WO2020027060A1 - 二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キット - Google Patents
二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キット Download PDFInfo
- Publication number
- WO2020027060A1 WO2020027060A1 PCT/JP2019/029681 JP2019029681W WO2020027060A1 WO 2020027060 A1 WO2020027060 A1 WO 2020027060A1 JP 2019029681 W JP2019029681 W JP 2019029681W WO 2020027060 A1 WO2020027060 A1 WO 2020027060A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- agent
- chlorine dioxide
- gas
- dioxide gas
- clo
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N59/00—Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/01—Deodorant compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L9/00—Disinfection, sterilisation or deodorisation of air
- A61L9/015—Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone
- A61L9/04—Disinfection, sterilisation or deodorisation of air using gaseous or vaporous substances, e.g. ozone using substances evaporated in the air without heating
- A61L9/12—Apparatus, e.g. holders, therefor
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B11/00—Oxides or oxyacids of halogens; Salts thereof
- C01B11/02—Oxides of chlorine
Definitions
- the present disclosure relates to the treatment of allergenic substances such as pollen, dust, rind, and fungi; the treatment of harmful substances such as pathogenic bacteria, viruses, and toxic chemicals (eg, tobacco smoke and formaldehyde);
- the present invention relates to a chlorine dioxide gas generation and extinction kit and a chlorine dioxide gas generation and extinction kit widely used for deodorization, mold prevention, preservation, etc. of inside and outside foods.
- chlorine dioxide Since chlorine dioxide (ClO 2 ) has a strong oxidizing power, it treats allergens such as pollen, dust, shavings, fungi, etc., pathogenic bacteria, viruses, and toxic chemicals (eg, tobacco smoke, formaldehyde). Widely used for treatment of harmful substances such as, environmental purification, deodorization of indoor and outdoor foods, anti-mold and antiseptic, etc. A method for continuously generating useful chlorine dioxide used in such a wide range of applications and a composition therefor have been proposed.
- Patent Document 1 discloses a pure chlorine dioxide solution having dissolved chlorine dioxide gas, chlorite and a pH adjuster as constituents, the pure chlorine dioxide solution and a superabsorbent resin.
- the present invention proposes a gel composition containing the same, an effervescent composition containing the pure chlorine dioxide solution and a foam, and a container for containing the pure chlorine dioxide solution, the gel composition, and the effervescent composition. .
- Patent Document 2 discloses that an aqueous solution of chlorite contains an organic acid or an inorganic acid, a powdery gas generation regulator or a powdery gas generation regulator and a water-absorbing resin. And a method of generating chlorine dioxide gas that gels and continuously generates chlorine dioxide gas.
- JP-A-11-278808 Patent Document 1
- JP-A-2005-29430 Patent Document 2 propose a method of continuously generating chlorine dioxide gas. Since the gas has a strong pungent odor, the pungent odor due to chlorine dioxide gas after use is a problem. For this reason, in places where many people gather (for example, indoors, in automobiles, etc.), treatment of allergens such as pollen, dust, shavings, fungi, pathogens, viruses, harmful chemicals (for example, tobacco smoke, formaldehyde) ), Treatment of harmful substances, environmental purification, deodorization of indoor and outdoor foods, use of chlorine dioxide gas for mold prevention and preservation, etc., require evacuation of people not only during use but also after use. There were problems and many restrictions.
- An object of the present disclosure is to provide a chlorine dioxide gas generation and extinction method and a chlorine dioxide gas generation and extinction kit that can solve the above problem by extinguishing the generated chlorine dioxide gas after use.
- the present disclosure provides a gas generating step of generating a chlorine dioxide gas by contacting an A agent containing chlorite and an B agent containing a gas generating agent, and reducing the chlorine dioxide gas with chlorine dioxide gas.
- the chlorine dioxide reducing agent may include at least one selected from the group consisting of hydrogen peroxide, erythorbic acid and salts thereof, and ascorbic acid and salts thereof. it can.
- an A agent including a chlorite, a B agent including a gas generating agent, and a C agent including a chlorine dioxide reducing agent are provided.
- the chlorine dioxide reducing agent may include at least one selected from the group consisting of hydrogen peroxide, erythorbic acid and salts thereof, and ascorbic acid and salts thereof. it can.
- FIG. 1 is a flowchart showing a method for extinguishing and eliminating chlorine dioxide gas.
- a method for generating and extinguishing chlorine dioxide gas includes the steps of contacting an A agent containing chlorite with a B agent containing a gas generating agent to remove chlorine dioxide gas.
- the method includes a gas generating step S10 for generating gas and a gas extinguishing step S20 for extinguishing the chlorine dioxide gas by bringing a C agent containing a chlorine dioxide reducing agent into contact with the chlorine dioxide gas.
- the method for generating and extinguishing chlorine dioxide gas of the present embodiment includes the above-mentioned gas generating step S10 and the above-mentioned gas extinguishing step S20, the generated chlorine dioxide gas can be extinguished after use. Irritating odor due to chlorine dioxide gas can be reduced. Thereby, the evacuation of the person after using the chlorine dioxide gas can be released at an early stage.
- chlorine dioxide gas is not particularly limited as long as it is an effective use for the treatment of the object to be treated, and the chlorine dioxide gas is used for treating allergens such as pollen, dust, shavings, fungi, pathogens, Includes a wide range of uses for the treatment of harmful substances such as viruses and toxic chemicals (eg, tobacco smoke, formaldehyde), environmental purification, indoor and outdoor and food deodorization, fungicide and preservation, and the like.
- allergens such as pollen, dust, shavings, fungi, pathogens
- harmful substances such as viruses and toxic chemicals (eg, tobacco smoke, formaldehyde), environmental purification, indoor and outdoor and food deodorization, fungicide and preservation, and the like.
- the gas generation step S10 is a step of generating chlorine dioxide gas by bringing the agent A containing chlorite into contact with the agent B containing a gas generating agent. By the gas generation step S10, the chlorine dioxide gas to be used can be efficiently generated.
- Agent A contains chlorite.
- the agent A is not particularly limited as long as it contains chlorite, but is a liquid containing chlorite from the viewpoint of efficiently contacting the agent B described below and efficiently generating chlorine dioxide gas.
- an aqueous liquid containing chlorite is more preferable.
- the aqueous liquid means that the solvent and / or the dispersion medium excluding solutes and / or dispersoids such as chlorite is mainly composed of water (the content of water in the solvent and / or dispersion medium is 50 mass%). % Or more).
- the liquid A is more preferably an aqueous liquid containing chlorite, and particularly preferably an aqueous chlorite liquid.
- the chlorite contained in the agent A is not particularly limited as long as it is a chlorite that generates chlorine dioxide gas by contact with a gas generating agent contained in the agent B described below.
- sodium chlorite ( NaClO 2 ) potassium chlorite (KClO 2 )
- chlorite of a Group 1 element (alkali metal element) excluding hydrogen such as lithium chlorite (LiClO 2 ), calcium chlorite (Ca (ClO 2) 2 ), strontium chlorite (Sr (ClO 2 ) 2 ), barium chlorite (Ba (ClO 2 ) 2 ), magnesium chlorite (Mg (ClO 2 ) 2 ) Chlorate and the like.
- the agent A may contain a substance other than chlorite, as long as it does not inhibit the generation of chlorine dioxide gas upon contact with the agent B described below, and does not generate harmful by-products. Good.
- the substance other than the gas generating agent included in the agent A include an alkali such as sodium hydroxide (NaOH).
- Silbrite containing 80% by mass or more of NaClO 2 is suitably used as the agent A.
- Aqueous chlorite liquid is obtained by dissolving and / or dispersing the above-mentioned at least one chlorite at a predetermined concentration in an aqueous solvent and / or dispersion medium.
- a commercially available 25% by mass aqueous sodium chlorite solution used as a bleaching agent in liquid or a commercially available 86% by mass, 80% by mass, 79% by mass in solid Product or a 76% by mass product is suitably used.
- the concentration of the aqueous chlorite solution is preferably 25% by mass or less, more preferably 15% by mass or less, and preferably 10% by mass or less from the viewpoint of easy handling because it does not correspond to virulents and dangerous substances. More preferred.
- the agent B contains a gas generating agent.
- the agent B is not particularly limited as long as it contains a gas generating agent, but is preferably a liquid containing a gas generating agent from the viewpoint of efficiently contacting the agent A and efficiently generating chlorine dioxide gas.
- An aqueous liquid containing a gas generating agent is more preferable.
- the aqueous liquid means that the solvent and / or the dispersion medium excluding the solute and / or the dispersoid such as the gas generating agent is mainly composed of water (the content of water in the solvent and / or the dispersion medium is 50% by mass). Above).
- the liquid B is more preferably an aqueous solution containing a gas generating agent or an aqueous dispersion containing a gas generating agent, and particularly preferably an aqueous solution of a gas generating agent or an aqueous dispersion of a gas generating agent.
- the gas generating agent contained in the agent B is not particularly limited as long as it is a gas generating agent that generates a chlorine dioxide gas by contact with the chlorite contained in the agent A, for example, an inorganic acid such as hydrochloric acid. And organic acids such as citric acid, lactic acid and malic acid. Among them, hydrochloric acid, citric acid and the like are easily available and have no problem in use.
- the agent B may contain a substance other than the gas generating agent, as long as the agent B does not inhibit the generation of chlorine dioxide gas upon contact with the agent A, and does not generate harmful by-products. .
- the gas generating agent aqueous liquid is obtained by dissolving and / or dispersing the above-mentioned at least one gas generating agent at a predetermined concentration in an aqueous solvent and / or dispersion medium.
- hydrochloric acid a commercially available hydrochloric acid (35% by mass) is diluted with water, and an aqueous hydrochloric acid solution of 5% by mass or more and 15% by mass or less is suitably used.
- citric acid is dissolved in water, an aqueous citric acid solution of 20% by mass or more and 40% by mass or less is suitably used.
- the dilution water is not particularly limited as long as it does not inhibit the generation of chlorine dioxide gas, but purified water such as distilled water, ion-exchanged water, and RO (reverse osmosis) water is preferable from the viewpoint of less impurities.
- the ratio at which the A agent and the B agent are brought into contact is not particularly limited, but from the viewpoint of efficiently reacting and efficiently generating chlorine dioxide gas, (chlorite contained in the A agent): (B
- the gas generating agent contained in the agent is preferably in a molar ratio of 1: 3 to 3: 1 when the gas generating agent is hydrochloric acid, and 1: 2 to 4: 1 when the gas generating agent is citric acid. A range of up to 1 is preferred.
- the method of contacting the A agent and the B agent is not particularly limited as long as the chlorite contained in the A agent is brought into contact with the gas generating agent contained in the B agent so as to react.
- an aqueous solvent refers to a solvent having a water content of 50% by mass or more, the same applies hereinafter
- an aqueous dispersion medium a water content of 50% by mass or more
- one of the A agent and the B agent is an aqueous liquid (aqueous solution and / or aqueous dispersion) and the other is a solid
- a method of mixing the aqueous liquid and the solid is used.
- both the A agent and the B agent are aqueous liquids
- a method of mixing both aqueous liquids can be mentioned.
- either the agent A or the agent B is aqueous. Solutions are preferred, and all are more preferably aqueous solutions.
- the gas extinguishing step S20 is a step of extinguishing the chlorine dioxide gas by bringing the C agent containing the chlorine dioxide reducing agent into contact with the chlorine dioxide gas. In the gas extinguishing step S20, the chlorine dioxide gas generated and used is efficiently extinguished, whereby the pungent odor due to the chlorine dioxide gas used can be reduced.
- the C agent used for extinguishing chlorine dioxide gas after use includes a chlorine dioxide reducing agent.
- the C agent is not particularly limited as long as it contains a chlorine dioxide reducing agent, but from the viewpoint of efficiently contacting the chlorine dioxide gas and efficiently eliminating the chlorine dioxide gas, the liquid must contain a chlorine dioxide reducing agent.
- an aqueous liquid containing a chlorine dioxide reducing agent is more preferable.
- the aqueous liquid means that the solvent and / or the dispersion medium excluding the solute and / or the dispersoid such as the chlorine dioxide reducing agent is mainly composed of water (the content of water in the solvent and / or the dispersion medium is 50 mass%). % Or more).
- the liquid C is preferably an aqueous solution containing a chlorine dioxide reducing agent, and more preferably an aqueous solution of a chlorine dioxide reducing agent.
- the chlorine dioxide reducing agent contained in the agent C is not particularly limited as long as it is a chlorine dioxide reducing agent that extinguishes chlorine dioxide gas by reducing chlorine dioxide, and hydrogen peroxide, erythorbic acid and its salts, ascorbic acid and its And the like.
- the chlorine dioxide reducing agent preferably contains at least one selected from the group consisting of hydrogen peroxide, erythorbic acid and its salts, and ascorbic acid and its salts.
- the chlorine dioxide reducing agent is more preferably hydrogen peroxide from the viewpoint of higher safety due to no generation of toxic substances even when reducing chlorine dioxide.
- the chlorine dioxide reducing agent itself being a food additive at least one selected from the group consisting of erythorbic acid and its salts, and ascorbic acid and its salts is preferable.
- the erythorbic acid salt is not particularly limited as long as it does not inhibit the reduction of chlorine dioxide, but from the viewpoint of easy availability, alkali metal erythorbic acid salts such as sodium erythorbate and potassium erythorbate are preferable.
- the ascorbate is not particularly limited as long as it does not inhibit the reduction of chlorine dioxide, but alkali metal salts of ascorbate such as sodium ascorbate and potassium ascorbate are preferable from the viewpoint of easy availability.
- ascorbic acid includes D-ascorbic acid of D-form and L-ascorbic acid of L-form (vitamin C) which are enantiomers of each other, and L-ascorbic acid is more preferable from the viewpoint of easy availability.
- the C agent may contain a substance other than the chlorine dioxide reducing agent, as long as the elimination of the chlorine dioxide gas by reducing the chlorine dioxide is not hindered, and as long as no harmful by-products are generated. .
- sodium sulfite and sodium thiosulfate which are generally used as reducing agents, are not preferable because they may generate toxic sulfur dioxide gas, sulfur dioxide gas, hydrogen sulfide gas and the like in a weakly acidic atmosphere.
- Hydroxylamine hydrochloride which is a strong reducing agent, is not preferable because of its high vapor toxicity and the danger of explosion if heated to high temperatures.
- the aqueous solution of the chlorine dioxide reducing agent is obtained by dissolving and / or dispersing the at least one chlorine dioxide reducing agent at a predetermined concentration in an aqueous solvent and / or dispersion medium.
- an aqueous solution of hydrogen peroxide aqueous hydrogen peroxide
- an aqueous solution of 1 to 5% by mass of erythorbic acid or a salt thereof is suitably used.
- an aqueous solution of ascorbic acid or a salt thereof of 1% by mass or more and 5% by mass or less is suitably used.
- the ratio at which the generated chlorine dioxide gas is brought into contact with the agent C is not particularly limited, but from the viewpoint of efficiently eliminating the chlorine dioxide gas, (chlorine dioxide generated by contact between the agent A and the agent B): ( The chlorine dioxide reducing agent contained in the agent C) is preferably in a molar ratio of 100: 1 to 1: 3, more preferably 50: 1 to 2: 3.
- the wide range of the suitable molar ratio of the chlorine dioxide reducing agent contained in the agent C to the chlorine dioxide generated by the contact between the agent A and the agent B is based on the size of the space for generating and extinguishing chlorine dioxide gas. This is because the contact efficiency between the chlorine dioxide gas and the chlorine dioxide reducing agent greatly differs depending on the type of the gas.
- the method of contacting the generated chlorine dioxide gas with the C agent is not particularly limited, but from the viewpoint of efficiently contacting the chlorine dioxide gas scattered in the air after generation and efficiently extinguishing the chlorine dioxide gas.
- a method of bringing the agent C into a mist state and contacting the chlorine dioxide gas scattered in the air for example, a method of spraying the agent C onto the chlorine dioxide gas is preferable.
- the agent C is preferably an aqueous solution containing a chlorine dioxide reducing agent, and more preferably an aqueous solution of a chlorine dioxide reducing agent.
- the number of times the generated chlorine dioxide gas is brought into contact with the C agent is not particularly limited, but from the viewpoint of efficiently contacting the chlorine dioxide gas that has been generated and radiating into the air to efficiently eliminate the chlorine dioxide gas, a plurality of times are required. It is preferably times. In particular, the larger the space in which the chlorine dioxide gas is present and the higher the concentration of the chlorine dioxide gas, the greater the number of times of contact with the C agent.
- a kit for generating and extinguishing chlorine dioxide gas includes an agent A including a chlorite, an agent B including a gas generating agent, and a chlorine dioxide reducing agent.
- a chlorine dioxide gas is generated by contacting the agent A with the agent B, and the chlorine dioxide gas is extinguished by contacting the agent C with the chlorine dioxide gas.
- the kit for extinguishing chlorine dioxide gas generation of this embodiment is composed of the above-mentioned agent A, agent B and agent C, and by contacting them in a certain order, the generated chlorine dioxide gas is extinguished after use.
- chlorine dioxide gas is not particularly limited as long as it is an effective use for the treatment of the object to be treated, and the chlorine dioxide gas is used for treating allergens such as pollen, dust, shavings, fungi, pathogens, Includes a wide range of uses for the treatment of harmful substances such as viruses and toxic chemicals (eg, tobacco smoke, formaldehyde), environmental purification, indoor and outdoor and food deodorization, fungicide and preservation, and the like.
- harmful substances such as viruses and toxic chemicals (eg, tobacco smoke, formaldehyde), environmental purification, indoor and outdoor and food deodorization, fungicide and preservation, and the like.
- a agent, B agent, and C agent constituting the chlorine dioxide gas generation and extinction kit of the present embodiment generation of chlorine dioxide gas by contact of A agent and B agent, and generation of chlorine dioxide gas by contact of chlorine dioxide gas and C agent Since the elimination of chlorine dioxide gas is the same as the A agent, B agent, and C agent, the gas generation process, and the gas elimination process described in the method for generating and eliminating chlorine dioxide gas of Embodiment 1, the description thereof will be repeated. Absent.
- Example 1 the A agent and the B agent are operated under an air circulating atmosphere by operating an air conditioner in a "middle" air conditioner in a passenger car (Model S manufactured by Tesla) which has a bad smell due to cigarettes and the like which all three panelists strongly recognize.
- ClO 2 gas chlorine dioxide gas, the same applies hereinafter
- CCl 2 a passenger car
- ClO 2 gas chlorine dioxide gas, the same applies hereinafter
- kit for extinguishing ClO 2 gas generation 10 g of 25 mass% aqueous sodium chlorite solution as agent A, 17 g of 10 mass% aqueous hydrochloric acid solution as agent B, and 300 g of 2.5 mass% sodium erythorbate aqueous solution as agent C And prepared.
- the reason why the amount of the C agent was set to 300 g was that the amount of the C agent required to extinguish the ClO 2 gas and reduce its concentration to 0.1 ppm or less was set as described below, in order to put the compound in a trigger type sprayer and spray it. It was very small.
- the concentration of the ClO 2 gas was measured using a Kitagawa type detector tube for concentrations of 1.0 ppm or more, and the concentration of less than 1.0 ppm was measured using a gas tech low concentration detector tube No. 23M or No. 23L was used for measurement.
- the measurement of the concentration of ClO 2 gas was performed by inserting the measuring portion of the detection tube into the passenger car in a state where the airtightness in the passenger car was ensured.
- the concentration of ClO 2 gas at this time was 0.05 ppm, which is an allowable exposure concentration of 8 hours exposure (PEL-TWA) set by the United States Occupational Safety and Health Administration (OSHA). 0.1 ppm or less.
- PEL-TWA an allowable exposure concentration of 8 hours exposure
- OSHA United States Occupational Safety and Health Administration
- 0.1 ppm or less the irritating odor due to the ClO 2 gas in the passenger car was reduced to such an extent that all three panelists recognized it very slightly but did not feel uncomfortable.
- the bad smell due to cigarettes and the like in the passenger car was not recognized by all three panelists and had disappeared.
- the drain smell of the air conditioner was not recognized by all three panelists and had disappeared.
- Example 2 In this embodiment, in a passenger car (Toyota Aqua) having a bad smell due to cigarettes and the like, which is strongly recognized by all three panelists, the air conditioner is operated in the air circulation atmosphere by operating "medium (display value 24)". The generation of ClO 2 gas by the contact of the agent and the agent B and the disappearance of the ClO 2 gas by the contact of the generated ClO 2 gas with the agent C were performed.
- kit for extinguishing ClO 2 gas generation 10 g of 25 mass% aqueous sodium chlorite solution as agent A, 17 g of 10 mass% hydrochloric acid aqueous solution as agent B, and 2.5 mass% L-ascorbic acid aqueous solution as agent C 300 g were prepared.
- the reason why the amount of the C agent is set to 300 g is to spray the liquid in a trigger type sprayer.
- the amount of the C agent required to extinguish the ClO 2 gas and reduce its concentration to 0.1 ppm or less will be described later. Was very small.
- the concentration of ClO 2 gas at this time was 0.05 ppm, which is the allowable exposure concentration of 8 hours exposure (PEL-TWA) set by the US Occupational Safety and Health Administration (OSHA), which is 0 ppm. 0.1 ppm or less.
- PEL-TWA allowable exposure concentration of 8 hours exposure
- OSHA US Occupational Safety and Health Administration
- the irritating odor due to the ClO 2 gas in the passenger car was reduced to such an extent that all three panelists recognized it very slightly but did not feel uncomfortable.
- the bad smell due to the cigarettes and the like in the passenger car was not recognized by all three panelists and had disappeared.
- the drain smell of the air conditioner was not recognized by all three panelists and had disappeared.
- Example 3 In this example, in a 6 tatami room (capacity: 21.7 m 3 : 2.93 mx 3.37 mx 2.2 m) having a bad smell due to formaldehyde which is strongly recognized by all three panelists, the A and B preparations were used. In this method, ClO 2 gas is generated by the contact, and the ClO 2 gas is extinguished by the contact between the generated ClO 2 gas and the C agent.
- the 6 tatami room is divided into a front area, a middle area, and a rear area of the same size from the entrance door toward the rear, and spread uniformly from the front side to the rear side of the rear area. Spray at different locations each time, spray 10 times at different locations so as to spread uniformly from the front side to the back side of the middle area, and spray 10 times at each different location to spread uniformly from the back side of the table area toward the front side Sprayed at different locations.
- the ClO 2 gas concentration in the 6 tatami room after 7.25 hours from the time of contact by mixing the above-mentioned agent A and agent B (that is, one hour after the primary spraying of agent C) is shown in Table. As shown in FIG. 3, it was reduced to 0.75 ppm.
- the C agent was sprayed 10 times (9.5 g in total) in the 6 tatami room (the secondary of the C agent). Spraying, hereinafter the same).
- the secondary spray of the agent C is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the back area, and spread uniformly from the front side to the back side of the middle area. And sprayed three times at different places so as to spread uniformly from the back side of the table area toward the front side.
- the ClO 2 gas concentration in the 6 tatami room after 8.5 hours from the time of contact by mixing the above-mentioned agent A and agent B (that is, one hour after the secondary spraying of agent C) is shown in Table. As shown in FIG. 3, the concentration was reduced to 0.10 ppm, and it was reduced to 0.1 ppmm, which is the upper limit of the allowable exposure concentration in 8-hour exposure (PEL-TWA) set by the United States Occupational Safety and Health Administration (OSHA).
- the C agent was sprayed twice (1.9 g in total) in the 6 tatami room (the 1.9 g of the C agent).
- Third spray the same applies hereinafter).
- the tertiary spray of the agent C was performed in the following manner.
- the 6-tatami room is divided into a front area and a rear area of the same size from the entrance door toward the back, and sprayed once from the front side to the back side of the rear area, and the front side area is sprayed. It was sprayed once from the back side to the front side.
- the ClO 2 gas concentration in the 6 tatami room after 9.0 hours from the time of contact by mixing the above-mentioned A agent and the B agent (that is, 0.25 hours after the tertiary spraying of the C agent) is as follows: As shown in Table 3, the concentration was reduced to 0.05 ppm, which was 0.1 ppm or less, which is the allowable exposure concentration in 8-hour exposure (PEL-TWA) set by the United States Occupational Safety and Health Administration (OSHA). At this time, the irritating odor due to the ClO 2 gas in the 6-tatami room was reduced to such an extent that all three panelists recognized the slightest but did not feel uncomfortable. At this time, the malodor due to formaldehyde in the 6-tatami room was not recognized by all three panelists and had disappeared. In addition, the drain smell of the air conditioner was not recognized by all three panelists and had disappeared.
- Example 4 In this example, in a 6 tatami room (capacity: 21.7 m 3 : 2.93 mx 3.37 mx 2.2 m) having a bad smell due to formaldehyde which is strongly recognized by all three panelists, the A and B preparations were used. In this method, ClO 2 gas is generated by the contact, and the ClO 2 gas is extinguished by the contact between the generated ClO 2 gas and the C agent.
- a kit for extinguishing ClO 2 gas generation 18 g of a 25 mass% aqueous solution of sodium chlorite as an A agent, 30 g of a 30 mass% aqueous citric acid solution as a B agent, and 3.0 mass / vol% (w / 300 g of a hydrogen peroxide aqueous solution (oxide, manufactured by Kenei Pharmaceutical Co., Ltd.) of 100 mL of an aqueous solution (referred to as a concentration at which 3 g of hydrogen peroxide is present in 100 mL of an aqueous solution).
- the 6 tatami room is divided into a front area, a middle area, and a rear area of the same size from the entrance door toward the rear, and spread uniformly from the front side to the rear side of the rear area. Spray at different locations each time, spray 10 times at different locations so as to spread uniformly from the front side to the back side of the middle area, and spray 10 times at each different location to spread uniformly from the back side of the table area toward the front side Sprayed at different locations.
- the ClO 2 gas concentration in the 6 tatami room after 7.35 hours from the time of contact by mixing the above-mentioned agent A and agent B (that is, 1.02 hours after the primary spraying of agent C) , As shown in Table 4.
- the agent C was sprayed 10 times (7.4 g in total) in the 6 tatami room (the secondary of the agent C). Spraying, hereinafter the same).
- the secondary spray of the agent C is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the back area, and spread uniformly from the front side to the back side of the middle area. And sprayed three times at different places so as to spread uniformly from the back side of the table area toward the front side.
- the C agent was sprayed 10 times (7.4 g in total) in the 6 tatami room (tertiary spray of the C agent).
- the tertiary spray of the C agent is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the recording area, and spread uniformly from the front side to the back side of the middle area. And sprayed three times at different places so as to spread uniformly from the back side of the table area toward the front side.
- the ClO 2 gas concentration in the 6 tatami room after 10.0 hours from the time of contact by mixing the above-mentioned A agent and the B agent (that is, after 1.0 hour from the third spraying of the C agent) is As shown in Table 4, the content was reduced to 0.23 ppm.
- the agent C was sprayed 10 times (7.4 g in total) in the above 6 tatami room (the fourth order of the agent C). Spraying, hereinafter the same).
- the quaternary spray of the agent C is sprayed four times at different locations so as to spread uniformly from the front side to the back side of the deep area, and spread uniformly from the front side to the back side of the middle area. And sprayed three times at different places so as to spread uniformly from the back side of the table area toward the front side.
- the ClO 2 gas concentration in the 6 tatami room after 11.0 hours from the time of contact by mixing the above-mentioned agent A and agent B (that is, after 0.95 hour from the fourth spraying of agent C) is As shown in Table 4, the concentration was reduced to 0.05 ppm, which was 0.1 ppm or less, which is the allowable exposure concentration in 8-hour exposure (PEL-TWA) set by the United States Occupational Safety and Health Administration (OSHA). At this time, the irritating odor due to the ClO 2 gas in the 6-tatami room was reduced to such an extent that all three panelists recognized the slightest but did not feel uncomfortable. At this time, the malodor due to formaldehyde in the 6-tatami room was not recognized by all three panelists and had disappeared. In addition, the drain smell of the air conditioner was not recognized by all three panelists and had disappeared.
- the composition was composed of an A agent containing chlorite, a B agent containing a gas generating agent, and a C agent containing a chlorine dioxide reducing agent, to generate ClO 2 gas by contacting the a agent and the B agent, the ClO 2 gas, ClO 2 gas generated annihilation kit to extinguish the ClO 2 gas by contacting the C agent, as well as chlorite
- the method for generating and extinguishing the ClO 2 gas including the step of extinguishing the gas, which comprises the step of extinguishing the ClO 2 gas, the generated ClO 2 gas is extinguished after use, thereby reducing the pungent odor due to the used ClO 2
- ClO 2 gas can be widely used in the treatment of harmful substances such as viruses, harmful chemical substances (for example, tobacco smoke and formaldehyde), and in the treatments such as environmental purification, deodorization, mold control and preservation.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Epidemiology (AREA)
- Plant Pathology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Wood Science & Technology (AREA)
- Dentistry (AREA)
- Engineering & Computer Science (AREA)
- Pest Control & Pesticides (AREA)
- Agronomy & Crop Science (AREA)
- Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Apparatus For Disinfection Or Sterilisation (AREA)
Abstract
二酸化塩素ガスの発生消滅方法は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程(S10)と、二酸化塩素に二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させるガス消滅工程(S20)と、を備える。また、二酸化塩素ガス発生消滅用キットは、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることにより二酸化塩素ガスを発生させ、二酸化塩素ガスにC剤を接触させることにより二酸化塩素ガスを消滅させる。これらのようにして、発生させた二酸化塩素ガスを使用後に消滅させることにより、使用後の二酸化塩素ガスによる刺激臭を低減できる二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キットが提供される。
Description
本開示は、花粉、塵、皮屑(ひせつ)、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などに広く使用される二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅キットに関する。
二酸化塩素(ClO2)は、強い酸化力を有していることから、花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などに広く使用される。このように広い用途に使用される有用な二酸化塩素を持続的に発生させる方法およびそのための組成物が提案されている。
たとえば、特開平11-278808号公報(特許文献1)は、溶存二酸化塩素ガス、亜塩素酸塩およびpH調整剤を構成成分に有する純粋二酸化塩素液剤、上記純粋二酸化塩素液剤および高吸水性樹脂を含有するゲル状組成物、上記純粋二酸化塩素液剤および泡剤を含有する発泡性組成物、ならびに上記純粋二酸化塩素液剤、上記ゲル状組成物、および上記発泡性組成物を入れるための容器を提案する。
また、特開2005-29430号公報(特許文献2)は、亜塩素酸塩水溶液に、有機酸または無機酸と、粉状のガス発生調節剤または粉状のガス発生調節剤と吸水性樹脂と、を添加し、ゲル化させて二酸化塩素ガスを持続的に発生させる二酸化塩素ガスの発生方法を提案する。
特開平11-278808号公報(特許文献1)および特開2005-29430号公報(特許文献2)によれば、二酸化塩素ガスを連続的に発生させる方法が提案されているが、発生する二酸化塩素ガスは強い刺激臭を有しているため、使用後の二酸化塩素ガスによる刺激臭が問題となっている。このため、人が多く集まる場所(たとえば、室内、自動車内など)においては、花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの二酸化塩素ガスの使用には、使用中のみならず使用後も人の退避が必要であるなどの問題があり、多くの制約があった。
本開示は、発生させた二酸化塩素ガスを使用後に消滅させることにより、上記問題を解決することができる二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キットを提供することを目的とする。
本開示は、ある局面に従えば、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程と、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させるガス消滅工程と、を備える二酸化塩素ガスの発生消滅方法である。
本開示のかかる局面における二酸化塩素ガスの発生消滅方法において、二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含むことができる。
本開示は、別の局面に従えば、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることにより二酸化塩素ガスを発生させ、二酸化塩素ガスにC剤を接触させることにより二酸化塩素ガスを消滅させる二酸化塩素ガス発生消滅用キットである。
本開示のかかる局面における二酸化塩素ガス発生消滅用キットにおいて、二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含むことができる。
本開示によれば、発生させた二酸化塩素ガスを使用後に消滅させることにより、使用後の二酸化塩素ガスによる刺激臭を低減できる二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キットを提供できる。
<実施形態1:二酸化塩素ガスの発生消滅方法>
図1を参照して、本開示のある実施形態である二酸化塩素ガスの発生消滅方法は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程S10と、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させるガス消滅工程S20と、を備える。本実施形態の二酸化塩素ガスの発生消滅方法は、上記のガス発生工程S10と上記のガス消滅工程S20とを備えることにより、発生させた二酸化塩素ガスを使用後に消滅させることができるため、使用後の二酸化塩素ガスによる刺激臭を低減できる。これにより、二酸化塩素ガス使用後の人の退避を早期に解除できる。ここで、二酸化塩素ガスの使用とは、被処理体の処理に有効な使用であれば特に制限はなく、二酸化塩素ガスを花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの広い範囲での使用を含む。
図1を参照して、本開示のある実施形態である二酸化塩素ガスの発生消滅方法は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程S10と、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させるガス消滅工程S20と、を備える。本実施形態の二酸化塩素ガスの発生消滅方法は、上記のガス発生工程S10と上記のガス消滅工程S20とを備えることにより、発生させた二酸化塩素ガスを使用後に消滅させることができるため、使用後の二酸化塩素ガスによる刺激臭を低減できる。これにより、二酸化塩素ガス使用後の人の退避を早期に解除できる。ここで、二酸化塩素ガスの使用とは、被処理体の処理に有効な使用であれば特に制限はなく、二酸化塩素ガスを花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの広い範囲での使用を含む。
二酸化塩素ガスについて、米国の労働安全衛生局(OSHA)は、1日8時間の暴露(PEL-TWA:時間加重平均値)で0.1ppmを暴露限界として設定している。日本においては、暴露限界に関する基準値は存在しないが、二酸化塩素ガスによる空間消毒の暫定的な安全基準と想定されている。これらのことから、二酸化塩素ガスの使用後に人の退避を解除するためには、二酸化塩素ガスの濃度を0.1ppm以下にする必要があると考えられる。
[ガス発生工程]
ガス発生工程S10は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させる工程である。かかるガス発生工程S10により、上記使用に供する二酸化塩素ガスを効率よく発生させることができる。
ガス発生工程S10は、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させる工程である。かかるガス発生工程S10により、上記使用に供する二酸化塩素ガスを効率よく発生させることができる。
(A剤)
A剤は、亜塩素酸塩を含む。A剤は、亜塩素酸塩を含むものであれば特に制限はないが、後述するB剤と効率よく接触して効率よく二酸化塩素ガスを発生させる観点から、亜塩素酸塩を含む液体であることが好ましく、亜塩素酸塩を含む水性液がより好ましい。ここで、水性液とは、亜塩素酸塩などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。A液は、上記観点から、亜塩素酸塩を含む水性液であることがさらに好ましく、亜塩素酸塩水性液であることが特に好ましい。A剤に含まれる亜塩素酸塩は、後述するB剤に含まれるガス発生剤との接触により二酸化塩素ガスを発生させる亜塩素酸塩であれば特に制限はなく、たとえば、亜塩素酸ナトリウム(NaClO2)、亜塩素酸カリウム(KClO2)、亜塩素酸リチウム(LiClO2)などの水素を除く第1族元素(アルカリ金属元素)の亜塩素酸塩、亜塩素酸カルシウム(Ca(ClO2)2)、亜塩素酸ストロンチウム(Sr(ClO2)2)、亜塩素酸バリウム(Ba(ClO2)2)、亜塩素酸マグネシウム(Mg(ClO2)2)などの第2族元素の亜塩素酸塩などが挙げられる。これらの中で、市販されている亜塩素酸ナトリウムが入手しやすく使用上も問題がない。なお、A剤は、後述するB剤と接触して二酸化塩素ガスを発生することが阻害されない限り、および、有害な副生成物を発生させない限り、亜塩素酸塩以外の物質を含んでいてもよい。A剤に含まれるガス発生剤以外の物質としては、水酸化ナトリウム(NaOH)などのアルカリなどが挙げられる。たとえば、80質量%以上のNaClO2を含有するシルブライト(日本カーリット社製シルブライト80)が、A剤として好適に用いられる。
A剤は、亜塩素酸塩を含む。A剤は、亜塩素酸塩を含むものであれば特に制限はないが、後述するB剤と効率よく接触して効率よく二酸化塩素ガスを発生させる観点から、亜塩素酸塩を含む液体であることが好ましく、亜塩素酸塩を含む水性液がより好ましい。ここで、水性液とは、亜塩素酸塩などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。A液は、上記観点から、亜塩素酸塩を含む水性液であることがさらに好ましく、亜塩素酸塩水性液であることが特に好ましい。A剤に含まれる亜塩素酸塩は、後述するB剤に含まれるガス発生剤との接触により二酸化塩素ガスを発生させる亜塩素酸塩であれば特に制限はなく、たとえば、亜塩素酸ナトリウム(NaClO2)、亜塩素酸カリウム(KClO2)、亜塩素酸リチウム(LiClO2)などの水素を除く第1族元素(アルカリ金属元素)の亜塩素酸塩、亜塩素酸カルシウム(Ca(ClO2)2)、亜塩素酸ストロンチウム(Sr(ClO2)2)、亜塩素酸バリウム(Ba(ClO2)2)、亜塩素酸マグネシウム(Mg(ClO2)2)などの第2族元素の亜塩素酸塩などが挙げられる。これらの中で、市販されている亜塩素酸ナトリウムが入手しやすく使用上も問題がない。なお、A剤は、後述するB剤と接触して二酸化塩素ガスを発生することが阻害されない限り、および、有害な副生成物を発生させない限り、亜塩素酸塩以外の物質を含んでいてもよい。A剤に含まれるガス発生剤以外の物質としては、水酸化ナトリウム(NaOH)などのアルカリなどが挙げられる。たとえば、80質量%以上のNaClO2を含有するシルブライト(日本カーリット社製シルブライト80)が、A剤として好適に用いられる。
亜塩素酸塩水性液は、水性の溶媒および/または分散媒に、上記の少なくとも1つの亜塩素酸塩を所定濃度で溶解および/または分散させることにより得られる。亜塩素酸ナトリウムを水に溶解させる場合としては、液体では漂白剤として使用させる市販の25質量%の亜塩素酸ナトリウム水溶液や、固体では市販の86質量%品、80質量%品、79質量%品または76質量%品が好適に用いられる。また、亜塩素酸塩水性液の濃度は、劇毒物および危険物に該当せず取り扱いが容易な観点から25質量%以下であることが好ましく、15質量%以下がより好ましく、10質量%以下がさらに好ましい。
(B剤)
B剤は、ガス発生剤を含む。B剤は、ガス発生剤を含むものであれば特に制限はないが、上記A剤と効率よく接触して効率よく二酸化塩素ガスを発生させる観点から、ガス発生剤を含む液体であることが好ましく、ガス発生剤を含む水性液がより好ましい。ここで、水性液とは、ガス発生剤などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。B液は、上記観点から、ガス発生剤を含む水溶液またはガス発生剤を含む水分散液であることがさらに好ましく、ガス発生剤水溶液またはガス発生剤水分散液であることが特に好ましい。
B剤は、ガス発生剤を含む。B剤は、ガス発生剤を含むものであれば特に制限はないが、上記A剤と効率よく接触して効率よく二酸化塩素ガスを発生させる観点から、ガス発生剤を含む液体であることが好ましく、ガス発生剤を含む水性液がより好ましい。ここで、水性液とは、ガス発生剤などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。B液は、上記観点から、ガス発生剤を含む水溶液またはガス発生剤を含む水分散液であることがさらに好ましく、ガス発生剤水溶液またはガス発生剤水分散液であることが特に好ましい。
B剤に含まれるガス発生剤は、上記のA剤に含まれる亜塩素酸塩との接触により、二酸化塩素ガスを発生させるガス発生剤であれば特に制限はなく、たとえば、塩酸などの無機酸、クエン酸、乳酸、リンゴ酸などの有機酸などが挙げられる。これらの中で、塩酸、クエン酸などが入手しやすく使用上も問題がない。なお、B剤は、上記のA剤と接触して二酸化塩素ガスを発生することが阻害されない限り、および、有害な副生成物を発生させない限り、ガス発生剤以外の物質を含んでいてもよい。
ガス発生剤水性液は、水性の溶媒および/または分散媒に、上記の少なくとも1つのガス発生剤を所定濃度で溶解および/または分散させることにより得られる。塩酸を水に溶解させる場合としては、市販の塩酸(35質量%品)を水で希釈して、5質量%以上15質量%以下の塩酸水溶液が好適に用いられる。クエン酸を水に溶解させる場合としては、20質量%以上40質量%以下のクエン酸水溶液が好適に用いられる。ここで、希釈水は、二酸化塩素ガスの発生を阻害しないかぎり特に制限はないが、不純物が少ない観点から、蒸留水、イオン交換水、RO(逆浸透)水などの精製水が好ましい。
(A剤とB剤との接触)
A剤とB剤との接触により、A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とが反応して二酸化塩素ガスを発生する。A剤とB剤とを接触させる比は、特に制限はないが、効率的に反応させて効率的に二酸化塩素ガスを発生させる観点から、(A剤に含まれる亜塩素酸塩):(B剤に含まれるガス発生剤)は、モル比で、ガス発生剤が塩酸の場合は1:3から3:1までの範囲が好ましく、ガス発生剤がクエン酸の場合は1:2から4:1までの範囲が好ましい。
A剤とB剤との接触により、A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とが反応して二酸化塩素ガスを発生する。A剤とB剤とを接触させる比は、特に制限はないが、効率的に反応させて効率的に二酸化塩素ガスを発生させる観点から、(A剤に含まれる亜塩素酸塩):(B剤に含まれるガス発生剤)は、モル比で、ガス発生剤が塩酸の場合は1:3から3:1までの範囲が好ましく、ガス発生剤がクエン酸の場合は1:2から4:1までの範囲が好ましい。
A剤とB剤とを接触させる方法は、A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とが反応するように接触させる方法であれば特に制限はなく、たとえば、A剤およびB剤のいずれもが固体の場合は、水性溶媒(水の含有量が50質量%以上の溶媒をいう、以下同じ)および/または水性分散媒(水の含有量が50質量%以上の分散媒をいう、以下同じ)を加えて、A剤とB剤とを混合する方法が挙げられる。また、A剤およびB剤のいずれか一方が水性液(水性溶液および/または水性分散液)であり、他方が固体の場合は、その水性液とその固体とを混合する方法が挙げられる。また、A剤およびB剤がいずれもが水性液である場合は、両方の水性液を混合する方法が挙げられる。A剤に含まれる亜塩素酸塩とB剤に含まれるガス発生剤とを効率よく反応させることにより効率的に二酸化塩素ガスを発生させる観点から、A剤およびB剤は、いずれか一方が水性溶液であることが好ましく、いずれもが水性溶液であることがより好ましい。
[ガス消滅工程]
ガス消滅工程S20は、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させる工程である。かかるガス消滅工程S20により、発生させて使用させた後の二酸化塩素ガスを効率的に消滅させることにより、使用後の二酸化塩素ガスによる刺激臭を低減することができる。
ガス消滅工程S20は、二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより二酸化塩素ガスを消滅させる工程である。かかるガス消滅工程S20により、発生させて使用させた後の二酸化塩素ガスを効率的に消滅させることにより、使用後の二酸化塩素ガスによる刺激臭を低減することができる。
(C剤)
使用後の二酸化塩素ガスの消滅に用いられるC剤は、二酸化塩素還元剤を含む。C剤は、二酸化塩素還元剤を含むものであれば特に制限はないが、二酸化塩素ガスに効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、二酸化塩素還元剤を含む液体であることが好ましく、二酸化塩素還元剤を含む水性液がより好ましい。ここで、水性液とは、二酸化塩素還元剤などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。C液は、上記観点から、二酸化塩素還元剤を含む水性溶液が好ましく、二酸化塩素還元剤水性溶液がより好ましい。
使用後の二酸化塩素ガスの消滅に用いられるC剤は、二酸化塩素還元剤を含む。C剤は、二酸化塩素還元剤を含むものであれば特に制限はないが、二酸化塩素ガスに効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、二酸化塩素還元剤を含む液体であることが好ましく、二酸化塩素還元剤を含む水性液がより好ましい。ここで、水性液とは、二酸化塩素還元剤などの溶質および/または分散質を除いた溶媒および/または分散媒が水を主成分(溶媒および/または分散媒中の水の含有量が50質量%以上)とする水性溶液および/または水性分散液をいう。C液は、上記観点から、二酸化塩素還元剤を含む水性溶液が好ましく、二酸化塩素還元剤水性溶液がより好ましい。
C剤に含まれる二酸化塩素還元剤は、二酸化塩素を還元することにより二酸化塩素ガスを消滅する二酸化塩素還元剤であれば特に制限はなく、過酸化水素、エリソルビン酸およびその塩、アスコルビン酸およびその塩などが挙げられる。二酸化塩素を還元する能力が高いため二酸化塩素ガスの刺激臭を抑制する能力が高く、当該二酸化塩素還元剤自体の毒性が低く、かつ二酸化塩素を還元する際にも有毒物質の発生がなく安全性が高い観点から、二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含むことが好ましい。さらに、二酸化塩素還元剤は、二酸化塩素を還元する際にも有毒物質の発生がないことによる安全性がより高い観点から、過酸化水素がより好ましく、二酸化塩素を還元する能力がより高いとともに当該二酸化塩素還元剤自体が食品添加物であることによる安全性がより高い観点から、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つが好ましい。ここで、エリソルビン酸塩は、二酸化塩素の還元を阻害しないかぎり特に制限はないが、入手が容易な観点からエリソルビン酸ナトリウム、エリソルビン酸カリウムなどのエリソルビン酸アルカリ金属塩が好ましい。また、アスコルビン酸塩は、二酸化塩素の還元を阻害しないかぎり特に制限はないが、入手が容易な観点からアスコルビン酸ナトリウム、アスコルビン酸カリウムなどのアスコルビン酸アルカリ金属塩が好ましい。さらにアスコルビン酸には、互いに鏡像異性体であるD体のD-アスコルビン酸とL体のL-アスコルビン酸(ビタミンC)とがあり、入手が容易な観点から、L-アスコルビン酸がより好ましい。なお、C剤は、二酸化塩素を還元することにより二酸化塩素ガスを消滅することが阻害されない限り、および、有害な副生成物を発生させない限り、二酸化塩素還元剤以外の物質を含んでいてもよい。
ここで、還元剤として一般的に用いられる亜硫酸ナトリウム、チオ硫酸ナトリウムは、弱酸性雰囲気中で有毒な二酸化硫黄ガス、亜硫酸ガス、硫化水素ガスなどを発生させる場合があるため、好ましくない。また、強い還元剤である塩酸ヒドロキシルアミンは、蒸気の毒性が高く、また高温に加熱されると爆発の危険性があるため、好ましくない。
二酸化塩素還元剤水性液は、水性の溶媒および/または分散媒に、上記の少なくとも1つの二酸化塩素還元剤を所定濃度で溶解および/または分散させることにより得られる。過酸化水素を水に溶解させる場合としては、1質量%以上5質量以下の過酸化水素水溶液(過酸化水素水)が好適に用いられる。エリソルビン酸またはその塩を水に溶解させる場合としては、1質量%以上5質量%以下のエリソルビン酸またはその塩の水溶液が好適に用いられる。アスコルビン酸またはその塩を水に溶解させる場合としては、1質量%以上5質量%以下のアスコルビン酸またはその塩の水溶液が好適に用いられる。
(二酸化塩素ガスとC剤との接触)
A剤とB剤との接触により二酸化塩素ガスが発生する。発生した二酸化塩素ガスは空気中に発散して被処理体(アレルギー誘発物質、有害物質など)の処理に使用される。使用後の二酸化塩素ガスとC剤とを接触させることにより、二酸化塩素ガスを還元により消滅させて、二酸化塩素ガスによる刺激臭を低減できる。特に発生した使用後の二酸化塩素ガスが多い場合は、発生した二酸化塩素ガスとC剤との接触により、二酸化塩素ガスによる刺激臭を大きく低減できる。これにより、二酸化塩素ガス使用後の人の退避を早期に解除できる。
A剤とB剤との接触により二酸化塩素ガスが発生する。発生した二酸化塩素ガスは空気中に発散して被処理体(アレルギー誘発物質、有害物質など)の処理に使用される。使用後の二酸化塩素ガスとC剤とを接触させることにより、二酸化塩素ガスを還元により消滅させて、二酸化塩素ガスによる刺激臭を低減できる。特に発生した使用後の二酸化塩素ガスが多い場合は、発生した二酸化塩素ガスとC剤との接触により、二酸化塩素ガスによる刺激臭を大きく低減できる。これにより、二酸化塩素ガス使用後の人の退避を早期に解除できる。
発生した二酸化塩素ガスとC剤とを接触させる比は、特に制限はないが、効率的に二酸化塩素ガスを消滅させる観点から、(A剤とB剤との接触により発生した二酸化塩素):(C剤に含まれる二酸化塩素還元剤)が、モル比で、100:1から1:3までの範囲が好ましく、50:1から2:3までの範囲が好ましい。このようにA剤とB剤との接触により発生した二酸化塩素に対するC剤に含まれる二酸化塩素還元剤の好適なモル比の範囲が広いのは、二酸化塩素ガスを発生および消滅させる空間の大きさによって二酸化塩素ガスと二酸化塩素還元剤との接触効率が大きく異なるからである。二酸化塩素ガスを発生および消滅させる空間が大きくなるほど、二酸化塩素ガスおよび二酸化塩素還元剤の空間への拡散および壁への吸着が大きくなることにより、二酸化塩素ガスと二酸化塩素還元剤との接触効率が低下するため、A剤とB剤との接触により発生した二酸化塩素に対するC剤に含まれる二酸化塩素還元剤の好適なモル比が大きくなる。また、過酸化水素は、エリソルビン酸およびその塩ならびにアスコルビン酸およびその塩に比べて二酸化塩素の還元力が小さいため、A剤とB剤との接触により発生した二酸化塩素に対するC剤に含まれる二酸化塩素還元剤の好適なモル比が大きくなる。
発生した二酸化塩素ガスとC剤とを接触させる方法は、特に制限はないが、発生した後空気中に発散した二酸化塩素ガスと効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、発生した後空気中に飛散した二酸化塩素ガスにC剤をミスト状にして接触させる方法、たとえば二酸化塩素ガスにC剤を噴霧する方法が好ましい。また、上記観点から、C剤は二酸化塩素還元剤を含む水性溶液であることが好ましく、二酸化塩素還元剤水性溶液であることがより好ましい。
発生した二酸化塩素ガスとC剤とを接触させる回数は、特に制限はないが、発生した後空気中に発散した二酸化塩素ガスと効率よく接触して効率よく二酸化塩素ガスを消滅させる観点から、複数回であることが好ましい。特に、二酸化塩素ガスが存在する空間が大きいほど、また、二酸化塩素ガスの濃度が高いほど、C剤と接触させる回数は多いことが好ましい。
<実施形態2:二酸化塩素ガス発生消滅用キット>
図1を参照して、本開示の別の実施形態である二酸化塩素ガス発生消滅用キットは、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることにより二酸化塩素ガスを発生させ、二酸化塩素ガスにC剤を接触させることにより二酸化塩素ガスを消滅させる。本実施形態の二酸化塩素ガス発生消滅用キットは、上記のA剤、B剤、およびC剤で構成され、それらを一定の順序で接触させることにより、発生させた二酸化塩素ガスを使用後に消滅させることができるため、使用後の二酸化塩素ガスによる刺激臭を低減できる。ここで、二酸化塩素ガスの使用とは、被処理体の処理に有効な使用であれば特に制限はなく、二酸化塩素ガスを花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの広い範囲での使用を含む。
図1を参照して、本開示の別の実施形態である二酸化塩素ガス発生消滅用キットは、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることにより二酸化塩素ガスを発生させ、二酸化塩素ガスにC剤を接触させることにより二酸化塩素ガスを消滅させる。本実施形態の二酸化塩素ガス発生消滅用キットは、上記のA剤、B剤、およびC剤で構成され、それらを一定の順序で接触させることにより、発生させた二酸化塩素ガスを使用後に消滅させることができるため、使用後の二酸化塩素ガスによる刺激臭を低減できる。ここで、二酸化塩素ガスの使用とは、被処理体の処理に有効な使用であれば特に制限はなく、二酸化塩素ガスを花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、屋内外および食品の脱臭、防カビおよび防腐などへの広い範囲での使用を含む。
本実施形態の二酸化塩素ガス発生消滅用キットを構成するA剤、B剤、およびC剤、A剤とB剤との接触による二酸化塩素ガスの発生、ならびに二酸化塩素ガスとC剤との接触による二酸化塩素ガスの消滅は、実施形態1の二酸化塩素ガスの発生消滅方法において説明したA剤、B剤、およびC剤、ガス発生工程、ならびにガス消滅工程と同じであるため、それらの説明を繰り返さない。
(実施例1)
本実施例は、3人のパネラー全てが強く認めるタバコなどによる悪臭がある乗用車(テスラ社製モデルS)内でエアコンを「中」で動作させることによる空気循環雰囲気下において、A剤とB剤との接触によるClO2ガス(二酸化塩素ガス、以下同じ)の発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
本実施例は、3人のパネラー全てが強く認めるタバコなどによる悪臭がある乗用車(テスラ社製モデルS)内でエアコンを「中」で動作させることによる空気循環雰囲気下において、A剤とB剤との接触によるClO2ガス(二酸化塩素ガス、以下同じ)の発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液10gと、B剤として10質量%の塩酸水溶液17gと、C剤として2.5質量%のエリソルビン酸ナトリウム水溶液300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
A剤として25質量%の亜塩素酸ナトリウム水溶液10gと、B剤として10質量%の塩酸水溶液17gと、C剤として2.5質量%のエリソルビン酸ナトリウム水溶液300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
2.A剤とB剤との接触によるClO2ガスの発生
底面が58mm×58mmで開口面が83mm×83mmで高さが30mmの逆正四角錐台形状のPET(ポリエチレンテレフタレート)製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と上記乗用車内のClO2ガスの濃度を表1にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。ClO2ガスの濃度測定は、上記乗用車内の気密性を確保した状態で上記の検知管の測定部を上記乗用車内に挿入することにより行った。
底面が58mm×58mmで開口面が83mm×83mmで高さが30mmの逆正四角錐台形状のPET(ポリエチレンテレフタレート)製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と上記乗用車内のClO2ガスの濃度を表1にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。ClO2ガスの濃度測定は、上記乗用車内の気密性を確保した状態で上記の検知管の測定部を上記乗用車内に挿入することにより行った。
3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から90分間経過時にClO2ガス濃度を測定した後に、発生したClO2ガスが残存している上記乗用車内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記乗用車内で5回(全体で4.75g)噴霧した。上記のA剤とB剤との混合により接触させた時から95分間経過後(すなわちC剤の噴霧時から5分間経過後)における乗用車内のClO2ガス濃度を表1に示した。表1に示すように、このときのClO2ガスの濃度は、0.05ppmであり、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記乗用車内のClO2ガスによる刺激臭は、3人のパネラー全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、乗用車内のタバコなどによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
上記のA剤とB剤との混合により接触させた時から90分間経過時にClO2ガス濃度を測定した後に、発生したClO2ガスが残存している上記乗用車内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記乗用車内で5回(全体で4.75g)噴霧した。上記のA剤とB剤との混合により接触させた時から95分間経過後(すなわちC剤の噴霧時から5分間経過後)における乗用車内のClO2ガス濃度を表1に示した。表1に示すように、このときのClO2ガスの濃度は、0.05ppmであり、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記乗用車内のClO2ガスによる刺激臭は、3人のパネラー全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、乗用車内のタバコなどによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
(実施例2)
本実施例は、3人のパネラー全てが強く認めるタバコなどによる悪臭がある乗用車(トヨタ社製アクア)内でエアコンを「中(表示値24)」で動作させることによる空気循環雰囲気下において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
本実施例は、3人のパネラー全てが強く認めるタバコなどによる悪臭がある乗用車(トヨタ社製アクア)内でエアコンを「中(表示値24)」で動作させることによる空気循環雰囲気下において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液10gと、B剤として10質量%の塩酸水溶液17gと、C剤として2.5質量%のL-アスコルビン酸水溶液300gと、を準備した。ここで、C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
A剤として25質量%の亜塩素酸ナトリウム水溶液10gと、B剤として10質量%の塩酸水溶液17gと、C剤として2.5質量%のL-アスコルビン酸水溶液300gと、を準備した。ここで、C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
2.A剤とB剤との接触によるClO2ガスの発生
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と上記乗用車内のClO2ガスの濃度を表2にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。ClO2ガスの濃度測定は、上記乗用車内の気密性を確保した状態で上記の検知管の測定部を上記乗用車内に挿入することにより行った。
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と上記乗用車内のClO2ガスの濃度を表2にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。ClO2ガスの濃度測定は、上記乗用車内の気密性を確保した状態で上記の検知管の測定部を上記乗用車内に挿入することにより行った。
3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から90分間経過時にClO2ガス濃度を測定した後に、発生したClO2ガスが残存している上記乗用車内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記乗用車内で5回(全体で4.75g)噴霧した。上記のA剤とB剤との混合により接触させた時から95分間経過後(すなわちC剤の噴霧時から5分間経過後)における上記乗用車内のClO2ガス濃度を表2に示した。表2に示すように、このときのClO2ガスの濃度は、0.05ppmであり、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記乗用車内のClO2ガスによる刺激臭は、3人のパネラー全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記乗用車内のタバコなどによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
上記のA剤とB剤との混合により接触させた時から90分間経過時にClO2ガス濃度を測定した後に、発生したClO2ガスが残存している上記乗用車内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記乗用車内で5回(全体で4.75g)噴霧した。上記のA剤とB剤との混合により接触させた時から95分間経過後(すなわちC剤の噴霧時から5分間経過後)における上記乗用車内のClO2ガス濃度を表2に示した。表2に示すように、このときのClO2ガスの濃度は、0.05ppmであり、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記乗用車内のClO2ガスによる刺激臭は、3人のパネラー全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記乗用車内のタバコなどによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
(実施例3)
本実施例は、3人のパネラー全てが強く認めるホルムアルデヒドによる悪臭がある6畳室(容量21.7m3:2.93m×3.37m×2.2m)内において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
本実施例は、3人のパネラー全てが強く認めるホルムアルデヒドによる悪臭がある6畳室(容量21.7m3:2.93m×3.37m×2.2m)内において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液18gと、B剤として30質量%のクエン酸水溶液30gと、C剤として2.5質量%のエリソルビン酸ナトリウム水溶液300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように少量であった。
A剤として25質量%の亜塩素酸ナトリウム水溶液18gと、B剤として30質量%のクエン酸水溶液30gと、C剤として2.5質量%のエリソルビン酸ナトリウム水溶液300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように少量であった。
2.A剤とB剤との接触によるClO2ガスの発生
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と6畳室内のClO2ガスの濃度を表3にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と6畳室内のClO2ガスの濃度を表3にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。
3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から6.25時間経過後に、発生したClO2ガスが残存している上記6畳室内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記6畳室内で35回(全体で33.25g)噴霧した(C剤の1次噴霧という、以下同じ)。ここで、C剤の1次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表領域、中領域、および奥領域に分けて、奥領域の表側から奥側に向けて均一に広がるように15回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように10回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように10回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から7.25時間経過後(すなわちC剤の1次噴霧時から1時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.75ppmに低減した。
上記のA剤とB剤との混合により接触させた時から6.25時間経過後に、発生したClO2ガスが残存している上記6畳室内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記6畳室内で35回(全体で33.25g)噴霧した(C剤の1次噴霧という、以下同じ)。ここで、C剤の1次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表領域、中領域、および奥領域に分けて、奥領域の表側から奥側に向けて均一に広がるように15回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように10回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように10回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から7.25時間経過後(すなわちC剤の1次噴霧時から1時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.75ppmに低減した。
次に、A剤とB剤との混合により接触させた時から7.5時間経過後に、上記C剤を上記6畳室内で10回(全体で9.5g)噴霧した(C剤の2次噴霧という、以下同じ)。ここで、C剤の2次噴霧は、上記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から8.5時間経過後(すなわちC剤の2次噴霧時から1時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.10ppmに低減し、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度の上限である0.1ppmmまで低減した。
さらに、A剤とB剤との混合により接触させた時から8.75時間経過後に、上記C剤を上記6畳室内でC剤を2回(全体で1.9g)噴霧した(C剤の3次噴霧という、以下同じ)。ここで、C剤の3次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表側領域および奥側領域に分けて、奥側領域の表側から奥側に向けて1回噴霧し、表側領域の奥側から表側に向けて1回噴霧した。上記のA剤とB剤との混合により接触させた時から9.0時間経過後(すなわちC剤の3次噴霧時から0.25時間経過後)における上記6畳室内のClO2ガス濃度は、表3に示すように、0.05ppmに低減し、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記6畳室内のClO2ガスによる刺激臭は、3人のパネラーが全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記6畳室内のホルムアルデヒドによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
(実施例4)
本実施例は、3人のパネラー全てが強く認めるホルムアルデヒドによる悪臭がある6畳室(容量21.7m3:2.93m×3.37m×2.2m)内において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
本実施例は、3人のパネラー全てが強く認めるホルムアルデヒドによる悪臭がある6畳室(容量21.7m3:2.93m×3.37m×2.2m)内において、A剤とB剤との接触によるClO2ガスの発生ならびに発生したClO2ガスとC剤との接触によるClO2ガスの消滅を行なったものである。
1.ClO2ガス発生消滅用キットの作製
A剤として25質量%の亜塩素酸ナトリウム水溶液18gと、B剤として30質量%のクエン酸水溶液30gと、C剤として3.0質量/体積%(w/v%とも表記する。100mLの水溶液中に3gの過酸化水素が存在する濃度をいう)の過酸化水素水溶液(健栄製薬社製オキシドール)300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
A剤として25質量%の亜塩素酸ナトリウム水溶液18gと、B剤として30質量%のクエン酸水溶液30gと、C剤として3.0質量/体積%(w/v%とも表記する。100mLの水溶液中に3gの過酸化水素が存在する濃度をいう)の過酸化水素水溶液(健栄製薬社製オキシドール)300gと、を準備した。C剤を300gとしたのは、トリガー式噴霧器に入れて噴霧させるためであり、ClO2ガスを消滅させてその濃度を0.1ppm以下にするのに必要なC剤の量は後述のように極めて少量であった。
2.A剤とB剤との接触によるClO2ガスの発生
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と6畳室内のClO2ガスの濃度を表4にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。
実施例1と同じ形状および大きさのPET製容器内で、A剤の全量とB剤の全量とを混合させることにより接触させてClO2ガスを発生させた。A剤とB剤との混合により接触させた時からの経過時間と6畳室内のClO2ガスの濃度を表4にまとめた。ClO2ガスの濃度は、1.0ppm以上の濃度について北川式検知管を用いて測定し、1.0ppm未満の濃度についてはガステック低濃度検知管のNo.23MまたはNo.23Lを用いて測定した。
3.発生したClO2ガスとC剤との接触によるClO2ガスの消滅
上記のA剤とB剤との混合により接触させた時から6.33時間経過後に、発生したClO2ガスが残存している上記6畳室内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記6畳室内で35回(全体で25.9g)噴霧した(C剤の1次噴霧という、以下同じ)。ここで、C剤の1次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表領域、中領域、および奥領域に分けて、奥領域の表側から奥側に向けて均一に広がるように15回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように10回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように10回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から7.35時間経過後(すなわちC剤の1次噴霧時から1.02時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、1.40ppmに低減した。
上記のA剤とB剤との混合により接触させた時から6.33時間経過後に、発生したClO2ガスが残存している上記6畳室内から接触後のA剤およびB剤を取出すとともに、トリガー式噴霧器に入れたC剤を上記6畳室内で35回(全体で25.9g)噴霧した(C剤の1次噴霧という、以下同じ)。ここで、C剤の1次噴霧は以下の要領で行なった。上記6畳室内を、出入口ドアから奥に向かって、それぞれ同じ大きさの領域の表領域、中領域、および奥領域に分けて、奥領域の表側から奥側に向けて均一に広がるように15回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように10回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように10回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から7.35時間経過後(すなわちC剤の1次噴霧時から1.02時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、1.40ppmに低減した。
次に、A剤とB剤との混合により接触させた時から7.75時間経過後に、上記C剤を上記6畳室内で10回(全体で7.4g)噴霧した(C剤の2次噴霧という、以下同じ)。ここで、C剤の2次噴霧は、上記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から8.85時間経過後(すなわちC剤の2次噴霧時から1.1時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、0.55ppmに低減した。
さらに、A剤とB剤との混合により接触させた時から9.0時間経過後に、上記C剤を上記6畳室内で10回(全体で7.4g)噴霧した(C剤の3次噴霧という、以下同じ)。ここで、C剤の3次噴霧は、記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から10.0時間経過後(すなわちC剤の3次噴霧時から1.0時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、0.23ppmに低減した。
さらに、A剤とB剤との混合により接触させた時から10.05時間経過後に、上記C上記6畳室内でC剤を10回(全体で7.4g)噴霧した(C剤の4次噴霧という、以下同じ)。ここで、C剤の4次噴霧は、記奥領域の表側から奥側に向けて均一に広がるように4回それぞれ異なる場所で噴霧し、中領域の表側から奥側に向けて均一に広がるように3回それぞれ異なる場所で噴霧し、表領域の奥側から表側に向けて均一に広がるように3回それぞれ異なる場所で噴霧した。上記のA剤とB剤との混合により接触させた時から11.0時間経過後(すなわちC剤の4次噴霧時から0.95時間経過後)における上記6畳室内のClO2ガス濃度は、表4に示すように、0.05ppmに低減し、米国の労働安全衛生局(OSHA)が設定する8時間暴露(PEL-TWA)における許容暴露濃度である0.1ppm以下であった。このとき、上記6畳室内のClO2ガスによる刺激臭は、3人のパネラーが全てがごくわずかに認めるが不快を感じない程度まで低減していた。また、このとき、上記6畳室内のホルムアルデヒドによる悪臭は、3人のパネラー全てが認めず、消失していた。なお、エアコンのドレイン臭についても、3人のパネラー全てが認めず、消失していた。
実施例1-4について表1-4のそれぞれに示すように、亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、A剤とB剤とを接触させることによりClO2ガスを発生させ、ClO2ガスに、C剤を接触させることによりClO2ガスを消滅させるClO2ガス発生消滅用キット、ならびに、亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることによりClO2ガスを発生させるガス発生工程と、ClO2ガスに二酸化塩素還元剤を含むC剤を接触させることによりClO2ガスを消滅させるガス消滅工程と、を備えるClO2ガスの発生消滅方法によれば、発生させたClO2ガスを使用後に消滅させることにより、使用後のClO2ガスによる刺激臭を低減できる。このため、ClO2ガスの使用後は人の退避などの問題がなく、人が多く集まる室内および自動車内などであっても、花粉、塵、皮屑、真菌などのアレルギー誘発物質の処理、病原菌、ウイルス、有害化学物質(たとえば、タバコ煙、ホルムアルデヒド)などの有害物質の処理、環境浄化、脱臭、防カビおよび防腐などの処理にClO2ガスを広く使用することができる。
上記実施例1-4に示すように、発生したClO2ガスにC剤を接触させることにより、ClO2ガスを消滅させて、ClO2ガスによる刺激臭を低減することができた。
今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
S10 ガス発生工程、S20 ガス消滅工程。
Claims (4)
- 亜塩素酸塩を含むA剤とガス発生剤を含むB剤とを接触させることにより二酸化塩素ガスを発生させるガス発生工程と、
前記二酸化塩素ガスに二酸化塩素還元剤を含むC剤を接触させることにより前記二酸化塩素ガスを消滅させるガス消滅工程と、を備える二酸化塩素ガスの発生消滅方法。 - 前記二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含む請求項1に記載の二酸化塩素ガスの発生消滅方法。
- 亜塩素酸塩を含むA剤と、ガス発生剤を含むB剤と、二酸化塩素還元剤を含むC剤と、で構成され、
前記A剤と前記B剤とを接触させることにより二酸化塩素ガスを発生させ、
前記二酸化塩素ガスに前記C剤を接触させることにより前記二酸化塩素ガスを消滅させる二酸化塩素ガス発生消滅用キット。 - 前記二酸化塩素還元剤は、過酸化水素、エリソルビン酸およびその塩、ならびにアスコルビン酸およびその塩からなる群から選ばれる少なくとも1つを含む請求項3に記載の二酸化塩素ガス発生消滅用キット。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980050345.9A CN112512963A (zh) | 2018-08-03 | 2019-07-29 | 二氧化氯气体的产生消灭方法和二氧化氯气体产生消灭用的套组 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018147030A JP6961550B2 (ja) | 2018-08-03 | 2018-08-03 | 二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キット |
JP2018-147030 | 2018-08-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020027060A1 true WO2020027060A1 (ja) | 2020-02-06 |
Family
ID=69232227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/029681 WO2020027060A1 (ja) | 2018-08-03 | 2019-07-29 | 二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キット |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6961550B2 (ja) |
CN (1) | CN112512963A (ja) |
TW (1) | TWI778284B (ja) |
WO (1) | WO2020027060A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010077004A (ja) * | 2008-09-29 | 2010-04-08 | Taikoo:Kk | 亜塩素酸塩溶液の安定化方法、安定化亜塩素酸塩溶液、二酸化塩素の発生方法および除去方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI241274B (en) * | 2002-03-15 | 2005-10-11 | West King Technology Co Ltd | A process and equipment for the treatment of chlorine dioxide from sodium |
JP4575234B2 (ja) * | 2005-04-10 | 2010-11-04 | 株式会社タイコー | 二酸化塩素ガスの発生方法 |
US8192684B2 (en) * | 2009-06-04 | 2012-06-05 | Sabre Intellectual Property Holdings Llc | Decontamination of enclosed space using gaseous chlorine dioxide |
WO2015136478A1 (en) * | 2014-03-12 | 2015-09-17 | Aqua Ecologic | Stable chlorine dioxide composition and method of preparation |
EP3153184A3 (en) * | 2015-09-16 | 2017-07-12 | Aqua Ecologic | Method and system for disinfecting with chlorine dioxide gas |
-
2018
- 2018-08-03 JP JP2018147030A patent/JP6961550B2/ja active Active
-
2019
- 2019-07-29 CN CN201980050345.9A patent/CN112512963A/zh active Pending
- 2019-07-29 WO PCT/JP2019/029681 patent/WO2020027060A1/ja active Application Filing
- 2019-08-01 TW TW108127365A patent/TWI778284B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010077004A (ja) * | 2008-09-29 | 2010-04-08 | Taikoo:Kk | 亜塩素酸塩溶液の安定化方法、安定化亜塩素酸塩溶液、二酸化塩素の発生方法および除去方法 |
Also Published As
Publication number | Publication date |
---|---|
TWI778284B (zh) | 2022-09-21 |
JP2020019696A (ja) | 2020-02-06 |
TW202007640A (zh) | 2020-02-16 |
JP6961550B2 (ja) | 2021-11-05 |
CN112512963A (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2265645T3 (es) | Composiciones biocidas transparentes de liberacion prolongada. | |
US3123521A (en) | ||
US20060177521A1 (en) | Humidifer sanitization | |
CN110150315B (zh) | 一种固体高纯二氧化氯释放剂 | |
US7229647B2 (en) | Chlorine dioxide gel and associated methods | |
CA2640291A1 (en) | Thickened fluid composition comprising chlorine dioxide | |
JP2010077004A (ja) | 亜塩素酸塩溶液の安定化方法、安定化亜塩素酸塩溶液、二酸化塩素の発生方法および除去方法 | |
JP2016517315A (ja) | 殺生物剤を集中的に気相施用する装置及び方法 | |
JP2020073428A (ja) | 二酸化塩素吸着による亜塩素酸水製造法 | |
DE202018102846U1 (de) | Desinfektionsmittel aus wirkungsverstärktem Natriumhypochlorit | |
JP2012046375A (ja) | 二酸化塩素ガスの発生放出方法 | |
WO1989003179A1 (en) | Chlorine dioxide germicidal composition | |
CN1449991A (zh) | 二氧化氯气体发生剂 | |
JP2018090547A (ja) | 除菌剤及びその製造方法 | |
WO2020027060A1 (ja) | 二酸化塩素ガスの発生消滅方法および二酸化塩素ガス発生消滅用キット | |
CN101143225B (zh) | 空气净化剂及其制备方法 | |
US6165505A (en) | Sterilant effervescent formulation | |
KR101159694B1 (ko) | 이산화염소 발생 조성물 | |
JPH02134322A (ja) | 放射線耐容性ヨウ素製剤 | |
EP4091637A1 (en) | Kit for chlorine dioxide fumigation | |
WO2005000368A1 (ja) | 除菌消臭剤、除菌消臭剤溶液及びこれを用いた除菌消臭方法 | |
KR20220012774A (ko) | 이산화염소 가스 방출용 고체형 조성물 및 이를 이용한 살균·탈취제 | |
JP5666520B2 (ja) | 二酸化塩素含有組成物、二酸化塩素含有シート、二酸化塩素含有マスク、および有害物質の処理方法 | |
US20050031684A1 (en) | Compression molded product of effervescent chlorinated isocyanuric acid | |
WO2023214221A1 (en) | Composition and making of self-forming, continuous-release antimicrobial air gel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19843910 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19843910 Country of ref document: EP Kind code of ref document: A1 |