WO2020027207A1 - Abnormality detecting method, information processing device, and abnormality detecting system - Google Patents

Abnormality detecting method, information processing device, and abnormality detecting system Download PDF

Info

Publication number
WO2020027207A1
WO2020027207A1 PCT/JP2019/030043 JP2019030043W WO2020027207A1 WO 2020027207 A1 WO2020027207 A1 WO 2020027207A1 JP 2019030043 W JP2019030043 W JP 2019030043W WO 2020027207 A1 WO2020027207 A1 WO 2020027207A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
series data
data
abnormality
attribute information
Prior art date
Application number
PCT/JP2019/030043
Other languages
French (fr)
Japanese (ja)
Inventor
小掠 哲義
瞳 嶺岸
佐々木 幸紀
多鹿 陽介
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2020027207A1 publication Critical patent/WO2020027207A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/04Manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present disclosure relates to an abnormality detection method, an information processing device, and an abnormality detection system.
  • Patent Document 1 discloses a method of diagnosing a failure.
  • the failure sign is associated with the failure. Judge that you are.
  • the present disclosure provides an abnormality detection method, an information processing device, and an abnormality detection system that can accurately detect an abnormality.
  • an abnormality detection method provides a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product, and attribute information of each of the plurality of time-series data. Acquiring, and analyzing the interrelationship of the plurality of time-series data, correcting the attribute information based on the result of the analysis, corrected attribute information and the plurality of time-series data And a step of outputting information indicating the detected abnormality and the time of occurrence of the abnormality based on the above.
  • the information processing apparatus includes an acquisition unit configured to acquire a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product and attribute information of each of the plurality of time-series data.
  • An analysis unit that analyzes the mutual relationship between the plurality of time-series data, a correction unit that corrects the attribute information based on the result of the analysis, and the corrected attribute information and the plurality of time-series data.
  • a detection unit that detects an abnormality occurring in the plurality of elements based on the detected abnormality, and an output unit that outputs information indicating the detected abnormality and a time when the abnormality occurs.
  • the abnormality detection system includes the information processing device, a data storage device for storing a plurality of time-series data and a plurality of attribute information acquired by the acquisition unit, and the output unit. And a presentation device for presenting the information output from.
  • an abnormality can be detected with high accuracy.
  • FIG. 1 is a diagram illustrating a configuration of a factory that is a target of the abnormality detection device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the abnormality detection device according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of time-series data acquired by the abnormality detection device according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of attribute information acquired by the abnormality detection device according to the first embodiment.
  • FIG. 5 is a flowchart illustrating an operation of the abnormality detection device according to the first embodiment.
  • FIG. 6 is a diagram illustrating an example of a result of the cross-correlation analysis performed by the abnormality detection device according to the first embodiment.
  • FIG. 1 is a diagram illustrating a configuration of a factory that is a target of the abnormality detection device according to the first embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the abnormality detection device according to the first embodiment.
  • FIG. 3 is
  • FIG. 7 is a flowchart illustrating a process of correcting attribute information in the operation of the abnormality detection device according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of correction of attribute information by the abnormality detection device according to the first embodiment.
  • FIG. 9 is a diagram illustrating an example of attribute information before correction for each group by the abnormality detection device according to the first embodiment.
  • FIG. 10 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the first embodiment.
  • FIG. 11 is a diagram illustrating an example of information output by the abnormality detection device according to the first embodiment.
  • FIG. 12 is a diagram illustrating a configuration example of a manufacturing apparatus determined by cross-correlation analysis by the abnormality detection device according to the modification of the first embodiment.
  • FIG. 13 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the modification of the first embodiment.
  • FIG. 14 is a diagram illustrating an example of information output by the abnormality detection device according to the modification of the first embodiment.
  • FIG. 15 is a diagram illustrating a configuration of a plurality of compressors that are targets of the abnormality detection device according to the second embodiment.
  • FIG. 16 is a block diagram illustrating a configuration of the abnormality detection device according to the second embodiment.
  • FIG. 17 is a diagram illustrating an example of attribute information acquired by the abnormality detection device according to the second embodiment.
  • FIG. 18 is a flowchart illustrating the operation of the abnormality detection device according to the second embodiment.
  • FIG. 19 is a diagram illustrating an example of a combination created by the abnormality detection device according to the second embodiment.
  • FIG. 20 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the second embodiment.
  • FIG. 21 is a diagram illustrating an example of information output by the abnormality detection device according to the second embodiment.
  • FIG. 22 is a diagram illustrating a configuration of a factory that is a target of the abnormality detection device according to the third embodiment.
  • FIG. 23 is a block diagram illustrating a configuration of the abnormality detection device according to the third embodiment.
  • FIG. 24 is a flowchart illustrating the operation of the abnormality detection device according to the third embodiment.
  • FIG. 25 is a diagram illustrating an example of a result of a multiple regression analysis performed by the abnormality detection device according to the third embodiment.
  • FIG. 26 is a diagram illustrating an example of correction of the attribute information by the abnormality detection device according to the third embodiment.
  • FIG. 27 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the third embodiment.
  • FIG. 28 is a diagram illustrating an example of information output by the abnormality detection device according to the third embodiment.
  • FIG. 29 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the comparative example.
  • FIG. 30 is a diagram illustrating an example of information output by the abnormality detection device according to the comparative example.
  • FIG. 31 is a diagram illustrating a configuration of a thermal model that is a target of the abnormality detection device according to the modification of the third embodiment.
  • FIG. 32 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the modification of the third embodiment.
  • FIG. 33 is a diagram illustrating an example of information output by the abnormality detection device according to the modification of the third embodiment.
  • FIG. 34 is a block diagram illustrating a configuration of an abnormality detection system that executes the abnormality detection method according to the fourth embodiment.
  • FIG. 35 is a block diagram illustrating another example of the configuration of the abnormality detection system that executes the abnormality detection method according to the fourth embodiment.
  • FIG. 36 is a block diagram illustrating a configuration of the abnormality detection system according to the fourth embodiment.
  • an abnormality detection method provides a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product, and an attribute of each of the plurality of time-series data. Obtaining information, analyzing the interrelationship of the plurality of time-series data, correcting the attribute information based on a result of the analysis, and modifying the attribute information and the plurality of time-series data. Detecting an abnormality occurring in the plurality of elements based on the data; and outputting information indicating the detected abnormality and the time of occurrence of the abnormality.
  • the error can be detected by analyzing the correlation between a plurality of time-series data. For example, when different attribute information is associated with the two time-series data despite the strong relationship between the two time-series data, it is determined that at least one of the attribute information is incorrect. can do. As described above, since an error in the attribute information can be detected, the attribute information can be corrected. Further, since the abnormality is detected based on the corrected attribute information, the abnormality can be detected with high accuracy.
  • the analysis may be a statistical analysis.
  • the statistical analysis may be a cross-correlation analysis.
  • the mutual relationship for example, the strength of the relationship
  • the mutual relationship between a plurality of time-series data can be represented by a numerical value such as a cross-correlation coefficient, so that the mutual relationship between the time-series data is easily and accurately determined. be able to. For this reason, an error in the attribute information corresponding to the time-series data can be easily and accurately detected, so that an abnormality can be accurately detected.
  • a cross-correlation coefficient of the plurality of time-series data is calculated, and the plurality of time-series data is classified into a plurality of groups based on the calculated cross-correlation coefficient.
  • a plurality of time-series data included in the group is classified into a minority and a majority based on corresponding attribute information, and the time-series data belonging to the minority
  • the attribute information may be modified to the attribute information of the time-series data belonging to the majority.
  • the attribute of the time-series data belonging to the minority may be modified to attribute information of the time-series data belonging to the majority.
  • the statistical analysis may be a multiple regression analysis.
  • the plurality of elements include a plurality of compressors whose outputs from each are integrated, and in the obtaining step, a plurality of pressure data, which are time-series data of pressures from each of the plurality of compressors, A plurality of flow rate data which is time series data of flow rate, and integrated flow rate data which is time series data of flow rate and integrated pressure data which is time series data of integrated pressure, are obtained as the plurality of time series data,
  • a plurality of combinations of the plurality of pressure data and the plurality of flow rate data, and a plurality of attribute information candidates corresponding to each of the plurality of pressure data and the plurality of flow rate data were created and created.
  • a plurality of pressure data and a plurality of flow rate data constituting the combination are made independent variables, and the integrated pressure data and the integrated
  • the amount data as the dependent variable may be performed multiple regression analysis.
  • the plurality of elements include an air conditioner disposed in each of a plurality of spaces, and a plurality of manufacturing devices each disposed in any one of the plurality of spaces, and the acquisition is performed.
  • the step acquiring the time series data of the power consumption of each of the plurality of air conditioners and the time series data of the parameters of each of the plurality of manufacturing apparatuses as the plurality of time series data, and performing the analysis.
  • multiple regression analysis may be performed using the time series data of the parameter as an independent variable and the time series data of the power consumption as a dependent variable.
  • information indicating the cause of the detected abnormality may be output.
  • information indicating a countermeasure for the abnormality which is determined according to the detected abnormality, may be further output.
  • the countermeasure plan is output, so that the user involved in the manufacture of the product can easily determine what action should be taken for the abnormality that has occurred. For this reason, for example, maintenance work can be performed promptly, or production of a product can be continued using an alternative device or the like, so that a decrease in production efficiency can be suppressed.
  • the abnormality detection method it is possible to assist in suppressing a decrease in production efficiency.
  • the information processing apparatus includes an acquisition unit configured to acquire a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product and attribute information of each of the plurality of time-series data.
  • An analysis unit that analyzes the mutual relationship between the plurality of time-series data, a correction unit that corrects the attribute information based on the result of the analysis, and the corrected attribute information and the plurality of time-series data.
  • a detection unit that detects an abnormality occurring in the plurality of elements, and an output unit that outputs information indicating the detected abnormality and an occurrence time of the abnormality.
  • the abnormality detection system includes the information processing device, a data storage device for storing a plurality of time-series data and a plurality of attribute information acquired by the acquisition unit, and the output unit. And a presentation device for presenting the information output from the device.
  • each drawing is a schematic diagram and is not necessarily strictly illustrated. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
  • the abnormality detection device detects, for example, an abnormality that occurs in a device included in a manufacturing system in a factory or the like in which a manufacturing system that manufactures a product is installed.
  • FIG. 1 is a diagram showing a configuration of a factory 1 which is a target of the abnormality detection device 100 according to the present embodiment.
  • the factory 1 a plurality of devices related to the manufacture of a product are arranged in each of the three rooms A to C. Specifically, as shown in FIG. 1, in a room A, a mounting machine A, a molding machine A, and an air conditioner A are arranged.
  • a mounting machine A In the room B, a molding machine B, a coating machine B, a welding machine B, a press machine B, and an air conditioner B are arranged.
  • a press C and an air conditioner C are arranged in the room C.
  • the mounting machine A, the molding machines A and B, the coating machine B, the welding machine B, the press machines B and C, and the air conditioners A to C are each an example of a plurality of elements related to the manufacture of a product.
  • the plurality of elements include elements other than the manufacturing apparatus that directly manufactures products, such as the air conditioners A to C.
  • the plurality of elements may include, for example, a repeater that relays communication between the devices. Further, the plurality of elements may include a compressor.
  • the abnormality detection device 100 acquires a plurality of time-series data obtained from the plurality of elements, and detects an abnormality occurring in the plurality of elements based on the acquired plurality of time-series data.
  • the time-series data represents a temporal change of a numerical value of one or more parameters of each element.
  • the one or more parameters include, for example, power consumption, the number of operations, the operation time, the number of inserted components, the number of output components, and the like.
  • Each of the plurality of elements is provided with a sensor or a measuring device for detecting a numerical value of the parameter.
  • the abnormality detection device 100 is communicably connected by wire or wirelessly to a sensor or a measuring device provided for each of the plurality of elements.
  • the abnormality detection device 100 is realized by, for example, a computer device. Specifically, the abnormality detection device 100 is realized by a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, a processor that executes the program, and the like. You.
  • FIG. 2 is a block diagram showing a configuration of the abnormality detection device 100 according to the present embodiment.
  • the abnormality detection device 100 includes an acquisition unit 110, an analysis unit 120, a correction unit 130, a detection unit 140, and an output unit 150. Further, the abnormality detection device 100 includes a storage unit 160 for storing various data and information.
  • the acquisition unit 110 acquires a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product and attribute information of each of the plurality of time-series data.
  • the acquiring unit 110 is realized by, for example, an input interface or a communication interface to which output data from a sensor or a measuring instrument attached to each device such as the manufacturing apparatus and the air conditioner illustrated in FIG. 1 is input.
  • the acquiring unit 110 acquires a plurality of time-series data by periodically acquiring output data from each sensor or measuring instrument.
  • the acquisition unit 110 is further realized by a user interface or the like that receives an operation input by an administrator of the factory 1 or the like.
  • the acquisition unit 110 acquires attribute information by receiving an operation input. That is, in the present embodiment, the attribute information is information input by a person such as a manager of the factory 1. For this reason, an error may occur in the correspondence relationship with the time-series data due to a human error or omission in input.
  • the plurality of time-series data and attribute information acquired by the acquisition unit 110 are stored in the storage unit 160.
  • a plurality of time-series data is managed in a time-series data DB (database) 162, and attribute information is managed in an attribute information DB 164.
  • the analysis unit 120 analyzes the cross-correlation of the plurality of time-series data acquired by the acquisition unit 110.
  • the analysis unit 120 specifically refers to the time-series data DB 162 stored in the storage unit 160, and analyzes the mutual relationship using the plurality of time-series data read from the storage unit 160.
  • the analysis unit 120 outputs the result of the analysis to the correction unit 130.
  • the analysis unit 120 performs a statistical analysis. Specifically, the analysis unit 120 performs a cross-correlation analysis. More specifically, analysis section 120 calculates a cross-correlation coefficient of a plurality of time-series data, and classifies the plurality of time-series data into a plurality of groups based on the calculated cross-correlation coefficient.
  • the analysis unit 120 selects two time series data from the plurality of time series data, and calculates a cross-correlation coefficient of the selected time series data.
  • N is a natural number of 2 or more
  • N (N-1) / 2 combinations for selecting two time series data from the N pieces of time series data. Therefore, N (N-1) / 2 cross-correlation coefficients are calculated.
  • the cross-correlation coefficient is represented by a value between ⁇ 1 and +1.
  • the analysis unit 120 classifies the plurality of time-series data into a plurality of groups according to the strength of the correlation by comparing the cross-correlation coefficient with the threshold. Specifically, the analysis unit 120 compares the absolute value of the cross-correlation coefficient with a threshold.
  • the threshold value is, for example, 0.75, but is not limited thereto.
  • a plurality of time-series data in which the absolute value of the cross-correlation coefficient is larger than 0.75 is set as a group having a large correlation.
  • the correction unit 130 corrects the attribute information based on the result of the analysis by the analysis unit 120. Specifically, the correction unit 130 refers to the attribute information DB 164 stored in the storage unit 160, and uses the plurality of pieces of attribute information read from the storage unit 160 and the analysis result obtained from the analysis unit 120. Modify attribute information. The correction unit 130 reflects the result of the correction in the attribute information DB 164.
  • the correction unit 130 classifies, for each group classified by the analysis unit 120, a plurality of time-series data included in the group into a minority group and a majority group based on corresponding attribute information. .
  • the correction unit 130 corrects the attribute information of the time-series data belonging to the minority into the attribute information of the time-series data belonging to the majority.
  • the correction unit 130 deletes the attribute information of the time-series data belonging to the minority. Modify to the attribute information of the time series data belonging to the faction. For example, when the number of time-series data belonging to the minority is equal to or less than 1/4 of the number of time-series data belonging to the majority, the correction unit 130 determines that the total number of time-series data belonging to the group is equal to or less than 20%. , The attribute information of the time-series data belonging to the minority is corrected. The specific operation of the correction will be described later in detail with an example.
  • the detection unit 140 detects an abnormality occurring in a plurality of elements based on the corrected attribute information and the plurality of time-series data. For example, the detection unit 140 detects an abnormality for each abnormality to be detected by using a predetermined abnormality detection model or rule.
  • the detection unit 140 refers to the time-series data DB 162, the attribute information DB 164, and the abnormality detection model DB 166 stored in the storage unit 160, and reads necessary data to detect an abnormality.
  • the detection unit 140 outputs the result of the detection of the abnormality to the output unit 150.
  • Abnormalities to be detected include, for example, abnormalities that occur in a manufacturing apparatus such as a mounting machine, a molding machine, a coating machine, a welding machine or a press machine.
  • the abnormality to be detected may include an abnormality that occurs in an air conditioner such as an air conditioner, or an abnormality that occurs in a space (specifically, a room) in which air conditioning is controlled by the air conditioner.
  • the abnormality to be detected may include an abnormality occurring in the compressor. The specific operation of the abnormality detection will be described later in detail with an example.
  • the analysis unit 120, the correction unit 130, and the detection unit 140 are each realized by, for example, software executed by a processor. Alternatively, at least one of the analysis unit 120, the correction unit 130, and the detection unit 140 may be realized by hardware such as an electronic circuit including a plurality of circuit elements.
  • the output unit 150 outputs information indicating the detected abnormality and the time when the abnormality occurs.
  • output unit 150 further outputs information indicating the cause of the abnormality or information indicating a countermeasure for the abnormality that is predetermined according to the detected abnormality.
  • the output unit 150 refers to the countermeasure information DB 168 stored in the storage unit 160, determines a countermeasure corresponding to the detected abnormality, and outputs information indicating the determined countermeasure.
  • the output unit 150 is realized by, for example, a display for displaying information, but is not limited thereto.
  • the output unit 150 may be realized by a speaker that outputs information as sound.
  • the output unit 150 may be realized by an output interface or a communication interface for outputting information to an external display, a speaker, or the like.
  • the storage unit 160 is realized by, for example, a semiconductor memory or a HDD (Hard Disk Drive). In the present embodiment, the storage unit 160 stores various data and information necessary for executing the abnormality detection method in a database. Specifically, as shown in FIG. 2, the storage unit 160 stores a time-series data DB 162, an attribute information DB 164, an abnormality detection model DB 166, and a countermeasure information DB 168.
  • the time series data DB 162 includes a plurality of time series data acquired by the acquisition unit 110.
  • the time series data DB 162 is generated and updated when the acquisition unit 110 acquires the time series data.
  • a specific example of the time-series data DB 162 will be described later with reference to FIG.
  • the attribute information DB 164 includes a plurality of pieces of attribute information acquired by the acquisition unit 110.
  • the plurality of pieces of attribute information respectively correspond to the plurality of pieces of time-series data.
  • the attribute information DB 164 is generated and updated when the acquisition unit 110 acquires the attribute information.
  • the attribute information DB 164 is updated by the correction unit 130. A specific example of the attribute information DB 164 will be described later with reference to FIG.
  • the anomaly detection model DB 166 includes a model or a rule used by the detection unit 140 for anomaly detection.
  • available models or rules are associated with each abnormality to be detected.
  • the measure information DB 168 includes a plurality of measure plans.
  • one or more predetermined countermeasures are associated with each detected abnormality.
  • the one or more countermeasures include, for example, stopping the device in which the abnormality is detected, instructing maintenance of the device, and presenting an alternative device that can be used in place of the device.
  • time-series data DB 162 and the attribute information DB 164 stored in the storage unit 160 will be described.
  • FIG. 3 is a diagram illustrating an example of a plurality of time-series data acquired by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 3 shows a part of the time-series data DB 162 stored in the storage unit 160.
  • time-series data DB 162 a plurality of time-series data are managed in association with each time.
  • the time is represented by, for example, date and time (date and time), but may not include the date.
  • time-series data DB 162 the time-series data is shown as data for one column.
  • An identifier (specifically, data ID) is attached to the time-series data.
  • the data ID is composed of a combination of “Data-” and a two-digit numerical value, such as “Data-01” in the example shown in FIG.
  • the configuration of the data ID is not particularly limited.
  • One piece of time-series data includes a numerical value of a parameter (for example, power consumption) for each fixed period.
  • the numerical value may be, for example, an instantaneous value of the parameter, or a cumulative value or an average value of the parameter within a period.
  • the period is, for example, one second or more and several ten minutes or less, but is not limited thereto.
  • the time-series data indicates a numerical value every 10 minutes.
  • FIG. 4 is a diagram illustrating an example of attribute information acquired by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 4 illustrates the attribute information DB 164 stored in the storage unit 160.
  • attribute information is associated with each data ID representing time-series data.
  • the attribute information is classified into a plurality of items.
  • the items are an installation room, a device name, and a data type.
  • the installation room and the device name indicate the room in which the device to which the sensor or the measuring device for measuring the numerical value of the corresponding time-series data is mounted is installed, and the name of the device.
  • the type of data corresponds to the content of the parameter of the device.
  • the attribute information DB 164 is generated by, for example, input by a person such as an administrator of the factory 1, a designer, an operator of each device, or a maintenance worker. For this reason, an erroneous input due to a human error may occur, and the correspondence between the attribute information and the time-series data may include an error.
  • the attribute information in which an error has occurred and needs to be corrected is shown in bold letters, and the background is shaded with dots.
  • the error is detected by the analysis by the analysis unit 120, and is corrected by the correction unit 130.
  • FIG. 5 is a flowchart showing the operation of the abnormality detection device 100 according to the present embodiment.
  • the acquisition unit 110 first acquires the time-series data and the attribute information (S10).
  • the acquisition unit 110 acquires a sensor value (that is, a numerical value of each parameter) from, for example, a sensor or a measuring device provided in each device of the factory 1 every 10 minutes, and stores the acquired sensor value in the storage unit 160, for example.
  • a sensor value that is, a numerical value of each parameter
  • the acquisition unit 110 acquires attribute information corresponding to a plurality of time-series data by receiving an input from a manager of the factory 1 or the like. Either the acquisition of the time-series data or the acquisition of the attribute information may be performed first, or may be performed simultaneously.
  • the analysis unit 120 analyzes the cross-correlation of the plurality of time-series data (S11).
  • analysis unit 120 selects two time-series data from time-series data DB 162 stored in storage unit 160, and calculates a cross-correlation coefficient between the selected two time-series data.
  • the analysis unit 120 repeats the selection of two time series data for which the cross-correlation coefficient has not been calculated from the N time series data stored in the storage unit 160, so that N (N ⁇ 1) / 2 Is calculated.
  • the analysis unit 120 classifies the plurality of time-series data into a plurality of groups by comparing the calculated cross-correlation coefficient with a threshold. For example, the analysis unit 120 determines that two time-series data in which the absolute value of the cross-correlation coefficient is greater than 0.75 belong to the same group, and classifies the N time-series data into a plurality of groups.
  • FIG. 6 is a diagram showing an example of the result of the cross-correlation analysis by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 6 schematically shows a state in which 20 time-series data Data-01 to Data-20 are classified into four groups A to D. The remaining Data-21 to Data-23 are not shown in FIG. 6 because they are classified into single groups E to G, respectively.
  • FIG. 6 shows not only a group having a large correlation but also a correlation (medium correlation or small correlation) between the groups.
  • the difference in the correlation strength is determined by using a plurality of thresholds. The details will be described later as a modification of the present embodiment.
  • the correction unit 130 corrects the attribute information as shown in FIG. 5 (S12). In the present embodiment, the correction unit 130 corrects the device name in the attribute information.
  • FIG. 7 is a flowchart showing a process of correcting attribute information in the operation of abnormality detection apparatus 100 according to the present embodiment.
  • FIG. 8 is a diagram showing an example of the correction of the attribute information by the abnormality detection device 100 according to the present embodiment.
  • a grouping result obtained by the cross-correlation analysis and various types of information associated when performing the attribute information correction process are added to the attribute information DB 164.
  • FIG. 9 is a diagram showing an example of attribute information before correction for each group by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 9 corresponds to the grouping result of FIG. 6, and shows, instead of the data ID, the device name and the type of data associated with the data ID.
  • the correction unit 130 sets a correction flag (temporary) based on the grouping result obtained by the cross-correlation analysis (S20). Specifically, the correction unit 130 classifies the time-series data into a minority group and a majority group based on the attribute information for each group. Here, the time-series data is classified into a minority group and a majority group based on the device name which is the attribute information to be corrected.
  • the device names of the five time-series data are “mounting machines”, and all of them are classified as majority.
  • the device name of the four time-series data Data-06, Data-09, Data-16 and Data-19 is “molding machine”, whereas the device name of one time-series data Data-10 is Is the “mounting machine”. That is, in the group B, the four time-series data Data-06, Data-09, Data-16, and Data-19 are classified into the majority, and one time-series data Data-10 is classified into the minority.
  • the time-series data Data-13 is classified as a minority
  • the time-series data Data-08 is classified as a minority.
  • the correction unit 130 sets the correction flag (provisional) of each of the time-series data Data-08, Data-10, and Data-13 classified as the minority to “TRUE”, and sets the remaining 20 time-series data.
  • Each correction flag (temporary) is set to “FALSE”.
  • the correction flag (temporary) is information indicating whether or not the device name of the associated time-series data is to be corrected. When the correction flag (temporary) is “TRUE”, a process of correcting the device name of the time-series data associated with the correction flag (temporary) is performed.
  • the correction unit 130 sets the correction flag (provisional) for the minority only when the ratio of the time-series data classified to the minority to the total number of the time-series data in the group is sufficiently small. Is set to “TRUE”. For example, when the ratio of the time series data is 20% or less, the correction flag (temporary) of the minority is set to “TRUE”. As shown in FIGS. 8 and 9, the proportion of the minority in all of the groups B to D is 20% or less. For this reason, the correction unit 130 sets the correction flag (temporary) of each of the time series data Data-08, Data-10, and Data-13, which are the minorities of the groups B to D, to “TRUE”.
  • the correction unit 130 provisionally sets the candidate information (S21).
  • the candidate information is, specifically, a device name that becomes a correction candidate.
  • the device name that is a correction candidate is the device name of the time-series data belonging to the majority of the group. Therefore, as shown in FIG. 8, the device name of the correction candidate of the time-series data Data-13 belonging to the group B is “applicator” which is the device name of the time-series data belonging to the majority of the group B.
  • the device name of the correction candidate of the time-series data Data-10 belonging to the group C is “molding machine”.
  • the device name of the correction candidate of the time-series data Data-08 belonging to the group D is “press machine”.
  • the correction unit 130 sets a duplication flag (S23). Specifically, the correction unit 130 sets “TRUE” when the set of the installation room, the device name, and the data type after correction overlaps with the set of the installation room, the device name, and the data type of another data ID. If no duplicate data exists, "FALSE" is set. For example, in the time-series data Data-08, the installation room, the device name, and the data type after the correction are “RoomB”, “press machine”, and “operation time”, respectively, and do not overlap with other data. Therefore, the correction unit 130 sets the overlap flag to “FALSE”.
  • the correction unit 130 extracts a representative value of the time-series data (S24).
  • the representative value is, for example, at least one of a minimum value, a maximum value, and an average value of numerical values included in the time-series data.
  • the correction unit 130 reads the minimum value, the maximum value, and the average value of the time-series data Data-08 with reference to the time-series data DB 162.
  • the correction unit 130 extracts an allowable representative value (S25).
  • the permissible representative value is a value determined based on, for example, the specifications of the device or a past operation history, and is stored in the storage unit 160.
  • the permissible representative value is at least one of a minimum value and a maximum value of a range permitted as the operation of the apparatus, and an assumed average value.
  • the correction unit 130 associates the allowable representative value read from the storage unit 160 with the data ID. When the allowable representative value is unknown, the correction unit 130 associates that the allowable representative value is unknown with the data ID.
  • the correction unit 130 determines whether or not inconsistency has occurred between the allowable representative value and the representative value of the time-series data (S26). For example, if the minimum value of the time series data is equal to or larger than the minimum value of the allowable representative value, no inconsistency occurs. If the maximum value of the time series data is equal to or less than the maximum value of the allowable representative value, no inconsistency occurs. If the average value of the time-series data is equal to the average value of the allowable representative values (for example, the difference is within ⁇ 10% to 20%), no inconsistency occurs.
  • the correction unit 130 corrects the device name in the attribute information DB 164 to a device name of a correction candidate (S27). By setting the correction flag to “TRUE”, the correction of the attribute information of the time-series data is completed.
  • the correction unit 130 sets another candidate information and executes the above-described processing (S23 to S27). You may. For example, when the minimum value of the time-series data is smaller than the minimum value of the allowable representative value, a contradiction occurs. Alternatively, when the maximum value of the time-series data is larger than the maximum value of the allowable representative values, a contradiction occurs. If the average value of the time-series data is not equal to the average value of the allowable representative values (for example, the difference is within ⁇ 10% to 20%), a contradiction occurs. Alternatively, the correction unit 130 corrects the attribute information by causing the output unit 150 to output information notifying that the correction has not been correctly performed, and causing the administrator of the factory 1 to input the attribute information. Is also good.
  • the correction unit 130 may set another candidate information and execute the above-described processing (S23 to S27). Alternatively, information notifying that the correction was not correctly performed may be output from the output unit 150, and the information may be corrected by a manager of the factory 1 or the like.
  • the detection unit 140 detects an abnormality (S13).
  • the detection of the abnormality may be performed immediately after the attribute information is corrected, or may be performed at a predetermined timing. Further, the detection of the abnormality may be periodically repeated.
  • the detection unit 140 reads data from each of the time-series data DB 162, the attribute information DB 164, and the abnormality detection model DB 166 of the storage unit 160 for each abnormality to be detected, and detects an abnormality based on the read data. The presence / absence and the time when an abnormality has occurred are detected.
  • the detection unit 140 detects an abnormality of the molding machine will be described as an example.
  • the detection unit 140 reads and uses the abnormality detection model of the molding machine from the abnormality detection model DB 166.
  • the abnormality detection model of the molding machine it is determined that no abnormality has occurred in the molding machine when the ratio between the number of parts supplied to the molding machine and the power consumption of the molding machine falls within a predetermined range. When the ratio deviates from the predetermined range, it is determined that an abnormality has occurred in the molding machine.
  • abnormality detection model of the molding machine for example, when the number of inputs [pieces] / power consumption [kWh] is in the range of 1.2 or more and 2.0 or less, it is determined that no abnormality has occurred, and When [unit] / power consumption [kWh] is less than 1.2 or greater than 2.0, it is determined that an abnormality has occurred.
  • the detection unit 140 specifies the time-series data corresponding to each of the power consumption and the number of inputs of the target molding machine by referring to the attribute information DB 164. As shown in FIG. 8, it is specified that the power consumption of the molding machine is time-series data Data-06, and the number of injections of the molding machine is time-series data Data-10.
  • the attribute information DB 164 before correction shown in FIG. 4 does not include time-series data corresponding to the number of injections of the molding machine. Therefore, although it actually exists, the time series data corresponding to the number of injections of the molding machine is not specified, and the abnormality detection process cannot be performed.
  • the time-series data Data-10 corresponding to the number of injections of the molding machine is specified. For this reason, the abnormality detection process can be performed with high accuracy.
  • FIG. 10 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device 100 according to the present embodiment.
  • the horizontal axis represents time.
  • the vertical axis of FIG. 10A represents the power consumption [kWh] and the number of inputs [pieces]. That is, FIG. 10A is a two-dimensional graph of time-series data Data-06 indicating power consumption and time-series data Data-10 indicating the number of inputs.
  • the vertical axis in FIG. 10B represents the number of inputs / power consumption [pcs / kWh].
  • the detecting unit 140 determines that an abnormality indicating that the productivity has decreased has occurred in the molding machine in the period T1.
  • the detecting unit 140 determines that an abnormality indicating that useless power consumption occurs has occurred in the molding machine in the period T2.
  • the type of the abnormality is predetermined in the abnormality detection model of the molding machine based on the value of the number of inputs / power consumption. For example, when the number of inputs / power consumption is 0 and the power consumption is greater than 0, the type of abnormality is determined to be useless power consumption. When the number of inputs / power consumption is larger than 0 and smaller than 1.2, it is determined that the type of abnormality is productivity reduction. When the number of inputs / power consumption is greater than 2.0, the type of abnormality is defined as excessive supply of components or a sensor failure.
  • the output unit 150 After the abnormality is detected by the detection unit 140 in this way, as shown in FIG. 5, the output unit 150 outputs information indicating the detected abnormality and the occurrence time of the abnormality (S14). In addition, the output unit 150 determines a countermeasure against the abnormality by referring to the countermeasure information DB 168 stored in the storage unit 160 based on the detected abnormality, and outputs information indicating the determined countermeasure. I do.
  • FIG. 11 is a diagram illustrating an example of information output by the abnormality detection device 100 according to the present embodiment.
  • the output unit 150 generates an image representing the detected abnormality, the occurrence time of the abnormality, and a countermeasure for the abnormality, and displays the generated image on a display or the like, so that the administrator of the factory 1 or the like. To present.
  • the processing up to the correction of the attribute information is performed as a preceding step of the abnormality detection method, and the processing after the detection of the abnormality is performed as a subsequent step. If the attribute information has been corrected at least once and it has been confirmed that the attribute information has been correctly corrected, the cross-correlation analysis (S11) and the attribute information correction (S12) may not be performed. Good. In this case, acquisition of time-series data (S10), detection of abnormality (S13), and output of information (S14) may be periodically repeated.
  • Detection of an abnormality and output of information may be performed in real time in parallel with manufacture of a product. Accordingly, when an abnormality is detected, a response such as maintenance can be promptly performed, so that a decrease in production efficiency can be suppressed.
  • the detection of the abnormality and the output of the information may be performed every period such as one week or one month. This makes it possible to specify a device or the like in which an abnormality is likely to occur when a product is manufactured for a long period of time. For this reason, it can be used for formulation of a future production plan, such as a change in the design of a production line or replacement of a production device.
  • the abnormality detection method and the abnormality detection device are capable of suppressing not only a short-term decrease in production efficiency with emphasis on real-time performance but also a decrease in production efficiency from a medium- to long-term perspective. Can help.
  • the analysis unit 120 selects two time-series data from a plurality of time-series data, and calculates a cross-correlation coefficient and a delay of the selected time-series data. By calculating the delay, the relationship between groups having relatively small correlation can be determined. Specifically, the analysis unit 120 determines the line configuration of each manufacturing apparatus based on the delay.
  • the analysis unit 120 compares the absolute value of the cross-correlation coefficient with a plurality of thresholds.
  • the plurality of threshold values include not only 0.75 but also 0.6 and 0.4. This makes it possible to classify the groups according to the strength of the correlation. For example, by using three thresholds, a plurality of time-series data can be classified into a large correlation group, a medium correlation group, a small correlation group, and no correlation. Further, when a plurality of groups having a large correlation are formed, the strength of the correlation between the plurality of groups can be determined.
  • the analysis unit 120 determines that there is a small correlation between the two time-series data. .
  • the analysis unit 120 determines that the manufacturing apparatuses corresponding to the time-series data included in the group determined to have a small correlation form the same manufacturing line.
  • the classification result based on a plurality of thresholds of the 20 time-series data shown in FIGS. 6 and 9 will be described.
  • the absolute value of the cross-correlation coefficient between the time-series data classified into group A and the time-series data classified into group B is larger than 0.65 and 0.75 or less. For this reason, it can be determined that the group A and the group B have a moderate correlation.
  • the threshold value used for classifying the group is set to 0.65 instead of 0.75, ten pieces of time-series data are classified into one group including the group A and the group B. The same applies to the groups A and C, and the same applies to the groups C and D.
  • the absolute value of the cross-correlation coefficient between the time-series data classified into group B and the time-series data classified into group C is larger than 0.40 and 0.65 or less. Therefore, it is determined that group A and group C have a small correlation. Further, the absolute value of the cross-correlation coefficient between the time-series data classified into group A and the time-series data classified into group D is 0.40 or less, and there is almost no correlation between group A and group D. It is determined that there is not.
  • each of the groups A to D shown in FIG. 6 has a small correlation or a moderate correlation with each other. Therefore, the analysis unit 120 determines that the mounting machine, the molding machine, the coating machine, and the press machine constitute one manufacturing line.
  • the analysis unit 120 determines the order of each manufacturing apparatus based on the delay. Specifically, the analysis unit 120 determines that the delay of the second time-series data with respect to the first time-series data is a positive value and the absolute value thereof is larger, the manufacturing time corresponding to the second time-series data is larger. The apparatus determines that the apparatus is located downstream of the manufacturing line from the manufacturing apparatus corresponding to the first time-series data. Similarly, as the delay of the second time-series data with respect to the first time-series data is a negative value and the absolute value thereof is larger, the analysis unit 120 determines that the manufacturing apparatus corresponding to the second time-series data has a larger value. , Is located upstream of the manufacturing line with respect to the manufacturing apparatus corresponding to the first time-series data.
  • the configuration of the production line is determined based on the classification result shown in FIG.
  • the determination of the configuration of the production line is performed by the analysis unit 120 after the attribute information is corrected as described in the first embodiment. Therefore, the time-series data included in each of the groups A to D corresponds to each of the mounting machine, the coating machine, the molding machine, and the press machine.
  • FIG. 12 is a diagram illustrating a configuration example of a manufacturing apparatus determined by a cross-correlation analysis by the abnormality detection apparatus 100 according to the present modification.
  • the configuration of the manufacturing line can be determined by the cross-correlation analysis by the analysis unit 120. Therefore, the detection unit 140 can detect the abnormality with higher accuracy.
  • a model for detecting an abnormality of a coating machine will be described.
  • the ratio between the number of parts produced by the coating machine and the number of parts supplied to the mounting machine after the delay time of ⁇ t is within a predetermined range, It is determined that no abnormality has occurred in the coating machine.
  • the ratio deviates from the predetermined range it is determined that an abnormality has occurred.
  • the abnormality detection model of the coating machine is such that when the production number [pieces] of the coating machine / the number [pieces] of the mounting machine after 30 seconds is included in the range of 0.8 or more and 1.2 or less, the abnormality If it is determined that no occurrence has occurred, and the number of coating machines produced [pieces] / the number of loading machines after 30 seconds [pieces] is less than 0.8 or greater than 1.2, an abnormality occurs. It is determined that there is.
  • FIG. 13 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device 100 according to the present modification.
  • the horizontal axis represents time.
  • the vertical axis indicates the number of production machines [pcs] and the number of mounting machines [pcs].
  • the production number of the applicator became zero at 13:12, and the production of the applicator was stopped. Thereafter, at 13:13, the number of mounted machines becomes zero. Since the production number of coating machines / the number of mounting machines is 0 or a value that cannot be calculated, the detection unit 140 determines that an abnormality has been detected.
  • the detection unit 140 determines the period from when the production number of the coating machine becomes 0 to when the number of mounting machines becomes 0, and the delay between the coating machine and the mounting machine calculated by the analysis unit 120. Compare with time. When the period from when the production number of the coating machine becomes 0 to when the number of the mounting machines becomes 0 is equal to the delay time (for example, the difference is twice or less), the detection unit 140 detects the production line. It is determined that an abnormality has occurred in the device located upstream and no abnormality has occurred in the device located downstream. Thus, in the examples shown in FIGS. 12 and 13, it is determined that an abnormality has occurred in the coating machine and no abnormality has occurred in the mounting machine.
  • the output unit 150 Based on the detection result of such an abnormality, the output unit 150 outputs the detected abnormality, the occurrence time of the abnormality, and a measure.
  • FIG. 14 is a diagram illustrating an example of information output by the abnormality detection device 100 according to the present modification.
  • the output unit 150 generates an image indicating the detected abnormality, the occurrence time of the abnormality, and a countermeasure for the abnormality, and displays the image on a display or the like, so that the administrator of the factory 1 or the like. To present.
  • the output unit 150 displays not the maintenance of the mounting machine but the maintenance of the coating machine.
  • FIG. 15 is a diagram illustrating a configuration of a plurality of compressors A to C that are targets of the abnormality detection device 200 according to the present embodiment.
  • Each of the plurality of compressors A to C is an example of a plurality of elements involved in manufacturing a product.
  • the plurality of compressors A to C are devices that compress and output a gas such as air.
  • the outputs from each of the plurality of compressors A to C are integrated. Specifically, the output of the compressor A, the output of the compressor B, and the output of the compressor C are integrated and output.
  • the abnormality detection device 200 acquires pressure data, which is time-series data of the output pressure of each of the plurality of compressors A to C, and flow rate data, which is time-series data of the flow rate. Further, the abnormality detection device 200 acquires power data, which is time-series data of power consumption, by acquiring sensor values of power consumption in each compressor from sensors attached to the plurality of compressors A to C. Further, the abnormality detection device 200 acquires integrated pressure data, which is time series data of the integrated pressure of the plurality of compressors A to C, and integrated flow rate data, which is time series data of the flow rate. The abnormality detection device 200 detects an abnormality occurring in the plurality of compressors A to C based on the acquired plurality of time-series data.
  • FIG. 16 is a block diagram showing a configuration of an abnormality detection device 200 according to the present embodiment.
  • the abnormality detection device 200 includes an acquisition unit 210, an analysis unit 220, a correction unit 230, a detection unit 240, and an output unit 150. Further, the abnormality detection device 200 includes a storage unit 260 for storing various data and information.
  • the acquisition unit 210 acquires a plurality of time-series data obtained from each of the plurality of compressors A to C and attribute information of each of the plurality of time-series data. Specifically, the acquiring unit 210 acquires pressure data and flow rate data from each of the plurality of compressors A to C, and integrated pressure data and integrated flow rate data. For example, a pressure gauge and a flow meter are attached to each output line of the plurality of compressors A to C and the output line after integration.
  • the acquisition unit 210 acquires a plurality of pressure data, a plurality of flow data, an integrated pressure data, and a pressure sensor value and a flow sensor value by periodically acquiring a pressure sensor value and a flow sensor value from a pressure gauge and a flow meter attached to each output line. Obtain integrated flow data. Further, the acquisition unit 210 acquires a plurality of power data by periodically acquiring power values from sensors attached to the plurality of compressors A to C.
  • the plurality of time-series data and attribute information acquired by the acquisition unit 210 are stored in the storage unit 260.
  • a plurality of pressure data, a plurality of flow data, a plurality of power data, integrated pressure data, and integrated flow data are managed in the time-series data DB 262, and attribute information is managed in the attribute information DB 264.
  • the analysis unit 220 analyzes the cross-correlation of the plurality of time-series data acquired by the acquisition unit 210.
  • analysis section 220 performs multiple regression analysis. Specifically, the analysis unit 220 creates a plurality of combinations of pressure data and flow rate data from each of the plurality of compressors A to C, and candidates for attribute information corresponding to each of the pressure data and flow rate data. The analysis unit 220 determines the likelihood of the created combination by performing multiple regression analysis, and determines an optimal solution (optimal combination).
  • the analysis unit 220 performs a multiple regression analysis using a plurality of pressure data and a plurality of flow data constituting the combination as independent variables, and using the integrated pressure data and the integrated flow data as dependent variables.
  • the analysis unit 220 calculates a determination coefficient (that is, an R value) by multiple regression analysis for each combination.
  • the analysis unit 220 determines the combination corresponding to the largest determination coefficient among the plurality of calculated determination coefficients as the optimal combination.
  • the analysis unit 220 outputs information indicating the optimal combination to the correction unit 230.
  • the correction unit 230 corrects the attribute information based on the result of the analysis by the analysis unit 220. Specifically, the correction unit 230 refers to the attribute information DB 264 stored in the storage unit 260, and stores a plurality of pieces of attribute information read from the storage unit 260 and information indicating an optimal combination obtained from the analysis unit 220. To correct attribute information. The correction unit 230 reflects the result of the correction in the attribute information DB 264. The specific operation of the correction by the correction unit 230 will be described later using an example.
  • the detection unit 240 detects an abnormality occurring in the compressors A to C based on the corrected attribute information and the pressure data, the flow rate data, the power data, the integrated pressure data, and the integrated flow rate data. For example, the detection unit 240 detects an abnormality of the compressors A to C based on an abnormality detection model regarding the power efficiency of the compressor.
  • the detection unit 240 refers to the time-series data DB 262, the attribute information DB 264, and the abnormality detection model DB 166 stored in the storage unit 260, and reads necessary data to detect an abnormality.
  • the detection unit 240 outputs a detection result of the abnormality to the output unit 150. The specific operation of the abnormality detection will be described later in detail with an example.
  • the storage unit 260 is realized by, for example, a semiconductor memory or an HDD.
  • the storage unit 260 stores various data and information necessary for executing the abnormality detection method in a database.
  • the storage unit 260 stores a time-series data DB (database) 262, an attribute information DB 264, an abnormality detection model DB 166, and a countermeasure information DB 168.
  • the time series data DB 262 includes a plurality of pressure data, a plurality of flow rate data, integrated pressure data, and integrated flow rate data acquired by the acquisition unit 210.
  • the time-series data DB 262 includes power data for each compressor acquired by the acquisition unit 210.
  • the time-series data DB 262 includes, for each data ID assigned to the time-series data, a numerical value for each time (specifically, a pressure value, a flow rate value, an electric power value, etc.), similarly to the time-series data DB 162 illustrated in FIG. ).
  • the attribute information DB 264 includes a plurality of pieces of attribute information acquired by the acquisition unit 210.
  • the plurality of pieces of attribute information respectively correspond to the plurality of pieces of time-series data.
  • the attribute information DB 264 is generated and updated when the acquisition unit 210 acquires the attribute information.
  • the attribute information DB 264 is updated by the correction unit 230.
  • FIG. 17 is a diagram illustrating an example of attribute information acquired by the abnormality detection device 200 according to the present embodiment. Specifically, FIG. 17 illustrates the attribute information DB 264 stored in the storage unit 260.
  • attribute information is associated with each data ID representing time-series data.
  • the data ID is represented by P1 to P3, V1 to V3, Pt, Vt, and U1 to U3.
  • the attribute information is classified into a plurality of items.
  • the items are an installation room, a device name, and a data type.
  • the installation room and the device name indicate the room where the compressor to which the sensor for measuring the numerical value of the corresponding time-series data is mounted is installed, and the name of the compressor.
  • the type of data is the pressure or flow rate of the compressor.
  • attribute information in which an error has occurred and needs to be corrected is shown in bold letters and the background is shaded with dots.
  • the error is detected by the analysis of the analysis unit 220 and corrected by the correction unit 230.
  • FIG. 18 is a flowchart showing the operation of the abnormality detection device 200 according to the present embodiment.
  • the acquisition unit 210 acquires time-series data and attribute information (S30).
  • the acquisition unit 210 includes, for example, a pressure gauge and a flow meter provided at each output of the plurality of compressors A to C and an output after integration, and sensors provided at the plurality of compressors A to C (specifically, For example, by acquiring a sensor value from a power meter every 10 minutes and storing the sensor value in the storage unit 260, a plurality of time-series data for a certain period such as one day or one week is acquired.
  • the acquiring unit 210 acquires attribute information corresponding to a plurality of time-series data by receiving inputs from managers of the plurality of compressors A to C and the like. Either the acquisition of the time-series data or the acquisition of the attribute information may be performed first, or may be performed simultaneously.
  • the analysis unit 220 creates a plurality of combinations based on the time-series data DB 262 (S31). For example, as shown in FIG. 19, the analysis unit 220 combines each of the three pressure data P1 to P3 and each of the three flow rate data V1 to V3 so as not to overlap, thereby providing six combinations. Create
  • FIG. 19 is a diagram illustrating an example of a combination created by the abnormality detection device 200 according to the present embodiment. Further, it is assumed that the integrated pressure data, the integrated flow rate data, and the power data have no error and need not be corrected. It is also assumed that there is no error between the pressure data and the flow rate data.
  • the combination (P, V) indicates that they correspond to the same compressor.
  • the pressure data P1 and the flow rate data V1 correspond to the first compressor
  • the pressure data P2 and the flow rate data V2 correspond to the second compressor
  • the pressure data P3 and the flow rate data V3. Represents that it corresponds to the third compressor.
  • Pattern-2 to Pattern-6 the combination of Pattern-2 and Pattern-6 in the combination.
  • the analysis unit 220 performs a multiple regression analysis for each created combination (S32). Specifically, for each combination, the analysis unit 220 sets the integrated output (Pt, Vt) as a dependent variable Y, and separates each time-series data (P1, V1), (P2, V2), and (P3, V3) independently. Multiple regression analysis is performed using the variables X1 to X3. Thereby, the analysis unit 220 calculates the determination coefficient (that is, the R value) for each combination.
  • the analysis unit 220 selects an optimal solution, that is, an optimal combination (S33). Specifically, the analysis unit 220 selects a combination of the largest determination coefficient among the plurality of calculated determination coefficients as an optimal combination (that is, a correct combination). In the example shown in FIG. 19, the combination Pattern-1 is selected as the optimum combination.
  • the correction unit 230 corrects the attribute information based on the analysis result (S34). Specifically, the correction unit 230 extracts a group in which the device name (specifically, the name of the compressor) is different for each pair of the pressure data and the flow rate data based on the optimum combination.
  • the device name specifically, the name of the compressor
  • the correction unit 230 determines that at least one of the device names in the set (P3, V3) is incorrect and needs to be corrected.
  • the correction unit 230 determines whether or not inconsistency occurs when one device name of the pressure data and the flow rate data is corrected to the other device name in the set (P3, V3), for example. Specifically, even if the device name of the pressure data P3 is corrected to “compressor C” which is the device name of the flow rate data V3, no inconsistency occurs. On the other hand, when the device name of the flow rate data V3 is corrected to “compressor B” which is the device name of the pressure data P3, the pressure data of the compressor B already exists and contradicts. Therefore, the correction unit 230 corrects the device name of the pressure data P3 to “compressor C” so that no inconsistency occurs.
  • the correction unit 230 corrects both the pressure data and the flow rate data to the name of the compressor that does not exist in the attribute information DB 264 (for example, “compressor C”), It may be determined whether or not a contradiction occurs. Alternatively, the correction unit 230 corrects the attribute information by causing the output unit 150 to output information indicating that the correction has not been correctly performed, and causing the manager of the factory 1 to input the attribute information. Is also good.
  • the detection unit 240 detects an abnormality as shown in FIG. 18 (S35).
  • the detection of the abnormality may be performed immediately after the attribute information is corrected, or may be performed at a predetermined timing. Further, the detection of the abnormality may be periodically repeated.
  • the detection unit 240 reads data from each of the time-series data DB 262, the attribute information DB 264, and the abnormality detection model DB 166 of the storage unit 260 for each abnormality to be detected, and detects an abnormality based on the read data. The presence / absence and the time when an abnormality has occurred are detected.
  • detection section 240 uses an abnormality detection model based on power efficiency A (k) expressed by the following equation (1).
  • a (k) is the power efficiency of the k-th compressor.
  • U (k, t) is the power consumption of the k-th compressor at time t.
  • V (k, t) is the flow rate of the k-th compressor at time t.
  • P (k, t) is the pressure of the k-th compressor at time t.
  • the compressors A to C are the first to third compressors, respectively.
  • the power efficiency A (k) is the reciprocal of the ratio of the product of the pressure P (k, t) and the flow rate V (k, t) to the input power U (k, t). is there.
  • the detection unit 240 calculates the power efficiency of each compressor based on the equation (1), and when the calculated power efficiency exceeds a predetermined threshold, determines that an abnormality has occurred in the compressor. . When the calculated power efficiency is equal to or smaller than the threshold, the detection unit 240 determines that no abnormality has occurred in the compressor.
  • U (k, t), V (k, t) and P (k, t) are all obtained by referring to the time-series data DB 262.
  • the detection unit 240 cannot calculate the power efficiency A (3) for the compressor C, and cannot detect an abnormality.
  • the power efficiency A (3) of the compressor C can be calculated, and it is possible to determine whether the compressor C is abnormal.
  • FIG. 20 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device 200 according to the present embodiment.
  • the horizontal axis represents the pressure P [MPa].
  • the vertical axis represents the power U [kWh].
  • the power efficiency A (k) corresponds to the slope of the plot for each compressor in FIG.
  • Each plot corresponds to pressure data and power data at a predetermined time.
  • the slope of the compressor A increases during the period from 11:20 to 12:40. That is, the power efficiency of the compressor A is degraded. For this reason, the detection unit 240 determines that an abnormality has occurred in the compressor A during the period.
  • the output unit 150 outputs information indicating the detected abnormality and the occurrence time of the abnormality (S36). Further, based on the detected abnormality, the output unit 150 refers to the measure information DB 168 stored in the storage unit 260 to determine a measure for the abnormality, and outputs information indicating the determined measure. I do.
  • FIG. 21 is a diagram illustrating an example of information output by the abnormality detection device 200 according to the present embodiment.
  • the output unit 150 generates an image representing the detected abnormality, the occurrence time of the abnormality, and a countermeasure for the abnormality, and displays the image on a display or the like to manage the compressors A to C. To others.
  • the occurrence of an abnormality such as a decrease in the operation efficiency of the compressor A and the operation of the compressors B and C are displayed as a countermeasure against the abnormality. That is, since the operation efficiency of the compressor A is reduced, a countermeasure for recommending the operation of the compressors B and C, which are alternative devices, is displayed.
  • FIG. 22 is a diagram showing the configuration of the factory 2 to which the abnormality detection device 300 according to the present embodiment is applied.
  • the factory 2 differs from the factory 1 according to the first embodiment in the devices arranged in each room. Specifically, in each of the three rooms A to C, a plurality of devices related to the manufacture of a product are arranged. Specifically, as shown in FIG. 22, in the room A, a mounting machine A1, a coating machine A1, a mounting machine A2, a coating machine A2, and an air conditioner A are arranged. In the room B, a molding machine B, a coating machine B, and an air conditioner B are arranged. In the room C, a press C and an air conditioner C are arranged.
  • the rooms A to C do not have to be physically separated rooms. That is, in the factory 2, the rooms A to C may be included in one large room, or may be a space virtually divided in association with the air conditioner. That is, the rooms A to C are an example of a space in which each of the air conditioners A to C is arranged.
  • the abnormality detection device 300 acquires a plurality of time-series data obtained from each device arranged in each room and generates a plurality of time-series data based on the acquired plurality of time-series data, as in the first embodiment. Detect abnormalities.
  • the abnormality detection device 300 is communicably connected to a sensor or a measuring device provided in each device by wire or wirelessly.
  • FIG. 23 is a block diagram showing a configuration of an abnormality detection device 300 according to the present embodiment.
  • the abnormality detection device 300 is different from the abnormality detection device 100 according to the first embodiment in that the analysis unit 320, the correction unit 130, and the detection unit 140 are replaced with an analysis unit 320 and a correction unit. The difference is that a point 330 and a detecting section 340 are provided.
  • the analysis unit 320 analyzes the cross-correlation of the plurality of time-series data acquired by the acquisition unit 110.
  • analysis section 320 performs multiple regression analysis.
  • analysis unit 320 performs multiple regression analysis using time-series data of power consumption of air conditioners A to C as dependent variables and time-series data of parameters of other devices as independent variables. Based on the result of the multiple regression analysis, an optimal combination of the air conditioners A to C (that is, the rooms A to C) and each device is determined.
  • the correction unit 330 corrects the attribute information based on the result of the multiple regression analysis. Specifically, the correction unit 330 refers to the attribute information DB 164 stored in the storage unit 160, and stores the plurality of pieces of attribute information read from the storage unit 160 and the result of the multiple regression analysis obtained from the analysis unit 320. The attribute information is corrected using the indicated information. For example, the correction unit 330 determines whether there is an error in the correspondence between the installation room and the time-series data in the attribute information DB 164, and if there is an error, corrects the erroneous installation room to a correct installation room. The correction unit 330 reflects the result of the correction in the attribute information DB 264. The specific operation of the correction by the correction unit 330 will be described later with an example.
  • the detection unit 340 detects an abnormality occurring in each device based on the information indicating the corrected installation room and a plurality of time-series data. Further, the detection unit 340 determines a device that can perform an alternative operation instead of the device in which the abnormality has occurred. Specifically, based on the information indicating the corrected installation room, the detection unit 340 determines a device that is installed in the same room as the device in which the abnormality has occurred and that is of the same type as a device that can perform an alternative operation. The detection unit 340 outputs the detection result of the abnormality and the determination result of the device that can perform the alternative operation to the output unit 150. The specific operation of the abnormality detection will be described later in detail with an example.
  • FIG. 24 is a flowchart showing the operation of the abnormality detection device 300 according to the present embodiment.
  • the acquisition unit 110 acquires time-series data and attribute information (S40).
  • the specific acquisition process is the same as step S10 according to the first embodiment.
  • the analysis unit 320 performs a multiple regression analysis using the plurality of time-series data (S41). Specifically, analysis unit 320 performs multiple regression analysis using the time series data of the power consumption of each of air conditioners A to C as a dependent variable and the remaining time series data as independent variables.
  • the analysis unit 320 calculates a coefficient for each independent variable by performing multiple regression analysis using the time-series data Data-21 of the power consumption of the air conditioner A as a dependent variable and the remaining time-series data as independent variables. Similarly, a coefficient for each independent variable is calculated using the time series data Data-22 of the power consumption of the air conditioner B and the time series data Data-23 of the power consumption of the air conditioner C as dependent variables.
  • the analysis unit 320 determines an optimal combination of each device and a room based on the result of the multiple regression analysis (S42). Specifically, the analysis unit 320 determines, for each time-series data (independent variable), the dependent variable when the calculated coefficient is the largest, and determines the dependent variable in the room where the air conditioner corresponding to the determined dependent variable is located. It is determined that a device corresponding to the time-series data is arranged.
  • FIG. 25 is a diagram illustrating an example of a result of a multiple regression analysis performed by the abnormality detection device according to the present embodiment.
  • FIG. 25 shows only four data (Data-01, Data-06, Data-07 and Data-20) out of the 20 time-series data Data-01 to Data-20 excluding the air conditioners A to C. The calculated coefficients are shown.
  • the coefficient at the time-series data Data-21 is the largest. For this reason, it is determined that the device (specifically, the mounting device) corresponding to the time-series data Data-01 is located in the same space as the air conditioner A. In FIG. 25, cells that represent the combination with the largest coefficient are shaded with dots.
  • time-series data and a room are associated with each other as follows.
  • the time-series data located in the same room as the air conditioner A includes time-series data Data-01, Data-02, Data-03, Data-04, Data-05, Data-07, Data-11, Data-11. -13, Data-14 and Data-18.
  • the time-series data located in the same room as the air conditioner B are time-series data Data-06, Data-09, Data-10, Data-16, and Data-19.
  • the time-series data located in the same room as the air conditioner C is time-series data Data-08, Data-12, Data-15, Data-17, and Data-20.
  • the analysis unit 320 may determine a plurality of dependent variables whose calculated coefficients exceed a threshold value for each time-series data constituting the independent variable. That is, the analysis unit 320 may determine a plurality of rooms (air conditioners) corresponding to the time-series data. For example, when the spaces where the air conditioning is controlled by a plurality of air conditioners overlap, the coefficient of the time-series data of the device located in the overlapped space has a large value in each of the plurality of air conditioners.
  • the correction unit 330 corrects the attribute information based on the combination determined in this way (S43).
  • FIG. 26 is a diagram illustrating an example of the correction of the attribute information by the abnormality detection device according to the present embodiment.
  • the correction unit 330 detects an error of the installation room in the attribute information DB 164 based on the combination of the room and the time-series data described above, and corrects the detected error.
  • the installation room corresponding to five time series data Data-07, Data-11, Data-13, Data-14, and Data-18 is “RoomB”. "And is different from the installation room” RoomA "corresponding to the time-series data of the air conditioner A. Therefore, the correction unit 330 corrects the installation room corresponding to the five time-series data Data-07, Data-11, Data-13, Data-14, and Data-18 to the same “RoomA” as the air conditioner A. The same applies to time-series data corresponding to the same room as the air conditioner B and time-series data corresponding to the same room as the air conditioner C.
  • the detection unit 340 detects an abnormality (S44).
  • the detection of the abnormality may be performed immediately after the attribute information is corrected, or may be performed at a predetermined timing. Further, the detection of the abnormality may be periodically repeated.
  • the detection unit 340 reads data from each of the time-series data DB 162, the attribute information DB 164, and the abnormality detection model DB 166 of the storage unit 160 for each abnormality to be detected, and detects an abnormality based on the read data. The presence / absence and the time when an abnormality has occurred are detected.
  • the detection unit 340 uses an abnormality detection model of a mounting machine and a coating machine. For example, in the abnormality detection model of the mounting machine, when the production number of the components produced by the mounting machine is equal to or greater than the threshold, it is determined that no abnormality has occurred in the mounting machine, and when the production number falls below the threshold, , It is determined that an abnormality has occurred in the mounting machine. In addition, in the abnormality detection model of the coating machine, when the number of components to be supplied to the coating machine is equal to or greater than the threshold value, it is determined that no abnormality has occurred in the coating machine, and when the number of input components falls below the threshold value. Then, it is determined that an abnormality has occurred in the coating machine.
  • the detection unit 340 determines at least one of the plurality of mounting machines as a device capable of performing an alternative operation of another mounting machine. In addition, when a plurality of applicators exist in the same room, the detection unit 340 determines at least one of the plurality of applicators as a device capable of performing an alternative operation to another applicator.
  • FIG. 27 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the present embodiment.
  • the horizontal axis represents time.
  • the vertical axis indicates the number of production machines [pieces] and the number of application machines [pieces].
  • FIG. 22 it is assumed that components produced by the mounting machine A1 are supplied to the coating machine A1 and components produced by the mounting machine A2 are supplied to the coating machine A2.
  • the detection unit 340 detects that an abnormality has occurred in the mounting machine A2. As a result of the analysis by the analysis unit 320, it has been found that the mounting machine A2 and the mounting machine A1 are provided in the same room A together with the coating machine A1 and the coating machine A2. For this reason, when an abnormality has occurred in the mounting machine A2, the detection unit 340 determines the mounting machine A1 as a device capable of performing an alternative operation.
  • the supply of components produced by the mounting machine A2 to the coating machine A2 is stopped by stopping the mounting machine A2. Instead, a part of the components produced by the mounting machine A1 is supplied to the coating machine A2. For example, by operating the mounting machine A1 at the maximum capacity, it is possible to produce 1.5 times the number of components in a normal state. Therefore, the coating machine A2 can be supplied with half the number of components from the normal state from the mounting machine A1. The applicator A2 can lower the operation capability as compared with the normal operation and reduce power consumption.
  • the output unit 150 outputs information indicating the detected abnormality and the time of occurrence of the abnormality, and The information indicating the measure is output (S45).
  • FIG. 28 is a diagram showing an example of information output by the abnormality detection device according to the present embodiment. As shown in FIG. 28, as a countermeasure, the maintenance of the abnormally stopped mounting machine A2 and the alternative operation performed by the mounting machine A1 are displayed on a display or the like, as a countermeasure.
  • the manager can perform processing for the abnormality in real time.
  • the administrator can suppress a decrease in production efficiency by causing the mounting machine A1 to perform an alternative operation.
  • the mounting machine A1 to perform an alternative operation.
  • the technician by performing maintenance on the mounting machine A2 during the period when the mounting machine A1 is performing the alternative operation, it is possible to quickly perform a recovery operation while suppressing a decrease in production efficiency.
  • the room in which each device is installed can be correctly determined by analyzing the time-series data, so that not only can abnormalities be detected with high accuracy, but also alternative operations can be performed. Can propose new equipment.
  • FIG. 29 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the comparative example.
  • FIG. 30 is a diagram illustrating an example of information output by the abnormality detection device according to the comparative example.
  • the coating machine A1, the coating machine A2, the mounting machine A1, and the mounting machine A2 are provided in the same room. .
  • the abnormality detection device according to the comparative example the abnormality cannot be accurately detected, and the production efficiency of the manufacturing system may decrease.
  • the detection unit 340 detects an abnormality based on a thermal model of each room by the air conditioner.
  • the process of correcting the attribute information except for the difference in the abnormality detection method is the same as in the third embodiment.
  • the following description focuses on differences from the third embodiment, and description of common points is omitted or simplified.
  • FIG. 31 is a diagram showing a configuration of a thermal model that is an object of the abnormality detection device 300 according to the present modification. Based on the thermal model shown in FIG. 31, heat transfer in the space where the air conditioner is provided is represented by the following equation (2).
  • Iac is the power consumption of the air conditioner.
  • P k is the power consumption of each device provided in the same room as the air conditioner.
  • the term obtained by multiplying the total value ( ⁇ P k ) of the power consumption of each device by the coefficient K corresponds to the total heat generation of the devices provided in the same room as the air conditioner.
  • R corresponds to the thermal resistance of the room provided with the air conditioner.
  • Vr is the room temperature of the room provided with the air conditioner.
  • V o is the outside air temperature.
  • the heat capacity Q is represented by the product of the time derivative value of the coefficient C and V r -V o.
  • Detection unit 340 the dependent variable I ac of the formula (2), and .SIGMA.P k, and (V r -V o), as independent variables and the time differential value of (V r -V o), a multiple regression Perform analysis.
  • the acquisition unit 110 acquires time-series data of power consumption of each air conditioner, time-series data of power consumption of each device, time-series data of outside temperature, and time-series data of room temperature. I do.
  • FIG. 32 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the present modification.
  • the horizontal axis represents time.
  • the vertical axis represents the values of K, R, and C coefficients. Each of K, R, and C becomes a value close to 1 when no abnormality occurs.
  • the detection unit 340 compares each of K, R, and C with a threshold, and determines that an abnormality has occurred in the thermal environment of the modeled room when at least one of K, R, and C is below the threshold. I do.
  • the threshold value is, for example, 0.800, but is not limited to this.
  • the thermal resistance R decreases during the period from 14:00 to 15:00.
  • the countermeasure information DB 168 is associated with a countermeasure for checking a window and a door of a room for an abnormality such as a decrease in thermal resistance.
  • FIG. 33 is a diagram illustrating an example of information output by the abnormality detection device according to the present modification.
  • the abnormality detection method is executed by the abnormality detection device 100, 200, or 300 realized by one computer device.
  • the abnormality detection method according to the present embodiment is executed by distributed processing by a plurality of devices.
  • FIG. 34 is a block diagram showing a configuration of an abnormality detection system 400 that executes the abnormality detection method according to the present embodiment.
  • the abnormality detection system 400 includes an information processing device 401, a data storage device 402, and an information presentation device 403.
  • each device included in the abnormality detection system 400 is provided between the network 404 and each manufacturing device, that is, inside the network 404.
  • the network 404 is a communication network for connecting to an external device such as the Internet, for example.
  • the abnormality detection method according to the present embodiment may be executed by abnormality detection system 410 shown in FIG.
  • FIG. 35 is a block diagram showing a configuration of an abnormality detection system 410 that executes the abnormality detection method according to the present embodiment.
  • the abnormality detection system 410 includes an information processing device 401, a data storage device 402, and an information presentation device 403. Each device included in the abnormality detection system 410 is provided outside the network 404.
  • each device included in the abnormality detection system 400 or 410 may be provided inside or outside the network 404.
  • the information processing device 401 may be provided inside the network 404, and the data storage device 402 and the information presentation device 403 may be provided outside the network 404.
  • the data storage device 402 may be provided inside the network 404, and the information processing device 401 and the information presentation device 403 may be provided outside the network 404.
  • only the information presentation device 403 may be provided inside the network 404, and the information processing device 401 and the data storage device 402 may be provided outside the network 404.
  • FIG. 36 is a block diagram showing a configuration of an abnormality detection system 400 according to the present embodiment.
  • the configuration of the abnormality detection system 410 is the same as that of the abnormality detection system 400.
  • the information processing apparatus 401 includes an acquisition unit 110, an analysis unit 120, a correction unit 130, a detection unit 140, and an output unit 150.
  • the information processing device 401 is, for example, a computer device.
  • the information processing device 401 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like.
  • the data storage device 402 is a storage device that stores the time-series data DB 162, the attribute information DB 164, the abnormality detection model DB 166, and the countermeasure information DB 168.
  • the data storage device 402 is realized by an HDD, a semiconductor memory, or the like.
  • the information presenting device 403 is a device that presents information output from the output unit 150 to a user such as a factory manager.
  • the information presentation device 403 is, for example, a display or a speaker.
  • the abnormality detection method is distributed by a plurality of devices.
  • the processing amount in each device is reduced, and processing can be performed in a short period of time by distributed processing.
  • each of the information processing device 401 and the data storage device 402 may not be a single device, and may be implemented by a plurality of devices.
  • a correction candidate may be presented to a user, and the user (administrator) may make a correction.
  • the abnormality detection device may include an input interface that receives a correction instruction from a user.
  • the detection unit may determine the type of the abnormality by clustering the detected abnormality. By determining the type of the abnormality, the accuracy of estimating the cause of the abnormality and selecting a measure for the abnormality can be further improved.
  • the analysis may be an analysis method other than the statistical analysis. Any analysis method may be used as long as the mutual relationship between a plurality of time-series data can be determined.
  • the communication method between the devices described in the above embodiment is not particularly limited.
  • the wireless communication method is, for example, ZigBee (registered trademark), Bluetooth (registered trademark), or short-range wireless communication such as wireless LAN (Local Area Network).
  • the wireless communication method may be communication via a wide area communication network such as the Internet. Wired communication may be performed between the devices instead of wireless communication.
  • the wired communication is power line communication (PLC) or communication using a wired LAN.
  • another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • the distribution of the components included in the abnormality detection system to a plurality of devices is an example. For example, components included in one device may be included in another device. Further, the abnormality detection system may be realized as a single device.
  • the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good.
  • the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
  • all or a part of the components such as the control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. Is also good.
  • Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
  • the components such as the control unit may be configured by one or a plurality of electronic circuits.
  • Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
  • the one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), and the like.
  • the IC or LSI may be integrated on one chip, or may be integrated on a plurality of chips.
  • the term is referred to as an IC or an LSI, but the term varies depending on the degree of integration, and may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration).
  • an FPGA Field Programmable Gate Array programmed after manufacturing the LSI can be used for the same purpose.
  • general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit, or a computer program.
  • the present invention may be realized by a non-transitory computer-readable recording medium such as an optical disk, an HDD, or a semiconductor memory in which the computer program is stored.
  • the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present disclosure can be used as an abnormality detection method that can detect an abnormality with high accuracy, and can be used, for example, for manufacturing management and maintenance in a factory or the like.

Abstract

An abnormality detecting method according to one aspect of the present disclosure includes: a step (S10) of acquiring a plurality of items of time-series data obtained from a plurality of elements relating to the manufacture of a manufactured object, and attribute information for each of the plurality of items of time-series data; a step (S11) of analyzing correlations between the plurality of items of time-series data; a step (S12) of correcting the attribute information on the basis of the results of the analysis; a step (S13) of detecting an abnormality occurring in the plurality of elements, on the basis of the corrected attribute information and the plurality of items of time-series data; and a step (S14) of outputting information indicating the detected abnormality and the time at which the abnormality occurred.

Description

異常検出方法、情報処理装置及び異常検出システムAbnormality detection method, information processing apparatus and abnormality detection system
 本開示は、異常検出方法、情報処理装置及び異常検出システムに関する。 The present disclosure relates to an abnormality detection method, an information processing device, and an abnormality detection system.
 特許文献1には、故障を診断する方法が開示されている。特許文献1に開示された方法では、故障に寄与する1つ以上のプロセス変数の相対的な寄与が、適合する故障サインの相対的な寄与範囲内である場合に、当該故障サインが故障に関連していると判断する。 Patent Document 1 discloses a method of diagnosing a failure. In the method disclosed in Patent Document 1, when a relative contribution of one or more process variables contributing to a fault is within a relative contribution range of a matching failure sign, the failure sign is associated with the failure. Judge that you are.
特表2010-501091号公報Japanese Patent Publication No. 2010-501091
 しかしながら、上記従来の方法では、故障を診断するために収集するデータに誤りがあった場合には、誤ったデータに基づいて故障を診断するので、精度良く故障を検出することができない。 However, according to the above-described conventional method, if data collected for diagnosing a fault includes an error, the fault is diagnosed based on the erroneous data, and thus the fault cannot be detected with high accuracy.
 そこで、本開示は、精度良く異常を検出することができる異常検出方法、情報処理装置及び異常検出システムを提供する。 Therefore, the present disclosure provides an abnormality detection method, an information processing device, and an abnormality detection system that can accurately detect an abnormality.
 上記課題を解決するため、本開示の一態様に係る異常検出方法は、製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する工程と、前記複数の時系列データの相互関係の分析を行う工程と、前記分析の結果に基づいて前記属性情報を修正する工程と、修正された属性情報と前記複数の時系列データとに基づいて、前記複数の要素に発生する異常を検出する工程と、検出された異常と当該異常の発生時刻とを示す情報を出力する工程とを含む。 In order to solve the above problem, an abnormality detection method according to an aspect of the present disclosure provides a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product, and attribute information of each of the plurality of time-series data. Acquiring, and analyzing the interrelationship of the plurality of time-series data, correcting the attribute information based on the result of the analysis, corrected attribute information and the plurality of time-series data And a step of outputting information indicating the detected abnormality and the time of occurrence of the abnormality based on the above.
 また、本開示の一態様に係る情報処理装置は、製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する取得部と、前記複数の時系列データの相互関係の分析を行う分析部と、前記分析の結果に基づいて前記属性情報を修正する修正部と、修正された属性情報と前記複数の時系列データとに基づいて、前記複数の要素に発生する異常を検出する検出部と、検出された異常と当該異常の発生時刻とを示す情報を出力する出力部とを備える。 In addition, the information processing apparatus according to an aspect of the present disclosure includes an acquisition unit configured to acquire a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product and attribute information of each of the plurality of time-series data. An analysis unit that analyzes the mutual relationship between the plurality of time-series data, a correction unit that corrects the attribute information based on the result of the analysis, and the corrected attribute information and the plurality of time-series data. A detection unit that detects an abnormality occurring in the plurality of elements based on the detected abnormality, and an output unit that outputs information indicating the detected abnormality and a time when the abnormality occurs.
 また、本開示の一態様に係る異常検出システムは、前記情報処理装置と、前記取得部によって取得された複数の時系列データ及び複数の属性情報を記憶するためのデータ保存装置と、前記出力部から出力された情報を提示する提示装置とを備える。 Further, the abnormality detection system according to an aspect of the present disclosure includes the information processing device, a data storage device for storing a plurality of time-series data and a plurality of attribute information acquired by the acquisition unit, and the output unit. And a presentation device for presenting the information output from.
 本開示によれば、精度良く異常を検出することができる。 According to the present disclosure, an abnormality can be detected with high accuracy.
図1は、実施の形態1に係る異常検出装置の対象となる工場の構成を示す図である。FIG. 1 is a diagram illustrating a configuration of a factory that is a target of the abnormality detection device according to the first embodiment. 図2は、実施の形態1に係る異常検出装置の構成を示すブロック図である。FIG. 2 is a block diagram illustrating a configuration of the abnormality detection device according to the first embodiment. 図3は、実施の形態1に係る異常検出装置が取得した時系列データの一例を示す図である。FIG. 3 is a diagram illustrating an example of time-series data acquired by the abnormality detection device according to the first embodiment. 図4は、実施の形態1に係る異常検出装置が取得した属性情報の一例を示す図である。FIG. 4 is a diagram illustrating an example of attribute information acquired by the abnormality detection device according to the first embodiment. 図5は、実施の形態1に係る異常検出装置の動作を示すフローチャートである。FIG. 5 is a flowchart illustrating an operation of the abnormality detection device according to the first embodiment. 図6は、実施の形態1に係る異常検出装置による相互相関分析の結果の一例を示す図である。FIG. 6 is a diagram illustrating an example of a result of the cross-correlation analysis performed by the abnormality detection device according to the first embodiment. 図7は、実施の形態1に係る異常検出装置の動作において、属性情報の修正処理を示すフローチャートである。FIG. 7 is a flowchart illustrating a process of correcting attribute information in the operation of the abnormality detection device according to the first embodiment. 図8は、実施の形態1に係る異常検出装置による属性情報の修正の一例を示す図である。FIG. 8 is a diagram illustrating an example of correction of attribute information by the abnormality detection device according to the first embodiment. 図9は、実施の形態1に係る異常検出装置によるグループ毎の修正前の属性情報の一例を示す図である。FIG. 9 is a diagram illustrating an example of attribute information before correction for each group by the abnormality detection device according to the first embodiment. 図10は、実施の形態1に係る異常検出装置による異常の検出処理の一例を示す図である。FIG. 10 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the first embodiment. 図11は、実施の形態1に係る異常検出装置によって出力される情報の一例を示す図である。FIG. 11 is a diagram illustrating an example of information output by the abnormality detection device according to the first embodiment. 図12は、実施の形態1の変形例に係る異常検出装置による相互相関分析によって判別された製造装置の構成例を示す図である。FIG. 12 is a diagram illustrating a configuration example of a manufacturing apparatus determined by cross-correlation analysis by the abnormality detection device according to the modification of the first embodiment. 図13は、実施の形態1の変形例に係る異常検出装置による異常の検出処理の一例を示す図である。FIG. 13 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the modification of the first embodiment. 図14は、実施の形態1の変形例に係る異常検出装置によって出力される情報の一例を示す図である。FIG. 14 is a diagram illustrating an example of information output by the abnormality detection device according to the modification of the first embodiment. 図15は、実施の形態2に係る異常検出装置の対象となる複数のコンプレッサの構成を示す図である。FIG. 15 is a diagram illustrating a configuration of a plurality of compressors that are targets of the abnormality detection device according to the second embodiment. 図16は、実施の形態2に係る異常検出装置の構成を示すブロック図である。FIG. 16 is a block diagram illustrating a configuration of the abnormality detection device according to the second embodiment. 図17は、実施の形態2に係る異常検出装置が取得した属性情報の一例を示す図である。FIG. 17 is a diagram illustrating an example of attribute information acquired by the abnormality detection device according to the second embodiment. 図18は、実施の形態2に係る異常検出装置の動作を示すフローチャートである。FIG. 18 is a flowchart illustrating the operation of the abnormality detection device according to the second embodiment. 図19は、実施の形態2に係る異常検出装置が作成した組み合わせの一例を示す図である。FIG. 19 is a diagram illustrating an example of a combination created by the abnormality detection device according to the second embodiment. 図20は、実施の形態2に係る異常検出装置による異常の検出処理の一例を示す図である。FIG. 20 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the second embodiment. 図21は、実施の形態2に係る異常検出装置によって出力される情報の一例を示す図である。FIG. 21 is a diagram illustrating an example of information output by the abnormality detection device according to the second embodiment. 図22は、実施の形態3に係る異常検出装置の対象となる工場の構成を示す図である。FIG. 22 is a diagram illustrating a configuration of a factory that is a target of the abnormality detection device according to the third embodiment. 図23は、実施の形態3に係る異常検出装置の構成を示すブロック図である。FIG. 23 is a block diagram illustrating a configuration of the abnormality detection device according to the third embodiment. 図24は、実施の形態3に係る異常検出装置の動作を示すフローチャートである。FIG. 24 is a flowchart illustrating the operation of the abnormality detection device according to the third embodiment. 図25は、実施の形態3に係る異常検出装置による重回帰分析の結果の一例を示す図である。FIG. 25 is a diagram illustrating an example of a result of a multiple regression analysis performed by the abnormality detection device according to the third embodiment. 図26は、実施の形態3に係る異常検出装置による属性情報の修正の一例を示す図である。FIG. 26 is a diagram illustrating an example of correction of the attribute information by the abnormality detection device according to the third embodiment. 図27は、実施の形態3に係る異常検出装置による異常の検出処理の一例を示す図である。FIG. 27 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the third embodiment. 図28は、実施の形態3に係る異常検出装置によって出力される情報の一例を示す図である。FIG. 28 is a diagram illustrating an example of information output by the abnormality detection device according to the third embodiment. 図29は、比較例に係る異常検出装置による異常の検出処理の一例を示す図である。FIG. 29 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the comparative example. 図30は、比較例に係る異常検出装置によって出力される情報の一例を示す図である。FIG. 30 is a diagram illustrating an example of information output by the abnormality detection device according to the comparative example. 図31は、実施の形態3の変形例に係る異常検出装置の対象となる熱モデルの構成を示す図である。FIG. 31 is a diagram illustrating a configuration of a thermal model that is a target of the abnormality detection device according to the modification of the third embodiment. 図32は、実施の形態3の変形例に係る異常検出装置による異常の検出処理の一例を示す図である。FIG. 32 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the modification of the third embodiment. 図33は、実施の形態3の変形例に係る異常検出装置によって出力される情報の一例を示す図である。FIG. 33 is a diagram illustrating an example of information output by the abnormality detection device according to the modification of the third embodiment. 図34は、実施の形態4に係る異常検出方法を実行する異常検出システムの構成を示すブロック図である。FIG. 34 is a block diagram illustrating a configuration of an abnormality detection system that executes the abnormality detection method according to the fourth embodiment. 図35は、実施の形態4に係る異常検出方法を実行する異常検出システムの構成の別の一例を示すブロック図である。FIG. 35 is a block diagram illustrating another example of the configuration of the abnormality detection system that executes the abnormality detection method according to the fourth embodiment. 図36は、実施の形態4に係る異常検出システムの構成を示すブロック図である。FIG. 36 is a block diagram illustrating a configuration of the abnormality detection system according to the fourth embodiment.
 (本開示の概要)
 上記課題を解決するために、本開示の一態様に係る異常検出方法は、製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する工程と、前記複数の時系列データの相互関係の分析を行う工程と、前記分析の結果に基づいて前記属性情報を修正する工程と、修正された属性情報と前記複数の時系列データとに基づいて、前記複数の要素に発生する異常を検出する工程と、検出された異常と当該異常の発生時刻とを示す情報を出力する工程とを含む。
(Summary of the present disclosure)
In order to solve the above-described problem, an abnormality detection method according to an embodiment of the present disclosure provides a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product, and an attribute of each of the plurality of time-series data. Obtaining information, analyzing the interrelationship of the plurality of time-series data, correcting the attribute information based on a result of the analysis, and modifying the attribute information and the plurality of time-series data. Detecting an abnormality occurring in the plurality of elements based on the data; and outputting information indicating the detected abnormality and the time of occurrence of the abnormality.
 これにより、属性情報に誤りが存在する場合であっても、複数の時系列データの相互関係の分析を行うことで、当該誤りを検出することができる。例えば、2つの時系列データ間の関係性が強いのにも関わらず、当該2つの時系列データに互いに異なる属性情報が対応付けられている場合、当該属性情報の少なくとも一方が誤っていると判定することができる。このように、属性情報の誤りを検出することができるので、属性情報を修正することができる。さらに、修正された属性情報に基づいて異常の検出を行うので、精度良く異常を検出することができる。 Thus, even if an error exists in the attribute information, the error can be detected by analyzing the correlation between a plurality of time-series data. For example, when different attribute information is associated with the two time-series data despite the strong relationship between the two time-series data, it is determined that at least one of the attribute information is incorrect. can do. As described above, since an error in the attribute information can be detected, the attribute information can be corrected. Further, since the abnormality is detected based on the corrected attribute information, the abnormality can be detected with high accuracy.
 また、例えば、前記分析は、統計分析であってもよい。 Also, for example, the analysis may be a statistical analysis.
 これにより、属性情報の誤りを精度良く検出することができるので、精度良く異常を検出することができる。 (4) Since an error in the attribute information can be detected with high accuracy, an abnormality can be detected with high accuracy.
 また、例えば、前記統計分析は、相互相関分析であってもよい。 Further, for example, the statistical analysis may be a cross-correlation analysis.
 これにより、複数の時系列データの相互関係(例えば関係性の強さ)を相互相関係数などの数値で表すことができるので、時系列データの相互関係を容易に、かつ、精度良く判別することができる。このため、時系列データに対応する属性情報の誤りを容易に、かつ、精度良く検出することができるので、精度良く異常を検出することができる。 Thereby, the mutual relationship (for example, the strength of the relationship) between a plurality of time-series data can be represented by a numerical value such as a cross-correlation coefficient, so that the mutual relationship between the time-series data is easily and accurately determined. be able to. For this reason, an error in the attribute information corresponding to the time-series data can be easily and accurately detected, so that an abnormality can be accurately detected.
 また、例えば、前記分析を行う工程では、前記複数の時系列データの相互相関係数を算出し、算出した相互相関係数に基づいて前記複数の時系列データを複数のグループに分類し、前記修正する工程では、分類されたグループ毎に、当該グループに含まれる複数の時系列データを、対応する属性情報に基づいて少数派と多数派とに分類し、前記少数派に属する時系列データの属性情報を、前記多数派に属する時系列データの属性情報に修正してもよい。 Further, for example, in the step of performing the analysis, a cross-correlation coefficient of the plurality of time-series data is calculated, and the plurality of time-series data is classified into a plurality of groups based on the calculated cross-correlation coefficient. In the correcting step, for each classified group, a plurality of time-series data included in the group is classified into a minority and a majority based on corresponding attribute information, and the time-series data belonging to the minority The attribute information may be modified to the attribute information of the time-series data belonging to the majority.
 これにより、グループ内で時系列データを少数派と多数派とに分類することにより、属性情報の誤りを容易に検出することができ、かつ、当該誤りの修正を容易に行うことができる。 (4) By this, by classifying the time-series data into a minority group and a majority group in the group, it is possible to easily detect an error in the attribute information and easily correct the error.
 特に、少数派に属する時系列データの数が多数派に属する時系列データの数よりも少ない程、少数派に属する時系列データの属性情報が誤っている可能性が高くなり、かつ、多数派に属する時系列データの属性情報が正しい可能性が高くなる。 In particular, the smaller the number of time-series data belonging to the minority is smaller than the number of time-series data belonging to the majority, the higher the possibility that the attribute information of the time-series data belonging to the minority is wrong, and Is more likely to be correct for the attribute information of the time-series data belonging to.
 このため、例えば、前記修正する工程では、前記少数派に属する時系列データの数が前記多数派に属する時系列データの数の半分以下である場合に、前記少数派に属する時系列データの属性情報を、前記多数派に属する時系列データの属性情報に修正してもよい。 Therefore, for example, in the correcting step, when the number of the time-series data belonging to the minority is less than half the number of the time-series data belonging to the majority, the attribute of the time-series data belonging to the minority The information may be modified to attribute information of the time-series data belonging to the majority.
 これにより、属性情報の誤りを更に容易に、かつ、精度良く検出することができるので、更に精度良く異常を検出することができる。 (4) Thereby, an error in the attribute information can be more easily and accurately detected, so that an abnormality can be detected more accurately.
 また、例えば、前記統計分析は、重回帰分析であってもよい。 Further, for example, the statistical analysis may be a multiple regression analysis.
 これにより、重回帰分析によって適切なモデルを決定することができる。したがって、時系列データと属性情報との対応関係に誤りがある場合であっても、適切なモデルと比較することにより当該誤りを精度良く検出することができるので、精度良く異常を検出することができる。 This makes it possible to determine an appropriate model by multiple regression analysis. Therefore, even if there is an error in the correspondence between the time-series data and the attribute information, the error can be accurately detected by comparing with the appropriate model. it can.
 また、例えば、前記複数の要素は、各々からの出力が統合された複数のコンプレッサを含み、前記取得する工程では、前記複数のコンプレッサの各々からの圧力の時系列データである複数の圧力データ及び流量の時系列データである複数の流量データと、統合後の圧力の時系列データである統合圧力データ及び流量の時系列データである統合流量データとを、前記複数の時系列データとして取得し、前記分析を行う工程では、前記複数の圧力データ及び前記複数の流量データと、前記複数の圧力データ及び前記複数の流量データの各々に対応させる属性情報の候補との組み合わせを複数作成し、作成した組み合わせ毎に、当該組み合わせを構成する複数の圧力データ及び複数の流量データを独立変数とし、前記統合圧力データ及び前記統合流量データを従属変数として、重回帰分析を行ってもよい。 In addition, for example, the plurality of elements include a plurality of compressors whose outputs from each are integrated, and in the obtaining step, a plurality of pressure data, which are time-series data of pressures from each of the plurality of compressors, A plurality of flow rate data which is time series data of flow rate, and integrated flow rate data which is time series data of flow rate and integrated pressure data which is time series data of integrated pressure, are obtained as the plurality of time series data, In the step of performing the analysis, a plurality of combinations of the plurality of pressure data and the plurality of flow rate data, and a plurality of attribute information candidates corresponding to each of the plurality of pressure data and the plurality of flow rate data were created and created. For each combination, a plurality of pressure data and a plurality of flow rate data constituting the combination are made independent variables, and the integrated pressure data and the integrated The amount data as the dependent variable, may be performed multiple regression analysis.
 これにより、コンプレッサからの時系列データと属性情報との対応関係の誤りを修正することができる。このため、コンプレッサに発生する異常を精度良く検出することができる。 This makes it possible to correct an error in the correspondence between the time-series data from the compressor and the attribute information. Therefore, it is possible to accurately detect an abnormality occurring in the compressor.
 また、例えば、前記複数の要素は、複数の空間の各々に配置された空調機器と、各々が、前記複数の空間のいずれか1つに配置された複数の製造装置とを含み、前記取得する工程では、複数の前記空調機器の各々の消費電力の時系列データと、前記複数の製造装置の各々のパラメータの時系列データとを、前記複数の時系列データとして取得し、前記分析を行う工程では、前記パラメータの時系列データを独立変数とし、前記消費電力の時系列データを従属変数として、重回帰分析を行ってもよい。 In addition, for example, the plurality of elements include an air conditioner disposed in each of a plurality of spaces, and a plurality of manufacturing devices each disposed in any one of the plurality of spaces, and the acquisition is performed. In the step, acquiring the time series data of the power consumption of each of the plurality of air conditioners and the time series data of the parameters of each of the plurality of manufacturing apparatuses as the plurality of time series data, and performing the analysis. Then, multiple regression analysis may be performed using the time series data of the parameter as an independent variable and the time series data of the power consumption as a dependent variable.
 空調機器の消費電力と、当該空調機器が設けられた空間と同じ空間に設けられた機器のパラメータとには、強い相関関係がある。本態様によれば、当該相関関係を分析することにより、各機器と設置位置との対応関係の誤りを修正することができる。各機器と設置位置とが正しい対応関係に修正されることで、例えば、異常が発生した機器の代替動作可能な機器を提案することができる。例えば、同じ部屋に複数の同種類の機器が存在する場合において、1つの機器に対する異常が検出されたとしても、同種類の他の機器を代替動作させることにより、生産効率の低下を抑制することができる。 電力 There is a strong correlation between the power consumption of the air conditioner and the parameters of the device installed in the same space as the space where the air conditioner is installed. According to this aspect, by analyzing the correlation, an error in the correspondence between each device and the installation position can be corrected. By correcting each device and the installation position so as to have a correct correspondence, for example, it is possible to propose a device that can operate in place of the device in which the abnormality has occurred. For example, in a case where a plurality of devices of the same type are present in the same room, even if an abnormality is detected for one device, a reduction in production efficiency is suppressed by performing another operation of another device of the same type. Can be.
 また、例えば、前記出力する工程では、さらに、検出された異常の原因を示す情報を出力してもよい。 For example, in the outputting step, information indicating the cause of the detected abnormality may be output.
 これにより、異常の要因を示す情報が出力されるので、製造物の製造に関わるユーザ(例えば、工場の管理者など)は、発生した異常の要因に基づいて対策案を検討することができる。このため、例えば、速やかにメンテナンス作業を行うことができ、あるいは、代替可能な装置などを利用して製造物の製造を継続することができるので、生産効率の低下を抑制することができる。このように、本態様に係る異常検出方法によれば、生産効率の低下の抑制を支援することができる。 (4) As a result, information indicating the cause of the abnormality is output, so that a user (eg, a factory manager or the like) involved in the manufacture of the product can study a countermeasure based on the cause of the abnormality that has occurred. For this reason, for example, maintenance work can be performed promptly, or production of a product can be continued using an alternative device or the like, so that a decrease in production efficiency can be suppressed. As described above, according to the abnormality detection method according to this aspect, it is possible to assist in suppressing a decrease in production efficiency.
 また、例えば、前記出力する工程では、さらに、検出された異常に応じて定められた、異常への対策案を示す情報を出力してもよい。 In addition, for example, in the outputting step, information indicating a countermeasure for the abnormality, which is determined according to the detected abnormality, may be further output.
 これにより、対策案が出力されるので、製造物の製造に関わるユーザは、発生した異常に対して具体的にどのような対応を行えばよいのかを容易に判断することができる。このため、例えば、速やかにメンテナンス作業を行うことができ、あるいは、代替可能な装置などを利用して製造物の製造を継続することができるので、生産効率の低下を抑制することができる。このように、本態様に係る異常検出方法によれば、生産効率の低下の抑制を支援することができる。 (4) As a result, the countermeasure plan is output, so that the user involved in the manufacture of the product can easily determine what action should be taken for the abnormality that has occurred. For this reason, for example, maintenance work can be performed promptly, or production of a product can be continued using an alternative device or the like, so that a decrease in production efficiency can be suppressed. As described above, according to the abnormality detection method according to this aspect, it is possible to assist in suppressing a decrease in production efficiency.
 また、本開示の一態様に係る情報処理装置は、製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する取得部と、前記複数の時系列データの相互関係の分析を行う分析部と、前記分析の結果に基づいて前記属性情報を修正する修正部と、修正された属性情報と前記複数の時系列データとに基づいて、前記複数の要素に発生する異常を検出する検出部と、検出された異常と当該異常の発生時刻とを示す情報を出力する出力部とを備えてもよい。 In addition, the information processing apparatus according to an aspect of the present disclosure includes an acquisition unit configured to acquire a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product and attribute information of each of the plurality of time-series data. An analysis unit that analyzes the mutual relationship between the plurality of time-series data, a correction unit that corrects the attribute information based on the result of the analysis, and the corrected attribute information and the plurality of time-series data. A detection unit that detects an abnormality occurring in the plurality of elements, and an output unit that outputs information indicating the detected abnormality and an occurrence time of the abnormality.
 これにより、上述した異常検出方法と同様に、精度良く異常を検出することができる。 This makes it possible to detect an abnormality with high accuracy, similarly to the abnormality detection method described above.
 また、本開示の一態様に係る異常検出システムは、前記情報処理装置と、前記取得部によって取得された複数の時系列データ及び複数の属性情報を記憶するためのデータ保存装置と、前記出力部から出力された情報を提示する提示装置とを備えてもよい。 Further, the abnormality detection system according to an aspect of the present disclosure includes the information processing device, a data storage device for storing a plurality of time-series data and a plurality of attribute information acquired by the acquisition unit, and the output unit. And a presentation device for presenting the information output from the device.
 これにより、上述した異常検出方法と同様に、精度良く異常を検出することができる。 This makes it possible to detect an abnormality with high accuracy, similarly to the abnormality detection method described above.
 以下では、実施の形態について、図面を参照しながら具体的に説明する。 Hereinafter, embodiments will be specifically described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Note that each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present disclosure. Further, among the components in the following embodiments, components not described in the independent claims are described as arbitrary components.
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。 図 Moreover, each drawing is a schematic diagram and is not necessarily strictly illustrated. Further, in each of the drawings, substantially the same configuration is denoted by the same reference numeral, and redundant description will be omitted or simplified.
 (実施の形態1)
 以下では、実施の形態1に係る異常検出方法を実行する異常検出装置について説明する。本実施の形態に係る異常検出装置は、例えば、製造物を製造する製造システムが設置された工場などにおいて、製造システムが備える装置などに発生する異常を検出する。
(Embodiment 1)
Hereinafter, an abnormality detection device that executes the abnormality detection method according to the first embodiment will be described. The abnormality detection device according to the present embodiment detects, for example, an abnormality that occurs in a device included in a manufacturing system in a factory or the like in which a manufacturing system that manufactures a product is installed.
 図1は、本実施の形態に係る異常検出装置100の対象となる工場1の構成を示す図である。工場1では、3つの部屋A~Cの各々に、製造物の製造に関わる複数の装置が配置されている。具体的には、図1に示されるように、部屋Aには、実装機A、成型機A及びエアコンAが配置されている。部屋Bには、成型機B、塗布機B、溶接機B、プレス機B及びエアコンBが配置されている。部屋Cには、プレス機C及びエアコンCが配置されている。 FIG. 1 is a diagram showing a configuration of a factory 1 which is a target of the abnormality detection device 100 according to the present embodiment. In the factory 1, a plurality of devices related to the manufacture of a product are arranged in each of the three rooms A to C. Specifically, as shown in FIG. 1, in a room A, a mounting machine A, a molding machine A, and an air conditioner A are arranged. In the room B, a molding machine B, a coating machine B, a welding machine B, a press machine B, and an air conditioner B are arranged. In the room C, a press C and an air conditioner C are arranged.
 実装機A、成型機A及びB、塗布機B、溶接機B、プレス機B及びC、並びに、エアコンA~Cはそれぞれ、製造物の製造に関わる複数の要素の一例である。複数の要素には、エアコンA~Cのように、製造物を直接的に製造する製造装置以外も含まれる。複数の要素には、例えば、装置間の通信を中継する中継器などが含まれてもよい。また、複数の要素には、コンプレッサが含まれてもよい。 The mounting machine A, the molding machines A and B, the coating machine B, the welding machine B, the press machines B and C, and the air conditioners A to C are each an example of a plurality of elements related to the manufacture of a product. The plurality of elements include elements other than the manufacturing apparatus that directly manufactures products, such as the air conditioners A to C. The plurality of elements may include, for example, a repeater that relays communication between the devices. Further, the plurality of elements may include a compressor.
 異常検出装置100は、これらの複数の要素から得られる複数の時系列データを取得し、取得した複数の時系列データに基づいて、複数の要素に発生する異常を検出する。時系列データは、各要素の1つ以上のパラメータの数値の時間変化を表している。1つ以上のパラメータは、例えば、消費電力、動作回数、動作時間、部品の投入数、部品の出力数などが含まれる。複数の要素の各々には、パラメータの数値を検出するためのセンサ又は計測器が設けられている。異常検出装置100は、複数の要素の各々に設けられたセンサ又は計測器と有線又は無線で通信可能に接続されている。 The abnormality detection device 100 acquires a plurality of time-series data obtained from the plurality of elements, and detects an abnormality occurring in the plurality of elements based on the acquired plurality of time-series data. The time-series data represents a temporal change of a numerical value of one or more parameters of each element. The one or more parameters include, for example, power consumption, the number of operations, the operation time, the number of inserted components, the number of output components, and the like. Each of the plurality of elements is provided with a sensor or a measuring device for detecting a numerical value of the parameter. The abnormality detection device 100 is communicably connected by wire or wirelessly to a sensor or a measuring device provided for each of the plurality of elements.
 異常検出装置100は、例えばコンピュータ機器で実現される。具体的には、異常検出装置100は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。 The abnormality detection device 100 is realized by, for example, a computer device. Specifically, the abnormality detection device 100 is realized by a nonvolatile memory in which a program is stored, a volatile memory that is a temporary storage area for executing the program, an input / output port, a processor that executes the program, and the like. You.
 図2は、本実施の形態に係る異常検出装置100の構成を示すブロック図である。図2に示されるように、異常検出装置100は、取得部110と、分析部120と、修正部130と、検出部140と、出力部150とを備える。さらに、異常検出装置100は、各種データ及び情報を記憶するための記憶部160を備える。 FIG. 2 is a block diagram showing a configuration of the abnormality detection device 100 according to the present embodiment. As illustrated in FIG. 2, the abnormality detection device 100 includes an acquisition unit 110, an analysis unit 120, a correction unit 130, a detection unit 140, and an output unit 150. Further, the abnormality detection device 100 includes a storage unit 160 for storing various data and information.
 取得部110は、製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する。取得部110は、例えば、図1に示される製造装置及びエアコンなどの各機器に取り付けられたセンサ又は計測器からの出力データが入力される入力インタフェース又は通信インタフェースなどで実現される。取得部110は、各センサ又は計測器からの出力データを定期的に取得することで、複数の時系列データを取得する。 The acquisition unit 110 acquires a plurality of time-series data obtained from a plurality of elements related to manufacturing of a product and attribute information of each of the plurality of time-series data. The acquiring unit 110 is realized by, for example, an input interface or a communication interface to which output data from a sensor or a measuring instrument attached to each device such as the manufacturing apparatus and the air conditioner illustrated in FIG. 1 is input. The acquiring unit 110 acquires a plurality of time-series data by periodically acquiring output data from each sensor or measuring instrument.
 また、取得部110は、さらに、工場1の管理者などによる操作入力を受け付けるユーザインタフェースなどで実現される。取得部110は、操作入力を受け付けることで、属性情報を取得する。つまり、本実施の形態において、属性情報は、工場1の管理者などの人が入力した情報である。このため、人為的なミス又は入力漏れなどにより時系列データとの対応関係に誤りが生じる場合がある。 The acquisition unit 110 is further realized by a user interface or the like that receives an operation input by an administrator of the factory 1 or the like. The acquisition unit 110 acquires attribute information by receiving an operation input. That is, in the present embodiment, the attribute information is information input by a person such as a manager of the factory 1. For this reason, an error may occur in the correspondence relationship with the time-series data due to a human error or omission in input.
 取得部110によって取得された複数の時系列データ及び属性情報は、記憶部160に記憶される。記憶部160では、複数の時系列データが時系列データDB(データベース)162内で管理され、属性情報が属性情報DB164内で管理されている。 The plurality of time-series data and attribute information acquired by the acquisition unit 110 are stored in the storage unit 160. In the storage unit 160, a plurality of time-series data is managed in a time-series data DB (database) 162, and attribute information is managed in an attribute information DB 164.
 分析部120は、取得部110によって取得された複数の時系列データの相互相関の分析を行う。分析部120は、具体的には、記憶部160に記憶された時系列データDB162を参照し、記憶部160から読み出した複数の時系列データを用いて相互関係の分析を行う。分析部120は、分析の結果を修正部130に出力する。 The analysis unit 120 analyzes the cross-correlation of the plurality of time-series data acquired by the acquisition unit 110. The analysis unit 120 specifically refers to the time-series data DB 162 stored in the storage unit 160, and analyzes the mutual relationship using the plurality of time-series data read from the storage unit 160. The analysis unit 120 outputs the result of the analysis to the correction unit 130.
 本実施の形態では、分析部120は、統計分析を行う。具体的には、分析部120は、相互相関分析を行う。より具体的には、分析部120は、複数の時系列データの相互相関係数を算出し、算出した相互相関係数に基づいて複数の時系列データを複数のグループに分類する。 In the present embodiment, the analysis unit 120 performs a statistical analysis. Specifically, the analysis unit 120 performs a cross-correlation analysis. More specifically, analysis section 120 calculates a cross-correlation coefficient of a plurality of time-series data, and classifies the plurality of time-series data into a plurality of groups based on the calculated cross-correlation coefficient.
 例えば、分析部120は、複数の時系列データから2つの時系列データを選択し、選択した時系列データの相互相関係数を算出する。Nを2以上の自然数とした場合、N個の時系列データから2つの時系列データを選択する組み合わせは、N(N-1)/2通りある。このため、N(N-1)/2個の相互相関係数が算出される。 {For example, the analysis unit 120 selects two time series data from the plurality of time series data, and calculates a cross-correlation coefficient of the selected time series data. When N is a natural number of 2 or more, there are N (N-1) / 2 combinations for selecting two time series data from the N pieces of time series data. Therefore, N (N-1) / 2 cross-correlation coefficients are calculated.
 相互相関係数は、-1以上+1以下の値で表される。相互相関係数が+1に近い程、2つの時系列データの正の相関が強いことを表し、相互相関係数が-1に近い程、2つの時系列データの負の相関が強いことを表している。相互相関係数が0に近い程、2つの時系列データが無相関に近いことを表している。 The cross-correlation coefficient is represented by a value between −1 and +1. The closer the cross-correlation coefficient is to +1, the stronger the positive correlation between the two time-series data, and the closer the cross-correlation coefficient is to -1, the stronger the negative correlation between the two time-series data. ing. The closer the cross-correlation coefficient is to 0, the closer the two time-series data are to no correlation.
 本実施の形態では、分析部120は、相互相関係数と閾値とを比較することで、相関の強さに応じて複数の時系列データを複数のグループに分類する。具体的には、分析部120は、相互相関係数の絶対値と閾値とを比較する。閾値は、例えば0.75であるが、これらに限らない。相互相関係数の絶対値が0.75より大きい複数の時系列データを、大きな相関を持つグループとする。 In the present embodiment, the analysis unit 120 classifies the plurality of time-series data into a plurality of groups according to the strength of the correlation by comparing the cross-correlation coefficient with the threshold. Specifically, the analysis unit 120 compares the absolute value of the cross-correlation coefficient with a threshold. The threshold value is, for example, 0.75, but is not limited thereto. A plurality of time-series data in which the absolute value of the cross-correlation coefficient is larger than 0.75 is set as a group having a large correlation.
 修正部130は、分析部120による分析の結果に基づいて属性情報を修正する。修正部130は、具体的には、記憶部160に記憶された属性情報DB164を参照し、記憶部160から読み出した複数の属性情報と、分析部120から得られた分析の結果とを用いて属性情報の修正を行う。修正部130は、修正の結果を属性情報DB164に反映させる。 The correction unit 130 corrects the attribute information based on the result of the analysis by the analysis unit 120. Specifically, the correction unit 130 refers to the attribute information DB 164 stored in the storage unit 160, and uses the plurality of pieces of attribute information read from the storage unit 160 and the analysis result obtained from the analysis unit 120. Modify attribute information. The correction unit 130 reflects the result of the correction in the attribute information DB 164.
 本実施の形態では、修正部130は、分析部120によって分類されたグループ毎に、当該グループに含まれる複数の時系列データを、対応する属性情報に基づいて少数派と多数派とに分類する。修正部130は、少数派に属する時系列データの属性情報を、多数派に属する時系列データの属性情報に修正する。 In the present embodiment, the correction unit 130 classifies, for each group classified by the analysis unit 120, a plurality of time-series data included in the group into a minority group and a majority group based on corresponding attribute information. . The correction unit 130 corrects the attribute information of the time-series data belonging to the minority into the attribute information of the time-series data belonging to the majority.
 具体的には、修正部130は、少数派に属する時系列データの数が多数派に属する時系列データの数の半分以下である場合に、少数派に属する時系列データの属性情報を、多数派に属する時系列データの属性情報に修正する。例えば、修正部130は、少数派に属する時系列データの数が、多数派に属する時系列データの数の1/4以下である場合、すなわち、グループに属する時系列データの総数の20%以下である場合に、少数派に属する時系列データの属性情報の修正を行う。修正の具体的な動作については、例を挙げながら後で詳細に説明する。 Specifically, when the number of time-series data belonging to the minority is equal to or less than half of the number of time-series data belonging to the majority, the correction unit 130 deletes the attribute information of the time-series data belonging to the minority. Modify to the attribute information of the time series data belonging to the faction. For example, when the number of time-series data belonging to the minority is equal to or less than 1/4 of the number of time-series data belonging to the majority, the correction unit 130 determines that the total number of time-series data belonging to the group is equal to or less than 20%. , The attribute information of the time-series data belonging to the minority is corrected. The specific operation of the correction will be described later in detail with an example.
 検出部140は、修正された属性情報と複数の時系列データとに基づいて、複数の要素に発生する異常を検出する。例えば、検出部140は、検出対象の異常毎に、予め定められた異常検出のモデル又はルールを用いて異常を検出する。検出部140は、具体的には、記憶部160に記憶された時系列データDB162、属性情報DB164及び異常検出モデルDB166の各々を参照し、必要なデータを読み出して異常を検出する。検出部140は、異常の検出結果を出力部150に出力する。 The detection unit 140 detects an abnormality occurring in a plurality of elements based on the corrected attribute information and the plurality of time-series data. For example, the detection unit 140 detects an abnormality for each abnormality to be detected by using a predetermined abnormality detection model or rule. The detection unit 140 refers to the time-series data DB 162, the attribute information DB 164, and the abnormality detection model DB 166 stored in the storage unit 160, and reads necessary data to detect an abnormality. The detection unit 140 outputs the result of the detection of the abnormality to the output unit 150.
 検出対象の異常には、例えば、実装機、成型機、塗布機、溶接機又はプレス機などの製造装置に発生する異常が含まれる。あるいは、検出対象の異常には、エアコンなどの空調機器に発生する異常、又は、エアコンによって空調が制御された空間(具体的には、部屋)に発生する異常が含まれてもよい。また、検出対象の異常には、コンプレッサに発生する異常が含まれてもよい。異常検出の具体的な動作については、例を挙げながら後で詳細に説明する。 異常 Abnormalities to be detected include, for example, abnormalities that occur in a manufacturing apparatus such as a mounting machine, a molding machine, a coating machine, a welding machine or a press machine. Alternatively, the abnormality to be detected may include an abnormality that occurs in an air conditioner such as an air conditioner, or an abnormality that occurs in a space (specifically, a room) in which air conditioning is controlled by the air conditioner. Further, the abnormality to be detected may include an abnormality occurring in the compressor. The specific operation of the abnormality detection will be described later in detail with an example.
 なお、分析部120、修正部130及び検出部140はそれぞれ、例えば、プロセッサによって実行されるソフトウェアで実現される。あるいは、分析部120、修正部130及び検出部140の少なくとも1つは、複数の回路素子を含む電子回路などのハードウェアで実現されてもよい。 The analysis unit 120, the correction unit 130, and the detection unit 140 are each realized by, for example, software executed by a processor. Alternatively, at least one of the analysis unit 120, the correction unit 130, and the detection unit 140 may be realized by hardware such as an electronic circuit including a plurality of circuit elements.
 出力部150は、検出された異常と当該異常の発生時刻とを示す情報を出力する。本実施の形態では、出力部150は、さらに、異常の原因を示す情報、又は、検出された異常に応じて予め定められた、異常への対策案を示す情報を出力する。具体的には、出力部150は、記憶部160に記憶された対策情報DB168を参照し、検出された異常に対応する対策案を決定し、決定した対策案を示す情報を出力する。 The output unit 150 outputs information indicating the detected abnormality and the time when the abnormality occurs. In the present embodiment, output unit 150 further outputs information indicating the cause of the abnormality or information indicating a countermeasure for the abnormality that is predetermined according to the detected abnormality. Specifically, the output unit 150 refers to the countermeasure information DB 168 stored in the storage unit 160, determines a countermeasure corresponding to the detected abnormality, and outputs information indicating the determined countermeasure.
 出力部150は、例えば、情報を表示するためのディスプレイで実現されるが、これに限らない。例えば、出力部150は、情報を音声として出力するスピーカで実現されてもよい。あるいは、出力部150は、外部のディスプレイ又はスピーカなどに情報を出力するための出力インタフェース又は通信インタフェースなどで実現されてもよい。 The output unit 150 is realized by, for example, a display for displaying information, but is not limited thereto. For example, the output unit 150 may be realized by a speaker that outputs information as sound. Alternatively, the output unit 150 may be realized by an output interface or a communication interface for outputting information to an external display, a speaker, or the like.
 記憶部160は、例えば、半導体メモリ又はHDD(Hard Disk Drive)などで実現される。本実施の形態では、記憶部160には、異常検出方法の実行に必要な各種データ及び情報がデータベース化されて記憶される。具体的には、図2に示されるように、記憶部160には、時系列データDB162と、属性情報DB164と、異常検出モデルDB166と、対策情報DB168とが記憶される。 The storage unit 160 is realized by, for example, a semiconductor memory or a HDD (Hard Disk Drive). In the present embodiment, the storage unit 160 stores various data and information necessary for executing the abnormality detection method in a database. Specifically, as shown in FIG. 2, the storage unit 160 stores a time-series data DB 162, an attribute information DB 164, an abnormality detection model DB 166, and a countermeasure information DB 168.
 時系列データDB162は、取得部110によって取得された複数の時系列データを含んでいる。時系列データDB162は、取得部110が時系列データを取得した場合に生成及び更新される。時系列データDB162の具体例については、図3を用いて後で説明する。 The time series data DB 162 includes a plurality of time series data acquired by the acquisition unit 110. The time series data DB 162 is generated and updated when the acquisition unit 110 acquires the time series data. A specific example of the time-series data DB 162 will be described later with reference to FIG.
 属性情報DB164は、取得部110によって取得された複数の属性情報を含んでいる。複数の属性情報はそれぞれ、複数の時系列データの各々に対応している。属性情報DB164は、取得部110が属性情報を取得した場合に生成及び更新される。また、属性情報DB164は、修正部130によって更新される。属性情報DB164の具体例については、図4を用いて後で説明する。 The attribute information DB 164 includes a plurality of pieces of attribute information acquired by the acquisition unit 110. The plurality of pieces of attribute information respectively correspond to the plurality of pieces of time-series data. The attribute information DB 164 is generated and updated when the acquisition unit 110 acquires the attribute information. The attribute information DB 164 is updated by the correction unit 130. A specific example of the attribute information DB 164 will be described later with reference to FIG.
 異常検出モデルDB166は、検出部140による異常検出に用いられるモデル又はルールを含んでいる。異常検出モデルDB166では、検出対象の異常毎に、利用可能なモデル又はルールが対応付けられている。 The anomaly detection model DB 166 includes a model or a rule used by the detection unit 140 for anomaly detection. In the abnormality detection model DB 166, available models or rules are associated with each abnormality to be detected.
 対策情報DB168は、複数の対策案を含んでいる。対策情報DB168では、検出される異常毎に、予め定められた1つ以上の対策案が対応付けられている。1つ以上の対策案には、例えば、異常が検出された装置の停止、当該装置のメンテナンス指示、及び、当該装置の代わりに使用可能な代替装置の提示などが含まれる。 (5) The measure information DB 168 includes a plurality of measure plans. In the countermeasure information DB 168, one or more predetermined countermeasures are associated with each detected abnormality. The one or more countermeasures include, for example, stopping the device in which the abnormality is detected, instructing maintenance of the device, and presenting an alternative device that can be used in place of the device.
 次に、記憶部160に記憶された時系列データDB162及び属性情報DB164について説明する。 Next, the time-series data DB 162 and the attribute information DB 164 stored in the storage unit 160 will be described.
 図3は、本実施の形態に係る異常検出装置100が取得した複数の時系列データの一例を示す図である。具体的には、図3は、記憶部160に記憶される時系列データDB162の一部を示している。 FIG. 3 is a diagram illustrating an example of a plurality of time-series data acquired by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 3 shows a part of the time-series data DB 162 stored in the storage unit 160.
 図3に示されるように、時系列データDB162では、複数の時系列データが時刻毎に対応付けられて管理されている。時刻は、例えば、日時(日付及び時刻)で表されるが、日付が含まれていなくてもよい。 時 As shown in FIG. 3, in the time-series data DB 162, a plurality of time-series data are managed in association with each time. The time is represented by, for example, date and time (date and time), but may not include the date.
 図3に示される時系列データDB162では、時系列データが一列分のデータとして示されている。時系列データには、識別子(具体的には、データID)が付されている。データIDは、図3に示される例では“Data-01”などのように、“Data-”と二桁の数値との組み合わせで構成されている。なお、データIDの構成は、特に限定されない。 (3) In the time-series data DB 162 shown in FIG. 3, the time-series data is shown as data for one column. An identifier (specifically, data ID) is attached to the time-series data. The data ID is composed of a combination of “Data-” and a two-digit numerical value, such as “Data-01” in the example shown in FIG. The configuration of the data ID is not particularly limited.
 1つの時系列データは、一定期間毎のパラメータ(例えば、消費電力)の数値を含んでいる。数値は、例えば、パラメータの瞬時値でもよく、期間内のパラメータの累積値又は平均値でもよい。期間は、例えば、一秒以上数十分以下の期間であるが、これに限定されない。図3に示される例では、時系列データは、10分毎の数値を示している。 One piece of time-series data includes a numerical value of a parameter (for example, power consumption) for each fixed period. The numerical value may be, for example, an instantaneous value of the parameter, or a cumulative value or an average value of the parameter within a period. The period is, for example, one second or more and several ten minutes or less, but is not limited thereto. In the example shown in FIG. 3, the time-series data indicates a numerical value every 10 minutes.
 複数の時系列データの各々は、互いに異なる属性情報が割り当てられている。図4は、本実施の形態に係る異常検出装置100が取得した属性情報の一例を示す図である。具体的には、図4は、記憶部160に記憶される属性情報DB164を表している。 異 な る Different attribute information is assigned to each of the plurality of time-series data. FIG. 4 is a diagram illustrating an example of attribute information acquired by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 4 illustrates the attribute information DB 164 stored in the storage unit 160.
 図4に示されるように、属性情報DB164では、時系列データを表すデータID毎に属性情報が対応付けられている。本実施の形態では、属性情報は、複数の項目に分類される。項目は、設置部屋と、装置名と、データの種類とである。設置部屋及び装置名は、対応する時系列データの数値を測定するセンサ又は計測器が取り付けられた装置が設置された部屋、及び、当該装置の名称を示している。データの種類は、当該装置のパラメータの内容に相当する。 属性 As shown in FIG. 4, in the attribute information DB 164, attribute information is associated with each data ID representing time-series data. In the present embodiment, the attribute information is classified into a plurality of items. The items are an installation room, a device name, and a data type. The installation room and the device name indicate the room in which the device to which the sensor or the measuring device for measuring the numerical value of the corresponding time-series data is mounted is installed, and the name of the device. The type of data corresponds to the content of the parameter of the device.
 属性情報DB164は、例えば、工場1の管理者、設計者、各装置の操作者、メンテナンス作業者などの人が入力することで生成される。このため、人為的ミスによる誤入力が発生する恐れがあり、属性情報と時系列データとの対応関係に誤りが含まれる場合がある。 The attribute information DB 164 is generated by, for example, input by a person such as an administrator of the factory 1, a designer, an operator of each device, or a maintenance worker. For this reason, an erroneous input due to a human error may occur, and the correspondence between the attribute information and the time-series data may include an error.
 また、属性情報の入力が正確に行われた場合であっても、その後に、製造ラインの構成を変更した場合、又は、センサ若しくは計測器の設置位置を変更した場合には、属性情報の修正を行う必要がある。属性情報の修正が行われない場合、属性情報と時系列データとの対応関係に誤りが生じる。 Even if the attribute information is input correctly, if the configuration of the manufacturing line is changed or the installation position of the sensor or measuring instrument is changed, the attribute information is corrected. Need to do. If the attribute information is not corrected, an error occurs in the correspondence between the attribute information and the time-series data.
 図4では、誤りが発生しており、修正が必要な属性情報を太字で、かつ、背景にドットの網掛けを付して示している。当該誤りは、分析部120による分析によって検出され、かつ、修正部130によって修正される。 (4) In FIG. 4, the attribute information in which an error has occurred and needs to be corrected is shown in bold letters, and the background is shaded with dots. The error is detected by the analysis by the analysis unit 120, and is corrected by the correction unit 130.
 続いて、本実施の形態に係る異常検出装置100の動作(異常検出方法)について説明する。 Next, an operation (an abnormality detection method) of the abnormality detection device 100 according to the present embodiment will be described.
 図5は、本実施の形態に係る異常検出装置100の動作を示すフローチャートである。 FIG. 5 is a flowchart showing the operation of the abnormality detection device 100 according to the present embodiment.
 図5に示されるように、異常検出装置100では、まず取得部110が時系列データと属性情報とを取得する(S10)。取得部110は、例えば、工場1の各装置に設けられたセンサ又は計測器からセンサ値(つまり、各パラメータの数値)を例えば10分毎に取得し、記憶部160に保存することで、一日又は一週間などの一定期間分の複数の時系列データを取得する。また、取得部110は、工場1の管理者などからの入力を受け付けることで、複数の時系列データに対応する属性情報を取得する。なお、時系列データの取得と属性情報の取得とは、いずれが先に行われてもよく、同時に行われてもよい。 As shown in FIG. 5, in the abnormality detection device 100, the acquisition unit 110 first acquires the time-series data and the attribute information (S10). The acquisition unit 110 acquires a sensor value (that is, a numerical value of each parameter) from, for example, a sensor or a measuring device provided in each device of the factory 1 every 10 minutes, and stores the acquired sensor value in the storage unit 160, for example. Acquire a plurality of time-series data for a certain period such as a day or a week. In addition, the acquisition unit 110 acquires attribute information corresponding to a plurality of time-series data by receiving an input from a manager of the factory 1 or the like. Either the acquisition of the time-series data or the acquisition of the attribute information may be performed first, or may be performed simultaneously.
 次に、分析部120が複数の時系列データの相互相関の分析を行う(S11)。本実施の形態では、分析部120は、記憶部160に記憶された時系列データDB162から2つの時系列データを選択し、選択した2つの時系列データの相互相関係数を算出する。分析部120は、記憶部160に記憶されたN個の時系列データから、相互相関係数を未算出の2個の時系列データの選択を繰り返すことで、N(N-1)/2個の相互相関係数を算出する。さらに、分析部120は、算出された相互相関係数と閾値とを比較することで、複数の時系列データを複数のグループに分類する。例えば、分析部120は、相互相関係数の絶対値が0.75より大きい2つの時系列データを同一のグループに属すると判断して、N個の時系列データを複数のグループに分類する。 Next, the analysis unit 120 analyzes the cross-correlation of the plurality of time-series data (S11). In the present embodiment, analysis unit 120 selects two time-series data from time-series data DB 162 stored in storage unit 160, and calculates a cross-correlation coefficient between the selected two time-series data. The analysis unit 120 repeats the selection of two time series data for which the cross-correlation coefficient has not been calculated from the N time series data stored in the storage unit 160, so that N (N−1) / 2 Is calculated. Furthermore, the analysis unit 120 classifies the plurality of time-series data into a plurality of groups by comparing the calculated cross-correlation coefficient with a threshold. For example, the analysis unit 120 determines that two time-series data in which the absolute value of the cross-correlation coefficient is greater than 0.75 belong to the same group, and classifies the N time-series data into a plurality of groups.
 以下では、例えば、23個の時系列データData-01~Data-23を分類する場合を例に挙げて説明する。 (4) In the following, for example, a case in which 23 pieces of time-series data Data-01 to Data-23 are classified will be described.
 図6は、本実施の形態に係る異常検出装置100による相互相関分析の結果の一例を示す図である。具体的には、図6は、20個の時系列データData-01~Data-20が4つのグループA~Dに分類された様子を模式的に示している。なお、残りのData-21~Data-23はそれぞれ、単独のグループE~Gに分類されたため、図6には図示していない。 FIG. 6 is a diagram showing an example of the result of the cross-correlation analysis by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 6 schematically shows a state in which 20 time-series data Data-01 to Data-20 are classified into four groups A to D. The remaining Data-21 to Data-23 are not shown in FIG. 6 because they are classified into single groups E to G, respectively.
 図6に示されるように、例えば、5つの時系列データData-01、Data-02、Data-03、Data-04及びData-05はいずれも、各々の相互相関係数の絶対値が0.75より大きい値が算出された結果、1つのグループAに分類されている。同様に、5つの時系列データData-07、Data-11、Data-13、Data-14及びData-18はいずれも、各々の相互相関係数の絶対値が0.75より大きい値が算出された結果、1つのグループBに分類されている。グループC及びDについても同様である。 As shown in FIG. 6, for example, all five time-series data Data-01, Data-02, Data-03, Data-04, and Data-05 have an absolute value of a cross-correlation coefficient of 0. As a result of calculating a value larger than 75, the values are classified into one group A. Similarly, for all of the five time-series data Data-07, Data-11, Data-13, Data-14, and Data-18, a value in which the absolute value of each cross-correlation coefficient is greater than 0.75 is calculated. As a result, they are classified into one group B. The same applies to groups C and D.
 なお、図6には、大きい相関のグループだけでなく、当該グループ間の相関(中程度の相関又は小さい相関)も表している。相関の強さの違いは、複数の閾値を用いることで判定される。詳細については、本実施の形態の変形例として後で説明する。 FIG. 6 shows not only a group having a large correlation but also a correlation (medium correlation or small correlation) between the groups. The difference in the correlation strength is determined by using a plurality of thresholds. The details will be described later as a modification of the present embodiment.
 グループの分類がされた後、図5に示されるように、修正部130が属性情報の修正を行う(S12)。本実施の形態では、修正部130は、属性情報のうち装置名の修正を行う。 After the groups are classified, the correction unit 130 corrects the attribute information as shown in FIG. 5 (S12). In the present embodiment, the correction unit 130 corrects the device name in the attribute information.
 以下では、装置名の修正処理の具体例について、図7~図9を用いて説明する。 Hereinafter, a specific example of the device name correcting process will be described with reference to FIGS.
 図7は、本実施の形態に係る異常検出装置100の動作において、属性情報の修正処理を示すフローチャートである。 FIG. 7 is a flowchart showing a process of correcting attribute information in the operation of abnormality detection apparatus 100 according to the present embodiment.
 図8は、本実施の形態に係る異常検出装置100による属性情報の修正の一例を示す図である。図8では、属性情報DB164に、相互相関分析により得られたグルーピング結果と、属性情報の修正処理を行う際に対応付けられた各種情報とを付加して示している。 FIG. 8 is a diagram showing an example of the correction of the attribute information by the abnormality detection device 100 according to the present embodiment. In FIG. 8, a grouping result obtained by the cross-correlation analysis and various types of information associated when performing the attribute information correction process are added to the attribute information DB 164.
 図9は、本実施の形態に係る異常検出装置100によるグループ毎の修正前の属性情報の一例を示す図である。具体的には、図9は、図6のグルーピング結果に対応しており、データIDの代わりに、当該データIDに対応付けられた装置名及びデータの種類を示している。 FIG. 9 is a diagram showing an example of attribute information before correction for each group by the abnormality detection device 100 according to the present embodiment. Specifically, FIG. 9 corresponds to the grouping result of FIG. 6, and shows, instead of the data ID, the device name and the type of data associated with the data ID.
 まず、図7に示されるように、修正部130は、相互相関分析により得られたグルーピング結果に基づいて、修正フラグ(仮)を設定する(S20)。具体的には、修正部130は、グループ毎に、属性情報に基づいて時系列データを少数派と多数派とに分類する。ここでは、修正対象の属性情報である装置名に基づいて、時系列データを少数派と多数派とに分類する。 First, as shown in FIG. 7, the correction unit 130 sets a correction flag (temporary) based on the grouping result obtained by the cross-correlation analysis (S20). Specifically, the correction unit 130 classifies the time-series data into a minority group and a majority group based on the attribute information for each group. Here, the time-series data is classified into a minority group and a majority group based on the device name which is the attribute information to be corrected.
 図8及び図9に示されるように、グループAでは、5つの時系列データの全ての装置名が“実装機”であり、全てが多数派に分類される。グループBでは、4つの時系列データData-06、Data-09、Data-16及びData-19の装置名が“成型機”であるのに対して、1つの時系列データData-10の装置名が“実装機”である。つまり、グループBでは、4つの時系列データData-06、Data-09、Data-16及びData-19が多数派に分類され、1つの時系列データData-10が少数派に分類される。同様に、グループCでは、時系列データData-13が少数派に分類され、グループDでは、時系列データData-08が少数派に分類される。 As shown in FIGS. 8 and 9, in the group A, all the device names of the five time-series data are “mounting machines”, and all of them are classified as majority. In the group B, the device name of the four time-series data Data-06, Data-09, Data-16 and Data-19 is “molding machine”, whereas the device name of one time-series data Data-10 is Is the “mounting machine”. That is, in the group B, the four time-series data Data-06, Data-09, Data-16, and Data-19 are classified into the majority, and one time-series data Data-10 is classified into the minority. Similarly, in the group C, the time-series data Data-13 is classified as a minority, and in the group D, the time-series data Data-08 is classified as a minority.
 修正部130は、少数派に分類された時系列データData-08、Data-10及びData-13の各々の修正フラグ(仮)を“TRUE”に設定し、残りの20個の時系列データの各々の修正フラグ(仮)を“FALSE”に設定する。修正フラグ(仮)は、対応付けられた時系列データの装置名の修正処理の対象となるか否かを示す情報である。修正フラグ(仮)が“TRUE”である場合に、当該修正フラグ(仮)に対応付けられた時系列データの装置名の修正処理が行われる。 The correction unit 130 sets the correction flag (provisional) of each of the time-series data Data-08, Data-10, and Data-13 classified as the minority to “TRUE”, and sets the remaining 20 time-series data. Each correction flag (temporary) is set to “FALSE”. The correction flag (temporary) is information indicating whether or not the device name of the associated time-series data is to be corrected. When the correction flag (temporary) is “TRUE”, a process of correcting the device name of the time-series data associated with the correction flag (temporary) is performed.
 なお、本実施の形態では、修正部130は、グループ内の時系列データの総数に対する少数派に分類された時系列データの割合が充分に小さい場合にのみ、当該少数派の修正フラグ(仮)を“TRUE”に設定する。例えば、時系列データの割合が20%以下である場合に、当該少数派の修正フラグ(仮)を“TRUE”に設定する。図8及び図9に示されるように、グループB~Dのいずれにおいても少数派の割合は20%以下である。このため、修正部130は、グループB~Dの各々の少数派である時系列データData-08、Data-10及びData-13の各々の修正フラグ(仮)を“TRUE”に設定する。 Note that, in the present embodiment, the correction unit 130 sets the correction flag (provisional) for the minority only when the ratio of the time-series data classified to the minority to the total number of the time-series data in the group is sufficiently small. Is set to “TRUE”. For example, when the ratio of the time series data is 20% or less, the correction flag (temporary) of the minority is set to “TRUE”. As shown in FIGS. 8 and 9, the proportion of the minority in all of the groups B to D is 20% or less. For this reason, the correction unit 130 sets the correction flag (temporary) of each of the time series data Data-08, Data-10, and Data-13, which are the minorities of the groups B to D, to “TRUE”.
 次に、図7に示されるように、修正部130は、候補情報を仮設定する(S21)。候補情報は、具体的には、修正候補になる装置名である。本実施の形態では、修正候補になる装置名は、グループの多数派に属する時系列データの装置名である。したがって、図8に示されるように、グループBに属する時系列データData-13の修正候補の装置名は、グループBの多数派に属する時系列データの装置名である“塗布機”になる。同様に、グループCに属する時系列データData-10の修正候補の装置名は“成型機”になる。グループDに属する時系列データData-08の修正候補の装置名は“プレス機”になる。 Next, as shown in FIG. 7, the correction unit 130 provisionally sets the candidate information (S21). The candidate information is, specifically, a device name that becomes a correction candidate. In the present embodiment, the device name that is a correction candidate is the device name of the time-series data belonging to the majority of the group. Therefore, as shown in FIG. 8, the device name of the correction candidate of the time-series data Data-13 belonging to the group B is “applicator” which is the device name of the time-series data belonging to the majority of the group B. Similarly, the device name of the correction candidate of the time-series data Data-10 belonging to the group C is “molding machine”. The device name of the correction candidate of the time-series data Data-08 belonging to the group D is “press machine”.
 次に、図7に示されるように、修正フラグ(仮)が“TRUE”である属性情報に対して、以下の処理(S23~S27)が行われる(S22で“TRUE”)。修正フラグ(仮)が“FALSE”である属性情報に対しては、処理(S23~S27)は行われない(S22で“FALSE”)。以下では、時系列データData-08の場合を説明する。 Next, as shown in FIG. 7, the following processing (S23 to S27) is performed on the attribute information whose correction flag (temporary) is “TRUE” (“TRUE” in S22). The process (S23 to S27) is not performed on the attribute information whose correction flag (temporary) is "FALSE" ("FALSE" in S22). Hereinafter, the case of the time series data Data-08 will be described.
 まず、修正部130は、重複フラグを設定する(S23)。具体的には、修正部130は、修正後の設置部屋、装置名及びデータ種類の組が、他のデータIDの設置部屋、装置名及びデータ種類の組と重複する場合には“TRUE”を設定し、重複するデータが存在しない場合には“FALSE”を設定する。例えば、時系列データData-08では、修正後の設置部屋、装置名及びデータ種類がそれぞれ“RoomB”、“プレス機”及び“動作時間”であり、他のデータと重複しない。このため、修正部130は、重複フラグを“FALSE”に設定する。 First, the correction unit 130 sets a duplication flag (S23). Specifically, the correction unit 130 sets “TRUE” when the set of the installation room, the device name, and the data type after correction overlaps with the set of the installation room, the device name, and the data type of another data ID. If no duplicate data exists, "FALSE" is set. For example, in the time-series data Data-08, the installation room, the device name, and the data type after the correction are “RoomB”, “press machine”, and “operation time”, respectively, and do not overlap with other data. Therefore, the correction unit 130 sets the overlap flag to “FALSE”.
 次に、修正部130は、時系列データの代表値を抽出する(S24)。代表値は、例えば、時系列データに含まれる数値の最小値、最大値及び平均値の少なくとも1つである。具体的には、修正部130は、時系列データDB162を参照し、時系列データData-08の最小値、最大値及び平均値を読み出す。 Next, the correction unit 130 extracts a representative value of the time-series data (S24). The representative value is, for example, at least one of a minimum value, a maximum value, and an average value of numerical values included in the time-series data. Specifically, the correction unit 130 reads the minimum value, the maximum value, and the average value of the time-series data Data-08 with reference to the time-series data DB 162.
 次に、修正部130は、許容代表値を抽出する(S25)。許容代表値は、例えば、装置のスペック、又は、過去の運転履歴などに基づいて定められる値であり、記憶部160に記憶されている。許容代表値は、装置の動作として許容される範囲の最小値及び最大値、並びに、想定される平均値の少なくとも1つである。修正部130は、記憶部160から読み出した許容代表値をデータIDに対応付ける。なお、許容代表値が不明である場合、修正部130は、許容代表値が不明であることをデータIDに対応付ける。 Next, the correction unit 130 extracts an allowable representative value (S25). The permissible representative value is a value determined based on, for example, the specifications of the device or a past operation history, and is stored in the storage unit 160. The permissible representative value is at least one of a minimum value and a maximum value of a range permitted as the operation of the apparatus, and an assumed average value. The correction unit 130 associates the allowable representative value read from the storage unit 160 with the data ID. When the allowable representative value is unknown, the correction unit 130 associates that the allowable representative value is unknown with the data ID.
 次に、修正部130は、許容代表値と時系列データの代表値とに矛盾が発生したか否かを判定する(S26)。例えば、時系列データの最小値が許容代表値の最小値以上であれば、矛盾は生じていない。時系列データの最大値が許容代表値の最大値以下であれば、矛盾は生じていない。時系列データの平均値が許容代表値の平均値と同等(例えば、差分が±10%~20%以内)であれば、矛盾は生じていない。 Next, the correction unit 130 determines whether or not inconsistency has occurred between the allowable representative value and the representative value of the time-series data (S26). For example, if the minimum value of the time series data is equal to or larger than the minimum value of the allowable representative value, no inconsistency occurs. If the maximum value of the time series data is equal to or less than the maximum value of the allowable representative value, no inconsistency occurs. If the average value of the time-series data is equal to the average value of the allowable representative values (for example, the difference is within ± 10% to 20%), no inconsistency occurs.
 矛盾が発生していない場合(S26でNo)、修正部130は、属性情報DB164内の装置名を、修正候補の装置名に修正する(S27)。修正フラグを“TRUE”に設定することで、当該時系列データの属性情報の修正が完了する。 If there is no inconsistency (No in S26), the correction unit 130 corrects the device name in the attribute information DB 164 to a device name of a correction candidate (S27). By setting the correction flag to “TRUE”, the correction of the attribute information of the time-series data is completed.
 その後、修正フラグ(仮)及び修正フラグの一方が“FALSE”である時系列データに対して、重複フラグの設定(S23)から候補情報への修正(S27)までの処理が繰り返される。 After that, the processing from the setting of the duplication flag (S23) to the correction to the candidate information (S27) is repeated for the time-series data in which one of the correction flag (temporary) and the correction flag is “FALSE”.
 なお、許容代表値と時系列データの代表値とに矛盾が生じた場合(S26でYes)、修正部130は、別の候補情報を設定して、上述した処理(S23~S27)を実行してもよい。例えば、時系列データの最小値が許容代表値の最小値より小さい場合、矛盾が生じている。あるいは、時系列データの最大値が許容代表値の最大値より大きい場合、矛盾が生じている。また、時系列データの平均値が許容代表値の平均値と同等(例えば、差分が±10%~20%以内)ではない場合、矛盾が生じている。あるいは、修正部130は、修正が正しく行われなかったことを知らせる情報を出力部150から出力させ、工場1の管理者などに属性情報の入力を行わせることによって、属性情報の修正を行ってもよい。 If there is a contradiction between the allowable representative value and the representative value of the time-series data (Yes in S26), the correction unit 130 sets another candidate information and executes the above-described processing (S23 to S27). You may. For example, when the minimum value of the time-series data is smaller than the minimum value of the allowable representative value, a contradiction occurs. Alternatively, when the maximum value of the time-series data is larger than the maximum value of the allowable representative values, a contradiction occurs. If the average value of the time-series data is not equal to the average value of the allowable representative values (for example, the difference is within ± 10% to 20%), a contradiction occurs. Alternatively, the correction unit 130 corrects the attribute information by causing the output unit 150 to output information notifying that the correction has not been correctly performed, and causing the administrator of the factory 1 to input the attribute information. Is also good.
 また、重複フラグが“TRUE”に設定された場合、“TRUE”が設定されたデータIDの属性情報と同じ内容の属性情報を持つデータが他に少なくとも1つは存在することを意味する。このため、修正部130は、別の候補情報を設定して、上述した処理(S23~S27)を実行してもよい。あるいは、修正が正しく行われなかったことを知らせる情報を出力部150から出力させ、工場1の管理者などによって情報の修正を行わせてもよい。 {When the duplication flag is set to “TRUE”, it means that there is at least one other piece of data having the same attribute information as the attribute information of the data ID for which “TRUE” is set. For this reason, the correction unit 130 may set another candidate information and execute the above-described processing (S23 to S27). Alternatively, information notifying that the correction was not correctly performed may be output from the output unit 150, and the information may be corrected by a manager of the factory 1 or the like.
 以上のように属性情報の修正が行われた後、図5に示されるように、検出部140は、異常の検出を行う(S13)。なお、異常の検出は、属性情報の修正が行われた後、直ちに行われてもよく、予め定められたタイミングで行われてもよい。また、異常の検出は、定期的に繰り返し行われてもよい。 After the attribute information has been corrected as described above, as shown in FIG. 5, the detection unit 140 detects an abnormality (S13). The detection of the abnormality may be performed immediately after the attribute information is corrected, or may be performed at a predetermined timing. Further, the detection of the abnormality may be periodically repeated.
 具体的には、検出部140は、検出対象の異常毎に、記憶部160の時系列データDB162、属性情報DB164及び異常検出モデルDB166の各々からデータを読み出し、読み出したデータに基づいて、異常の有無と、異常が発生した場合にはその時刻とを検出する。以下では、一例として、検出部140が成型機の異常を検出する場合を説明する。 Specifically, the detection unit 140 reads data from each of the time-series data DB 162, the attribute information DB 164, and the abnormality detection model DB 166 of the storage unit 160 for each abnormality to be detected, and detects an abnormality based on the read data. The presence / absence and the time when an abnormality has occurred are detected. Hereinafter, a case where the detection unit 140 detects an abnormality of the molding machine will be described as an example.
 例えば、検出部140は、異常検出モデルDB166から成型機の異常検出モデルを読み出して利用する。成型機の異常検出モデルでは、成型機に対する部品の投入数と成型機における消費電力との比が所定の範囲内に含まれる場合に、成型機に異常が発生していないと判定される。また、当該比が所定の範囲から逸脱した場合に、成型機に異常が発生していると判定される。成型機の異常検出モデルでは、例えば、投入数[個]/消費電力[kWh]が1.2以上2.0以下の範囲に含まれる場合に、異常が発生していないと判定され、投入数[個]/消費電力[kWh]が1.2未満、又は、2.0より大きくなった場合に、異常が発生していると判定される。 For example, the detection unit 140 reads and uses the abnormality detection model of the molding machine from the abnormality detection model DB 166. In the abnormality detection model of the molding machine, it is determined that no abnormality has occurred in the molding machine when the ratio between the number of parts supplied to the molding machine and the power consumption of the molding machine falls within a predetermined range. When the ratio deviates from the predetermined range, it is determined that an abnormality has occurred in the molding machine. In the abnormality detection model of the molding machine, for example, when the number of inputs [pieces] / power consumption [kWh] is in the range of 1.2 or more and 2.0 or less, it is determined that no abnormality has occurred, and When [unit] / power consumption [kWh] is less than 1.2 or greater than 2.0, it is determined that an abnormality has occurred.
 具体的には、検出部140は、属性情報DB164を参照することで、対象となる成型機の消費電力と投入数との各々に対応する時系列データを特定する。図8に示されるように、成型機の消費電力は、時系列データData-06であり、成型機の投入数は、時系列データData-10であることが特定される。 Specifically, the detection unit 140 specifies the time-series data corresponding to each of the power consumption and the number of inputs of the target molding machine by referring to the attribute information DB 164. As shown in FIG. 8, it is specified that the power consumption of the molding machine is time-series data Data-06, and the number of injections of the molding machine is time-series data Data-10.
 ここで、仮に属性情報が修正されていない場合、図4に示される修正前の属性情報DB164には、成型機の投入数に対応する時系列データが存在していない。したがって、実際には存在しているにも関わらず、成型機の投入数に対応する時系列データが特定されずに、異常検出の処理を行うことができない。 Here, if the attribute information is not corrected, the attribute information DB 164 before correction shown in FIG. 4 does not include time-series data corresponding to the number of injections of the molding machine. Therefore, although it actually exists, the time series data corresponding to the number of injections of the molding machine is not specified, and the abnormality detection process cannot be performed.
 これに対して、本実施の形態では、ステップS12において、属性情報が修正されているので、成型機の投入数に対応する時系列データData-10が特定される。このため、異常検出の処理を精度良く行うことができる。 On the other hand, in the present embodiment, since the attribute information has been corrected in step S12, the time-series data Data-10 corresponding to the number of injections of the molding machine is specified. For this reason, the abnormality detection process can be performed with high accuracy.
 図10は、本実施の形態に係る異常検出装置100による異常の検出処理の一例を示す図である。図10において、横軸は時刻を表している。図10の(a)の縦軸は消費電力[kWh]及び投入数[個]を表している。つまり、図10の(a)は、消費電力を表す時系列データData-06と、投入数を表す時系列データData-10とを二次元にグラフ化したものである。図10の(b)の縦軸は、投入数/消費電力[個/kWh]を表している。 FIG. 10 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device 100 according to the present embodiment. In FIG. 10, the horizontal axis represents time. The vertical axis of FIG. 10A represents the power consumption [kWh] and the number of inputs [pieces]. That is, FIG. 10A is a two-dimensional graph of time-series data Data-06 indicating power consumption and time-series data Data-10 indicating the number of inputs. The vertical axis in FIG. 10B represents the number of inputs / power consumption [pcs / kWh].
 図10に示されるように、11:10~11:50の期間T1では、消費電力に対して投入数が低くなっている。この期間T1の投入数/消費電力は、図10の(b)に示されるように、1.2より低い値(>0)になっている。このため、検出部140は、期間T1において、生産性が低下しているという異常が成型機に発生していると判断する。 よ う As shown in FIG. 10, in the period T1 from 11:10 to 11:50, the number of inputs is lower than the power consumption. The number of inputs / power consumption in this period T1 is a value lower than 1.2 (> 0) as shown in FIG. For this reason, the detecting unit 140 determines that an abnormality indicating that the productivity has decreased has occurred in the molding machine in the period T1.
 また、13:00~13:40の期間T2では、部品が投入されていないにも関わらず、成型機において電力が消費されている。この期間T2の投入数/消費電力は、図10の(b)に示されるように、1.2より低く、0になっている。このため、検出部140は、期間T2において、無駄な電力消費が起きているという異常が成型機に発生していると判断する。 Also, in the period T2 from 13:00 to 13:40, power is consumed in the molding machine even though no components are loaded. The number of inputs / power consumption in this period T2 is 0, which is lower than 1.2, as shown in FIG. For this reason, the detecting unit 140 determines that an abnormality indicating that useless power consumption occurs has occurred in the molding machine in the period T2.
 なお、異常の種別は、成型機の異常検出モデルにおいて、投入数/消費電力の値に基づいて予め定められている。例えば、投入数/消費電力が0であり、かつ、消費電力が0より大きい場合、異常の種別は、無駄な消費電力であることが定められている。投入数/消費電力が0より大きく、1.2より小さい場合、異常の種別は、生産性の低下であることが定められている。また、投入数/消費電力が2.0より大きい場合、異常の種別は、部品の供給過多、又は、センサの故障が定められている。 The type of the abnormality is predetermined in the abnormality detection model of the molding machine based on the value of the number of inputs / power consumption. For example, when the number of inputs / power consumption is 0 and the power consumption is greater than 0, the type of abnormality is determined to be useless power consumption. When the number of inputs / power consumption is larger than 0 and smaller than 1.2, it is determined that the type of abnormality is productivity reduction. When the number of inputs / power consumption is greater than 2.0, the type of abnormality is defined as excessive supply of components or a sensor failure.
 このように検出部140によって異常が検出された後、図5に示されるように、出力部150は、検出された異常と当該異常の発生時刻とを示す情報を出力する(S14)。また、出力部150は、検出された異常に基づいて、記憶部160に記憶されている対策情報DB168を参照することで、当該異常に対する対策案を決定し、決定した対策案を示す情報を出力する。 (5) After the abnormality is detected by the detection unit 140 in this way, as shown in FIG. 5, the output unit 150 outputs information indicating the detected abnormality and the occurrence time of the abnormality (S14). In addition, the output unit 150 determines a countermeasure against the abnormality by referring to the countermeasure information DB 168 stored in the storage unit 160 based on the detected abnormality, and outputs information indicating the determined countermeasure. I do.
 図11は、本実施の形態に係る異常検出装置100によって出力される情報の一例を示す図である。図11に示されるように、出力部150は、検出された異常、当該異常の発生時刻及び当該異常に対する対策案を表す画像を生成し、ディスプレイなどに表示することで、工場1の管理者などに提示する。 FIG. 11 is a diagram illustrating an example of information output by the abnormality detection device 100 according to the present embodiment. As illustrated in FIG. 11, the output unit 150 generates an image representing the detected abnormality, the occurrence time of the abnormality, and a countermeasure for the abnormality, and displays the generated image on a display or the like, so that the administrator of the factory 1 or the like. To present.
 ここでは、11:10~11:50の期間T1において、生産性の低下という異常が発生したことと、当該異常に対する対策案として、成型機の生産条件の見直しとが表示される。同様に、13:00~13:40の期間T2において、無駄な電力消費という異常が発生したことと、当該異常に対する対策案として、成型機の電源の切断とが表示される。なお、出力される対策案の個数は、異常毎に複数であってもよい。 (5) Here, during the period T1 from 11:10 to 11:50, the occurrence of an abnormality such as a decrease in productivity has occurred, and the review of the production conditions of the molding machine has been displayed as a countermeasure against the abnormality. Similarly, in the period T2 from 13:00 to 13:40, the occurrence of the abnormality of wasteful power consumption and the turning off of the power of the molding machine are displayed as a measure against the abnormality. The number of output countermeasures may be plural for each abnormality.
 本実施の形態では、属性情報の修正までの処理が異常検出方法の前工程として行われ、異常の検出以降の処理が後工程として行われる。少なくとも1回、属性情報の修正が行われ、属性情報が正しく修正されたことが確認されている場合には、相互相関の分析(S11)及び属性情報の修正(S12)は行われなくてもよい。この場合、時系列データの取得(S10)と、異常の検出(S13)と、情報の出力(S14)とが定期的に繰り返し行われてもよい。 In the present embodiment, the processing up to the correction of the attribute information is performed as a preceding step of the abnormality detection method, and the processing after the detection of the abnormality is performed as a subsequent step. If the attribute information has been corrected at least once and it has been confirmed that the attribute information has been correctly corrected, the cross-correlation analysis (S11) and the attribute information correction (S12) may not be performed. Good. In this case, acquisition of time-series data (S10), detection of abnormality (S13), and output of information (S14) may be periodically repeated.
 異常の検出及び情報の出力は、製造物の製造と並行してリアルタイムで行われてもよい。これにより、異常が検出された場合に、メンテナンスなどの対応を速やかに行うことができるので、生産効率の低下を抑制することができる。 Detection of an abnormality and output of information may be performed in real time in parallel with manufacture of a product. Accordingly, when an abnormality is detected, a response such as maintenance can be promptly performed, so that a decrease in production efficiency can be suppressed.
 また、異常の検出及び情報の出力は、一週間又は一ヶ月などの期間毎に行われてもよい。これにより、製造物の製造を長期間に亘って行った場合に、異常の発生しやすい機器などを特定することができる。このため、製造ラインの設計変更、製造装置の入れ替えなどの今後の生産計画の策定に利用することができる。 異常 Furthermore, the detection of the abnormality and the output of the information may be performed every period such as one week or one month. This makes it possible to specify a device or the like in which an abnormality is likely to occur when a product is manufactured for a long period of time. For this reason, it can be used for formulation of a future production plan, such as a change in the design of a production line or replacement of a production device.
 このように、本実施の形態に係る異常検出方法及び異常検出装置は、リアルタイム性を重視した短期的な生産効率の低下の抑制だけでなく、中長期的な視点からの生産効率の低下の抑制を支援することができる。 As described above, the abnormality detection method and the abnormality detection device according to the present embodiment are capable of suppressing not only a short-term decrease in production efficiency with emphasis on real-time performance but also a decrease in production efficiency from a medium- to long-term perspective. Can help.
 (変形例)
 続いて、実施の形態1に係る異常検出装置の変形例について説明する。本変形例では、相互相関分析において相互相関係数と遅延とを算出し、算出した相互相関係数と遅延とに基づいて属性情報の修正及び異常の検出を行う。また、本変形例では、時系列データのグルーピングが複数の閾値を用いて行われる。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
(Modification)
Subsequently, a modified example of the abnormality detection device according to the first embodiment will be described. In this modified example, a cross-correlation coefficient and a delay are calculated in the cross-correlation analysis, and the attribute information is corrected and an abnormality is detected based on the calculated cross-correlation coefficient and the delay. In this modification, the grouping of the time-series data is performed using a plurality of thresholds. The following description focuses on differences from the first embodiment, and description of common points is omitted or simplified.
 本変形例では、分析部120は、複数の時系列データから2つの時系列データを選択し、選択した時系列データの相互相関係数と遅延とを算出する。遅延を算出することで、相関が比較的小さいグループ間の関係性を判定することができる。具体的には、分析部120は、遅延に基づいて、各製造装置のライン構成を判定する。 In the present modification, the analysis unit 120 selects two time-series data from a plurality of time-series data, and calculates a cross-correlation coefficient and a delay of the selected time-series data. By calculating the delay, the relationship between groups having relatively small correlation can be determined. Specifically, the analysis unit 120 determines the line configuration of each manufacturing apparatus based on the delay.
 また、分析部120は、相互相関係数の絶対値と複数の閾値とを比較する。例えば、複数の閾値には、0.75だけでなく、0.6及び0.4などが含まれる。これにより、相関の強さに応じたグループの分類が可能になる。例えば、3つの閾値を用いることで、複数の時系列データを、大きい相関のグループ、中程度の相関のグループ、小さい相関のグループ、及び、無相関に分類することができる。また、大きい相関の複数のグループが形成された場合に、当該複数のグループ間の相関の強さも判定することができる。 {Circle around (7)} The analysis unit 120 compares the absolute value of the cross-correlation coefficient with a plurality of thresholds. For example, the plurality of threshold values include not only 0.75 but also 0.6 and 0.4. This makes it possible to classify the groups according to the strength of the correlation. For example, by using three thresholds, a plurality of time-series data can be classified into a large correlation group, a medium correlation group, a small correlation group, and no correlation. Further, when a plurality of groups having a large correlation are formed, the strength of the correlation between the plurality of groups can be determined.
 例えば、分析部120は、複数の閾値のうち最も小さい閾値(例えば0.4)よりも相互相関係数の絶対値が大きい場合、当該2つの時系列データ間には小さい相関があると判定する。本変形例では、分析部120は、小さい相関があると判定されたグループに含まれる時系列データに対応する製造装置は、同一の製造ラインを構成すると判定する。 For example, when the absolute value of the cross-correlation coefficient is larger than the smallest threshold (for example, 0.4) among the plurality of thresholds, the analysis unit 120 determines that there is a small correlation between the two time-series data. . In the present modification, the analysis unit 120 determines that the manufacturing apparatuses corresponding to the time-series data included in the group determined to have a small correlation form the same manufacturing line.
 ここで、図6及び図9に示される20個の時系列データの複数の閾値に基づく分類結果について説明する。例えば、グループAに分類された時系列データとグループBに分類された時系列データとの相互相関係数の絶対値は、0.65より大きく、0.75以下である。このため、グループAとグループBとは、中程度の相関を有すると判定できる。言い換えると、グループの分類に利用する閾値を0.75ではなく、0.65とした場合、グループAとグループBとを合わせた1つのグループに10個の時系列データが分類される。グループAとグループCとについても同様であり、グループCとグループDとについても同様である。 Here, the classification result based on a plurality of thresholds of the 20 time-series data shown in FIGS. 6 and 9 will be described. For example, the absolute value of the cross-correlation coefficient between the time-series data classified into group A and the time-series data classified into group B is larger than 0.65 and 0.75 or less. For this reason, it can be determined that the group A and the group B have a moderate correlation. In other words, when the threshold value used for classifying the group is set to 0.65 instead of 0.75, ten pieces of time-series data are classified into one group including the group A and the group B. The same applies to the groups A and C, and the same applies to the groups C and D.
 また、例えば、グループBに分類された時系列データとグループCに分類された時系列データとの相互相関係数の絶対値は、0.40より大きく、0.65以下である。このため、グループAとグループCとは、小さい相関を有すると判定される。また、グループAに分類された時系列データとグループDに分類された時系列データとの相互相関係数の絶対値は0.40以下であり、グループAとグループDとには、ほとんど相関がないと判定される。 {Also, for example, the absolute value of the cross-correlation coefficient between the time-series data classified into group B and the time-series data classified into group C is larger than 0.40 and 0.65 or less. Therefore, it is determined that group A and group C have a small correlation. Further, the absolute value of the cross-correlation coefficient between the time-series data classified into group A and the time-series data classified into group D is 0.40 or less, and there is almost no correlation between group A and group D. It is determined that there is not.
 このように、例えば、図6に示されるグループA~Dの各々は、互いに小さい相関又は中程度の相関を有する。したがって、分析部120は、実装機、成型機、塗布機及びプレス機は、1つの製造ラインを構成していると判定する。 Thus, for example, each of the groups A to D shown in FIG. 6 has a small correlation or a moderate correlation with each other. Therefore, the analysis unit 120 determines that the mounting machine, the molding machine, the coating machine, and the press machine constitute one manufacturing line.
 さらに、分析部120は、遅延に基づいて各製造装置の順序を判定する。具体的には、分析部120は、第1の時系列データに対する第2の時系列データの遅延が正の値で、かつ、その絶対値が大きい程、第2の時系列データに対応する製造装置は、第1の時系列データに対応する製造装置よりも製造ラインの下流に位置すると判定する。同様に、分析部120は、第1の時系列データに対する第2の時系列データの遅延が負の値で、かつ、その絶対値が大きい程、第2の時系列データに対応する製造装置は、第1の時系列データに対応する製造装置よりも製造ラインの上流に位置すると判定する。 Furthermore, the analysis unit 120 determines the order of each manufacturing apparatus based on the delay. Specifically, the analysis unit 120 determines that the delay of the second time-series data with respect to the first time-series data is a positive value and the absolute value thereof is larger, the manufacturing time corresponding to the second time-series data is larger. The apparatus determines that the apparatus is located downstream of the manufacturing line from the manufacturing apparatus corresponding to the first time-series data. Similarly, as the delay of the second time-series data with respect to the first time-series data is a negative value and the absolute value thereof is larger, the analysis unit 120 determines that the manufacturing apparatus corresponding to the second time-series data has a larger value. , Is located upstream of the manufacturing line with respect to the manufacturing apparatus corresponding to the first time-series data.
 以下では、図9に示される分類結果に基づいて、製造ラインの構成を判定する例について説明する。なお、製造ラインの構成の判定は、実施の形態1で説明した通りに属性情報が修正された後に分析部120によって行われる。このため、グループA~Dの各々に含まれる時系列データはそれぞれ、実装機、塗布機、成型機及びプレス機の各々に対応している。 Hereinafter, an example will be described in which the configuration of the production line is determined based on the classification result shown in FIG. The determination of the configuration of the production line is performed by the analysis unit 120 after the attribute information is corrected as described in the first embodiment. Therefore, the time-series data included in each of the groups A to D corresponds to each of the mounting machine, the coating machine, the molding machine, and the press machine.
 図9に示されるように、例えば、分析部120による算出の結果、グループAとグループCとには、1分の遅延が得られた。このため、グループAに含まれる時系列データに対応する“実装機”よりも、グループCに含まれる時系列データに対応する“成型機”は、製造ラインの下流に位置していることが分かる。同様に、グループBとグループAとには、30秒の遅延が算出された。このため、“実装機”は、“塗布機”よりも製造ラインの下流に位置していることが分かる。また、グループDとグループCとには、3分の遅延が算出された。このため、“成型機”は、“プレス機”よりも製造ラインの下流に位置していることが分かる。なお、グループDと、グループA及びBのいずれとの間には、相関が得られなかった。 As shown in FIG. 9, for example, as a result of the calculation by the analysis unit 120, a delay of one minute was obtained for the groups A and C. Therefore, it can be seen that the “molding machine” corresponding to the time-series data included in the group C is located downstream of the manufacturing line, rather than the “mounting machine” corresponding to the time-series data included in the group A. . Similarly, a delay of 30 seconds was calculated for groups B and A. For this reason, it can be seen that the “mounting machine” is located downstream of the manufacturing line with respect to the “coating machine”. In addition, a delay of 3 minutes was calculated for group D and group C. For this reason, it can be seen that the “molding machine” is located downstream of the manufacturing line with respect to the “press machine”. Note that no correlation was obtained between Group D and any of Groups A and B.
 以上の結果から、図12に示すような製造ラインの構成が得られる。なお、図12は、本変形例に係る異常検出装置100による相互相関分析によって判別された製造装置の構成例を示す図である。 From the above results, the configuration of the production line as shown in FIG. 12 is obtained. FIG. 12 is a diagram illustrating a configuration example of a manufacturing apparatus determined by a cross-correlation analysis by the abnormality detection apparatus 100 according to the present modification.
 このように、本変形例によれば、分析部120による相互相関分析によって、製造ラインの構成が判別できる。したがって、検出部140によって異常をより精度良く検出することができる。 As described above, according to the present modification, the configuration of the manufacturing line can be determined by the cross-correlation analysis by the analysis unit 120. Therefore, the detection unit 140 can detect the abnormality with higher accuracy.
 以下では、一例として、塗布機の異常を検出するモデルについて説明する。例えば、塗布機の異常検出モデルでは、塗布機が生産する部品の生産数と、Δtの遅延時間後に実装機に投入される部品の投入数との比が所定の範囲内に含まれる場合に、塗布機に異常が発生していないと判定される。また、当該比が所定の範囲から逸脱した場合に、異常が発生していると判定される。塗布機の異常検出モデルは、例えば、塗布機の生産数[個]/実装機の30秒後の投入数[個]が0.8以上1.2以下の範囲に含まれる場合に、異常が発生していないと判定され、塗布機の生産数[個]/実装機の30秒後の投入数[個]が0.8未満、又は、1.2より大きくなった場合に、異常が発生していると判定される。 In the following, as an example, a model for detecting an abnormality of a coating machine will be described. For example, in the abnormality detection model of the coating machine, when the ratio between the number of parts produced by the coating machine and the number of parts supplied to the mounting machine after the delay time of Δt is within a predetermined range, It is determined that no abnormality has occurred in the coating machine. When the ratio deviates from the predetermined range, it is determined that an abnormality has occurred. For example, the abnormality detection model of the coating machine is such that when the production number [pieces] of the coating machine / the number [pieces] of the mounting machine after 30 seconds is included in the range of 0.8 or more and 1.2 or less, the abnormality If it is determined that no occurrence has occurred, and the number of coating machines produced [pieces] / the number of loading machines after 30 seconds [pieces] is less than 0.8 or greater than 1.2, an abnormality occurs. It is determined that there is.
 図13は、本変形例に係る異常検出装置100による異常の検出処理の一例を示す図である。図13において、横軸は時刻を表している。縦軸は、塗布機の生産数[個]と実装機の投入数[個]とを表している。 FIG. 13 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device 100 according to the present modification. In FIG. 13, the horizontal axis represents time. The vertical axis indicates the number of production machines [pcs] and the number of mounting machines [pcs].
 図13に示されるように、13:12に塗布機の生産数が0になり、塗布機の生産が停止している。その後、13:13に実装機の投入数も0になっている。塗布機の生産数/実装機の投入数は、0又は算出不可の値となるので、検出部140は、異常が検出されたと判断する。 よ う As shown in FIG. 13, the production number of the applicator became zero at 13:12, and the production of the applicator was stopped. Thereafter, at 13:13, the number of mounted machines becomes zero. Since the production number of coating machines / the number of mounting machines is 0 or a value that cannot be calculated, the detection unit 140 determines that an abnormality has been detected.
 このとき、検出部140は、塗布機の生産数が0になってから実装機の投入数が0になるまでの期間と、分析部120によって算出された塗布機と実装機との間の遅延時間とを比較する。塗布機の生産数が0になってから実装機の投入数が0になるまでの期間が、遅延時間と同等(例えば、差分が2倍以下)である場合、検出部140は、製造ラインの上流に位置する装置に異常が発生し、下流に位置する装置には異常が発生していないと判定する。これにより、図12及び図13に示される例では、塗布機に異常が発生し、実装機には異常が発生していないと判定される。 At this time, the detection unit 140 determines the period from when the production number of the coating machine becomes 0 to when the number of mounting machines becomes 0, and the delay between the coating machine and the mounting machine calculated by the analysis unit 120. Compare with time. When the period from when the production number of the coating machine becomes 0 to when the number of the mounting machines becomes 0 is equal to the delay time (for example, the difference is twice or less), the detection unit 140 detects the production line. It is determined that an abnormality has occurred in the device located upstream and no abnormality has occurred in the device located downstream. Thus, in the examples shown in FIGS. 12 and 13, it is determined that an abnormality has occurred in the coating machine and no abnormality has occurred in the mounting machine.
 このような異常の検出結果に基づいて、出力部150は、検出された異常と当該異常の発生時刻と対策案とを出力する。 出力 Based on the detection result of such an abnormality, the output unit 150 outputs the detected abnormality, the occurrence time of the abnormality, and a measure.
 図14は、本変形例に係る異常検出装置100によって出力される情報の一例を示す図である。図14に示されるように、出力部150は、検出された異常、当該異常の発生時刻及び当該異常に対する対策案を表す画像を生成し、ディスプレイなどに表示することで、工場1の管理者などに提示する。 FIG. 14 is a diagram illustrating an example of information output by the abnormality detection device 100 according to the present modification. As illustrated in FIG. 14, the output unit 150 generates an image indicating the detected abnormality, the occurrence time of the abnormality, and a countermeasure for the abnormality, and displays the image on a display or the like, so that the administrator of the factory 1 or the like. To present.
 ここでは、13:12において、塗布機の生産が停止したという異常が発生したことと、当該異常に対する対策案として、塗布機のメンテナンスが表示される。同様に、13:13において、実装機の生産が停止したという異常が発生したことと、当該異常に対する対策案として、塗布機のメンテナンスが表示される。つまり、実装機の生産が停止したにも関わらず、その要因は塗布機の停止であるため、出力部150は、実装機のメンテナンスではなく、塗布機のメンテナンスを表示する。 Here, at 13:12, the occurrence of the abnormality that the production of the coating machine has stopped has occurred, and the maintenance of the coating machine is displayed as a countermeasure against the abnormality. Similarly, at 13:13, the occurrence of an abnormality indicating that the production of the mounting machine has stopped and the maintenance of the coating machine are displayed as a countermeasure against the abnormality. That is, although the production of the mounting machine is stopped, the cause is the stoppage of the coating machine. Therefore, the output unit 150 displays not the maintenance of the mounting machine but the maintenance of the coating machine.
 仮に、本変形例による製造ラインの分析が行われず、製造ラインの構成が不明である場合、実装機の生産の停止が塗布機の停止に起因するものであることが不明なままとなる。本変形例によれば、異常の発生だけでなく、その要因を精度良く検出することができ、有効性の高い対策案を提案することができる。 If the analysis of the production line according to the present modification is not performed and the configuration of the production line is unknown, it remains unknown that the stop of the production of the mounting machine is caused by the stop of the coating machine. According to this modification, not only the occurrence of an abnormality but also the cause thereof can be detected with high accuracy, and a highly effective countermeasure can be proposed.
 (実施の形態2)
 続いて、実施の形態2について説明する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
(Embodiment 2)
Next, a second embodiment will be described. The following description focuses on differences from the first embodiment, and description of common points is omitted or simplified.
 図15は、本実施の形態に係る異常検出装置200の対象となる複数のコンプレッサA~Cの構成を示す図である。複数のコンプレッサA~Cはそれぞれ、製造物の製造に関わる複数の要素の一例である。複数のコンプレッサA~Cは、空気などの気体を圧縮して出力する装置である。複数のコンプレッサA~Cは、各々からの出力が統合されている。具体的には、コンプレッサAの出力と、コンプレッサBの出力と、コンプレッサCの出力とは統合されて出力される。 FIG. 15 is a diagram illustrating a configuration of a plurality of compressors A to C that are targets of the abnormality detection device 200 according to the present embodiment. Each of the plurality of compressors A to C is an example of a plurality of elements involved in manufacturing a product. The plurality of compressors A to C are devices that compress and output a gas such as air. The outputs from each of the plurality of compressors A to C are integrated. Specifically, the output of the compressor A, the output of the compressor B, and the output of the compressor C are integrated and output.
 図15に示されるように、異常検出装置200は、複数のコンプレッサA~Cの各々の出力の圧力の時系列データである圧力データ、及び、流量の時系列データである流量データを取得する。また、異常検出装置200は、複数のコンプレッサA~Cに取り付けられたセンサから、各コンプレッサでの消費電力のセンサ値を取得することで、消費電力の時系列データである電力データを取得する。さらに、異常検出装置200は、複数のコンプレッサA~Cの統合後の圧力の時系列データである統合圧力データ及び流量の時系列データである統合流量データを取得する。異常検出装置200は、取得したこれらの複数の時系列データに基づいて、複数のコンプレッサA~Cに発生する異常を検出する。 As shown in FIG. 15, the abnormality detection device 200 acquires pressure data, which is time-series data of the output pressure of each of the plurality of compressors A to C, and flow rate data, which is time-series data of the flow rate. Further, the abnormality detection device 200 acquires power data, which is time-series data of power consumption, by acquiring sensor values of power consumption in each compressor from sensors attached to the plurality of compressors A to C. Further, the abnormality detection device 200 acquires integrated pressure data, which is time series data of the integrated pressure of the plurality of compressors A to C, and integrated flow rate data, which is time series data of the flow rate. The abnormality detection device 200 detects an abnormality occurring in the plurality of compressors A to C based on the acquired plurality of time-series data.
 図16は、本実施の形態に係る異常検出装置200の構成を示すブロック図である。図16に示されるように、異常検出装置200は、取得部210と、分析部220と、修正部230と、検出部240と、出力部150とを備える。さらに、異常検出装置200は、各種データ及び情報を記憶するための記憶部260を備える。 FIG. 16 is a block diagram showing a configuration of an abnormality detection device 200 according to the present embodiment. As illustrated in FIG. 16, the abnormality detection device 200 includes an acquisition unit 210, an analysis unit 220, a correction unit 230, a detection unit 240, and an output unit 150. Further, the abnormality detection device 200 includes a storage unit 260 for storing various data and information.
 取得部210は、複数のコンプレッサA~Cの各々から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する。具体的には、取得部210は、複数のコンプレッサA~Cの各々からの圧力データ及び流量データと、統合圧力データ及び統合流量データとを取得する。例えば、複数のコンプレッサA~Cの各々の出力ライン、及び、統合後の出力ラインには、圧力計及び流量計が取り付けられている。取得部210は、各出力ラインに取り付けられた圧力計及び流量計から定期的に圧力のセンサ値及び流量のセンサ値を取得することで、複数の圧力データ、複数の流量データ、統合圧力データ及び統合流量データを取得する。また、取得部210は、複数のコンプレッサA~Cに取り付けられたセンサから定期的に電力値を取得することで、複数の電力データを取得する。 The acquisition unit 210 acquires a plurality of time-series data obtained from each of the plurality of compressors A to C and attribute information of each of the plurality of time-series data. Specifically, the acquiring unit 210 acquires pressure data and flow rate data from each of the plurality of compressors A to C, and integrated pressure data and integrated flow rate data. For example, a pressure gauge and a flow meter are attached to each output line of the plurality of compressors A to C and the output line after integration. The acquisition unit 210 acquires a plurality of pressure data, a plurality of flow data, an integrated pressure data, and a pressure sensor value and a flow sensor value by periodically acquiring a pressure sensor value and a flow sensor value from a pressure gauge and a flow meter attached to each output line. Obtain integrated flow data. Further, the acquisition unit 210 acquires a plurality of power data by periodically acquiring power values from sensors attached to the plurality of compressors A to C.
 取得部210によって取得された複数の時系列データ及び属性情報は、記憶部260に記憶される。記憶部260では、複数の圧力データ、複数の流量データ、複数の電力データ、統合圧力データ及び統合流量データが時系列データDB262内で管理され、属性情報が属性情報DB264内で管理されている。 The plurality of time-series data and attribute information acquired by the acquisition unit 210 are stored in the storage unit 260. In the storage unit 260, a plurality of pressure data, a plurality of flow data, a plurality of power data, integrated pressure data, and integrated flow data are managed in the time-series data DB 262, and attribute information is managed in the attribute information DB 264.
 分析部220は、取得部210によって取得された複数の時系列データの相互相関の分析を行う。本実施の形態では、分析部220は、重回帰分析を行う。具体的には、分析部220は、複数のコンプレッサA~Cの各々から圧力データ及び流量データと、当該圧力データ及び流量データの各々に対応させる属性情報の候補との組み合わせを複数作成する。分析部220は、重回帰分析を行うことで、作成した組み合わせの確からしさを判定し、最適解(最適な組み合わせ)を決定する。 The analysis unit 220 analyzes the cross-correlation of the plurality of time-series data acquired by the acquisition unit 210. In the present embodiment, analysis section 220 performs multiple regression analysis. Specifically, the analysis unit 220 creates a plurality of combinations of pressure data and flow rate data from each of the plurality of compressors A to C, and candidates for attribute information corresponding to each of the pressure data and flow rate data. The analysis unit 220 determines the likelihood of the created combination by performing multiple regression analysis, and determines an optimal solution (optimal combination).
 例えば、分析部220は、作成した組み合わせ毎に、当該組み合わせを構成する複数の圧力データ及び複数の流量データを独立変数とし、統合圧力データ及び統合流量データを従属変数として重回帰分析を行う。分析部220は、組み合わせ毎に、重回帰分析によって決定係数(すなわち、R値)を算出する。分析部220は、算出された複数の決定係数のうち、最も大きい決定係数に対応する組み合わせを、最適な組み合わせと判定する。分析部220は、最適な組み合わせを示す情報を修正部230に出力する。 For example, for each combination created, the analysis unit 220 performs a multiple regression analysis using a plurality of pressure data and a plurality of flow data constituting the combination as independent variables, and using the integrated pressure data and the integrated flow data as dependent variables. The analysis unit 220 calculates a determination coefficient (that is, an R value) by multiple regression analysis for each combination. The analysis unit 220 determines the combination corresponding to the largest determination coefficient among the plurality of calculated determination coefficients as the optimal combination. The analysis unit 220 outputs information indicating the optimal combination to the correction unit 230.
 修正部230は、分析部220による分析の結果に基づいて属性情報を修正する。修正部230は、具体的には、記憶部260に記憶された属性情報DB264を参照し、記憶部260から読み出した複数の属性情報と、分析部220から得られた最適な組み合わせを示す情報とを用いて属性情報の修正を行う。修正部230は、修正の結果を属性情報DB264に反映させる。修正部230による修正の具体的な動作については、例を挙げながら後で説明する。 The correction unit 230 corrects the attribute information based on the result of the analysis by the analysis unit 220. Specifically, the correction unit 230 refers to the attribute information DB 264 stored in the storage unit 260, and stores a plurality of pieces of attribute information read from the storage unit 260 and information indicating an optimal combination obtained from the analysis unit 220. To correct attribute information. The correction unit 230 reflects the result of the correction in the attribute information DB 264. The specific operation of the correction by the correction unit 230 will be described later using an example.
 検出部240は、修正された属性情報と圧力データ、流量データ、電力データ、統合圧力データ及び統合流量データとに基づいて、コンプレッサA~Cに発生する異常を検出する。例えば、検出部240は、コンプレッサの電力効率に関する異常検出モデルに基づいて、コンプレッサA~Cの異常を検出する。検出部240は、具体的には、記憶部260に記憶された時系列データDB262、属性情報DB264及び異常検出モデルDB166の各々を参照し、必要なデータを読み出して異常を検出する。検出部240は、異常の検出結果を出力部150に出力する。異常検出の具体的な動作については、例を挙げながら後で詳細に説明する。 The detection unit 240 detects an abnormality occurring in the compressors A to C based on the corrected attribute information and the pressure data, the flow rate data, the power data, the integrated pressure data, and the integrated flow rate data. For example, the detection unit 240 detects an abnormality of the compressors A to C based on an abnormality detection model regarding the power efficiency of the compressor. The detection unit 240 refers to the time-series data DB 262, the attribute information DB 264, and the abnormality detection model DB 166 stored in the storage unit 260, and reads necessary data to detect an abnormality. The detection unit 240 outputs a detection result of the abnormality to the output unit 150. The specific operation of the abnormality detection will be described later in detail with an example.
 記憶部260は、例えば、半導体メモリ又はHDDなどで実現される。本実施の形態では、記憶部260には、異常検出方法の実行に必要な各種データ及び情報がデータベース化されて記憶される。具体的には、図16に示されるように、記憶部260には、時系列データDB(データベース)262と、属性情報DB264と、異常検出モデルDB166と、対策情報DB168とが記憶される。 The storage unit 260 is realized by, for example, a semiconductor memory or an HDD. In the present embodiment, the storage unit 260 stores various data and information necessary for executing the abnormality detection method in a database. Specifically, as shown in FIG. 16, the storage unit 260 stores a time-series data DB (database) 262, an attribute information DB 264, an abnormality detection model DB 166, and a countermeasure information DB 168.
 時系列データDB262は、取得部210によって取得された複数の圧力データ、複数の流量データ、統合圧力データ及び統合流量データを含んでいる。また、時系列データDB262は、取得部210によって取得されたコンプレッサ毎の電力データを含んでいる。時系列データDB262は、図3で示した時系列データDB162と同様に、時系列データに割り当てられたデータID毎に、時刻毎の数値(具体的には、圧力値、流量値、電力値など)を含んでいる。 The time series data DB 262 includes a plurality of pressure data, a plurality of flow rate data, integrated pressure data, and integrated flow rate data acquired by the acquisition unit 210. In addition, the time-series data DB 262 includes power data for each compressor acquired by the acquisition unit 210. The time-series data DB 262 includes, for each data ID assigned to the time-series data, a numerical value for each time (specifically, a pressure value, a flow rate value, an electric power value, etc.), similarly to the time-series data DB 162 illustrated in FIG. ).
 属性情報DB264は、取得部210によって取得された複数の属性情報を含んでいる。複数の属性情報はそれぞれ、複数の時系列データの各々に対応している。属性情報DB264は、取得部210が属性情報を取得した場合に生成及び更新される。また、属性情報DB264は、修正部230によって更新される。 The attribute information DB 264 includes a plurality of pieces of attribute information acquired by the acquisition unit 210. The plurality of pieces of attribute information respectively correspond to the plurality of pieces of time-series data. The attribute information DB 264 is generated and updated when the acquisition unit 210 acquires the attribute information. The attribute information DB 264 is updated by the correction unit 230.
 図17は、本実施の形態に係る異常検出装置200が取得した属性情報の一例を示す図である。具体的には、図17は、記憶部260に記憶される属性情報DB264を表している。 FIG. 17 is a diagram illustrating an example of attribute information acquired by the abnormality detection device 200 according to the present embodiment. Specifically, FIG. 17 illustrates the attribute information DB 264 stored in the storage unit 260.
 図17に示されるように、属性情報DB264では、時系列データを表すデータID毎に属性情報が対応付けられている。本実施の形態では、データIDは、P1~P3、V1~V3、Pt、Vt及びU1~U3で表される。また、属性情報は、複数の項目に分類される。項目は、設置部屋と、装置名と、データの種類とである。設置部屋及び装置名は、対応する時系列データの数値を測定するセンサが取り付けられたコンプレッサが設置された部屋、及び、当該コンプレッサの名称を示している。データの種類は、当該コンプレッサの圧力又は流量である。 As shown in FIG. 17, in the attribute information DB 264, attribute information is associated with each data ID representing time-series data. In the present embodiment, the data ID is represented by P1 to P3, V1 to V3, Pt, Vt, and U1 to U3. The attribute information is classified into a plurality of items. The items are an installation room, a device name, and a data type. The installation room and the device name indicate the room where the compressor to which the sensor for measuring the numerical value of the corresponding time-series data is mounted is installed, and the name of the compressor. The type of data is the pressure or flow rate of the compressor.
 図17では、誤りが発生しており、修正が必要な属性情報を太字で、かつ、背景にドットの網掛けを付して示している。当該誤りは、分析部220による分析によって検出され、かつ、修正部230によって修正される。 In FIG. 17, attribute information in which an error has occurred and needs to be corrected is shown in bold letters and the background is shaded with dots. The error is detected by the analysis of the analysis unit 220 and corrected by the correction unit 230.
 続いて、本実施の形態に係る異常検出装置200の動作(異常検出方法)について説明する。 Next, an operation (an abnormality detection method) of the abnormality detection device 200 according to the present embodiment will be described.
 図18は、本実施の形態に係る異常検出装置200の動作を示すフローチャートである。図18に示されるように、異常検出装置200では、まず取得部210が時系列データと属性情報とを取得する(S30)。取得部210は、例えば、複数のコンプレッサA~Cの各々の出力と統合後の出力とに設けられた圧力計及び流量計、並びに、複数のコンプレッサA~Cに設けられたセンサ(具体的には電力計)からセンサ値を例えば10分毎に取得し、記憶部260に保存することで、一日又は一週間などの一定期間分の複数の時系列データを取得する。また、取得部210は、複数のコンプレッサA~Cの管理者などからの入力を受け付けることで、複数の時系列データに対応する属性情報を取得する。なお、時系列データの取得と属性情報の取得とは、いずれが先に行われてもよく、同時に行われてもよい。 FIG. 18 is a flowchart showing the operation of the abnormality detection device 200 according to the present embodiment. As shown in FIG. 18, in the abnormality detection device 200, first, the acquisition unit 210 acquires time-series data and attribute information (S30). The acquisition unit 210 includes, for example, a pressure gauge and a flow meter provided at each output of the plurality of compressors A to C and an output after integration, and sensors provided at the plurality of compressors A to C (specifically, For example, by acquiring a sensor value from a power meter every 10 minutes and storing the sensor value in the storage unit 260, a plurality of time-series data for a certain period such as one day or one week is acquired. Further, the acquiring unit 210 acquires attribute information corresponding to a plurality of time-series data by receiving inputs from managers of the plurality of compressors A to C and the like. Either the acquisition of the time-series data or the acquisition of the attribute information may be performed first, or may be performed simultaneously.
 次に、分析部220は、時系列データDB262に基づいて複数の組み合わせを作成する(S31)。例えば、図19に示されるように、分析部220は、3つの圧力データP1~P3の各々と、3つの流量データV1~V3の各々とを重複のないように組み合わせることで、6通りの組み合わせを作成する。 Next, the analysis unit 220 creates a plurality of combinations based on the time-series data DB 262 (S31). For example, as shown in FIG. 19, the analysis unit 220 combines each of the three pressure data P1 to P3 and each of the three flow rate data V1 to V3 so as not to overlap, thereby providing six combinations. Create
 ここで、図19は、本実施の形態に係る異常検出装置200が作成した組み合わせの一例を示す図である。また、統合圧力データ、統合流量データ及び電力データには、誤りがなく修正の必要がない場合を想定する。また、圧力データと流量データとの間での誤りもない場合を想定する。 Here, FIG. 19 is a diagram illustrating an example of a combination created by the abnormality detection device 200 according to the present embodiment. Further, it is assumed that the integrated pressure data, the integrated flow rate data, and the power data have no error and need not be corrected. It is also assumed that there is no error between the pressure data and the flow rate data.
 図19において、組み合わせの(P,V)は、同一のコンプレッサに対応することを表している。例えば、組み合わせのPattern-1では、圧力データP1と流量データV1とが第1のコンプレッサに対応し、圧力データP2と流量データV2とが第2のコンプレッサに対応し、圧力データP3と流量データV3とが第3のコンプレッサに対応することを表している。組み合わせのPattern-2~Pattern-6についても同様である。 に お い て In FIG. 19, the combination (P, V) indicates that they correspond to the same compressor. For example, in the combination Pattern-1, the pressure data P1 and the flow rate data V1 correspond to the first compressor, the pressure data P2 and the flow rate data V2 correspond to the second compressor, and the pressure data P3 and the flow rate data V3. Represents that it corresponds to the third compressor. The same applies to Pattern-2 to Pattern-6 in the combination.
 次に、図18に示されるように、分析部220は、作成した組み合わせ毎に、重回帰分析を行う(S32)。具体的には、分析部220は、組み合わせ毎に、統合出力(Pt,Vt)を従属変数Yとし、各時系列データ(P1,V1)、(P2,V2)及び(P3,V3)を独立変数X1~X3として、重回帰分析を行う。これにより、分析部220は、組み合わせ毎の決定係数(すなわち、R値)を算出する。 Next, as shown in FIG. 18, the analysis unit 220 performs a multiple regression analysis for each created combination (S32). Specifically, for each combination, the analysis unit 220 sets the integrated output (Pt, Vt) as a dependent variable Y, and separates each time-series data (P1, V1), (P2, V2), and (P3, V3) independently. Multiple regression analysis is performed using the variables X1 to X3. Thereby, the analysis unit 220 calculates the determination coefficient (that is, the R value) for each combination.
 次に、分析部220は、最適解、すなわち、最適な組み合わせを選択する(S33)。具体的には、分析部220は、算出された複数の決定係数のうち、最も大きい決定係数の組み合わせを最適な組み合わせ(すなわち、正しい組み合わせ)として選択する。図19に示される例では、組み合わせPattern-1が最適な組み合わせとして選択される。 Next, the analysis unit 220 selects an optimal solution, that is, an optimal combination (S33). Specifically, the analysis unit 220 selects a combination of the largest determination coefficient among the plurality of calculated determination coefficients as an optimal combination (that is, a correct combination). In the example shown in FIG. 19, the combination Pattern-1 is selected as the optimum combination.
 次に、修正部230は、この分析結果に基づいて、属性情報の修正を行う(S34)。具体的には、修正部230は、最適な組み合わせに基づいて、圧力データと流量データとの組毎に装置名(具体的には、コンプレッサの名称)が異なっている組を抽出する。 Next, the correction unit 230 corrects the attribute information based on the analysis result (S34). Specifically, the correction unit 230 extracts a group in which the device name (specifically, the name of the compressor) is different for each pair of the pressure data and the flow rate data based on the optimum combination.
 図17に示される例では、(P1,V1)の組では、圧力データ及び流量データのいずれの装置名も“コンプレッサA”である。(P2,V2)の組では、圧力データ及び流量データのいずれの装置名も“コンプレッサB”である。一方で、(P3,V3)の組では、圧力データの装置名が“コンプレッサB”であるのに対して、流量データの装置名が“コンプレッサC”である。このため、修正部230は、(P3,V3)の組の装置名の少なくとも一方が誤っており、修正の必要があると判定する。 In the example shown in FIG. 17, in the set (P1, V1), the device name of both the pressure data and the flow rate data is “compressor A”. In the set (P2, V2), the device name of both the pressure data and the flow rate data is “compressor B”. On the other hand, in the set (P3, V3), the device name of the pressure data is “compressor B”, whereas the device name of the flow rate data is “compressor C”. For this reason, the correction unit 230 determines that at least one of the device names in the set (P3, V3) is incorrect and needs to be corrected.
 修正部230は、例えば、(P3,V3)の組において、圧力データ及び流量データの一方の装置名を他方の装置名に修正した場合に、矛盾が生じるか否かを判定する。具体的には、圧力データP3の装置名を流量データV3の装置名である“コンプレッサC”に修正したとしても矛盾は生じない。一方で、流量データV3の装置名を圧力データP3の装置名である“コンプレッサB”に修正した場合、コンプレッサBの圧力データは既に存在しているので矛盾する。したがって、修正部230は、矛盾が発生しないように、圧力データP3の装置名を“コンプレッサC”に修正する。 The correction unit 230 determines whether or not inconsistency occurs when one device name of the pressure data and the flow rate data is corrected to the other device name in the set (P3, V3), for example. Specifically, even if the device name of the pressure data P3 is corrected to “compressor C” which is the device name of the flow rate data V3, no inconsistency occurs. On the other hand, when the device name of the flow rate data V3 is corrected to “compressor B” which is the device name of the pressure data P3, the pressure data of the compressor B already exists and contradicts. Therefore, the correction unit 230 corrects the device name of the pressure data P3 to “compressor C” so that no inconsistency occurs.
 なお、流量データV3の装置名が“コンプレッサA”である場合、圧力データ及び流量データの両方の装置名が誤っている。この場合、いずれの装置名に合わせたとしても矛盾が発生する。矛盾が発生しないケースが存在しない場合、修正部230は、例えば、属性情報DB264において存在しないコンプレッサの名称(例えば、“コンプレッサC”)に、圧力データ及び流量データの両方の装置名を修正し、矛盾が生じるか否かを判定してもよい。あるいは、修正部230は、修正が正しく行われなかったことを知らせる情報を出力部150から出力させ、工場1の管理者などに属性情報の入力を行わせることによって、属性情報の修正を行ってもよい。 If the device name of the flow rate data V3 is "compressor A", both the pressure data and the flow rate data are incorrect. In this case, inconsistency occurs even if any device name is matched. If there is no case where no inconsistency occurs, the correction unit 230 corrects both the pressure data and the flow rate data to the name of the compressor that does not exist in the attribute information DB 264 (for example, “compressor C”), It may be determined whether or not a contradiction occurs. Alternatively, the correction unit 230 corrects the attribute information by causing the output unit 150 to output information indicating that the correction has not been correctly performed, and causing the manager of the factory 1 to input the attribute information. Is also good.
 以上のように属性情報の修正が行われた後、図18に示されるように、検出部240は、異常の検出を行う(S35)。なお、異常の検出は、属性情報の修正が行われた後、直ちに行われてもよく、予め定められたタイミングで行われてもよい。また、異常の検出は、定期的に繰り返し行われてもよい。 After the attribute information has been corrected as described above, the detection unit 240 detects an abnormality as shown in FIG. 18 (S35). The detection of the abnormality may be performed immediately after the attribute information is corrected, or may be performed at a predetermined timing. Further, the detection of the abnormality may be periodically repeated.
 具体的には、検出部240は、検出対象の異常毎に、記憶部260の時系列データDB262、属性情報DB264及び異常検出モデルDB166の各々からデータを読み出し、読み出したデータに基づいて、異常の有無と、異常が発生した場合にはその時刻とを検出する。 Specifically, the detection unit 240 reads data from each of the time-series data DB 262, the attribute information DB 264, and the abnormality detection model DB 166 of the storage unit 260 for each abnormality to be detected, and detects an abnormality based on the read data. The presence / absence and the time when an abnormality has occurred are detected.
 本実施の形態では、検出部240は、以下の式(1)で表される電力効率A(k)に基づく異常検出モデルを利用する。 で は In the present embodiment, detection section 240 uses an abnormality detection model based on power efficiency A (k) expressed by the following equation (1).
 (1) U(k,t)=A(k)V(k,t)P(k,t) (1) U (k, t) = A (k) V (k, t) P (k, t)
 式(1)において、A(k)は、k番目のコンプレッサの電力効率である。U(k,t)は、k番目のコンプレッサの時刻tにおける消費電力である。V(k,t)は、k番目のコンプレッサの時刻tにおける流量である。P(k,t)は、k番目のコンプレッサの時刻tにおける圧力である。例えば、コンプレッサA~Cがそれぞれ、1~3番目のコンプレッサである。 In equation (1), A (k) is the power efficiency of the k-th compressor. U (k, t) is the power consumption of the k-th compressor at time t. V (k, t) is the flow rate of the k-th compressor at time t. P (k, t) is the pressure of the k-th compressor at time t. For example, the compressors A to C are the first to third compressors, respectively.
 式(1)に示されるように、電力効率A(k)は、圧力P(k,t)及び流量V(k,t)の積の、投入電力U(k,t)に対する割合の逆数である。具体的には、検出部240は、式(1)に基づいてコンプレッサ毎の電力効率を算出し、算出した電力効率が所定の閾値を上回った場合に、当該コンプレッサに異常が発生したと判定する。検出部240は、算出した電力効率が閾値以下である場合に、当該コンプレッサには異常が発生していないと判定する。 As shown in equation (1), the power efficiency A (k) is the reciprocal of the ratio of the product of the pressure P (k, t) and the flow rate V (k, t) to the input power U (k, t). is there. Specifically, the detection unit 240 calculates the power efficiency of each compressor based on the equation (1), and when the calculated power efficiency exceeds a predetermined threshold, determines that an abnormality has occurred in the compressor. . When the calculated power efficiency is equal to or smaller than the threshold, the detection unit 240 determines that no abnormality has occurred in the compressor.
 U(k,t)、V(k,t)及びP(k,t)はいずれも、時系列データDB262を参照することで得られる。ここで、仮に属性情報が修正されていない場合、図17に示される例では、コンプレッサCの圧力データが存在しない。このため、検出部240は、コンプレッサCに関する電力効率A(3)を算出することができず、異常の検出が行えない。 U (k, t), V (k, t) and P (k, t) are all obtained by referring to the time-series data DB 262. Here, if the attribute information is not corrected, the pressure data of the compressor C does not exist in the example shown in FIG. Therefore, the detection unit 240 cannot calculate the power efficiency A (3) for the compressor C, and cannot detect an abnormality.
 これに対して、本実施の形態では、属性情報が修正されているので、コンプレッサCの電力効率A(3)を算出することができ、コンプレッサCの異常の有無の判定を行うことができる。 On the other hand, in the present embodiment, since the attribute information is corrected, the power efficiency A (3) of the compressor C can be calculated, and it is possible to determine whether the compressor C is abnormal.
 図20は、本実施の形態に係る異常検出装置200による異常の検出処理の一例を示す図である。図20において、横軸は圧力P[MPa]を表している。縦軸は電力U[kWh]を表している。 FIG. 20 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device 200 according to the present embodiment. In FIG. 20, the horizontal axis represents the pressure P [MPa]. The vertical axis represents the power U [kWh].
 電力効率A(k)は、図20のコンプレッサ毎のプロットの傾きに相当する。各プロットは、所定の時刻における圧力データ及び電力データに対応している。図20に示される例では、11:20~12:40の期間において、コンプレッサAの傾きが大きくなっていることが分かる。つまり、コンプレッサAの電力効率が悪化している。このため、検出部240は、当該期間においてコンプレッサAに異常が発生したと判定する。 The power efficiency A (k) corresponds to the slope of the plot for each compressor in FIG. Each plot corresponds to pressure data and power data at a predetermined time. In the example shown in FIG. 20, it can be seen that the slope of the compressor A increases during the period from 11:20 to 12:40. That is, the power efficiency of the compressor A is degraded. For this reason, the detection unit 240 determines that an abnormality has occurred in the compressor A during the period.
 以上のように、検出部240によって異常が検出された後、図16に示されるように、出力部150は、検出された異常と当該異常の発生時刻とを示す情報を出力する(S36)。また、出力部150は、検出された異常に基づいて、記憶部260に記憶されている対策情報DB168を参照することで、当該異常に対する対策案を決定し、決定した対策案を示す情報を出力する。 {Circle around (4)} As described above, after the detection unit 240 detects an abnormality, as illustrated in FIG. 16, the output unit 150 outputs information indicating the detected abnormality and the occurrence time of the abnormality (S36). Further, based on the detected abnormality, the output unit 150 refers to the measure information DB 168 stored in the storage unit 260 to determine a measure for the abnormality, and outputs information indicating the determined measure. I do.
 図21は、本実施の形態に係る異常検出装置200によって出力される情報の一例を示す図である。図21に示されるように、出力部150は、検出された異常、当該異常の発生時刻及び当該異常に対する対策案を表す画像を生成し、ディスプレイなどに表示することで、コンプレッサA~Cの管理者などに提示する。 FIG. 21 is a diagram illustrating an example of information output by the abnormality detection device 200 according to the present embodiment. As shown in FIG. 21, the output unit 150 generates an image representing the detected abnormality, the occurrence time of the abnormality, and a countermeasure for the abnormality, and displays the image on a display or the like to manage the compressors A to C. To others.
 ここでは、11:20~12:40の期間において、コンプレッサAの運転効率の低下という異常が発生したことと、当該異常に対する対策案として、コンプレッサB及びCの運転とが表示される。つまり、コンプレッサAの運転効率が低下しているので、代替可能な機器であるコンプレッサB及びCの運転を推奨する対策案が表示される。 Here, during the period from 11:20 to 12:40, the occurrence of an abnormality such as a decrease in the operation efficiency of the compressor A and the operation of the compressors B and C are displayed as a countermeasure against the abnormality. That is, since the operation efficiency of the compressor A is reduced, a countermeasure for recommending the operation of the compressors B and C, which are alternative devices, is displayed.
 (実施の形態3)
 続いて、実施の形態3について説明する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
(Embodiment 3)
Next, a third embodiment will be described. The following description focuses on differences from the first embodiment, and description of common points is omitted or simplified.
 図22は、本実施の形態に係る異常検出装置300の対象となる工場2の構成を示す図である。工場2では、実施の形態1に係る工場1と比較して、各部屋に配置される装置が異なっている。具体的には、3つの部屋A~Cの各々に、製造物の製造に関わる複数の装置が配置されている。具体的には、図22に示されるように、部屋Aには、実装機A1、塗布機A1、実装機A2、塗布機A2及びエアコンAが配置されている。部屋Bには、成型機B及び塗布機B及びエアコンBが配置されている。部屋Cには、プレス機C及びエアコンCが配置されている。 FIG. 22 is a diagram showing the configuration of the factory 2 to which the abnormality detection device 300 according to the present embodiment is applied. The factory 2 differs from the factory 1 according to the first embodiment in the devices arranged in each room. Specifically, in each of the three rooms A to C, a plurality of devices related to the manufacture of a product are arranged. Specifically, as shown in FIG. 22, in the room A, a mounting machine A1, a coating machine A1, a mounting machine A2, a coating machine A2, and an air conditioner A are arranged. In the room B, a molding machine B, a coating machine B, and an air conditioner B are arranged. In the room C, a press C and an air conditioner C are arranged.
 なお、部屋A~Cは、物理的に分離された部屋でなくてもよい。つまり、工場2において、部屋A~Cは1つの大きな部屋に含まれてもよく、エアコンに対応付けて仮想的に区分された空間であってもよい。つまり、部屋A~Cは、エアコンA~Cの各々が配置された空間の一例である。 部屋 Note that the rooms A to C do not have to be physically separated rooms. That is, in the factory 2, the rooms A to C may be included in one large room, or may be a space virtually divided in association with the air conditioner. That is, the rooms A to C are an example of a space in which each of the air conditioners A to C is arranged.
 異常検出装置300は、実施の形態1と同様に、各部屋に配置された各機器から得られる複数の時系列データを取得し、取得した複数の時系列データに基づいて、複数の機器に発生する異常を検出する。異常検出装置300は、各機器に設けられたセンサ又は計測器と有線又は無線で通信可能に接続されている。 The abnormality detection device 300 acquires a plurality of time-series data obtained from each device arranged in each room and generates a plurality of time-series data based on the acquired plurality of time-series data, as in the first embodiment. Detect abnormalities. The abnormality detection device 300 is communicably connected to a sensor or a measuring device provided in each device by wire or wirelessly.
 図23は、本実施の形態に係る異常検出装置300の構成を示すブロック図である。図23に示されるように、異常検出装置300は、実施の形態1に係る異常検出装置100と比較して、分析部120、修正部130及び検出部140の代わりに、分析部320、修正部330及び検出部340を備える点が相違する。 FIG. 23 is a block diagram showing a configuration of an abnormality detection device 300 according to the present embodiment. As shown in FIG. 23, the abnormality detection device 300 is different from the abnormality detection device 100 according to the first embodiment in that the analysis unit 320, the correction unit 130, and the detection unit 140 are replaced with an analysis unit 320 and a correction unit. The difference is that a point 330 and a detecting section 340 are provided.
 分析部320は、取得部110によって取得された複数の時系列データの相互相関の分析を行う。本実施の形態では、分析部320は、重回帰分析を行う。 The analysis unit 320 analyzes the cross-correlation of the plurality of time-series data acquired by the acquisition unit 110. In the present embodiment, analysis section 320 performs multiple regression analysis.
 製造物に関わる機器は、一般的に、動作することで熱を発生する。発生した熱がこもった場合には、各機器の動作効率が低下し、生産効率が低下する。このため、発生した熱を逃がすための空調機器が各部屋に設けられている。つまり、各機器の動作状態と空調機器の動作状態とには、相関関係がある。具体的には、空調機器の消費電力と、当該空調機器が設けられた空間と同じ空間に設けられた機器のパラメータとには、強い相関関係がある。そこで、本実施の形態では、分析部320は、エアコンA~Cの消費電力の時系列データを従属変数とし、その他の機器のパラメータの時系列データを独立変数として、重回帰分析を行う。重回帰分析の結果に基づいて、エアコンA~C(すなわち、部屋A~C)と各機器との最適な組み合わせが決定される。 機器 Products related to products generally generate heat by operating. When the generated heat is trapped, the operation efficiency of each device decreases, and the production efficiency decreases. For this reason, an air conditioner for releasing generated heat is provided in each room. That is, there is a correlation between the operation state of each device and the operation state of the air conditioner. Specifically, there is a strong correlation between the power consumption of the air conditioner and the parameters of the device provided in the same space as the space where the air conditioner is provided. Therefore, in the present embodiment, analysis unit 320 performs multiple regression analysis using time-series data of power consumption of air conditioners A to C as dependent variables and time-series data of parameters of other devices as independent variables. Based on the result of the multiple regression analysis, an optimal combination of the air conditioners A to C (that is, the rooms A to C) and each device is determined.
 修正部330は、重回帰分析の結果に基づいて属性情報を修正する。修正部330は、具体的には、記憶部160に記憶された属性情報DB164を参照し、記憶部160から読み出した複数の属性情報と、分析部320から得られた重回帰分析の結果とを示す情報とを用いて属性情報の修正を行う。例えば、修正部330は、属性情報DB164内において設置部屋と時系列データとの対応関係の誤りの有無を判定し、誤りがある場合には、誤った設置部屋を正しい設置部屋に修正する。修正部330は、修正の結果を属性情報DB264に反映させる。修正部330による修正の具体的な動作については、例を挙げながら後で説明する。 The correction unit 330 corrects the attribute information based on the result of the multiple regression analysis. Specifically, the correction unit 330 refers to the attribute information DB 164 stored in the storage unit 160, and stores the plurality of pieces of attribute information read from the storage unit 160 and the result of the multiple regression analysis obtained from the analysis unit 320. The attribute information is corrected using the indicated information. For example, the correction unit 330 determines whether there is an error in the correspondence between the installation room and the time-series data in the attribute information DB 164, and if there is an error, corrects the erroneous installation room to a correct installation room. The correction unit 330 reflects the result of the correction in the attribute information DB 264. The specific operation of the correction by the correction unit 330 will be described later with an example.
 検出部340は、修正された設置部屋を示す情報と複数の時系列データとに基づいて、各機器に発生する異常を検出する。さらに、検出部340は、異常が発生した機器の代わりに代替動作可能な機器を決定する。具体的には、検出部340は、修正された設置部屋を示す情報に基づいて、異常が発生した機器と同じ部屋に設置され、かつ、同じ種類の機器を代替動作可能な機器として決定する。検出部340は、異常の検出結果及び代替動作可能な機器の決定結果を出力部150に出力する。異常検出の具体的な動作については、例を挙げながら後で詳細に説明する。 The detection unit 340 detects an abnormality occurring in each device based on the information indicating the corrected installation room and a plurality of time-series data. Further, the detection unit 340 determines a device that can perform an alternative operation instead of the device in which the abnormality has occurred. Specifically, based on the information indicating the corrected installation room, the detection unit 340 determines a device that is installed in the same room as the device in which the abnormality has occurred and that is of the same type as a device that can perform an alternative operation. The detection unit 340 outputs the detection result of the abnormality and the determination result of the device that can perform the alternative operation to the output unit 150. The specific operation of the abnormality detection will be described later in detail with an example.
 続いて、本実施の形態に係る異常検出装置300の動作(異常検出方法)について説明する。 Next, an operation (an abnormality detection method) of the abnormality detection device 300 according to the present embodiment will be described.
 図24は、本実施の形態に係る異常検出装置300の動作を示すフローチャートである。図24に示されるように、異常検出装置300では、まず取得部110が時系列データと属性情報とを取得する(S40)。具体的な取得処理は、実施の形態1に係るステップS10と同じである。 FIG. 24 is a flowchart showing the operation of the abnormality detection device 300 according to the present embodiment. As shown in FIG. 24, in the abnormality detection device 300, first, the acquisition unit 110 acquires time-series data and attribute information (S40). The specific acquisition process is the same as step S10 according to the first embodiment.
 次に、分析部320が複数の時系列データを用いて重回帰分析を行う(S41)。具体的には、分析部320は、エアコンA~Cの各々の消費電力の時系列データを従属変数とし、残りの時系列データを独立変数として重回帰分析を行う。 Next, the analysis unit 320 performs a multiple regression analysis using the plurality of time-series data (S41). Specifically, analysis unit 320 performs multiple regression analysis using the time series data of the power consumption of each of air conditioners A to C as a dependent variable and the remaining time series data as independent variables.
 例えば、分析部320は、エアコンAの消費電力の時系列データData-21を従属変数とし、残りの時系列データを独立変数として重回帰分析を行うことで、各独立変数に対する係数を算出する。同様に、エアコンBの消費電力の時系列データData-22、及び、エアコンCの消費電力の時系列データData-23の各々を従属変数として、各独立変数に対する係数を算出する。 {For example, the analysis unit 320 calculates a coefficient for each independent variable by performing multiple regression analysis using the time-series data Data-21 of the power consumption of the air conditioner A as a dependent variable and the remaining time-series data as independent variables. Similarly, a coefficient for each independent variable is calculated using the time series data Data-22 of the power consumption of the air conditioner B and the time series data Data-23 of the power consumption of the air conditioner C as dependent variables.
 次に、分析部320は、重回帰分析の結果に基づいて、各機器と部屋との最適な組み合わせを決定する(S42)。具体的には、分析部320は、時系列データ(独立変数)毎に、算出された係数が最も大きくなるときの従属変数を決定し、決定した従属変数に対応するエアコンが配置された部屋に、時系列データに対応する機器が配置されていると判定する。 Next, the analysis unit 320 determines an optimal combination of each device and a room based on the result of the multiple regression analysis (S42). Specifically, the analysis unit 320 determines, for each time-series data (independent variable), the dependent variable when the calculated coefficient is the largest, and determines the dependent variable in the room where the air conditioner corresponding to the determined dependent variable is located. It is determined that a device corresponding to the time-series data is arranged.
 図25は、本実施の形態に係る異常検出装置による重回帰分析の結果の一例を示す図である。図25には、エアコンA~Cを除いた20個の時系列データData-01~Data-20のうちの4つのみ(Data-01、Data-06、Data-07及びData-20)の、算出された係数を示している。 FIG. 25 is a diagram illustrating an example of a result of a multiple regression analysis performed by the abnormality detection device according to the present embodiment. FIG. 25 shows only four data (Data-01, Data-06, Data-07 and Data-20) out of the 20 time-series data Data-01 to Data-20 excluding the air conditioners A to C. The calculated coefficients are shown.
 例えば、時系列データData-01(独立変数X1)に対しては、時系列データData-21のときの係数が最大となっている。このため、時系列データData-01に対応する機器(具体的には、実装機)は、エアコンAと同じ空間に配置されていると判定される。なお、図25では、係数が最大となる組み合わせを表すセルにドットの網掛けを付している。 For example, for the time-series data Data-01 (independent variable X1), the coefficient at the time-series data Data-21 is the largest. For this reason, it is determined that the device (specifically, the mounting device) corresponding to the time-series data Data-01 is located in the same space as the air conditioner A. In FIG. 25, cells that represent the combination with the largest coefficient are shaded with dots.
 ここでは、例えば、次のように時系列データと部屋(又はエアコン)とが対応付けられたものとみなす。具体的には、エアコンAと同じ部屋に位置する時系列データは、時系列データData-01、Data-02、Data-03、Data-04、Data-05、Data-07、Data-11、Data-13、Data-14及びData-18である。エアコンBと同じ部屋に位置する時系列データは、時系列データData-06、Data-09、Data-10、Data-16及びData-19である。エアコンCと同じ部屋に位置する時系列データは、時系列データData-08、Data-12、Data-15、Data-17及びData-20である。 Here, for example, it is assumed that time-series data and a room (or an air conditioner) are associated with each other as follows. Specifically, the time-series data located in the same room as the air conditioner A includes time-series data Data-01, Data-02, Data-03, Data-04, Data-05, Data-07, Data-11, Data-11. -13, Data-14 and Data-18. The time-series data located in the same room as the air conditioner B are time-series data Data-06, Data-09, Data-10, Data-16, and Data-19. The time-series data located in the same room as the air conditioner C is time-series data Data-08, Data-12, Data-15, Data-17, and Data-20.
 なお、分析部320は、独立変数を構成する時系列データ毎に、算出された係数が閾値を越える複数の従属変数を決定してもよい。つまり、分析部320は、時系列データに対応する複数の部屋(エアコン)を決定してもよい。例えば、複数のエアコンによって空調が制御される空間が重複している場合には、当該重複した空間に位置する機器の時系列データの係数が、複数のエアコンの各々の場合で大きな値になる。 Note that the analysis unit 320 may determine a plurality of dependent variables whose calculated coefficients exceed a threshold value for each time-series data constituting the independent variable. That is, the analysis unit 320 may determine a plurality of rooms (air conditioners) corresponding to the time-series data. For example, when the spaces where the air conditioning is controlled by a plurality of air conditioners overlap, the coefficient of the time-series data of the device located in the overlapped space has a large value in each of the plurality of air conditioners.
 次に、図24に示されるように、修正部330は、このように決定された組み合わせに基づいて属性情報を修正する(S43)。 Next, as shown in FIG. 24, the correction unit 330 corrects the attribute information based on the combination determined in this way (S43).
 図26は、本実施の形態に係る異常検出装置による属性情報の修正の一例を示す図である。修正部330は、上述した部屋と時系列データとの組み合わせに基づいて、属性情報DB164内の設置部屋の誤りを検出し、検出した誤りを修正する。 FIG. 26 is a diagram illustrating an example of the correction of the attribute information by the abnormality detection device according to the present embodiment. The correction unit 330 detects an error of the installation room in the attribute information DB 164 based on the combination of the room and the time-series data described above, and corrects the detected error.
 例えば、エアコンAと同じ部屋に対応するはずの時系列データのうち、5つの時系列データData-07、Data-11、Data-13、Data-14及びData-18に対応する設置部屋が“RoomB”となっており、エアコンAの時系列データに対応する設置部屋“RoomA”とは異なっている。したがって、修正部330は、これらの5つの時系列データData-07、Data-11、Data-13、Data-14及びData-18に対応する設置部屋をエアコンAと同じ“RoomA”に修正する。エアコンBと同じ部屋に対応する時系列データ、及び、エアコンCと同じ部屋に対応する時系列データについても同様である。 For example, among the time series data that should correspond to the same room as the air conditioner A, the installation room corresponding to five time series data Data-07, Data-11, Data-13, Data-14, and Data-18 is “RoomB”. "And is different from the installation room" RoomA "corresponding to the time-series data of the air conditioner A. Therefore, the correction unit 330 corrects the installation room corresponding to the five time-series data Data-07, Data-11, Data-13, Data-14, and Data-18 to the same “RoomA” as the air conditioner A. The same applies to time-series data corresponding to the same room as the air conditioner B and time-series data corresponding to the same room as the air conditioner C.
 以上のように属性情報の修正が行われた後、図24に示されるように、検出部340は、異常の検出を行う(S44)。なお、異常の検出は、属性情報の修正が行われた後、直ちに行われてもよく、予め定められたタイミングで行われてもよい。また、異常の検出は、定期的に繰り返し行われてもよい。 After the attribute information has been corrected as described above, as shown in FIG. 24, the detection unit 340 detects an abnormality (S44). The detection of the abnormality may be performed immediately after the attribute information is corrected, or may be performed at a predetermined timing. Further, the detection of the abnormality may be periodically repeated.
 具体的には、検出部340は、検出対象の異常毎に、記憶部160の時系列データDB162、属性情報DB164及び異常検出モデルDB166の各々からデータを読み出し、読み出したデータに基づいて、異常の有無と、異常が発生した場合にはその時刻とを検出する。 More specifically, the detection unit 340 reads data from each of the time-series data DB 162, the attribute information DB 164, and the abnormality detection model DB 166 of the storage unit 160 for each abnormality to be detected, and detects an abnormality based on the read data. The presence / absence and the time when an abnormality has occurred are detected.
 本実施の形態では、検出部340は、実装機及び塗布機の異常検出モデルを利用する。例えば、実装機の異常検出モデルでは、実装機が生産する部品の生産数が閾値以上である場合に、実装機に異常が発生していないと判定され、当該生産数が閾値を下回った場合に、実装機に異常が発生していると判定される。また、塗布機の異常検出モデルでは、塗布機に投入される部品の投入数が閾値以上である場合に、塗布機に異常が発生していないと判定され、当該投入数が閾値を下回った場合に、塗布機に異常が発生していると判定される。 In the present embodiment, the detection unit 340 uses an abnormality detection model of a mounting machine and a coating machine. For example, in the abnormality detection model of the mounting machine, when the production number of the components produced by the mounting machine is equal to or greater than the threshold, it is determined that no abnormality has occurred in the mounting machine, and when the production number falls below the threshold, , It is determined that an abnormality has occurred in the mounting machine. In addition, in the abnormality detection model of the coating machine, when the number of components to be supplied to the coating machine is equal to or greater than the threshold value, it is determined that no abnormality has occurred in the coating machine, and when the number of input components falls below the threshold value. Then, it is determined that an abnormality has occurred in the coating machine.
 さらに、検出部340は、複数の実装機が同じ部屋に存在する場合に、複数の実装機の少なくとも1つを他の実装機の代替動作可能な機器として決定する。また、検出部340は、複数の塗布機が同じ部屋に存在する場合に、複数の塗布機の少なくとも1つを他の塗布機の代替動作可能な機器として決定する。 検 出 Furthermore, when a plurality of mounting machines are present in the same room, the detection unit 340 determines at least one of the plurality of mounting machines as a device capable of performing an alternative operation of another mounting machine. In addition, when a plurality of applicators exist in the same room, the detection unit 340 determines at least one of the plurality of applicators as a device capable of performing an alternative operation to another applicator.
 図27は、本実施の形態に係る異常検出装置による異常の検出処理の一例を示す図である。図27において、横軸は時刻を表している。縦軸は実装機の生産数[個]及び塗布機の投入数[個]を表している。ここでは、図22に示されるように、実装機A1で生産された部品が塗布機A1に投入され、実装機A2で生産された部品が塗布機A2に投入される場合を想定する。 FIG. 27 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the present embodiment. In FIG. 27, the horizontal axis represents time. The vertical axis indicates the number of production machines [pieces] and the number of application machines [pieces]. Here, as shown in FIG. 22, it is assumed that components produced by the mounting machine A1 are supplied to the coating machine A1 and components produced by the mounting machine A2 are supplied to the coating machine A2.
 図27に示されるように、12:00に実装機A2に異常が発生し、生産が停止している。実装機A2の生産数が閾値を下回り、0個になるので、検出部340は、実装機A2に異常が発生していることを検出する。分析部320による分析の結果、実装機A2と実装機A1とは、塗布機A1及び塗布機A2とともに同じ部屋Aに設けられていることが判明している。このため、検出部340は、実装機A2の異常が発生している場合に、実装機A1を代替動作可能な機器として決定する。 よ う As shown in FIG. 27, at 12:00, an abnormality occurred in the mounting machine A2, and the production was stopped. Since the production number of the mounting machine A2 falls below the threshold value and becomes zero, the detection unit 340 detects that an abnormality has occurred in the mounting machine A2. As a result of the analysis by the analysis unit 320, it has been found that the mounting machine A2 and the mounting machine A1 are provided in the same room A together with the coating machine A1 and the coating machine A2. For this reason, when an abnormality has occurred in the mounting machine A2, the detection unit 340 determines the mounting machine A1 as a device capable of performing an alternative operation.
 このとき、実装機A2が停止することで、塗布機A2には、実装機A2で生産される部品の供給が停止する。その代わりに、塗布機A2には、実装機A1で生産された部品の一部が供給される。例えば、実装機A1を最大能力で動作させることにより、通常時の1.5倍の数の部品を生産させることができる。このため、塗布機A2には、通常時の半分の数の部品を実装機A1から供給させることができる。塗布機A2は、通常時よりも動作能力を落とし、消費電力を低減させることができる。 At this time, the supply of components produced by the mounting machine A2 to the coating machine A2 is stopped by stopping the mounting machine A2. Instead, a part of the components produced by the mounting machine A1 is supplied to the coating machine A2. For example, by operating the mounting machine A1 at the maximum capacity, it is possible to produce 1.5 times the number of components in a normal state. Therefore, the coating machine A2 can be supplied with half the number of components from the normal state from the mounting machine A1. The applicator A2 can lower the operation capability as compared with the normal operation and reduce power consumption.
 13:10には、実装機A2の動作が復帰している。これにより、各機器を通常動作に戻すことができる。 At # 13: 10, the operation of the mounting machine A2 is restored. Thereby, each device can be returned to the normal operation.
 以上のように、検出部340によって異常が検出された後、図24に示されるように、出力部150は、検出された異常と、当該異常の発生時刻とを示す情報、及び、当該異常に対する対策案を示す情報を出力する(S45)。 As described above, after the abnormality is detected by the detection unit 340, as illustrated in FIG. 24, the output unit 150 outputs information indicating the detected abnormality and the time of occurrence of the abnormality, and The information indicating the measure is output (S45).
 図28は、本実施の形態に係る異常検出装置によって出力される情報の一例を示す図である。図28に示されるように、実装機A2が異常停止したこととともに、対策案として、異常停止した実装機A2のメンテナンス、及び、実装機A1で代替動作を行うことがディスプレイなどに表示される。 FIG. 28 is a diagram showing an example of information output by the abnormality detection device according to the present embodiment. As shown in FIG. 28, as a countermeasure, the maintenance of the abnormally stopped mounting machine A2 and the alternative operation performed by the mounting machine A1 are displayed on a display or the like, as a countermeasure.
 例えば、工場2の管理者にリアルタイムで図28に示される情報を提示することにより、管理者は、リアルタイムで異常に対する処理を行うことができる。具体的には、管理者は、実装機A1を代替動作させることで、生産効率の低下を抑制することができる。また、実装機A1を代替動作させている期間に、実装機A2のメンテナンスを行うことにより、生産効率の低下を抑制しながら速やかに復旧作業を行うことができる。 For example, by presenting the information shown in FIG. 28 to the manager of the factory 2 in real time, the manager can perform processing for the abnormality in real time. Specifically, the administrator can suppress a decrease in production efficiency by causing the mounting machine A1 to perform an alternative operation. In addition, by performing maintenance on the mounting machine A2 during the period when the mounting machine A1 is performing the alternative operation, it is possible to quickly perform a recovery operation while suppressing a decrease in production efficiency.
 このように、本実施の形態によれば、時系列データの分析によって、各機器が設けられた部屋を正しく判別することができるので、異常を精度良く検出することができるだけでなく、代替動作可能な機器の提案を行うことができる。 As described above, according to the present embodiment, the room in which each device is installed can be correctly determined by analyzing the time-series data, so that not only can abnormalities be detected with high accuracy, but also alternative operations can be performed. Can propose new equipment.
 以下では、仮に、各機器が設けられた部屋の対応関係が正しく判別できない場合について、図29及び図30を用いて説明する。 In the following, a case where the correspondence between the rooms provided with the respective devices cannot be correctly determined will be described with reference to FIGS. 29 and 30.
 図29は、比較例に係る異常検出装置による異常の検出処理の一例を示す図である。図30は、比較例に係る異常検出装置によって出力される情報の一例を示す図である。比較例に係る異常検出装置では、重回帰分析による部屋の判別が行われないので、塗布機A1、塗布機A2、実装機A1及び実装機A2が同一の部屋に設けられていることが判別できない。 FIG. 29 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the comparative example. FIG. 30 is a diagram illustrating an example of information output by the abnormality detection device according to the comparative example. In the abnormality detection device according to the comparative example, since the room is not determined by the multiple regression analysis, it is not possible to determine that the coating machine A1, the coating machine A2, the mounting machine A1, and the mounting machine A2 are provided in the same room. .
 このため、図30に示されるように、実装機A2が12:00に異常で停止したことを示す情報が出力されたとしても、対策案として、代替動作可能な機器の提案ができない。したがって、対策案としては、実装機A2のメンテナンスを行うことが出力される。 Therefore, as shown in FIG. 30, even if information indicating that the mounting machine A2 has stopped abnormally at 12:00 is output, as a countermeasure, it is not possible to propose a device that can perform an alternative operation. Therefore, as a measure, it is output that maintenance of the mounting machine A2 is performed.
 また、実装機A2が異常で停止したために、実装機A2で生産された部品が塗布機A2に供給されなくなる。このため、図29に示されるように、実装機A2の停止後まもなく、塗布機A2への部品の供給数も0になる。このため、塗布機A2にも異常が発生したと誤って検出される。その結果、図30に示されるように、塗布機A2が異常で停止したことと、当該異常への対策案として、塗布機A2のメンテナンスを行うこととが出力される。 (4) Also, since the mounting machine A2 has stopped abnormally, the components produced by the mounting machine A2 are not supplied to the coating machine A2. Therefore, as shown in FIG. 29, shortly after the stop of the mounting machine A2, the number of components supplied to the coating machine A2 becomes zero. Therefore, it is erroneously detected that an abnormality has occurred in the coating machine A2. As a result, as shown in FIG. 30, the fact that the coating machine A2 has stopped due to an abnormality and that maintenance of the coating machine A2 is to be performed as a countermeasure against the abnormality are output.
 このため、本来、異常が発生していない塗布機A2のメンテナンスにも時間が取られ、復旧に要する時間が長くなる恐れがある。このように、比較例に係る異常検出装置によれば、異常が精度良く検出することができず、製造システムの生産効率が低下する場合がある。 (4) Therefore, the maintenance of the coating machine A2 in which no abnormality has occurred originally takes time, and the time required for recovery may be long. As described above, according to the abnormality detection device according to the comparative example, the abnormality cannot be accurately detected, and the production efficiency of the manufacturing system may decrease.
 (変形例)
 続いて、実施の形態3に係る異常検出装置の変形例について説明する。本変形例では、検出部340は、空調機器による各部屋の熱モデルに基づいて異常を検出する。異常の検出方法が異なる点を除いた属性情報の修正処理などは、実施の形態3と同様である。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
(Modification)
Next, a modified example of the abnormality detection device according to the third embodiment will be described. In the present modification, the detection unit 340 detects an abnormality based on a thermal model of each room by the air conditioner. The process of correcting the attribute information except for the difference in the abnormality detection method is the same as in the third embodiment. The following description focuses on differences from the third embodiment, and description of common points is omitted or simplified.
 図31は、本変形例に係る異常検出装置300の対象となる熱モデルの構成を示す図である。図31に示される熱モデルに基づいて、エアコンが設けられた空間内での熱伝達は、以下の式(2)で表される。 FIG. 31 is a diagram showing a configuration of a thermal model that is an object of the abnormality detection device 300 according to the present modification. Based on the thermal model shown in FIG. 31, heat transfer in the space where the air conditioner is provided is represented by the following equation (2).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(2)において、Iacは、エアコンの消費電力である。Pは、エアコンと同じ部屋に設けられた各機器の消費電力である。各機器の消費電力の合計値(ΣP)に係数Kを乗じた項は、エアコンと同じ部屋に設けられた機器の合計発熱量に相当する。 In the equation (2), Iac is the power consumption of the air conditioner. P k is the power consumption of each device provided in the same room as the air conditioner. The term obtained by multiplying the total value (ΣP k ) of the power consumption of each device by the coefficient K corresponds to the total heat generation of the devices provided in the same room as the air conditioner.
 Rは、エアコンが設けられた部屋の熱抵抗に相当する。Vは、エアコンが設けられた部屋の室温である。Vは、外気温である。また、エアコンが設けられた部屋の熱容量をQとした場合、熱容量Qは、係数CとV-Vの時間微分値との積で表される。 R corresponds to the thermal resistance of the room provided with the air conditioner. Vr is the room temperature of the room provided with the air conditioner. V o is the outside air temperature. Further, when the heat capacity of the room air conditioner is provided with Q, the heat capacity Q is represented by the product of the time derivative value of the coefficient C and V r -V o.
 検出部340は、上記式(2)のIacを従属変数、ΣPと、(V-V)と、(V-V)の時間微分値とをそれぞれ独立変数として、重回帰分析を行う。これにより、係数K、1/R及びCの最適な組み合わせが得られる。なお、本変形例では、取得部110は、各エアコンの消費電力の時系列データと、各機器の消費電力の時系列データと、外気温の時系列データと、室温の時系列データとを取得する。 Detection unit 340, the dependent variable I ac of the formula (2), and .SIGMA.P k, and (V r -V o), as independent variables and the time differential value of (V r -V o), a multiple regression Perform analysis. As a result, an optimal combination of the coefficients K, 1 / R and C is obtained. In this modification, the acquisition unit 110 acquires time-series data of power consumption of each air conditioner, time-series data of power consumption of each device, time-series data of outside temperature, and time-series data of room temperature. I do.
 図32は、本変形例に係る異常検出装置による異常の検出処理の一例を示す図である。図32において、横軸は時刻を表している。縦軸は、K、R及びCの各係数の値を表している。K、R及びCはいずれも、異常が発生していない場合、1に近い値になる。 FIG. 32 is a diagram illustrating an example of an abnormality detection process performed by the abnormality detection device according to the present modification. In FIG. 32, the horizontal axis represents time. The vertical axis represents the values of K, R, and C coefficients. Each of K, R, and C becomes a value close to 1 when no abnormality occurs.
 検出部340は、K、R及びCの各々と閾値とを比較し、K、R及びCの少なくとも1つが閾値を下回った場合に、モデル化された部屋の熱環境に異常が発生したと判定する。閾値は、例えば0.800であるが、これに限らない。 The detection unit 340 compares each of K, R, and C with a threshold, and determines that an abnormality has occurred in the thermal environment of the modeled room when at least one of K, R, and C is below the threshold. I do. The threshold value is, for example, 0.800, but is not limited to this.
 図32に示される例では、14:00~15:00の期間において、熱抵抗Rが減少している。部屋の熱抵抗が減少している期間では、部屋に設けられたドア又は窓が開放された状態であることが推定される。例えば、対策情報DB168には、熱抵抗の減少という異常に対して、部屋の窓及びドアの確認という対策案が対応付けられている。 例 In the example shown in FIG. 32, the thermal resistance R decreases during the period from 14:00 to 15:00. During a period in which the thermal resistance of the room is decreasing, it is estimated that the door or window provided in the room is in an open state. For example, the countermeasure information DB 168 is associated with a countermeasure for checking a window and a door of a room for an abnormality such as a decrease in thermal resistance.
 以上の検出結果に基づいて、出力部150は、図33に示されるように、出力部150は、検出された異常と、当該異常の発生時刻と、当該異常に対する対策案とを示す情報を出力する。なお、図33は、本変形例に係る異常検出装置によって出力される情報の一例を示す図である。 Based on the above detection results, as shown in FIG. 33, the output unit 150 outputs information indicating the detected abnormality, the occurrence time of the abnormality, and a measure for the abnormality. I do. FIG. 33 is a diagram illustrating an example of information output by the abnormality detection device according to the present modification.
 (実施の形態4)
 続いて、実施の形態4について説明する。
(Embodiment 4)
Next, a fourth embodiment will be described.
 実施の形態1~3では、異常検出方法が1つのコンピュータ機器で実現される異常検出装置100、200又は300で実行される例について説明した。これに対して、本実施の形態に係る異常検出方法は、複数の装置による分散処理で実行される。 In the first to third embodiments, an example has been described in which the abnormality detection method is executed by the abnormality detection device 100, 200, or 300 realized by one computer device. On the other hand, the abnormality detection method according to the present embodiment is executed by distributed processing by a plurality of devices.
 図34は、本実施の形態に係る異常検出方法を実行する異常検出システム400の構成を示すブロック図である。図34に示されるように、異常検出システム400は、情報処理装置401と、データ保存装置402と、情報提示装置403とを備える。図34に示される例では、異常検出システム400が備える各装置が、ネットワーク404と各製造装置との間、すなわち、ネットワーク404よりも内側に設けられている。ネットワーク404は、例えば、インターネットなどの外部機器と接続するための通信ネットワークである。 FIG. 34 is a block diagram showing a configuration of an abnormality detection system 400 that executes the abnormality detection method according to the present embodiment. As shown in FIG. 34, the abnormality detection system 400 includes an information processing device 401, a data storage device 402, and an information presentation device 403. In the example illustrated in FIG. 34, each device included in the abnormality detection system 400 is provided between the network 404 and each manufacturing device, that is, inside the network 404. The network 404 is a communication network for connecting to an external device such as the Internet, for example.
 なお、本実施の形態に係る異常検出方法は、図35に示される異常検出システム410によって実行されてもよい。図35は、本実施の形態に係る異常検出方法を実行する異常検出システム410の構成を示すブロック図である。 The abnormality detection method according to the present embodiment may be executed by abnormality detection system 410 shown in FIG. FIG. 35 is a block diagram showing a configuration of an abnormality detection system 410 that executes the abnormality detection method according to the present embodiment.
 図35に示されるように、異常検出システム410は、情報処理装置401と、データ保存装置402と、情報提示装置403とを備える。異常検出システム410が備える各装置が、ネットワーク404の外側に設けられている。 As shown in FIG. 35, the abnormality detection system 410 includes an information processing device 401, a data storage device 402, and an information presentation device 403. Each device included in the abnormality detection system 410 is provided outside the network 404.
 このように、異常検出システム400又は410が備える各装置は、ネットワーク404に対して内側及び外側のいずれに設けられていてもよい。例えば、情報処理装置401のみがネットワーク404よりも内側に設けられ、データ保存装置402と情報提示装置403がネットワーク404よりも外側に設けられていてもよい。あるいは、データ保存装置402のみがネットワーク404よりも内側に設けられ、情報処理装置401と情報提示装置403がネットワーク404よりも外側に設けられていてもよい。あるいは、情報提示装置403のみがネットワーク404よりも内側に設けられ、情報処理装置401とデータ保存装置402とがネットワーク404よりも外側に設けられていてもよい。 As described above, each device included in the abnormality detection system 400 or 410 may be provided inside or outside the network 404. For example, only the information processing device 401 may be provided inside the network 404, and the data storage device 402 and the information presentation device 403 may be provided outside the network 404. Alternatively, only the data storage device 402 may be provided inside the network 404, and the information processing device 401 and the information presentation device 403 may be provided outside the network 404. Alternatively, only the information presentation device 403 may be provided inside the network 404, and the information processing device 401 and the data storage device 402 may be provided outside the network 404.
 図36は、本実施の形態に係る異常検出システム400の構成を示すブロック図である。なお、異常検出システム410の構成は、異常検出システム400と同じである。 FIG. 36 is a block diagram showing a configuration of an abnormality detection system 400 according to the present embodiment. The configuration of the abnormality detection system 410 is the same as that of the abnormality detection system 400.
 図36に示されるように、情報処理装置401は、取得部110と、分析部120と、修正部130と、検出部140と、出力部150とを備える。情報処理装置401は、例えばコンピュータ機器である。情報処理装置401は、プログラムが格納された不揮発性メモリ、プログラムを実行するための一時的な記憶領域である揮発性メモリ、入出力ポート、プログラムを実行するプロセッサなどで実現される。 36, as shown in FIG. 36, the information processing apparatus 401 includes an acquisition unit 110, an analysis unit 120, a correction unit 130, a detection unit 140, and an output unit 150. The information processing device 401 is, for example, a computer device. The information processing device 401 is realized by a nonvolatile memory storing a program, a volatile memory serving as a temporary storage area for executing the program, an input / output port, a processor executing the program, and the like.
 データ保存装置402は、時系列データDB162と、属性情報DB164と、異常検出モデルDB166と、対策情報DB168とを記憶する記憶装置である。データ保存装置402は、HDD又は半導体メモリなどで実現される。 The data storage device 402 is a storage device that stores the time-series data DB 162, the attribute information DB 164, the abnormality detection model DB 166, and the countermeasure information DB 168. The data storage device 402 is realized by an HDD, a semiconductor memory, or the like.
 情報提示装置403は、出力部150から出力された情報を工場の管理者などのユーザに提示する装置である。情報提示装置403は、例えば、ディスプレイ又はスピーカなどである。 The information presenting device 403 is a device that presents information output from the output unit 150 to a user such as a factory manager. The information presentation device 403 is, for example, a display or a speaker.
 このように、本実施の形態では、異常検出方法が複数の装置によって分散処理される。各装置での処理量が低減し、かつ、分散処理によって短期間で処理を行うことができる。 As described above, in this embodiment, the abnormality detection method is distributed by a plurality of devices. The processing amount in each device is reduced, and processing can be performed in a short period of time by distributed processing.
 なお、情報処理装置401及びデータ保存装置402はそれぞれ、単一の装置でなくてもよく、複数の装置で実現されてもよい。 Note that each of the information processing device 401 and the data storage device 402 may not be a single device, and may be implemented by a plurality of devices.
 (他の実施の形態)
 以上、1つ又は複数の態様に係る異常検出方法、情報処理装置及び異常検出システムについて、実施の形態に基づいて説明したが、本開示は、これらの実施の形態に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したもの、及び、異なる実施の形態における構成要素を組み合わせて構築される形態も、本開示の範囲内に含まれる。
(Other embodiments)
As described above, the abnormality detection method, the information processing apparatus, and the abnormality detection system according to one or more aspects have been described based on the embodiments, but the present disclosure is not limited to these embodiments. Unless departing from the gist of the present disclosure, various modifications conceivable by those skilled in the art are applied to the present embodiment, and forms configured by combining components in different embodiments are also included in the scope of the present disclosure. It is.
 例えば、修正候補をユーザに提示して、ユーザ(管理者)に修正を行わせてもよい。例えば、異常検出装置は、ユーザからの修正指示を受け付ける入力インタフェースを備えていてもよい。 For example, a correction candidate may be presented to a user, and the user (administrator) may make a correction. For example, the abnormality detection device may include an input interface that receives a correction instruction from a user.
 また、例えば、検出部は、検出された異常をクラスタリングすることで、異常の種別を判別してもよい。異常の種別が判別されることで、異常の原因の推定及び異常に対する対策案の選定の精度をより高めることができる。 (4) For example, the detection unit may determine the type of the abnormality by clustering the detected abnormality. By determining the type of the abnormality, the accuracy of estimating the cause of the abnormality and selecting a measure for the abnormality can be further improved.
 また、例えば、分析は、統計分析以外の分析手法であってもよい。複数の時系列データの相互関係を判別することができれば、いかなる分析手法を用いてもよい。 分析 Also, for example, the analysis may be an analysis method other than the statistical analysis. Any analysis method may be used as long as the mutual relationship between a plurality of time-series data can be determined.
 また、上記実施の形態で説明した装置間の通信方法については特に限定されるものではない。装置間で無線通信が行われる場合、無線通信の方式(通信規格)は、例えば、ZigBee(登録商標)、Bluetooth(登録商標)、又は、無線LAN(Local Area Network)などの近距離無線通信である。あるいは、無線通信の方式(通信規格)は、インターネットなどの広域通信ネットワークを介した通信でもよい。また、装置間においては、無線通信に代えて、有線通信が行われてもよい。有線通信は、具体的には、電力線搬送通信(PLC:Power Line Communication)又は有線LANを用いた通信などである。 The communication method between the devices described in the above embodiment is not particularly limited. When wireless communication is performed between devices, the wireless communication method (communication standard) is, for example, ZigBee (registered trademark), Bluetooth (registered trademark), or short-range wireless communication such as wireless LAN (Local Area Network). is there. Alternatively, the wireless communication method (communication standard) may be communication via a wide area communication network such as the Internet. Wired communication may be performed between the devices instead of wireless communication. Specifically, the wired communication is power line communication (PLC) or communication using a wired LAN.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよく、あるいは、複数の処理が並行して実行されてもよい。また、異常検出システムが備える構成要素の複数の装置への振り分けは、一例である。例えば、一の装置が備える構成要素を他の装置が備えてもよい。また、異常検出システムは、単一の装置として実現されてもよい。 In addition, in the above embodiment, another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel. The distribution of the components included in the abnormality detection system to a plurality of devices is an example. For example, components included in one device may be included in another device. Further, the abnormality detection system may be realized as a single device.
 例えば、上記実施の形態において説明した処理は、単一の装置(システム)を用いて集中処理することによって実現してもよく、又は、複数の装置を用いて分散処理することによって実現してもよい。また、上記プログラムを実行するプロセッサは、単数であってもよく、複数であってもよい。すなわち、集中処理を行ってもよく、又は分散処理を行ってもよい。 For example, the processing described in the above embodiment may be realized by centralized processing using a single device (system), or may be realized by distributed processing using a plurality of devices. Good. In addition, the number of processors that execute the program may be one or more. That is, centralized processing or distributed processing may be performed.
 また、上記実施の形態において、制御部などの構成要素の全部又は一部は、専用のハードウェアで構成されてもよく、あるいは、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU(Central Processing Unit)又はプロセッサなどのプログラム実行部が、HDD(Hard Disk Drive)又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 Further, in the above embodiment, all or a part of the components such as the control unit may be configured by dedicated hardware, or may be realized by executing a software program suitable for each component. Is also good. Each component may be realized by a program execution unit such as a CPU (Central Processing Unit) or a processor reading and executing a software program recorded on a recording medium such as an HDD (Hard Disk Drive) or a semiconductor memory. Good.
 また、制御部などの構成要素は、1つ又は複数の電子回路で構成されてもよい。1つ又は複数の電子回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 The components such as the control unit may be configured by one or a plurality of electronic circuits. Each of the one or more electronic circuits may be a general-purpose circuit or a dedicated circuit.
 1つ又は複数の電子回路には、例えば、半導体装置、IC(Integrated Circuit)又はLSI(Large Scale Integration)などが含まれてもよい。IC又はLSIは、1つのチップに集積されてもよく、複数のチップに集積されてもよい。ここでは、IC又はLSIと呼んでいるが、集積の度合いによって呼び方が変わり、システムLSI、VLSI(Very Large Scale Integration)、又は、ULSI(Ultra Large Scale Integration)と呼ばれるかもしれない。また、LSIの製造後にプログラムされるFPGA(Field Programmable Gate Array)も同じ目的で使うことができる。 The one or more electronic circuits may include, for example, a semiconductor device, an IC (Integrated Circuit), an LSI (Large Scale Integration), and the like. The IC or LSI may be integrated on one chip, or may be integrated on a plurality of chips. Here, the term is referred to as an IC or an LSI, but the term varies depending on the degree of integration, and may be called a system LSI, a VLSI (Very Large Scale Integration), or a ULSI (Ultra Large Scale Integration). Further, an FPGA (Field Programmable Gate Array) programmed after manufacturing the LSI can be used for the same purpose.
 また、本開示の全般的又は具体的な態様は、システム、装置、方法、集積回路又はコンピュータプログラムで実現されてもよい。あるいは、当該コンピュータプログラムが記憶された光学ディスク、HDD若しくは半導体メモリなどのコンピュータ読み取り可能な非一時的記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 In addition, general or specific aspects of the present disclosure may be realized by a system, an apparatus, a method, an integrated circuit, or a computer program. Alternatively, the present invention may be realized by a non-transitory computer-readable recording medium such as an optical disk, an HDD, or a semiconductor memory in which the computer program is stored. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 また、上記の各実施の形態は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。 In addition, in each of the above embodiments, various changes, replacements, additions, omissions, and the like can be made within the scope of the claims or equivalents thereof.
 本開示は、精度良く異常を検出することができる異常検出方法などとして利用でき、例えば、工場などにおける製造の管理及びメンテナンスなどに利用することができる。 (4) The present disclosure can be used as an abnormality detection method that can detect an abnormality with high accuracy, and can be used, for example, for manufacturing management and maintenance in a factory or the like.
1、2 工場
100、200、300 異常検出装置
110、210 取得部
120、220、320 分析部
130、230、330 修正部
140、240、340 検出部
150 出力部
160、260 記憶部
162、262 時系列データDB
164、264 属性情報DB
166 異常検出モデルDB
168 対策情報DB
400、410 異常検出システム
401 情報処理装置
402 データ保存装置
403 情報提示装置
404 ネットワーク
1, 2 factory 100, 200, 300 abnormality detection device 110, 210 acquisition unit 120, 220, 320 analysis unit 130, 230, 330 correction unit 140, 240, 340 detection unit 150 output unit 160, 260 storage unit 162, 262 Series data DB
164,264 Attribute information DB
166 Anomaly detection model DB
168 Measure information DB
400, 410 abnormality detection system 401 information processing device 402 data storage device 403 information presentation device 404 network

Claims (12)

  1.  製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する工程と、
     前記複数の時系列データの相互関係の分析を行う工程と、
     前記分析の結果に基づいて前記属性情報を修正する工程と、
     修正された属性情報と前記複数の時系列データとに基づいて、前記複数の要素に発生する異常を検出する工程と、
     検出された異常と当該異常の発生時刻とを示す情報を出力する工程とを含む
     異常検出方法。
    A plurality of time-series data obtained from a plurality of elements related to the manufacture of the product, and a step of acquiring each attribute information of the plurality of time-series data,
    Analyzing the interrelationship of the plurality of time-series data,
    Correcting the attribute information based on the result of the analysis,
    Based on the corrected attribute information and the plurality of time-series data, detecting an abnormality occurring in the plurality of elements,
    A method of outputting information indicating the detected abnormality and the time of occurrence of the abnormality.
  2.  前記分析は、統計分析である
     請求項1に記載の異常検出方法。
    The abnormality detection method according to claim 1, wherein the analysis is a statistical analysis.
  3.  前記統計分析は、相互相関分析である
     請求項2に記載の異常検出方法。
    The abnormality detection method according to claim 2, wherein the statistical analysis is a cross-correlation analysis.
  4.  前記分析を行う工程では、
     前記複数の時系列データの相互相関係数を算出し、
     算出した相互相関係数に基づいて前記複数の時系列データを複数のグループに分類し、
     前記修正する工程では、分類されたグループ毎に、当該グループに含まれる複数の時系列データを、対応する属性情報に基づいて少数派と多数派とに分類し、前記少数派に属する時系列データの属性情報を、前記多数派に属する時系列データの属性情報に修正する
     請求項3に記載の異常検出方法。
    In the step of performing the analysis,
    Calculating a cross-correlation coefficient of the plurality of time-series data,
    Classifying the plurality of time-series data into a plurality of groups based on the calculated cross-correlation coefficient,
    In the correcting step, for each classified group, a plurality of time-series data included in the group is classified into a minority and a majority based on corresponding attribute information, and the time-series data belonging to the minority 4. The abnormality detection method according to claim 3, wherein the attribute information is corrected to attribute information of time-series data belonging to the majority.
  5.  前記修正する工程では、前記少数派に属する時系列データの数が前記多数派に属する時系列データの数の半分以下である場合に、前記少数派に属する時系列データの属性情報を、前記多数派に属する時系列データの属性情報に修正する
     請求項4に記載の異常検出方法。
    In the correcting step, when the number of the time-series data belonging to the minority is equal to or less than half the number of the time-series data belonging to the majority, the attribute information of the time-series data belonging to the minority is changed to the majority. The abnormality detection method according to claim 4, wherein the attribute information is corrected to attribute information of time-series data belonging to a group.
  6.  前記統計分析は、重回帰分析である
     請求項2に記載の異常検出方法。
    The abnormality detection method according to claim 2, wherein the statistical analysis is a multiple regression analysis.
  7.  前記複数の要素は、各々からの出力が統合された複数のコンプレッサを含み、
     前記取得する工程では、前記複数のコンプレッサの各々からの圧力の時系列データである複数の圧力データ及び流量の時系列データである複数の流量データと、統合後の圧力の時系列データである統合圧力データ及び流量の時系列データである統合流量データとを、前記複数の時系列データとして取得し、
     前記分析を行う工程では、
     前記複数の圧力データ及び前記複数の流量データと、前記複数の圧力データ及び前記複数の流量データの各々に対応させる属性情報の候補との組み合わせを複数作成し、
     作成した組み合わせ毎に、当該組み合わせを構成する複数の圧力データ及び複数の流量データを独立変数とし、前記統合圧力データ及び前記統合流量データを従属変数として、重回帰分析を行う
     請求項6に記載の異常検出方法。
    The plurality of elements includes a plurality of compressors with an output from each integrated;
    In the obtaining step, a plurality of pressure data as time series data of pressure from each of the plurality of compressors and a plurality of flow rate data as time series data of flow rate, and integrated time series data of pressure after integration. The pressure data and the integrated flow rate data that is the time series data of the flow rate are obtained as the plurality of time series data,
    In the step of performing the analysis,
    A plurality of combinations of the plurality of pressure data and the plurality of flow rate data, and a plurality of attribute information candidates corresponding to each of the plurality of pressure data and the plurality of flow rate data,
    The multiple regression analysis is performed for each created combination, using a plurality of pressure data and a plurality of flow rate data constituting the combination as independent variables, and using the integrated pressure data and the integrated flow rate data as dependent variables. Anomaly detection method.
  8.  前記複数の要素は、
     複数の空間の各々に配置された空調機器と、
     各々が、前記複数の空間のいずれか1つに配置された複数の製造装置とを含み、
     前記取得する工程では、複数の前記空調機器の各々の消費電力の時系列データと、前記複数の製造装置の各々のパラメータの時系列データとを、前記複数の時系列データとして取得し、
     前記分析を行う工程では、前記パラメータの時系列データを独立変数とし、前記消費電力の時系列データを従属変数として、重回帰分析を行う
     請求項6に記載の異常検出方法。
    The plurality of elements are:
    Air conditioning equipment arranged in each of the plurality of spaces;
    Each including a plurality of manufacturing devices arranged in any one of the plurality of spaces,
    In the acquiring step, time-series data of power consumption of each of the plurality of air conditioners and time-series data of each parameter of the plurality of manufacturing apparatuses are obtained as the plurality of time-series data,
    The abnormality detection method according to claim 6, wherein, in the step of performing the analysis, a multiple regression analysis is performed using time-series data of the parameter as an independent variable and time-series data of the power consumption as a dependent variable.
  9.  前記出力する工程では、さらに、検出された異常の原因を示す情報を出力する
     請求項1~8のいずれか1項に記載の異常検出方法。
    The abnormality detection method according to any one of claims 1 to 8, wherein in the outputting step, information indicating a cause of the detected abnormality is further output.
  10.  前記出力する工程では、さらに、検出された異常に応じて定められた、異常への対策案を示す情報を出力する
     請求項1~9のいずれか1項に記載の異常検出方法。
    The abnormality detection method according to any one of claims 1 to 9, wherein in the outputting step, information indicating a measure for the abnormality, which is determined according to the detected abnormality, is further output.
  11.  製造物の製造に関わる複数の要素から得られる複数の時系列データ、及び、当該複数の時系列データの各々の属性情報を取得する取得部と、
     前記複数の時系列データの相互関係の分析を行う分析部と、
     前記分析の結果に基づいて前記属性情報を修正する修正部と、
     修正された属性情報と前記複数の時系列データとに基づいて、前記複数の要素に発生する異常を検出する検出部と、
     検出された異常と当該異常の発生時刻とを示す情報を出力する出力部とを備える
     情報処理装置。
    A plurality of time-series data obtained from a plurality of elements related to the manufacture of a product, and an acquisition unit that obtains attribute information of each of the plurality of time-series data,
    An analysis unit that analyzes the mutual relationship between the plurality of time-series data,
    A correcting unit that corrects the attribute information based on a result of the analysis,
    Based on the corrected attribute information and the plurality of time-series data, a detection unit that detects an abnormality that occurs in the plurality of elements,
    An information processing apparatus comprising: an output unit that outputs information indicating a detected abnormality and a time at which the abnormality has occurred.
  12.  請求項11に記載の情報処理装置と、
     前記取得部によって取得された複数の時系列データ及び複数の属性情報を記憶するためのデータ保存装置と、
     前記出力部から出力された情報を提示する提示装置とを備える
     異常検出システム。
    An information processing apparatus according to claim 11,
    A data storage device for storing a plurality of time-series data and a plurality of attribute information obtained by the obtaining unit,
    A presentation device that presents information output from the output unit.
PCT/JP2019/030043 2018-08-03 2019-07-31 Abnormality detecting method, information processing device, and abnormality detecting system WO2020027207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018147075 2018-08-03
JP2018-147075 2018-08-03

Publications (1)

Publication Number Publication Date
WO2020027207A1 true WO2020027207A1 (en) 2020-02-06

Family

ID=69231100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030043 WO2020027207A1 (en) 2018-08-03 2019-07-31 Abnormality detecting method, information processing device, and abnormality detecting system

Country Status (1)

Country Link
WO (1) WO2020027207A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257755A (en) * 2020-09-24 2021-01-22 北京航天测控技术有限公司 Method and device for analyzing operating state of spacecraft
CN114169631A (en) * 2021-12-15 2022-03-11 中国石油大学胜利学院 Oil field power load management and control system based on data analysis
TWI765430B (en) * 2020-11-24 2022-05-21 思維環境科技有限公司 Inspection mechanism optimization method and system for environmental sensing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189579A (en) * 1996-01-11 1997-07-22 Toshiba Corp Monitoring data acquisition apparatus
JP2007148890A (en) * 2005-11-29 2007-06-14 Hitachi Ltd Instrument diagnosis device
JP2010501091A (en) * 2006-05-07 2010-01-14 アプライド マテリアルズ インコーポレイテッド Fault signature with a scope for fault diagnosis
WO2011039823A1 (en) * 2009-10-02 2011-04-07 株式会社日立製作所 Plant diagnostic equipment
JP2012164109A (en) * 2011-02-07 2012-08-30 Hitachi Ltd Sensing device
JP2015088154A (en) * 2014-02-10 2015-05-07 株式会社日立パワーソリューションズ Health management system and method
WO2017164095A1 (en) * 2016-03-23 2017-09-28 日本電気株式会社 Factor analysis device, factor analysis method, and storage medium on which program is stored

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09189579A (en) * 1996-01-11 1997-07-22 Toshiba Corp Monitoring data acquisition apparatus
JP2007148890A (en) * 2005-11-29 2007-06-14 Hitachi Ltd Instrument diagnosis device
JP2010501091A (en) * 2006-05-07 2010-01-14 アプライド マテリアルズ インコーポレイテッド Fault signature with a scope for fault diagnosis
WO2011039823A1 (en) * 2009-10-02 2011-04-07 株式会社日立製作所 Plant diagnostic equipment
JP2012164109A (en) * 2011-02-07 2012-08-30 Hitachi Ltd Sensing device
JP2015088154A (en) * 2014-02-10 2015-05-07 株式会社日立パワーソリューションズ Health management system and method
WO2017164095A1 (en) * 2016-03-23 2017-09-28 日本電気株式会社 Factor analysis device, factor analysis method, and storage medium on which program is stored

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112257755A (en) * 2020-09-24 2021-01-22 北京航天测控技术有限公司 Method and device for analyzing operating state of spacecraft
CN112257755B (en) * 2020-09-24 2023-07-28 北京航天测控技术有限公司 Method and device for analyzing running state of spacecraft
TWI765430B (en) * 2020-11-24 2022-05-21 思維環境科技有限公司 Inspection mechanism optimization method and system for environmental sensing device
CN114169631A (en) * 2021-12-15 2022-03-11 中国石油大学胜利学院 Oil field power load management and control system based on data analysis
CN114169631B (en) * 2021-12-15 2022-10-25 山东石油化工学院 Oil field power load management and control system based on data analysis

Similar Documents

Publication Publication Date Title
TWI632443B (en) Apparatus for determining importance of abnormal data and method for determining importance of abnormal data
WO2020027207A1 (en) Abnormality detecting method, information processing device, and abnormality detecting system
US7966152B2 (en) System, method and algorithm for data-driven equipment performance monitoring
JP4207915B2 (en) Quality fluctuation display device, quality fluctuation display method, quality fluctuation display program, and recording medium recording the program
WO2018207350A1 (en) Time-series data processing device, time-series data processing system, and time-series data processing method
US20100258246A1 (en) Plasma Processing System
JP6141235B2 (en) How to detect anomalies in time series data
JP6856443B2 (en) Equipment abnormality diagnosis system
CN107710089B (en) Plant equipment diagnosis device and plant equipment diagnosis method
TWI662424B (en) Selection method of leading auxiliary parameters and method for pre-diagnosis of equipment maintenance by combining key parameters and leading auxiliary parameters
CN105793789A (en) Computer-implemented method and system for automatically monitoring and determining status of entire process segments in process unit
GB2515115A (en) Early Warning and Prevention System
KR20190060548A (en) Method of analyzing and visualizing the cause of process failure by deriving the defect occurrence index by variable sections
JP6312955B1 (en) Quality analysis apparatus and quality analysis method
JP6702297B2 (en) Abnormal state diagnosis method and abnormal state diagnosis device
WO2020166236A1 (en) Work efficiency evaluating method, work efficiency evaluating device, and program
JPWO2019049521A1 (en) Risk assessment device, risk assessment system, risk assessment method, and risk assessment program
JP5532782B2 (en) Traceability system and manufacturing process abnormality detection method
JP2011054804A (en) Method and system for management of semiconductor manufacturing device
JP6290777B2 (en) Data-related information processing apparatus and program
JP5948998B2 (en) Abnormality diagnosis device
US20220327908A1 (en) Systems and methods for analyzing alarms to address electrical system issues
JP6825753B1 (en) Blast furnace abnormality determination device, blast furnace abnormality determination method, and blast furnace operation method
KR101977214B1 (en) Outlier detecting method, device and system using the method
JP7026012B2 (en) Equipment status monitoring system and equipment status monitoring method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844720

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP