WO2020026880A1 - Active electrode, electroencephalograph, control device, and control method - Google Patents

Active electrode, electroencephalograph, control device, and control method Download PDF

Info

Publication number
WO2020026880A1
WO2020026880A1 PCT/JP2019/028742 JP2019028742W WO2020026880A1 WO 2020026880 A1 WO2020026880 A1 WO 2020026880A1 JP 2019028742 W JP2019028742 W JP 2019028742W WO 2020026880 A1 WO2020026880 A1 WO 2020026880A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
electrode
current source
living body
biological signal
Prior art date
Application number
PCT/JP2019/028742
Other languages
French (fr)
Japanese (ja)
Inventor
秋憲 松本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020533447A priority Critical patent/JPWO2020026880A1/en
Publication of WO2020026880A1 publication Critical patent/WO2020026880A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor

Definitions

  • the present invention relates to an active electrode, an electroencephalograph, a control device, a control method, and the like.
  • Patent Literature 1 discloses a device in which lead-off detection is accurately performed and power consumption of the system is minimized.
  • the present invention provides an active electrode, an electroencephalograph, a control device, a control method, and a program that can apply electrical stimulation to a living body via an electrode for detecting a biological signal.
  • the active electrode is a first electrode that comes into contact with a living body, a first amplifier circuit to which a first biological signal detected by the first electrode is input, and a second amplifier for measuring contact impedance.
  • a first current source for flowing one current to the living body through the first electrode, and a second current for flowing a second current to the living body through the first electrode for applying electrical stimulation to the living body.
  • a current source for flowing one current to the living body through the first electrode, and a second current for flowing a second current to the living body through the first electrode for applying electrical stimulation to the living body.
  • a current source for flowing one current to the living body through the first electrode, and a second current for flowing a second current to the living body through the first electrode for applying electrical stimulation to the living body.
  • the electroencephalograph includes the active electrode, and a mounting portion mounted on the living body and provided with the first electrode.
  • a control device is a control device that controls an active electrode, wherein the active electrode is configured to receive a first electrode that comes into contact with a living body and a first biological signal detected by the first electrode.
  • a second current source for flowing into the living body through the first electrode the control device selectively electrically connects the first current source and the second current source to the first electrode.
  • a control unit for connection is provided.
  • a control method is a control method of an active electrode, wherein the active electrode is configured to receive a first electrode that contacts a living body and a first biological signal detected by the first electrode.
  • a first amplifier circuit a first current source for flowing a first current for measuring contact impedance to the living body through the first electrode, and a second current for applying electrical stimulation to the living body.
  • a second current source for flowing into the living body via a first electrode, wherein the control method selectively connects the first current source and the second current source to the first electrode.
  • a program according to one embodiment of the present invention is a program for causing a computer to execute the control method.
  • the active electrode, the electroencephalograph, the control device, the control method, and the program of the present invention can apply electric stimulation to a living body through an electrode for detecting a biological signal.
  • FIG. 1 is an external view illustrating a configuration of a biological signal measurement system according to an embodiment.
  • FIG. 2A is a diagram illustrating an example of a shape and a schematic configuration of an ear-hung type electroencephalograph.
  • FIG. 2B is a diagram illustrating an example of a shape and a schematic configuration of a neck-mounted electroencephalograph.
  • FIG. 2C is a diagram illustrating an example of a shape and a schematic configuration of an eyeglass-type electroencephalograph.
  • FIG. 3A is a diagram illustrating a first example of the shape of the contact surface of the electrode that contacts the skin of the subject.
  • FIG. 3B is a diagram illustrating a second example of the shape of the contact surface of the electrode that contacts the skin of the subject.
  • FIG. 3A is a diagram illustrating a first example of the shape of the contact surface of the electrode that contacts the skin of the subject.
  • FIG. 3B is a diagram illustrating a second example of the shape of the contact surface of the
  • FIG. 3C is a diagram illustrating a third example of the shape of the contact surface of the electrode that contacts the skin of the subject.
  • FIG. 3D is a diagram illustrating a fourth example of the shape of the contact surface of the electrode that contacts the skin of the subject.
  • FIG. 3E is a diagram illustrating a fifth example of the shape of the contact surface of the electrode that contacts the skin of the subject.
  • FIG. 4 is a block diagram illustrating an overall configuration of the biological signal measurement system according to the embodiment.
  • FIG. 5 is a functional block diagram illustrating a detailed configuration of the electroencephalograph and the information processing device.
  • FIG. 6 is a block diagram illustrating a hardware configuration of the electroencephalograph.
  • FIG. 7 is a block diagram illustrating a hardware configuration of the information processing apparatus.
  • FIG. 5 is a functional block diagram illustrating a detailed configuration of the electroencephalograph and the information processing device.
  • FIG. 6 is a block diagram illustrating a hardware configuration of the electroencephalograph.
  • FIG. 8 is a flowchart illustrating a flow of a basic process of the biological signal measurement system according to the embodiment.
  • FIG. 9 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device according to the embodiment in a contact impedance measurement mode.
  • FIG. 10 is a circuit block diagram showing a detailed configuration of the biological signal measurement device according to the embodiment in an electric stimulation mode using a measurement electrode.
  • FIG. 11 is a circuit block diagram illustrating a detailed configuration of a biological signal measurement device according to a modification.
  • FIG. 12 is a diagram illustrating a detailed configuration of the second current source configured by the current output type DA converter.
  • FIG. 13 is a truth table used to control the second current source constituted by the current output type DA converter.
  • FIG. 9 is a flowchart illustrating a flow of a basic process of the biological signal measurement system according to the embodiment.
  • FIG. 9 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device according to the embodiment in a
  • FIG. 14 is a diagram showing a detailed configuration of a fourth current source constituted by a current output type DA converter.
  • FIG. 15 is a truth table used to control the fourth current source constituted by the current output type DA converter.
  • FIG. 16 is a diagram showing the relationship between the operation mode and the state of the switching element.
  • FIG. 17 is a diagram showing a current waveform for measuring contact impedance and a current waveform for electrical stimulation.
  • FIG. 18 is a diagram illustrating an example of switching operation modes.
  • FIG. 19 is a diagram illustrating an example of a component arrangement in the first active electrode.
  • FIG. 20 is a flowchart of a display operation example of the biological signal measurement system according to the embodiment.
  • FIG. 20 is a flowchart of a display operation example of the biological signal measurement system according to the embodiment.
  • FIG. 21 is a diagram illustrating a display example on the presentation unit when brain wave measurement is performed in the contact impedance measurement mode.
  • FIG. 22 is a diagram illustrating a display example on the presentation unit when brain wave measurement is performed in the electric stimulation mode.
  • FIG. 23 is a diagram illustrating a display example on the presentation unit when brain wave measurement is not performed in the electric stimulation mode.
  • FIG. 24 is a diagram illustrating an operation example including the motion measurement mode of the biological signal measurement system according to the embodiment.
  • FIG. 25 is a diagram illustrating an improvement in a walking motion of a subject by electrical stimulation.
  • each figure is a schematic diagram, and is not necessarily strictly illustrated.
  • substantially the same components are denoted by the same reference numerals, and redundant description may be omitted or simplified.
  • FIG. 1 is an external view illustrating a configuration of a biological signal measurement system 100 according to an embodiment.
  • FIG. 1 also shows a subject 5 to be measured.
  • the biological signal measurement system 100 is a system that measures a biological signal of the subject 5 and includes an electroencephalograph 10, an information processing device 20, and a presentation unit 30.
  • the electroencephalograph 10, the information processing device 20, and the presentation unit 30 are connected by wired communication or wireless communication, respectively, and transmit and receive information between the devices.
  • the electroencephalograph 10 is an example of a device that detects a biological signal, and is attached to the ear of the subject 5 (more specifically, the periphery of the ear).
  • the plurality of electrodes 51 include a measurement electrode that measures a biological signal and a reference electrode that measures a reference potential used to calculate a difference between a potential measured by the measurement electrode.
  • the plurality of electrodes 51 also include a ground electrode.
  • the ground electrode does not refer to a general ground electrode (electrode having a ground potential), but refers to an electrode having a potential serving as a reference potential in the subject 5.
  • the information processing device 20 receives an operation input from the electroencephalograph 10, and performs a predetermined process.
  • the information processing device 20 is a computer.
  • the “predetermined process” here is a general term for applications such as games, health management, learning, etc., which are implemented on a home computer.
  • the presentation unit 30 is an output device that presents the results of the processing performed by the information processing device 20.
  • “present” includes both displaying an image on a display and / or outputting sound from a speaker. That is, the presentation unit 30 is a display and / or a speaker that displays image information or outputs acoustic information.
  • FIGS. 2A to 2C are diagrams illustrating an example of a shape and a schematic configuration of the electroencephalograph 10.
  • FIG. 2A shows the ear-mounted electroencephalograph 10
  • FIG. 2B shows the neck-mounted electroencephalograph 10
  • FIG. 2C shows the eyeglass-type electroencephalograph.
  • the subject 5 wears the electroencephalograph 10 shown in FIGS. 2A to 2C on the ear.
  • the electroencephalograph 10 is an ear-hung type electroencephalograph and has an arch shape along the ear of the subject 5.
  • the electroencephalograph 10 includes a plurality of electrodes 51 and the mounting unit 40.
  • the mounting unit 40 is an arch-shaped member provided with a plurality of electrodes 51, which is mounted on the ear of the subject 5.
  • the mounting unit 40 includes an operation surface 43, and the operation surface 43 is provided with operation buttons 41 and a display unit 47.
  • the plurality of electrodes 51 are provided on a surface of the mounting unit 40 facing the subject.
  • the subject 5 Before mounting the electroencephalograph 10, the subject 5 operates the operation button 41 arranged on the operation surface 43 to activate the electroencephalograph 10, and then mounts the electroencephalograph 10 on the ear.
  • the display unit 47 arranged on the operation surface 43 displays the status of the operation, the processing result of the application, and the like.
  • an electrode located above the ear of the subject 5 (that is, near the brain of the subject 5) among the plurality of electrodes 51 is used as a measurement electrode described later.
  • An electrode located behind the ear of the subject 5 (for example, near a mastoid) is used as a reference electrode described later.
  • an electrode in contact with the vicinity of the earlobe among the plurality of electrodes 51 is used as a ground electrode. Note that such an arrangement of the electrodes is an example, and the arrangement of the electrodes is not particularly limited.
  • an electrode located beside the ear of the subject 5 is used as a measurement electrode
  • an electrode located near the mastoid or earlobe is used as a reference electrode
  • an electrode located near the earlobe is grounded. It may be used as an electrode.
  • two ear-mounted electroencephalographs 10 may be connected and used as a neck-mounted electroencephalograph.
  • two ear-hung type electroencephalographs 10 may be connected to be used as a glasses-type electroencephalograph.
  • the electrode 51 may be provided on the arm (on the temple).
  • Electrode shape 3A to 3E are diagrams illustrating examples of the shape of the contact surface of the electrode 51 that contacts the skin of the subject 5.
  • the material of the electrode 51 is made of a conductive substance.
  • An example of the material of the electrode 51 is gold or silver.
  • a desirable material for the electrode 51 is silver-silver chloride (Ag / AgCl). This is because silver-silver chloride has a small polarization when it comes into contact with a living body and has a stable polarization voltage.
  • the shape of the contact surface of the electrode 51 may be a circle (for example, a diameter of 10 mm) shown in FIG. 3A similar to an electrode used for medical use, or may be various shapes depending on the application. For example, it may be a triangle as shown in FIG. 3B, a square or a square as shown in FIG. 3C, a pentagon as shown in FIG. 3D, or a hexagon as shown in FIG. 3E.
  • FIG. 4 is a block diagram showing the overall configuration of the biological signal measurement system 100.
  • the biological signal measurement system 100 includes the electroencephalograph 10, the information processing device 20, and the presentation unit 30.
  • the electroencephalograph 10 includes an operation input device 10a and a biological signal measurement device 10b.
  • the electroencephalograph 10 receives the operation input of the subject 5 at the operation input device 10a, and measures the biological signal of the subject 5 at the time of the operation at the biological signal measuring device 10b. The biological signal measured by the electroencephalograph 10 is transmitted to the information processing device 20.
  • the information processing device 20 receives an input from the operation input device 10a or the biological signal measuring device 10b, performs a predetermined process, and outputs a processing result to the presentation unit 30.
  • the electroencephalograph 10 and the information processing device 20 are connected by wireless communication or wired communication.
  • FIG. 5 is a functional block diagram showing a detailed configuration of the electroencephalograph 10 and the information processing device 20.
  • the electroencephalograph 10 and the information processing device 20 are connected by wireless communication.
  • the operation input device 10a includes an operation input unit 11 and an operation signal output unit 12.
  • the operation input unit 11 is an input device that acquires operation input information input from the operation buttons 41 (see FIGS. 2A and 2B) and determines the content of the operation.
  • the operation signal output unit 12 is a transmitter that transmits the operation input information acquired by the operation input unit 11 to the information processing device 20.
  • the operation input information acquired by the operation input unit 11 is transmitted from the operation signal output unit 12 to the information processing device 20.
  • the biological signal measuring device 10b includes an electrode unit 13, a biological signal amplifying unit 14, and a biological signal output unit 15.
  • the electrode section 13 is composed of a plurality of electrodes 51.
  • the plurality of electrodes 51 include the measurement electrode, the reference electrode, and the ground electrode.
  • the plurality of electrodes 51 are arranged, for example, at positions that come into contact with the skin of the subject 5.
  • the biological signal amplifying unit 14 is an amplifier that amplifies a biological signal corresponding to a potential difference between the plurality of electrodes 51. Specifically, the biological signal amplification unit 14 measures a potential difference between the measurement electrode and the reference electrode, and amplifies the measured potential difference. The amplified potential difference is converted into a digital signal by an A / D converter (not shown) provided in the biological signal amplifier 14, for example. Note that the biological signal amplifying unit 14 does not need to amplify the biological signal when it can measure a biological signal having a potential of a predetermined value or more, and may simply measure the potentials of the plurality of electrodes 51.
  • the biological signal output unit 15 is a transmitter that transmits the potential difference amplified by the biological signal amplifier 14 to the information processing device 20.
  • the potential difference of the biological signal converted into a digital value by the biological signal amplifier 14 is transmitted from the biological signal output unit 15 to the information processing device 20.
  • the information processing device 20 includes an operation signal acquisition unit 21, a biological signal acquisition unit 22, a biological signal processing unit 23, an application processing unit (application processing unit) 26, a display information output unit 27, and an acoustic information output unit 28.
  • the information processing device 20 receives information from the electroencephalograph 10 by receiving operation input information at the operation signal acquisition unit 21 and receiving a biological signal at the biological signal acquisition unit 22.
  • the biological signal processing unit 23 performs a process of extracting meaningful information from the original signal. For example, in the case of brain wave measurement, the biological signal processing unit 23 extracts a signal of a specific frequency (for example, 10 Hz) and calculates a power spectral density (Power ⁇ Spectral ⁇ Density) of the signal at the frequency.
  • the biological signal processing unit 23 may be arranged on the electroencephalograph 10 side instead of the information processing device 20. That is, in the present embodiment, an electronic device may be configured by the electroencephalograph 10 and the biological signal processing unit 23.
  • the application processing unit 26 performs central application processing (application processing) of the information processing apparatus 20.
  • the application process is realized by receiving a signal from the electroencephalograph 10 and performing a predetermined process.
  • the predetermined processing is, for example, game progress in a game application, recording / data management / display in a health management application, question / score / result display in a learning application, and the like.
  • the result processed by the application processing unit 26 is output from the application processing unit 26 to the display information output unit 27 and the audio information output unit 28.
  • the display information output unit 27 and the audio information output unit 28 output a visual or auditory signal to the presentation unit 30 in order to feed back the result processed by the application processing unit 26 to the subject 5.
  • the presentation unit 30 presents (ie, displays and / or outputs audio) the signals output from the display information output unit 27 and the audio information output unit 28. Thereby, a signal is presented to the subject 5.
  • the presentation unit 30 is, for example, a television, a display, or a speaker.
  • FIG. 6 is a block diagram illustrating a hardware configuration of the electroencephalograph 10.
  • the electroencephalograph 10 includes an operation button group 71, a control signal conversion circuit 72, a measurement electrode 51a, a reference electrode 51b, a ground electrode 51c, a differential amplifier circuit 74, an A / D converter 75, a transmission circuit 79, a signal processing unit 78, and an antenna. 80 and a battery 81.
  • the operation button group 71 and the control signal conversion circuit 72 correspond to the operation input unit 11 shown in FIG. Each button in the operation button group 71 corresponds to the operation button 41.
  • the measurement electrode 51a, the reference electrode 51b, and the ground electrode 51c correspond to the electrode 51 illustrated in FIGS. 2A and 2B and the electrode unit 13 illustrated in FIG.
  • the differential amplifier circuit 74 and the A / D converter 75 are included in the biological signal amplifier 14.
  • the signal processing unit 78 has a CPU 101, a RAM 102, a program 103, and a ROM 104. Further, the transmission circuit 79 and the antenna 80 function as the biological signal output unit 15 and / or the operation signal output unit 12 illustrated in FIG. The transmitting circuit 79 and the antenna 80 may be referred to as an “output unit” or a “transmitter”.
  • the electroencephalograph 10 operates using the battery 81 as a power supply.
  • the measurement electrode 51a, the reference electrode 51b, and the ground electrode 51c are directly connected to the differential amplifier circuit 74, or are connected via a buffer amplifier or the like. These electrodes are installed at predetermined locations on the electroencephalograph 10.
  • the potential difference between the measurement electrode 51a and the reference electrode 51b is amplified by the differential amplifier circuit 74, and is converted by the A / D converter 75 from an analog biological signal to a digital biological signal.
  • the potential difference converted into a digital biological signal is sent to the CPU 101 via the bus 105 as a biological signal that can be processed and transmitted.
  • the CPU 101 executes the program 103 stored in the RAM 102.
  • the program 103 describes a signal processing procedure in the electroencephalograph 10 shown in a flowchart of FIG. 8 described later.
  • the electroencephalograph 10 converts the operation signal and the biological signal into digital signals according to the program 103 and transmits the digital signals from the antenna 80 via the transmission circuit 79.
  • the program 103 may be stored in the ROM 104 in some cases.
  • the signal processing unit 78, the control signal conversion circuit 72, the transmission circuit 79, the differential amplifier circuit 74, and the A / D converter 75 include a DSP (Digital Signal Processor) in which a computer program is incorporated in one semiconductor integrated circuit. It may be realized as hardware. When mounted on one semiconductor integrated circuit, the mounting area can be reduced and the power consumption can be reduced.
  • DSP Digital Signal Processor
  • the differential amplifier circuit 74 and the A / D converter 75 are integrated in one semiconductor integrated circuit, and the signal processing unit 78, the control signal conversion circuit 72, and the transmission circuit 79 are integrated in another semiconductor integrated circuit.
  • One semiconductor integrated circuit may be connected in one package, integrated as a SiP (System in Package), and realized as hardware such as a DSP incorporating a computer program.
  • FIG. 7 is a block diagram illustrating a hardware configuration of the information processing apparatus 20.
  • the information processing device 20 includes an antenna 83, a receiving circuit 82, a signal processing unit 108, an image control circuit 84, a display information output circuit 85, an audio control circuit 86, an audio information output circuit 87, and a power supply 88.
  • the antenna 83 and the receiving circuit 82 correspond to the biological signal acquisition unit 22 and / or the operation signal acquisition unit 21 illustrated in FIG. These are sometimes called "receivers”.
  • the signal processing unit 108 includes a CPU 111, a RAM 112, a program 113, and a ROM 114.
  • the signal processing unit 108 corresponds to the biological signal processing unit 23 and / or the application processing unit 26 illustrated in FIG.
  • the image control circuit 84 and the display information output circuit 85 correspond to the display information output unit 27 shown in FIG.
  • the sound control circuit 86 and the sound information output circuit 87 correspond to the sound information output unit 28 shown in FIG. These are connected to each other via a bus 115, and can exchange data with each other. Power is supplied from a power supply 88 to each circuit.
  • the operation information and the biological information from the electroencephalograph 10 are received by the receiving circuit 82 via the antenna 83, and sent to the CPU 111 via the bus 115.
  • the CPU 111 executes the program 113 stored in the RAM 112.
  • the program 113 describes a signal processing procedure in the information processing device 20 shown in a flowchart of FIG. 8 described later.
  • the information processing device 20 converts an operation signal and a biological signal in accordance with the program 113, performs a process for executing a predetermined application, and generates a signal for performing feedback to the subject 5 by image or sound.
  • the program 113 may be stored in the ROM 114 in some cases.
  • the image feedback signal generated by the signal processing unit 108 is output from the display information output circuit 85 to the presentation unit 30 via the image control circuit 84.
  • the audio feedback signal generated by the signal processing unit 108 is output from the audio information output circuit 87 via the audio control circuit 86.
  • the signal processing unit 108, the receiving circuit 82, the image control circuit 84, and the sound control circuit 86 may be realized as hardware such as a DSP in which a program is incorporated in one semiconductor integrated circuit. With one semiconductor integrated circuit, the effect of reducing power consumption can be obtained.
  • FIG. 8 is a flowchart showing a flow of basic processing of the biological signal measurement system 100. Steps S11 to S14 show processing in the electroencephalograph 10 (step S10), and steps S21 to S25 show processing in the information processing device 20 (step S20).
  • the operation input unit 11 receives an operation input performed by the subject 5. Specifically, it detects which operation button 41 is being pressed at the reception timing. An example of the reception timing is when the operation button 41 is pressed. The detection of whether or not the operation button 41 is pressed is performed, for example, by detecting a change in a mechanical button position or a change in an electric signal when the operation button 41 is pressed. The operation input unit 11 detects the type of the operation input received by the operation input unit 11 based on the type of the pressed operation button 41 and transmits the operation input to the operation signal output unit 12.
  • the operation signal output unit 12 transmits an operation signal corresponding to the operation input received by the operation input unit 11 to the information processing device 20.
  • the biological signal amplifier 14 measures and amplifies a biological signal corresponding to a potential difference between the plurality of electrodes 51 in the electrode unit 13. For example, a potential difference between the measurement electrode 51a and the reference electrode 51b among the plurality of electrodes 51 in the electrode unit 13 is measured as a biological signal. Further, the biological signal amplifying unit 14 amplifies the measured biological signal. The amplified biological signal is transmitted from the biological signal amplifier 14 to the biological signal output unit 15.
  • the biological signal output unit 15 transmits the transmitted biological signal to the information processing device 20.
  • steps S11 and S12 and steps S13 and S14 may be performed as parallel processing, respectively, and the processing from step S11 to step S14 may be performed in the order described above. There is no need to do this.
  • the operation signal acquisition unit 21 receives an operation signal from the operation signal output unit 12.
  • the operation signal acquisition unit 21 transmits the received operation signal to the application processing unit 26.
  • the biological signal acquisition unit 22 receives a biological signal from the biological signal output unit 15.
  • the biological signal acquisition unit 22 transmits the received biological signal to the biological signal processing unit 23.
  • the biological signal received by the biological signal acquisition unit 22 is analyzed and processed by the biological signal processing unit 23 to extract meaningful information.
  • a biological signal of a predetermined frequency component is extracted.
  • the predetermined frequency component is, for example, 10 Hz in the case of measuring brain waves.
  • the application processing unit 26 receives an operation signal from the operation signal acquisition unit 21 and a biological signal from the biological signal processing unit 23, and performs a predetermined process for executing the current application.
  • the predetermined processing is, for example, game progress in a game application, recording / data management / display in a health management application, question setting / scoring / result display in a learning application, and the like.
  • Step S25> In order to feed back the processing result of the application processing unit 26 to the subject 5, the display information output unit 27 outputs the video information to the presentation unit 30, and the audio information output unit 28 outputs the audio information to the presentation unit 30. As a result, the presentation unit 30 outputs an image and a sound corresponding to the processing result.
  • step S20 in the information processing device 20 the processing of step S22, step S23, and step S24 may be performed as parallel processing, respectively.
  • the application processing unit 26 does not need to perform processing using both the operation signal from the operation signal acquisition unit 21 and the biological signal from the biological signal processing unit 23, and performs processing using only the biological signal. You may. In that case, step S21 of receiving the operation signal can be omitted.
  • the biological signal measurement system 100 can obtain biological information such as brain waves or electrocardiograms from the subject 5.
  • FIG. 9 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device 10b included in the electroencephalograph 10.
  • FIG. 9 illustrates a hardware configuration related to the biological signal measurement device 10b among hardware configurations included in the electroencephalograph 10.
  • the surface of the body of the subject 5 that is in contact with the measurement electrode 51a and the reference electrode 51b is schematically illustrated by a dashed line.
  • the biological signal measuring device 10b mainly includes the first active electrode 60a, the second active electrode 60b, the control device 55, the biological signal amplifier 14, and the biological signal output unit 15.
  • the first active electrode 60a includes a measurement electrode 51a, a first amplifier circuit 52a, a first current source 53a, a second current source 54a, a first switching element S1, and a second switching element S2.
  • the second active electrode 60b includes a reference electrode 51b, a second amplifier circuit 52b, a third current source 53b, a fourth current source 54b, a third switching element S3, a fourth switching element S4, and an acceleration sensor 56.
  • the biological signal measurement device 10b may be regarded as one active electrode.
  • the active electrode means a measurement device in a broad sense including an electrode for measurement and a peripheral circuit for measurement.
  • the first amplifier circuit 52a is an amplifier to which a biological signal detected by the measurement electrode 51a that comes into contact with the subject 5 (that is, a living body) is input.
  • the measurement electrode 51a is an example of a first electrode, and is electrically connected to an input terminal of the first amplification circuit 52a.
  • the first amplifier circuit 52a functions as a so-called buffer amplifier and performs impedance conversion.
  • the term “amplifier circuit” or “amplifier” is not necessarily limited to an amplifier having a voltage amplification factor larger than 1, but also includes an amplifier circuit or an amplifier having a voltage amplification factor of 1 or less. .
  • the second amplifier circuit 52b is an amplifier to which a biological signal detected by the reference electrode 51b that comes into contact with the subject 5 (that is, a living body) is input.
  • the reference electrode 51b is an example of a second electrode, and is electrically connected to an input terminal of the second amplifier circuit 52b.
  • the second amplifier circuit 52b functions as a so-called buffer amplifier and performs impedance conversion.
  • the second amplifier circuit 52b does not perform voltage amplification (the voltage amplification factor is 1), but may perform voltage amplification.
  • the biological signal amplifier 14 amplifies the potential difference between the output signal of the first amplifier circuit 52a and the output signal of the second amplifier circuit 52b (that is, the potential difference between the measurement electrode 51a and the reference electrode 51b) and converts the signal into a digital signal. I do.
  • a differential amplifier circuit 74 is used for amplification, and an A / D converter 75 is used for conversion into a digital signal.
  • the biological signal output unit 15 is a transmitter that transmits the potential difference amplified by the biological signal amplifier 14 to the information processing device 20.
  • the potential difference of the biological signal converted into a digital value by the A / D converter 75 of the biological signal amplifier 14 is transmitted from the biological signal output unit 15 to the information processing device 20.
  • the biological signal measurement device 10b can measure a biological signal.
  • the biological signal measurement device 10b can measure the contact impedance between the electrode and the living body or apply the electrical stimulus to the subject 5 in parallel with the measurement of the biological signal.
  • components used for measuring contact impedance or applying electrical stimulation to the subject 5 for example, electrical stimulation to a vestibular organ in the inner ear of the subject 5 will be described.
  • the first current source 53a is a current source for flowing a first current for measuring the contact impedance Rc1 to the subject 5 via the measurement electrode 51a.
  • the electrical connection between the first current source 53a, the measurement electrode 51a, and the input terminal of the first amplifier circuit 52a is turned on and off by the first switching element S1.
  • the first switching element S1 is, for example, a field effect transistor (FET: Field ⁇ Effect ⁇ Transistor), but may be another switching element such as a bipolar transistor.
  • the second current source 54a is a current source for flowing a second current for applying electrical stimulation to the subject 5 to the subject 5 via the measurement electrode 51a.
  • the electrical connection between the second current source 54a, the measurement electrode 51a, and the input terminal of the first amplifier circuit 52a is turned on and off by the second switching element S2.
  • the second switching element S2 is, for example, an FET, but may be another switching element such as a bipolar transistor.
  • the first current source 53a and the second current source 54a may be realized as individual current source circuits, or may be realized as a single current source circuit. That is, a single current source circuit may have the functions of both the first current source 53a and the second current source 54a, and the first current source 53a and the second current source 54a are separate hardware. It is not mandatory.
  • the third current source 53b is a current source for flowing a third current for measuring the contact impedance Rc2 to the subject 5 via the reference electrode 51b.
  • the electrical connection between the third current source 53b, the reference electrode 51b, and the input terminal of the second amplifier circuit 52b is turned on and off by the third switching element S3.
  • the third switching element S3 is, for example, an FET, but may be another switching element such as a bipolar transistor.
  • the fourth current source 54b is a current source for flowing a fourth current for applying electrical stimulation to the subject 5 to the subject 5 via the reference electrode 51b.
  • the electrical connection between the fourth current source 54b, the reference electrode 51b, and the input terminal of the second amplifier circuit 52b is turned on and off by the fourth switching element S4.
  • the fourth switching element S4 is, for example, an FET, but may be another switching element such as a bipolar transistor.
  • the third current source 53b and the fourth current source 54b may be realized as individual current source circuits, or may be realized as a single current source circuit. That is, a single current source circuit may have the functions of both the third current source 53b and the fourth current source 54b, and the third current source 53b and the fourth current source 54b are separate hardware. It is not mandatory.
  • the control device 55 includes a control unit 551, a RAM 552, and a ROM 554.
  • the control unit 551 switches between the contact impedance measurement mode and the electric stimulation mode by executing the program 553 stored in the RAM 552. Specifically, the control unit 551 selectively electrically connects the first current source 53a and the second current source 54a to the measurement electrode 51a, and selectively connects the third current source 53b and the fourth current source 54b. It is electrically connected to the reference electrode 51b.
  • the control device 55 is realized by, for example, a microcontroller (MCU).
  • MCU microcontroller
  • the acceleration sensor 56 is a so-called three-axis acceleration sensor, and is used to measure the movement of the subject 5 in a movement measurement mode described later.
  • the acceleration sensor 56 is provided on the second active electrode 60b so that, for example, three axes extend in the front-back direction, the left-right direction, and the up-down direction of the subject 5.
  • the acceleration sensor 56 may be provided on the first active electrode 60a or may be provided on the control device 55.
  • the acceleration sensor 56 only needs to be provided in the electroencephalograph 10, and the installation position is not particularly limited.
  • FIG. 9 is a diagram showing a contact impedance measurement mode for measuring the contact impedance Rc1 (shown schematically in FIG. 9).
  • the first current source 53a When the first switching element S1 is turned on, the first current source 53a is turned on. It is electrically connected to the measurement electrode 51a and the input terminal of the first amplifier circuit 52a.
  • the contact impedance measurement mode the current supplied from the first current source 53a flows from the measurement electrode 51a in contact with the subject 5 through the subject 5 to the ground electrode 51c (not shown in FIG. 9) that also contacts the subject 5. Flowing.
  • the third current source 53b is turned on by turning on the third switching element S3. 51b and the input terminal of the second amplifier circuit 52b.
  • FIG. 10 is a circuit block diagram showing a detailed configuration of the biological signal measurement device 10b in the electrical stimulation mode using the measurement electrode 51a.
  • the second current source 54a when the second switching element S2 is turned on, the second current source 54a is electrically connected to the measurement electrode 51a and the input terminal of the first amplifier circuit 52a.
  • the current supplied from the second current source 54a is supplied from the measurement electrode 51a that contacts the subject 5 to the reference electrode 51b or the ground electrode 51c that also contacts the subject 5 through the subject 5 (not shown in FIG. 10). ).
  • the fourth current source 54b is connected to the reference electrode 51b and the input terminal of the second amplifier circuit 52b by turning on the fourth switching element S4. Is done.
  • the application of such electrical stimulation may have the effect of adjusting the physical condition of the subject 5.
  • an example has been reported in which electrical stimulation is applied to the vestibular organ in the inner ear of the subject 5 to improve the balance function of the body.
  • each of the second current source 54a and the fourth current source 54b for performing the electrical stimulation may be configured by a current output type DA (Digital @ to @ Analog) converter (that is, a current output type DA converter).
  • FIG. 11 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device 10b according to such a modification.
  • the second current source 54a is a discharge type current source
  • the fourth current source 54b is a suction type current source.
  • the biological signal measurement device 10b outputs the current discharged by the second current source 54a to the fourth current source 54b.
  • Electrical stimulation can be provided by a configuration that sucks in through 5.
  • each of the second current source 54a and the fourth current source 54b in the biological signal measuring device 10b shown in FIGS. 9 and 10 is a current output type DA converter.
  • This is realized by adding a decoder 57 for controlling the current values of the second current source 54a and the fourth current source 54b.
  • the decoder 57 converts the first current control signals sc9 to sc0 input from the control unit 551 of the control device 55 into the second current control signals s2_p9 to s2_p0 output to the second current source 54a or the fourth current source 54b.
  • FIG. 12 is a diagram showing a detailed configuration of a second current source 54a constituted by a current output type DA converter.
  • FIG. 13 is a diagram showing a truth value used for controlling such a second current source 54a. It is a table.
  • the current sources 54a_p6 64 ⁇ A
  • the current sources 54a_p5 32 ⁇ A
  • the current sources 54a_p2 (4 ⁇ A) are turned on, and electrical stimulation based on a current of 100 ⁇ A is realized.
  • FIG. 14 is a diagram showing a detailed configuration of a fourth current source 54b constituted by a current output type DA converter.
  • FIG. 15 is a diagram showing a truth value used to control such a fourth current source 54b. It is a table.
  • the current sources 54b_p6 ⁇ 64 ⁇ A
  • the current sources 54b_n5 ⁇ 32 ⁇ A
  • the current sources 54b_n2 are turned on, and electrical stimulation based on a current of ⁇ 100 ⁇ A is realized.
  • FIG. 16 summarizes the operation modes and the states of the switching elements as described above.
  • FIG. 16 is a diagram showing the relationship between the operation mode and the state of the switching element.
  • FIG. 16 shows two states of the switching element in the electric stimulation mode, a state corresponding to FIG. 10 and a state corresponding to FIG.
  • FIG. 17 is a diagram showing a current waveform for measuring contact impedance and a current waveform for electrical stimulation.
  • the current for measuring contact impedance is, for example, an alternating current having a frequency of about 1 kHz.
  • the alternating current having a frequency exceeding 100 Hz does not overlap the band of 0.5 Hz to 100 Hz which is the frequency range of the brain wave to be measured. Therefore, the measurement of the contact impedance and the measurement of the brain wave (biological signal) can be performed in parallel.
  • the current for electrical stimulation may be a direct current, an alternating current, or a noise current.
  • the frequency of the alternating current may overlap the band of 0.5 Hz to 100 Hz, which is the frequency range of the brain wave to be measured.
  • the noise current is, specifically, a current that forms white noise or a current that forms pink noise.
  • White noise is noise whose frequency characteristic is constant (that is, noise power in a wide frequency band is almost constant), and can be generated by using, for example, thermal noise of a resistance element.
  • White noise can also be generated by programming a waveform in the above-described current type DA converter.
  • Pink noise is noise having characteristics in which noise power is inversely proportional to frequency. For example, pink noise can be generated using an FET whose channel width and channel length are adjusted. Pink noise can also be generated by programming a waveform in the above-mentioned current type DA converter.
  • the measurement of the contact impedance is performed to determine whether the measurement electrode 51a and the reference electrode 51b are in contact with the subject 5. Therefore, the value of the current for measuring the contact impedance (that is, the first current or the third current) is intended to be a weak value that does not stimulate the subject 5 as much as possible. On the other hand, the value of the current for electrical stimulation (that is, the second current or the fourth current) is intended to positively stimulate the subject 5. Therefore, the first amplitude of the first current is set to, for example, 1 ⁇ A or less, and the second amplitude of the second current is set to be larger than the first amplitude of the first current.
  • the third amplitude of the third current is set to, for example, 1 ⁇ A or less, and the fourth amplitude of the fourth current is set to be larger than the first amplitude of the third current.
  • the term “amplitude” may be read as the maximum amplitude (peak-to-peak value) when the amplitude is not constant.
  • the second current source 54a and the fourth current source 54b may be configured so that the subject 5 can select the type and amplitude of the current for electrical stimulation. Thus, the subject 5 can change the degree of the electrical stimulation according to his / her preference.
  • FIG. 18 is a diagram illustrating an example of switching operation modes. In the following, an example of switching the operation mode in the first active electrode 60a will be described, but the same applies to switching of the operation mode in the second active electrode 60b.
  • brain wave measurement is performed in the contact impedance measurement mode. That is, the measurement of the brain wave and the measurement of the contact impedance are performed in parallel.
  • the control unit 551 electrically connects the first current source 53a to the measurement electrode 51a by selectively turning on the first switching element S1 of the first switching element S1 and the second switching element S2, and changes the operation mode to the contact mode. Switch to impedance measurement mode. At this time, an AC current having a frequency of 1 kHz and an amplitude of 50 nA is output from the first current source 53a.
  • the measurement of the electroencephalogram is performed in the electric stimulation mode. That is, the measurement of the electroencephalogram and the application of the electrical stimulation are performed in parallel.
  • the control unit 551 electrically connects the second current source 54a to the measurement electrode 51a by selectively turning on the second switching element S2 of the first switching element S1 and the second switching element S2, and changes the operation mode to electric. Switch to stimulation mode.
  • a noise current that forms white noise with an amplitude of about 200 ⁇ A is output from the first current source 53a.
  • the control unit 551 electrically connects the first current source 53a to the measurement electrode 51a by selectively turning on the first switching element S1 of the first switching element S1 and the second switching element S2, and changes the operation mode to the contact mode. Switch to impedance measurement mode.
  • the first current source 53a outputs an alternating current having a frequency of 1 kHz and an amplitude of 50 nA.
  • the control unit 551 electrically connects the second current source 54a to the measurement electrode 51a by selectively turning on the second switching element S2 of the first switching element S1 and the second switching element S2, and changes the operation mode to electric. Switch to stimulation mode. At this time, an alternating current having a frequency of 1 kHz and an amplitude of about 600 ⁇ A is output from the first current source 53a.
  • the electroencephalogram may not be measured well. Therefore, in such a case, the measurement of the brain wave is stopped.
  • the stop of the measurement of the electroencephalogram may be realized by stopping the communication from the biological signal output unit 15 with the information processing device 20, or may be realized by stopping the display of the measurement result by the information processing device 20. You may. Thereby, the biological signal measurement system 100 can suppress display of an electroencephalogram that may not be properly measured.
  • FIG. 19 is a diagram illustrating an example of a component arrangement in the first active electrode 60a. Note that the component arrangement on the second active electrode 60b is the same as that of the first active electrode 60a, and thus a detailed description is omitted.
  • the measurement electrode 51a has a diameter of about 10 mm and is mounted on one main surface (a main surface on the back side in FIG. 19) of the substrate 58a smaller than the measurement electrode 51a.
  • the first current source 53a and the second current source 54a are mounted on the other main surface (the front surface in FIG. 19) of the substrate 58a.
  • the measurement electrode 51a and the input terminal of the first amplifier circuit 55a are electrically connected via a circular contact portion 59a having a diameter of about 1 mm located outside the substrate 58a.
  • a first current source 53a is connected to a wiring that electrically connects the measurement electrode 51a and an input terminal of the first amplifier circuit 52a via a first switching element S1, and a second current source 54a is connected to a second switching element S2.
  • the first amplifier circuit 52a is mounted such that the first amplifier circuit 52a is entirely located within a region of about 3 mm in width from the input side (left side in FIG. 19) to the output side (right side in FIG. 19).
  • the first current source 53a is mounted so that the whole of the first current source 53a is located within a region having a width of about 1 mm from the input side to the output side.
  • the second current source 54a is mounted so that the whole of the second current source 54a is located within a region having a width of about 2 mm from the input side to the output side.
  • the distance X between the first current source 53a and the first amplifier circuit 52a is 5 mm or less. More specifically, the distance X is a distance from the left end of the region where the first current source 53a is mounted to the left end of the region where the first amplifier circuit 52a is mounted. 19 (in other words, the direction in which the first current source 53a and the first amplifier circuit 52a are arranged) in FIG. When the distance X is shortened in this way, generation of unnecessary noise and jump of unnecessary noise are suppressed.
  • the distance between the second current source 54a and the first amplifier circuit 52a is also 5 mm or less.
  • the definition of the distance between the second current source 54a and the first amplifier circuit 52a is, for example, the same as the distance X.
  • the distance between the first current source 53a and the first amplifier circuit 52a and the distance between the second current source 54a and the first amplifier circuit 52a is 5 mm or less. Good. As a result, an effect of suppressing the generation of unnecessary noise and the jump of unnecessary noise can be obtained.
  • FIG. 20 is a flowchart of a display operation example of the biological signal measurement system 100.
  • FIG. 21 is a diagram illustrating a display example on the presentation unit 30 when the brain wave is measured in the contact impedance measurement mode.
  • FIG. 22 is a diagram illustrating a display example on the presentation unit 30 when the brain wave is measured in the electric stimulation mode.
  • FIG. 23 is a diagram illustrating a display example on the presentation unit 30 when the brain wave measurement is not performed in the electric stimulation mode.
  • the application processing unit 26 performs an initial process (S41). As shown in FIGS. 21 to 23, in the initial processing, the application processing unit 26 sets the measurement electrode 51a and the reference electrode 51b of the electroencephalograph 10 worn by the subject 5 on the electrode illustration unit 30c of the presentation unit 30. Displays the position of.
  • the application processing unit 26 determines whether or not the current mode is the contact impedance measurement mode (S42).
  • the application processing unit 26 transmits the notification signal transmitted from the electroencephalograph 10 in response to the operation of instructing the contact impedance measurement mode. 21 to determine whether or not it has been acquired.
  • the application processing unit 26 determines whether such an operation has been performed. I do.
  • the application processing unit 26 When determining that the current mode is the contact impedance measurement mode (YES in S42), the application processing unit 26 displays “measurement of contact impedance” on the measurement information display unit 30a of the presentation unit 30 as shown in FIG. (S43). Then, the application processing unit 26 measures the contact impedance of the reference electrode 51b (S44). The application processing unit 26 extracts and demodulates a voltage around 1 kHz obtained from the biological signal output unit 15 in a state where the second active electrode 60b including the reference electrode 51b is in the contact impedance measurement mode, and applies the obtained voltage value. By dividing by the obtained current value, the contact impedance of the reference electrode 51b is measured.
  • the application processing unit 26 measures the contact impedance of the measurement electrode 51a (S45). Then, as shown in FIG. 21, the application processing unit 26 displays the measured contact impedance of the reference electrode 51b and the measured electrode 51a on the contact impedance display unit 30e of the presentation unit 30 (S46).
  • the application processing unit 26 determines whether the current mode is the electrical stimulation mode (S47).
  • the application processing unit 26 transmits a notification signal transmitted from the electroencephalograph 10 in response to the operation for instructing the electric stimulation mode by the operation signal acquisition unit 21. It is determined whether or not it has been acquired.
  • the application processing unit 26 determines whether such an operation has been performed. .
  • the application processing unit 26 When determining that the current mode is the electric stimulation mode (YES in S47), the application processing unit 26 displays “electric stimulation” on the measurement information display unit 30a of the presentation unit 30 as shown in FIGS. (S48). Then, the application processing unit 26 acquires the setting (type (DC, AC, or noise) and amplitude) of the electric stimulation current (S49). The setting of the electric current for electrical stimulation is determined based on, for example, an operation on the operation button 41 of the subject 5 and is transmitted from the electroencephalograph 10 to the information processing device 20, but based on the operation on the information processing device 20. It may be determined. Then, as shown in FIGS. 22 and 23, the application processing unit 26 displays the acquired current setting on the current setting information display unit 30d in the presentation unit 30 (S50).
  • step S46 in the case of NO in step S47, and after step S50, it is determined whether or not brain wave measurement is being performed (S51). For example, in the case of the contact impedance mode, and in the case where the amplitude of the current is set to be less than the predetermined value in the electric stimulation mode, the application processing unit 26 determines that the electroencephalogram is being measured (YES in S51).
  • the application processing unit 26 displays “Measurement of EEG” on the measurement information display unit 30a of the presentation unit 30 (S52).
  • the application processing unit 26 displays a waveform of a biological signal (here, a waveform of an electroencephalogram) obtained from the biological signal measurement device 10b on a waveform display unit 30b of the presentation unit 30. It is displayed (S53).
  • a biological signal here, a waveform of an electroencephalogram
  • the application processing unit 26 determines that the electroencephalogram measurement is not being performed (NO in S51).
  • the waveform display unit 30b of the presentation unit 30 since the brain wave measurement of the subject 5 is not performed, the waveform display unit 30b of the presentation unit 30 does not display the waveform of the brain wave, but displays dummy voltage data.
  • the waveform of the current used for the electrical stimulation may be displayed on the waveform display unit 30b of the presentation unit 30.
  • the presentation information unit 30 displays the measurement information display unit 30a, the waveform display unit 30b, the electrode display unit 30c indicating the position of the electrode, the current setting information display unit 30d, , The contact impedance display section 30e is displayed, and much information can be understood at a glance.
  • the biological signal measurement device 10b can perform the operation in the motion measurement mode for measuring the motion of the subject 5 using the output signal of the acceleration sensor 56. That is, it can be said that the control unit 551 of the control device 55 has the motion measurement mode, the contact impedance measurement mode, and the electric stimulation mode.
  • the contact impedance measurement mode is a mode for measuring a biological signal while measuring contact impedance using a current for contact impedance measurement (that is, the first current or the third current). Is a mode in which electric stimulation is applied to the subject 5 using the electric current for electric stimulation (that is, the second current or the fourth current).
  • FIG. 24 is a diagram showing an operation example including the motion measurement mode of such a biological signal measurement system, and the movement of the subject is measured in parallel with the operation shown in the flowchart of FIG. 20 (S61).
  • FIG. 25 is a diagram illustrating an improvement in the walking motion of the subject 5 by the electrical stimulation.
  • the subject 5 walks forward, when the electric stimulus is not applied, the landing foot draws a trajectory flowing to the right, whereas when the electric stimulus is applied, the walking direction is straight and the stride is wide, and the walking speed is increased. Has the effect of being improved.
  • the history of the electrical stimulation that is, the operation history in the electrical stimulation mode
  • the history of the walking operation that is, the history of the measurement result in the motion measurement mode
  • the control unit 551 of the control device 55 can finely control the current value for the electrical stimulation. Therefore, the control unit 551 may control the electric stimulation current based on the measurement result of the movement of the subject 5.
  • the measurement result of the movement may be a measurement result (history) of a past movement before the electric stimulation to be performed, or the measurement result of the movement may be immediately used for the electric stimulation as shown in FIG. May be reflected in the current value of the current.
  • the control unit 551 may control the electric stimulation current based on the biological signal measured in the contact impedance measurement mode.
  • the movement biosignal may be a past biosignal (history of the biosignal) measured before the electric stimulation to be performed, or the measurement result of the biosignal is immediately changed to the electric stimulation current. May be reflected in the current value.
  • the control unit 551 may control the current for electrical stimulation based on both the measurement result of the movement and the measurement result of the biological signal.
  • the electric stimulation current may be controlled based on at least one of the movement of the subject 5 measured in the motion measurement mode and the biological signal measured in the contact impedance measurement mode.
  • the biological signal measuring device 10b is realized, for example, as an active electrode.
  • Such an active electrode measures a measurement electrode 51a that comes into contact with a living body, a first amplification circuit 52a to which a first biological signal detected by the measurement electrode 51a is input, and a first current for measuring contact impedance. It includes a first current source 53a for flowing the living body through the electrode 51a, and a second current source 54a for flowing a second current for applying electric stimulation to the living body through the measurement electrode 51a.
  • the measurement electrode 51a is an example of a first electrode.
  • Such an active electrode can apply an electrical stimulus to a living body via a measuring electrode 51a for detecting a first biological signal.
  • the active electrode further includes a first switching element S1 for turning on and off an electrical connection between the first current source 53a and the measurement electrode 51a, and an electrical connection between the second current source 54a and the measurement electrode 51a.
  • a second switching element S2 for turning on and off the connection.
  • Such an active electrode can selectively perform an operation in a contact impedance measurement mode for measuring the contact impedance of the measurement electrode 51a and an operation in an electric stimulation mode for applying electric stimulation to a living body via the measurement electrode 51a.
  • the first current is an AC current having a first amplitude
  • the second current is a DC current, an AC current, or a noise current
  • the second amplitude of the second current is larger than the first amplitude. large.
  • Such an active electrode can effectively apply an electric stimulus to a living body through the measurement electrode 51a by a current having a larger amplitude than that at the time of measuring the contact impedance.
  • the first amplitude is 1 ⁇ A or less.
  • Such an active electrode can reduce the electrical stimulation given to the living body when measuring the contact impedance of the measurement electrode 51a.
  • the active electrode further includes a reference electrode 51b that comes into contact with a living body, a second amplifier circuit 52b to which a second biological signal detected by the reference electrode 51b is input, and a third electrode for measuring contact impedance.
  • the reference electrode 51b is an example of a second electrode.
  • Such an active electrode can apply an electrical stimulus to a living body via a reference electrode 51b for detecting a second biological signal.
  • the active electrode further includes a third switching element S3 for turning on and off an electrical connection between the third current source 53b and the reference electrode 51b, and an electrical connection between the fourth current source 54b and the reference electrode 51b. And a fourth switching element S4 for turning on and off the connection.
  • Such an active electrode can selectively perform operation in the contact impedance measurement mode for measuring the contact impedance of the reference electrode 51b and operation in the electric stimulation mode for applying electric stimulation to the living body via the reference electrode 51b.
  • the third current is an AC current having a third amplitude
  • the fourth current is a DC current, an AC current, or a noise current
  • the fourth amplitude of the fourth current is larger than the third amplitude.
  • Such an active electrode can effectively apply an electric stimulus to a living body via the reference electrode 51b by a current having a larger amplitude than that at the time of measuring the contact impedance.
  • the third amplitude is 1 ⁇ A or less.
  • Such an active electrode can reduce the electrical stimulation given to the living body when measuring the contact impedance of the reference electrode 51b.
  • At least one of the distance between the first current source 53a and the first amplifier circuit 52a and the distance between the second current source 54a and the first amplifier circuit 52a is 5 mm or less.
  • the second current source 54a is configured by a current output type DA converter.
  • Such an active electrode can control the current value of the electric stimulation current.
  • the first current source 53a and the second current source 54a are realized by a single current source circuit.
  • a single current source circuit can be used as the first current source 53a and the second current source 54a.
  • the active electrode further includes an acceleration sensor 56.
  • Such an active electrode can measure the movement of the subject 5 based on the output signal of the acceleration sensor.
  • the electroencephalograph 10 also includes the active electrode described above and a mounting part 40 provided on the living body and provided with the measurement electrode 51a.
  • Such an electroencephalograph 10 can give an electric stimulus to the living body via the measurement electrode 51a for detecting the first biological signal.
  • the electroencephalograph 10 further includes an acceleration sensor 56.
  • Such an electroencephalograph 10 can measure the movement of the subject 5 based on the output signal of the acceleration sensor.
  • the acceleration sensor 56 is provided on the active electrode.
  • Such an electroencephalograph 10 can measure the movement of the subject 5 based on the output signal of the acceleration sensor provided on the active electrode.
  • the control device 55 that controls the active electrode includes a control unit 551 that selectively connects the first current source 53a and the second current source 54a to the measurement electrode 51a.
  • the control device 55 can selectively perform operation in the contact impedance measurement mode for measuring the contact impedance of the measurement electrode 51a and operation in the electric stimulation mode for applying electric stimulation to the living body via the measurement electrode 51a. it can.
  • control device 55 further includes an acceleration sensor 56.
  • the control unit 551 is a motion measurement mode for measuring the motion of the subject 5 using the output signal of the acceleration sensor 56, and a contact impedance measurement mode for measuring the first biological signal while measuring the contact impedance using the first current.
  • an electrical stimulation mode for applying the electrical stimulation to the subject 5 using the second current. The second current in the electrical stimulation mode is controlled based on at least one of the movement of the subject 5 measured in the movement measurement mode and the first biological signal measured in the contact impedance measurement mode.
  • Such a control device 55 can control the second current in the electric stimulation mode based on at least one of the movement of the subject 5 and the first biological signal.
  • control method of the active electrode selectively connects the first current source 53a and the second current source 54a to the measurement electrode 51a.
  • Such a control method can selectively perform operation in the contact impedance measurement mode for measuring the contact impedance of the measurement electrode 51a and operation in the electric stimulation mode for applying electric stimulation to the living body via the measurement electrode 51a.
  • control method further includes a motion measurement mode for measuring the motion of the subject 5 using an output signal of the acceleration sensor 56 provided in the active electrode, and a first biological signal while measuring contact impedance using the first current.
  • an electrical stimulation mode for applying electrical stimulation to the subject 5 using the second current. The second current in the electrical stimulation mode is controlled based on at least one of the movement of the subject 5 measured in the movement measurement mode and the first biological signal measured in the contact impedance measurement mode.
  • the second current in the electric stimulation mode can be controlled based on at least one of the movement of the subject 5 and the first biological signal.
  • the present invention may be another type of electroencephalograph such as a headset type electroencephalograph worn on the head of the subject.
  • the present invention may be realized as a biological signal measuring device other than an electroencephalograph, for example, an electrocardiograph for detecting an electrocardiogram signal (Electrocardiogram (ECG) signal) from an electrode attached to a body, a hand, a foot or the like. It may be realized as.
  • ECG Electrocardiogram
  • the circuit configuration described in the above embodiment is an example, and the present invention is not limited to the above circuit configuration. That is, similarly to the above circuit configuration, a circuit capable of realizing the characteristic function of the present invention is also included in the present invention.
  • a circuit capable of realizing the characteristic function of the present invention is also included in the present invention.
  • an element in which an element such as a switching element (transistor), a resistor, or a capacitor is connected to a certain element in series or in parallel to the extent that a function similar to the above circuit configuration can be realized is also included in the present invention. included.
  • another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • each component may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • each component may be realized by hardware.
  • a component such as a control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
  • the general or specific aspects of the present invention may be realized by a recording medium such as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
  • the present invention may be realized as a control method of an active electrode, or may be realized as a program for causing a computer to execute such a control method. Further, the present invention may be realized as a non-transitory computer-readable recording medium on which such a program is recorded.
  • the biological signal measurement system may be realized as a single device, or may be realized by a plurality of devices.
  • the components included in the biological signal measurement system described in the above embodiment may be distributed to the plurality of devices in any manner.

Abstract

This active electrode is provided with: a measurement electrode (51a) that is brought into contact with a living body; a first amplification circuit (52a) to which a first biological signal detected by the measurement electrode (51a) is inputted; a first current source (53a) for causing a first current for measuring contact impedance between the measurement electrode (51a) and the living body, to flow to the living body via the measurement electrode (51a); and a second current source (54a) for causing a second current for applying electric stimulation to the living body, to flow to the living body via the measurement electrode (51a).

Description

アクティブ電極、脳波計、制御装置、及び、制御方法Active electrode, electroencephalograph, control device, and control method
 本発明は、アクティブ電極、脳波計、制御装置、及び、制御方法などに関する。 The present invention relates to an active electrode, an electroencephalograph, a control device, a control method, and the like.
 被験者の脳波または心拍数等を生体信号として計測する生体信号計測装置が知られている。このような生体信号計測装置の一例として、特許文献1には、リードオフ検出が正確に実施され、システムの消費電力を最小限に抑える装置が開示されている。 生 体 A biological signal measuring device that measures a subject's brain wave or heart rate as a biological signal is known. As an example of such a biological signal measurement device, Patent Literature 1 discloses a device in which lead-off detection is accurately performed and power consumption of the system is minimized.
特表2007-508095号公報Japanese Patent Publication No. 2007-508095
 本発明は、生体信号を検出するための電極を介して生体に電気刺激を与えることができるアクティブ電極、脳波計、制御装置、制御方法、及び、プログラムを提供する。 The present invention provides an active electrode, an electroencephalograph, a control device, a control method, and a program that can apply electrical stimulation to a living body via an electrode for detecting a biological signal.
 本発明の一態様に係るアクティブ電極は、生体に接触する第一電極と、前記第一電極によって検出された第一生体信号が入力される第一増幅回路と、接触インピーダンスを計測するための第一電流を前記第一電極を介して前記生体に流すための第一電流源と、前記生体に電気刺激を与えるための第二電流を前記第一電極を介して前記生体に流すための第二電流源とを備える。 The active electrode according to one embodiment of the present invention is a first electrode that comes into contact with a living body, a first amplifier circuit to which a first biological signal detected by the first electrode is input, and a second amplifier for measuring contact impedance. A first current source for flowing one current to the living body through the first electrode, and a second current for flowing a second current to the living body through the first electrode for applying electrical stimulation to the living body. And a current source.
 本発明の一態様に係る脳波計は、前記アクティブ電極と、前記生体に装着される、前記第一電極が設けられた装着部とを備える。 脳 The electroencephalograph according to one aspect of the present invention includes the active electrode, and a mounting portion mounted on the living body and provided with the first electrode.
 本発明の一態様に係る制御装置は、アクティブ電極を制御する制御装置であって、前記アクティブ電極は、生体に接触する第一電極と、前記第一電極によって検出された第一生体信号が入力される第一増幅回路と、接触インピーダンスを計測するための第一電流を前記第一電極を介して前記生体に流すための第一電流源と、前記生体に電気刺激を与えるための第二電流を前記第一電極を介して前記生体に流すための第二電流源とを備え、前記制御装置は、前記第一電流源及び前記第二電流源を選択的に前記第一電極に電気的に接続する制御部を備える。 A control device according to one embodiment of the present invention is a control device that controls an active electrode, wherein the active electrode is configured to receive a first electrode that comes into contact with a living body and a first biological signal detected by the first electrode. A first amplifier circuit, a first current source for flowing a first current for measuring contact impedance to the living body through the first electrode, and a second current for applying electrical stimulation to the living body A second current source for flowing into the living body through the first electrode, the control device selectively electrically connects the first current source and the second current source to the first electrode. A control unit for connection is provided.
 本発明の一態様に係る制御方法は、アクティブ電極の制御方法であって、前記アクティブ電極は、生体に接触する第一電極と、前記第一電極によって検出された第一生体信号が入力される第一増幅回路と、接触インピーダンスを計測するための第一電流を前記第一電極を介して前記生体に流すための第一電流源と、前記生体に電気刺激を与えるための第二電流を前記第一電極を介して前記生体に流すための第二電流源とを備え、前記制御方法は、前記第一電流源及び前記第二電流源を選択的に前記第一電極に電気的に接続する。 A control method according to an aspect of the present invention is a control method of an active electrode, wherein the active electrode is configured to receive a first electrode that contacts a living body and a first biological signal detected by the first electrode. A first amplifier circuit, a first current source for flowing a first current for measuring contact impedance to the living body through the first electrode, and a second current for applying electrical stimulation to the living body. A second current source for flowing into the living body via a first electrode, wherein the control method selectively connects the first current source and the second current source to the first electrode. .
 本発明の一態様に係るプログラムは、前記制御方法をコンピュータに実行させるためのプログラムである。 A program according to one embodiment of the present invention is a program for causing a computer to execute the control method.
 本発明のアクティブ電極、脳波計、制御装置、制御方法、及び、プログラムは、生体信号を検出するための電極を介して生体に電気刺激を与えることができる。 The active electrode, the electroencephalograph, the control device, the control method, and the program of the present invention can apply electric stimulation to a living body through an electrode for detecting a biological signal.
図1は、実施の形態に係る生体信号計測システムの構成を示す外観図である。FIG. 1 is an external view illustrating a configuration of a biological signal measurement system according to an embodiment. 図2Aは、耳掛け型の脳波計の形状及び概略構成の一例を示す図である。FIG. 2A is a diagram illustrating an example of a shape and a schematic configuration of an ear-hung type electroencephalograph. 図2Bは、首掛け型の脳波計の形状及び概略構成の一例を示す図である。FIG. 2B is a diagram illustrating an example of a shape and a schematic configuration of a neck-mounted electroencephalograph. 図2Cは、眼鏡型の脳波計の形状及び概略構成の一例を示す図である。FIG. 2C is a diagram illustrating an example of a shape and a schematic configuration of an eyeglass-type electroencephalograph. 図3Aは、被験者の皮膚と接触する電極の接触面の形状の第一の例を示す図である。FIG. 3A is a diagram illustrating a first example of the shape of the contact surface of the electrode that contacts the skin of the subject. 図3Bは、被験者の皮膚と接触する電極の接触面の形状の第二の例を示す図である。FIG. 3B is a diagram illustrating a second example of the shape of the contact surface of the electrode that contacts the skin of the subject. 図3Cは、被験者の皮膚と接触する電極の接触面の形状の第三の例を示す図である。FIG. 3C is a diagram illustrating a third example of the shape of the contact surface of the electrode that contacts the skin of the subject. 図3Dは、被験者の皮膚と接触する電極の接触面の形状の第四の例を示す図である。FIG. 3D is a diagram illustrating a fourth example of the shape of the contact surface of the electrode that contacts the skin of the subject. 図3Eは、被験者の皮膚と接触する電極の接触面の形状の第五の例を示す図である。FIG. 3E is a diagram illustrating a fifth example of the shape of the contact surface of the electrode that contacts the skin of the subject. 図4は、実施の形態に係る生体信号計測システムの全体構成を示すブロック図である。FIG. 4 is a block diagram illustrating an overall configuration of the biological signal measurement system according to the embodiment. 図5は、脳波計及び情報処理装置の詳細な構成を示す機能ブロック図である。FIG. 5 is a functional block diagram illustrating a detailed configuration of the electroencephalograph and the information processing device. 図6は、脳波計のハードウェア構成を示すブロック図である。FIG. 6 is a block diagram illustrating a hardware configuration of the electroencephalograph. 図7は、情報処理装置のハードウェア構成を示すブロック図である。FIG. 7 is a block diagram illustrating a hardware configuration of the information processing apparatus. 図8は、実施の形態に係る生体信号計測システムの基本的な処理のフローを示すフローチャートである。FIG. 8 is a flowchart illustrating a flow of a basic process of the biological signal measurement system according to the embodiment. 図9は、実施の形態に係る生体信号計測装置の、接触インピーダンス計測モードにおける詳細な構成を示す回路ブロック図である。FIG. 9 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device according to the embodiment in a contact impedance measurement mode. 図10は、実施の形態に係る生体信号計測装置の、計測電極を用いた電気刺激モードにおける詳細な構成を示す回路ブロック図である。FIG. 10 is a circuit block diagram showing a detailed configuration of the biological signal measurement device according to the embodiment in an electric stimulation mode using a measurement electrode. 図11は、変形例に係る生体信号計測装置の詳細な構成を示す回路ブロック図である。FIG. 11 is a circuit block diagram illustrating a detailed configuration of a biological signal measurement device according to a modification. 図12は、電流出力型DA変換器によって構成される第二電流源の詳細構成を示す図である。FIG. 12 is a diagram illustrating a detailed configuration of the second current source configured by the current output type DA converter. 図13は、電流出力型DA変換器によって構成される第二電流源を制御するために使用される真理値表である。FIG. 13 is a truth table used to control the second current source constituted by the current output type DA converter. 図14は、電流出力型DA変換器によって構成される第四電流源の詳細構成を示す図である。FIG. 14 is a diagram showing a detailed configuration of a fourth current source constituted by a current output type DA converter. 図15は、電流出力型DA変換器によって構成される第四電流源を制御するために使用される真理値表である。FIG. 15 is a truth table used to control the fourth current source constituted by the current output type DA converter. 図16は、動作モードとスイッチング素子の状態との関係を示す図である。FIG. 16 is a diagram showing the relationship between the operation mode and the state of the switching element. 図17は、接触インピーダンス計測用の電流波形、及び、電気刺激用の電流波形を示す図である。FIG. 17 is a diagram showing a current waveform for measuring contact impedance and a current waveform for electrical stimulation. 図18は、動作モードの切り替え例を示す図である。FIG. 18 is a diagram illustrating an example of switching operation modes. 図19は、第一アクティブ電極における部品配置の一例を示す図である。FIG. 19 is a diagram illustrating an example of a component arrangement in the first active electrode. 図20は、実施の形態に係る生体信号計測システムの表示動作例のフローチャートである。FIG. 20 is a flowchart of a display operation example of the biological signal measurement system according to the embodiment. 図21は、接触インピーダンス計測モードで脳波の計測が行われる場合の提示部での表示例を示す図である。FIG. 21 is a diagram illustrating a display example on the presentation unit when brain wave measurement is performed in the contact impedance measurement mode. 図22は、電気刺激モードで脳波の計測が行われる場合の提示部での表示例を示す図である。FIG. 22 is a diagram illustrating a display example on the presentation unit when brain wave measurement is performed in the electric stimulation mode. 図23は、電気刺激モードで脳波の計測が行われない場合の提示部での表示例を示す図である。FIG. 23 is a diagram illustrating a display example on the presentation unit when brain wave measurement is not performed in the electric stimulation mode. 図24は、実施の形態に係る生体信号計測システムの動き計測モードを含む動作例を示す図である。FIG. 24 is a diagram illustrating an operation example including the motion measurement mode of the biological signal measurement system according to the embodiment. 図25は、電気刺激による被験者の歩行動作の改善を示す図である。FIG. 25 is a diagram illustrating an improvement in a walking motion of a subject by electrical stimulation.
 以下、実施の形態について、図面を参照しながら具体的に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 Hereinafter, embodiments will be specifically described with reference to the drawings. Each of the embodiments described below shows a comprehensive or specific example. Numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and do not limit the present invention. Further, among the components in the following embodiments, components not described in the independent claims are described as arbitrary components.
 なお、各図は模式図であり、必ずしも厳密に図示されたものではない。また、各図において、実質的に同一の構成に対しては同一の符号を付し、重複する説明は省略または簡略化される場合がある。 図 In addition, each figure is a schematic diagram, and is not necessarily strictly illustrated. In each of the drawings, substantially the same components are denoted by the same reference numerals, and redundant description may be omitted or simplified.
 (実施の形態)
 [生体信号計測システムの概要]
 図1は、実施の形態に係る生体信号計測システム100の構成を示す外観図である。図1では、計測の対象となる被験者5も併せて図示されている。
(Embodiment)
[Overview of biosignal measurement system]
FIG. 1 is an external view illustrating a configuration of a biological signal measurement system 100 according to an embodiment. FIG. 1 also shows a subject 5 to be measured.
 生体信号計測システム100は、被験者5の生体信号を計測するシステムであり、脳波計10、情報処理装置20、及び、提示部30を備える。脳波計10、情報処理装置20及び提示部30は、それぞれ有線通信又は無線通信によって接続され、装置間で情報を送受信する。 The biological signal measurement system 100 is a system that measures a biological signal of the subject 5 and includes an electroencephalograph 10, an information processing device 20, and a presentation unit 30. The electroencephalograph 10, the information processing device 20, and the presentation unit 30 are connected by wired communication or wireless communication, respectively, and transmit and receive information between the devices.
 脳波計10は、生体信号を検出する装置の一例であり、被験者5の耳部(より詳細には、耳部の周辺部)に装着される。複数の電極51(図2A参照)は、生体信号を計測する計測電極と、計測電極で計測した電位との差を計算するために用いられる基準電位を計測する参照電極とを含む。複数の電極51には、アース電極も含まれる。アース電極は、一般的にいうグランド電極(接地電位を有する電極)のことではなく、被験者5において基準電位となる電位を有する電極のことをいう。 The electroencephalograph 10 is an example of a device that detects a biological signal, and is attached to the ear of the subject 5 (more specifically, the periphery of the ear). The plurality of electrodes 51 (see FIG. 2A) include a measurement electrode that measures a biological signal and a reference electrode that measures a reference potential used to calculate a difference between a potential measured by the measurement electrode. The plurality of electrodes 51 also include a ground electrode. The ground electrode does not refer to a general ground electrode (electrode having a ground potential), but refers to an electrode having a potential serving as a reference potential in the subject 5.
 情報処理装置20は、脳波計10からの操作入力を受け取り、所定の処理を実施する。例えば、情報処理装置20は、コンピュータである。ここでいう「所定の処理」とは、ゲーム、健康管理、学習等、家庭用のコンピュータで実施されるようなアプリケーションの総称である。 (4) The information processing device 20 receives an operation input from the electroencephalograph 10, and performs a predetermined process. For example, the information processing device 20 is a computer. The “predetermined process” here is a general term for applications such as games, health management, learning, etc., which are implemented on a home computer.
 提示部30は、情報処理装置20で行われた処理結果を提示する出力デバイスである。ここでいう「提示する」とは、映像をディスプレイに表示すること、及び/又は音声をスピーカから出力することの両方を含む。すなわち、提示部30は、画像情報を表示し、又は、音響情報を出力するディスプレイ及び/又はスピーカである。 The presentation unit 30 is an output device that presents the results of the processing performed by the information processing device 20. Here, “present” includes both displaying an image on a display and / or outputting sound from a speaker. That is, the presentation unit 30 is a display and / or a speaker that displays image information or outputs acoustic information.
 [脳波計の構成]
 図2A~図2Cは、脳波計10の形状及び概略構成の一例を示す図である。図2Aは、耳掛け型の脳波計10を示し、図2Bは、首掛け型の脳波計10を示し、図2Cは、眼鏡型の脳波計を示す。被験者5は、図2A~図2Cに示される脳波計10を耳部に装着する。
[Structure of electroencephalograph]
2A to 2C are diagrams illustrating an example of a shape and a schematic configuration of the electroencephalograph 10. FIG. 2A shows the ear-mounted electroencephalograph 10, FIG. 2B shows the neck-mounted electroencephalograph 10, and FIG. 2C shows the eyeglass-type electroencephalograph. The subject 5 wears the electroencephalograph 10 shown in FIGS. 2A to 2C on the ear.
 図2Aに示されるように、脳波計10は、耳掛け型の脳波計であり、被験者5の耳部に沿うアーチ形状を有している。脳波計10は、複数の電極51、及び、装着部40を備える。 As shown in FIG. 2A, the electroencephalograph 10 is an ear-hung type electroencephalograph and has an arch shape along the ear of the subject 5. The electroencephalograph 10 includes a plurality of electrodes 51 and the mounting unit 40.
 装着部40は、被験者5の耳部に装着される、複数の電極51が設けられたアーチ状の部材である。装着部40は、操作面43を含み、操作面43には、操作ボタン41及び表示部47が設けられる。複数の電極51は、装着部40の被験者と対向する面に設けられている。 The mounting unit 40 is an arch-shaped member provided with a plurality of electrodes 51, which is mounted on the ear of the subject 5. The mounting unit 40 includes an operation surface 43, and the operation surface 43 is provided with operation buttons 41 and a display unit 47. The plurality of electrodes 51 are provided on a surface of the mounting unit 40 facing the subject.
 被験者5は、脳波計10を装着する前に、操作面43に配置された操作ボタン41を操作して脳波計10を起動し、その後に、脳波計10を耳部に装着する。操作面43に配置された表示部47には、操作の状態及びアプリケーションの処理結果等が表示される。 Before mounting the electroencephalograph 10, the subject 5 operates the operation button 41 arranged on the operation surface 43 to activate the electroencephalograph 10, and then mounts the electroencephalograph 10 on the ear. The display unit 47 arranged on the operation surface 43 displays the status of the operation, the processing result of the application, and the like.
 脳波計10においては、例えば、複数の電極51のうち被験者5の耳の上方(つまり、被験者5の脳の近く)に位置する電極は、後述する計測電極として用いられ、複数の電極51のうち被験者5の耳の後方(例えば、乳様突起(マストイド)の近傍)に位置する電極は、後述する参照電極として用いられる。また、複数の電極51のうち耳たぶ付近に接する電極は、アース電極として用いられる。なお、このような電極の配置は一例であり、電極の配置は特に限定されない。例えば、複数の電極51のうち被験者5の耳横に位置する電極が、計測電極として用いられ、乳様突起または耳たぶ付近に位置する電極が参照電極として用いられ、耳たぶ付近に位置する電極がアース電極として用いられてもよい。 In the electroencephalograph 10, for example, an electrode located above the ear of the subject 5 (that is, near the brain of the subject 5) among the plurality of electrodes 51 is used as a measurement electrode described later. An electrode located behind the ear of the subject 5 (for example, near a mastoid) is used as a reference electrode described later. Further, an electrode in contact with the vicinity of the earlobe among the plurality of electrodes 51 is used as a ground electrode. Note that such an arrangement of the electrodes is an example, and the arrangement of the electrodes is not particularly limited. For example, of the plurality of electrodes 51, an electrode located beside the ear of the subject 5 is used as a measurement electrode, an electrode located near the mastoid or earlobe is used as a reference electrode, and an electrode located near the earlobe is grounded. It may be used as an electrode.
 なお、図2Bに示されるように、2つの耳掛け型の脳波計10が連結されて首かけ型の脳波計として使用されてもよい。図2Cに示されるように、2つの耳掛け型の脳波計10が連結されて眼鏡型の脳波計として使用されてもよい。なお、眼鏡型の脳波計において、電極51は、アーム上(テンプル上)に設けられていてもよい。 As shown in FIG. 2B, two ear-mounted electroencephalographs 10 may be connected and used as a neck-mounted electroencephalograph. As shown in FIG. 2C, two ear-hung type electroencephalographs 10 may be connected to be used as a glasses-type electroencephalograph. In the eyeglass-type electroencephalograph, the electrode 51 may be provided on the arm (on the temple).
 [電極形状]
 図3A~図3Eは、被験者5の皮膚と接触する電極51の接触面の形状例を示す図である。電極51の材料は、導電性の物質によって構成される。電極51の材料の一例は、金、又は、銀である。望ましい電極51の材料は、銀-塩化銀(Ag/AgCl)である。銀-塩化銀は生体と接触した場合の分極が少なく、かつ分極電圧が安定しているためである。
[Electrode shape]
3A to 3E are diagrams illustrating examples of the shape of the contact surface of the electrode 51 that contacts the skin of the subject 5. FIG. The material of the electrode 51 is made of a conductive substance. An example of the material of the electrode 51 is gold or silver. A desirable material for the electrode 51 is silver-silver chloride (Ag / AgCl). This is because silver-silver chloride has a small polarization when it comes into contact with a living body and has a stable polarization voltage.
 電極51の接触面の形状は、医療用で使われる電極と同様の、図3Aに示される円形(例えば、直径10mm)でもよいし、それ以外にも、用途によってさまざまな形状としてもよい。例えば、図3Bに示されるような三角形や、図3Cに示されるような四角形又は正方形や、図3Dに示されるような五角形や、図3Eに示されるような六角形であってもよい。 The shape of the contact surface of the electrode 51 may be a circle (for example, a diameter of 10 mm) shown in FIG. 3A similar to an electrode used for medical use, or may be various shapes depending on the application. For example, it may be a triangle as shown in FIG. 3B, a square or a square as shown in FIG. 3C, a pentagon as shown in FIG. 3D, or a hexagon as shown in FIG. 3E.
 [生体信号計測システムの構成]
 図4は、生体信号計測システム100の全体構成を示すブロック図である。上述したように、生体信号計測システム100は、脳波計10、情報処理装置20及び提示部30を備える。脳波計10は、操作入力装置10a及び生体信号計測装置10bを備える。
[Configuration of biological signal measurement system]
FIG. 4 is a block diagram showing the overall configuration of the biological signal measurement system 100. As described above, the biological signal measurement system 100 includes the electroencephalograph 10, the information processing device 20, and the presentation unit 30. The electroencephalograph 10 includes an operation input device 10a and a biological signal measurement device 10b.
 脳波計10は、操作入力装置10aにおいて被験者5の操作入力を受け、生体信号計測装置10bにおいて操作時の被験者5の生体信号を計測する。脳波計10で計測された生体信号は、情報処理装置20に送信される。 The electroencephalograph 10 receives the operation input of the subject 5 at the operation input device 10a, and measures the biological signal of the subject 5 at the time of the operation at the biological signal measuring device 10b. The biological signal measured by the electroencephalograph 10 is transmitted to the information processing device 20.
 情報処理装置20は、操作入力装置10a又は生体信号計測装置10bからの入力を受けて、所定の処理を実施し、提示部30に対して処理結果を出力する。脳波計10と情報処理装置20とは、無線通信又は有線通信によって接続される。 The information processing device 20 receives an input from the operation input device 10a or the biological signal measuring device 10b, performs a predetermined process, and outputs a processing result to the presentation unit 30. The electroencephalograph 10 and the information processing device 20 are connected by wireless communication or wired communication.
 図5は、脳波計10及び情報処理装置20の詳細な構成を示す機能ブロック図である。ここでは、脳波計10と情報処理装置20とが無線通信によって接続される場合を例として説明する。 FIG. 5 is a functional block diagram showing a detailed configuration of the electroencephalograph 10 and the information processing device 20. Here, an example in which the electroencephalograph 10 and the information processing device 20 are connected by wireless communication will be described.
 まず、操作入力装置10aについて説明する。操作入力装置10aは、操作入力部11及び操作信号出力部12を備える。 First, the operation input device 10a will be described. The operation input device 10a includes an operation input unit 11 and an operation signal output unit 12.
 操作入力部11は、操作ボタン41(図2A及び図2B参照)から入力された操作入力情報を取得し、操作の内容を判定する入力器である。操作信号出力部12は、操作入力部11で取得された操作入力情報を情報処理装置20に送信する送信器である。操作入力部11で取得された操作入力情報は、操作信号出力部12から情報処理装置20に向けて送信される。 The operation input unit 11 is an input device that acquires operation input information input from the operation buttons 41 (see FIGS. 2A and 2B) and determines the content of the operation. The operation signal output unit 12 is a transmitter that transmits the operation input information acquired by the operation input unit 11 to the information processing device 20. The operation input information acquired by the operation input unit 11 is transmitted from the operation signal output unit 12 to the information processing device 20.
 次に、生体信号計測装置10bについて説明する。生体信号計測装置10bは、電極部13、生体信号増幅部14及び生体信号出力部15を備える。 Next, the biological signal measuring device 10b will be described. The biological signal measuring device 10b includes an electrode unit 13, a biological signal amplifying unit 14, and a biological signal output unit 15.
 電極部13は、複数の電極51で構成される。上述のように、複数の電極51には、計測電極、参照電極、及び、アース電極が含まれる。複数の電極51は、例えば、被験者5の皮膚に接触する位置に配置される。 The electrode section 13 is composed of a plurality of electrodes 51. As described above, the plurality of electrodes 51 include the measurement electrode, the reference electrode, and the ground electrode. The plurality of electrodes 51 are arranged, for example, at positions that come into contact with the skin of the subject 5.
 生体信号増幅部14は、複数の電極51の間の電位差に相当する生体信号を増幅するアンプである。具体的には、生体信号増幅部14は、計測電極と参照電極との間の電位差を計測し、計測した電位差を増幅する。増幅された電位差は、例えば、生体信号増幅部14に設けられたA/Dコンバータ(図示せず)によりデジタル信号に変換される。なお、生体信号増幅部14は、所定以上の電位の大きさの生体信号を計測できる場合には、生体信号を増幅する必要は無く、複数の電極51の電位を測定するだけでもよい。 The biological signal amplifying unit 14 is an amplifier that amplifies a biological signal corresponding to a potential difference between the plurality of electrodes 51. Specifically, the biological signal amplification unit 14 measures a potential difference between the measurement electrode and the reference electrode, and amplifies the measured potential difference. The amplified potential difference is converted into a digital signal by an A / D converter (not shown) provided in the biological signal amplifier 14, for example. Note that the biological signal amplifying unit 14 does not need to amplify the biological signal when it can measure a biological signal having a potential of a predetermined value or more, and may simply measure the potentials of the plurality of electrodes 51.
 生体信号出力部15は、生体信号増幅部14で増幅された電位差を情報処理装置20に送信する送信器である。生体信号増幅部14においてデジタル値に変換された生体信号の電位差は、生体信号出力部15より情報処理装置20に送信される。 The biological signal output unit 15 is a transmitter that transmits the potential difference amplified by the biological signal amplifier 14 to the information processing device 20. The potential difference of the biological signal converted into a digital value by the biological signal amplifier 14 is transmitted from the biological signal output unit 15 to the information processing device 20.
 次に、情報処理装置20について説明する。情報処理装置20は、操作信号取得部21、生体信号取得部22、生体信号処理部23、アプリケーション処理部(アプリ処理部)26、表示情報出力部27及び音響情報出力部28を備える。 Next, the information processing device 20 will be described. The information processing device 20 includes an operation signal acquisition unit 21, a biological signal acquisition unit 22, a biological signal processing unit 23, an application processing unit (application processing unit) 26, a display information output unit 27, and an acoustic information output unit 28.
 情報処理装置20は、操作入力情報を操作信号取得部21において受信し、生体信号を生体信号取得部22において受信することで、脳波計10からの情報を受信する。 The information processing device 20 receives information from the electroencephalograph 10 by receiving operation input information at the operation signal acquisition unit 21 and receiving a biological signal at the biological signal acquisition unit 22.
 生体信号は、記録されただけの原信号では情報として使用できないことが多い。そのため、生体信号処理部23において原信号から意味のある情報を抽出する処理が行われる。生体信号処理部23は、例えば、脳波計測の場合には、特定の周波数(例えば10Hz)の信号を抽出し、当該周波数での信号のパワースペクトル密度(Power Spectral Density)を算出する。なお、生体信号処理部23は、情報処理装置20ではなく脳波計10側に配置されてもよい。つまり、本実施の形態においては、脳波計10と生体信号処理部23とにより電子機器が構成されてもよい。 In many cases, a biosignal cannot be used as information with an original signal that has just been recorded. Therefore, the biological signal processing unit 23 performs a process of extracting meaningful information from the original signal. For example, in the case of brain wave measurement, the biological signal processing unit 23 extracts a signal of a specific frequency (for example, 10 Hz) and calculates a power spectral density (Power \ Spectral \ Density) of the signal at the frequency. Note that the biological signal processing unit 23 may be arranged on the electroencephalograph 10 side instead of the information processing device 20. That is, in the present embodiment, an electronic device may be configured by the electroencephalograph 10 and the biological signal processing unit 23.
 アプリケーション処理部26では、情報処理装置20の中心的なアプリケーション処理(アプリ処理)が行われる。アプリケーション処理は、脳波計10から信号の入力を受けて所定の処理を行うことで実現される。所定の処理とは、例えば、ゲームアプリにおけるゲーム進行、健康管理アプリにおける記録・データ管理・表示、学習アプリにおける出題・採点・結果表示などである。 (4) The application processing unit 26 performs central application processing (application processing) of the information processing apparatus 20. The application process is realized by receiving a signal from the electroencephalograph 10 and performing a predetermined process. The predetermined processing is, for example, game progress in a game application, recording / data management / display in a health management application, question / score / result display in a learning application, and the like.
 アプリケーション処理部26で処理された結果は、アプリケーション処理部26から表示情報出力部27及び音響情報出力部28に出力される。表示情報出力部27及び音響情報出力部28は、アプリケーション処理部26で処理された結果を被験者5にフィードバックするために、視覚的又は聴覚的な信号を提示部30に出力する。 (4) The result processed by the application processing unit 26 is output from the application processing unit 26 to the display information output unit 27 and the audio information output unit 28. The display information output unit 27 and the audio information output unit 28 output a visual or auditory signal to the presentation unit 30 in order to feed back the result processed by the application processing unit 26 to the subject 5.
 提示部30は、表示情報出力部27及び音響情報出力部28から出力された信号を提示(つまり、表示及び/又は音声出力)する。これにより、信号が被験者5に提示される。提示部30は、例えば、テレビ、ディスプレイ、又は、スピーカである。 The presentation unit 30 presents (ie, displays and / or outputs audio) the signals output from the display information output unit 27 and the audio information output unit 28. Thereby, a signal is presented to the subject 5. The presentation unit 30 is, for example, a television, a display, or a speaker.
 [脳波計のハードウェア構成]
 図6は、脳波計10のハードウェア構成を示すブロック図である。脳波計10は、操作ボタン群71、制御信号変換回路72、計測電極51a、参照電極51b、アース電極51c、差動増幅回路74、A/Dコンバータ75、送信回路79、信号処理ユニット78、アンテナ80、及びバッテリ81を備える。
[Hardware configuration of electroencephalograph]
FIG. 6 is a block diagram illustrating a hardware configuration of the electroencephalograph 10. The electroencephalograph 10 includes an operation button group 71, a control signal conversion circuit 72, a measurement electrode 51a, a reference electrode 51b, a ground electrode 51c, a differential amplifier circuit 74, an A / D converter 75, a transmission circuit 79, a signal processing unit 78, and an antenna. 80 and a battery 81.
 このうち、操作ボタン群71と制御信号変換回路72とは、図5に示した操作入力部11に対応する。操作ボタン群71における各ボタンは、操作ボタン41に対応する。また、計測電極51aと、参照電極51bと、アース電極51cとは、図2A及び図2Bに示した電極51及び図5に示した電極部13に対応する。差動増幅回路74及びA/Dコンバータ75は、生体信号増幅部14に含まれる。 The operation button group 71 and the control signal conversion circuit 72 correspond to the operation input unit 11 shown in FIG. Each button in the operation button group 71 corresponds to the operation button 41. The measurement electrode 51a, the reference electrode 51b, and the ground electrode 51c correspond to the electrode 51 illustrated in FIGS. 2A and 2B and the electrode unit 13 illustrated in FIG. The differential amplifier circuit 74 and the A / D converter 75 are included in the biological signal amplifier 14.
 また、信号処理ユニット78は、CPU101、RAM102、プログラム103及びROM104を有する。また、送信回路79とアンテナ80とは、図5に示した生体信号出力部15及び/又は操作信号出力部12として機能する。送信回路79とアンテナ80とを「出力部」又は「送信器」と呼ぶこともある。 The signal processing unit 78 has a CPU 101, a RAM 102, a program 103, and a ROM 104. Further, the transmission circuit 79 and the antenna 80 function as the biological signal output unit 15 and / or the operation signal output unit 12 illustrated in FIG. The transmitting circuit 79 and the antenna 80 may be referred to as an “output unit” or a “transmitter”.
 これらの各構成要素は、互いにバス105で接続され、相互にデータの授受が可能である。また、脳波計10は、バッテリ81を電源として動作する。 These components are connected to each other by the bus 105, and can exchange data with each other. The electroencephalograph 10 operates using the battery 81 as a power supply.
 操作ボタン群71に関する各ボタンの押下情報は、制御信号変換回路72において脳波計10の動作を制御する制御信号に変換され、バス105を経由してCPU101に送られる。 押 下 Pressing information of each button related to the operation button group 71 is converted into a control signal for controlling the operation of the electroencephalograph 10 in the control signal conversion circuit 72 and sent to the CPU 101 via the bus 105.
 差動増幅回路74には、計測電極51aと参照電極51bとアース電極51cとが直接、接続、又は、バッファアンプ等を経て接続される。これらの電極は、脳波計10の所定の場所に設置される。計測電極51aと参照電極51bとの間の電位差は、差動増幅回路74で増幅され、A/Dコンバータ75でアナログの生体信号からデジタルの生体信号に変換される。デジタルの生体信号に変換された電位差は、処理や送信可能な生体信号としてバス105を経由してCPU101に送られる。 (4) The measurement electrode 51a, the reference electrode 51b, and the ground electrode 51c are directly connected to the differential amplifier circuit 74, or are connected via a buffer amplifier or the like. These electrodes are installed at predetermined locations on the electroencephalograph 10. The potential difference between the measurement electrode 51a and the reference electrode 51b is amplified by the differential amplifier circuit 74, and is converted by the A / D converter 75 from an analog biological signal to a digital biological signal. The potential difference converted into a digital biological signal is sent to the CPU 101 via the bus 105 as a biological signal that can be processed and transmitted.
 CPU101は、RAM102に格納されたプログラム103を実行する。プログラム103には、後述する図8のフローチャートに示される、脳波計10における信号の処理手順が記述されている。脳波計10は、このプログラム103に従って操作信号と生体信号をデジタル信号に変換し、送信回路79を経由してアンテナ80より送信する。プログラム103は、ROM104に格納される場合もある。 The CPU 101 executes the program 103 stored in the RAM 102. The program 103 describes a signal processing procedure in the electroencephalograph 10 shown in a flowchart of FIG. 8 described later. The electroencephalograph 10 converts the operation signal and the biological signal into digital signals according to the program 103 and transmits the digital signals from the antenna 80 via the transmission circuit 79. The program 103 may be stored in the ROM 104 in some cases.
 なお、信号処理ユニット78、制御信号変換回路72、送信回路79、差動増幅回路74、及びA/Dコンバータ75は、1つの半導体集積回路にコンピュータプログラムを組み込んだDSP(Digital Signal Processor)等のハードウェアとして実現されてもよい。1つの半導体集積回路に実装すると、実装面積が削減され、消費電力が低減される効果も得られる。 Note that the signal processing unit 78, the control signal conversion circuit 72, the transmission circuit 79, the differential amplifier circuit 74, and the A / D converter 75 include a DSP (Digital Signal Processor) in which a computer program is incorporated in one semiconductor integrated circuit. It may be realized as hardware. When mounted on one semiconductor integrated circuit, the mounting area can be reduced and the power consumption can be reduced.
 また、差動増幅回路74とA/Dコンバータ75とを1つの半導体集積回路に集積し、信号処理ユニット78と制御信号変換回路72と送信回路79とを別の半導体集積回路に集積し、2つの半導体集積回路同士を1つのパッケージ内で接続してSiP(システム・イン・パッケージ)として統合し、コンピュータプログラムを組み込んだDSP等のハードウェアとして実現されてもよい。上記2つの半導体集積回路を別々の製造プロセスで実現することで、1つの半導体集積回路に実装したものに比べコストが低減される効果も得られる。 Further, the differential amplifier circuit 74 and the A / D converter 75 are integrated in one semiconductor integrated circuit, and the signal processing unit 78, the control signal conversion circuit 72, and the transmission circuit 79 are integrated in another semiconductor integrated circuit. One semiconductor integrated circuit may be connected in one package, integrated as a SiP (System in Package), and realized as hardware such as a DSP incorporating a computer program. By realizing the two semiconductor integrated circuits in separate manufacturing processes, an effect of reducing costs as compared with a case where the two semiconductor integrated circuits are mounted on one semiconductor integrated circuit can be obtained.
 [情報処理装置のハードウェア構成]
 図7は、情報処理装置20のハードウェア構成を示すブロック図である。情報処理装置20は、アンテナ83、受信回路82、信号処理ユニット108、画像制御回路84、表示情報出力回路85、音響制御回路86、音響情報出力回路87及び電源88を備える。これらの構成要素のうち、アンテナ83と受信回路82とは、図5に示した生体信号取得部22及び/又は操作信号取得部21に対応する。これらを「受信器」と呼ぶこともある。
[Hardware configuration of information processing device]
FIG. 7 is a block diagram illustrating a hardware configuration of the information processing apparatus 20. The information processing device 20 includes an antenna 83, a receiving circuit 82, a signal processing unit 108, an image control circuit 84, a display information output circuit 85, an audio control circuit 86, an audio information output circuit 87, and a power supply 88. Among these components, the antenna 83 and the receiving circuit 82 correspond to the biological signal acquisition unit 22 and / or the operation signal acquisition unit 21 illustrated in FIG. These are sometimes called "receivers".
 信号処理ユニット108は、CPU111、RAM112、プログラム113及びROM114を有する。信号処理ユニット108は、図5に示した生体信号処理部23及び/又はアプリケーション処理部26に対応する。画像制御回路84及び表示情報出力回路85は、図5に示した表示情報出力部27に対応する。また、音響制御回路86及び音響情報出力回路87は、図5に示した音響情報出力部28に対応する。これらは互いにバス115で接続され、相互にデータの授受が可能である。また、それぞれの回路には電源88から電力が供給される。 The signal processing unit 108 includes a CPU 111, a RAM 112, a program 113, and a ROM 114. The signal processing unit 108 corresponds to the biological signal processing unit 23 and / or the application processing unit 26 illustrated in FIG. The image control circuit 84 and the display information output circuit 85 correspond to the display information output unit 27 shown in FIG. The sound control circuit 86 and the sound information output circuit 87 correspond to the sound information output unit 28 shown in FIG. These are connected to each other via a bus 115, and can exchange data with each other. Power is supplied from a power supply 88 to each circuit.
 脳波計10からの操作情報及び生体情報はアンテナ83を経由して受信回路82で受信され、バス115を経由してCPU111に送られる。 操作 The operation information and the biological information from the electroencephalograph 10 are received by the receiving circuit 82 via the antenna 83, and sent to the CPU 111 via the bus 115.
 CPU111は、RAM112に格納されたプログラム113を実行する。プログラム113には、後述する図8のフローチャートに示される、情報処理装置20における信号の処理手順が記述されている。情報処理装置20は、このプログラム113に従って操作信号と生体信号とを変換し、所定のアプリケーションを実行するための処理を行い、被験者5に画像や音響によってフィードバックを行うための信号を生成する。プログラム113は、ROM114に格納される場合もある。 (4) The CPU 111 executes the program 113 stored in the RAM 112. The program 113 describes a signal processing procedure in the information processing device 20 shown in a flowchart of FIG. 8 described later. The information processing device 20 converts an operation signal and a biological signal in accordance with the program 113, performs a process for executing a predetermined application, and generates a signal for performing feedback to the subject 5 by image or sound. The program 113 may be stored in the ROM 114 in some cases.
 信号処理ユニット108で生成された画像のフィードバック信号は、画像制御回路84を経由して表示情報出力回路85から提示部30に出力される。同様に、信号処理ユニット108で生成された音響のフィードバック信号は、音響制御回路86を経由して音響情報出力回路87から出力される。 The image feedback signal generated by the signal processing unit 108 is output from the display information output circuit 85 to the presentation unit 30 via the image control circuit 84. Similarly, the audio feedback signal generated by the signal processing unit 108 is output from the audio information output circuit 87 via the audio control circuit 86.
 なお、信号処理ユニット108と受信回路82と画像制御回路84と音響制御回路86とは、1つの半導体集積回路にプログラムを組み込んだDSP等のハードウェアとして実現されてもよい。1つの半導体集積回路にすると、消費電力が低減される効果も得られる。 The signal processing unit 108, the receiving circuit 82, the image control circuit 84, and the sound control circuit 86 may be realized as hardware such as a DSP in which a program is incorporated in one semiconductor integrated circuit. With one semiconductor integrated circuit, the effect of reducing power consumption can be obtained.
 [生体信号計測システムの動作]
 次に、以上のように構成された本実施の形態に係る生体信号計測システム100の動作について説明する。
[Operation of biological signal measurement system]
Next, the operation of the biological signal measurement system 100 according to the present embodiment configured as described above will be described.
 図8は、生体信号計測システム100の基本的な処理のフローを示すフローチャートである。ステップS11からステップS14までは脳波計10における処理(ステップS10)を示し、ステップS21からステップS25までは情報処理装置20における処理(ステップS20)を示す。 FIG. 8 is a flowchart showing a flow of basic processing of the biological signal measurement system 100. Steps S11 to S14 show processing in the electroencephalograph 10 (step S10), and steps S21 to S25 show processing in the information processing device 20 (step S20).
 はじめに、脳波計10における処理ステップS10について説明する。 First, the processing step S10 in the electroencephalograph 10 will be described.
 <ステップS11>
 操作入力部11は、被験者5により行われた操作入力を受け付ける。具体的には、受付のタイミングでどの操作ボタン41が押されているかを検出する。受付のタイミングの例は、操作ボタン41が押下された時である。操作ボタン41が押下されたか否かの検出は、例えば、操作ボタン41が押下されたときの機械的なボタン位置の変化、又は、電気信号の変化を検出することにより行われる。また、操作入力部11は、押下された操作ボタン41の種類により、操作入力部11が受け付けた操作入力の種類を検出し、操作信号出力部12に伝達する。
<Step S11>
The operation input unit 11 receives an operation input performed by the subject 5. Specifically, it detects which operation button 41 is being pressed at the reception timing. An example of the reception timing is when the operation button 41 is pressed. The detection of whether or not the operation button 41 is pressed is performed, for example, by detecting a change in a mechanical button position or a change in an electric signal when the operation button 41 is pressed. The operation input unit 11 detects the type of the operation input received by the operation input unit 11 based on the type of the pressed operation button 41 and transmits the operation input to the operation signal output unit 12.
 <ステップS12>
 操作信号出力部12は、操作入力部11が受け付けた操作入力に対応する操作信号を情報処理装置20に送信する。
<Step S12>
The operation signal output unit 12 transmits an operation signal corresponding to the operation input received by the operation input unit 11 to the information processing device 20.
 <ステップS13>
 生体信号増幅部14は、電極部13における複数の電極51の間の電位差に相当する生体信号を計測し、増幅する。例えば、電極部13における複数の電極51のうち、計測電極51aと参照電極51bとの間の電位差を生体信号として計測する。また、生体信号増幅部14は、計測した生体信号を増幅する。増幅された生体信号は、生体信号増幅部14から生体信号出力部15へ伝達される。
<Step S13>
The biological signal amplifier 14 measures and amplifies a biological signal corresponding to a potential difference between the plurality of electrodes 51 in the electrode unit 13. For example, a potential difference between the measurement electrode 51a and the reference electrode 51b among the plurality of electrodes 51 in the electrode unit 13 is measured as a biological signal. Further, the biological signal amplifying unit 14 amplifies the measured biological signal. The amplified biological signal is transmitted from the biological signal amplifier 14 to the biological signal output unit 15.
 <ステップS14>
 さらに、生体信号出力部15は、伝達された生体信号を情報処理装置20へ送信する。
<Step S14>
Further, the biological signal output unit 15 transmits the transmitted biological signal to the information processing device 20.
 なお、脳波計10における処理ステップS10において、ステップS11及びステップS12と、ステップS13及びステップS14とは、それぞれ並列な処理として行ってもよく、ステップS11からステップS14の処理を、全て上述した順序どおりに行う必要は無い。 In the processing step S10 in the electroencephalograph 10, steps S11 and S12 and steps S13 and S14 may be performed as parallel processing, respectively, and the processing from step S11 to step S14 may be performed in the order described above. There is no need to do this.
 次に、情報処理装置20における処理ステップS20について説明する。 Next, the processing step S20 in the information processing device 20 will be described.
 <ステップS21>
 情報処理装置20において、操作信号取得部21は、操作信号出力部12からの操作信号を受信する。操作信号取得部21は、受信した操作信号をアプリケーション処理部26に伝達する。
<Step S21>
In the information processing device 20, the operation signal acquisition unit 21 receives an operation signal from the operation signal output unit 12. The operation signal acquisition unit 21 transmits the received operation signal to the application processing unit 26.
 <ステップS22>
 生体信号取得部22は、生体信号出力部15からの生体信号を受信する。生体信号取得部22は、受信した生体信号を、生体信号処理部23に伝達する。
<Step S22>
The biological signal acquisition unit 22 receives a biological signal from the biological signal output unit 15. The biological signal acquisition unit 22 transmits the received biological signal to the biological signal processing unit 23.
 <ステップS23>
 生体信号取得部22にて受信した生体信号を、生体信号処理部23にて分析処理して、意味のある情報を抽出する。例えば、所定の周波数成分の生体信号を抽出する。所定の周波数成分とは、例えば脳波の計測の場合には10Hzである。
<Step S23>
The biological signal received by the biological signal acquisition unit 22 is analyzed and processed by the biological signal processing unit 23 to extract meaningful information. For example, a biological signal of a predetermined frequency component is extracted. The predetermined frequency component is, for example, 10 Hz in the case of measuring brain waves.
 <ステップS24>
 アプリケーション処理部26は、操作信号取得部21からの操作信号と生体信号処理部23からの生体信号を受けて、現在のアプリを実行するための所定の処理を行う。所定の処理とは、上述したように、例えば、ゲームアプリにおけるゲーム進行、健康管理アプリにおける記録・データ管理・表示、学習アプリにおける出題・採点・結果表示などである。
<Step S24>
The application processing unit 26 receives an operation signal from the operation signal acquisition unit 21 and a biological signal from the biological signal processing unit 23, and performs a predetermined process for executing the current application. As described above, the predetermined processing is, for example, game progress in a game application, recording / data management / display in a health management application, question setting / scoring / result display in a learning application, and the like.
 <ステップS25>
 アプリケーション処理部26の処理結果を被験者5にフィードバックするために、表示情報出力部27は映像情報を提示部30に出力し、音響情報出力部28は音響情報を提示部30に出力する。これにより、提示部30からは、処理結果に対応する画像及び音が出力される。
<Step S25>
In order to feed back the processing result of the application processing unit 26 to the subject 5, the display information output unit 27 outputs the video information to the presentation unit 30, and the audio information output unit 28 outputs the audio information to the presentation unit 30. As a result, the presentation unit 30 outputs an image and a sound corresponding to the processing result.
 なお、情報処理装置20における処理ステップS20において、ステップS22及びステップS23と、ステップS24の処理は、それぞれ並列な処理として行ってもよい。また、アプリケーション処理部26は、操作信号取得部21からの操作信号と生体信号処理部23からの生体信号の両方の信号を用いて処理を行う必要はなく、生体信号のみを用いて処理を行ってもよい。その場合には、操作信号を受信するステップS21を省略することもできる。 In the processing step S20 in the information processing device 20, the processing of step S22, step S23, and step S24 may be performed as parallel processing, respectively. In addition, the application processing unit 26 does not need to perform processing using both the operation signal from the operation signal acquisition unit 21 and the biological signal from the biological signal processing unit 23, and performs processing using only the biological signal. You may. In that case, step S21 of receiving the operation signal can be omitted.
 以上のような処理のフローによって、生体信号計測システム100は、被験者5から脳波又は心電等の生体情報を得ることができる。 According to the above processing flow, the biological signal measurement system 100 can obtain biological information such as brain waves or electrocardiograms from the subject 5.
 [生体信号計測装置の詳細な構成]
 次に、脳波計10が備える生体信号計測装置10bの詳細な構成について説明する。図9は、脳波計10が備える生体信号計測装置10bの詳細な構成を示す回路ブロック図である。図9には、脳波計10が備えるハードウェア構成のうち、生体信号計測装置10bに関連するハードウェア構成が示されている。また、図9では、計測電極51a及び参照電極51bに接触する被験者5の体の表面が一点鎖線で模式的に図示されている。
[Detailed configuration of biological signal measurement device]
Next, a detailed configuration of the biological signal measuring device 10b included in the electroencephalograph 10 will be described. FIG. 9 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device 10b included in the electroencephalograph 10. FIG. 9 illustrates a hardware configuration related to the biological signal measurement device 10b among hardware configurations included in the electroencephalograph 10. In FIG. 9, the surface of the body of the subject 5 that is in contact with the measurement electrode 51a and the reference electrode 51b is schematically illustrated by a dashed line.
 生体信号計測装置10bは、主として、第一アクティブ電極60a、第二アクティブ電極60b、制御装置55、生体信号増幅部14、及び、生体信号出力部15を備える。第一アクティブ電極60aには、計測電極51a、第一増幅回路52a、第一電流源53a、第二電流源54a、第一スイッチング素子S1、及び、第二スイッチング素子S2が含まれる。第二アクティブ電極60bには、参照電極51b、第二増幅回路52b、第三電流源53b、第四電流源54b、第三スイッチング素子S3、第四スイッチング素子S4、及び、加速度センサ56が含まれる。なお、生体信号計測装置10bが一つのアクティブ電極とみなされてもよい。アクティブ電極とは、計測用の電極及び計測用の周辺回路を含む広義の計測デバイスを意味する。 The biological signal measuring device 10b mainly includes the first active electrode 60a, the second active electrode 60b, the control device 55, the biological signal amplifier 14, and the biological signal output unit 15. The first active electrode 60a includes a measurement electrode 51a, a first amplifier circuit 52a, a first current source 53a, a second current source 54a, a first switching element S1, and a second switching element S2. The second active electrode 60b includes a reference electrode 51b, a second amplifier circuit 52b, a third current source 53b, a fourth current source 54b, a third switching element S3, a fourth switching element S4, and an acceleration sensor 56. . Note that the biological signal measurement device 10b may be regarded as one active electrode. The active electrode means a measurement device in a broad sense including an electrode for measurement and a peripheral circuit for measurement.
 第一増幅回路52aは、被験者5(つまり、生体)に接触する計測電極51aによって検出される生体信号が入力される増幅器である。計測電極51aは、第一電極の一例であり、第一増幅回路52aの入力端子に電気的に接続される。第一増幅回路52aは、いわゆるバッファアンプとして機能し、インピーダンス変換を行う。なお、本明細書において、「増幅回路」又は「増幅器」の用語は、必ずしも1よりも大きな電圧増幅率をもつアンプだけに限られず、電圧増幅率が1以下である増幅回路又は増幅器も含まれる。 The first amplifier circuit 52a is an amplifier to which a biological signal detected by the measurement electrode 51a that comes into contact with the subject 5 (that is, a living body) is input. The measurement electrode 51a is an example of a first electrode, and is electrically connected to an input terminal of the first amplification circuit 52a. The first amplifier circuit 52a functions as a so-called buffer amplifier and performs impedance conversion. In this specification, the term “amplifier circuit” or “amplifier” is not necessarily limited to an amplifier having a voltage amplification factor larger than 1, but also includes an amplifier circuit or an amplifier having a voltage amplification factor of 1 or less. .
 第二増幅回路52bは、被験者5(つまり、生体)に接触する参照電極51bによって検出される生体信号が入力される増幅器である。参照電極51bは、第二電極の一例であり、第二増幅回路52bの入力端子に電気的に接続される。第二増幅回路52bは、いわゆるバッファアンプとして機能し、インピーダンス変換を行う。第二増幅回路52bは、電圧増幅を行わない(電圧増幅率は1である)が、電圧増幅を行ってもよい。 The second amplifier circuit 52b is an amplifier to which a biological signal detected by the reference electrode 51b that comes into contact with the subject 5 (that is, a living body) is input. The reference electrode 51b is an example of a second electrode, and is electrically connected to an input terminal of the second amplifier circuit 52b. The second amplifier circuit 52b functions as a so-called buffer amplifier and performs impedance conversion. The second amplifier circuit 52b does not perform voltage amplification (the voltage amplification factor is 1), but may perform voltage amplification.
 生体信号増幅部14は、第一増幅回路52aの出力信号及び第二増幅回路52bの出力信号の電位差(つまり、計測電極51aと参照電極51bとの間の電位差)を増幅し、デジタル信号に変換する。増幅には差動増幅回路74が用いられ、デジタル信号への変換には、A/Dコンバータ75が用いられる。 The biological signal amplifier 14 amplifies the potential difference between the output signal of the first amplifier circuit 52a and the output signal of the second amplifier circuit 52b (that is, the potential difference between the measurement electrode 51a and the reference electrode 51b) and converts the signal into a digital signal. I do. A differential amplifier circuit 74 is used for amplification, and an A / D converter 75 is used for conversion into a digital signal.
 生体信号出力部15は、生体信号増幅部14で増幅された電位差を情報処理装置20に送信する送信器である。生体信号増幅部14のA/Dコンバータ75においてデジタル値に変換された生体信号の電位差は、生体信号出力部15より情報処理装置20に送信される。 The biological signal output unit 15 is a transmitter that transmits the potential difference amplified by the biological signal amplifier 14 to the information processing device 20. The potential difference of the biological signal converted into a digital value by the A / D converter 75 of the biological signal amplifier 14 is transmitted from the biological signal output unit 15 to the information processing device 20.
 以上説明した構成要素によれば、生体信号計測装置10bは、生体信号を計測することができる。また、生体信号計測装置10bは、生体信号の計測と並行して電極と生体との接触インピーダンスの計測または被験者5への電気刺激の付与を行うことができる。以下、接触インピーダンスの計測または被験者5への電気刺激(例えば、被験者5の内耳にある前庭器官への電気刺激)の付与に用いられる構成要素について説明する。 According to the components described above, the biological signal measurement device 10b can measure a biological signal. In addition, the biological signal measurement device 10b can measure the contact impedance between the electrode and the living body or apply the electrical stimulus to the subject 5 in parallel with the measurement of the biological signal. Hereinafter, components used for measuring contact impedance or applying electrical stimulation to the subject 5 (for example, electrical stimulation to a vestibular organ in the inner ear of the subject 5) will be described.
 第一電流源53aは、接触インピーダンスRc1を計測するための第一電流を計測電極51aを介して被験者5に流すための電流源である。第一電流源53aと、計測電極51a及び第一増幅回路52aの入力端子との電気的な接続は、第一スイッチング素子S1によってオン及びオフされる。第一スイッチング素子S1は、例えば、電界効果トランジスタ(FET:Field Effect Transistor)であるが、バイポーラトランジスタなどのその他のスイッチング素子であってもよい。 The first current source 53a is a current source for flowing a first current for measuring the contact impedance Rc1 to the subject 5 via the measurement electrode 51a. The electrical connection between the first current source 53a, the measurement electrode 51a, and the input terminal of the first amplifier circuit 52a is turned on and off by the first switching element S1. The first switching element S1 is, for example, a field effect transistor (FET: Field {Effect} Transistor), but may be another switching element such as a bipolar transistor.
 第二電流源54aは、被験者5に電気刺激を与えるための第二電流を計測電極51aを介して被験者5に流すための電流源である。第二電流源54aと、計測電極51a及び第一増幅回路52aの入力端子との電気的な接続は、第二スイッチング素子S2によってオン及びオフされる。第二スイッチング素子S2は、例えば、FETであるが、バイポーラトランジスタなどのその他のスイッチング素子であってもよい。 The second current source 54a is a current source for flowing a second current for applying electrical stimulation to the subject 5 to the subject 5 via the measurement electrode 51a. The electrical connection between the second current source 54a, the measurement electrode 51a, and the input terminal of the first amplifier circuit 52a is turned on and off by the second switching element S2. The second switching element S2 is, for example, an FET, but may be another switching element such as a bipolar transistor.
 なお、第一電流源53a及び第二電流源54aは、それぞれ個別の電流源回路として実現されてもよいし、単一の電流源回路として実現されてもよい。つまり、単一の電流源回路が第一電流源53a及び第二電流源54aの両方の機能を有していてもよく、第一電流源53a及び第二電流源54aがハードウェアとして別体であることは必須ではない。 The first current source 53a and the second current source 54a may be realized as individual current source circuits, or may be realized as a single current source circuit. That is, a single current source circuit may have the functions of both the first current source 53a and the second current source 54a, and the first current source 53a and the second current source 54a are separate hardware. It is not mandatory.
 第三電流源53bは、接触インピーダンスRc2を計測するための第三電流を参照電極51bを介して被験者5に流すための電流源である。第三電流源53bと、参照電極51b及び第二増幅回路52bの入力端子との電気的な接続は、第三スイッチング素子S3によってオン及びオフされる。第三スイッチング素子S3は、例えば、FETであるが、バイポーラトランジスタなどのその他のスイッチング素子であってもよい。 The third current source 53b is a current source for flowing a third current for measuring the contact impedance Rc2 to the subject 5 via the reference electrode 51b. The electrical connection between the third current source 53b, the reference electrode 51b, and the input terminal of the second amplifier circuit 52b is turned on and off by the third switching element S3. The third switching element S3 is, for example, an FET, but may be another switching element such as a bipolar transistor.
 第四電流源54bは、被験者5に電気刺激を与えるための第四電流を参照電極51bを介して被験者5に流すための電流源である。第四電流源54bと、参照電極51b及び第二増幅回路52bの入力端子との電気的な接続は、第四スイッチング素子S4によってオン及びオフされる。第四スイッチング素子S4は、例えば、FETであるが、バイポーラトランジスタなどのその他のスイッチング素子であってもよい。 The fourth current source 54b is a current source for flowing a fourth current for applying electrical stimulation to the subject 5 to the subject 5 via the reference electrode 51b. The electrical connection between the fourth current source 54b, the reference electrode 51b, and the input terminal of the second amplifier circuit 52b is turned on and off by the fourth switching element S4. The fourth switching element S4 is, for example, an FET, but may be another switching element such as a bipolar transistor.
 なお、第三電流源53b及び第四電流源54bは、それぞれ個別の電流源回路として実現されてもよいし、単一の電流源回路として実現されてもよい。つまり、単一の電流源回路が第三電流源53b及び第四電流源54bの両方の機能を有していてもよく、第三電流源53b及び第四電流源54bがハードウェアとして別体であることは必須ではない。 The third current source 53b and the fourth current source 54b may be realized as individual current source circuits, or may be realized as a single current source circuit. That is, a single current source circuit may have the functions of both the third current source 53b and the fourth current source 54b, and the third current source 53b and the fourth current source 54b are separate hardware. It is not mandatory.
 制御装置55は、制御部551、RAM552、及び、ROM554を有する。制御部551は、RAM552に記憶されたプログラム553を実行することにより、接触インピーダンス計測モードと電気刺激モードとを切り替える。制御部551は、具体的には、第一電流源53a及び第二電流源54aを選択的に計測電極51aに電気的に接続し、第三電流源53b及び第四電流源54bを選択的に参照電極51bに電気的に接続する。制御装置55は、例えば、マイクロコントローラ(MCU)によって実現される。 The control device 55 includes a control unit 551, a RAM 552, and a ROM 554. The control unit 551 switches between the contact impedance measurement mode and the electric stimulation mode by executing the program 553 stored in the RAM 552. Specifically, the control unit 551 selectively electrically connects the first current source 53a and the second current source 54a to the measurement electrode 51a, and selectively connects the third current source 53b and the fourth current source 54b. It is electrically connected to the reference electrode 51b. The control device 55 is realized by, for example, a microcontroller (MCU).
 加速度センサ56は、いわゆる3軸加速度センサであり、後述の動き計測モードにおいて被験者5の動きを計測するために用いられる。加速度センサ56は、例えば、3つの軸が被験者5の前後方向、左右方向、及び、上下方向に沿うように第二アクティブ電極60bに備えられる。なお、加速度センサ56は、第一アクティブ電極60aに備えられてもよいし、制御装置55に備えられてもよい。加速度センサ56は、脳波計10に備えられていればよく、設置位置については特に限定されない。 The acceleration sensor 56 is a so-called three-axis acceleration sensor, and is used to measure the movement of the subject 5 in a movement measurement mode described later. The acceleration sensor 56 is provided on the second active electrode 60b so that, for example, three axes extend in the front-back direction, the left-right direction, and the up-down direction of the subject 5. Note that the acceleration sensor 56 may be provided on the first active electrode 60a or may be provided on the control device 55. The acceleration sensor 56 only needs to be provided in the electroencephalograph 10, and the installation position is not particularly limited.
 上記図9は、接触インピーダンスRc1(図9において模式的に図示)を計測するための接触インピーダンス計測モードを示す図であり、第一スイッチング素子S1がオンされることにより、第一電流源53aが計測電極51a及び第一増幅回路52aの入力端子に電気的に接続されている。接触インピーダンス計測モードにおいて、第一電流源53aから供給される電流は、被験者5に接触する計測電極51aから、被験者5を通じて、同じく被験者5に接触するアース電極51c(図9で不図示)に向かって流れる。 FIG. 9 is a diagram showing a contact impedance measurement mode for measuring the contact impedance Rc1 (shown schematically in FIG. 9). When the first switching element S1 is turned on, the first current source 53a is turned on. It is electrically connected to the measurement electrode 51a and the input terminal of the first amplifier circuit 52a. In the contact impedance measurement mode, the current supplied from the first current source 53a flows from the measurement electrode 51a in contact with the subject 5 through the subject 5 to the ground electrode 51c (not shown in FIG. 9) that also contacts the subject 5. Flowing.
 なお、図示されないが、接触インピーダンスRc2(図9において模式的に図示)を計測するための接触インピーダンス計測モードにおいては、第三スイッチング素子S3がオンされることにより、第三電流源53bが参照電極51b及び第二増幅回路52bの入力端子に接続される。 Although not shown, in the contact impedance measurement mode for measuring the contact impedance Rc2 (schematically shown in FIG. 9), the third current source 53b is turned on by turning on the third switching element S3. 51b and the input terminal of the second amplifier circuit 52b.
 このような接触インピーダンスの計測は、計測電極51a及び参照電極51bが被験者5に接触しているか否かを判定するために行われる。 接触 The measurement of such contact impedance is performed to determine whether the measurement electrode 51a and the reference electrode 51b are in contact with the subject 5.
 一方、図10は、計測電極51aを用いた電気刺激モードにおける生体信号計測装置10bの詳細な構成を示す回路ブロック図である。図10においては、第二スイッチング素子S2がオンされることにより第二電流源54aが計測電極51a及び第一増幅回路52aの入力端子に電気的に接続されている。電気刺激モードにおいて、第二電流源54aから供給される電流は、被験者5に接触する計測電極51aから、被験者5を通じて、同じく被験者5に接触する参照電極51bまたはアース電極51c(図10で不図示)に向かって流れる。 FIG. 10 is a circuit block diagram showing a detailed configuration of the biological signal measurement device 10b in the electrical stimulation mode using the measurement electrode 51a. In FIG. 10, when the second switching element S2 is turned on, the second current source 54a is electrically connected to the measurement electrode 51a and the input terminal of the first amplifier circuit 52a. In the electrical stimulation mode, the current supplied from the second current source 54a is supplied from the measurement electrode 51a that contacts the subject 5 to the reference electrode 51b or the ground electrode 51c that also contacts the subject 5 through the subject 5 (not shown in FIG. 10). ).
 なお、図示されないが、参照電極51bを用いた電気刺激モードにおいては、第四スイッチング素子S4がオンされることにより、第四電流源54bが参照電極51b及び第二増幅回路52bの入力端子に接続される。 Although not shown, in the electric stimulation mode using the reference electrode 51b, the fourth current source 54b is connected to the reference electrode 51b and the input terminal of the second amplifier circuit 52b by turning on the fourth switching element S4. Is done.
 このような電気刺激の付与は、被験者5の体調を整える効果が得られる可能性がある。例えば、被験者5の内耳にある前庭器官に電気刺激が付与されることにより、身体のバランス機能が改善された例が報告されている。 付 与 The application of such electrical stimulation may have the effect of adjusting the physical condition of the subject 5. For example, an example has been reported in which electrical stimulation is applied to the vestibular organ in the inner ear of the subject 5 to improve the balance function of the body.
 なお、第二電流源54a及び第四電流源54bの一方が吐き出し型の電流源であり、第二電流源54a及び第四電流源54bの他方が吸い込み型の電流源であれば、第二電流源54a及び第四電流源54bの両方を用いて電気刺激を行うことも可能である。また、電気刺激を行うための第二電流源54a及び第四電流源54bのそれぞれは、電流出力型DA(Digital to Analog)変換器(つまり、電流出力型DA変換器)によって構成されてもよい。図11は、このような変形例に係る生体信号計測装置10bの詳細な構成を示す回路ブロック図である。 If one of the second current source 54a and the fourth current source 54b is a discharge type current source and the other of the second current source 54a and the fourth current source 54b is a suction type current source, the second current source It is also possible to perform electrical stimulation using both the source 54a and the fourth current source 54b. Further, each of the second current source 54a and the fourth current source 54b for performing the electrical stimulation may be configured by a current output type DA (Digital @ to @ Analog) converter (that is, a current output type DA converter). . FIG. 11 is a circuit block diagram illustrating a detailed configuration of the biological signal measurement device 10b according to such a modification.
 図11に示される変形例に係る生体信号計測装置10bでは、第二電流源54aが吐き出し型の電流源であり、第四電流源54bが吸い込み型の電流源である。この場合、電気刺激モードにおいて、第二スイッチング素子S2及び第四スイッチング素子S4がオンされることにより、生体信号計測装置10bは、第二電流源54aが吐き出した電流を第四電流源54bが被験者5を介して吸い込む構成によって電気刺激を行うことができる。 In the biological signal measuring device 10b according to the modification shown in FIG. 11, the second current source 54a is a discharge type current source, and the fourth current source 54b is a suction type current source. In this case, in the electrical stimulation mode, when the second switching element S2 and the fourth switching element S4 are turned on, the biological signal measurement device 10b outputs the current discharged by the second current source 54a to the fourth current source 54b. Electrical stimulation can be provided by a configuration that sucks in through 5.
 また、図11に示される生体信号計測装置10bは、図9及び図10に示される生体信号計測装置10bにおいて第二電流源54a及び第四電流源54bのそれぞれを電流出力型DA変換器によって構成し、かつ、第二電流源54a及び第四電流源54bの電流値を制御するためのデコーダ57を追加することで実現される。デコーダ57は、制御装置55の制御部551から入力される第一電流制御信号sc9~sc0を、第二電流源54aへ出力される第二電流制御信号s2_p9~s2_p0、または、第四電流源54bへ出力される第二電流制御信号s4_n9~s4_n0にデコードして出力する。 Further, the biological signal measuring device 10b shown in FIG. 11 is configured such that each of the second current source 54a and the fourth current source 54b in the biological signal measuring device 10b shown in FIGS. 9 and 10 is a current output type DA converter. This is realized by adding a decoder 57 for controlling the current values of the second current source 54a and the fourth current source 54b. The decoder 57 converts the first current control signals sc9 to sc0 input from the control unit 551 of the control device 55 into the second current control signals s2_p9 to s2_p0 output to the second current source 54a or the fourth current source 54b. To the second current control signals s4_n9 to s4_n0, which are output to the CPU.
 まず、第二電流源54aの動作について説明する。図12は、電流出力型DA変換器によって構成される第二電流源54aの詳細構成を示す図であり、図13は、このような第二電流源54aを制御するために使用される真理値表である。 First, the operation of the second current source 54a will be described. FIG. 12 is a diagram showing a detailed configuration of a second current source 54a constituted by a current output type DA converter. FIG. 13 is a diagram showing a truth value used for controlling such a second current source 54a. It is a table.
 例えば、100μAの電流に基づく電気刺激を行う場合、制御装置55は、第一電流制御信号として、sc9、sc6、sc5、及び、sc2=1(その他は0)を出力する。デコーダ57はこれをデコードし、第二電流制御信号として、s2_p9、s2_p6、s2_p5、及び、s2_p2=1(その他は0)を出力する。この結果、電流源54a_p6(64μA)、電流源54a_p5(32μA)、及び、電流源54a_p2(4μA)がオンされ、100μAの電流に基づく電気刺激が実現される。 {For example, when performing electrical stimulation based on a current of 100 μA, the control device 55 outputs sc9, sc6, sc5, and sc2 = 1 (others are 0) as the first current control signal. The decoder 57 decodes this, and outputs s2_p9, s2_p6, s2_p5, and s2_p2 = 1 (others are 0) as the second current control signal. As a result, the current sources 54a_p6 (64 μA), the current sources 54a_p5 (32 μA), and the current sources 54a_p2 (4 μA) are turned on, and electrical stimulation based on a current of 100 μA is realized.
 次に、第四電流源54bの動作について説明する。図14は、電流出力型DA変換器によって構成される第四電流源54bの詳細構成を示す図であり、図15は、このような第四電流源54bを制御するために使用される真理値表である。 Next, the operation of the fourth current source 54b will be described. FIG. 14 is a diagram showing a detailed configuration of a fourth current source 54b constituted by a current output type DA converter. FIG. 15 is a diagram showing a truth value used to control such a fourth current source 54b. It is a table.
 例えば、-100μAの電流に基づく電気刺激を行う場合、制御装置55は、第一電流制御信号として、sc6、sc5、及び、sc2=1(その他は0)を出力する。デコーダ57はこれをデコードし、第二電流制御信号として、s4_n9、s4_n6、s4_n5、及び、s4_n2=1(その他は0)を出力する。この結果、電流源54b_p6(-64μA)、電流源54b_n5(-32μA)、及び、電流源54b_n2(-4μA)がオンされ、-100μAの電流に基づく電気刺激が実現される。 For example, when performing electrical stimulation based on a current of −100 μA, the control device 55 outputs sc6, sc5, and sc2 = 1 (others are 0) as the first current control signal. The decoder 57 decodes this, and outputs s4_n9, s4_n6, s4_n5, and s4_n2 = 1 (others are 0) as the second current control signal. As a result, the current sources 54b_p6 (−64 μA), the current sources 54b_n5 (−32 μA), and the current sources 54b_n2 (−4 μA) are turned on, and electrical stimulation based on a current of −100 μA is realized.
 以上説明したような動作モードとスイッチング素子の状態をまとめると図16のようになる。図16は、動作モードとスイッチング素子の状態との関係を示す図である。なお、図16では、電気刺激モードのスイッチング素子の状態として、図10に対応する状態と図11に対応する状態の2つが示されている。 FIG. 16 summarizes the operation modes and the states of the switching elements as described above. FIG. 16 is a diagram showing the relationship between the operation mode and the state of the switching element. FIG. 16 shows two states of the switching element in the electric stimulation mode, a state corresponding to FIG. 10 and a state corresponding to FIG.
 [電流波形]
 ところで、接触インピーダンス計測用の電流波形(つまり、第一電流源53a及び第三電流源53bの電流波形)と、電気刺激用の電流波形(つまり、第二電流源54a及び第四電流源54bの電流波形)とは異なる。図17は、接触インピーダンス計測用の電流波形、及び、電気刺激用の電流波形を示す図である。
[Current waveform]
By the way, the current waveform for measuring the contact impedance (that is, the current waveform of the first current source 53a and the third current source 53b) and the current waveform for the electrical stimulation (that is, the current waveform of the second current source 54a and the fourth current source 54b) Current waveform). FIG. 17 is a diagram showing a current waveform for measuring contact impedance and a current waveform for electrical stimulation.
 図17に示されるように、接触インピーダンス計測用の電流は、例えば、1kHz程度の周波数の交流電流である。周波数が100Hzを超える交流電流は、脳波の計測対象の周波数範囲である0.5Hz~100Hzの帯域に重ならない。したがって、接触インピーダンスの計測と脳波(生体信号)の計測とを並行して行うことができる。 As shown in FIG. 17, the current for measuring contact impedance is, for example, an alternating current having a frequency of about 1 kHz. The alternating current having a frequency exceeding 100 Hz does not overlap the band of 0.5 Hz to 100 Hz which is the frequency range of the brain wave to be measured. Therefore, the measurement of the contact impedance and the measurement of the brain wave (biological signal) can be performed in parallel.
 また、電気刺激用の電流は、直流電流であってもよいし、交流電流であってもよいし、ノイズ電流であってもよい。交流電流の周波数は、脳波の計測対象の周波数範囲である0.5Hz~100Hzの帯域に重なってもよい。ノイズ電流は、具体的には、ホワイトノイズを形成する電流またはピンクノイズを形成する電流などである。ホワイトノイズは、周波数特性が一定(つまり、広い周波数帯におけるノイズ電力がほぼ一定)のノイズであり、例えば、抵抗素子の熱雑音を利用して生成することができる。また、ホワイトノイズは、上述の電流型DA変換器において波形がプログラミングされることによっても生成可能である。また、ピンクノイズは、ノイズ電力が周波数に反比例する特性のノイズであり、例えば、チャネル幅およびチャネル長が調整されたFETを利用して生成することができる。また、ピンクノイズは、上述の電流型DA変換器において波形がプログラミングされることによっても生成可能である。 The current for electrical stimulation may be a direct current, an alternating current, or a noise current. The frequency of the alternating current may overlap the band of 0.5 Hz to 100 Hz, which is the frequency range of the brain wave to be measured. The noise current is, specifically, a current that forms white noise or a current that forms pink noise. White noise is noise whose frequency characteristic is constant (that is, noise power in a wide frequency band is almost constant), and can be generated by using, for example, thermal noise of a resistance element. White noise can also be generated by programming a waveform in the above-described current type DA converter. Pink noise is noise having characteristics in which noise power is inversely proportional to frequency. For example, pink noise can be generated using an FET whose channel width and channel length are adjusted. Pink noise can also be generated by programming a waveform in the above-mentioned current type DA converter.
 上述のように、接触インピーダンスの計測は、計測電極51a及び参照電極51bが被験者5に接触しているか否かを判定するために行われる。よって、接触インピーダンス計測用の電流(つまり、上記第一電流または上記第三電流)の値は、被験者5になるべく刺激を与えない程度の微弱な値であることを意図している。これに対し、電気刺激用の電流(つまり、上記第二電流または上記第四電流)の値は、被験者5に積極的に刺激を与えることを意図するものである。したがって、第一電流の第一振幅は、例えば、1μA以下に設定され、第二電流の第二振幅は、第一電流の第一振幅よりも大きくなるように設定される。同様に、第三電流の第三振幅は、例えば、1μA以下に設定され、第四電流の第四振幅は、第三電流の第一振幅よりも大きくなるように設定される。なお、「振幅」の用語は、振幅が一定でないような場合には最大振幅(ピーク-トゥ-ピーク値)と読み替えられてよい。 As described above, the measurement of the contact impedance is performed to determine whether the measurement electrode 51a and the reference electrode 51b are in contact with the subject 5. Therefore, the value of the current for measuring the contact impedance (that is, the first current or the third current) is intended to be a weak value that does not stimulate the subject 5 as much as possible. On the other hand, the value of the current for electrical stimulation (that is, the second current or the fourth current) is intended to positively stimulate the subject 5. Therefore, the first amplitude of the first current is set to, for example, 1 μA or less, and the second amplitude of the second current is set to be larger than the first amplitude of the first current. Similarly, the third amplitude of the third current is set to, for example, 1 μA or less, and the fourth amplitude of the fourth current is set to be larger than the first amplitude of the third current. Note that the term “amplitude” may be read as the maximum amplitude (peak-to-peak value) when the amplitude is not constant.
 なお、第二電流源54a及び第四電流源54bは、電気刺激用の電流の種類及び振幅を被験者5が選択できる構成であってもよい。これにより、被験者5は電気刺激の程度を好みに応じて変更することができる。 The second current source 54a and the fourth current source 54b may be configured so that the subject 5 can select the type and amplitude of the current for electrical stimulation. Thus, the subject 5 can change the degree of the electrical stimulation according to his / her preference.
 [動作モードの切り替え例]
 次に、動作モードの切り替え例について説明する。図18は、動作モードの切り替え例を示す図である。なお、以下では、第一アクティブ電極60aにおける動作モードの切り替え例について説明されるが、第二アクティブ電極60bにおける動作モードの切り替えについても同様である。
[Operation mode switching example]
Next, an example of switching operation modes will be described. FIG. 18 is a diagram illustrating an example of switching operation modes. In the following, an example of switching the operation mode in the first active electrode 60a will be described, but the same applies to switching of the operation mode in the second active electrode 60b.
 図18において、時刻t=0から時刻t=t1までの期間においては、接触インピーダンス計測モードで脳波の計測が行われる。つまり、脳波の計測及び接触インピーダンスの計測が並行して行われる。制御部551は第一スイッチング素子S1及び第二スイッチング素子S2のうち第一スイッチング素子S1を選択的にオンすることにより第一電流源53aを計測電極51aに電気的に接続し、動作モードを接触インピーダンス計測モードに切り替える。このとき、第一電流源53aからは、周波数1kHz、振幅50nAの交流電流が出力される。 に お い て In FIG. 18, in the period from time t = 0 to time t = t1, brain wave measurement is performed in the contact impedance measurement mode. That is, the measurement of the brain wave and the measurement of the contact impedance are performed in parallel. The control unit 551 electrically connects the first current source 53a to the measurement electrode 51a by selectively turning on the first switching element S1 of the first switching element S1 and the second switching element S2, and changes the operation mode to the contact mode. Switch to impedance measurement mode. At this time, an AC current having a frequency of 1 kHz and an amplitude of 50 nA is output from the first current source 53a.
 次の時刻t=t1から時刻t=t2までの期間においては、電気刺激モードで脳波の計測が行われる。つまり、脳波の計測及び電気刺激の付与が並行して行われる。制御部551は第一スイッチング素子S1及び第二スイッチング素子S2のうち第二スイッチング素子S2を選択的にオンすることにより第二電流源54aを計測電極51aに電気的に接続し、動作モードを電気刺激モードに切り替える。このとき、第一電流源53aからは、振幅200μA程度のホワイトノイズを形成するノイズ電流が出力される。 脳 In the period from the next time t = t1 to time t = t2, the measurement of the electroencephalogram is performed in the electric stimulation mode. That is, the measurement of the electroencephalogram and the application of the electrical stimulation are performed in parallel. The control unit 551 electrically connects the second current source 54a to the measurement electrode 51a by selectively turning on the second switching element S2 of the first switching element S1 and the second switching element S2, and changes the operation mode to electric. Switch to stimulation mode. At this time, a noise current that forms white noise with an amplitude of about 200 μA is output from the first current source 53a.
 次の時刻t=t2から時刻t=t3までの期間においては、接触インピーダンス計測モードで脳波の計測が行われる。つまり、脳波の計測及び接触インピーダンスの計測が並行して行われる。制御部551は第一スイッチング素子S1及び第二スイッチング素子S2のうち第一スイッチング素子S1を選択的にオンすることにより第一電流源53aを計測電極51aに電気的に接続し、動作モードを接触インピーダンス計測モードに切り替える。第一電流源53aからは、周波数1kHz、振幅50nAの交流電流が出力される。 脳 In the period from the next time t = t2 to the time t = t3, brain wave measurement is performed in the contact impedance measurement mode. That is, the measurement of the brain wave and the measurement of the contact impedance are performed in parallel. The control unit 551 electrically connects the first current source 53a to the measurement electrode 51a by selectively turning on the first switching element S1 of the first switching element S1 and the second switching element S2, and changes the operation mode to the contact mode. Switch to impedance measurement mode. The first current source 53a outputs an alternating current having a frequency of 1 kHz and an amplitude of 50 nA.
 次の時刻t=t3以降の期間においては、電気刺激モードで比較的強い電気刺激の付与が行われる。制御部551は第一スイッチング素子S1及び第二スイッチング素子S2のうち第二スイッチング素子S2を選択的にオンすることにより第二電流源54aを計測電極51aに電気的に接続し、動作モードを電気刺激モードに切り替える。このとき、第一電流源53aからは、周波数1kHz、振幅600μA程度の交流電流が出力される。 に お い て In the period after the next time t = t3, relatively strong electric stimulation is applied in the electric stimulation mode. The control unit 551 electrically connects the second current source 54a to the measurement electrode 51a by selectively turning on the second switching element S2 of the first switching element S1 and the second switching element S2, and changes the operation mode to electric. Switch to stimulation mode. At this time, an alternating current having a frequency of 1 kHz and an amplitude of about 600 μA is output from the first current source 53a.
 例えば、所定値(例えば、100μA)以上の振幅を有する強い電流に基づく電気刺激が行われる場合には、脳波がうまく計測できない場合がある。そこで、このような場合には脳波の計測が停止される。脳波の計測の停止は、生体信号出力部15から情報処理装置20との通信が停止されることによって実現されてもよいし、情報処理装置20による計測結果の表示が停止されることによって実現されてもよい。これにより、生体信号計測システム100は、適切に計測されていない可能性がある脳波が表示されてしまうことを抑制することができる。 For example, when electrical stimulation based on a strong current having an amplitude equal to or more than a predetermined value (for example, 100 μA) is performed, the electroencephalogram may not be measured well. Therefore, in such a case, the measurement of the brain wave is stopped. The stop of the measurement of the electroencephalogram may be realized by stopping the communication from the biological signal output unit 15 with the information processing device 20, or may be realized by stopping the display of the measurement result by the information processing device 20. You may. Thereby, the biological signal measurement system 100 can suppress display of an electroencephalogram that may not be properly measured.
 [アクティブ電極における部品配置]
 次に、第一アクティブ電極60aにおける部品配置について説明する。図19は、第一アクティブ電極60aにおける部品配置の一例を示す図である。なお、第二アクティブ電極60bにおける部品配置については、第一アクティブ電極60aと同様であるため詳細な説明が省略される。
[Component arrangement in active electrode]
Next, the component arrangement in the first active electrode 60a will be described. FIG. 19 is a diagram illustrating an example of a component arrangement in the first active electrode 60a. Note that the component arrangement on the second active electrode 60b is the same as that of the first active electrode 60a, and thus a detailed description is omitted.
 図19に示されるように、計測電極51aは、直径10mm程度であり、計測電極51aよりも小さい基板58aの一方の主面(図19の奥側の主面)に実装される。第一電流源53a及び第二電流源54aは、基板58aの他方の主面(図19の手前側の面)に実装される。 As shown in FIG. 19, the measurement electrode 51a has a diameter of about 10 mm and is mounted on one main surface (a main surface on the back side in FIG. 19) of the substrate 58a smaller than the measurement electrode 51a. The first current source 53a and the second current source 54a are mounted on the other main surface (the front surface in FIG. 19) of the substrate 58a.
 計測電極51a及び第一増幅回路55aの入力端子は、基板58aの外に位置する直径1mm程度の円形のコンタクト部59aを介して電気的に接続される。計測電極51a及び第一増幅回路52aの入力端子を電気的に接続する配線には、第一電流源53aが第一スイッチング素子S1を介して接続され、第二電流源54aが第二スイッチング素子S2を介して電気的に接続される。 (4) The measurement electrode 51a and the input terminal of the first amplifier circuit 55a are electrically connected via a circular contact portion 59a having a diameter of about 1 mm located outside the substrate 58a. A first current source 53a is connected to a wiring that electrically connects the measurement electrode 51a and an input terminal of the first amplifier circuit 52a via a first switching element S1, and a second current source 54a is connected to a second switching element S2. Are electrically connected via
 第一増幅回路52aは、入力側(図19の左側)から出力側(図19の右側)までの幅が3mm程度の領域内に全部が位置するように実装される。 (4) The first amplifier circuit 52a is mounted such that the first amplifier circuit 52a is entirely located within a region of about 3 mm in width from the input side (left side in FIG. 19) to the output side (right side in FIG. 19).
 第一電流源53aは、入力側から出力側までの幅が1mm程度の領域内に全部が位置するように実装される。第二電流源54aは、入力側から出力側までの幅が2mm程度の領域内に全部が位置するように実装される。 (4) The first current source 53a is mounted so that the whole of the first current source 53a is located within a region having a width of about 1 mm from the input side to the output side. The second current source 54a is mounted so that the whole of the second current source 54a is located within a region having a width of about 2 mm from the input side to the output side.
 第一アクティブ電極60aにおいて、第一電流源53aと第一増幅回路52aとの距離Xは、5mm以下である。距離Xは、より詳細には、第一電流源53aが実装される領域の左側の端部から第一増幅回路52aが実装される領域の左側の端部までの距離であり、この距離Xは、図19の左右方向(言い換えれば、第一電流源53a及び第一増幅回路52aの並び方向)における直線距離である。このように距離Xが短くされれば、不要ノイズの発生及び不要ノイズの飛び込みが抑制される。 に お い て In the first active electrode 60a, the distance X between the first current source 53a and the first amplifier circuit 52a is 5 mm or less. More specifically, the distance X is a distance from the left end of the region where the first current source 53a is mounted to the left end of the region where the first amplifier circuit 52a is mounted. 19 (in other words, the direction in which the first current source 53a and the first amplifier circuit 52a are arranged) in FIG. When the distance X is shortened in this way, generation of unnecessary noise and jump of unnecessary noise are suppressed.
 また、第一アクティブ電極60aにおいては、第二電流源54aと第一増幅回路52aとの距離も5mm以下である。第二電流源54aと第一増幅回路52aとの距離の定義は、例えば、距離Xと同様である。このように第二電流源54aと第一増幅回路52aとの距離が短くされれば、不要ノイズの発生及び不要ノイズの飛び込みが抑制される。 {Circle around (1)} In the first active electrode 60a, the distance between the second current source 54a and the first amplifier circuit 52a is also 5 mm or less. The definition of the distance between the second current source 54a and the first amplifier circuit 52a is, for example, the same as the distance X. When the distance between the second current source 54a and the first amplifier circuit 52a is shortened in this way, generation of unnecessary noise and jump of unnecessary noise are suppressed.
 なお、第一アクティブ電極60aにおいては、第一電流源53aと第一増幅回路52aとの距離、及び、第二電流源54aと第一増幅回路52aとの距離の少なくとも一方が5mm以下であればよい。これにより、不要ノイズの発生及び不要ノイズの飛び込みが抑制される効果が得られる。 In the first active electrode 60a, if at least one of the distance between the first current source 53a and the first amplifier circuit 52a and the distance between the second current source 54a and the first amplifier circuit 52a is 5 mm or less. Good. As a result, an effect of suppressing the generation of unnecessary noise and the jump of unnecessary noise can be obtained.
 [生体信号計測システムの表示動作例]
 次に、生体信号計測システム100の表示動作例について説明する。図20は、生体信号計測システム100の表示動作例のフローチャートである。図21は、接触インピーダンス計測モードで脳波の計測が行われる場合の提示部30での表示例を示す図である。図22は、電気刺激モードで脳波の計測が行われる場合の提示部30での表示例を示す図である。図23は、電気刺激モードで脳波の計測が行われない場合の提示部30での表示例を示す図である。
[Display operation example of biological signal measurement system]
Next, a display operation example of the biological signal measurement system 100 will be described. FIG. 20 is a flowchart of a display operation example of the biological signal measurement system 100. FIG. 21 is a diagram illustrating a display example on the presentation unit 30 when the brain wave is measured in the contact impedance measurement mode. FIG. 22 is a diagram illustrating a display example on the presentation unit 30 when the brain wave is measured in the electric stimulation mode. FIG. 23 is a diagram illustrating a display example on the presentation unit 30 when the brain wave measurement is not performed in the electric stimulation mode.
 まず、アプリ処理部26は、初期処理を行う(S41)。図21~図23に示されるように、アプリ処理部26は、初期処理において、提示部30における電極図示部30cに、被験者5が装着している脳波計10が備える計測電極51a及び参照電極51bの位置を表示する。 First, the application processing unit 26 performs an initial process (S41). As shown in FIGS. 21 to 23, in the initial processing, the application processing unit 26 sets the measurement electrode 51a and the reference electrode 51b of the electroencephalograph 10 worn by the subject 5 on the electrode illustration unit 30c of the presentation unit 30. Displays the position of.
 次に、アプリ処理部26は、接触インピーダンス計測モードであるか否かを判定する(S42)。操作ボタン41に対して接触インピーダンス計測モードを指示する操作が行われる場合、アプリ処理部26は、接触インピーダンス計測モードを指示する操作に応じて脳波計10から送信される通知信号が操作信号取得部21によって取得されたか否かを判定する。また、接触インピーダンス計測モードを指示する操作が、情報処理装置20が備えるユーザインターフェース(図示せず)に対して行われる場合、アプリ処理部26は、このような操作が行われたか否かを判定する。 Next, the application processing unit 26 determines whether or not the current mode is the contact impedance measurement mode (S42). When the operation of instructing the contact impedance measurement mode is performed on the operation button 41, the application processing unit 26 transmits the notification signal transmitted from the electroencephalograph 10 in response to the operation of instructing the contact impedance measurement mode. 21 to determine whether or not it has been acquired. Further, when an operation for instructing the contact impedance measurement mode is performed on a user interface (not shown) included in the information processing device 20, the application processing unit 26 determines whether such an operation has been performed. I do.
 アプリ処理部26は、接触インピーダンス計測モードであると判定した場合(S42でYES)、図21に示されるように、提示部30における計測情報表示部30aに、「接触インピーダンス計測中」と表示する(S43)。そして、アプリ処理部26は、参照電極51bの接触インピーダンスを計測する(S44)。アプリ処理部26は、参照電極51bを含む第二アクティブ電極60bが接触インピーダンス計測モードの状態で生体信号出力部15から取得した1kHzの付近の電圧を抽出及び復調し、得られた電圧値を印加した電流値によって除算することにより参照電極51bの接触インピーダンスを計測する。 When determining that the current mode is the contact impedance measurement mode (YES in S42), the application processing unit 26 displays “measurement of contact impedance” on the measurement information display unit 30a of the presentation unit 30 as shown in FIG. (S43). Then, the application processing unit 26 measures the contact impedance of the reference electrode 51b (S44). The application processing unit 26 extracts and demodulates a voltage around 1 kHz obtained from the biological signal output unit 15 in a state where the second active electrode 60b including the reference electrode 51b is in the contact impedance measurement mode, and applies the obtained voltage value. By dividing by the obtained current value, the contact impedance of the reference electrode 51b is measured.
 同様に、アプリ処理部26は、計測電極51aの接触インピーダンスを計測する(S45)。そして、図21に示されるように、アプリ処理部26は、計測した参照電極51b、計測電極51aの接触インピーダンスを提示部30における接触インピーダンス表示部30eに表示する(S46)。 Similarly, the application processing unit 26 measures the contact impedance of the measurement electrode 51a (S45). Then, as shown in FIG. 21, the application processing unit 26 displays the measured contact impedance of the reference electrode 51b and the measured electrode 51a on the contact impedance display unit 30e of the presentation unit 30 (S46).
 一方、アプリ処理部26は、接触インピーダンス計測モードでないと判定した場合(S42でNO)、電気刺激モードであるか否かを判定する(S47)。操作ボタン41に対して電気刺激モードを指示する操作が行われる場合、アプリ処理部26は、電気刺激モードを指示する操作に応じて脳波計10から送信される通知信号が操作信号取得部21によって取得されたか否かを判定する。また、電気刺激モードを指示する操作が、情報処理装置20が備えるユーザインターフェース(図示せず)に対して行われる場合、アプリ処理部26は、このような操作が行われたか否かを判定する。 On the other hand, when determining that the current mode is not the contact impedance measurement mode (NO in S42), the application processing unit 26 determines whether the current mode is the electrical stimulation mode (S47). When an operation for instructing the electric stimulation mode is performed on the operation button 41, the application processing unit 26 transmits a notification signal transmitted from the electroencephalograph 10 in response to the operation for instructing the electric stimulation mode by the operation signal acquisition unit 21. It is determined whether or not it has been acquired. In addition, when an operation for instructing the electric stimulation mode is performed on a user interface (not illustrated) included in the information processing device 20, the application processing unit 26 determines whether such an operation has been performed. .
 アプリ処理部26は、電気刺激モードであると判定した場合(S47でYES)、図22及び図23に示されるように、提示部30における計測情報表示部30aに、「電気刺激中」と表示する(S48)。そして、アプリ処理部26は、電気刺激用の電流の設定(種類(直流、交流、またはノイズ)、及び、振幅)を取得する(S49)。電気刺激用の電流の設定は、例えば、被験者5の操作ボタン41への操作に基づいて決定され、脳波計10から情報処理装置20に送信されるが、情報処理装置20への操作に基づいて決定されてもよい。そして、図22及び図23に示されるように、アプリ処理部26は、取得された電流の設定を、提示部30における電流設定情報表示部30dに表示する(S50)。 When determining that the current mode is the electric stimulation mode (YES in S47), the application processing unit 26 displays “electric stimulation” on the measurement information display unit 30a of the presentation unit 30 as shown in FIGS. (S48). Then, the application processing unit 26 acquires the setting (type (DC, AC, or noise) and amplitude) of the electric stimulation current (S49). The setting of the electric current for electrical stimulation is determined based on, for example, an operation on the operation button 41 of the subject 5 and is transmitted from the electroencephalograph 10 to the information processing device 20, but based on the operation on the information processing device 20. It may be determined. Then, as shown in FIGS. 22 and 23, the application processing unit 26 displays the acquired current setting on the current setting information display unit 30d in the presentation unit 30 (S50).
 ステップS46の後、ステップS47でNOの場合、及び、ステップS50の後には、脳波計測中であるか否かの判定が行われる(S51)。アプリ処理部26は、例えば、接触インピーダンスモードの場合、及び、電気刺激モードで電流の振幅が所定値未満に設定されている場合には、脳波計測中であると判定する(S51でYES)。 After step S46, in the case of NO in step S47, and after step S50, it is determined whether or not brain wave measurement is being performed (S51). For example, in the case of the contact impedance mode, and in the case where the amplitude of the current is set to be less than the predetermined value in the electric stimulation mode, the application processing unit 26 determines that the electroencephalogram is being measured (YES in S51).
 この場合、図21及び図22に示されるように、アプリ処理部26は、提示部30における計測情報表示部30aに、「脳波計測中」と表示する(S52)。 In this case, as shown in FIG. 21 and FIG. 22, the application processing unit 26 displays “Measurement of EEG” on the measurement information display unit 30a of the presentation unit 30 (S52).
 そして、図21及び図22に示されるように、アプリ処理部26は、提示部30における波形表示部30bに、生体信号計測装置10bから得られる生体信号の波形(ここでは、脳波の波形)を表示する(S53)。 Then, as shown in FIGS. 21 and 22, the application processing unit 26 displays a waveform of a biological signal (here, a waveform of an electroencephalogram) obtained from the biological signal measurement device 10b on a waveform display unit 30b of the presentation unit 30. It is displayed (S53).
 一方、アプリ処理部26は、例えば、電気刺激モードで電流の振幅が所定値以上に設定されている場合には、脳波計測中でないと判定する(S51でNO)。この場合、図23に示されるように、被験者5の脳波計測が行われないため、提示部30における波形表示部30bには脳波の波形は表示されない代わりにダミーの電圧データが表示される。なお、提示部30の波形表示部30bに電気刺激に用いられる電流の波形などが表示されてもよい。 On the other hand, for example, when the amplitude of the current is set to a predetermined value or more in the electric stimulation mode, the application processing unit 26 determines that the electroencephalogram measurement is not being performed (NO in S51). In this case, as shown in FIG. 23, since the brain wave measurement of the subject 5 is not performed, the waveform display unit 30b of the presentation unit 30 does not display the waveform of the brain wave, but displays dummy voltage data. The waveform of the current used for the electrical stimulation may be displayed on the waveform display unit 30b of the presentation unit 30.
 以上のように、生体信号計測システム100においては、提示部30に、リアルタイムで、計測情報表示部30a、波形表示部30b、電極の位置を示す電極図示部30c、電流設定情報表示部30d、及び、接触インピーダンス表示部30eが表示され、多くの情報が一目で分かる。 As described above, in the biological signal measurement system 100, the presentation information unit 30 displays the measurement information display unit 30a, the waveform display unit 30b, the electrode display unit 30c indicating the position of the electrode, the current setting information display unit 30d, , The contact impedance display section 30e is displayed, and much information can be understood at a glance.
 [生体信号計測システムの動き計測モードを含む動作例]
 上述のように、生体信号計測装置10bは、加速度センサ56の出力信号を用いて被験者5の動きを計測する動き計測モードの動作を行うことができる。つまり、制御装置55の制御部551は、動き計測モード、接触インピーダンス計測モード、及び、電気刺激モードを有しているといえる。なお、接触インピーダンス計測モードは、接触インピーダンス計測用の電流(つまり、上記第一電流または上記第三電流)を用いて接触インピーダンスを計測しながら生体信号を計測するためのモードであり、電気刺激モードは、電気刺激用の電流(つまり、上記第二電流または上記第四電流)を用いて被験者5に電気刺激を与えるモードである。
[Operation example including motion measurement mode of biological signal measurement system]
As described above, the biological signal measurement device 10b can perform the operation in the motion measurement mode for measuring the motion of the subject 5 using the output signal of the acceleration sensor 56. That is, it can be said that the control unit 551 of the control device 55 has the motion measurement mode, the contact impedance measurement mode, and the electric stimulation mode. The contact impedance measurement mode is a mode for measuring a biological signal while measuring contact impedance using a current for contact impedance measurement (that is, the first current or the third current). Is a mode in which electric stimulation is applied to the subject 5 using the electric current for electric stimulation (that is, the second current or the fourth current).
 動き計測モードの動作は、例えば、接触インピーダンス計測モードまたは電気刺激モードと並行して行われる。図24は、このような生体信号計測システムの動き計測モードを含む動作例を示す図であり、図20のフローチャートで示される動作と並行して、被験者の動きの計測が行われる(S61)。 The operation in the motion measurement mode is performed, for example, in parallel with the contact impedance measurement mode or the electrical stimulation mode. FIG. 24 is a diagram showing an operation example including the motion measurement mode of such a biological signal measurement system, and the movement of the subject is measured in parallel with the operation shown in the flowchart of FIG. 20 (S61).
 例えば、30分程度の電気刺激を行った後に被験者5が歩行すると、電気刺激を行う前よりも歩幅、並びに、歩行の速度、ステップ時間、及び、方向性などが改善される事例が知られている。図25は、電気刺激による被験者5の歩行動作の改善を示す図である。被験者5が前方に向かって歩行する際、電気刺激なしのときには着地する足が右側に流れる軌跡を描くのに対し、電気刺激ありのときには歩行の方向が真っ直ぐで、かつ歩幅が広くなり歩行の速度が改善される効果がある。生体信号計測装置10bにより、電気刺激の履歴(つまり、電気刺激モードの動作履歴)、及び、歩行の動作の履歴(つまり、動き計測モードの計測結果の履歴)が関連付けて記憶されれば、電気刺激と歩行動作との関連性を把握するために利用できる。 For example, when the subject 5 walks after performing the electrical stimulation for about 30 minutes, a case is known in which the stride, the walking speed, the step time, and the directionality are improved as compared to before the electrical stimulation is performed. I have. FIG. 25 is a diagram illustrating an improvement in the walking motion of the subject 5 by the electrical stimulation. When the subject 5 walks forward, when the electric stimulus is not applied, the landing foot draws a trajectory flowing to the right, whereas when the electric stimulus is applied, the walking direction is straight and the stride is wide, and the walking speed is increased. Has the effect of being improved. If the history of the electrical stimulation (that is, the operation history in the electrical stimulation mode) and the history of the walking operation (that is, the history of the measurement result in the motion measurement mode) are stored in association with each other by the biological signal measurement device 10b, It can be used to grasp the relationship between the stimulus and the walking motion.
 ところで、上述した電気刺激を行うための電流源が電流出力型DA変換器によって実現されれば、制御装置55の制御部551は、電気刺激用の電流値を細かく制御することができる。そこで、制御部551は、被験者5の動きの計測結果に基づいて電気刺激用の電流を制御してもよい。この場合の動きの計測結果は、これから行う電気刺激よりも前の過去の動きの計測結果(履歴)であってもよいし、図24に示されるように動きの計測結果が即座に電気刺激用の電流の電流値に反映されてもよい。 By the way, if the current source for performing the electrical stimulation described above is realized by the current output type DA converter, the control unit 551 of the control device 55 can finely control the current value for the electrical stimulation. Therefore, the control unit 551 may control the electric stimulation current based on the measurement result of the movement of the subject 5. In this case, the measurement result of the movement may be a measurement result (history) of a past movement before the electric stimulation to be performed, or the measurement result of the movement may be immediately used for the electric stimulation as shown in FIG. May be reflected in the current value of the current.
 また、制御部551は、接触インピーダンス計測モードにおいて計測された生体信号に基づいて電気刺激用の電流を制御してもよい。この場合の動きの生体信号は、これから行う電気刺激よりも前に計測された過去の生体信号(生体信号の履歴)であってもよいし、生体信号の計測結果が即座に電気刺激用の電流の電流値に反映されてもよい。 The control unit 551 may control the electric stimulation current based on the biological signal measured in the contact impedance measurement mode. In this case, the movement biosignal may be a past biosignal (history of the biosignal) measured before the electric stimulation to be performed, or the measurement result of the biosignal is immediately changed to the electric stimulation current. May be reflected in the current value.
 また、制御部551は、動きの計測結果、及び、生体信号の計測結果の両方に基づいて電気刺激用の電流を制御してもよい。電気刺激用の電流は、前記動き計測モードにおいて計測された被験者5の動き、及び、接触インピーダンス計測モードにおいて計測された生体信号の少なくとも一方に基づいて制御されればよい。 The control unit 551 may control the current for electrical stimulation based on both the measurement result of the movement and the measurement result of the biological signal. The electric stimulation current may be controlled based on at least one of the movement of the subject 5 measured in the motion measurement mode and the biological signal measured in the contact impedance measurement mode.
 [効果等]
 生体信号計測装置10bは、例えば、アクティブ電極として実現される。このようなアクティブ電極は、生体に接触する計測電極51aと、計測電極51aによって検出された第一生体信号が入力される第一増幅回路52aと、接触インピーダンスを計測するための第一電流を計測電極51aを介して生体に流すための第一電流源53aと、生体に電気刺激を与えるための第二電流を計測電極51aを介して生体に流すための第二電流源54aとを備える。計測電極51aは、第一電極の一例である。
[Effects]
The biological signal measuring device 10b is realized, for example, as an active electrode. Such an active electrode measures a measurement electrode 51a that comes into contact with a living body, a first amplification circuit 52a to which a first biological signal detected by the measurement electrode 51a is input, and a first current for measuring contact impedance. It includes a first current source 53a for flowing the living body through the electrode 51a, and a second current source 54a for flowing a second current for applying electric stimulation to the living body through the measurement electrode 51a. The measurement electrode 51a is an example of a first electrode.
 このようなアクティブ電極は、第一生体信号を検出するための計測電極51aを介して生体に電気刺激を与えることができる。 ア ク テ ィ ブ Such an active electrode can apply an electrical stimulus to a living body via a measuring electrode 51a for detecting a first biological signal.
 また、例えば、アクティブ電極は、さらに、第一電流源53aと計測電極51aとの電気的な接続をオン及びオフする第一スイッチング素子S1と、第二電流源54a及び計測電極51aの電気的な接続をオン及びオフする第二スイッチング素子S2とを備える。 Further, for example, the active electrode further includes a first switching element S1 for turning on and off an electrical connection between the first current source 53a and the measurement electrode 51a, and an electrical connection between the second current source 54a and the measurement electrode 51a. A second switching element S2 for turning on and off the connection.
 このようなアクティブ電極は、計測電極51aの接触インピーダンスを計測する接触インピーダンス計測モードの動作と、計測電極51aを介して生体に電気刺激を与える電気刺激モードの動作とを選択的に行うことができる。 Such an active electrode can selectively perform an operation in a contact impedance measurement mode for measuring the contact impedance of the measurement electrode 51a and an operation in an electric stimulation mode for applying electric stimulation to a living body via the measurement electrode 51a. .
 また、例えば、第一電流は、第一振幅の交流電流であり、第二電流は、直流電流、交流電流、または、ノイズ電流であり、第二電流の第二振幅は、第一振幅よりも大きい。 Also, for example, the first current is an AC current having a first amplitude, the second current is a DC current, an AC current, or a noise current, and the second amplitude of the second current is larger than the first amplitude. large.
 このようなアクティブ電極は、接触インピーダンスの計測時よりも振幅の大きい電流によって、計測電極51aを介して生体に効果的に電気刺激を与えることができる。 ア ク テ ィ ブ Such an active electrode can effectively apply an electric stimulus to a living body through the measurement electrode 51a by a current having a larger amplitude than that at the time of measuring the contact impedance.
 また、例えば、第一振幅は、1μA以下である。 Also, for example, the first amplitude is 1 μA or less.
 このようなアクティブ電極は、計測電極51aの接触インピーダンスの計測時に生体に与える電気刺激を低減することができる。 ア ク テ ィ ブ Such an active electrode can reduce the electrical stimulation given to the living body when measuring the contact impedance of the measurement electrode 51a.
 また、例えば、アクティブ電極は、さらに、生体に接触する参照電極51bと、参照電極51bによって検出された第二生体信号が入力される第二増幅回路52bと、接触インピーダンスを計測するための第三電流を参照電極51bを介して生体に流すための第三電流源53bと、生体に電気刺激を与えるための第四電流を参照電極51bを介して生体に流すための第四電流源54bとを備える。参照電極51bは、第二電極の一例である。 In addition, for example, the active electrode further includes a reference electrode 51b that comes into contact with a living body, a second amplifier circuit 52b to which a second biological signal detected by the reference electrode 51b is input, and a third electrode for measuring contact impedance. A third current source 53b for flowing a current to the living body via the reference electrode 51b, and a fourth current source 54b for flowing a fourth current for applying electrical stimulation to the living body to the living body via the reference electrode 51b. Prepare. The reference electrode 51b is an example of a second electrode.
 このようなアクティブ電極は、第二生体信号を検出するための参照電極51bを介して生体に電気刺激を与えることができる。 Such an active electrode can apply an electrical stimulus to a living body via a reference electrode 51b for detecting a second biological signal.
 また、例えば、アクティブ電極は、さらに、第三電流源53bと参照電極51bとの電気的な接続をオン及びオフする第三スイッチング素子S3と、第四電流源54b及び参照電極51bの電気的な接続をオン及びオフする第四スイッチング素子S4とを備える。 Further, for example, the active electrode further includes a third switching element S3 for turning on and off an electrical connection between the third current source 53b and the reference electrode 51b, and an electrical connection between the fourth current source 54b and the reference electrode 51b. And a fourth switching element S4 for turning on and off the connection.
 このようなアクティブ電極は、参照電極51bの接触インピーダンスを計測する接触インピーダンス計測モードの動作と、参照電極51bを介して生体に電気刺激を与える電気刺激モードの動作とを選択的に行うことができる。 Such an active electrode can selectively perform operation in the contact impedance measurement mode for measuring the contact impedance of the reference electrode 51b and operation in the electric stimulation mode for applying electric stimulation to the living body via the reference electrode 51b. .
 また、例えば、第三電流は、第三振幅の交流電流であり、第四電流は、直流電流、交流電流、または、ノイズ電流であり、第四電流の第四振幅は、第三振幅より大きい。 Also, for example, the third current is an AC current having a third amplitude, the fourth current is a DC current, an AC current, or a noise current, and the fourth amplitude of the fourth current is larger than the third amplitude. .
 このようなアクティブ電極は、接触インピーダンスの計測時よりも振幅の大きい電流によって、参照電極51bを介して生体に効果的に電気刺激を与えることができる。 ア ク テ ィ ブ Such an active electrode can effectively apply an electric stimulus to a living body via the reference electrode 51b by a current having a larger amplitude than that at the time of measuring the contact impedance.
 また、例えば、第三振幅は、1μA以下である。 第三 Further, for example, the third amplitude is 1 μA or less.
 このようなアクティブ電極は、参照電極51bの接触インピーダンスの計測時に生体に与える電気刺激を低減することができる。 ア ク テ ィ ブ Such an active electrode can reduce the electrical stimulation given to the living body when measuring the contact impedance of the reference electrode 51b.
 また、例えば、第一電流源53aと第一増幅回路52aとの距離、及び、第二電流源54aと第一増幅回路52aとの距離の少なくとも一方は、5mm以下である。 Also, for example, at least one of the distance between the first current source 53a and the first amplifier circuit 52a and the distance between the second current source 54a and the first amplifier circuit 52a is 5 mm or less.
 これにより、不要ノイズの発生及び不要ノイズの飛び込みが抑制される効果が得られる。 (4) As a result, the effect of suppressing the generation of unnecessary noise and the jump of unnecessary noise can be obtained.
 また、例えば、第二電流源54aは、電流出力型DA変換器によって構成される。 Also, for example, the second current source 54a is configured by a current output type DA converter.
 このようなアクティブ電極は、電気刺激用の電流の電流値を制御することができる。 Such an active electrode can control the current value of the electric stimulation current.
 また、例えば、第一電流源53a及び第二電流源54aは、単一の電流源回路によって実現される。 Further, for example, the first current source 53a and the second current source 54a are realized by a single current source circuit.
 このようなアクティブ電極は、単一の電流源回路を第一電流源53a及び第二電流源54aとして使用することができる。 With such an active electrode, a single current source circuit can be used as the first current source 53a and the second current source 54a.
 また、例えば、アクティブ電極は、さらに、加速度センサ56を備える。 Further, for example, the active electrode further includes an acceleration sensor 56.
 このようなアクティブ電極は、加速度センサの出力信号に基づいて被験者5の動きを計測することができる。 ア ク テ ィ ブ Such an active electrode can measure the movement of the subject 5 based on the output signal of the acceleration sensor.
 また、脳波計10は、上記アクティブ電極と、生体に装着される、計測電極51aが設けられた装着部40とを備える。 The electroencephalograph 10 also includes the active electrode described above and a mounting part 40 provided on the living body and provided with the measurement electrode 51a.
 このような脳波計10は、第一生体信号を検出するための計測電極51aを介して生体に電気刺激を与えることができる。 Such an electroencephalograph 10 can give an electric stimulus to the living body via the measurement electrode 51a for detecting the first biological signal.
 また、例えば、脳波計10は、さらに、加速度センサ56を備える。 脳 In addition, for example, the electroencephalograph 10 further includes an acceleration sensor 56.
 このような脳波計10は、加速度センサの出力信号に基づいて被験者5の動きを計測することができる。 Such an electroencephalograph 10 can measure the movement of the subject 5 based on the output signal of the acceleration sensor.
 また、例えば、加速度センサ56は、上記アクティブ電極に備えられる。 Further, for example, the acceleration sensor 56 is provided on the active electrode.
 このような脳波計10は、アクティブ電極に備えられた加速度センサの出力信号に基づいて被験者5の動きを計測することができる。 Such an electroencephalograph 10 can measure the movement of the subject 5 based on the output signal of the acceleration sensor provided on the active electrode.
 また、アクティブ電極を制御する制御装置55は、第一電流源53a及び第二電流源54aを選択的に計測電極51aに電気的に接続する制御部551を備える。 The control device 55 that controls the active electrode includes a control unit 551 that selectively connects the first current source 53a and the second current source 54a to the measurement electrode 51a.
 このような制御装置55は、計測電極51aの接触インピーダンスを計測する接触インピーダンス計測モードの動作と、計測電極51aを介して生体に電気刺激を与える電気刺激モードの動作とを選択的に行うことができる。 The control device 55 can selectively perform operation in the contact impedance measurement mode for measuring the contact impedance of the measurement electrode 51a and operation in the electric stimulation mode for applying electric stimulation to the living body via the measurement electrode 51a. it can.
 また、例えば、制御装置55は、さらに、加速度センサ56を備える。制御部551は、加速度センサ56の出力信号を用いて被験者5の動きを計測する動き計測モード、第一電流を用いて接触インピーダンスを計測しながら第一生体信号を計測するための接触インピーダンス計測モード、及び、第二電流を用いて被験者5に前記電気刺激を与える電気刺激モードを有する。電気刺激モードにおける第二電流は、動き計測モードにおいて計測された被験者5の動き、及び、接触インピーダンス計測モードにおいて計測された第一生体信号の少なくとも一方に基づいて制御される。 制 御 Furthermore, for example, the control device 55 further includes an acceleration sensor 56. The control unit 551 is a motion measurement mode for measuring the motion of the subject 5 using the output signal of the acceleration sensor 56, and a contact impedance measurement mode for measuring the first biological signal while measuring the contact impedance using the first current. And an electrical stimulation mode for applying the electrical stimulation to the subject 5 using the second current. The second current in the electrical stimulation mode is controlled based on at least one of the movement of the subject 5 measured in the movement measurement mode and the first biological signal measured in the contact impedance measurement mode.
 このような制御装置55は、電気刺激モードにおける第二電流を、被験者5の動き、及び、第一生体信号の少なくとも一方に基づいて制御することができる。 制 御 Such a control device 55 can control the second current in the electric stimulation mode based on at least one of the movement of the subject 5 and the first biological signal.
 また、アクティブ電極の制御方法は、第一電流源53a及び第二電流源54aを選択的に計測電極51aに電気的に接続する。 は In addition, the control method of the active electrode selectively connects the first current source 53a and the second current source 54a to the measurement electrode 51a.
 このような制御方法は、計測電極51aの接触インピーダンスを計測する接触インピーダンス計測モードの動作と、計測電極51aを介して生体に電気刺激を与える電気刺激モードの動作とを選択的に行うことができる。 Such a control method can selectively perform operation in the contact impedance measurement mode for measuring the contact impedance of the measurement electrode 51a and operation in the electric stimulation mode for applying electric stimulation to the living body via the measurement electrode 51a. .
 また、例えば、制御方法は、さらに、アクティブ電極が備える加速度センサ56の出力信号を用いて被験者5の動きを計測する動き計測モード、第一電流を用いて接触インピーダンスを計測しながら第一生体信号を計測するための接触インピーダンス計測モード、及び、第二電流を用いて被験者5に電気刺激を与える電気刺激モードを有する。電気刺激モードにおける第二電流は、動き計測モードにおいて計測された被験者5の動き、及び、接触インピーダンス計測モードにおいて計測された第一生体信号の少なくとも一方に基づいて制御される。 In addition, for example, the control method further includes a motion measurement mode for measuring the motion of the subject 5 using an output signal of the acceleration sensor 56 provided in the active electrode, and a first biological signal while measuring contact impedance using the first current. And an electrical stimulation mode for applying electrical stimulation to the subject 5 using the second current. The second current in the electrical stimulation mode is controlled based on at least one of the movement of the subject 5 measured in the movement measurement mode and the first biological signal measured in the contact impedance measurement mode.
 このような制御方法は、電気刺激モードにおける第二電流を、被験者5の動き、及び、第一生体信号の少なくとも一方に基づいて制御することができる。 According to such a control method, the second current in the electric stimulation mode can be controlled based on at least one of the movement of the subject 5 and the first biological signal.
 (その他の実施の形態)
 以上、実施の形態について説明したが、本発明は、このような実施の形態に限定されるものではない。
(Other embodiments)
The embodiment has been described above, but the present invention is not limited to such an embodiment.
 例えば、上記実施の形態では、耳掛け型の脳波計について説明されたが、本発明は、被験者の頭部に装着されるヘッドセット型の脳波計などその他の態様の脳波計であってもよい。また、本発明は、脳波計以外の生体信号計測装置として実現されてもよく、例えば、体、手、足等に貼り付けた電極から心電図信号(Electrocardiogram(ECG)信号)を検出する心電計として実現されてもよい。 For example, in the above embodiment, the ear-hung type electroencephalograph was described, but the present invention may be another type of electroencephalograph such as a headset type electroencephalograph worn on the head of the subject. . Further, the present invention may be realized as a biological signal measuring device other than an electroencephalograph, for example, an electrocardiograph for detecting an electrocardiogram signal (Electrocardiogram (ECG) signal) from an electrode attached to a body, a hand, a foot or the like. It may be realized as.
 また、上記実施の形態で説明された回路構成は、一例であり、本発明は上記回路構成に限定されない。つまり、上記回路構成と同様に、本発明の特徴的な機能を実現できる回路も本発明に含まれる。例えば、上記回路構成と同様の機能を実現できる範囲で、ある素子に対して、直列又は並列に、スイッチング素子(トランジスタ)、抵抗素子、または容量素子等の素子が接続されたものも本発明に含まれる。 The circuit configuration described in the above embodiment is an example, and the present invention is not limited to the above circuit configuration. That is, similarly to the above circuit configuration, a circuit capable of realizing the characteristic function of the present invention is also included in the present invention. For example, an element in which an element such as a switching element (transistor), a resistor, or a capacitor is connected to a certain element in series or in parallel to the extent that a function similar to the above circuit configuration can be realized is also included in the present invention. included.
 また、上記実施の形態において、特定の処理部が実行する処理を別の処理部が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。 In addition, in the above embodiment, another processing unit may execute the process executed by the specific processing unit. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
 また、上記実施の形態において、各構成要素は、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In addition, in the above embodiment, each component may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 また、各構成要素は、ハードウェアによって実現されてもよい。例えば、制御部などの構成要素は、回路(または集積回路)でもよい。これらの回路は、全体として1つの回路を構成してもよいし、それぞれ別々の回路でもよい。また、これらの回路は、それぞれ、汎用的な回路でもよいし、専用の回路でもよい。 各 Also, each component may be realized by hardware. For example, a component such as a control unit may be a circuit (or an integrated circuit). These circuits may constitute one circuit as a whole, or may be separate circuits. Each of these circuits may be a general-purpose circuit or a dedicated circuit.
 また、本発明の全般的または具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよい。また、システム、装置、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 The general or specific aspects of the present invention may be realized by a recording medium such as a system, an apparatus, a method, an integrated circuit, a computer program, or a computer-readable CD-ROM. Further, the present invention may be realized by any combination of a system, an apparatus, a method, an integrated circuit, a computer program, and a recording medium.
 例えば、本発明は、アクティブ電極の制御方法として実現されてもよいし、このような制御方法をコンピュータに実行させるためのプログラムとして実現されてもよい。また、本発明は、このようなプログラムが記録されたコンピュータ読み取り可能な非一時的な記録媒体として実現されてもよい。 For example, the present invention may be realized as a control method of an active electrode, or may be realized as a program for causing a computer to execute such a control method. Further, the present invention may be realized as a non-transitory computer-readable recording medium on which such a program is recorded.
 また、生体信号計測システムは、単一の装置として実現されてもよいし、複数の装置によって実現されてもよい。生体信号計測システムが複数の装置によって実現される場合、上記実施の形態で説明された生体信号計測システムが備える構成要素は、複数の装置にどのように振り分けられてもよい。 The biological signal measurement system may be realized as a single device, or may be realized by a plurality of devices. When the biological signal measurement system is realized by a plurality of devices, the components included in the biological signal measurement system described in the above embodiment may be distributed to the plurality of devices in any manner.
 その他、本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。 In addition, one or more aspects in which various modifications conceived by those skilled in the art are applied to the present embodiment, and a form constructed by combining constituent elements in different embodiments are also possible unless departing from the spirit of the present invention. May be included in the range.
 5 被験者(生体)
 10 脳波計
 40 装着部
 51a 計測電極(第一電極)
 51b 参照電極(第二電極)
 52a 第一増幅回路
 52b 第二増幅回路
 53a 第一電流源
 53b 第三電流源
 54a 第二電流源
 54b 第四電流源
 551 制御部
 56 加速度センサ
 S1 第一スイッチング素子
 S2 第二スイッチング素子
 S3 第三スイッチング素子
 S4 第四スイッチング素子
5 subjects (living body)
10 EEG 40 Mounting part 51a Measurement electrode (first electrode)
51b Reference electrode (second electrode)
52a first amplifier circuit 52b second amplifier circuit 53a first current source 53b third current source 54a second current source 54b fourth current source 551 control unit 56 acceleration sensor S1 first switching element S2 second switching element S3 third switching Element S4 Fourth switching element

Claims (20)

  1.  生体に接触する第一電極と、
     前記第一電極によって検出された第一生体信号が入力される第一増幅回路と、
     接触インピーダンスを計測するための第一電流を前記第一電極を介して前記生体に流すための第一電流源と、
     前記生体に電気刺激を与えるための第二電流を前記第一電極を介して前記生体に流すための第二電流源とを備える
     アクティブ電極。
    A first electrode in contact with the living body,
    A first amplification circuit to which a first biological signal detected by the first electrode is input,
    A first current source for flowing a first current for measuring contact impedance to the living body through the first electrode,
    A second current source for flowing a second current for applying electrical stimulation to the living body to the living body via the first electrode.
  2.  さらに、
     前記第一電流源と前記第一電極との電気的な接続をオン及びオフする第一スイッチング素子と、
     前記第二電流源と前記第一電極との電気的な接続をオン及びオフする第二スイッチング素子とを備える
     請求項1に記載のアクティブ電極。
    further,
    A first switching element for turning on and off the electrical connection between the first current source and the first electrode,
    The active electrode according to claim 1, further comprising: a second switching element that turns on and off an electrical connection between the second current source and the first electrode.
  3.  前記第一電流は、第一振幅の交流電流であり、
     前記第二電流は、直流電流、交流電流、または、ノイズ電流であり、
     前記第二電流の第二振幅は、前記第一振幅よりも大きい
     請求項1または2に記載のアクティブ電極。
    The first current is an alternating current having a first amplitude,
    The second current is a direct current, an alternating current, or a noise current,
    The active electrode according to claim 1, wherein the second amplitude of the second current is larger than the first amplitude.
  4.  前記第一振幅は、1μA以下である
     請求項3に記載のアクティブ電極。
    The active electrode according to claim 3, wherein the first amplitude is 1 μA or less.
  5.  さらに、
     前記生体に接触する第二電極と、
     前記第二電極によって検出された第二生体信号が入力される第二増幅回路と、
     接触インピーダンスを計測するための第三電流を前記第二電極を介して前記生体に流すための第三電流源と、
     前記生体に電気刺激を与えるための第四電流を前記第二電極を介して前記生体に流すための第四電流源とを備える
     請求項1~4のいずれか1項に記載のアクティブ電極。
    further,
    A second electrode contacting the living body,
    A second amplification circuit to which a second biological signal detected by the second electrode is input,
    A third current source for flowing a third current for measuring contact impedance to the living body through the second electrode,
    The active electrode according to any one of claims 1 to 4, further comprising: a fourth current source configured to supply a fourth current for applying electrical stimulation to the living body to the living body via the second electrode.
  6.  さらに、
     前記第三電流源と前記第二電極との電気的な接続をオン及びオフする第三スイッチング素子と、
     前記第四電流源と前記第二電極との電気的な接続をオン及びオフする第四スイッチング素子とを備える
     請求項5に記載のアクティブ電極。
    further,
    A third switching element for turning on and off the electrical connection between the third current source and the second electrode,
    The active electrode according to claim 5, further comprising: a fourth switching element that turns on and off an electrical connection between the fourth current source and the second electrode.
  7.  前記第三電流は、第三振幅の交流電流であり、
     前記第四電流は、直流電流、交流電流、または、ノイズ電流であり、
     前記第四電流の第四振幅は、前記第三振幅より大きい
     請求項5または6に記載のアクティブ電極。
    The third current is an alternating current having a third amplitude,
    The fourth current is a direct current, an alternating current, or a noise current,
    The active electrode according to claim 5, wherein a fourth amplitude of the fourth current is larger than the third amplitude.
  8.  前記第三振幅は、1μA以下である
     請求項7に記載のアクティブ電極。
    The active electrode according to claim 7, wherein the third amplitude is 1 μA or less.
  9.  前記第一電流源と前記第一増幅回路との距離、及び、前記第二電流源と前記第一増幅回路との距離の少なくとも一方は、5mm以下である
     請求項1~8のいずれか1項に記載のアクティブ電極。
    9. The device according to claim 1, wherein at least one of a distance between the first current source and the first amplifier circuit and a distance between the second current source and the first amplifier circuit is 5 mm or less. An active electrode according to claim 1.
  10.  前記第二電流源は、電流出力型DA(Digital to Analog)変換器によって構成される
     請求項1~9のいずれか1項に記載のアクティブ電極。
    The active electrode according to any one of claims 1 to 9, wherein the second current source is configured by a current output type DA (Digital to Analog) converter.
  11.  前記第一電流源及び前記第二電流源は、単一の電流源回路によって実現される
     請求項1~9のいずれか1項に記載のアクティブ電極。
    The active electrode according to any one of claims 1 to 9, wherein the first current source and the second current source are realized by a single current source circuit.
  12.  さらに、加速度センサを備える
     請求項1~11のいずれか1項に記載のアクティブ電極。
    The active electrode according to any one of claims 1 to 11, further comprising an acceleration sensor.
  13.  請求項1~11のいずれか1項に記載のアクティブ電極と、
     前記生体に装着される、前記第一電極が設けられた装着部とを備える
     脳波計。
    An active electrode according to any one of claims 1 to 11,
    An electroencephalograph, comprising: a mounting portion provided with the first electrode, which is mounted on the living body.
  14.  さらに、加速度センサを備える
     請求項13に記載の脳波計。
    The electroencephalograph according to claim 13, further comprising an acceleration sensor.
  15.  前記加速度センサは、前記アクティブ電極によって備えられる
     請求項14に記載の脳波計。
    The electroencephalograph according to claim 14, wherein the acceleration sensor is provided by the active electrode.
  16.  アクティブ電極を制御する制御装置であって、
     前記アクティブ電極は、
     生体に接触する第一電極と、
     前記第一電極によって検出された第一生体信号が入力される第一増幅回路と、
     接触インピーダンスを計測するための第一電流を前記第一電極を介して前記生体に流すための第一電流源と、
     前記生体に電気刺激を与えるための第二電流を前記第一電極を介して前記生体に流すための第二電流源とを備え、
     前記制御装置は、前記第一電流源及び前記第二電流源を選択的に前記第一電極に電気的に接続する制御部を備える
     制御装置。
    A control device for controlling an active electrode,
    The active electrode is
    A first electrode in contact with the living body,
    A first amplification circuit to which a first biological signal detected by the first electrode is input,
    A first current source for flowing a first current for measuring contact impedance to the living body through the first electrode,
    A second current source for flowing a second current for applying electrical stimulation to the living body to the living body via the first electrode,
    The control device includes a control unit that selectively connects the first current source and the second current source to the first electrode.
  17.  前記制御装置は、さらに、加速度センサを備え、
     前記制御部は、前記加速度センサの出力信号を用いて前記生体の動きを計測する動き計測モード、前記第一電流を用いて前記接触インピーダンスを計測しながら前記第一生体信号を計測するための接触インピーダンス計測モード、及び、前記第二電流を用いて前記生体に前記電気刺激を与える電気刺激モードを有し、
     前記電気刺激モードにおける前記第二電流は、前記動き計測モードにおいて計測された前記生体の動き、及び、前記接触インピーダンス計測モードにおいて計測された前記第一生体信号の少なくとも一方に基づいて制御される
     請求項16に記載の制御装置。
    The control device further includes an acceleration sensor,
    The control unit is a motion measurement mode for measuring the motion of the living body using the output signal of the acceleration sensor, a contact for measuring the first biological signal while measuring the contact impedance using the first current Impedance measurement mode, and has an electrical stimulation mode to give the electrical stimulation to the living body using the second current,
    The second current in the electrical stimulation mode is controlled based on at least one of the movement of the living body measured in the movement measurement mode and the first biological signal measured in the contact impedance measurement mode. Item 17. The control device according to Item 16.
  18.  アクティブ電極の制御方法であって、
     前記アクティブ電極は、
     生体に接触する第一電極と、
     前記第一電極によって検出された第一生体信号が入力される第一増幅回路と、
     接触インピーダンスを計測するための第一電流を前記第一電極を介して前記生体に流すための第一電流源と、
     前記生体に電気刺激を与えるための第二電流を前記第一電極を介して前記生体に流すための第二電流源とを備え、
     前記制御方法は、前記第一電流源及び前記第二電流源を選択的に前記第一電極に電気的に接続する
     制御方法。
    A method for controlling an active electrode, comprising:
    The active electrode is
    A first electrode in contact with the living body,
    A first amplification circuit to which a first biological signal detected by the first electrode is input,
    A first current source for flowing a first current for measuring contact impedance to the living body through the first electrode,
    A second current source for flowing a second current for applying electrical stimulation to the living body to the living body via the first electrode,
    The control method is a control method for selectively electrically connecting the first current source and the second current source to the first electrode.
  19.  前記制御方法は、さらに、前記アクティブ電極が備える加速度センサの出力信号を用いて前記生体の動きを計測する動き計測モード、前記第一電流を用いて前記接触インピーダンスを計測しながら前記第一生体信号を計測するための接触インピーダンス計測モード、及び、前記第二電流を用いて前記生体に前記電気刺激を与える電気刺激モードを有し、
     前記電気刺激モードにおける前記第二電流は、前記動き計測モードにおいて計測された前記生体の動き、及び、前記接触インピーダンス計測モードにおいて計測された前記第一生体信号の少なくとも一方に基づいて制御される
     請求項18に記載の制御方法。
    The control method further includes a motion measurement mode for measuring the motion of the living body using an output signal of an acceleration sensor included in the active electrode, and the first biological signal while measuring the contact impedance using the first current. A contact impedance measurement mode for measuring the, and an electrical stimulation mode for applying the electrical stimulation to the living body using the second current,
    The second current in the electrical stimulation mode is controlled based on at least one of the movement of the living body measured in the movement measurement mode and the first biological signal measured in the contact impedance measurement mode. Item 19. The control method according to Item 18.
  20.  請求項18または19に記載の制御方法をコンピュータに実行させるためのプログラム。 A program for causing a computer to execute the control method according to claim 18 or 19.
PCT/JP2019/028742 2018-08-02 2019-07-23 Active electrode, electroencephalograph, control device, and control method WO2020026880A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020533447A JPWO2020026880A1 (en) 2018-08-02 2019-07-23 Active electrodes, electroencephalographs, control devices, and control methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-145969 2018-08-02
JP2018145969 2018-08-02
JP2019-039709 2019-03-05
JP2019039709 2019-03-05

Publications (1)

Publication Number Publication Date
WO2020026880A1 true WO2020026880A1 (en) 2020-02-06

Family

ID=69231069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028742 WO2020026880A1 (en) 2018-08-02 2019-07-23 Active electrode, electroencephalograph, control device, and control method

Country Status (2)

Country Link
JP (1) JPWO2020026880A1 (en)
WO (1) WO2020026880A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023038029A1 (en) * 2021-09-07 2023-03-16
WO2023163543A1 (en) * 2022-02-28 2023-08-31 뉴로엔(주) Non-invasive stimulation device and method
CN116785587A (en) * 2023-06-25 2023-09-22 北京领创医谷科技发展有限责任公司 Nerve stimulation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205632A (en) * 2011-03-29 2012-10-25 Panasonic Corp Contact state detecting circuit, biological signal acquisition device, and health equipment
JP2012239696A (en) * 2011-05-20 2012-12-10 Sony Corp Brain wave activation apparatus
WO2018105447A1 (en) * 2016-12-08 2018-06-14 旭化成株式会社 Contact state estimating device, and biological signal measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205632A (en) * 2011-03-29 2012-10-25 Panasonic Corp Contact state detecting circuit, biological signal acquisition device, and health equipment
JP2012239696A (en) * 2011-05-20 2012-12-10 Sony Corp Brain wave activation apparatus
WO2018105447A1 (en) * 2016-12-08 2018-06-14 旭化成株式会社 Contact state estimating device, and biological signal measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023038029A1 (en) * 2021-09-07 2023-03-16
WO2023038029A1 (en) * 2021-09-07 2023-03-16 住友ファーマ株式会社 Brain wave measurement device
JP7429333B2 (en) 2021-09-07 2024-02-07 住友ファーマ株式会社 EEG measurement device
WO2023163543A1 (en) * 2022-02-28 2023-08-31 뉴로엔(주) Non-invasive stimulation device and method
CN116785587A (en) * 2023-06-25 2023-09-22 北京领创医谷科技发展有限责任公司 Nerve stimulation method

Also Published As

Publication number Publication date
JPWO2020026880A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
WO2020026880A1 (en) Active electrode, electroencephalograph, control device, and control method
JP4278709B2 (en) Electrode device, ECG measurement device
KR101238192B1 (en) Ear attachable sensor-set and operating method of the same
WO2014038212A1 (en) Electronic machine, information processing device, information processing method, and program
US20170095199A1 (en) Biosignal measurement, analysis and neurostimulation
US20220218280A1 (en) Biological information monitoring system
US11134898B2 (en) Electronic apparatus, information processing apparatus, information processing method, and recording medium
KR101218203B1 (en) Wearable sensor-set and operating method of the smae
US20200275856A1 (en) An intra- and circum-aural eeg brain computer interface
CN111466907A (en) Biological information measurement device and biological information measurement system
US20180139528A1 (en) Sensible Wired Earphones
US20220104769A1 (en) Biological information monitoring system
JP2010264174A (en) Surface myoelectric potential sensor
JP2019201995A (en) Electrode for acquiring biological signal and biological signal measuring system
WO2010079257A1 (en) A device, an apparatus and a method for measuring biological information
US10617309B2 (en) Electronic device, method for controlling electronic device, and recording medium
WO2019163374A1 (en) Biosignal measurement device, electroencephalograph, and control method
WO2019225244A1 (en) Biological signal acquisition electrode, biological signal acquisition electrode pair, and biological signal measurement system
JP2006506160A (en) System for bioelectrical interaction with individuals with simplified electrodes
JP2020018693A (en) Active electrode, electroencephalograph, control device, and control method
WO2019163375A1 (en) Biosignal measurement device, electroencephalograph, and control method
KR20120131390A (en) Electrode structure for biological signal
JP6846686B2 (en) Electronic devices, control methods and programs for electronic devices
JP7429333B2 (en) EEG measurement device
WO2023106160A1 (en) Biological signal detection device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843091

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843091

Country of ref document: EP

Kind code of ref document: A1