WO2020027179A1 - Aromatic amine resin having n-alkyl group, curable resin composition, and cured product thereof - Google Patents

Aromatic amine resin having n-alkyl group, curable resin composition, and cured product thereof Download PDF

Info

Publication number
WO2020027179A1
WO2020027179A1 PCT/JP2019/029965 JP2019029965W WO2020027179A1 WO 2020027179 A1 WO2020027179 A1 WO 2020027179A1 JP 2019029965 W JP2019029965 W JP 2019029965W WO 2020027179 A1 WO2020027179 A1 WO 2020027179A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
alkyl group
aromatic amine
formula
amine resin
Prior art date
Application number
PCT/JP2019/029965
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 遠島
政隆 中西
正人 鎗田
篤彦 長谷川
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2019570169A priority Critical patent/JP6755418B2/en
Priority to KR1020207031061A priority patent/KR20210036863A/en
Priority to CN201980028742.6A priority patent/CN112105673B/en
Publication of WO2020027179A1 publication Critical patent/WO2020027179A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G12/00Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08G12/02Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes
    • C08G12/04Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with acyclic or carbocyclic compounds
    • C08G12/06Amines
    • C08G12/08Amines aromatic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/60Preparation of compounds containing amino groups bound to a carbon skeleton by condensation or addition reactions, e.g. Mannich reaction, addition of ammonia or amines to alkenes or to alkynes or addition of compounds containing an active hydrogen atom to Schiff's bases, quinone imines, or aziranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/44Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring
    • C07C211/49Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton
    • C07C211/50Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to only one six-membered aromatic ring having at least two amino groups bound to the carbon skeleton with at least two amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms

Definitions

  • the present invention relates to an aromatic amine resin having an N-alkyl group, a curable resin composition, and a cured product thereof.
  • the present invention relates to a sealing material for a semiconductor device, a sealing material for a liquid crystal display device, and a sealing material for an organic EL device. It is suitably used for electric and electronic parts such as materials, printed wiring boards, build-up laminates, and composite materials for lightweight and high-strength structural materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.
  • the data communication of various devices will have even larger capacity and higher speed communication.
  • the need for a low dielectric loss tangent material is increasing more and more, and a dielectric loss tangent of 0.005 or less at least at 1 GHz is required, and a material that can achieve the above heat resistance and dielectric properties (dielectric loss tangent) is required. .
  • Patent Document 1 uses a phenol resin substituted with a propenyl group, but has insufficient hygroscopicity and electrical properties.
  • Patent Document 2 a phenol resin substituted with an allyl group is used, but the reactivity is poor, Claisen rearrangement occurs simultaneously in the curing process, and a hydroxyl group is generated, so that electrical characteristics are not satisfactory.
  • the present invention has been made in view of such circumstances, and has as its object to provide a compound exhibiting excellent heat resistance and electrical properties, and a curable resin composition thereof.
  • the present inventors have conducted intensive studies to solve the above problems, and as a result, have found that an aromatic amine resin having an N-alkyl group and a cured product of the curable resin composition have excellent electrical properties, and completed the present invention. It led to.
  • a plurality of R's each independently represent hydrogen or a hydrocarbon group having 1 to 15 carbon atoms, provided that all R's are hydrogen. each independently represent a hydrogen atom, a hydrocarbon group of 1 to 15 carbon atoms, Y is .l 1, l 2 and m representing a hydrocarbon group having 2 to 30 carbon atoms is an integer of 1 or more, l 1 + M ⁇ 5, l 2 + m ⁇ 4, and n represents 1 ⁇ n ⁇ 15.) [2]
  • N is an average value and represents 1 ⁇ n ⁇ 15.
  • a curable resin composition comprising the aromatic amine resin having an N-alkyl group according to any one of the above items [4] to [7], wherein [9] A curable resin composition comprising the aromatic amine resin having an N-alkyl group according to any one of the above items [1] to [8] and a maleimide resin. [10] The curable resin composition according to the above item [9], wherein the compounding equivalent ratio of the compounding equivalent ⁇ of the aromatic amine resin having an N-alkyl group to the compounding equivalent ⁇ of the maleimide resin is 0.9 ⁇ ⁇ / ⁇ ⁇ 2.5. object. [11] A cured product obtained by curing the curable resin composition according to [9] or [10].
  • the curable resin composition of the present invention has excellent curability, and the cured product has excellent electrical properties and heat resistance. Therefore, insulating materials for electric and electronic components (high-reliability semiconductor sealing materials, etc.) and laminated boards (printed wiring boards, ball grid array (BGA) substrates, build-up substrates, etc.), liquid crystal sealing materials, organic EL sealing materials It can be used for adhesives (conductive adhesives and the like) and various composite materials including carbon fiber reinforced plastic (CFRP), paints and the like.
  • CFRP carbon fiber reinforced plastic
  • the present invention relates to an aromatic amine resin having an N-alkyl group represented by the following formula (1).
  • a plurality of R's each independently represent hydrogen or a hydrocarbon group having 1 to 15 carbon atoms, provided that all R's are hydrogen. each independently represent a hydrogen atom, a hydrocarbon group of 1 to 15 carbon atoms, Y is .l 1, l 2 and m representing a hydrocarbon group having 2 to 30 carbon atoms is an integer of 1 or more, l 1 + M ⁇ 5, l 2 + m ⁇ 4, and n represents 1 ⁇ n ⁇ 15.
  • Y is a hydrocarbon group having 2 to 30 carbon atoms
  • Y is preferably a hydrocarbon group having 2 to 30 carbon atoms, and more preferably a hydrocarbon group having 6 to 18 carbon atoms. Further, Y preferably further has one or more aromatic groups from the viewpoint of improving flame retardancy, electric characteristics, and water absorption characteristics.
  • Y is exemplified by the following formula (2), but is not limited thereto.
  • GPC analysis is measured under the following conditions.
  • Manufacturer Waters Column: Guard column SHOdex GPC KF-601 (2), KF-602, KF-602.5, KF-603 Flow rate: 1.23 ml / min. Column temperature: 25 ° C Solvent used: THF (tetrahydrofuran) Detector: RI (differential refraction detector)
  • the amine equivalent is 115 g / eq. 400 g / eq. Less than 120 g / eq. 250 g / eq. More preferably, it is less than.
  • the amine equivalent is 115 g / eq. With the above, the concentration of the polar group in the molecule is reduced, so that the electric characteristics are improved. In addition, if it is 400 or less, the curability becomes good.
  • the softening point is preferably 30 ° C. or more and less than 120 ° C., and more preferably 40 ° C. or more and less than 100 ° C.
  • the softening point is 30 ° C. or higher, the heat resistance is good, and when the softening point is 120 ° C. or lower, the hand rigging property during mixing and the like is good.
  • the ICI viscosity (150 ° C.) is preferably less than 4 Pa ⁇ s, more preferably less than 3 Pa ⁇ s. If the ICI viscosity (150 ° C.) is less than 4 Pa ⁇ s, the handleability during mixing and the like is good.
  • Y is a hydrocarbon group having 1 carbon atom
  • a preferred upper limit is less than 80 area%, more preferably less than 60 area%, and particularly preferably less than 50 area%.
  • solvent solubility is improved.
  • the crosslinked structure of the cured product becomes more rigid, and molecular motion is suppressed, so that heat resistance and electrical properties are improved, and chemical resistance is improved by increasing the number of crosslink points. If it is less than 80% by area, the handling property does not decrease.
  • the lower limit of B / A is preferably 0.3 or more, more preferably 0.5 or more, and particularly preferably 1 or more.
  • the upper limit of B / A is preferably less than 10, more preferably less than 5, and particularly preferably less than 3.
  • the lower limit of the amine equivalent is 116 g / eq. It is preferably at least 118 g / eq. More preferably, the above is true.
  • the upper limit of the amine equivalent is 125 g / eq. Is preferably less than 120 g / eq. Is less than. When it is in the above range, a certain reactivity is exhibited, and desired characteristics such as high heat resistance and good electrical characteristics can be obtained.
  • N is an average value and represents 1 ⁇ n ⁇ 15.
  • the aromatic amine resin having an N-alkyl group of the present invention has no polar group remaining after the reaction with the maleimide resin.
  • the three-dimensional crosslinked structure generated by the reaction between the maleimide group and the amino group is rigid, it exhibits excellent heat resistance and electrical properties.
  • the aromatic amine compound having an N-alkyl group of the present invention is an aniline compound represented by the following formula (5), and any carbonyl compound, any halogen compound, any olefin compound, or any alcohol.
  • a compound having a hydrophilic hydroxyl group is used as a raw material.
  • aniline-based compound represented by the formula (5) examples include aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N-isopropylaniline, N-butylaniline, Nt-butylaniline, N-pentylaniline, N-hexylaniline, N-heptylaniline, N-octylaniline, N-nonylaniline, N-decylaniline, N-methyl-o-toluidine, N-methyl-m-toluidine, N-methyl- Examples include, but are not limited to, p-toluidine, N-methyl-o-anisidine, N-methyl-m-anisidine, N-methyl-p-anisidine.
  • N-methylaniline, N-ethylaniline, N-propylaniline, N-isopropylaniline, N-butylaniline, and Nt-butylaniline are preferable, and N-methylaniline is more preferable.
  • N-ethylaniline, N-propylaniline and N-isopropylaniline are preferable, and N-methylaniline is more preferable.
  • N-ethylaniline, N-propylaniline and N-isopropylaniline more preferably N-methylaniline and N-ethylaniline.
  • Any carbonyl compound is represented by the following formula (6).
  • a plurality of R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, Represents a fluoroaryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, or an arylalkenyl group having 8 to 40 carbon atoms. Indicate that they may combine to form a ring structure.
  • Examples of the carbonyl compound represented by the formula (6) include formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chlorbenzaldehyde, bromobenzaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine Aldehydes such as aldehyde, pimeraldehyde, sebacinaldehyde, acrolein, crotonaldehyde, salicylaldehyde, phthalaldehyde, hydroxybenzaldehyde, furfural, tolualdehyde, ⁇ -naphthaldehyde, ⁇ -naphthaldehyde, acetone, methyl ethyl ketone, diethyl ketone, benzyl , Ace
  • formaldehyde acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone, acetophenone, cyclohexanone, cyclopentanone, and benzophenone are preferable in terms of heat resistance, and glutaraldehyde, glyoxal, and formaldehyde are more preferable, and formaldehyde is more preferable.
  • any known compounds may be used.
  • a compound containing a structure represented by the following formula (7) in a molecule is exemplified.
  • N represents a natural number of 1 or more.
  • halogen compound capable of forming the structure of the above formula (7) examples include THER-xylylene difluoride, m-xylylene difluoride, p-xylylene difluoride, 4%xylylene dichloride, m-xylylene dichloride , P-xylylene dichloride, schreib-xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, THER-xylylene diiodide, m-xylylene diiodide, p-xylylene diiodide, 4,4 ' -Bisfluoromethylenebiphenyl, 4,4'-bischloromethylenebiphenyl, 4,4'-bisbromomethylenebiphenyl, 4,4'-bisiodomethylenebiphenyl, 2,4-bisfluoromethylenebiphenyl, 2,4-bis Chloromethylenebiphen
  • N is preferably 1 to 8, more preferably 1 to 5. More preferably, it is 1 to 3. As the number of N increases, it becomes more difficult to achieve both heat resistance and dielectric properties, and curability also decreases.
  • any known olefin compound may be used.
  • a compound containing a structure represented by the following formula (8) in a molecule is exemplified.
  • any known compound may be used.
  • a xylene formalin resin such as Nicanol Y-50, Nikanol Y-100, Nikanol Y-1000, Nikanol LLL, Nikanol LL, Nikanol L, Nikanol H, Nikanol G, Nikanol H-80 (all manufactured by Fudoh Co., Ltd.)
  • o-xylylene glycol, m-xylylene glycol and p-xylene glycol those containing a structure represented by the following formula (9) in the molecule can be mentioned.
  • the reaction with an aniline compound having an N-alkyl group represented by the above formula (5) and any carbonyl compound or any halogen compound or any olefin compound, or any compound having an alcoholic hydroxyl group is known. Can be done in a way.
  • the amount of any carbonyl compound, any halogen compound, any olefin compound, or any compound having an alcoholic hydroxyl group to be used is generally 0.05 to 1.0 mol per 1 mol of the aniline compound used. , Preferably 0.1 to 1.0 mol. More preferably, it is 0.1 to 0.9 mol. If the charged amount of an arbitrary halogen compound, an arbitrary olefin compound, or an arbitrary compound having an alcoholic hydroxyl group is small, the molecular weight of a target condensate is not sufficiently increased.
  • an acidic catalyst such as hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, and activated clay may be used, if necessary. These may be used alone or in combination of two or more.
  • the amount of the catalyst to be used is generally 0.1 to 2.0 mol, preferably 0.2 to 1.5 mol, per 1 mol of aniline used. If the amount is too large, the amount of the base necessary for the neutralization step increases, and industrial waste may increase. If the amount is too small, the progress of the reaction may slow down.
  • an organic solvent such as toluene or xylene may be used as necessary, in addition to water, or may be used without a solvent.
  • the carbonyl compound or an arbitrary carbonyl compound is added at 20 to 200 ° C., preferably 30 to 150 ° C.
  • An optional halogen compound is added over 0.1 to 10 hours, preferably 0.5 to 5 hours, and the temperature is raised to 40 to 300 ° C., preferably 40 to 250 ° C. for 1 to 30 hours, preferably 2 to 30 hours. Perform the reaction for 2020 hours.
  • the acid catalyst is neutralized with an aqueous alkali solution, and a water-insoluble organic solvent is added to the oil layer, and washing with water is repeated until the wastewater becomes neutral.
  • the curable resin composition of the present invention contains a maleimide resin.
  • a maleimide resin a conventionally known maleimide resin can be used.
  • Specific examples of the maleimide resin include 4,4'-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2'-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4'-diphenylether bismaleimide, 4,4'-diphenylsulfonebismaleimide , 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and the like.
  • polyphenylmethane maleimide and a maleimide resin having a molecular weight distribution such as a maleimide resin described in JP-A-2009-001783 and JP-A-01-294662 are preferable. These may be used alone or in combination of two or more.
  • the blending amount of the maleimide resin is preferably 5 times or less, more preferably 2 times or less in terms of mass ratio.
  • Maleimide resins described in JP-A-2009-001783 and JP-A-01-294662 are particularly preferable because of their excellent low moisture absorption, flame retardancy and dielectric properties.
  • the lower limit of the compounding equivalent ratio ⁇ / ⁇ between the compounding equivalent ⁇ of the aromatic amine resin having an N-alkyl group and the compounding equivalent ⁇ of the maleimide resin is preferably 0.9 or more, more preferably 1.1 or more. Yes, particularly preferably 1.2 or more, and most preferably 1.4 or more.
  • the upper limit of the compounding equivalent ratio ⁇ / ⁇ is preferably 2.5 or less, more preferably 2.2 or less, and particularly preferably 2.0 or less.
  • anionic polymerization between the maleimides occurs simultaneously, so that if the blending equivalent ratio ⁇ / ⁇ is 3.0 or less, surplus amine that cannot participate in the polymerization remains. Without this, the dielectric properties, heat resistance and the like are improved.
  • a radical polymerization initiator can be used for reacting a maleimide group.
  • the radical polymerization initiator that can be used include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, and 1,3-bis- (t-butylperoxy).
  • Dialkyl peroxides such as isopropyl) -benzene, peroxyketals such as t-butylperoxybenzoate and 1,1-di-t-butylperoxycyclohexane, ⁇ -cumylperoxy neodecanoate, t-butyl Peroxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t- Butyl peroxy-2-ethylhexanoe And alkyl peresters such as t-amyl peroxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-amyl peroxybenzoate, Peroxy such as -2-ethylhexylperoxydicarbonate
  • Ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, peroxycarbonates, and the like are preferable, and dialkyl peroxides are more preferable.
  • the amount of the radical polymerization initiator to be added is preferably from 0.01 to 5 parts by mass, particularly preferably from 0.01 to 3 parts by mass, per 100 parts by mass of the curable resin composition. If the amount of the radical polymerization initiator used is large, the molecular weight does not sufficiently elongate during the polymerization reaction.
  • the curable resin composition of the present invention may contain an epoxy resin.
  • the epoxy resin any of conventionally known epoxy resins can be used. Specific examples thereof include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) and phenols (phenol, alkyl-substituted). Phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc.
  • aldehydes formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde) Phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.
  • phenols with various diene compounds dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.
  • Polycondensates with ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzo
  • an epoxy resin obtained by dehydrochlorination with epichlorohydrin has low hygroscopicity, flame retardancy, It is particularly preferable as an epoxy resin because of its excellent dielectric properties.
  • the curable resin composition of the present invention may contain a curing agent other than the aromatic amine compound having an N-alkyl group.
  • a curing agent other than the aromatic amine compound having an N-alkyl group.
  • acid anhydride compounds, amide compounds, phenol compounds, active ester compounds and the like can be mentioned.
  • Specific examples of the curing agent that can be used in combination are amide compounds such as polyamide resin synthesized from dicyandiamide, a dimer of linolenic acid and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and maleic anhydride.
  • Acid anhydride compounds such as acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride; bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.
  • phenols phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene
  • alkyl-substituted dihydroxybenzene Alkyl-substituted dihydroxybenzene, dihydroxynaphthale Etc.
  • aldehydes formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.
  • diene compounds dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetra
  • the amount used is preferably 0.6 to 1.1 equivalents to 1 equivalent of the epoxy group of the epoxy resin. If the epoxy group exceeds 1.1 equivalents, or if the epoxy group is less than 0.6 equivalents, the curing agent will be left behind, and curing may be incomplete and good cured physical properties may not be obtained. However, this does not apply when the epoxy resin and the curable special resin are contained.
  • the amount is the amount of the curing agent for the remaining epoxy groups after subtracting the amount of epoxy consumed by the special resin. Is required.
  • the curable resin composition used in the present invention may contain a curing accelerator.
  • the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza- Tertiary amines such as bicyclo (5,4,0) undecene-7; phosphines such as triphenylphosphine; and metal compounds such as tin octylate.
  • the curing accelerator is used in an amount of 0.1 to 10.0 parts by weight based on 100 parts by weight of the epoxy resin as required.
  • the curable resin composition used in the present invention may contain additives such as a flame retardant and a filler, if necessary, as long as the properties such as dielectric properties and heat resistance of the cured product are not deteriorated.
  • the filler that can be blended is not particularly limited, but as the inorganic filler, fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, barium sulfate, talc, clay, magnesium oxide, aluminum oxide, beryllium oxide, oxide Examples include iron, titanium oxide, aluminum nitride, silicon nitride, boron nitride, mica, glass, and quartz. It is also preferable to use a metal hydroxide such as magnesium hydroxide or aluminum hydroxide to further impart a flame retardant effect. Also, two or more kinds may be used in combination. Among these inorganic fillers, silicas such as fused silica and crystalline silica are preferable because of their low cost and good electrical reliability.
  • the amount of the inorganic filler used in the total amount is usually 10% by weight to 95% by weight, preferably 10% by weight to 80% by weight, more preferably 10% by weight to 75% by weight. % Range.
  • the content is 10% by weight or more, the effect of flame retardancy becomes good, and the elastic modulus also improves.
  • the content is 95% by weight or less, a uniform molded body can be obtained without the filler settling in the varnish.
  • the shape, particle size and the like of the inorganic filler are not particularly limited, but are usually from 0.01 to 50 ⁇ m, preferably from 0.1 to 20 ⁇ m.
  • the curable resin composition used in the present invention may contain a coupling agent for enhancing the adhesiveness between the glass cloth or the inorganic filler and the resin component.
  • a coupling agent for enhancing the adhesiveness between the glass cloth or the inorganic filler and the resin component.
  • the coupling agent any of conventionally known coupling agents can be used.
  • Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more.
  • the method of adding the coupling agent may be such that after treating the surface of the inorganic filler with the coupling agent in advance, the inorganic filler may be mixed with the resin, or the inorganic filler may be mixed with the resin after mixing the coupling agent. .
  • the curable resin composition of the present invention may contain a cyanate ester resin.
  • a cyanate ester compound that can be added to the curable resin composition of the present invention a conventionally known cyanate ester compound can be used.
  • Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes.
  • Cyanate ester compounds obtained by reacting a product with a cyanogen halide are exemplified, but not limited thereto. These may be used alone or in combination of two or more.
  • phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
  • aldehydes examples include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, and the like.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
  • cyanate ester compound examples include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2,2′-bis (4-cyanatophenyl) propane, and bis (4-cyanatophenyl) Methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2′-bis (3,5-dimethyl-4-cyanatophenyl) propane, 2,2′-bis (4-cyanatophenyl) ) Ethane, 2,2'-bis (4-cyanatophenyl) hexafluoropropane, bis (4-cyanatophenyl) sulfone, bis (4-cyanatophenyl) thioether, phenol novolak cyanate, phenol dicyclopentadiene Examples include those obtained by converting a hydroxyl group of a co-condensate to a cyanate group.
  • a cyanate ester compound whose synthesis method is described in JP-A-2005-264154 is particularly preferable as a cyanate ester compound because of its low hygroscopicity, flame retardancy and excellent dielectric properties.
  • the curable resin composition of the present invention contains a cyanate resin, in order to form a sym-triazine ring by trimerizing a cyanate group as needed, zinc naphthenate, cobalt naphthenate, copper naphthenate, A catalyst such as lead naphthenate, zinc octylate, tin octylate, lead acetylacetonate, dibutyltin maleate and the like can be contained.
  • the catalyst is used in an amount of usually 0.0001 to 0.10 parts by mass, preferably 0.00015 to 0.0015 parts by mass, based on 100 parts by mass of the total mass of the thermosetting resin composition.
  • the curable resin composition of the present invention may contain known additives as necessary.
  • additives that can be used include polybutadiene and modified products thereof, modified acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, and silane coupling agents.
  • Coloring agents such as a surface treatment agent for a material, a release agent, carbon black, phthalocyanine blue, and phthalocyanine green are exemplified.
  • the amount of these additives is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less, based on 100 parts by mass of the curable resin composition.
  • the curable resin composition of the present invention may further contain an organic solvent.
  • the solvent used include amide solvents such as ⁇ -butyrolactones, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone.
  • Sulfones diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, ether solvents such as propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone Solvents, and aromatic solvents such as toluene and xylene.
  • the solvent is used in a range where the solid content of the obtained varnish excluding the solvent is usually 10 to 80% by weight, preferably 20 to 70% by weight.
  • a prepreg or a resin sheet can be molded using the obtained varnish.
  • the prepreg is obtained by impregnating the varnish into a fiber base material.
  • a prepreg excellent in heat resistance, low expansion property and flame retardancy can be obtained.
  • the fiber base include glass fiber base such as glass woven cloth, glass nonwoven cloth, and glass paper; woven cloth and nonwoven cloth made of synthetic fibers such as paper, aramid, polyester, aromatic polyester, and fluororesin; and metal. Woven fabrics, nonwoven fabrics, mats, and the like made of fibers, carbon fibers, mineral fibers, and the like are included. These substrates may be used alone or as a mixture. Of these, glass fiber substrates are preferred. Thereby, rigidity and dimensional stability of the prepreg can be improved.
  • the glass fiber substrate preferably contains at least one selected from the group consisting of T glass, S glass, E glass, NE glass, and quartz glass.
  • the method of impregnating the curable resin composition of the present invention into the fiber base material includes, for example, a method of dipping the base material in a resin varnish, a method of applying with a variety of coaters, and a method of spraying with a spray.
  • the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition to the base material can be improved.
  • ordinary impregnation coating equipment can be used.
  • the curable resin composition of the present invention as it is, or in the form of a varnish dissolved or dispersed in a solvent is impregnated into a substrate such as a glass cloth, and then usually dried at 80 to 200 ° C. in a drying furnace or the like.
  • the temperature is not lower than the temperature at which the solvent can be volatilized), preferably at a temperature of 150 to 200 ° C. for 1 to 30 minutes, preferably 1 to 15 minutes to obtain a prepreg.
  • a method of pressing a resin sheet described below against a glass cloth, transferring the resin sheet, and obtaining a prepreg is also applicable.
  • the resin sheet using the varnish has a predetermined thickness after drying the varnish on a planar support by various coating methods such as a gravure coating method known per se, screen printing, a metal mask method, and a spin coating method. For example, it is obtained by applying the coating so as to have a thickness of 5 to 100 ⁇ m and then drying it.
  • the method of applying the coating depends on the type, shape, size, thickness of the coating, heat resistance of the support and the like. It is appropriately selected.
  • planar support examples include various high-grade materials such as polyamide, polyamideimide, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyetherketone, polyetherimide, polyetheretherketone, polyketone, polyethylene, polypropylene, and Teflon (registered trademark).
  • examples include a film made of a molecule and / or a copolymer thereof, and a metal foil such as a copper foil. After application, the sheet is dried to obtain a sheet-shaped composition (the sheet of the present invention), but the sheet may be further heated to form a sheet-shaped cured product. Further, the solvent may be dried and cured by a single heating.
  • the aromatic amine resin composition having an N-alkyl group of the present invention is applied to both sides or one side of the support by the above-mentioned method and heated to form a layer of the cured product of the present invention on both sides or one side of the support. Can be formed.
  • the resin sheet of the present invention can be used as an adhesive sheet by peeling it off from the support, and can be brought into contact with an adherend, applied with pressure and heat as needed, and then adhered together with curing.
  • the laminate is formed by heating and pressing the prepreg and / or the resin sheet. Thereby, a printed wiring board excellent in heat resistance, low expansion property and flame retardancy can be obtained.
  • a metal foil is laminated on both upper and lower surfaces or one surface.
  • two or more prepregs and / or resin sheets can be laminated.
  • a metal foil or a film and / or a resin sheet are laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg and / or resin sheet.
  • a printed wiring board can be obtained by subjecting a prepreg and / or a resin sheet and a metal foil to be laminated to each other with heat and pressure.
  • the heating temperature is not particularly limited, but is preferably from 120 to 220 ° C, particularly preferably from 150 to 200 ° C.
  • the pressure for pressurizing is not particularly limited, but is preferably 1.5 to 5 MPa, particularly preferably 2 to 4 MPa. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature tank or the like.
  • the printed wiring board uses the laminated board as an inner circuit board. Circuits are formed on one or both sides of the laminate. In some cases, through holes may be formed by drilling or laser processing, and electrical connection between both surfaces may be made by plating or the like.
  • the resin sheet or the prepreg is superimposed on the interior circuit board and heated and pressed to obtain a multilayer printed wiring board.
  • the insulating layer side of the resin sheet and the inner layer circuit board are combined, and they are vacuum-heat-pressed using a vacuum-pressing type laminator device or the like, and then the insulating layer is heated and cured by a hot-air drying device or the like.
  • the conditions for the heat-press molding are not particularly limited.
  • the molding can be performed at a temperature of 60 to 160 ° C. and a pressure of 0.2 to 3 MPa.
  • the conditions for the heat curing are not particularly limited.
  • the heat curing can be performed at a temperature of 140 to 240 ° C.
  • the prepreg can be obtained by superimposing the prepreg on an inner layer circuit board and subjecting the prepreg to heat and pressure molding using a flat plate press or the like.
  • the conditions for the heat-press molding are not particularly limited.
  • the molding can be performed at a temperature of 140 to 240 ° C. and a pressure of 1 to 4 MPa.
  • the insulating layer is cured by heating at the same time as the heat and pressure molding.
  • the method of manufacturing a multilayer printed wiring board includes a step of continuously laminating the resin sheet or the prepreg on the surface of the inner circuit board on which the inner circuit pattern is formed, and a method of semi-additively forming the conductor circuit layer. Forming step by the build-up method.
  • Curing the insulating layer formed from the resin sheet or the prepreg may be in a semi-cured state in order to facilitate subsequent laser irradiation and removal of resin residue and improve desmear property.
  • the first insulating layer is partially cured (semi-cured) by heating at a temperature lower than a normal heating temperature, and one or more insulating layers are further formed on the insulating layer to form a semi-cured insulating layer.
  • the semi-curing temperature is preferably from 80 ° C to 200 ° C, more preferably from 100 ° C to 180 ° C.
  • an opening is formed in the insulating layer by irradiating a laser in the next step. Before that, the substrate needs to be peeled off. There is no particular problem whether the peeling of the base material is performed after the formation of the insulating layer, before the heat curing, or after the heat curing.
  • the inner circuit board used for obtaining the multilayer printed wiring board is preferably formed by forming a predetermined conductor circuit on both surfaces of a copper-clad laminate by etching or the like and subjecting the conductor circuit portion to blackening. Can be used.
  • Resin residues and the like after laser irradiation are preferably removed with an oxidizing agent such as permanganate and dichromate. Further, the surface of the smooth insulating layer can be roughened at the same time, and the adhesion of the conductive wiring circuit formed by the subsequent metal plating can be improved.
  • an outer layer circuit is formed.
  • the outer layer circuit is formed by connecting the insulating resin layers by metal plating and forming the outer layer circuit pattern by etching.
  • a multilayer printed wiring board can be obtained in the same manner as when a resin sheet or a prepreg is used.
  • a circuit may be formed by etching without peeling the metal foil to use it as a conductor circuit.
  • an ultra-thin copper foil of 1 to 5 ⁇ m or 12 to 18 ⁇ m
  • half-etching is performed to reduce the thickness of the copper foil to 1 to 5 ⁇ m by etching.
  • an insulating layer may be laminated and a circuit may be formed in the same manner as described above.
  • a solder resist is formed on the outermost layer after the circuit is formed.
  • the method of forming the solder resist is not particularly limited. For example, a method in which a dry film type solder resist is laminated (laminated) and formed by exposure and development, or a method in which a liquid resist is printed is formed by exposure and development. It is done by the method of doing.
  • a connection electrode portion is provided for mounting a semiconductor element.
  • the connection electrode portion can be appropriately covered with a metal film such as gold plating, nickel plating, and solder plating.
  • a multilayer printed wiring board can be manufactured by such a method.
  • a semiconductor element having solder bumps is mounted on the multilayer printed wiring board obtained above, and connection with the multilayer printed wiring board is made via the solder bumps. Then, a liquid sealing resin is filled between the multilayer printed wiring board and the semiconductor element to form a semiconductor device.
  • the solder bumps are preferably made of an alloy made of tin, lead, silver, copper, bismuth, or the like.
  • the method of connecting the semiconductor element and the multilayer printed wiring board is to use a flip chip bonder or the like to align the connection electrode portion on the substrate with the solder bump of the semiconductor element, and then use an IR reflow device, a hot plate, or the like.
  • solder bumps are heated to a melting point or higher using a heating device, and the multilayer printed wiring board and the solder bumps are connected by fusion bonding.
  • a layer of a metal having a relatively low melting point such as a solder paste, may be formed in advance on the connection electrode portion on the multilayer printed wiring board.
  • the connection reliability can be improved by applying a flux to the solder bumps and / or the surface layer of the connection electrode portion on the multilayer printed wiring board.
  • the board is used for motherboards, network boards, package boards, etc., and is used as a board. Particularly, it is useful as a package substrate as a thin-layer substrate for a single-sided sealing material.
  • semiconductor devices obtained from the composition include, for example, DIP (dual inline package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), and SOP. (Small outline package), TSOP (thin small outline package), TQFP (thin quad flat package) and the like.
  • Example 1 To a flask equipped with a thermometer, a condenser, and a stirrer, 150 g of toluene and 56.0 g of N-methylaniline were added and stirred. Next, 43.5 g of 4,4'-bischloromethylenebiphenyl was added over 1 hour and reacted at 65 ° C. for 2 hours. Next, 36.1 g of 35% hydrochloric acid was added dropwise at 80 ° C. or lower. After completion of the dropwise addition, the temperature was raised to 210 ° C. while azeotropic dehydration, and the reaction was performed at 210 ° C. for 15 hours.
  • Example 2 To a flask equipped with a thermometer, a condenser and a stirrer, 50 g of toluene and 171.5 g of N-methylaniline were added and stirred. Next, 50.2 g of 4,4'-bischloromethylenebiphenyl was added over 1 hour and reacted at 65 ° C. for 2 hours. Next, 41.7 g of 35% hydrochloric acid was added dropwise at 80 ° C. or lower. After completion of the dropwise addition, the temperature was raised to 210 ° C. while azeotropic dehydration, and the reaction was performed at 210 ° C. for 15 hours.
  • Example 3 200 g of water and 214 g of N-methylaniline were added to a flask equipped with a thermometer, a condenser, and a stirrer, followed by stirring. Then, 209 g of 35% hydrochloric acid was added dropwise at 40 ° C. or lower. Next, 108 g of a 37% aqueous formaldehyde solution was added dropwise at 40 ° C. or lower. After the completion of the dropwise addition, the reaction was carried out at 75 to 80 ° C. for 5 hours.
  • N-methylaniline novolak NMAN-1 as a black liquid resin (amine equivalent: 116 g / eq, composition ratio was GPC area).
  • N 1 component: 37%
  • n 2 component: 19%
  • n 3 component: 14%
  • n 4 or more high molecular weight components: 30%).
  • Example 5 In a flask equipped with a thermometer, a condenser and a stirrer, 50 g of toluene, 64.1 g of N-methylaniline, ⁇ , ⁇ , ⁇ ′, ⁇ ′-tetramethyl-1,3-benzenedimethanol and 20 g of activated clay were placed. In addition, the mixture was stirred. The internal temperature was raised to 160 ° C. while performing azeotropic dehydration, and the reaction was carried out at 160 ° C. for 24 hours.
  • an aromatic amine resin (a1) was obtained by distilling off excess aniline and toluene from the oil layer under reduced pressure by heating (200 ° C., 0.6 KPa) using a rotary evaporator.
  • the amount of diphenylamine in the aromatic amine resin (a1) measured by gas chromatography was 2.0%.
  • the obtained resin was again dropped by water in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa) instead of blowing steam.
  • 166 parts of an aromatic amine resin (A1) was obtained.
  • the obtained aromatic amine resin (A1) had a softening point of 56 ° C., a melt viscosity of 0.035 Pa ⁇ s, and diphenylamine of 0.1% or less. Based on JIS K-7236 Annex A (correction method for glycidylamine), when the obtained value is defined as amine equivalent, the amine equivalent of A1 is 195 g / eq. Met.
  • the reaction was carried out at the same temperature for 2 hours, 3 parts of p-toluenesulfonic acid was added, and condensed water and toluene, which azeotrope under reflux conditions, were cooled and separated. Was returned to the system, and a reaction was carried out for 20 hours while performing dehydration.
  • 120 parts of toluene was added, and water washing was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, and the mixture was heated to remove water from the system by azeotropic distillation.
  • the reaction solution was concentrated under reduced pressure to obtain a resin solution containing 70% of the maleimide resin (M1).
  • the diphenylamine content in the maleimide resin (M1) was 0.1% or less. M1 was heated under reduced pressure to remove the solvent, and the solid was taken out to obtain a solid maleimide resin (MIR).
  • MIR solid maleimide resin
  • the theoretical maleimide equivalent of MIR calculated from the amine equivalent of the amine resin (A1) used as a raw material is 275 g / eq. Met.
  • the physical properties of the cured product thus obtained were measured for the following items, and the results are shown in Table 1.
  • ⁇ Heat resistance test> Glass transition temperature: a temperature measured by a dynamic viscoelasticity tester when tan ⁇ is the maximum value.
  • ⁇ Dielectric constant test and dielectric loss tangent test> -A test was performed by a cavity resonator perturbation method using a 1 GHz cavity resonator manufactured by Kanto Electronics Application Development Co., Ltd. However, the test was performed with a sample size of 1.7 mm in width ⁇ 100 mm in length and a thickness of 1.7 mm.
  • the condensate of an aniline compound having an N-alkyl group and formaldehyde of the present invention can be used as an insulating material for electric and electronic parts (such as a highly reliable semiconductor sealing material) and a laminate (printed wiring board, BGA substrate, build It is useful for various composite materials including CFRP, adhesives (conductive adhesives and the like), paints and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

Provided is the provision of an aromatic amine resin compound having an N-alkyl group that presents exceptional heat resistance and electrical characteristics, and a curable resin composition thereof. An aromatic amine resin having an N-alkyl group represented by formula (1). (In formula (1), the plurality of R present each independently represent a hydrogen or a C1-15 hydrocarbon group; however, this excludes the instance in which all R are hydrogen. The plurality of X present each independently represent a hydrogen atom or a C1-15 hydrocarbon group. I1, I2, and m represent integers of 1 or higher and satisfy the relationships I1 + m ≤ 5 and I2 + m ≤ 4. n represents 1 ≤ n ≤ 15.)

Description

N-アルキル基を有する芳香族アミン樹脂、硬化性樹脂組成物及びその硬化物Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
 本発明は、N-アルキル基を有する芳香族アミン樹脂、硬化性樹脂組成物及びその硬化物に関するものであり、半導体素子用封止材、液晶表示素子用封止材、有機EL素子用封止材、プリント配線基板、ビルドアップ積層板等の電気・電子部品や炭素繊維強化プラスチック、ガラス繊維強化プラスチック等の軽量高強度構造材用複合材料に好適に使用される。 TECHNICAL FIELD The present invention relates to an aromatic amine resin having an N-alkyl group, a curable resin composition, and a cured product thereof. The present invention relates to a sealing material for a semiconductor device, a sealing material for a liquid crystal display device, and a sealing material for an organic EL device. It is suitably used for electric and electronic parts such as materials, printed wiring boards, build-up laminates, and composite materials for lightweight and high-strength structural materials such as carbon fiber reinforced plastics and glass fiber reinforced plastics.
 近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。特に、スマートフォンなどに使用されている半導体パッケージ(以下、PKGと表す。)の小型化、薄型化および高密度化に伴い、PKG基板の薄型化が求められているが、PKG基板が薄くなると、剛性が低下するため、PKGをマザーボード(PCB)に半田実装する際の加熱によって、大きな反りが発生するなど不具合が発生する。これを低減するために半田実装温度以上の高TgのPKG基板材料が求められている。 In recent years, the required characteristics of laminates on which electric and electronic components are mounted have been broadened and advanced due to the expansion of their application fields. In particular, with the miniaturization, thinning, and high density of semiconductor packages (hereinafter, referred to as PKG) used for smartphones and the like, thinning of the PKG substrate is required. Since the rigidity is reduced, a problem such as a large warpage occurs due to heating when the PKG is solder-mounted on a motherboard (PCB). In order to reduce this, a PKG substrate material having a high Tg higher than the solder mounting temperature is required.
 また、近年の大容量・高速通信化に伴い、情報通信機器で扱う電気信号の周波数は年々高くなる傾向にあるが、信号周波数が高くなるほど、電気信号が回路中で熱に変換されるため、伝送損失が増加し、信号を効率よく伝送することが難しくなる。これを低減するために誘電正接が低い基板材料も求められている。 In addition, with the recent increase in capacity and high-speed communication, the frequency of electric signals handled by information and communication equipment tends to increase year by year, but as the signal frequency increases, the electric signals are converted into heat in the circuit. Transmission loss increases, and it becomes difficult to transmit a signal efficiently. In order to reduce this, a substrate material having a low dielectric loss tangent is also required.
 特に、現在開発が加速している第5世代通信システム「5G」では、スマートフォンをはじめとした様々な機器のデータ通信において、さらなる大容量化と高速通信が進むことが予想されている。低誘電正接材料のニーズがますます高まってきており、少なくとも1GHzで0.005以下の誘電正接が求められており、上述の耐熱性、誘電特性(誘電正接)を達成できる材料が求められている。 Especially, in the fifth generation communication system “5G” whose development is currently accelerating, it is expected that the data communication of various devices such as smartphones will have even larger capacity and higher speed communication. The need for a low dielectric loss tangent material is increasing more and more, and a dielectric loss tangent of 0.005 or less at least at 1 GHz is required, and a material that can achieve the above heat resistance and dielectric properties (dielectric loss tangent) is required. .
 更に、自動車分野においては電子化が進み、エンジン駆動部付近に精密電子機器が配置されることもあるため、より高水準での耐熱・耐湿性が求められる。加えて、電車やエアコン等にはSiC半導体が使用され始めており、半導体素子の封止材には極めて高い耐熱性が要求されるため、従来のエポキシ樹脂封止材では対応できなくなっている。 Furthermore, in the field of automobiles, computerization is progressing, and precision electronic devices may be arranged near the engine drive unit, so that a higher level of heat and moisture resistance is required. In addition, SiC semiconductors have begun to be used in electric trains, air conditioners, and the like, and extremely high heat resistance is required for sealing materials for semiconductor elements, so that conventional epoxy resin sealing materials cannot be used.
 このような技術変遷を背景に、種々の官能基が検討されている。例えば、特許文献1は全てプロペニル基で置換されたフェノール樹脂を用いているが、吸湿性や電気特性が不十分である。また特許文献2では全てアリル基で置換されたフェノール樹脂を用いているが、反応性に乏しく、硬化過程においてクライゼン転位を併発し、水酸基が発生すため電気特性も満足できるものではない。 を Various functional groups are being studied against the background of this technological change. For example, Patent Document 1 uses a phenol resin substituted with a propenyl group, but has insufficient hygroscopicity and electrical properties. In addition, in Patent Document 2, a phenol resin substituted with an allyl group is used, but the reactivity is poor, Claisen rearrangement occurs simultaneously in the curing process, and a hydroxyl group is generated, so that electrical characteristics are not satisfactory.
 このように高い耐熱性と電気特性を両立できる材料や硬化系の開発は容易ではなく、今なお解決が望まれている課題の1つである。 材料 It is not easy to develop materials and hardening systems that can achieve both high heat resistance and electrical characteristics, and this is one of the issues that need to be solved.
特開平04-359911号公報JP-A-04-359911 国際公開2016/002704号WO 2016/002704
 本発明は、このような状況を鑑みてなされたものであり、優れた耐熱性と電気特性を示す化合物、及びその硬化性樹脂組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and has as its object to provide a compound exhibiting excellent heat resistance and electrical properties, and a curable resin composition thereof.
 本発明者等は上記課題を解決するため鋭意検討した結果、N-アルキル基を有する芳香族アミン樹脂、及びその硬化性樹脂組成物の硬化物が電気特性に優れることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that an aromatic amine resin having an N-alkyl group and a cured product of the curable resin composition have excellent electrical properties, and completed the present invention. It led to.
 すなわち本発明は、以下の[1]~[11]に関する。
[1]
 下記式(1)で表されるN-アルキル基を有する芳香族アミン樹脂。
That is, the present invention relates to the following [1] to [11].
[1]
An aromatic amine resin having an N-alkyl group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(1)中、複数存在するRはそれぞれ独立して水素、炭素数1~15の炭化水素基を表す。但し、Rが全て水素となる場合を除くものとする。複数存在するXはそれぞれ独立して水素原子、炭素数1~15の炭化水素基を表し、Yは炭素数2~30の炭化水素基を表す。l、lおよびmは1以上の整数を表し、l+m≦5、l+m≦4を満たす。nは1≦n≦15を表す。)
[2]
 前記式(1)において、Yが下記式(2)に記載の(a)~(d)のいずれか1つである前項[1]に記載のN-アルキル基を有する芳香族アミン樹脂。
(In the formula (1), a plurality of R's each independently represent hydrogen or a hydrocarbon group having 1 to 15 carbon atoms, provided that all R's are hydrogen. each independently represent a hydrogen atom, a hydrocarbon group of 1 to 15 carbon atoms, Y is .l 1, l 2 and m representing a hydrocarbon group having 2 to 30 carbon atoms is an integer of 1 or more, l 1 + M ≦ 5, l 2 + m ≦ 4, and n represents 1 ≦ n ≦ 15.)
[2]
In the formula (1), the aromatic amine resin having an N-alkyl group according to the above item [1], wherein Y is any one of (a) to (d) described in the following formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
[3]
 下記式(3)で表される前項[2]に記載のN-アルキル基を有する芳香族アミン樹脂。
[3]
An aromatic amine resin having an N-alkyl group according to the above item [2] represented by the following formula (3).
Figure JPOXMLDOC01-appb-C000007
 
Figure JPOXMLDOC01-appb-C000007
 
(nは平均値であり、1≦n≦15を表す。)
[4]
 前記式(1)において、Yがメチレン結合であり、ゲルパーミエーション分析でn=1で表される成分が5面積%以上50面積%未満である前項[1]に記載のN-アルキル基を有する芳香族アミン樹脂。
[5]
 前記式(1)において、n=4以上で表される成分が5面積%以上80面積%未満である前項[4]に記載のN-アルキル基を有する芳香族アミン樹脂。
[6]
 下記式(4)で表される前項[4]又は[5]に記載のN-アルキル基を有する芳香族アミン樹脂。
(N is an average value and represents 1 ≦ n ≦ 15.)
[4]
In the above formula (1), the N-alkyl group according to the above [1], wherein Y is a methylene bond, and the component represented by n = 1 in gel permeation analysis is at least 5 area% and less than 50 area%. Aromatic amine resin having.
[5]
The aromatic amine resin having an N-alkyl group according to the above item [4], wherein in the formula (1), the component represented by n = 4 or more is 5 to less than 80 area%.
[6]
The aromatic amine resin having an N-alkyl group according to the above item [4] or [5], represented by the following formula (4):
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
(nは平均値であり、1≦n≦15を表す。)
[7]
 前記式(1)又は(4)において、ゲルパーミエーション分析でn=1で表される成分をA面積%、n=4以上で表される成分をB面積%としたとき、B/Aが0.1以上20未満である前項[4]乃至[6]のいずれか一項に記載のN-アルキル基を有する芳香族アミン樹脂。
[8]
 アミン当量が116g/eq.以上120g/eq.未満である前項[4]乃至[7]のいずれか一項に記載のN-アルキル基を有する芳香族アミン樹脂。
[9]
 前項[1]乃至[8]のいずれか一項に記載のN-アルキル基を有する芳香族アミン樹脂と、マレイミド樹脂を含有する硬化性樹脂組成物。
[10]
 N-アルキル基を有する芳香族アミン樹脂の配合当量αとマレイミド樹脂の配合当量βの配合当量比率が0.9≦α/β≦2.5である前項[9]に記載の硬化性樹脂組成物。
[11]
 前項[9]又は[10]に記載の硬化性樹脂組成物を硬化した硬化物。
(N is an average value and represents 1 ≦ n ≦ 15.)
[7]
In the above formula (1) or (4), when the component represented by n = 1 in the gel permeation analysis is A area% and the component represented by n = 4 or more is B area%, B / A is The aromatic amine resin having an N-alkyl group according to any one of the above items [4] to [6], which has a value of 0.1 or more and less than 20.
[8]
When the amine equivalent is 116 g / eq. 120 g / eq. The aromatic amine resin having an N-alkyl group according to any one of the above items [4] to [7], wherein
[9]
A curable resin composition comprising the aromatic amine resin having an N-alkyl group according to any one of the above items [1] to [8] and a maleimide resin.
[10]
The curable resin composition according to the above item [9], wherein the compounding equivalent ratio of the compounding equivalent α of the aromatic amine resin having an N-alkyl group to the compounding equivalent β of the maleimide resin is 0.9 ≦ α / β ≦ 2.5. object.
[11]
A cured product obtained by curing the curable resin composition according to [9] or [10].
 本発明の硬化性樹脂組成物は優れた硬化性を有し、その硬化物は電気特性、耐熱性に優れる。そのため、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、ボールグリッドアレイ(BGA)基板、ビルドアップ基板など)、液晶封止材、有機EL封止材、接着剤(導電性接着剤等)や炭素繊維強化プラスチック(CFRP)を始めとする各種複合材料、塗料等の用途に用いることができる。 硬化 The curable resin composition of the present invention has excellent curability, and the cured product has excellent electrical properties and heat resistance. Therefore, insulating materials for electric and electronic components (high-reliability semiconductor sealing materials, etc.) and laminated boards (printed wiring boards, ball grid array (BGA) substrates, build-up substrates, etc.), liquid crystal sealing materials, organic EL sealing materials It can be used for adhesives (conductive adhesives and the like) and various composite materials including carbon fiber reinforced plastic (CFRP), paints and the like.
 以下、本発明について詳細に説明する。
 本発明は、下記式(1)で表されるN-アルキル基を有する芳香族アミン樹脂に関する。
Hereinafter, the present invention will be described in detail.
The present invention relates to an aromatic amine resin having an N-alkyl group represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式(1)中、複数存在するRはそれぞれ独立して水素、炭素数1~15の炭化水素基を表す。但し、Rが全て水素となる場合を除くものとする。複数存在するXはそれぞれ独立して水素原子、炭素数1~15の炭化水素基を表し、Yは炭素数2~30の炭化水素基を表す。l、lおよびmは1以上の整数を表し、l+m≦5、l+m≦4を満たす。nは1≦n≦15を表す。) (In the formula (1), a plurality of R's each independently represent hydrogen or a hydrocarbon group having 1 to 15 carbon atoms, provided that all R's are hydrogen. each independently represent a hydrogen atom, a hydrocarbon group of 1 to 15 carbon atoms, Y is .l 1, l 2 and m representing a hydrocarbon group having 2 to 30 carbon atoms is an integer of 1 or more, l 1 + M ≦ 5, l 2 + m ≦ 4, and n represents 1 ≦ n ≦ 15.)
 以下、上記式(1)において、Yが炭素数2~30の炭化水素基であるとき(A)、Yが炭素数1の炭化水素基であるとき(B)について、それぞれ好ましい態様を説明する。 Hereinafter, in the above formula (1), preferred embodiments will be described for each of a case where Y is a hydrocarbon group having 2 to 30 carbon atoms (A) and a case where Y is a hydrocarbon group having 1 carbon atom (B). .
[A:Yが炭素数2~30の炭化水素基であるとき]
 上記式(1)において、Yは炭素数2~30の炭化水素基を表されるときが好ましく、さらに好ましくは炭素数6~18の炭化水素基である。また、難燃性や電気特性、吸水特性向上の観点からYは芳香族基を1つ以上有することがさらに好ましい。
 上記の場合、Yは下記式(2)で例示されるが、これらに限定されない。
[A: when Y is a hydrocarbon group having 2 to 30 carbon atoms]
In the above formula (1), Y is preferably a hydrocarbon group having 2 to 30 carbon atoms, and more preferably a hydrocarbon group having 6 to 18 carbon atoms. Further, Y preferably further has one or more aromatic groups from the viewpoint of improving flame retardancy, electric characteristics, and water absorption characteristics.
In the above case, Y is exemplified by the following formula (2), but is not limited thereto.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
(式(2)中、*は式(1)のN-アルキル基を有する芳香族アミンセグメントへの結合を表す。) (In the formula (2), * represents a bond to the aromatic amine segment having an N-alkyl group in the formula (1).)
 前記式(2)の中でも(b)、(d)の構造が好ましく、(b)の構造がさらに好ましい。 中 で も Of the formula (2), the structures of (b) and (d) are preferable, and the structure of (b) is more preferable.
 前記式(1)のYが前記式(2)で表されるとき、ゲルパーミエーション(GPC)分析で前記式(1)のn=1で表される成分の下限値は5面積%以上であることが好ましく、さらに好ましくは10面積%以上であり、特に好ましくは20面積%以上である。好ましい上限値は50面積%未満であり、さらに好ましくは45面積%未満であり、特に好ましくは40面積%未満である。n=1で表される成分が5面積%以上であると粘度が極端に高粘度とならずハンドリング性が良好であり、50面積%未満であると耐熱性の低下を抑制できる。 When Y in the above formula (1) is represented by the above formula (2), the lower limit of the component represented by n = 1 in the above formula (1) by gel permeation (GPC) analysis is 5% by area or more. Preferably, it is at least 10 area%, particularly preferably at least 20 area%. A preferred upper limit is less than 50 area%, more preferably less than 45 area%, and particularly preferably less than 40 area%. When the component represented by n = 1 is 5 area% or more, the viscosity does not become extremely high and the handleability is good, and when it is less than 50 area%, a decrease in heat resistance can be suppressed.
 本発明において、GPC分析は下記条件で測定する。
[GPCの各種条件]
メーカー:Waters
カラム:ガードカラム SHODEX GPC KF-601(2本)、KF-602、KF-602.5、KF-603
流速:1.23ml/min.
カラム温度:25℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
In the present invention, GPC analysis is measured under the following conditions.
[Various conditions of GPC]
Manufacturer: Waters
Column: Guard column SHOdex GPC KF-601 (2), KF-602, KF-602.5, KF-603
Flow rate: 1.23 ml / min.
Column temperature: 25 ° C
Solvent used: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
 前記式(1)のYが前記式(2)で表されるとき、アミン当量は115g/eq.以上400g/eq.未満であることが好ましく、120g/eq.以上250g/eq.未満であることが更に好ましい。アミン当量が115g/eq.以上であると、分子中の極性基濃度が低減されるため、電気特性が向上する。また、400以下であれば硬化性が良好となる。 {When Y in the above formula (1) is represented by the above formula (2), the amine equivalent is 115 g / eq. 400 g / eq. Less than 120 g / eq. 250 g / eq. More preferably, it is less than. When the amine equivalent is 115 g / eq. With the above, the concentration of the polar group in the molecule is reduced, so that the electric characteristics are improved. In addition, if it is 400 or less, the curability becomes good.
 前記式(1)のYが前記式(2)で表されるとき、軟化点は30℃以上120℃未満であることが好ましく、40℃以上100℃未満であることが更に好ましい。軟化点が30℃以上であれば耐熱性は良好であり、また軟化点120℃以下であれば、混合時等のハンドリグ性が良好となる。 YWhen Y in the formula (1) is represented by the formula (2), the softening point is preferably 30 ° C. or more and less than 120 ° C., and more preferably 40 ° C. or more and less than 100 ° C. When the softening point is 30 ° C. or higher, the heat resistance is good, and when the softening point is 120 ° C. or lower, the hand rigging property during mixing and the like is good.
 前記式(1)のYが前記式(2)で表されるとき、ICI粘度(150℃)は4Pa・s未満であることが好ましく、3Pa・s未満であることが更に好ましい。ICI粘度(150℃)が4Pa・s未満であれば、混合時等のハンドリング性は良好である。 YWhen Y in the formula (1) is represented by the formula (2), the ICI viscosity (150 ° C.) is preferably less than 4 Pa · s, more preferably less than 3 Pa · s. If the ICI viscosity (150 ° C.) is less than 4 Pa · s, the handleability during mixing and the like is good.
[B:Yが炭素数1の炭化水素基であるとき]
 本発明のN-アルキル基を有する芳香族アミン樹脂は、前記式(1)において、Yがメチレン結合であり、GPC分析でn=1で表される成分の下限値が5面積%以上であるときが好ましく、さらに好ましくは10面積%以上であり、特に好ましくは20面積%以上、最も好ましくは30面積%以上である。好ましい上限値は50面積%未満であり、さらに好ましくは40面積%未満である。n=1で表される成分が5面積%以上であると粘度が極端に高粘度とならずハンドリング性が向上し、50面積%未満であると耐熱性の低下を抑制できる。
 また、n=4以上で表される成分の下限値は、5面積%以上であることが好ましく、更に好ましくは10面積%以上であり、特に好ましくは30面積%以上である。好ましい上限値は80面積%未満であり、更に好ましくは60面積%未満であり、特に好ましくは50面積%未満である。n=4以上で表される成分が5面積%以上であると、溶剤溶解性が向上する。加えて、硬化物とした際の架橋構造がより剛直なものとなり、分子運動が抑制されるため耐熱性や電気特性が向上し、架橋点が増すことにより耐薬品性も向上する。80面積%未満であるとハンドリング性は低下しない。
[B: when Y is a hydrocarbon group having 1 carbon atom]
In the aromatic amine resin having an N-alkyl group of the present invention, in the formula (1), Y is a methylene bond, and the lower limit of the component represented by n = 1 in GPC analysis is 5 area% or more. It is preferably at least 10 area%, more preferably at least 20 area%, most preferably at least 30 area%. A preferred upper limit is less than 50 area%, and more preferably less than 40 area%. When the component represented by n = 1 is 5 area% or more, the viscosity does not become extremely high and the handling property is improved, and when it is less than 50 area%, a decrease in heat resistance can be suppressed.
Further, the lower limit of the component represented by n = 4 or more is preferably 5 area% or more, more preferably 10 area% or more, and particularly preferably 30 area% or more. A preferred upper limit is less than 80 area%, more preferably less than 60 area%, and particularly preferably less than 50 area%. When the component represented by n = 4 or more is 5 area% or more, solvent solubility is improved. In addition, the crosslinked structure of the cured product becomes more rigid, and molecular motion is suppressed, so that heat resistance and electrical properties are improved, and chemical resistance is improved by increasing the number of crosslink points. If it is less than 80% by area, the handling property does not decrease.
 前記式(1)のYがメチレン結合であるとき、上述のように低分子量成分、及び高分子量成分ともに分布を有するものであり、幅広い分子量分布を有する。したがって、ハンドリング性、溶剤溶解性、耐熱性、電気特性、耐薬品性およびそれらの特性バランスに優れるという効果を有する。
 そのため、前記式(1)において、GPC分析でn=1で表される成分をA面積%、n=4以上で表される成分のGPC面積%の合計値をB面積%としたとき、B/Aは通常0.1以上20未満である。B/Aの下限値は0.3以上であるときが好ましく、更に好ましくは0.5以上であり、特に好ましくは1以上である。B/Aの上限値は10未満であるときが好ましく、更に好ましくは5未満であり、特に好ましくは3未満である。
When Y in the above formula (1) is a methylene bond, as described above, both the low molecular weight component and the high molecular weight component have a distribution, and have a wide molecular weight distribution. Therefore, it has an effect of being excellent in handling properties, solvent solubility, heat resistance, electrical properties, chemical resistance and a balance of these properties.
Therefore, in the formula (1), when the component represented by n = 1 in the GPC analysis is A area%, and the total value of the GPC area% of the components represented by n = 4 or more is B area%, / A is usually 0.1 or more and less than 20. The lower limit of B / A is preferably 0.3 or more, more preferably 0.5 or more, and particularly preferably 1 or more. The upper limit of B / A is preferably less than 10, more preferably less than 5, and particularly preferably less than 3.
 前記式(1)のYがメチレン結合であるとき、アミン当量の下限値は116g/eq.以上であるときが好ましく、118g/eq.以上であるときがさらに好ましい。アミン当量の上限値は125g/eq.未満であるときが好ましく、さらに好ましくは120g/eq.未満である。上記範囲にあると一定の反応性を示し、高耐熱性と良好な電気特性を両立できるなどの所望の特性を得ることができる。 {When Y in the formula (1) is a methylene bond, the lower limit of the amine equivalent is 116 g / eq. It is preferably at least 118 g / eq. More preferably, the above is true. The upper limit of the amine equivalent is 125 g / eq. Is preferably less than 120 g / eq. Is less than. When it is in the above range, a certain reactivity is exhibited, and desired characteristics such as high heat resistance and good electrical characteristics can be obtained.
 前記式(1)のYがメチレン結合であるときの最も好ましい構造は、下記式(4)で表される。 最 も The most preferred structure when Y in the above formula (1) is a methylene bond is represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
(nは平均値であり、1≦n≦15を表す。) (N is an average value and represents 1 ≦ n ≦ 15.)
 本発明のN-アルキル基を有する芳香族アミン樹脂は、マレイミド樹脂との反応後に極性基が残存しない。加えて、マレイミド基とアミノ基の反応によって生じた三次元架橋構造が剛直なため、優れた耐熱性、電気特性を示す。 極性 The aromatic amine resin having an N-alkyl group of the present invention has no polar group remaining after the reaction with the maleimide resin. In addition, since the three-dimensional crosslinked structure generated by the reaction between the maleimide group and the amino group is rigid, it exhibits excellent heat resistance and electrical properties.
 次に、本発明のN-アルキル基を有する芳香族アミン樹脂の製造方法について説明する。
 まず、本発明のN-アルキル基を有する芳香族アミン化合物は下記式(5)で表されるアニリン系化合物、および、任意のカルボニル化合物、任意のハロゲン化合物、任意のオレフィン化合物、もしくは任意のアルコール性水酸基を有する化合物を原料として使用する。
Next, a method for producing an aromatic amine resin having an N-alkyl group of the present invention will be described.
First, the aromatic amine compound having an N-alkyl group of the present invention is an aniline compound represented by the following formula (5), and any carbonyl compound, any halogen compound, any olefin compound, or any alcohol. A compound having a hydrophilic hydroxyl group is used as a raw material.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
(式(5)中、R、X、l、mは式(1)と同様である。) (In the formula (5), R, X, l 2 , and m are the same as in the formula (1).)
 式(5)で表されるアニリン系化合物としては、例えば、アニリン、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N-イソプロピルアニリン、N-ブチルアニリン、N-t-ブチルアニリン、N-ペンチルアニリン、N-ヘキシルアニリン、N-ヘプチルアニリン、N-オクチルアニリン、N-ノニルアニリン、N-デシルアニリン、N-メチル-o-トルイジン、N-メチル-m-トルイジン、N-メチル-p-トルイジン、N-メチル-o-アニシジン、N-メチル-m-アニシジン、N-メチル-p-アニシジン等が挙げられるが、これに限定されない。これらは単独で用いても良く、二種以上併用しても良い。耐熱性と電気特性の観点から、N-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N-イソプロピルアニリン、N-ブチルアニリン、N-t-ブチルアニリンが好ましく、より好ましくはN-メチルアニリン、N-エチルアニリン、N-プロピルアニリン、N-イソプロピルアニリン、さらに好ましくは、N-メチルアニリン、N-エチルアニリンが挙げられる。 Examples of the aniline-based compound represented by the formula (5) include aniline, N-methylaniline, N-ethylaniline, N-propylaniline, N-isopropylaniline, N-butylaniline, Nt-butylaniline, N-pentylaniline, N-hexylaniline, N-heptylaniline, N-octylaniline, N-nonylaniline, N-decylaniline, N-methyl-o-toluidine, N-methyl-m-toluidine, N-methyl- Examples include, but are not limited to, p-toluidine, N-methyl-o-anisidine, N-methyl-m-anisidine, N-methyl-p-anisidine. These may be used alone or in combination of two or more. From the viewpoint of heat resistance and electrical properties, N-methylaniline, N-ethylaniline, N-propylaniline, N-isopropylaniline, N-butylaniline, and Nt-butylaniline are preferable, and N-methylaniline is more preferable. , N-ethylaniline, N-propylaniline and N-isopropylaniline, more preferably N-methylaniline and N-ethylaniline.
 任意のカルボニル化合物は下記式(6)で示される。 Any carbonyl compound is represented by the following formula (6).
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
(式(6)中、複数存在するRはそれぞれ独立して水素原子、炭素数1~10のアルキル基、炭素数1~10のフルオロアルキル基、炭素数6~20のアリール基、炭素数6~10のフルオロアリール基、炭素数2~10のアルケニル基、炭素数7~40のアリールアルキル基、炭素数7~40のアルキルアリール基又は炭素数8~40のアリールアルケニル基を表す。点線は結合し、環構造を形成しても良いことを示す。) (In the formula (6), a plurality of R 2 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 20 carbon atoms, Represents a fluoroaryl group having 6 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, an arylalkyl group having 7 to 40 carbon atoms, an alkylaryl group having 7 to 40 carbon atoms, or an arylalkenyl group having 8 to 40 carbon atoms. Indicate that they may combine to form a ring structure.)
 式(6)で表されるカルボニル化合物としては、ホルムアルデヒド、アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、バレルアルデヒド、カプロンアルデヒド、ベンズアルデヒド、クロルベンズアルデヒド、ブロムベンズアルデヒド、グリオキザール、マロンアルデヒド、スクシンアルデヒド、グルタルアルデヒド、アジピンアルデヒド、ピメリンアルデヒド、セバシンアルデヒド、アクロレイン、クロトンアルデヒド、サリチルアルデヒド、フタルアルデヒド、ヒドロキシベンズアルデヒド、フルフラール、トルアルデヒド、α-ナフトアルデヒド、β-ナフトアルデヒド等のアルデヒド類、アセトン、メチルエチルケトン、ジエチルケトン、ベンジル、アセチルアセトン、メチルイソプロピルケトン、メチルイソブチルケトン、アセトフェノン、エチルフェニルケトン、シクロヘキサノン、シクロペンタノン、ベンゾフェノン、フルオレノン、インダノン、3,3,5-トリメチルシクロヘキサノン、アンスラキノン、4-ヒドロキシアセトフェノン、アセナフテンキノン、キノン、ベンゾイルアセトン、アダマンタノン、ジアセチル等が挙げられる。カルボニル化合物は1種のみを使用しても、2種類以上を併用してもよい。 Examples of the carbonyl compound represented by the formula (6) include formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, valeraldehyde, capronaldehyde, benzaldehyde, chlorbenzaldehyde, bromobenzaldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde, adipine Aldehydes such as aldehyde, pimeraldehyde, sebacinaldehyde, acrolein, crotonaldehyde, salicylaldehyde, phthalaldehyde, hydroxybenzaldehyde, furfural, tolualdehyde, α-naphthaldehyde, β-naphthaldehyde, acetone, methyl ethyl ketone, diethyl ketone, benzyl , Acetylacetone, methyl isopropyl ketone, methyl isobutyl keto , Acetophenone, ethylphenylketone, cyclohexanone, cyclopentanone, benzophenone, fluorenone, indanone, 3,3,5-trimethylcyclohexanone, anthraquinone, 4-hydroxyacetophenone, acenaphthenequinone, quinone, benzoylacetone, adamantanone, diacetyl And the like. One type of carbonyl compound may be used alone, or two or more types may be used in combination.
 カルボニル化合物のうち、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、アセトン、メチルエチルケトン、アセトフェノン、シクロヘキサノン、シクロペンタノン、ベンゾフェノンが耐熱性の面で好ましく、グルタルアルデヒド、グリオキサール、ホルムアルデヒドがより好まく、さらに好ましくはホルムアルデヒドである。 Of the carbonyl compounds, formaldehyde, acetaldehyde, benzaldehyde, acetone, methyl ethyl ketone, acetophenone, cyclohexanone, cyclopentanone, and benzophenone are preferable in terms of heat resistance, and glutaraldehyde, glyoxal, and formaldehyde are more preferable, and formaldehyde is more preferable.
 任意のハロゲン化合物としては公知のものであれば如何なるものを用いても良い。好ましくは、下記式(7)で表される構造を分子中に含有するものが挙げられる。 As the arbitrary halogen compound, any known compounds may be used. Preferably, a compound containing a structure represented by the following formula (7) in a molecule is exemplified.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
(式(7)中、Nは1以上の自然数を表す。) (In the formula (7), N represents a natural number of 1 or more.)
 前記式(7)の構造を形成しうるハロゲン化合物としては、例えば、о-キシリレンジフルオライド、m-キシリレンジフルオライド、p-キシリレンジフルオライド、о-キシリレンジクロリド、m-キシリレンジクロリド、p-キシリレンジクロリド、о-キシリレンジブロミド、m-キシリレンジブロミド、p-キシリレンジブロミド、о-キシリレンジアイオダイド、m-キシリレンジアイオダイド、p-キシリレンジアイオダイド、4,4’-ビスフルオロメチレンビフェニル、4,4’-ビスクロロメチレンビフェニル、4,4’-ビスブロモメチレンビフェニル、4,4’-ビスヨードメチレンビフェニル、2,4-ビスフルオロメチレンビフェニル、2,4-ビスクロロメチレンビフェニル、2,4-ビスブロモメチレンビフェニル、2,4-ビスヨードメチレンビフェニル、2,2’-ビスフルオロメチレンビフェニル、2,2’-ビスクロロメチレンビフェニル、2,2’-ビスブロモメチレンビフェニル、2,2’-ビスヨードメチレンビフェニルが挙げられ、合成時の原料の反応性の観点から、クロライド系化合物、ブロマイド系化合物、アイオダイド系化合物が好ましく、より好ましくはクロライド系化合物、ブロマイド系化合物が挙げられる。 Examples of the halogen compound capable of forming the structure of the above formula (7) include о-xylylene difluoride, m-xylylene difluoride, p-xylylene difluoride, о-xylylene dichloride, m-xylylene dichloride , P-xylylene dichloride, о-xylylene dibromide, m-xylylene dibromide, p-xylylene dibromide, о-xylylene diiodide, m-xylylene diiodide, p-xylylene diiodide, 4,4 ' -Bisfluoromethylenebiphenyl, 4,4'-bischloromethylenebiphenyl, 4,4'-bisbromomethylenebiphenyl, 4,4'-bisiodomethylenebiphenyl, 2,4-bisfluoromethylenebiphenyl, 2,4-bis Chloromethylenebiphenyl, 2,4-bisbromomethylenebi Phenyl, 2,4-bisiodomethylenebiphenyl, 2,2′-bisfluoromethylenebiphenyl, 2,2′-bischloromethylenebiphenyl, 2,2′-bisbromomethylenebiphenyl, 2,2′-bisiodomethylenebiphenyl From the viewpoint of the reactivity of the raw materials during synthesis, chloride compounds, bromide compounds, and iodide compounds are preferable, and chloride compounds and bromide compounds are more preferable.
 式(7)中、Nとしては1~8が好ましく、1~5がより好ましい。更に好ましくは1~3である。Nの数が多くなるにつれて耐熱性と誘電特性の両立が困難となり、硬化性も低下する。 中 In the formula (7), N is preferably 1 to 8, more preferably 1 to 5. More preferably, it is 1 to 3. As the number of N increases, it becomes more difficult to achieve both heat resistance and dielectric properties, and curability also decreases.
 任意のオレフィン化合物としては公知のものであれば如何なるものを用いても良い。好ましくは、下記式(8)で表される構造を分子中に含有するものが挙げられる。 As the arbitrary olefin compound, any known olefin compound may be used. Preferably, a compound containing a structure represented by the following formula (8) in a molecule is exemplified.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 任意のアルコール性水酸基を有する化合物としては公知のものであれば如何なるものを用いても良い。好ましくは、ニカノールY-50、ニカノールY-100、ニカノールY-1000、ニカノールLLL、ニカノールLL、ニカノールL、ニカノールH、ニカノールG、ニカノールH-80(何れもフドー株式会社製)等のキシレンホルマリン樹脂やo-キシリレングリコール、m-キシリレングリコール、p-キシレングリコールのほかに、下記式(9)で表される構造を分子中に含有するものが挙げられる。 化合物 As the compound having an arbitrary alcoholic hydroxyl group, any known compound may be used. Preferably, a xylene formalin resin such as Nicanol Y-50, Nikanol Y-100, Nikanol Y-1000, Nikanol LLL, Nikanol LL, Nikanol L, Nikanol H, Nikanol G, Nikanol H-80 (all manufactured by Fudoh Co., Ltd.) Besides o-xylylene glycol, m-xylylene glycol and p-xylene glycol, those containing a structure represented by the following formula (9) in the molecule can be mentioned.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 前記式(5)で表されるN-アルキル基を有するアニリン系化合物、および任意のカルボニル化合物または任意のハロゲン化合物または任意のオレフィン化合物、もしくは任意のアルコール性水酸基を有する化合物との反応は公知の方法で行うことができる。任意のカルボニル化合物または任意のハロゲン化合物または任意のオレフィン化合物、もしくは任意のアルコール性水酸基を有する化合物の使用量は使用されるアニリン系化合物1モルに対して通常0.05~1.0モルであり、好ましくは0.1~1.0モルである。より好ましくは0.1~0.9モルである。任意のハロゲン化合物または任意のオレフィン化合物、もしくは任意のアルコール性水酸基を有する化合物の仕込み量が少ないと目的とする縮合物の分子量が十分伸びない。 The reaction with an aniline compound having an N-alkyl group represented by the above formula (5) and any carbonyl compound or any halogen compound or any olefin compound, or any compound having an alcoholic hydroxyl group is known. Can be done in a way. The amount of any carbonyl compound, any halogen compound, any olefin compound, or any compound having an alcoholic hydroxyl group to be used is generally 0.05 to 1.0 mol per 1 mol of the aniline compound used. , Preferably 0.1 to 1.0 mol. More preferably, it is 0.1 to 0.9 mol. If the charged amount of an arbitrary halogen compound, an arbitrary olefin compound, or an arbitrary compound having an alcoholic hydroxyl group is small, the molecular weight of a target condensate is not sufficiently increased.
 反応の際、必要により塩酸、燐酸、硫酸、蟻酸、塩化亜鉛、塩化第二鉄、塩化アルミニ
ウム、p-トルエンスルホン酸、メタンスルホン酸、活性白土等の酸性触媒を使用しても良い。これらは単独で用いても良く、二種以上併用しても良い。触媒の使用量は、使用されるアニリン1モルに対して通常0.1~2.0モルであり、好ましくは0.2~1.5モルである。多すぎると中和工程に必要な塩基の量が増えてしまい、産業廃棄物が増える恐れがあり、少なすぎると反応の進行が遅くなる恐れがある。反応溶剤としては水のほかに必要に応じてトルエン、キシレン等の有機溶剤を使用して行っても良く、無溶剤で行っても良い。
During the reaction, an acidic catalyst such as hydrochloric acid, phosphoric acid, sulfuric acid, formic acid, zinc chloride, ferric chloride, aluminum chloride, p-toluenesulfonic acid, methanesulfonic acid, and activated clay may be used, if necessary. These may be used alone or in combination of two or more. The amount of the catalyst to be used is generally 0.1 to 2.0 mol, preferably 0.2 to 1.5 mol, per 1 mol of aniline used. If the amount is too large, the amount of the base necessary for the neutralization step increases, and industrial waste may increase. If the amount is too small, the progress of the reaction may slow down. As a reaction solvent, an organic solvent such as toluene or xylene may be used as necessary, in addition to water, or may be used without a solvent.
 例えば、前記式(5)で示されるN-アルキル基を有するアニリン系化合物と水の混合溶液に酸触媒を添加した後、20~200℃、好ましくは30℃から150℃で任意のカルボニル化合物または任意のハロゲン化合物を0.1~10時間、好ましくは、0.5~5時間かけて添加し、昇温して40~300℃、好ましくは40~250℃で1~30時間、好ましくは2~20時間反応を行う。反応終了後、アルカリ水溶液で酸触媒を中和後、油層に非水溶性有機溶剤を加えて廃水が中性になるまで水洗を繰り返す。 For example, after adding an acid catalyst to a mixed solution of an aniline-based compound having an N-alkyl group represented by the formula (5) and water, the carbonyl compound or an arbitrary carbonyl compound is added at 20 to 200 ° C., preferably 30 to 150 ° C. An optional halogen compound is added over 0.1 to 10 hours, preferably 0.5 to 5 hours, and the temperature is raised to 40 to 300 ° C., preferably 40 to 250 ° C. for 1 to 30 hours, preferably 2 to 30 hours. Perform the reaction for 2020 hours. After completion of the reaction, the acid catalyst is neutralized with an aqueous alkali solution, and a water-insoluble organic solvent is added to the oil layer, and washing with water is repeated until the wastewater becomes neutral.
 本発明の硬化性樹脂組成物は、マレイミド樹脂を含有する。
 マレイミド樹脂としては従来公知のマレイミド樹脂を使用することができる。マレイミド樹脂の具体例としては、4,4’-ジフェニルメタンビスマレイミド、ポリフェニルメタンマレイミド、m-フェニレンビスマレイミド、2,2’-ビス〔4-(4-マレイミドフェノキシ)フェニル〕プロパン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、4,4’-ジフェニルエーテルビスマレイミド、4,4’-ジフェニルスルフォンビスマレイミド、1,3-ビス(3-マレイミドフェノキシ)ベンゼン、1,3-ビス(4-マレイミドフェノキシ)ベンゼンなどが挙げられる。溶剤溶解性の観点からポリフェニルメタンマレイミドや特開2009-001783号公報や、特開平01-294662号報に記載されているマレイミド樹脂のような分子量分布を有するマレイミド樹脂が好ましい。これらは単独で用いてもよく、2種以上併用してもよい。マレイミド樹脂の配合量は、質量比で好ましくは5倍以下、より好ましくは2倍以下の範囲である。
 また、特開2009-001783号公報や、特開平01-294662号報に記載されているマレイミド樹脂は、低吸湿性、難燃性、誘電特性に優れているため特に好ましい。
The curable resin composition of the present invention contains a maleimide resin.
As the maleimide resin, a conventionally known maleimide resin can be used. Specific examples of the maleimide resin include 4,4'-diphenylmethanebismaleimide, polyphenylmethanemaleimide, m-phenylenebismaleimide, 2,2'-bis [4- (4-maleimidophenoxy) phenyl] propane, 3,3 '-Dimethyl-5,5'-diethyl-4,4'-diphenylmethanebismaleimide, 4-methyl-1,3-phenylenebismaleimide, 4,4'-diphenylether bismaleimide, 4,4'-diphenylsulfonebismaleimide , 1,3-bis (3-maleimidophenoxy) benzene, 1,3-bis (4-maleimidophenoxy) benzene and the like. From the viewpoint of solvent solubility, polyphenylmethane maleimide and a maleimide resin having a molecular weight distribution such as a maleimide resin described in JP-A-2009-001783 and JP-A-01-294662 are preferable. These may be used alone or in combination of two or more. The blending amount of the maleimide resin is preferably 5 times or less, more preferably 2 times or less in terms of mass ratio.
Maleimide resins described in JP-A-2009-001783 and JP-A-01-294662 are particularly preferable because of their excellent low moisture absorption, flame retardancy and dielectric properties.
 N-アルキル基を有する芳香族アミン樹脂の配合当量αとマレイミド樹脂の配合当量βの配合当量比率α/βの下限値は0.9以上であるときが好ましく、さらに好ましくは1.1以上であり、特に好ましくは1.2以上であり、最も好ましくは1.4以上である。また、配合当量比率α/βの上限値は2.5以下であるときが好ましく、さらに好ましくは2.2以下であり、特に好ましくは2.0以下である。
 配合当量比率α/βは0.5以上であると低誘電化の効果が得ることができる。また、マレイミドと本発明記載の芳香族アミン樹脂の硬化反応ではマレイミド同士のアニオン重合も併発するため、配合当量比率α/βが3.0以下であれば、重合に関与できない余剰アミンが残存することなく、誘電特性や耐熱性等が良好となる。
The lower limit of the compounding equivalent ratio α / β between the compounding equivalent α of the aromatic amine resin having an N-alkyl group and the compounding equivalent β of the maleimide resin is preferably 0.9 or more, more preferably 1.1 or more. Yes, particularly preferably 1.2 or more, and most preferably 1.4 or more. The upper limit of the compounding equivalent ratio α / β is preferably 2.5 or less, more preferably 2.2 or less, and particularly preferably 2.0 or less.
When the blending equivalent ratio α / β is 0.5 or more, an effect of lowering the dielectric constant can be obtained. Further, in the curing reaction between the maleimide and the aromatic amine resin described in the present invention, anionic polymerization between the maleimides occurs simultaneously, so that if the blending equivalent ratio α / β is 3.0 or less, surplus amine that cannot participate in the polymerization remains. Without this, the dielectric properties, heat resistance and the like are improved.
 本発明の硬化性樹脂組成物において、マレイミド基を反応させるためにラジカル重合開始剤を使用することができる。用い得るラジカル重合開始剤としては、メチルエチルケトンパーオキサイド、アセチルアセトンパーオキサイド等のケトンパーオキサイド類、過酸化ベンゾイル等のジアシルパーオキサイド類、ジクミルパーオキサイド、1,3-ビス-(t-ブチルパーオキシイソプロピル)-ベンゼン等のジアルキルパーオキサイド類、t-ブチルパーオキシベンゾエート、1,1-ジ-t-ブチルパーオキシシクロヘキサン等のパーオキシケタール類、α-クミルパーオキシネオデカノエート、t-ブチルパーオキシネオデカノエート、t-ブチルペルオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-アミルパーオキシ-3,5,5-トリメチルヘキサノエート、t-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、t-アミルパーオキシベンゾエート等のアルキルパーエステル類、ジ-2-エチルヘキシルパーオキシジカーボネート、ビス(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、t-ブチルパーオキシイソプロピルカーボネート、1,6-ビス(t-ブチルパーオキシカルボニルオキシ)ヘキサン等のパーオキシカーボネート類、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、ラウロイルパーオキサイド等の有機過酸化物やアゾビスイソブチロニトリル、4,4’-アゾビス(4-シアノ吉草酸)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等のアゾ系化合物等の公知のラジカル重合開始剤が挙げられるが、これらに特に限定されるものではない。ケトンパーオキサイド類、ジアシルパーオキサイド類、ハイドロパーオキサイド類、ジアルキルパーオキサイド類、パーオキシケタール類、アルキルパーエステル類、パーオキシカーボネート類等が好ましく、ジアルキルパーオキサイド類がより好ましい。ラジカル重合開始剤の添加量としては、硬化性樹脂組成物の質量100質量部に対して0.01~5質量部が好ましく、0.01~3質量部が特に好ましい。用いるラジカル重合開始剤の量が多いと重合反応時に分子量が十分に伸長しない。 ラ ジ カ ル In the curable resin composition of the present invention, a radical polymerization initiator can be used for reacting a maleimide group. Examples of the radical polymerization initiator that can be used include ketone peroxides such as methyl ethyl ketone peroxide and acetylacetone peroxide, diacyl peroxides such as benzoyl peroxide, dicumyl peroxide, and 1,3-bis- (t-butylperoxy). Dialkyl peroxides such as isopropyl) -benzene, peroxyketals such as t-butylperoxybenzoate and 1,1-di-t-butylperoxycyclohexane, α-cumylperoxy neodecanoate, t-butyl Peroxyneodecanoate, t-butylperoxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-amylperoxy-2-ethylhexanoate, t- Butyl peroxy-2-ethylhexanoe And alkyl peresters such as t-amyl peroxy-3,5,5-trimethylhexanoate, t-butylperoxy-3,5,5-trimethylhexanoate, t-amyl peroxybenzoate, Peroxy such as -2-ethylhexylperoxydicarbonate, bis (4-t-butylcyclohexyl) peroxydicarbonate, t-butylperoxyisopropylcarbonate, 1,6-bis (t-butylperoxycarbonyloxy) hexane Organic peroxides such as carbonates, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxyoctoate, lauroyl peroxide, azobisisobutyronitrile, 4,4′-azobis (4-cyano Valeric acid), 2,2'-azobis (2,4- Known radical polymerization initiators such as azo compounds such as dimethylvaleronitrile) are exemplified, but not particularly limited thereto. Ketone peroxides, diacyl peroxides, hydroperoxides, dialkyl peroxides, peroxyketals, alkyl peresters, peroxycarbonates, and the like are preferable, and dialkyl peroxides are more preferable. The amount of the radical polymerization initiator to be added is preferably from 0.01 to 5 parts by mass, particularly preferably from 0.01 to 3 parts by mass, per 100 parts by mass of the curable resin composition. If the amount of the radical polymerization initiator used is large, the molecular weight does not sufficiently elongate during the polymerization reaction.
 本発明の硬化性樹脂組成物においてはエポキシ樹脂を含有させても良い。エポキシ樹脂としては、従来公知のエポキシ樹脂のいずれも使用することができ、具体例としては、ビスフェノール類(ビスフェノールA、ビスフェノールF、ビスフェノールS、ビフェノール、ビスフェノールAD等)またはフェノール類(フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物;前記フェノール類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物;前記フェノール類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物;前記フェノール類と芳香族ジメタノール類(ベンゼンジメタノール、ビフェニルジメタノール等)との重縮合物;前記フェノール類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物;前記フェノール類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物;前記ビスフェノール類と各種アルデヒドの重縮合物またはアルコール類等をグリシジル化したグリシジルエーテル系エポキシ樹脂、脂環式エポキシ樹脂、グリシジルアミン系エポキシ樹脂、グリシジルエステル系エポキシ樹脂等が挙げられるが、通常用いられるエポキシ樹脂であればこれらに限定されるものではない。これらは単独で用いてもよく、2種以上を用いてもよい。フェノール類とビスハロゲノメチルアラルキル誘導体またはアラルキルアルコール誘導体とを縮合反応させることにより得られるフェノールアラルキル樹脂を原料とし、エピクロルヒドリンと脱塩酸反応させることにより得られるエポキシ樹脂は、低吸湿性、難燃性、誘電特性に優れているためエポキシ樹脂として特に好ましい。 エ ポ キ シ The curable resin composition of the present invention may contain an epoxy resin. As the epoxy resin, any of conventionally known epoxy resins can be used. Specific examples thereof include bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc.) and phenols (phenol, alkyl-substituted). Phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, dihydroxynaphthalene, etc. and various aldehydes (formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde) Phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.); And phenols with various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.); Polycondensates with ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.); polycondensates with the above phenols and aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.); Polycondensates of phenols with aromatic dichloromethyls (α, α′-dichloroxylene, bischloromethylbiphenyl and the like); and the phenols and aromatic bisalkoxymethyls (bismethoxymethylbenzene, Glycidyl ether-based epoxy resin, alicyclic epoxy resin, glycidylamine-based polycondensate with bismethoxymethyl biphenyl, bisphenoxymethyl biphenyl, etc .; Examples include an epoxy resin and a glycidyl ester-based epoxy resin, but are not limited thereto as long as it is a commonly used epoxy resin. These may be used alone or in combination of two or more. Starting from a phenol aralkyl resin obtained by a condensation reaction between a phenol and a bishalogenomethylaralkyl derivative or an aralkyl alcohol derivative, an epoxy resin obtained by dehydrochlorination with epichlorohydrin has low hygroscopicity, flame retardancy, It is particularly preferable as an epoxy resin because of its excellent dielectric properties.
 本発明の硬化性樹脂組成物はN-アルキル基を有する芳香族アミン化合物以外の硬化剤を併用しても良い。例えば、酸無水物系化合物、アミド系化合物、フェノ-ル系化合物、活性エステル化合物などが挙げられる。併用しうる硬化剤の具体例としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等のアミド系化合物;無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等の酸無水物系化合物;ビスフェノ-ル類(ビスフェノ-ルA、ビスフェノ-ルF、ビスフェノ-ルS、ビフェノール、ビスフェノ-ルAD等)もしくはフェノ-ル類(フェノ-ル、アルキル置換フェノ-ル、芳香族置換フェノ-ル、ナフト-ル、アルキル置換ナフト-ル、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等)と各種アルデヒド(ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等)との重縮合物、または前記フェノ-ル類と各種ジエン化合物(ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等)との重合物、または前記フェノ-ル類とケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等)との重縮合物、または前記フェノ-ル類と芳香族ジメタノ-ル類(ベンゼンジメタノ-ル、ビフェニルジメタノ-ル等)との重縮合物、または前記フェノ-ル類と芳香族ジクロロメチル類(α,α’-ジクロロキシレン、ビスクロロメチルビフェニル等)との重縮合物、または前記フェノ-ル類と芳香族ビスアルコキシメチル類(ビスメトキシメチルベンゼン、ビスメトキシメチルビフェニル、ビスフェノキシメチルビフェニル等)との重縮合物、または前記ビスフェノ-ル類と各種アルデヒドの重縮合物、及びこれらの変性物等のフェノ-ル系化合物;イミダゾール、トリフルオロボラン-アミン錯体、グアニジン誘導体;フェノ-ルエステル類、チオフェノ-ルエステル類、N-ヒドロキシアミンエステル類、複素環ヒドロキシ化合物のエステル類等の活性エステル化合物;などが挙げられるがこれらに限定されることはない。 (4) The curable resin composition of the present invention may contain a curing agent other than the aromatic amine compound having an N-alkyl group. For example, acid anhydride compounds, amide compounds, phenol compounds, active ester compounds and the like can be mentioned. Specific examples of the curing agent that can be used in combination are amide compounds such as polyamide resin synthesized from dicyandiamide, a dimer of linolenic acid and ethylenediamine; phthalic anhydride, trimellitic anhydride, pyromellitic anhydride, and maleic anhydride. Acid anhydride compounds such as acid, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methylnadic anhydride, hexahydrophthalic anhydride, methylhexahydrophthalic anhydride; bisphenols (bisphenol A, bisphenol F, bisphenol S, biphenol, bisphenol AD, etc. or phenols (phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene) , Alkyl-substituted dihydroxybenzene, dihydroxynaphthale Etc.) and various aldehydes (formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, etc.) or the above-mentioned phenols And polymers of various diene compounds (dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene, etc.), or the above-mentioned phenols Polycondensates of ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone, etc.) Or a polycondensate of the above phenols with aromatic dimethanols (benzene dimethanol, biphenyl dimethanol, etc.), or the above phenols and aromatic dichloromethyls (α, α Polycondensate with '-dichloroxylene, bischloromethylbiphenyl, etc.), or polycondensation of the above phenols with aromatic bisalkoxymethyls (bismethoxymethylbenzene, bismethoxymethylbiphenyl, bisphenoxymethylbiphenyl, etc.) Phenol compounds such as condensates, polycondensates of the above bisphenols and various aldehydes, and modified products thereof; imidazole, trifluoroborane-amine complex, guanidine derivatives; phenol esters, thiophenol esters , N-hydroxyamine esters, esters of heterocyclic hydroxy compounds, etc. Ester compounds; are may be mentioned is the it is not limited to such.
 本発明の硬化性樹脂組成物において硬化剤を使用する場合の使用量は、エポキシ樹脂のエポキシ基1当量に対して0.6~1.1当量が好ましい。エポキシ基1.1当量超える場合、また、0.6当量を切る場合、硬化剤が取り残されることとなり、硬化が不完全となり良好な硬化物性が得られない恐れがある。ただし、エポキシ樹脂と硬化可能な特殊樹脂が含有される場合はこの限りではなく、特殊樹脂によって消費されるエポキシの量を差し引いた残りのエポキシ基に対する硬化剤の量となるため、配合によって適宜調整が必要となる。 場合 When a curing agent is used in the curable resin composition of the present invention, the amount used is preferably 0.6 to 1.1 equivalents to 1 equivalent of the epoxy group of the epoxy resin. If the epoxy group exceeds 1.1 equivalents, or if the epoxy group is less than 0.6 equivalents, the curing agent will be left behind, and curing may be incomplete and good cured physical properties may not be obtained. However, this does not apply when the epoxy resin and the curable special resin are contained.The amount is the amount of the curing agent for the remaining epoxy groups after subtracting the amount of epoxy consumed by the special resin. Is required.
 本発明において用いられる硬化性樹脂組成物においては、硬化促進剤を含有させても
差し支えない。使用できる硬化促進剤の具体例としては2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール等のイミダゾ-ル類、2-(ジメチルアミノメチル)フェノール、1,8-ジアザ-ビシクロ(5,4,0)ウンデセン-7等の第3級アミン類、トリフェニルホスフィン等のホスフィン類、オクチル酸スズ等の金属化合物等が挙げられる。硬化促進剤は、エポキシ樹脂100重量部に対して0.1~10.0重量部が必要に応じて用いられる。
The curable resin composition used in the present invention may contain a curing accelerator. Specific examples of the curing accelerator that can be used include imidazoles such as 2-methylimidazole, 2-ethylimidazole, 2-ethyl-4-methylimidazole, 2- (dimethylaminomethyl) phenol, and 1,8-diaza- Tertiary amines such as bicyclo (5,4,0) undecene-7; phosphines such as triphenylphosphine; and metal compounds such as tin octylate. The curing accelerator is used in an amount of 0.1 to 10.0 parts by weight based on 100 parts by weight of the epoxy resin as required.
 本発明において用いられる硬化性樹脂組成物には、必要に応じて難燃剤、充填剤等の添加剤を、硬化物の誘電特性や耐熱性等の特性を悪化させない範囲で配合することができる。 (4) The curable resin composition used in the present invention may contain additives such as a flame retardant and a filler, if necessary, as long as the properties such as dielectric properties and heat resistance of the cured product are not deteriorated.
 配合しうる充填剤は、特に限定されないが、無機充填剤としては溶融シリカ、結晶性シリカ、アルミナ、炭酸カルシウム、ケイ酸カルシウム、硫酸バリウム、タルク、クレー、酸化マグネシウム、酸化アルミニウム、酸化ベリリウム、酸化鉄、酸化チタン、窒化アルミニウム、窒化ケイ素、窒化ホウ素、マイカ、ガラス、石英などが挙げられる。さらに難燃効果を付与するため、水酸化マグネシウム、水酸化アルミニウムなどの金属水酸化物を使用することも好ましい。また2種以上を混合して使用しても良い。これら無機充填剤のうち、溶融シリカや結晶性シリカなどのシリカ類はコストが安く、電気信頼性も良好なため好ましい。 The filler that can be blended is not particularly limited, but as the inorganic filler, fused silica, crystalline silica, alumina, calcium carbonate, calcium silicate, barium sulfate, talc, clay, magnesium oxide, aluminum oxide, beryllium oxide, oxide Examples include iron, titanium oxide, aluminum nitride, silicon nitride, boron nitride, mica, glass, and quartz. It is also preferable to use a metal hydroxide such as magnesium hydroxide or aluminum hydroxide to further impart a flame retardant effect. Also, two or more kinds may be used in combination. Among these inorganic fillers, silicas such as fused silica and crystalline silica are preferable because of their low cost and good electrical reliability.
 本発明において用いられる硬化性樹脂組成物において、無機充填剤の使用量は総量中、通常10重量%~95重量%、好ましくは10重量%~80重量%、より好ましくは10重量%~75重量%の範囲である。10重量%以上であると難燃性の効果が良好となり、弾性率も向上する。一方、95重量%以下であると、ワニス中でフィラーが沈降することなく、均質な成型体が得られる。
 なお、無機充填剤の形状、粒径等も特に限定されないが、通常、粒径0.01~50μm、好ましくは0.1~20μmである。
In the curable resin composition used in the present invention, the amount of the inorganic filler used in the total amount is usually 10% by weight to 95% by weight, preferably 10% by weight to 80% by weight, more preferably 10% by weight to 75% by weight. % Range. When the content is 10% by weight or more, the effect of flame retardancy becomes good, and the elastic modulus also improves. On the other hand, when the content is 95% by weight or less, a uniform molded body can be obtained without the filler settling in the varnish.
The shape, particle size and the like of the inorganic filler are not particularly limited, but are usually from 0.01 to 50 μm, preferably from 0.1 to 20 μm.
 本発明において用いられる硬化性樹脂組成物にはガラスクロスや無機充填剤と樹脂成分との接着性を高めるためにカップリング剤を配合することができる。カップリング剤としては従来公知のものをいずれも使用できるが、例えばビニルアルコキシシラン、エポキアルコキシシラン、スチリルアルコキシシラン、メタクリロキシアルコキシシラン、アクリロキシアルコキシシラン、アミノアルコキシシラン、メルカプトアルコキシシラン、イソシアナートアルコキシシランなどの各種アルコキシシラン化合物、アルコキシチタン化合物、アルミニウムキレート類などが挙げられる。これらは単独で使用しても2種以上併用しても良い。カップリング剤の添加方法は、カップリング剤であらかじめ無機充填剤表面を処理した後、樹脂と混合しても良いし、樹脂にカップリング剤を混合してから無機充填剤を混合しても良い。 カ ッ プ The curable resin composition used in the present invention may contain a coupling agent for enhancing the adhesiveness between the glass cloth or the inorganic filler and the resin component. As the coupling agent, any of conventionally known coupling agents can be used.For example, vinyl alkoxy silane, epoxy alkoxy silane, styryl alkoxy silane, methacryloxy alkoxy silane, acryloxy alkoxy silane, amino alkoxy silane, mercapto alkoxy silane, isocyanate alkoxy Examples include various alkoxysilane compounds such as silane, alkoxytitanium compounds, and aluminum chelates. These may be used alone or in combination of two or more. The method of adding the coupling agent may be such that after treating the surface of the inorganic filler with the coupling agent in advance, the inorganic filler may be mixed with the resin, or the inorganic filler may be mixed with the resin after mixing the coupling agent. .
 本発明の硬化性樹脂組成物においてはシアネートエステル樹脂を含有させても良い。本発明の硬化性樹脂組成物に配合し得るシアネートエステル化合物としては従来公知のシアネートエステル化合物を使用することができる。シアネートエステル化合物の具体例としては、フェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル化合物が挙げられるがこれらに限定されるものではない。これらは単独で用いてもよく2種以上を用いてもよい。 シ ア The curable resin composition of the present invention may contain a cyanate ester resin. As the cyanate ester compound that can be added to the curable resin composition of the present invention, a conventionally known cyanate ester compound can be used. Specific examples of cyanate ester compounds include polycondensates of phenols and various aldehydes, polymers of phenols and various diene compounds, polycondensates of phenols and ketones, and polycondensations of bisphenols and various aldehydes. Cyanate ester compounds obtained by reacting a product with a cyanogen halide are exemplified, but not limited thereto. These may be used alone or in combination of two or more.
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。 {Examples of the phenols include phenol, alkyl-substituted phenol, aromatic-substituted phenol, naphthol, alkyl-substituted naphthol, dihydroxybenzene, alkyl-substituted dihydroxybenzene, and dihydroxynaphthalene.
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 シアネートエステル化合物の具体例としては、ジシアナートベンゼン、トリシアナートベンゼン、ジシアナートナフタレン、ジシアンートビフェニル、2、2’ービス(4-シアナートフェニル)プロパン、ビス(4-シアナートフェニル)メタン、ビス(3,5-ジメチル-4-シアナートフェニル)メタン、2,2’ービス(3,5-ジメチル-4-シアナートフェニル)プロパン、2,2’ -ビス(4-シアナートフェニル)エタン、2,2’-ビス(4-シアナートフェニル)ヘキサフロロプロパン、ビス(4-シアナートフェニル)スルホン、ビス(4-シアナートフェニル)チオエーテル、フェノールノボラックシアナート、フェノール・ジシクロペンタジエン共縮合物の水酸基をシアネート基に変換したもの等が挙げられるがこれらに限定されるものではない。
 また、特開2005-264154号公報に合成方法が記載されているシアネートエステル化合物は、低吸湿性、難燃性、誘電特性に優れているためシアネートエステル化合物として特に好ましい。
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkyl aldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde, cinnamaldehyde, and the like.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinylnorbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, and isoprene.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, and benzophenone.
Specific examples of the cyanate ester compound include dicyanatobenzene, tricyanatobenzene, dicyanatonaphthalene, dicyanatobiphenyl, 2,2′-bis (4-cyanatophenyl) propane, and bis (4-cyanatophenyl) Methane, bis (3,5-dimethyl-4-cyanatophenyl) methane, 2,2′-bis (3,5-dimethyl-4-cyanatophenyl) propane, 2,2′-bis (4-cyanatophenyl) ) Ethane, 2,2'-bis (4-cyanatophenyl) hexafluoropropane, bis (4-cyanatophenyl) sulfone, bis (4-cyanatophenyl) thioether, phenol novolak cyanate, phenol dicyclopentadiene Examples include those obtained by converting a hydroxyl group of a co-condensate to a cyanate group. The present invention is not limited to.
Further, a cyanate ester compound whose synthesis method is described in JP-A-2005-264154 is particularly preferable as a cyanate ester compound because of its low hygroscopicity, flame retardancy and excellent dielectric properties.
 本発明の硬化性樹脂組成物には、シアネート樹脂を含む場合、必要に応じてシアネート基を三量化させてsym-トリアジン環を形成するために、ナフテン酸亜鉛、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸鉛、オクチル酸亜鉛、オクチル酸錫、鉛アセチルアセトナート、ジブチル錫マレエート等の触媒を含有させることもできる。触媒は、熱硬化性樹脂組成物の合計質量100質量部に対して通常0.0001~0.10質量部、好ましくは0.00015~0.0015質量部使用する。 When the curable resin composition of the present invention contains a cyanate resin, in order to form a sym-triazine ring by trimerizing a cyanate group as needed, zinc naphthenate, cobalt naphthenate, copper naphthenate, A catalyst such as lead naphthenate, zinc octylate, tin octylate, lead acetylacetonate, dibutyltin maleate and the like can be contained. The catalyst is used in an amount of usually 0.0001 to 0.10 parts by mass, preferably 0.00015 to 0.0015 parts by mass, based on 100 parts by mass of the total mass of the thermosetting resin composition.
 本発明の硬化性樹脂組成物には、必要に応じて公知の添加剤を配合することが出来る。用いうる添加剤の具体例としては、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂、シリコーンゲル、シリコーンオイル、シランカップリング剤のような充填材の表面処理剤、離型剤、カーボンブラック、フタロシアニンブルー、フタロシアニングリーン等の着色剤が挙げられる。これら添加剤の配合量は、硬化性樹脂組成物100質量部に対して好ましくは1,000質量部以下、より好ましくは700質量部以下の範囲である。 公 知 The curable resin composition of the present invention may contain known additives as necessary. Specific examples of additives that can be used include polybutadiene and modified products thereof, modified acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluororesin, silicone gel, silicone oil, and silane coupling agents. Coloring agents such as a surface treatment agent for a material, a release agent, carbon black, phthalocyanine blue, and phthalocyanine green are exemplified. The amount of these additives is preferably 1,000 parts by mass or less, more preferably 700 parts by mass or less, based on 100 parts by mass of the curable resin composition.
 本発明の硬化性樹脂組成物は、さらに有機溶剤を添加することができる。用いられる溶剤としては、例えばγ-ブチロラクトン類、N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジメチルイミダゾリジノン等のアミド系溶剤、テトラメチレンスルフォン等のスルフォン類、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルモノアセテート、プロピレングリコールモノブチルエーテル等のエーテル系溶剤、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等のケトン系溶剤、トルエン、キシレンなどの芳香族系溶剤が挙げられる。溶剤は、得られたワニス中の溶剤を除く固形分濃度が通常10~80重量%、好ましくは20~70重量%となる範囲で使用する。また、得られたワニスを用いてプリプレグもしくは樹脂シートを成型することができる。 有機 The curable resin composition of the present invention may further contain an organic solvent. Examples of the solvent used include amide solvents such as γ-butyrolactones, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N-dimethylimidazolidinone, and tetramethylene sulfone. Sulfones, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether monoacetate, ether solvents such as propylene glycol monobutyl ether, ketones such as methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone Solvents, and aromatic solvents such as toluene and xylene. The solvent is used in a range where the solid content of the obtained varnish excluding the solvent is usually 10 to 80% by weight, preferably 20 to 70% by weight. In addition, a prepreg or a resin sheet can be molded using the obtained varnish.
 ここで、プリプレグについて説明する。プリプレグは前記ワニスを繊維基材に含浸してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリプレグを得ることができる。前記繊維基材としては、例えばガラス織布、ガラス不繊布、ガラスペーパー等のガラス繊維基材、紙、アラミド、ポリエステル、芳香族ポリエステル、フッ素樹脂等の合成繊維等からなる織布や不織布、金属繊維、カーボン繊維、鉱物繊維等からなる織布、不織布、マット類等が挙げられる。これらの基材は単独又は混合して使用してもよい。これらの中でもガラス繊維基材が好ましい。これにより、プリプレグの剛性、寸法安定性を向上することができる。ガラス繊維基材としては、Tガラス、Sガラス、Eガラス、NEガラス、および石英ガラスからなる群から選ばれる少なくとも一種を含むものが好ましい。 Here, the prepreg will be described. The prepreg is obtained by impregnating the varnish into a fiber base material. Thereby, a prepreg excellent in heat resistance, low expansion property and flame retardancy can be obtained. Examples of the fiber base include glass fiber base such as glass woven cloth, glass nonwoven cloth, and glass paper; woven cloth and nonwoven cloth made of synthetic fibers such as paper, aramid, polyester, aromatic polyester, and fluororesin; and metal. Woven fabrics, nonwoven fabrics, mats, and the like made of fibers, carbon fibers, mineral fibers, and the like are included. These substrates may be used alone or as a mixture. Of these, glass fiber substrates are preferred. Thereby, rigidity and dimensional stability of the prepreg can be improved. The glass fiber substrate preferably contains at least one selected from the group consisting of T glass, S glass, E glass, NE glass, and quartz glass.
 本発明の硬化性樹脂組成物を前記繊維基材に含浸させる方法は、例えば基材を樹脂ワニスに浸漬する方法、各種コーターによる塗布する方法、スプレーによる吹き付ける方法等が挙げられる。これらの中でも、基材を樹脂ワニスに浸漬する方法が好ましい。これにより、基材に対する樹脂組成物の含浸性を向上することができる。なお、基材を樹脂ワニスに浸漬する場合、通常の含浸塗布設備を使用することができる。例えば、本発明の硬化性樹脂組成物をそのままで、又は溶媒に溶解若しくは分散させたワニスの形態で、ガラス布等の基材に含浸させた後、乾燥炉中等で通常、80~200℃(ただし、溶媒を使用した場合は溶媒の揮発可能な温度以上とする)、好ましくは150~200℃の温度で、1~30分間、好ましくは1~15分間乾燥させることによってプリプレグが得られる。また後述する樹脂シートをガラスクロスに押し付け、転写し、プリプレグを得るという手法も適用可能である。 The method of impregnating the curable resin composition of the present invention into the fiber base material includes, for example, a method of dipping the base material in a resin varnish, a method of applying with a variety of coaters, and a method of spraying with a spray. Among these, the method of immersing the base material in the resin varnish is preferable. Thereby, the impregnation property of the resin composition to the base material can be improved. When the substrate is immersed in the resin varnish, ordinary impregnation coating equipment can be used. For example, the curable resin composition of the present invention as it is, or in the form of a varnish dissolved or dispersed in a solvent, is impregnated into a substrate such as a glass cloth, and then usually dried at 80 to 200 ° C. in a drying furnace or the like. However, in the case of using a solvent, the temperature is not lower than the temperature at which the solvent can be volatilized), preferably at a temperature of 150 to 200 ° C. for 1 to 30 minutes, preferably 1 to 15 minutes to obtain a prepreg. In addition, a method of pressing a resin sheet described below against a glass cloth, transferring the resin sheet, and obtaining a prepreg is also applicable.
 つぎに、樹脂シートについて説明する。前記ワニスを用いた樹脂シートはワニスをそれ自体公知のグラビアコート法、スクリーン印刷、メタルマスク法、スピンコート法などの各種塗工方法により平面状支持体に乾燥後の厚さが所定の厚さ、たとえば5~100μmになるように塗布後、乾燥して得られるが、どの塗工方法を用いるかは支持体の種類、形状、大きさ、塗工の膜厚、支持体の耐熱性等により適宜選択される。平面支持体としては、たとえばポリアミド、ポリアミドイミド、ポリアリレート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエーテルケトン、ポリエーテルイミド、ポリエーテルエーテルケトン、ポリケトン、ポリエチレン、ポリプロピレン、テフロン(登録商標)等の各種高分子、および/またはその共重合体から作られるフィルム、あるいは銅箔等の金属箔等が挙げられる。塗布後、乾燥し、シート状の組成物を得ることができる(本発明のシート)が、本シートをさらに加熱することでシート状の硬化物とすることもできる。また一度の加熱で溶剤乾燥と硬化工程を兼ねてもよい。本発明のN-アルキル基を有する芳香族アミン樹脂組成物は上記支持体の両面もしくは片面に上記方法で塗工、加熱することにより、該支持体の両面または片面に本発明の硬化物の層を形成することができる。また硬化前に被着体を貼り合わせ、硬化させることで積層体を作成することも可能である。また本発明の樹脂シートは支持体から剥がすことで接着シートとして使用することもでき、被着体に接触させ、必要に応じて圧力と熱をかけ、硬化とともに接着させるということもできる。 Next, the resin sheet will be described. The resin sheet using the varnish has a predetermined thickness after drying the varnish on a planar support by various coating methods such as a gravure coating method known per se, screen printing, a metal mask method, and a spin coating method. For example, it is obtained by applying the coating so as to have a thickness of 5 to 100 μm and then drying it. The method of applying the coating depends on the type, shape, size, thickness of the coating, heat resistance of the support and the like. It is appropriately selected. Examples of the planar support include various high-grade materials such as polyamide, polyamideimide, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyetherketone, polyetherimide, polyetheretherketone, polyketone, polyethylene, polypropylene, and Teflon (registered trademark). Examples include a film made of a molecule and / or a copolymer thereof, and a metal foil such as a copper foil. After application, the sheet is dried to obtain a sheet-shaped composition (the sheet of the present invention), but the sheet may be further heated to form a sheet-shaped cured product. Further, the solvent may be dried and cured by a single heating. The aromatic amine resin composition having an N-alkyl group of the present invention is applied to both sides or one side of the support by the above-mentioned method and heated to form a layer of the cured product of the present invention on both sides or one side of the support. Can be formed. In addition, it is also possible to create a laminate by bonding and curing the adherend before curing. Further, the resin sheet of the present invention can be used as an adhesive sheet by peeling it off from the support, and can be brought into contact with an adherend, applied with pressure and heat as needed, and then adhered together with curing.
 つぎに、積層板について説明する。積層板は、前記プリプレグおよび/または樹脂シートを加熱加圧成形してなるものである。これにより、耐熱性、低膨張性および難燃性に優れたプリント配線板を得ることができる。プリプレグおよび/または樹脂シート1枚のときは、その上下両面もしくは片面に金属箔を重ねる。また、プリプレグおよび/または樹脂シートを2枚以上積層することもできる。プリプレグおよび/または樹脂シート2枚以上積層するときは、積層したプリプレグおよび/または樹脂シートの最も外側の上下両面もしくは片面に金属箔あるいはフィルムおよび/または樹脂シートを重ねる。次に、プリプレグおよび/または樹脂シートと金属箔とを重ねたものを加熱加圧成形することでプリント配線板を得ることができる。前記加熱する温度は、特に限定されないが、120~220℃が好ましく、特に150~200℃が好ましい。前記加圧する圧力は、特に限定されないが、1.5~5MPaが好ましく、特に2~4MPaが好ましい。また、必要に応じて高温漕等で150~300℃の温度で後硬化を行ってもかまわない。 Next, the laminate will be described. The laminate is formed by heating and pressing the prepreg and / or the resin sheet. Thereby, a printed wiring board excellent in heat resistance, low expansion property and flame retardancy can be obtained. In the case of one prepreg and / or resin sheet, a metal foil is laminated on both upper and lower surfaces or one surface. Also, two or more prepregs and / or resin sheets can be laminated. When two or more prepregs and / or resin sheets are laminated, a metal foil or a film and / or a resin sheet are laminated on the outermost upper and lower surfaces or one surface of the laminated prepreg and / or resin sheet. Next, a printed wiring board can be obtained by subjecting a prepreg and / or a resin sheet and a metal foil to be laminated to each other with heat and pressure. The heating temperature is not particularly limited, but is preferably from 120 to 220 ° C, particularly preferably from 150 to 200 ° C. The pressure for pressurizing is not particularly limited, but is preferably 1.5 to 5 MPa, particularly preferably 2 to 4 MPa. If necessary, post-curing may be performed at a temperature of 150 to 300 ° C. in a high-temperature tank or the like.
 つぎに、プリント配線基板について説明する。プリント配線板は、前記積層板を内層回路板として用いる。積層板の片面又は両面に回路形成する。場合によっては、ドリル加工、レーザー加工によりスルーホールを形成し、めっき等で両面の電気的接続をとることもできる。 Next, the printed wiring board will be described. The printed wiring board uses the laminated board as an inner circuit board. Circuits are formed on one or both sides of the laminate. In some cases, through holes may be formed by drilling or laser processing, and electrical connection between both surfaces may be made by plating or the like.
 前記内装回路基板に前記樹脂シート、または前記プリプレグを重ね合わせて加熱加圧成形し、多層プリント配線基板を得ることができる。具体的には、上記樹脂シートの絶縁層側と内層回路板とを合わせて、真空加圧式ラミネーター装置などを用いて真空加熱加圧成形させ、その後、熱風乾燥装置等で絶縁層を加熱硬化させることにより得ることができる。ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度60~160℃、圧力0.2~3MPaで実施することができる。また、加熱硬化させる条件としては特に限定されないが、一例を挙げると、温度140~240℃、時間30~120分間で実施することができる。あるいは、前記プリプレグを内層回路板に重ね合わせ、これを平板プレス装置などを用いて加熱加圧成形することにより得ることができる。ここで加熱加圧成形する条件としては特に限定されないが、一例を挙げると、温度140~240℃、圧力1~4MPaで実施することができる。このような平板プレス装置等による加熱加圧成形では、加熱加圧成形と同時に絶縁層の加熱硬化が行われる。 多層 The resin sheet or the prepreg is superimposed on the interior circuit board and heated and pressed to obtain a multilayer printed wiring board. Specifically, the insulating layer side of the resin sheet and the inner layer circuit board are combined, and they are vacuum-heat-pressed using a vacuum-pressing type laminator device or the like, and then the insulating layer is heated and cured by a hot-air drying device or the like. Can be obtained. Here, the conditions for the heat-press molding are not particularly limited. For example, the molding can be performed at a temperature of 60 to 160 ° C. and a pressure of 0.2 to 3 MPa. The conditions for the heat curing are not particularly limited. For example, the heat curing can be performed at a temperature of 140 to 240 ° C. for a time of 30 to 120 minutes. Alternatively, the prepreg can be obtained by superimposing the prepreg on an inner layer circuit board and subjecting the prepreg to heat and pressure molding using a flat plate press or the like. The conditions for the heat-press molding are not particularly limited. For example, the molding can be performed at a temperature of 140 to 240 ° C. and a pressure of 1 to 4 MPa. In the heat and pressure molding using such a flat plate press or the like, the insulating layer is cured by heating at the same time as the heat and pressure molding.
 また、多層プリント配線基板の製造方法は、前記樹脂シート、または前記プリプレグを、内層回路基板の内層回路パターンが形成された面に重ね合わせて連続積層する工程、及び導体回路層をセミアディティブ法等のビルドアップ工法で形成する工程を含む。 Further, the method of manufacturing a multilayer printed wiring board includes a step of continuously laminating the resin sheet or the prepreg on the surface of the inner circuit board on which the inner circuit pattern is formed, and a method of semi-additively forming the conductor circuit layer. Forming step by the build-up method.
 前記樹脂シート、または前記プリプレグより形成された絶縁層の硬化は、次のレーザー照射および樹脂残渣の除去を容易にし、デスミア性を向上させるため、半硬化状態にしておく場合もある。また、一層目の絶縁層を通常の加熱温度より低い温度で加熱することにより一部硬化(半硬化)させ、絶縁層上に、一層ないし複数の絶縁層をさらに形成し半硬化の絶縁層を実用上問題ない程度に再度加熱硬化させることにより絶縁層間および絶縁層と回路との密着力を向上させることができる。この場合の半硬化の温度は、80℃~200℃が好ましく、100℃~180℃がより好ましい。尚、次工程においてレーザーを照射し、絶縁層に開口部を形成するが、その前に基材を剥離する必要がある。基材の剥離は、絶縁層を形成後、加熱硬化の前、または加熱硬化後のいずれに行っても特に問題はない。なお、前記多層プリント配線基板を得る際に用いられる内層回路板は、例えば、銅張積層板の両面に、エッチング等により所定の導体回路を形成し、導体回路部分を黒化処理したものを好適に用いることができる。 硬化 Curing the insulating layer formed from the resin sheet or the prepreg may be in a semi-cured state in order to facilitate subsequent laser irradiation and removal of resin residue and improve desmear property. In addition, the first insulating layer is partially cured (semi-cured) by heating at a temperature lower than a normal heating temperature, and one or more insulating layers are further formed on the insulating layer to form a semi-cured insulating layer. By heating and curing again to such an extent that there is no practical problem, the adhesion between the insulating layer and between the insulating layer and the circuit can be improved. In this case, the semi-curing temperature is preferably from 80 ° C to 200 ° C, more preferably from 100 ° C to 180 ° C. In the next step, an opening is formed in the insulating layer by irradiating a laser in the next step. Before that, the substrate needs to be peeled off. There is no particular problem whether the peeling of the base material is performed after the formation of the insulating layer, before the heat curing, or after the heat curing. The inner circuit board used for obtaining the multilayer printed wiring board is preferably formed by forming a predetermined conductor circuit on both surfaces of a copper-clad laminate by etching or the like and subjecting the conductor circuit portion to blackening. Can be used.
 レーザー照射後の樹脂残渣等は過マンガン酸塩、重クロム酸塩等の酸化剤などにより除去することが好ましい。また、平滑な絶縁層の表面を同時に粗化することができ、続く金属メッキにより形成する導電配線回路の密着性を上げることができる。 樹脂 Resin residues and the like after laser irradiation are preferably removed with an oxidizing agent such as permanganate and dichromate. Further, the surface of the smooth insulating layer can be roughened at the same time, and the adhesion of the conductive wiring circuit formed by the subsequent metal plating can be improved.
 つぎに、外層回路を形成する。外層回路の形成方法は、金属メッキにより絶縁樹脂層間の接続を図り、エッチングにより外層回路パターン形成を行う。樹脂シート、またはプリプレグを用いたときと同様にして、多層プリント配線基板を得ることができる。尚、金属箔を有する樹脂シート、またはプリプレグを用いた場合は、金属箔を剥離することなく、導体回路として用いるためにエッチングにより回路形成を行ってもよい。その場合、厚い銅箔を使用した基材付き絶縁樹脂シートを使うと、その後の回路パターン形成においてファインピッチ化が困難になるため、1~5μmの極薄銅箔を使うか、または12~18μmの銅箔をエッチングにより1~5μmに薄くするハーフエッチングする場合もある。 Next, an outer layer circuit is formed. The outer layer circuit is formed by connecting the insulating resin layers by metal plating and forming the outer layer circuit pattern by etching. A multilayer printed wiring board can be obtained in the same manner as when a resin sheet or a prepreg is used. When a resin sheet or a prepreg having a metal foil is used, a circuit may be formed by etching without peeling the metal foil to use it as a conductor circuit. In this case, if an insulating resin sheet with a base material using a thick copper foil is used, it is difficult to form a fine pitch in the subsequent formation of a circuit pattern. Therefore, use an ultra-thin copper foil of 1 to 5 μm or 12 to 18 μm In some cases, half-etching is performed to reduce the thickness of the copper foil to 1 to 5 μm by etching.
 さらに絶縁層を積層し、前記同様回路形成を行っても良いが、多層プリント配線板の設計上、最外層には、回路形成後、ソルダーレジストを形成する。ソルダーレジストの形成方法は、特に限定されないが、例えば、ドライフィルムタイプのソルダーレジストを積層(ラミネート)し、露光、および現像により形成する方法、または液状レジストを印刷したものを露光、および現像により形成する方法によりなされる。なお、得られた多層プリント配線板を半導体装置に用いる場合、半導体素子を実装するため接続用電極部を設ける。接続用電極部は、金めっき、ニッケルメッキおよび半田めっき等の金属皮膜で適宜被覆することができる。このような方法により多層プリント配線板を製造することができる。 絶 縁 Furthermore, an insulating layer may be laminated and a circuit may be formed in the same manner as described above. However, due to the design of the multilayer printed wiring board, a solder resist is formed on the outermost layer after the circuit is formed. The method of forming the solder resist is not particularly limited. For example, a method in which a dry film type solder resist is laminated (laminated) and formed by exposure and development, or a method in which a liquid resist is printed is formed by exposure and development. It is done by the method of doing. When the obtained multilayer printed wiring board is used for a semiconductor device, a connection electrode portion is provided for mounting a semiconductor element. The connection electrode portion can be appropriately covered with a metal film such as gold plating, nickel plating, and solder plating. A multilayer printed wiring board can be manufactured by such a method.
 つぎに、半導体装置について説明する。前記で得られた多層プリント配線板に半田バンプを有する半導体素子を実装し、半田バンプを介して、前記多層プリント配線板との接続を図る。そして、多層プリント配線板と半導体素子との間には液状封止樹脂を充填し、半導体装置を形成する。半田バンプは、錫、鉛、銀、銅、ビスマスなどからなる合金で構成されることが好ましい。半導体素子と多層プリント配線板との接続方法は、フリップチップボンダーなどを用いて基板上の接続用電極部と半導体素子の半田バンプとの位置合わせを行ったあと、IRリフロー装置、熱板、その他加熱装置を用いて半田バンプを融点以上に加熱し、多層プリント配線板と半田バンプとを溶融接合することにより接続する。尚、接続信頼性を良くするため、予め多層プリント配線板上の接続用電極部に半田ペースト等、比較的融点の低い金属の層を形成しておいても良い。この接合工程に先んじて、半田バンプおよび、または多層プリント配線板上の接続用電極部の表層にフラックスを塗布することで接続信頼性を向上させることもできる。 Next, the semiconductor device will be described. A semiconductor element having solder bumps is mounted on the multilayer printed wiring board obtained above, and connection with the multilayer printed wiring board is made via the solder bumps. Then, a liquid sealing resin is filled between the multilayer printed wiring board and the semiconductor element to form a semiconductor device. The solder bumps are preferably made of an alloy made of tin, lead, silver, copper, bismuth, or the like. The method of connecting the semiconductor element and the multilayer printed wiring board is to use a flip chip bonder or the like to align the connection electrode portion on the substrate with the solder bump of the semiconductor element, and then use an IR reflow device, a hot plate, or the like. The solder bumps are heated to a melting point or higher using a heating device, and the multilayer printed wiring board and the solder bumps are connected by fusion bonding. In order to improve connection reliability, a layer of a metal having a relatively low melting point, such as a solder paste, may be formed in advance on the connection electrode portion on the multilayer printed wiring board. Prior to this joining step, the connection reliability can be improved by applying a flux to the solder bumps and / or the surface layer of the connection electrode portion on the multilayer printed wiring board.
 基板としてはマザーボード、ネットワーク基板、パッケージ基板等に使用され、基板として使用される。特にパッケージ基板としては片面封止材料用の薄層基板として有用である。また半導体封止材として使用した場合、その配合から得られる半導体装置としては、例えばDIP(デュアルインラインパッケージ)、QFP(クワッドフラットパッケージ)、BGA(ボールグリッドアレイ)、CSP(チップサイズパッケージ)、SOP(スモールアウトラインパッケージ)、TSOP(シンスモールアウトラインパッケージ)、TQFP(シンクワッドフラットパッケージ)等が挙げられる。 The board is used for motherboards, network boards, package boards, etc., and is used as a board. Particularly, it is useful as a package substrate as a thin-layer substrate for a single-sided sealing material. When used as a semiconductor encapsulant, semiconductor devices obtained from the composition include, for example, DIP (dual inline package), QFP (quad flat package), BGA (ball grid array), CSP (chip size package), and SOP. (Small outline package), TSOP (thin small outline package), TQFP (thin quad flat package) and the like.
 以下、本発明を実施例により詳細に説明する。尚、本発明はこれら実施例に限定される物ではない。 Hereinafter, the present invention will be described in detail with reference to examples. Note that the present invention is not limited to these examples.
 実施例で用いた各種分析方法について以下の条件で行った。
・軟化点
 JIS K-7234に準拠した方法で測定し、単位は℃である。
・溶融粘度
 ICI溶融粘度(150℃)コーンプレート法で測定し、単位はPa・sである。
Various analysis methods used in the examples were performed under the following conditions.
-Softening point Measured according to JIS K-7234, and the unit is ° C.
Melt viscosity ICI melt viscosity (150 ° C.) Measured by a cone plate method, and the unit is Pa · s.
・GPC(ゲルパーミエーションクロマトグラフィー)分析
メーカー:Waters
カラム:ガードカラム SHODEX GPC KF-601(2本)、KF-602、KF-602.5、KF-603
流速:1.23ml/min.
カラム温度:25℃
使用溶剤:THF(テトラヒドロフラン)
検出器:RI(示差屈折検出器)
・ GPC (gel permeation chromatography) analysis manufacturer: Waters
Column: Guard column SHOdex GPC KF-601 (2), KF-602, KF-602.5, KF-603
Flow rate: 1.23 ml / min.
Column temperature: 25 ° C
Solvent used: THF (tetrahydrofuran)
Detector: RI (differential refraction detector)
(実施例1)
 温度計、冷却管、撹拌機を取り付けたフラスコに、トルエン150g、N-メチルアニリン56.0gを加えて撹拌した。次いで4,4’-ビスクロロメチレンビフェニル43.5gを1時間かけて添加し、65℃で2時間反応させた。次いで35%塩酸36.1gを80℃以下で滴下した。滴下終了後、共沸脱水しながら210℃まで昇温し、210℃で15時間反応させた。反応終了後、17%苛性ソーダ水溶液100gを滴下し、反応液をアルカリ性とし、更にトルエン100g、N-メチルアニリン150gを加え、6時間撹拌した。静置、廃水後、廃水が中性となるまで水洗を行った。減圧濃縮により溶剤、水、未反応のN-メチルアニリンを留去し、ビフェニル-N-メチルアニリンノボラック(BNMAN-1)を黒色固形樹脂として得た(アミン当量:208g、軟化点:79.6℃、ICI粘度(150℃):0.048Pa・s、組成比はGPC面積%でn=1成分:9.1%、n=2成分:31%、n=3成分:29%、n=4以上の高分子量成分:30.9%であった)。
(Example 1)
To a flask equipped with a thermometer, a condenser, and a stirrer, 150 g of toluene and 56.0 g of N-methylaniline were added and stirred. Next, 43.5 g of 4,4'-bischloromethylenebiphenyl was added over 1 hour and reacted at 65 ° C. for 2 hours. Next, 36.1 g of 35% hydrochloric acid was added dropwise at 80 ° C. or lower. After completion of the dropwise addition, the temperature was raised to 210 ° C. while azeotropic dehydration, and the reaction was performed at 210 ° C. for 15 hours. After the completion of the reaction, 100 g of a 17% aqueous sodium hydroxide solution was added dropwise to make the reaction solution alkaline, and 100 g of toluene and 150 g of N-methylaniline were further added, followed by stirring for 6 hours. After standing and the wastewater, washing was performed until the wastewater became neutral. The solvent, water and unreacted N-methylaniline were distilled off by concentration under reduced pressure to obtain biphenyl-N-methylaniline novolak (BNMAN-1) as a black solid resin (amine equivalent: 208 g, softening point: 79.6). ° C, ICI viscosity (150 ° C): 0.048 Pa · s, composition ratio is GPC area%, n = 1 component: 9.1%, n = 2 component: 31%, n = 3 component: 29%, n = 4 or more high molecular weight components: 30.9%).
(実施例2)
 温度計、冷却管、撹拌機を取り付けたフラスコに、トルエン50g、N-メチルアニリン171.5gを加えて撹拌した。次いで4,4’-ビスクロロメチレンビフェニル50.2gを1時間かけて添加し、65℃で2時間反応させた。次いで35%塩酸41.7gを80℃以下で滴下した。滴下終了後、共沸脱水しながら210℃まで昇温し、210℃で15時間反応させた。反応終了後、48%苛性ソーダ水溶液40gを滴下し、反応液をアルカリ性とし、更にトルエン50gを加え、6時間撹拌した。静置、廃水後、廃水が中性となるまで水洗を行った。減圧濃縮により溶剤、水、未反応のN-メチルアニリンを留去し、ビフェニル-N-メチルアニリンノボラック(BNMAN-2)を黒色固形樹脂として得た(アミン当量:198g、軟化点:47.3℃、ICI粘度(150℃):0.02Pa・s、組成比はGPC面積%でn=1成分:71%、n=2成分:18%、n=3成分:4.6%、n=4以上の高分子量成分:1.3%であった)。
(Example 2)
To a flask equipped with a thermometer, a condenser and a stirrer, 50 g of toluene and 171.5 g of N-methylaniline were added and stirred. Next, 50.2 g of 4,4'-bischloromethylenebiphenyl was added over 1 hour and reacted at 65 ° C. for 2 hours. Next, 41.7 g of 35% hydrochloric acid was added dropwise at 80 ° C. or lower. After completion of the dropwise addition, the temperature was raised to 210 ° C. while azeotropic dehydration, and the reaction was performed at 210 ° C. for 15 hours. After completion of the reaction, 40 g of a 48% aqueous sodium hydroxide solution was added dropwise to make the reaction solution alkaline, and 50 g of toluene was further added thereto, followed by stirring for 6 hours. After standing and the wastewater, washing was performed until the wastewater became neutral. The solvent, water and unreacted N-methylaniline were distilled off by concentration under reduced pressure to obtain biphenyl-N-methylaniline novolak (BNMAN-2) as a black solid resin (amine equivalent: 198 g, softening point: 47.3). ° C, ICI viscosity (150 ° C): 0.02 Pa · s, composition ratio in GPC area%: n = 1 component: 71%, n = 2 component: 18%, n = 3 component: 4.6%, n = 4 or more high molecular weight components: 1.3%).
(実施例3)
 温度計、冷却管、撹拌機を取り付けたフラスコに、水200g、N-メチルアニリン214gを加えて撹拌した。次いで35%塩酸209gを40℃以下で滴下した。次いで37%ホルムアルデヒド水溶液108gを40℃以下で滴下した。滴下終了後、75~80℃で5時間反応させた。反応終了後、48%苛性ソーダ水溶液168gを滴下し、反応液をアルカリ性とし、更にトルエン300gを加え、6時間撹拌した。静置、廃水後、廃水が中性となるまで水洗を行った。減圧濃縮により溶剤、水、未反応のN-メチルアニリンを留去し、N-メチルアニリンノボラック(NMAN-1)200gを黒色液状樹脂として得た(アミン当量:116g/eq、組成比はGPC面積%でn=1成分:37%、n=2成分:19%、n=3成分:14%、n=4以上の高分子量成分:30%であった)。
(Example 3)
200 g of water and 214 g of N-methylaniline were added to a flask equipped with a thermometer, a condenser, and a stirrer, followed by stirring. Then, 209 g of 35% hydrochloric acid was added dropwise at 40 ° C. or lower. Next, 108 g of a 37% aqueous formaldehyde solution was added dropwise at 40 ° C. or lower. After the completion of the dropwise addition, the reaction was carried out at 75 to 80 ° C. for 5 hours. After completion of the reaction, 168 g of a 48% aqueous sodium hydroxide solution was added dropwise to make the reaction solution alkaline, and 300 g of toluene was further added thereto, followed by stirring for 6 hours. After standing and the wastewater, washing was performed until the wastewater became neutral. The solvent, water and unreacted N-methylaniline were distilled off by concentration under reduced pressure to obtain 200 g of N-methylaniline novolak (NMAN-1) as a black liquid resin (amine equivalent: 116 g / eq, composition ratio was GPC area). %, N = 1 component: 37%, n = 2 component: 19%, n = 3 component: 14%, n = 4 or more high molecular weight components: 30%).
(実施例4)
 37%ホルムアルデヒド水溶液を122gに変更した以外は実施例3と同様にして、N-メチルアニリンノボラック(NMAN-2)を黒色半固形樹脂として得た(アミン当量:118.6g/eq、組成比はGPC面積%でn=1成分:25%、n=2成分:15%、n=3成分:13%、n=4以上の高分子量成分:47%であった)。
(Example 4)
N-methylaniline novolak (NMAN-2) was obtained as a black semi-solid resin in the same manner as in Example 3 except that the 37% aqueous formaldehyde solution was changed to 122 g (amine equivalent: 118.6 g / eq, composition ratio: In terms of GPC area%, n = 1 component: 25%, n = 2 component: 15%, n = 3 component: 13%, n = 4 or more high molecular weight component: 47%).
(実施例5)
 温度計、冷却管、撹拌機を取り付けたフラスコに、トルエン50g、N-メチルアニリン64.1g、α,α,α’,α’-テトラメチル-1,3-ベンゼンジメタノール、活性白土20gを加えて撹拌した。共沸脱水しながら内温を160℃まで昇温し、160℃で24時間反応を行った。放冷後、トルエン150gを加え、濾過により活性白土を除去し、濾液を減圧濃縮することでビス-N-メチルアミノクミルベンゼン構造を主成分とする芳香族アミン樹脂(BNMACB)を褐色液状樹脂として得た(アミン当量:191g/eq.)。
(Example 5)
In a flask equipped with a thermometer, a condenser and a stirrer, 50 g of toluene, 64.1 g of N-methylaniline, α, α, α ′, α′-tetramethyl-1,3-benzenedimethanol and 20 g of activated clay were placed. In addition, the mixture was stirred. The internal temperature was raised to 160 ° C. while performing azeotropic dehydration, and the reaction was carried out at 160 ° C. for 24 hours. After cooling, 150 g of toluene was added, the activated clay was removed by filtration, and the filtrate was concentrated under reduced pressure to convert the aromatic amine resin (BNMACB) having a bis-N-methylaminocumylbenzene structure as a main component into a brown liquid resin. (Amine equivalent: 191 g / eq.).
(合成例1)
 37%ホルムアルデヒド水溶液を89gに変更した以外は実施例3と同様にして、N-メチルアニリンノボラック(NMAN-3)217gを黒色液状樹脂として得た(アミン当量:115g/eq、組成比はGPC面積%でn=1成分:65%、n=2成分:22%、n=3成分:8.2%、n=4以上の高分子量成分:4.8%であった)。
(Synthesis example 1)
217 g of N-methylaniline novolak (NMAN-3) was obtained as a black liquid resin in the same manner as in Example 3 except that the 37% aqueous formaldehyde solution was changed to 89 g (amine equivalent: 115 g / eq, composition ratio was GPC area). %, N = 1 component: 65%, n = 2 component: 22%, n = 3 component: 8.2%, n = 4 or higher high molecular weight component: 4.8%).
(合成例2)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372部とトルエン200部を仕込み、室温で35%塩酸146部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液330部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アミン樹脂(a1)173部を得た。ガスクロマトグラフィーにより測定した芳香族アミン樹脂(a1)中のジフェニルアミン量は2.0 %であった。得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量ずつ滴下した。その結果、芳香族アミン樹脂(A1)166部を得た。得られた芳香族アミン樹脂(A1)の軟化点は56℃、溶融粘度は0.035Pa・s、ジフェニルアミンは0.1%以下であった。JIS K-7236 付属書A(グリシジルアミンの補正法)に準拠し、得られた値をアミン当量とした場合、A1のアミン当量は195g/eq.であった。
(Synthesis example 2)
A flask equipped with a thermometer, a cooling tube, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 372 parts of aniline and 200 parts of toluene, and 146 parts of 35% hydrochloric acid was added dropwise at room temperature over 1 hour. After the completion of the dropwise addition, the mixture was heated and cooled to separate water and toluene, which were azeotropic, and then only the organic layer, toluene, was returned to the system to perform dehydration. Next, 125 parts of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining the temperature at 60 to 70 ° C., and the reaction was further performed at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to 195 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. Then, while cooling, 330 parts of a 30% aqueous sodium hydroxide solution was slowly dropped into the system so that the inside of the system was not violently refluxed. Was placed. The separated lower aqueous layer was removed, and washing of the reaction solution with water was repeated until the washing solution became neutral. Next, 173 parts of an aromatic amine resin (a1) was obtained by distilling off excess aniline and toluene from the oil layer under reduced pressure by heating (200 ° C., 0.6 KPa) using a rotary evaporator. The amount of diphenylamine in the aromatic amine resin (a1) measured by gas chromatography was 2.0%. The obtained resin was again dropped by water in a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa) instead of blowing steam. As a result, 166 parts of an aromatic amine resin (A1) was obtained. The obtained aromatic amine resin (A1) had a softening point of 56 ° C., a melt viscosity of 0.035 Pa · s, and diphenylamine of 0.1% or less. Based on JIS K-7236 Annex A (correction method for glycidylamine), when the obtained value is defined as amine equivalent, the amine equivalent of A1 is 195 g / eq. Met.
(合成例3)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147部とトルエン300部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、合成例2で得られた芳香族アミン樹脂(A1)195部をN-メチル-2-ピロリドン195部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸3部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら20時間反応を行った。反応終了後、トルエンを120部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を減圧濃縮して、マレイミド樹脂(M1)を70%含有する樹脂溶液を得た。マレイミド樹脂(M1)中のジフェニルアミン含有量は0.1%以下であった。M1を加熱減圧下溶剤留去し固形取り出しし、固形マレイミド樹脂(MIR)を得た。原料として用いたアミン樹脂(A1)のアミン当量から算出したMIRの理論マレイミド当量は275g/eq.であった。
(Synthesis example 3)
A flask equipped with a thermometer, a cooling pipe, a Dean-Stark azeotropic distillation trap, and a stirrer was charged with 147 parts of maleic anhydride and 300 parts of toluene, and then heated and cooled to separate water and toluene, which were azeotropic. Then, only toluene, which is an organic layer, was returned into the system to perform dehydration. Next, a resin solution obtained by dissolving 195 parts of the aromatic amine resin (A1) obtained in Synthesis Example 2 in 195 parts of N-methyl-2-pyrrolidone was taken for 1 hour while maintaining the inside of the system at 80 to 85 ° C. It was dropped. After completion of the dropwise addition, the reaction was carried out at the same temperature for 2 hours, 3 parts of p-toluenesulfonic acid was added, and condensed water and toluene, which azeotrope under reflux conditions, were cooled and separated. Was returned to the system, and a reaction was carried out for 20 hours while performing dehydration. After the completion of the reaction, 120 parts of toluene was added, and water washing was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, and the mixture was heated to remove water from the system by azeotropic distillation. Next, the reaction solution was concentrated under reduced pressure to obtain a resin solution containing 70% of the maleimide resin (M1). The diphenylamine content in the maleimide resin (M1) was 0.1% or less. M1 was heated under reduced pressure to remove the solvent, and the solid was taken out to obtain a solid maleimide resin (MIR). The theoretical maleimide equivalent of MIR calculated from the amine equivalent of the amine resin (A1) used as a raw material is 275 g / eq. Met.
(実施例6~13、比較例1、2)
 実施例1、3、4及び合成例1で得られたN-アルキル基を有する芳香族アミン樹脂(BNMAN-1、NMAN-1~3)、4,4’-ジアミノジフェニルメタン(東京化成社製)、合成例3のマレイミド樹脂(MIR)を表1の割合(重量部)で配合し、金属容器中で加熱溶融混合してそのまま金型に流し込み、220℃で2時間硬化させた。
(Examples 6 to 13, Comparative Examples 1 and 2)
N-alkyl group-containing aromatic amine resins (BNMAN-1, NMAN-1 to 3) obtained in Examples 1, 3, and 4 and Synthesis Example 1, 4,4′-diaminodiphenylmethane (manufactured by Tokyo Chemical Industry Co., Ltd.) The maleimide resin (MIR) of Synthesis Example 3 was blended in the ratio (parts by weight) shown in Table 1, heated and melt-mixed in a metal container, poured into a mold as it was, and cured at 220 ° C. for 2 hours.
 このようにして得られた硬化物の物性を下記項目について測定した結果を表1に示す。
<耐熱性試験>
・ガラス転移温度:動的粘弾性試験機により測定し、tanδが最大値のときの温度。
<誘電率試験・誘電正接試験>
・(株)関東電子応用開発製の1GHz空洞共振器を用いて、空洞共振器摂動法にてテストを行った。ただし、サンプルサイズは幅1.7mm×長さ100mmとし、厚さは1.7mmで試験を行った。
The physical properties of the cured product thus obtained were measured for the following items, and the results are shown in Table 1.
<Heat resistance test>
Glass transition temperature: a temperature measured by a dynamic viscoelasticity tester when tan δ is the maximum value.
<Dielectric constant test and dielectric loss tangent test>
-A test was performed by a cavity resonator perturbation method using a 1 GHz cavity resonator manufactured by Kanto Electronics Application Development Co., Ltd. However, the test was performed with a sample size of 1.7 mm in width × 100 mm in length and a thickness of 1.7 mm.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表1により、本発明のN-アルキル基を有する芳香族アミン化合物を用いた実施例6~13は、比較例1、2より優れた電気特性と、高い耐熱性を有することが確認された。 From Table 1, it was confirmed that Examples 6 to 13 using the aromatic amine compound having an N-alkyl group of the present invention had better electrical characteristics and higher heat resistance than Comparative Examples 1 and 2.
 したがって、本発明のN-アルキル基を有するアニリン系化合物とホルムアルデヒドの縮合物は、電気電子部品用絶縁材料(高信頼性半導体封止材料など)及び積層板(プリント配線板、BGA用基板、ビルドアップ基板など)、接着剤(導電性接着剤など)やCFRPを始めとする各種複合材料用、塗料等の用途に有用である。 Therefore, the condensate of an aniline compound having an N-alkyl group and formaldehyde of the present invention can be used as an insulating material for electric and electronic parts (such as a highly reliable semiconductor sealing material) and a laminate (printed wiring board, BGA substrate, build It is useful for various composite materials including CFRP, adhesives (conductive adhesives and the like), paints and the like.

Claims (11)

  1.  下記式(1)で表されるN-アルキル基を有する芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、複数存在するRはそれぞれ独立して水素、炭素数1~15の炭化水素基を表す。但し、Rが全て水素となる場合を除くものとする。複数存在するXはそれぞれ独立して水素原子、炭素数1~15の炭化水素基を表し、Yは炭素数2~30の炭化水素基を表す。l、lおよびmは1以上の整数を表し、l+m≦5、l+m≦4を満たす。nは1≦n≦15を表す。)
    An aromatic amine resin having an N-alkyl group represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), a plurality of R's each independently represent hydrogen or a hydrocarbon group having 1 to 15 carbon atoms, provided that all R's are hydrogen. each independently represent a hydrogen atom, a hydrocarbon group of 1 to 15 carbon atoms, Y is .l 1, l 2 and m representing a hydrocarbon group having 2 to 30 carbon atoms is an integer of 1 or more, l 1 + M ≦ 5, l 2 + m ≦ 4, and n represents 1 ≦ n ≦ 15.)
  2.  前記式(1)において、Yが下記式(2)に記載の(a)~(d)のいずれか1つである請求項1に記載のN-アルキル基を有する芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000002
    2. The aromatic amine resin having an N-alkyl group according to claim 1, wherein in the formula (1), Y is any one of (a) to (d) described in the following formula (2).
    Figure JPOXMLDOC01-appb-C000002
  3.  下記式(3)で表される請求項2に記載のN-アルキル基を有する芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000003
    (nは平均値であり、1≦n≦15を表す。)
    3. The aromatic amine resin having an N-alkyl group according to claim 2, represented by the following formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (N is an average value and represents 1 ≦ n ≦ 15.)
  4.  前記式(1)において、Yがメチレン結合であり、ゲルパーミエーション分析でn=1で表される成分が5面積%以上50面積%未満である請求項1に記載のN-アルキル基を有する芳香族アミン樹脂。 2. The N-alkyl group according to claim 1, wherein in the formula (1), Y is a methylene bond, and a component represented by n = 1 in gel permeation analysis is 5 to less than 50 area%. Aromatic amine resin.
  5.  前記式(1)において、n=4以上で表される成分が5面積%以上80面積%未満である請求項4に記載のN-アルキル基を有する芳香族アミン樹脂。 (5) The aromatic amine resin having an N-alkyl group according to (4), wherein in the formula (1), the component represented by n = 4 or more is at least 5 area% and less than 80 area%.
  6.  下記式(4)で表される請求項4又は5に記載のN-アルキル基を有する芳香族アミン樹脂。
    Figure JPOXMLDOC01-appb-C000004
    (nは平均値であり、1≦n≦15を表す。)
    The aromatic amine resin having an N-alkyl group according to claim 4 or 5, represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (N is an average value and represents 1 ≦ n ≦ 15.)
  7.  前記式(1)又は(4)において、ゲルパーミエーション分析でn=1で表される成分をA面積%、n=4以上で表される成分をB面積%としたとき、B/Aが0.1以上20未満である請求項4乃至6のいずれか一項に記載のN-アルキル基を有する芳香族アミン樹脂。 In the above formula (1) or (4), when the component represented by n = 1 in the gel permeation analysis is A area% and the component represented by n = 4 or more is B area%, B / A is The aromatic amine resin having an N-alkyl group according to any one of claims 4 to 6, which is 0.1 or more and less than 20.
  8.  アミン当量が116g/eq.以上120g/eq.未満である請求項4乃至7のいずれか一項に記載のN-アルキル基を有する芳香族アミン樹脂。 {The amine equivalent is 116 g / eq. 120 g / eq. The aromatic amine resin having an N-alkyl group according to any one of claims 4 to 7, which is less than the above.
  9.  請求項1乃至8のいずれか一項に記載のN-アルキル基を有する芳香族アミン樹脂と、マレイミド樹脂を含有する硬化性樹脂組成物。 A curable resin composition containing the aromatic amine resin having an N-alkyl group according to any one of claims 1 to 8 and a maleimide resin.
  10.  N-アルキル基を有する芳香族アミン樹脂の配合当量αとマレイミド樹脂の配合当量βの配合当量比率が0.9≦α/β≦2.5である請求項9に記載の硬化性樹脂組成物。 10. The curable resin composition according to claim 9, wherein the compounding equivalent ratio of the compounding equivalent α of the aromatic amine resin having an N-alkyl group to the compounding equivalent β of the maleimide resin is 0.9 ≦ α / β ≦ 2.5. .
  11.  請求項9又は10に記載の硬化性樹脂組成物を硬化した硬化物。
     
    A cured product obtained by curing the curable resin composition according to claim 9.
PCT/JP2019/029965 2018-08-01 2019-07-31 Aromatic amine resin having n-alkyl group, curable resin composition, and cured product thereof WO2020027179A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019570169A JP6755418B2 (en) 2018-08-01 2019-07-31 Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
KR1020207031061A KR20210036863A (en) 2018-08-01 2019-07-31 Aromatic amine resin having an N-alkyl group, curable resin composition, and cured product thereof
CN201980028742.6A CN112105673B (en) 2018-08-01 2019-07-31 Aromatic amine resin having N-alkyl group, curable resin composition, and cured product thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-144657 2018-08-01
JP2018144658 2018-08-01
JP2018-144658 2018-08-01
JP2018144657 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027179A1 true WO2020027179A1 (en) 2020-02-06

Family

ID=69231791

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029965 WO2020027179A1 (en) 2018-08-01 2019-07-31 Aromatic amine resin having n-alkyl group, curable resin composition, and cured product thereof

Country Status (5)

Country Link
JP (1) JP6755418B2 (en)
KR (1) KR20210036863A (en)
CN (1) CN112105673B (en)
TW (1) TWI815938B (en)
WO (1) WO2020027179A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115427039A (en) 2020-04-13 2022-12-02 阿普塔生物治疗公司 Pulmonary fibrosis drug containing pyrazole derivative

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152844A (en) * 1982-03-08 1983-09-10 Agency Of Ind Science & Technol Preparation of triarylmethane derivative
JPS62155242A (en) * 1985-12-27 1987-07-10 Mitsui Petrochem Ind Ltd Production of bis(p-aminocumyl)benzene compound
JPS62155241A (en) * 1985-12-27 1987-07-10 Mitsui Petrochem Ind Ltd Production of bis(p-aminocumyl)benzene compound
JPH06316627A (en) * 1993-05-06 1994-11-15 Nippon Kayaku Co Ltd Curing agent for epoxy resin and method for curing epoxy resin using the same
JPH09100260A (en) * 1995-04-13 1997-04-15 Nippon Kayaku Co Ltd Production of 4,4'-di(n-alkylaniline) compound
JP2009001783A (en) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd Resin composition for laminate, prepreg and laminate
JP2010006897A (en) * 2008-06-25 2010-01-14 Nippon Kayaku Co Ltd Polyhydric phenol resin, epoxy resin composition, and its cured product
WO2015098594A1 (en) * 2013-12-26 2015-07-02 日産化学工業株式会社 Resist underlayer film-forming composition containing novolac polymer having secondary amino group

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570923B2 (en) 1991-06-07 1997-01-16 信越化学工業株式会社 Thermosetting resin composition
JP6269340B2 (en) 2014-06-17 2018-01-31 コニカミノルタ株式会社 3D modeling composition, 3D modeling ink set, and 3D manufacturing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58152844A (en) * 1982-03-08 1983-09-10 Agency Of Ind Science & Technol Preparation of triarylmethane derivative
JPS62155242A (en) * 1985-12-27 1987-07-10 Mitsui Petrochem Ind Ltd Production of bis(p-aminocumyl)benzene compound
JPS62155241A (en) * 1985-12-27 1987-07-10 Mitsui Petrochem Ind Ltd Production of bis(p-aminocumyl)benzene compound
JPH06316627A (en) * 1993-05-06 1994-11-15 Nippon Kayaku Co Ltd Curing agent for epoxy resin and method for curing epoxy resin using the same
JPH09100260A (en) * 1995-04-13 1997-04-15 Nippon Kayaku Co Ltd Production of 4,4'-di(n-alkylaniline) compound
JP2009001783A (en) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd Resin composition for laminate, prepreg and laminate
JP2010006897A (en) * 2008-06-25 2010-01-14 Nippon Kayaku Co Ltd Polyhydric phenol resin, epoxy resin composition, and its cured product
WO2015098594A1 (en) * 2013-12-26 2015-07-02 日産化学工業株式会社 Resist underlayer film-forming composition containing novolac polymer having secondary amino group

Also Published As

Publication number Publication date
CN112105673B (en) 2023-03-14
JPWO2020027179A1 (en) 2020-08-06
KR20210036863A (en) 2021-04-05
TW202007704A (en) 2020-02-16
CN112105673A (en) 2020-12-18
JP6755418B2 (en) 2020-09-16
TWI815938B (en) 2023-09-21

Similar Documents

Publication Publication Date Title
WO2016017751A1 (en) Epoxy resin composition, resin sheet, and prepreg, and metal-clad laminate board, printed circuit board, and semiconductor device
CN106661195B (en) Epoxy resin composition, resin sheet, prepreg, metal-clad laminate, printed wiring board, and semiconductor device
JP7153994B2 (en) Alkenyl group-containing compound, curable resin composition and cured product thereof
TWI739976B (en) Alkenyl-containing resin, curable resin composition and hardened product
JP6755418B2 (en) Aromatic amine resin having N-alkyl group, curable resin composition and cured product thereof
JP7185383B2 (en) Curable resin composition and its cured product
TWI662056B (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, laminated board, printed wiring board, semiconductor device
WO2019198607A1 (en) Alkenyl-group-containing compound, curable resin composition, and cured object obtained therefrom
JP6932116B2 (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed wiring board, semiconductor device
TWI671351B (en) Resin composition for printed wiring board, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP7195372B2 (en) Epoxy resin-containing varnish, epoxy resin composition-containing varnish, prepreg, resin sheet, printed wiring board, semiconductor device
JP4748695B2 (en) Epoxy resin composition and cured product thereof
WO2018199156A1 (en) Methallyl group-containing resin, curable resin composition and cured product of same
JP7251006B1 (en) Phenolic resins, epoxy resins, curable resin compositions, and cured products thereof
WO2024071129A1 (en) Active ester resin, epoxy resin composition and cured product thereof, prepreg, laminated board, and build-up film
JP4748625B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
WO2023068089A1 (en) Phenolic resin, epoxy resin, curable resin composition, and cured product thereof
JP7437253B2 (en) Phenol resin, epoxy resin, epoxy resin composition and cured product thereof
JP6636599B2 (en) Epoxy resin composition, prepreg and metal-clad laminate, printed wiring board
WO2023013092A1 (en) Epoxy resin mixture, epoxy resin composition and cured product of same
TW202415695A (en) Active ester resin and its production method, epoxy resin composition, cured epoxy resin composition, prepreg, resin sheet, laminate and circuit board material
CN116888189A (en) Thermosetting resin composition, cured product, resin sheet, prepreg, metal foil-clad laminate, multilayer printed wiring board, sealing material, fiber-reinforced composite material, adhesive, and semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019570169

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843689

Country of ref document: EP

Kind code of ref document: A1