 2011-06-27 2013-01-03 株式会社 日立製作所 Magnetic gear type electric rotating machine
JPWO2013001557A1 (en) * 2011-06-27 2015-02-23 株式会社日立製作所 Magnetic gear type rotary electric machine
US9337708B2 (en) 2011-06-27 2016-05-10 Hitachi, Ltd. Magnetic gear-type electric rotating machine
JP2013046571A (en) * 2011-08-26 2013-03-04 Johnson Electric Sa Brushless motor
DE102012107793B4 (en) 2011-08-26 2024-04-04 Johnson Electric International AG Brushless motor
JP2013099095A (en) * 2011-10-31 2013-05-20 Taiho Kogyo Co Ltd Motor
WO2015068749A1 (en) * 2013-11-08 2015-05-14 株式会社 明電舎 Magnet-securing structure for surface permanent magnet motor, and method for designing said structure
JP2015092792A (en) * 2013-11-08 2015-05-14 株式会社明電舎 Magnet fixing structure of permanent magnet surface pasting type motor and design method of the same
US10637305B2 (en) 2014-10-17 2020-04-28 Ihi Corporation Double stator-type rotary machine
JP2018164366A (en) * 2017-03-27 2018-10-18 岡山県 In-wheel motor
WO2018180379A1 (en) * 2017-03-27 2018-10-04 岡山県 In-wheel motor
US11264879B2 (en) 2017-03-27 2022-03-01 Toda Racing Co., Ltd. In-wheel motor
CN107086747B (en) * 2017-05-19 2024-01-12 宁波欣达电梯配件厂 Outer rotor traction machine rotor
CN107659012A (en) * 2017-10-25 2018-02-02 常州威灵电机制造有限公司 Rotor punching, rotor and motor
US11661646B2 (en) 2021-04-21 2023-05-30 General Electric Comapny Dual phase magnetic material component and method of its formation
US11926880B2 (en) 2021-04-21 2024-03-12 General Electric Company Fabrication method for a component having magnetic and non-magnetic dual phases
WO2023026675A1 (en) * 2021-08-26 2023-03-02 株式会社神戸製鋼所 Rotary electrical machine
EP4195460A1 (en) * 2021-12-07 2023-06-14 Siemens Gamesa Renewable Energy A/S Rotor for a permanent magnet electrical machine
CN115580045A (en) * 2022-11-11 2023-01-06 杭州恒业电机制造有限公司 Oblique pole permanent magnet structure, permanent magnet stator, permanent magnet rotor and manufacturing method thereof

Also Published As

Publication number Publication date
JP5210150B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5210150B2 (en) Permanent magnet type rotating electrical machine, elevator apparatus, and manufacturing method of permanent magnet type rotating electrical machine
US7595575B2 (en) Motor/generator to reduce cogging torque
JP5774081B2 (en) Rotating electric machine
JP4269953B2 (en) Rotating electric machine
US9071118B2 (en) Axial motor
JP5533879B2 (en) Permanent magnet type rotating electrical machine rotor
JP2006509483A (en) Electric machines, especially brushless synchronous motors
JP2008206308A (en) Permanent-magnet rotating electric machine
JP2008271640A (en) Axial gap motor
JP2014236592A (en) Rotor for dynamo-electric machine and manufacturing method therefor
JP2013230047A (en) Rotor for motor, and motor
JP2014050211A (en) Permanent magnet rotary electric machine
JP2008211934A (en) Rotating electrical machine and rotator therefor
JP2006304546A (en) Permanent magnet reluctance type rotary electric machine
JP6561692B2 (en) Rotating electric machine
JP5609844B2 (en) Electric motor
WO2016060232A1 (en) Double stator-type rotary machine
JP5589418B2 (en) Method for manufacturing permanent magnet rotating machine
JP2011015458A (en) Permanent magnet type rotary electric machine, and elevator device using the same
JP2014533086A (en) Rotor having permanent magnets with different thicknesses and motor including the same
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2006262603A (en) Rotary electric machine
JP2010183648A (en) Permanent magnet rotary electric machine and electric vehicle using the same
JP2008199846A (en) Permanent magnet type electric rotating machine
JP2017063594A (en) Brushless motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130222

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees