WO2020026853A1 - Non-aqueous electrolytic solution for batteries, and lithium secondary battery - Google Patents

Non-aqueous electrolytic solution for batteries, and lithium secondary battery Download PDF

Info

Publication number
WO2020026853A1
WO2020026853A1 PCT/JP2019/028479 JP2019028479W WO2020026853A1 WO 2020026853 A1 WO2020026853 A1 WO 2020026853A1 JP 2019028479 W JP2019028479 W JP 2019028479W WO 2020026853 A1 WO2020026853 A1 WO 2020026853A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
lithium
carbon atoms
battery
formula
Prior art date
Application number
PCT/JP2019/028479
Other languages
French (fr)
Japanese (ja)
Inventor
敬 菅原
藤山 聡子
仁志 大西
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2020533429A priority Critical patent/JP7264899B2/en
Publication of WO2020026853A1 publication Critical patent/WO2020026853A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a non-aqueous electrolyte for a battery and a lithium secondary battery.
  • the lithium secondary battery includes, for example, a positive electrode and a negative electrode containing a material capable of inserting and extracting lithium, and a non-aqueous electrolyte for a battery containing a lithium salt and a non-aqueous solvent.
  • a lithium metal oxide such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 is used.
  • non-aqueous electrolyte for a battery examples include a mixed solvent (non-aqueous solvent) of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate, and LiPF 6 , LiBF 4 , and LiN (SO 2 CF 3 ). 2 , a solution in which a Li electrolyte such as LiN (SO 2 CF 2 CF 3 ) 2 is mixed is used.
  • the negative electrode active material used for the negative electrode metal lithium, metal compounds capable of occluding and releasing lithium (such as simple metals, oxides, and alloys with lithium) and carbon materials are known.
  • Lithium secondary batteries employing coke, artificial graphite, and natural graphite, which can be inserted and released, have been put to practical use.
  • a nonaqueous electrolyte for a battery for example, a lithium secondary battery
  • various additives have been added to the nonaqueous electrolyte for a battery.
  • a non-aqueous electrolyte for a battery that can improve storage characteristics after charging of the battery a non-aqueous electrolyte for a battery containing at least one of lithium monofluorophosphate and lithium difluorophosphate as an additive is known. (For example, see Patent Document 1 below).
  • non-aqueous electrolyte for a battery that can improve the charge / discharge characteristics and life characteristics of the battery a non-aqueous electrolyte for a battery containing a sultone compound having a specific structure is known (for example, Patent Document 2 below) reference).
  • a non-aqueous electrolyte for a battery containing a cyclic sulfate ester compound having a specific structure is used as a non-aqueous electrolyte for a battery that can improve the capacity maintenance performance of the battery and suppress a decrease in the open-circuit voltage during charge storage of the battery.
  • a liquid is known (for example, see Patent Document 3 below).
  • Patent Document 1 Japanese Patent No. 3439085 Patent Document 2: Japanese Patent No. 4442495 Patent Document 3: Japanese Patent No. 5524347
  • an object of the present disclosure is to provide a non-aqueous electrolyte for a battery that can reduce the battery resistance after storage, and a lithium secondary battery using the non-aqueous electrolyte for a battery.
  • an electrolyte containing lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide Selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following formula (B), a compound represented by the following formula (C), and a compound represented by the following formula (D) At least one additive, Non-aqueous electrolyte for batteries containing.
  • Ra1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
  • R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represent.
  • R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, Or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms.
  • R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b) Represents In the formulas (a) and (b), * represents a bonding position.
  • the content molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.01 or more and 0.85 or less according to ⁇ 1>.
  • an electrolyte containing lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide An additive which is at least one selected from the group consisting of compounds represented by the following formula (E): Containing A nonaqueous electrolyte solution for a battery, wherein the molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.050 to 0.85.
  • R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.
  • ⁇ 5> The method according to any one of ⁇ 1> to ⁇ 4>, wherein a total concentration of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.1 mol / L or more and 3 mol / L or less.
  • ⁇ 6> The battery according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the additive is 0.001% by mass or more and 10% by mass or less based on the total amount of the nonaqueous electrolyte for a battery. For non-aqueous electrolyte.
  • ⁇ 7> a positive electrode, Lithium metal, lithium-containing alloy, metal or alloy capable of being alloyed with lithium, oxide capable of doping / dedoping lithium ion, transition metal nitride capable of doping / dedoping lithium ion, and lithium
  • ⁇ 8> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to ⁇ 7>.
  • a non-aqueous electrolyte for a battery that can reduce the battery resistance after storage, and a lithium secondary battery using the non-aqueous electrolyte for a battery are provided.
  • FIG. 1 is a schematic perspective view illustrating an example of a laminated battery, which is an example of a lithium secondary battery of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view in a thickness direction of a laminated electrode body housed in the laminated battery shown in FIG. 1.
  • 1 is a schematic cross-sectional view illustrating an example of a coin-type battery, which is another example of the lithium secondary battery of the present disclosure.
  • a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
  • the amount of each component in the composition is, if there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the plurality of substances present in the composition Means
  • non-aqueous electrolyte for a battery according to the present disclosure the non-aqueous electrolyte for a battery according to the first embodiment and the second embodiment of the present disclosure will be sequentially described.
  • Non-aqueous electrolyte for battery includes: An electrolyte comprising lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide; Selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following formula (B), a compound represented by the following formula (C), and a compound represented by the following formula (D) At least one additive, It contains.
  • Ra1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
  • R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represent.
  • R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, Or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms.
  • R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b) Represents In the formulas (a) and (b), * represents a bonding position.
  • the battery resistance after storage can be reduced. It is not clear why such an effect is exerted, but the compound represented by the formula (A), the compound represented by the formula (B), the compound represented by the formula (C), and the compound represented by the formula (C) Use of a combination of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide as an electrolyte for a nonaqueous electrolyte containing at least one additive selected from the compounds represented by D) It is considered that, by doing so, a good quality film having low resistance after storage of the battery is formed on the electrode surface.
  • the non-aqueous electrolyte of the first embodiment by using lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in combination as the electrolyte, the case where lithium hexafluorophosphate is used alone as the electrolyte is used. In comparison, it is considered that the stability of the electrolyte during storage is improved. As a result, the storage characteristics (particularly, high-temperature storage characteristics) of the battery are excellent. Specifically, the battery resistance after storage (particularly after high-temperature storage) is reduced.
  • the non-aqueous electrolyte of the first embodiment contains an electrolyte containing both lithium hexafluorophosphate (hereinafter, also referred to as LiPF 6 ) and lithium bis (fluorosulfonyl) imide (hereinafter, also referred to as LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the molar ratio of the content of LiFSI to the sum of LiPF 6 and LiFSI (hereinafter, also referred to as the molar ratio [LiFSI / (LiPF 6 + LiFSI)]) is a high-temperature storage characteristics of the battery From the viewpoint of further improving, it is preferably 0.01 or more and 0.85 or less.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.01 or more, the battery resistance after storage is further reduced.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is more preferably 0.08 or more, further preferably 0.10 or more, and still more preferably 0.1% or more. 15 or more.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.85 or less, it is advantageous in terms of electric conductivity, oxidation resistance, and the like.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] may be 0.50 or less, may be less than 0.50, or may be 0.40 or less. , 0.30 or less, or 0.20 or less.
  • the total concentration of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide is not particularly limited, but the total concentration is preferably 0.1 mol / L to 3 mol / L. And more preferably from 0.5 mol / L to 2 mol / L.
  • the electrolyte in the first embodiment may contain at least one compound other than lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide.
  • the total mass ratio of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in the electrolyte in the first embodiment is preferably 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass. %, More preferably 90 to 100% by mass.
  • the non-aqueous electrolyte for a battery according to the first embodiment includes a compound represented by the following formula (A) (hereinafter, also referred to as “additive A”) and a compound represented by the following formula (B) (hereinafter, “additive”).
  • Agent B " a compound represented by the following formula (C) (hereinafter also referred to as” additive C "), and a compound represented by the following formula (D) (hereinafter also referred to as” additive D ”)
  • the content of the additive is preferably 0.001% by mass to 10% by mass, more preferably 0.003% by mass to 5% by mass, and more preferably 0.003% by mass to 3% by mass, based on the total amount of the nonaqueous electrolyte. %, More preferably from 0.03 to 3% by mass, particularly preferably from 0.3 to 3% by mass.
  • the additive A is at least one selected from the group consisting of compounds represented by the following formula (A).
  • Ra1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
  • the “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 has a structure in which an unsubstituted hydrocarbon group having 1 to 6 carbon atoms is substituted with at least one fluorine atom.
  • the unsubstituted hydrocarbon group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl, 2-methylbutyl, 3,3-dimethylbutyl, n-pentyl, isopentyl, neopentyl, 1-methylpentyl, n-hexyl, isohexyl, sec-hexyl, tert-butyl Alkyl group such as hexyl group; vinyl group, 1-propenyl group, allyl group, 1-butenyl group
  • the “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 includes, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoro Fluoroalkyl groups such as ethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group; 2-fluoroethenyl group, 2,2-difluoro Ethenyl, 2-fluoro-2-propenyl, 3,3-difluoro-2-propenyl, 2,3-difluoro-2-propenyl, 3,3-difluoro-2-methyl-2-propenyl, 3-fluoro-2-butenyl group, perfluorovinyl group, perfluoropropenyl group, perfluoro
  • the “fluorinated hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 is preferably an alkyl group substituted with at least one fluorine atom or an alkenyl group substituted with at least one fluorine atom. Alkyl groups substituted with two fluorine atoms are more preferred.
  • the “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 may be substituted with at least one fluorine atom, and is preferably a perfluorohydrocarbon group.
  • the number of carbon atoms of the “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • the “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 represents an unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
  • the “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 may be a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group.
  • Examples of the “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 include, for example, Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, 2-methylbutyl, 1-methylpentyl, neopentyl, 1-ethylpropyl Alkyl groups such as, hexyl group, and 3,3-dimethylbutyl group; Vinyl, 1-propenyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, pentenyl, hexenyl, isopropenyl, 2-methyl-2-propenyl, 1-methyl-2 Alkenyl groups such as -propenyl group and 2-methyl-1-propenyl group; A phenyl group; And the like.
  • the “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 is preferably an alkyl group, an alkenyl group, or a phenyl group, more preferably an alkyl group or an alkenyl group, and still more preferably an alkyl group.
  • the carbon number of the “hydrocarbon group having 1 to 6 carbon atoms” represented by Ra1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • R a1 is preferably a fluorocarbon group having 1 to 6 carbon atoms, more preferably a fluoroalkyl group having 1 to 6 carbon atoms, further preferably a perfluoroalkyl group having 1 to 6 carbon atoms, and more preferably perfluoromethyl.
  • a group alias: trifluoromethyl group
  • a perfluoroethyl group alias: pentafluoroethyl group
  • a perfluoromethyl group alias: trifluoromethyl group
  • lithium trifluoromethylsulfonate or lithium pentafluoroethylsulfonate is preferable, and lithium trifluoromethylsulfonate is particularly preferable.
  • the compounds represented by the formula (A) include compounds represented by the following formulas (A-1) to (A-5) (hereinafter, compounds (A-1) to (A- 5) is also preferred.
  • the additive B is at least one selected from the group consisting of compounds represented by the following formula (B).
  • R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represent.
  • the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 represents an unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
  • the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 may be a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group.
  • the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 is preferably an alkyl group, an alkenyl group, or a phenyl group, more preferably an alkyl group or an alkenyl group, and still more preferably an alkyl group.
  • the carbon number of the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
  • Examples of the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, Alkyl groups such as pentyl group, 2-methylbutyl group, 1-methylpentyl group, neopentyl group, 1-ethylpropyl group, hexyl group and 3,3-dimethylbutyl group; vinyl group, 1-propenyl group, allyl group, -Butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group, hexenyl group, isopropenyl group, 2-methyl-2-propenyl group, 1-methyl-2-propenyl group, 2-methyl-1-propenyl group An alkenyl group; and the like.
  • fluorocarbon group having 1 to 6 carbon atoms represented by R b1
  • R a1 Specific examples and preferred embodiments of the “fluorocarbon group having 1 to 6 carbon atoms” represented by R b1 are described in the above-mentioned “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 in the formula (A). It is the same as the preferable embodiment of the "hydrocarbon group”.
  • R b1 is preferably a hydrocarbon group having 1 to 6 carbon atoms (that is, an unsubstituted hydrocarbon group having 1 to 6 carbon atoms), and particularly preferably an alkyl group having 1 to 6 carbon atoms.
  • the additive C is at least one selected from the group consisting of compounds represented by the following formula (C).
  • R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, Or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms.
  • halogen atom a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is more preferable, and a fluorine atom is preferable. Is more preferred.
  • the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a linear hydrocarbon group or a hydrocarbon group having a branched and / or cyclic structure. It may be.
  • Specific examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 in the formula (C) are the hydrocarbon groups having 1 to 6 carbon atoms represented by R b1 in the formula (B). This is the same as the specific example.
  • the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably an alkyl group, an alkenyl group or an alkynyl group, more preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. Is particularly preferred.
  • the number of carbon atoms of the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 means a hydrocarbon group having 1 to 6 carbon atoms substituted by at least one halogen atom.
  • a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is more preferable, and a fluorine atom Is more preferred.
  • the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a straight-chain halogenated hydrocarbon group, or may have a branched and / or cyclic structure. And a halogenated hydrocarbon group having the same.
  • a halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 a halogenated alkyl group, a halogenated alkenyl group, or a halogenated alkynyl group is preferable. Groups or alkenyl halide groups are more preferred, and halogenated alkyl groups are particularly preferred.
  • the number of carbon atoms of the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a straight-chain hydrocarbon oxy group or a hydrocarbon having a branched and / or cyclic structure. It may be a hydrogenoxy group.
  • the hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably an alkoxy group, an alkenyloxy group, or an alkynyloxy group, and more preferably an alkoxy group or an alkenyloxy group.
  • an alkoxy group is particularly preferred.
  • the number of carbon atoms of the hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
  • the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 means a hydrocarbon oxy group having 1 to 6 carbon atoms substituted by at least one halogen atom.
  • a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is more preferable, and fluorine Atoms are more preferred.
  • the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a straight-chain halogenated hydrocarbon oxy group, or may be a branched and / or cyclic ring. It may be a halogenated hydrocarbon oxy group having a structure.
  • the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably a halogenated alkoxy group, a halogenated alkenyloxy group, or a halogenated alkynyloxy group, A halogenated alkoxy group or a halogenated alkenyloxy group is more preferable, and a halogenated alkoxy group is particularly preferable.
  • the number of carbon atoms of the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1. .
  • R c1 to R c4 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a vinyl group, an ethynyl group, an allyl group, a trifluoromethyl group, or a methoxy group.
  • a hydrogen atom is particularly preferable.
  • Specific examples of the compound represented by the formula (C) include: Sulfobenzoic anhydride, Fluorosulfobenzoic anhydride, Chlorobenzoic anhydride, Difluorosulfobenzoic anhydride, Dichlorosulfobenzoic anhydride, Trifluorosulfobenzoic anhydride, Tetrafluorosulfobenzoic anhydride, Methylsulfobenzoic anhydride, Dimethylsulfobenzoic anhydride, Trimethylsulfobenzoic anhydride, Ethylsulfobenzoic anhydride, Propylsulfobenzoic anhydride, Vinylsulfobenzoic anhydride, Ethynyl sulfobenzoic anhydride, Allyl sulfobenzoic anhydride, (Trifluoromethyl) sulfobenzoic anhydride, Di (trifluoro) (methyl) sulfo
  • the additive D is at least one selected from the group consisting of compounds represented by the following formula (D).
  • R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b) Represents In the formulas (a) and (b), * represents a bonding position.
  • the hydrocarbon group having 1 to 6 carbon atoms represented by R d21 to R d24 is preferably an alkyl group, an alkenyl group or an alkynyl group, more preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. Is particularly preferred.
  • the number of carbon atoms of the hydrocarbon group having 1 to 6 carbon atoms represented by R d21 to R d24 is preferably 1 or 2, and particularly preferably 1.
  • the compound represented by the formula (D) include compounds represented by the following formulas (D2-1) to (D2-4) (hereinafter, compounds (D2-1) to (D2), respectively) -4)), but the compound represented by the formula (D) is not limited to these specific examples. Among these, compounds (D2-1) to (D2-3) are particularly preferred.
  • the non-aqueous electrolyte generally contains a non-aqueous solvent.
  • the non-aqueous solvent contained in the non-aqueous electrolyte may be only one kind or two or more kinds.
  • Various known nonaqueous solvents can be appropriately selected.
  • the non-aqueous solvent for example, the non-aqueous solvents described in paragraphs 0069 to 0087 of JP-A-2017-45723 can be used.
  • the non-aqueous solvent preferably contains a cyclic carbonate compound and a chain carbonate compound.
  • each of the cyclic carbonate compound and the chain carbonate compound contained in the non-aqueous solvent may be only one kind or two or more kinds.
  • cyclic carbonate compound examples include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and the like. Of these, ethylene carbonate and propylene carbonate, which have a high dielectric constant, are preferred. In the case of a battery using a negative electrode active material containing graphite, the non-aqueous solvent more preferably contains ethylene carbonate.
  • chain carbonate compound dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, ethyl pentyl Examples thereof include carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, and dioctyl carbonate.
  • a cyclic carbonate and a chain carbonate specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate, propylene carbonate, and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and diethyl carbonate, ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and propy
  • the mixing ratio of the cyclic carbonate compound and the chain carbonate compound is represented by mass ratio, and the ratio of the cyclic carbonate compound to the chain carbonate compound is, for example, 5:95 to 80:20, preferably 10:90 to 70:30, and more preferably. Is from 15:85 to 55:45.
  • the ratio of the cyclic carbonate compound to the chain carbonate compound is, for example, 5:95 to 80:20, preferably 10:90 to 70:30, and more preferably. Is from 15:85 to 55:45.
  • the non-aqueous solvent may contain other compounds other than the cyclic carbonate compound and the chain carbonate compound.
  • the other compound contained in the non-aqueous solvent may be only one kind or two or more kinds.
  • Other compounds include a cyclic carboxylate compound (eg, ⁇ -butyrolactone), a cyclic sulfone compound, a cyclic ether compound, a linear carboxylate compound, a linear ether compound, a linear phosphate ester compound, an amide compound, and a linear carbamate.
  • Compounds, cyclic amide compounds, cyclic urea compounds, boron compounds, polyethylene glycol derivatives, and the like the description in paragraphs 0069 to 0087 of JP-A-2017-45723 can be appropriately referred to.
  • the proportion of the cyclic carbonate compound and the chain carbonate compound in the nonaqueous solvent is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
  • the proportion of the cyclic carbonate compound and the chain carbonate compound in the nonaqueous solvent may be 100% by mass.
  • the proportion of the non-aqueous solvent in the non-aqueous electrolyte is preferably at least 60% by mass, more preferably at least 70% by mass.
  • the upper limit of the proportion of the nonaqueous solvent in the nonaqueous electrolyte depends on the content of other components (additives, electrolytes, etc.), the upper limit is, for example, 99% by mass, and preferably 97% by mass. And more preferably 90% by mass.
  • the non-aqueous electrolyte of the first embodiment is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, It can also be used as an electrolyte for multilayer capacitors and aluminum electrolytic capacitors.
  • Non-aqueous electrolyte for battery (second embodiment)
  • the non-aqueous electrolyte for a battery according to the second embodiment of the present disclosure (hereinafter, also simply referred to as “non-aqueous electrolyte of the second embodiment”) is An electrolyte comprising lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide; And at least one additive selected from the group consisting of compounds represented by the following formula (E).
  • R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.
  • the battery resistance after storage can be reduced.
  • a non-aqueous electrolytic solution containing at least one additive selected from the group consisting of the compounds represented by the above formula (E), as an electrolyte It is considered that by using a combination of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide, a good quality film having low resistance after storage of the battery is formed on the electrode surface.
  • the non-aqueous electrolyte of the second embodiment by using lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in combination as the electrolyte, the case where lithium hexafluorophosphate is used alone as the electrolyte is used. In comparison, it is considered that the stability of the electrolyte during storage is improved. As a result, the storage characteristics (particularly, high-temperature storage characteristics) of the battery are excellent.
  • the non-aqueous electrolyte of the second embodiment contains an electrolyte containing both lithium hexafluorophosphate (hereinafter also referred to as LiPF 6 ) and lithium bis (fluorosulfonyl) imide (hereinafter also referred to as LiFSI).
  • LiPF 6 lithium hexafluorophosphate
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the molar ratio of the content of LiFSI to the sum of LiPF 6 and LiFSI (hereinafter, also referred to as the molar ratio [LiFSI / (LiPF 6 + LiFSI)]) is 0.050 0. 85 or less.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.050 or more, the battery resistance after storage is reduced.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is preferably 0.080 or more, more preferably 0.10 or more, and still more preferably 0.15 or more. That is all.
  • the fact that the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.85 or less is advantageous in terms of electrical conductivity, oxidation resistance, and the like.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] may be 0.50 or less, may be less than 0.50, or may be 0.40 or less. , May be 0.30 or less, or may be 0.20 or less.
  • the total concentration of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide is not particularly limited, but the total concentration is preferably 0.1 mol / L to 3 mol / L. And more preferably from 0.5 mol / L to 2 mol / L.
  • the electrolyte in the nonaqueous electrolyte of the second embodiment may contain at least one compound other than lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide.
  • Examples of other compounds that can be included in the electrolyte according to the second embodiment are the same as the examples of other compounds that can be included in the electrolyte according to the first embodiment.
  • the total mass ratio of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in the electrolyte in the second embodiment is preferably 50% by mass to 100% by mass, and more preferably 80% by mass to 100% by mass. %, More preferably 90 to 100% by mass.
  • the non-aqueous electrolyte solution of the second embodiment contains at least one additive selected from the group consisting of compounds represented by the following formula (E) (hereinafter, also referred to as “additive E”).
  • the content of the above-mentioned additive E is preferably 0.001% by mass to 10% by mass, more preferably 0.003% by mass to 5% by mass, and more preferably 0.003% by mass to the total amount of the nonaqueous electrolyte.
  • the content is more preferably 3% by mass, more preferably 0.03% by mass to 3% by mass, and particularly preferably 0.1% to 3% by mass.
  • the additive E is at least one selected from the group consisting of compounds represented by the following formula (E).
  • R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.
  • the hydrocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably an alkyl group, an alkenyl group, or an alkynyl group, more preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. Is particularly preferred.
  • the number of carbon atoms of the hydrocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably 1 or 2, and particularly preferably 1.
  • the fluorocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably an alkyl fluoride group, an alkenyl fluoride group, or an alkynyl fluoride group. Groups or alkenyl fluoride groups are more preferred, and fluorinated alkyl groups are particularly preferred.
  • the number of carbon atoms of the fluorocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably 1 or 2, and particularly preferably 1.
  • R 11 to R 14 are each independently preferably a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a trifluoromethyl group, or a pentafluoroethyl group, more preferably a hydrogen atom or a methyl group.
  • a hydrogen atom is particularly preferred.
  • compound represented by the formula (E) include compounds represented by the following formulas (E-1) to (E-21) (hereinafter, compounds (E-1) to (E), respectively) -21)), but the compound represented by the formula (E) is not limited to these specific examples.
  • compound (E-1) that is, 1,3-propene sultone; hereinafter, also referred to as “PRS” is particularly preferred.
  • the non-aqueous electrolyte of the second embodiment generally contains a non-aqueous solvent.
  • Preferred aspects of the non-aqueous solvent contained in the non-aqueous electrolyte of the second embodiment are the same as preferred aspects of the non-aqueous solvent contained in the non-aqueous electrolyte of the first embodiment.
  • the non-aqueous electrolyte of the second embodiment is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, It can also be used as an electrolyte for multilayer capacitors and aluminum electrolytic capacitors.
  • the lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolyte of the present disclosure (that is, the non-aqueous electrolyte of the first embodiment or the non-aqueous electrolyte of the second embodiment described above. The same applies hereinafter. ).
  • the negative electrode may include a negative electrode active material and a negative electrode current collector.
  • metallic lithium metallic lithium, a lithium-containing alloy, a metal or alloy capable of being alloyed with lithium, an oxide capable of doping / undoping lithium ions, and capable of doping / dedoping lithium ions
  • At least one selected from the group consisting of a transition metal nitride and a carbon material capable of doping / dedoping lithium ions may be used alone, or a mixture containing two or more thereof may be used. Good) can be used.
  • Examples of the metal or alloy that can be alloyed with lithium (or lithium ion) include silicon, a silicon alloy, tin, and a tin alloy. Further, lithium titanate may be used. Among these, carbon materials capable of doping / dedoping lithium ions are preferable. Examples of such a carbon material include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), and amorphous carbon materials. The form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or lower, mesophase pitch carbon fiber (MCF), and the like.
  • the graphite material examples include natural graphite and artificial graphite. As artificial graphite, graphitized MCMB, graphitized MCF and the like are used. As the graphite material, a material containing boron or the like can be used. As the graphite material, a material coated with a metal such as gold, platinum, silver, copper, tin, etc., a material coated with amorphous carbon, or a mixture of amorphous carbon and graphite can also be used.
  • carbon materials may be used alone or in combination of two or more.
  • a carbon material having a plane distance d (002) of (002) plane measured by X-ray analysis of 0.340 nm or less is particularly preferable.
  • graphite having a true density of 1.70 g / cm 3 or more, or a highly crystalline carbon material having properties close thereto is also preferable. The use of such a carbon material can further increase the energy density of the battery.
  • the material of the negative electrode current collector in the negative electrode is not particularly limited, and any known material can be used.
  • Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among them, copper is particularly preferable from the viewpoint of ease of processing.
  • the positive electrode may include a positive electrode active material and a positive electrode current collector.
  • a composite oxide composed of lithium and a transition metal is particularly preferable.
  • the negative electrode is lithium metal or a lithium alloy
  • a carbon material can be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • One type of the positive electrode active material may be used, or two or more types may be mixed and used.
  • the positive electrode active material has insufficient conductivity, the positive electrode can be used together with a conductive auxiliary to form a positive electrode.
  • the conductive auxiliary agent include carbon materials such as carbon black, amorphous whiskers, and graphite.
  • the material of the positive electrode current collector in the positive electrode is not particularly limited, and any known material can be used.
  • Specific examples of the positive electrode current collector include, for example, metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper;
  • the lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
  • the separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
  • a porous film a microporous polymer film is suitably used, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester, and the like.
  • a porous polyolefin is preferable, and specific examples thereof include a porous polyethylene film, a porous polypropylene film, and a multilayer film of a porous polyethylene film and a polypropylene film.
  • Another resin having excellent thermal stability may be coated on the porous polyolefin film.
  • the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swelled with an electrolytic solution, and the like.
  • the non-aqueous electrolyte of the present disclosure may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
  • the lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a laminate shape, a film shape, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
  • FIG. 1 is a schematic perspective view illustrating an example of a laminated battery that is an example of the lithium secondary battery of the present disclosure.
  • FIG. 2 is a diagram illustrating a thickness of a laminated electrode body housed in the laminated battery illustrated in FIG. It is a schematic sectional drawing of a direction.
  • the laminated battery shown in FIG. 1 contains a non-aqueous electrolyte (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1), and the peripheral edge is sealed. And a laminate exterior body 1 the inside of which is sealed.
  • the laminate case 1 for example, a laminate case made of aluminum is used.
  • the laminated electrode body accommodated in the laminate exterior body 1 includes a laminated body in which a positive electrode plate 5 and a negative electrode plate 6 are alternately laminated with a separator 7 interposed therebetween. And a separator 8 surrounding the periphery.
  • the non-aqueous electrolyte of the present disclosure is impregnated in the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8.
  • Each of the plurality of positive plates 5 in the stacked electrode body is electrically connected to the positive terminal 2 via a positive tab (not shown). It protrudes outward from the peripheral end (FIG. 1).
  • the portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate exterior body 1 is sealed by an insulating seal 4.
  • each of the plurality of negative electrodes 6 in the stacked electrode body is electrically connected to the negative electrode terminal 3 via a negative electrode tab (not shown). It protrudes outward from the peripheral end of the body 1 (FIG. 1). The portion where the negative electrode terminal 3 protrudes at the peripheral end of the laminate exterior body 1 is sealed with an insulating seal 4.
  • the number of the positive electrode plates 5 is five and the number of the negative electrode plates 6 is six.
  • the outer layers are all laminated so as to be the negative electrode plate 6.
  • the number of positive electrodes, the number of negative electrodes, and the arrangement in the laminated battery are not limited to this example, and it goes without saying that various changes may be made.
  • FIG. 3 is a schematic perspective view illustrating an example of a coin-type battery which is another example of the lithium secondary battery of the present disclosure.
  • the disc-shaped negative electrode 12, the separator 15 into which a non-aqueous electrolyte is injected, the disc-shaped positive electrode 11, and spacer plates 17 and 18 made of stainless steel or aluminum are arranged in this order.
  • a positive electrode can 13 hereinafter, also referred to as a “battery can”
  • a sealing plate 14 hereinafter, also referred to as a “battery can lid”.
  • the positive electrode can 13 and the sealing plate 14 are caulked and sealed via a gasket 16.
  • the non-aqueous electrolyte of the present disclosure is used as the non-aqueous electrolyte injected into the separator 15.
  • the lithium secondary battery of the present disclosure is obtained by charging and discharging a lithium secondary battery (a lithium secondary battery before charging and discharging) including a negative electrode, a positive electrode, and the nonaqueous electrolyte of the present disclosure.
  • Lithium secondary battery may be used. That is, the lithium secondary battery of the present disclosure is, first, a negative electrode, a positive electrode, the non-aqueous electrolyte of the present disclosure, to prepare a lithium secondary battery before charging and discharging, and then, before this charging and discharging
  • a lithium secondary battery (charged / discharged lithium secondary battery) manufactured by charging / discharging a lithium secondary battery at least once may be used.
  • the use of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known uses.
  • addition amount means the content in the finally obtained non-aqueous electrolyte (that is, the amount based on the total amount of the finally obtained non-aqueous electrolyte).
  • wt% means mass%.
  • Examples 1 to 6 and Comparative Examples 1 to 6, A and B are Examples and Comparative Examples of the non-aqueous electrolyte solution of the first embodiment
  • Example 101 and Comparative Examples 101 to 104 are Examples and comparative examples of the non-aqueous electrolyte according to the second embodiment.
  • Example 1 A coin-type battery (test battery) as a lithium secondary battery was manufactured in the following procedure. ⁇ Preparation of negative electrode> Amorphous natural graphite (97 parts by mass), carboxymethylcellulose (1 part by mass) and SBR latex (2 parts by mass) were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry. Next, the negative electrode mixture slurry was applied to a 10 ⁇ m-thick strip-shaped copper foil negative electrode current collector, dried, and then compressed by a roll press to form a sheet-shaped negative electrode comprising the negative electrode current collector and the negative electrode active material layer. I got At this time, the coating density of the negative electrode active material layer was 12 mg / cm 2 , and the packing density was 1.5 g / ml.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • LiPF 6 and LiFSI lithium bis (fluoromethylsulfonyl) imide
  • the concentration of LiPF 6 in the finally obtained non-aqueous electrolyte is 1.0 mol / L, and Was dissolved so that the concentration of LiFSI in the finally obtained non-aqueous electrolyte was 0.2 mol / L, that is, the total concentration of LiPF 6 and LiFSI in the finally obtained non-aqueous electrolyte.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.17.
  • Lithium trifluoromethylsulfonate hereinafter also referred to as “TFMSL”; a specific example of additive A
  • addition amount: 0.5% by mass was added as an additive to obtain a non-aqueous electrolyte.
  • the above-mentioned negative electrode was punched into a disk shape with a diameter of 14 mm and the above-mentioned positive electrode with a diameter of 13 mm, to obtain a coin-shaped negative electrode and a coin-shaped positive electrode, respectively. Further, a microporous polyethylene film having a thickness of 20 ⁇ m was punched into a disk having a diameter of 17 mm to obtain a separator.
  • the obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode are laminated in this order in a stainless steel battery can (2032 size), and then 20 ⁇ L of the above-described non-aqueous electrolyte is placed in the battery can.
  • a coin-type battery that is, a coin-type lithium secondary battery having a configuration shown in FIG. 3 having a diameter of 20 mm and a height of 3.2 mm was obtained.
  • Conditioning was performed on the obtained coin-type battery, and the battery resistance of the conditioned coin-type battery was evaluated.
  • condition means that the coin-type battery is repeatedly charged and discharged three times between 2.75 V and 4.2 V at 25 ° C. in a thermostat.
  • high temperature storage means an operation of storing coin type batteries at 80 ° C. for 48 hours in a thermostat.
  • DCIR battery resistance
  • the SOC (State of Charge) of the coin-type battery after conditioning was adjusted to 80%, and then the DCIR (Direct current internal resistance; DC resistance) of the coin-type battery before storage at high temperature was measured by the following method.
  • CC10s discharge was performed at a discharge rate of 0.2C.
  • the CC10s discharge means discharging at a constant current (Constant Current) for 10 seconds.
  • the battery resistance ( ⁇ ) after the high-temperature storage was measured in the same manner as the measurement of the battery resistance before the high-temperature storage described above, except that was added. Table 1 shows the results.
  • the CC-CV charging means a constant current-constant voltage.
  • Rate of increase (%) [(Battery resistance after high temperature storage ( ⁇ )-battery resistance before high temperature storage ( ⁇ )) / battery resistance before high temperature storage ( ⁇ )] x 100
  • the rise rate (%) may be not only a positive value, but also a negative value or 0.
  • a positive rise rate (%) means that the battery resistance increased due to high-temperature storage
  • a negative rise rate (%) means that the battery resistance decreased due to high-temperature storage.
  • the fact that the rate of increase (%) is 0 means that the battery resistance did not change due to high-temperature storage.
  • Examples 2 to 6, Comparative Examples 1 to 6, A and B The same operation as in Example 1 was performed except that the combination of the type of the electrolyte, the concentration of the electrolyte, and the amount of the additive was changed as shown in Table 1. Table 1 shows the results.
  • sulfobenzoic acid is a compound represented by the formula (C) in which all of R c1 to R c4 are each a hydrogen atom.
  • (D2-1), (D2-2), and (D2-3) are specific examples of the compound represented by the formula (D), and specifically, the following compounds.
  • Example 101 A coin-type battery (test battery) as a lithium secondary battery was manufactured in the following procedure. ⁇ Preparation of negative electrode> A negative electrode was produced in the same manner as in the production of the negative electrode in Example 1.
  • a positive electrode was produced in the same manner as in the production of the positive electrode in Example 1.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • LiPF 6 and LiFSI lithium bis (fluoromethylsulfonyl) imide
  • the concentration of LiPF 6 in the finally obtained non-aqueous electrolyte is 1.0 mol / L, and Was dissolved so that the concentration of LiFSI in the finally obtained non-aqueous electrolyte was 0.2 mol / L, that is, the total concentration of LiPF 6 and LiFSI in the finally obtained non-aqueous electrolyte.
  • the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.17.
  • 1,3-propene sultone (hereinafter also referred to as “PRS”; a specific example of the additive E) (addition amount: 0.5% by mass) was added to obtain a non-aqueous electrolyte.
  • PRS 1,3-propene sultone
  • a coin-type battery was obtained in the same manner as in the production of the coin-type battery in Example 1, except that the non-aqueous electrolyte in Example 101 was used as the non-aqueous electrolyte.
  • Example 101 The same operation as in Example 101 was performed, except that the combination of the type of the electrolyte, the concentration of the electrolyte, and the amount of the additive was changed as shown in Table 2. Table 2 shows the results.
  • LiPF 6 and LiFSI as electrolytes in the non-aqueous electrolyte and additive E were contained, and the molar ratio [LiFSI / (LiPF 6 + LiFSI)] was 0.050 or more and 0.85 or less.
  • the battery resistance after high-temperature storage was reduced as compared with Comparative Examples 101 to 104 which did not satisfy any one of these conditions.
  • the increase in battery resistance due to high-temperature storage was suppressed as compared with the batteries of Comparative Examples 101 to 104 (see “Rise rate” in Table 2).

Abstract

A non-aqueous electrolytic solution for batteries, which comprises an electrolyte containing LiPF6 and LiFSI and an additive comprising at least one component selected from the group consisting of compounds (A) to (D). Ra1 represents a fluorine atom, a C1-6 hydrocarbon group, a C1-6 hydrocarbonoxy group, or a C1-6 fluorinated hydrocarbon group. Rb1 represents a hydrogen atom, a fluorine atom, a C1-6 hydrocarbon group, a C1-6 hydrocarbonoxy group, or a C1-6 fluorinated hydrocarbon group. Rc1 to Rc4 independently represent a hydrogen atom, a halogen atom, a C1-6 hydrocarbon group, a C1-6 halogenated hydrocarbon group, a C1-6 hydrocarbonoxy group, or a C1-6 halogenated hydrocarbonoxy group. Rd21 to Rd24 independently represent a hydrogen atom, a C1-6 hydrocarbon group, a group (a), or a group (b). In group (a) and group (b), "*" represents a binding position.

Description

電池用非水電解液及びリチウム二次電池Non-aqueous electrolyte for batteries and lithium secondary batteries
 本開示は、電池用非水電解液及びリチウム二次電池に関する。 The present disclosure relates to a non-aqueous electrolyte for a battery and a lithium secondary battery.
 近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く使用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
 リチウム二次電池は、例えば、リチウムを吸蔵放出可能な材料を含有する正極及び負極、並びに、リチウム塩と非水溶媒とを含有する電池用非水電解液を含む。
 正極に用いられる正極活物質としては、例えば、LiCoO、LiMnO、LiNiO、LiFePOのようなリチウム金属酸化物が用いられる。
 また、電池用非水電解液としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネートなどのカーボネート類の混合溶媒(非水溶媒)に、LiPF、LiBF、LiN(SOCF、LiN(SOCFCFのようなLi電解質を混合した溶液が用いられている。
 一方、負極に用いられる負極用活物質としては、金属リチウム、リチウムを吸蔵及び放出可能な金属化合物(金属単体、酸化物、リチウムとの合金など)や炭素材料が知られており、特にリチウムを吸蔵、放出が可能なコークス、人造黒鉛、天然黒鉛を採用したリチウム二次電池が実用化されている。
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as electronic devices such as mobile phones and notebook computers, or as electric power sources for electric vehicles and power storage. Particularly in recent years, demand for batteries with high capacity, high output, and high energy density, which can be mounted on hybrid vehicles and electric vehicles, has been rapidly expanding.
The lithium secondary battery includes, for example, a positive electrode and a negative electrode containing a material capable of inserting and extracting lithium, and a non-aqueous electrolyte for a battery containing a lithium salt and a non-aqueous solvent.
As the positive electrode active material used for the positive electrode, for example, a lithium metal oxide such as LiCoO 2 , LiMnO 2 , LiNiO 2 , and LiFePO 4 is used.
Examples of the non-aqueous electrolyte for a battery include a mixed solvent (non-aqueous solvent) of carbonates such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and ethyl methyl carbonate, and LiPF 6 , LiBF 4 , and LiN (SO 2 CF 3 ). 2 , a solution in which a Li electrolyte such as LiN (SO 2 CF 2 CF 3 ) 2 is mixed is used.
On the other hand, as the negative electrode active material used for the negative electrode, metal lithium, metal compounds capable of occluding and releasing lithium (such as simple metals, oxides, and alloys with lithium) and carbon materials are known. Lithium secondary batteries employing coke, artificial graphite, and natural graphite, which can be inserted and released, have been put to practical use.
 電池用非水電解液を含む電池(例えばリチウム二次電池)の性能を改善するために、電池用非水電解液に対し、種々の添加剤を含有させることが行われている。
 例えば、電池の充電後の保存特性を改善できる電池用非水電解液として、モノフルオロリン酸リチウム及びジフルオロリン酸リチウムの少なくとも一方を添加剤として含有する電池用非水電解液が知られている(例えば、下記特許文献1参照)。
 また、電池の充放電特性及び寿命特性を向上させることができる電池用非水電解液として、特定構造のスルトン化合物を含有する電池用非水電解液が知られている(例えば、下記特許文献2参照)。
 また、電池の容量維持性能を改善しながら、かつ、電池の充電保存時における開放電圧の低下を抑制できる電池用非水電解液として、特定構造の環状硫酸エステル化合物を含有する電池用非水電解液が知られている(例えば、下記特許文献3参照)。
In order to improve the performance of a battery containing a nonaqueous electrolyte for a battery (for example, a lithium secondary battery), various additives have been added to the nonaqueous electrolyte for a battery.
For example, as a non-aqueous electrolyte for a battery that can improve storage characteristics after charging of the battery, a non-aqueous electrolyte for a battery containing at least one of lithium monofluorophosphate and lithium difluorophosphate as an additive is known. (For example, see Patent Document 1 below).
Further, as a non-aqueous electrolyte for a battery that can improve the charge / discharge characteristics and life characteristics of the battery, a non-aqueous electrolyte for a battery containing a sultone compound having a specific structure is known (for example, Patent Document 2 below) reference).
In addition, a non-aqueous electrolyte for a battery containing a cyclic sulfate ester compound having a specific structure is used as a non-aqueous electrolyte for a battery that can improve the capacity maintenance performance of the battery and suppress a decrease in the open-circuit voltage during charge storage of the battery. A liquid is known (for example, see Patent Document 3 below).
 特許文献1:特許第3439085号公報
 特許文献2:特許第4424895号公報
 特許文献3:特許第5524347号公報
Patent Document 1: Japanese Patent No. 3439085 Patent Document 2: Japanese Patent No. 4442495 Patent Document 3: Japanese Patent No. 5524347
 しかし、従来の電池用非水電解液及び電池に対し、保存後の電池抵抗を更に低減することが求められる場合がある。
 従って、本開示の課題は、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池を提供することである。
However, in some cases, it is required to further reduce the battery resistance of the conventional non-aqueous electrolyte for batteries and batteries after storage.
Accordingly, an object of the present disclosure is to provide a non-aqueous electrolyte for a battery that can reduce the battery resistance after storage, and a lithium secondary battery using the non-aqueous electrolyte for a battery.
<1> ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを含む電解質と、
 下記式(A)で表される化合物、下記式(B)で表される化合物、下記式(C)で表される化合物、及び下記式(D)で表される化合物からなる群から選択される少なくとも1種である添加剤と、
を含有する電池用非水電解液。
<1> an electrolyte containing lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide,
Selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following formula (B), a compound represented by the following formula (C), and a compound represented by the following formula (D) At least one additive,
Non-aqueous electrolyte for batteries containing.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(A)中、Ra1は、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のフッ化炭化水素基を表す。 In the formula (A), Ra1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(B)中、Rb1は、水素原子、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は炭素数1~6のフッ化炭化水素基を表す。 In the formula (B), R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represent.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(C)中、Rc1~Rc4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6の炭化水素基、炭素数1~6のハロゲン化炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のハロゲン化炭化水素オキシ基を表す。 In the formula (C), R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, Or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(D)中、Rd21~Rd24は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。 In the formula (D), R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b) Represents In the formulas (a) and (b), * represents a bonding position.
<2> 前記ヘキサフルオロリン酸リチウムと前記リチウムビス(フルオロスルホニル)イミドとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの含有モル比が0.01以上0.85以下である<1>に記載の電池用非水電解液。
<3> 前記ヘキサフルオロリン酸リチウムと前記リチウムビス(フルオロスルホニル)イミドとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの含有モル比が0.08以上0.85以下である<1>又は<2>に記載の電池用非水電解液。
<2> The content molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.01 or more and 0.85 or less according to <1>. Non-aqueous electrolyte for batteries.
<3> The content molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.08 or more and 0.85 or less <1> or <2> The non-aqueous electrolyte for a battery according to the above.
<4> ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを含む電解質と、
 下記式(E)で表される化合物からなる群から選択される少なくとも1種である添加剤と、
を含有し、
 前記ヘキサフルオロリン酸リチウムと前記リチウムビス(フルオロスルホニル)イミドとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの含有モル比が0.050以上0.85以下である電池用非水電解液。
<4> an electrolyte containing lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide;
An additive which is at least one selected from the group consisting of compounds represented by the following formula (E):
Containing
A nonaqueous electrolyte solution for a battery, wherein the molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.050 to 0.85.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式(E)中、R11~R14は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。 In the formula (E), R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.
<5> 前記ヘキサフルオロリン酸リチウム及び前記リチウムビス(フルオロスルホニル)イミドの総濃度が、0.1mol/L以上3mol/L以下である<1>~<4>のいずれか1つに記載の電池用非水電解液。
<6> 前記添加剤の含有量が、電池用非水電解液の全量に対し、0.001質量%以上10質量%以下である<1>~<5>のいずれか1つに記載の電池用非水電解液。
<5> The method according to any one of <1> to <4>, wherein a total concentration of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.1 mol / L or more and 3 mol / L or less. Non-aqueous electrolyte for batteries.
<6> The battery according to any one of <1> to <5>, wherein the content of the additive is 0.001% by mass or more and 10% by mass or less based on the total amount of the nonaqueous electrolyte for a battery. For non-aqueous electrolyte.
<7> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
 <1>~<6>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<8> <7>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
<7> a positive electrode,
Lithium metal, lithium-containing alloy, metal or alloy capable of being alloyed with lithium, oxide capable of doping / dedoping lithium ion, transition metal nitride capable of doping / dedoping lithium ion, and lithium A negative electrode containing, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of doping and undoping ions;
A non-aqueous electrolyte for a battery according to any one of <1> to <6>,
Including lithium secondary batteries.
<8> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to <7>.
 本開示によれば、保存後の電池抵抗を低減できる電池用非水電解液、並びに、この電池用非水電解液を用いたリチウム二次電池が提供される。 According to the present disclosure, a non-aqueous electrolyte for a battery that can reduce the battery resistance after storage, and a lithium secondary battery using the non-aqueous electrolyte for a battery are provided.
本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。FIG. 1 is a schematic perspective view illustrating an example of a laminated battery, which is an example of a lithium secondary battery of the present disclosure. 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。FIG. 2 is a schematic cross-sectional view in a thickness direction of a laminated electrode body housed in the laminated battery shown in FIG. 1. 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。1 is a schematic cross-sectional view illustrating an example of a coin-type battery, which is another example of the lithium secondary battery of the present disclosure.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In the present specification, a numerical range represented by using “to” means a range including numerical values described before and after “to” as a lower limit and an upper limit.
In the present specification, the amount of each component in the composition is, if there are a plurality of substances corresponding to each component in the composition, unless otherwise specified, the total amount of the plurality of substances present in the composition Means
 以下、本開示の電池用非水電解液として、本開示の第1実施形態及び第2実施形態の電池用非水電解液について、順次説明する。 Hereinafter, as the non-aqueous electrolyte for a battery according to the present disclosure, the non-aqueous electrolyte for a battery according to the first embodiment and the second embodiment of the present disclosure will be sequentially described.
〔電池用非水電解液(第1実施形態)〕
 本開示の第1実施形態の電池用非水電解液(以下、単に「第1実施形態の非水電解液」ともいう)は、
 ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを含む電解質と、
 下記式(A)で表される化合物、下記式(B)で表される化合物、下記式(C)で表される化合物、及び下記式(D)で表される化合物からなる群から選択される少なくとも1種である添加剤と、
を含有する。
[Non-aqueous electrolyte for battery (first embodiment)]
The non-aqueous electrolyte for a battery according to the first embodiment of the present disclosure (hereinafter, also simply referred to as “non-aqueous electrolyte of the first embodiment”) includes:
An electrolyte comprising lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide;
Selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following formula (B), a compound represented by the following formula (C), and a compound represented by the following formula (D) At least one additive,
It contains.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 式(A)中、Ra1は、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のフッ化炭化水素基を表す。 In the formula (A), Ra1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式(B)中、Rb1は、水素原子、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は炭素数1~6のフッ化炭化水素基を表す。 In the formula (B), R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represent.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式(C)中、Rc1~Rc4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6の炭化水素基、炭素数1~6のハロゲン化炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のハロゲン化炭化水素オキシ基を表す。 In the formula (C), R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, Or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms.
Figure JPOXMLDOC01-appb-C000014

 
Figure JPOXMLDOC01-appb-C000014

 
 式(D)中、Rd21~Rd24は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。 In the formula (D), R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b) Represents In the formulas (a) and (b), * represents a bonding position.
 第1実施形態の非水電解液によれば、保存後の電池抵抗を低減できる。
 かかる効果が奏される理由は明らかではないが、上記式(A)で表される化合物、上記式(B)で表される化合物、上記式(C)で表される化合物、及び上記式(D)で表される化合物から選択される少なくとも1つである添加剤を含有する非水電解液に対し、電解質として、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを組み合わせたものを使用することにより、電池保存後における抵抗が低い良質な被膜が、電極表面に形成されるためと考えられる。
According to the non-aqueous electrolyte of the first embodiment, the battery resistance after storage can be reduced.
It is not clear why such an effect is exerted, but the compound represented by the formula (A), the compound represented by the formula (B), the compound represented by the formula (C), and the compound represented by the formula (C) Use of a combination of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide as an electrolyte for a nonaqueous electrolyte containing at least one additive selected from the compounds represented by D) It is considered that, by doing so, a good quality film having low resistance after storage of the battery is formed on the electrode surface.
 したがって、第1実施形態の非水電解液では、電解質として、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを併用することにより、電解質として、ヘキサフルオロリン酸リチウムを単独で使用した場合と比較して、保存時の電解質の安定性が向上すると考えられる。その結果、電池の保存特性(特に高温保存特性)に優れる。詳細には、保存後(特に高温保存後)の電池抵抗が低減される。 Therefore, in the non-aqueous electrolyte of the first embodiment, by using lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in combination as the electrolyte, the case where lithium hexafluorophosphate is used alone as the electrolyte is used. In comparison, it is considered that the stability of the electrolyte during storage is improved. As a result, the storage characteristics (particularly, high-temperature storage characteristics) of the battery are excellent. Specifically, the battery resistance after storage (particularly after high-temperature storage) is reduced.
 以下、第1実施形態の非水電解液の各成分について説明する。 Hereinafter, each component of the non-aqueous electrolyte of the first embodiment will be described.
<電解質>
 第1実施形態の非水電解液は、ヘキサフルオロリン酸リチウム(以下、LiPFともいう)及びリチウムビス(フルオロスルホニル)イミド(以下、LiFSIともいう。)を両方含む電解質を含有する。
<Electrolyte>
The non-aqueous electrolyte of the first embodiment contains an electrolyte containing both lithium hexafluorophosphate (hereinafter, also referred to as LiPF 6 ) and lithium bis (fluorosulfonyl) imide (hereinafter, also referred to as LiFSI).
 第1実施形態の非水電解液における電解質において、LiPF及びLiFSIの合計に対するLiFSIの含有モル比(以下、モル比〔LiFSI/(LiPF+LiFSI)〕ともいう)は、電池の高温保存特性をより向上させる観点から、好ましくは0.01以上0.85以下である。
 モル比〔LiFSI/(LiPF+LiFSI)〕が、0.01以上である場合には、保存後の電池抵抗がより低減される。保存後の電池抵抗をより低減させる観点から、モル比〔LiFSI/(LiPF+LiFSI)〕は、より好ましくは0.08以上であり、更に好ましくは0.10以上であり、更に好ましくは0.15以上である。
 一方、モル比〔LiFSI/(LiPF+LiFSI)〕が、0.85以下であると、電気伝導率、耐酸化性等の点で有利である。電気伝導率及び耐酸化性の観点から、モル比〔LiFSI/(LiPF+LiFSI)〕は、0.50以下であってもよいし、0.50未満であってもよいし、0.40以下であってもよいし、0.30以下であってもよいし、0.20以下であってもよい。
In the electrolyte in the nonaqueous electrolytic solution of the first embodiment, the molar ratio of the content of LiFSI to the sum of LiPF 6 and LiFSI (hereinafter, also referred to as the molar ratio [LiFSI / (LiPF 6 + LiFSI)]) is a high-temperature storage characteristics of the battery From the viewpoint of further improving, it is preferably 0.01 or more and 0.85 or less.
When the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.01 or more, the battery resistance after storage is further reduced. From the viewpoint of further reducing the battery resistance after storage, the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is more preferably 0.08 or more, further preferably 0.10 or more, and still more preferably 0.1% or more. 15 or more.
On the other hand, when the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.85 or less, it is advantageous in terms of electric conductivity, oxidation resistance, and the like. From the viewpoints of electrical conductivity and oxidation resistance, the molar ratio [LiFSI / (LiPF 6 + LiFSI)] may be 0.50 or less, may be less than 0.50, or may be 0.40 or less. , 0.30 or less, or 0.20 or less.
 第1実施形態の非水電解液において、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドの総濃度は特に制限はないが、総濃度は、好ましくは0.1mol/L~3mol/Lであり、より好ましくは0.5mol/L~2mol/Lである。 In the non-aqueous electrolyte of the first embodiment, the total concentration of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide is not particularly limited, but the total concentration is preferably 0.1 mol / L to 3 mol / L. And more preferably from 0.5 mol / L to 2 mol / L.
 第1実施形態における電解質は、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミド以外のその他の化合物を少なくとも1種含んでいてもよい。
 その他の化合物としては、LiBF、LiClO、LiAsF、LiSiF、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)、LiC(SO27)(SO28)(SO29)(ここでR27~R29は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)、LiN(SOOR30)(SOOR31)(ここでR30及びR31は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)、LiN(SO32)(SO33)(ここでR32及びR33は互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である;但し、R32が、炭素数1又は2のパーフルオロアルキル基である場合、R33は、炭素数3~8のパーフルオロアルキル基である)、等が挙げられる。
The electrolyte in the first embodiment may contain at least one compound other than lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide.
Other compounds include LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , and LiPF n [C k F (2k + 1) ] (6-n) (n = 1 to 5, k = 1 to 8) , LiC (SO 2 R 27 ) (SO 2 R 28 ) (SO 2 R 29 ) (where R 27 to R 29 may be the same or different and are perfluoroalkyl groups having 1 to 8 carbon atoms) ), LiN (SO 2 OR 30 ) (SO 2 OR 31 ) (where R 30 and R 31 may be the same or different and are perfluoroalkyl groups having 1 to 8 carbon atoms), LiN (SO 2 OR 30 ) 2 R 32 ) (SO 2 R 33 ) wherein R 32 and R 33 may be the same or different and are perfluoroalkyl groups having 1 to 8 carbon atoms; provided that R 32 is or If it is 2 perfluoroalkyl group, R 33 represents a perfluoroalkyl group having 3 to 8 carbon atoms), and the like.
 第1実施形態における電解質中に占める、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドの合計の質量比率は、好ましくは50質量%~100質量%であり、より好ましくは80質量%~100質量%であり、更に好ましくは90質量%~100質量%である。 The total mass ratio of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in the electrolyte in the first embodiment is preferably 50% by mass to 100% by mass, more preferably 80% by mass to 100% by mass. %, More preferably 90 to 100% by mass.
<添加剤>
 第1実施形態の電池用非水電解液は、下記式(A)で表される化合物(以下、「添加剤A」ともいう)、下記式(B)で表される化合物(以下、「添加剤B」ともいう)、下記式(C)で表される化合物(以下、「添加剤C」ともいう)、及び下記式(D)で表される化合物(以下、「添加剤D」ともいう)からなる群から選択される少なくとも1種である添加剤を含有する。
<Additives>
The non-aqueous electrolyte for a battery according to the first embodiment includes a compound represented by the following formula (A) (hereinafter, also referred to as “additive A”) and a compound represented by the following formula (B) (hereinafter, “additive”). Agent B "), a compound represented by the following formula (C) (hereinafter also referred to as" additive C "), and a compound represented by the following formula (D) (hereinafter also referred to as" additive D ") )), Which contains at least one additive selected from the group consisting of:
 上記の添加剤の含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.003質量%~5質量%がより好ましく、0.003質量%~3質量%であることが更に好ましく、0.03質量%~3質量%であることが更に好ましく、0.3~3質量%であることが特に好ましい。 The content of the additive is preferably 0.001% by mass to 10% by mass, more preferably 0.003% by mass to 5% by mass, and more preferably 0.003% by mass to 3% by mass, based on the total amount of the nonaqueous electrolyte. %, More preferably from 0.03 to 3% by mass, particularly preferably from 0.3 to 3% by mass.
 添加剤Aは、下記式(A)で表される化合物からなる群から選択される少なくとも1種である。 The additive A is at least one selected from the group consisting of compounds represented by the following formula (A).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式(A)中、Ra1は、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のフッ化炭化水素基を表す。 In the formula (A), Ra1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms.
 Ra1で表される「炭素数1~6のフッ化炭化水素基」は、無置換の炭素数1~6の炭化水素基が少なくとも1つのフッ素原子によって置換された構造を有する。
 無置換の炭素数1~6の炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、1-エチルプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、2-メチルブチル基、3,3-ジメチルブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1-メチルペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、tert-ヘキシル基等のアルキル基;ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2-メチル-2-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基等のアルケニル基;等が挙げられる。
The “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 has a structure in which an unsubstituted hydrocarbon group having 1 to 6 carbon atoms is substituted with at least one fluorine atom.
Examples of the unsubstituted hydrocarbon group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, 1-ethylpropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl, 2-methylbutyl, 3,3-dimethylbutyl, n-pentyl, isopentyl, neopentyl, 1-methylpentyl, n-hexyl, isohexyl, sec-hexyl, tert-butyl Alkyl group such as hexyl group; vinyl group, 1-propenyl group, allyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group, hexenyl group, isopropenyl group, 2-methyl-2-propenyl Alkenyl groups such as a group, a 1-methyl-2-propenyl group and a 2-methyl-1-propenyl group;
 Ra1で表される「炭素数1~6のフッ化炭化水素基」としては、例えば、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、パーフルオロエチル基、パーフルオロプロピル基、パーフルオロブチル基、パーフルオロペンチル基、パーフルオロヘキシル基、パーフルオロイソプロピル基、パーフルオロイソブチル基等のフルオロアルキル基;2-フルオロエテニル基、2,2-ジフルオロエテニル基、2-フルオロ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3-ジフルオロ-2-プロペニル基、3,3-ジフルオロ-2-メチル-2-プロペニル基、3-フルオロ-2-ブテニル基、パーフルオロビニル基、パーフルオロプロペニル基、パーフルオロブテニル基等のフルオロアルケニル基;等が挙げられる。 The “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 includes, for example, fluoromethyl group, difluoromethyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, perfluoro Fluoroalkyl groups such as ethyl group, perfluoropropyl group, perfluorobutyl group, perfluoropentyl group, perfluorohexyl group, perfluoroisopropyl group, perfluoroisobutyl group; 2-fluoroethenyl group, 2,2-difluoro Ethenyl, 2-fluoro-2-propenyl, 3,3-difluoro-2-propenyl, 2,3-difluoro-2-propenyl, 3,3-difluoro-2-methyl-2-propenyl, 3-fluoro-2-butenyl group, perfluorovinyl group, perfluoropropenyl group, perfluorobutenyl group And the like.
 Ra1で表される「炭素数1~6のフッ化炭化水素基」としては、少なくとも1つのフッ素原子で置換されたアルキル基又は少なくとも1つのフッ素原子で置換されたアルケニル基が好ましく、少なくとも1つのフッ素原子で置換されたアルキル基がより好ましい。
 Ra1で表される「炭素数1~6のフッ化炭化水素基」は、少なくとも1つのフッ素原子で置換されていればよいが、パーフルオロ炭化水素基であることが好ましい。
 Ra1で表される「炭素数1~6のフッ化炭化水素基」の炭素数は、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
The “fluorinated hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 is preferably an alkyl group substituted with at least one fluorine atom or an alkenyl group substituted with at least one fluorine atom. Alkyl groups substituted with two fluorine atoms are more preferred.
The “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 may be substituted with at least one fluorine atom, and is preferably a perfluorohydrocarbon group.
The number of carbon atoms of the “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
 式(A)中、Ra1で表される「炭素数1~6の炭化水素基」は、無置換の炭素数1~6の炭化水素基を表す。
 Ra1で表される「炭素数1~6の炭化水素基」は、直鎖炭化水素基であっても分岐炭化水素基であっても環状炭化水素基であってもよい。
In the formula (A), the “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 represents an unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
The “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 may be a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group.
 Ra1で表される「炭素数1~6の炭化水素基」としては、例えば、
メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、2-メチルブチル基、1-メチルペンチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、3,3-ジメチルブチル基等のアルキル基;
ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2-メチル-2-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基等のアルケニル基;
フェニル基;
等が挙げられる。
 Ra1で表される「炭素数1~6の炭化水素基」としては、アルキル基、アルケニル基、又はフェニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が更に好ましい。
 Ra1で表される「炭素数1~6の炭化水素基」の炭素数は、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
Examples of the “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 include, for example,
Methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, 2-methylbutyl, 1-methylpentyl, neopentyl, 1-ethylpropyl Alkyl groups such as, hexyl group, and 3,3-dimethylbutyl group;
Vinyl, 1-propenyl, allyl, 1-butenyl, 2-butenyl, 3-butenyl, pentenyl, hexenyl, isopropenyl, 2-methyl-2-propenyl, 1-methyl-2 Alkenyl groups such as -propenyl group and 2-methyl-1-propenyl group;
A phenyl group;
And the like.
The “hydrocarbon group having 1 to 6 carbon atoms” represented by R a1 is preferably an alkyl group, an alkenyl group, or a phenyl group, more preferably an alkyl group or an alkenyl group, and still more preferably an alkyl group.
The carbon number of the “hydrocarbon group having 1 to 6 carbon atoms” represented by Ra1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
 Ra1で表される「炭素数1~6の炭化水素オキシ基」の構造中の「炭素数1~6の炭化水素基」の具体例及び好ましい態様は、前述した、Ra1で表される「炭素数1~6の炭化水素基」の具体例及び好ましい態様と同様である。 Specific examples and preferred embodiments of the "hydrocarbon group having 1 to 6 carbon atoms" in the structure of the "hydrocarbon group having 1 to 6 carbon atoms" represented by R a1 may previously described, represented by R a1 This is the same as the specific examples and preferred embodiments of the “hydrocarbon group having 1 to 6 carbon atoms”.
 Ra1としては、炭素数1~6のフッ化炭化水素基が好ましく、炭素数1~6のフッ化アルキル基がより好ましく、炭素数1~6のパーフルオロアルキル基が更に好ましく、パーフルオロメチル基(別名:トリフルオロメチル基)又はパーフルオロエチル基(別名:ペンタフルオロエチル基)が更に好ましく、パーフルオロメチル基(別名:トリフルオロメチル基)が特に好ましい。 R a1 is preferably a fluorocarbon group having 1 to 6 carbon atoms, more preferably a fluoroalkyl group having 1 to 6 carbon atoms, further preferably a perfluoroalkyl group having 1 to 6 carbon atoms, and more preferably perfluoromethyl. A group (alias: trifluoromethyl group) or a perfluoroethyl group (alias: pentafluoroethyl group) is more preferable, and a perfluoromethyl group (alias: trifluoromethyl group) is particularly preferable.
 式(A)で表される化合物としては、トリフルオロメチルスルホン酸リチウム又はペンタフルオロエチルスルホン酸リチウムが好ましく、トリフルオロメチルスルホン酸リチウムが特に好ましい。
 また、式(A)で表される化合物としては、下記式(A-1)~下記式(A-5)で表される化合物(以下、それぞれ、化合物(A-1)~化合物(A-5)ともいう)も好ましい。
As the compound represented by the formula (A), lithium trifluoromethylsulfonate or lithium pentafluoroethylsulfonate is preferable, and lithium trifluoromethylsulfonate is particularly preferable.
Further, the compounds represented by the formula (A) include compounds represented by the following formulas (A-1) to (A-5) (hereinafter, compounds (A-1) to (A- 5) is also preferred.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 添加剤Bは、下記式(B)で表される化合物からなる群から選択される少なくとも1種である。 The additive B is at least one selected from the group consisting of compounds represented by the following formula (B).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式(B)中、Rb1は、水素原子、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は炭素数1~6のフッ化炭化水素基を表す。 In the formula (B), R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represent.
 Rb1で表される「炭素数1~6の炭化水素基」は、無置換の炭素数1~6の炭化水素基を表す。
 Rb1で表される「炭素数1~6の炭化水素基」は、直鎖炭化水素基であっても分岐炭化水素基であっても環状炭化水素基であってもよい。
 Rb1で表される「炭素数1~6の炭化水素基」としては、アルキル基、アルケニル基、又はフェニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が更に好ましい。
 Rb1で表される「炭素数1~6の炭化水素基」の炭素数は、1~3が好ましく、1又は2がより好ましく、1が特に好ましい。
The “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 represents an unsubstituted hydrocarbon group having 1 to 6 carbon atoms.
The “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 may be a linear hydrocarbon group, a branched hydrocarbon group, or a cyclic hydrocarbon group.
The “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 is preferably an alkyl group, an alkenyl group, or a phenyl group, more preferably an alkyl group or an alkenyl group, and still more preferably an alkyl group.
The carbon number of the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 is preferably 1 to 3, more preferably 1 or 2, and particularly preferably 1.
 Rb1で表される「炭素数1~6の炭化水素基」としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、2-メチルブチル基、1-メチルペンチル基、ネオペンチル基、1-エチルプロピル基、ヘキシル基、3,3-ジメチルブチル基等のアルキル基;ビニル基、1-プロペニル基、アリル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、ペンテニル基、ヘキセニル基、イソプロペニル基、2-メチル-2-プロペニル基、1-メチル-2-プロペニル基、2-メチル-1-プロペニル基等のアルケニル基;等が挙げられる。 Examples of the “hydrocarbon group having 1 to 6 carbon atoms” represented by R b1 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, Alkyl groups such as pentyl group, 2-methylbutyl group, 1-methylpentyl group, neopentyl group, 1-ethylpropyl group, hexyl group and 3,3-dimethylbutyl group; vinyl group, 1-propenyl group, allyl group, -Butenyl group, 2-butenyl group, 3-butenyl group, pentenyl group, hexenyl group, isopropenyl group, 2-methyl-2-propenyl group, 1-methyl-2-propenyl group, 2-methyl-1-propenyl group An alkenyl group; and the like.
 Rb1で表される「炭素数1~6の炭化水素オキシ基」の構造中の「炭素数1~6の炭化水素基」の具体例及び好ましい態様は、前述した、Rb1で表される「炭素数1~6の炭化水素基」の具体例及び好ましい態様と同様である。 Specific examples and preferred embodiments of the "hydrocarbon group having 1 to 6 carbon atoms" in the structure of the "hydrocarbon group having 1 to 6 carbon atoms" represented by R b1 is mentioned above, is represented by R b1 This is the same as the specific examples and preferred embodiments of the “hydrocarbon group having 1 to 6 carbon atoms”.
 Rb1で表される「炭素数1~6のフッ化炭化水素基」の具体例及び好ましい態様は、前述した、式(A)中のRa1で表される「炭素数1~6のフッ化炭化水素基」の好ましい態様と同様である。 Specific examples and preferred embodiments of the “fluorocarbon group having 1 to 6 carbon atoms” represented by R b1 are described in the above-mentioned “fluorocarbon group having 1 to 6 carbon atoms” represented by R a1 in the formula (A). It is the same as the preferable embodiment of the "hydrocarbon group".
 式(B)中、Rb1としては、炭素数1~6の炭化水素基(即ち、無置換の炭素数1~6の炭化水素基)が好ましく、炭素数1~6のアルキル基が特に好ましい。 In the formula (B), R b1 is preferably a hydrocarbon group having 1 to 6 carbon atoms (that is, an unsubstituted hydrocarbon group having 1 to 6 carbon atoms), and particularly preferably an alkyl group having 1 to 6 carbon atoms. .
 式(B)で表される化合物としては、
メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2-プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2-ブタンスルホニルフルオリド、ヘキサンスルホニルフルオリド、トリフルオロメタンスルホニルフルオリド、パーフルオロエタンスルホニルフルオリド、パーフルオロプロパンスルホニルフルオリド、パーフルオロブタンスルホニルフルオリド、エテンスルホニルフルオリド、1-プロペン-1-スルホニルフルオリド、又は2-プロペン-1-スルホニルフルオリドが好ましく、
メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2-プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2-ブタンスルホニルフルオリド、ヘキサンスルホニルフルオリド、トリフルオロメタンスルホニルフルオリド、パーフルオロエタンスルホニルフルオリド、パーフルオロプロパンスルホニルフルオリド、又はパーフルオロブタンスルホニルフルオリドがより好ましく、
メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2-プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2-ブタンスルホニルフルオリド、又はヘキサンスルホニルフルオリドが更に好ましく、
メタンスルホニルフルオリド、エタンスルホニルフルオリド、又はプロパンスルホニルフルオリドが更に好ましく、
メタンスルホニルフルオリドが特に好ましい。
As the compound represented by the formula (B),
Methanesulfonyl fluoride, ethanesulfonyl fluoride, propanesulfonyl fluoride, 2-propanesulfonyl fluoride, butanesulfonyl fluoride, 2-butanesulfonyl fluoride, hexanesulfonyl fluoride, trifluoromethanesulfonyl fluoride, perfluoroethanesulfonyl fluoride , Perfluoropropanesulfonyl fluoride, perfluorobutanesulfonyl fluoride, ethenesulfonyl fluoride, 1-propen-1-sulfonyl fluoride, or 2-propene-1-sulfonyl fluoride is preferred,
Methanesulfonyl fluoride, ethanesulfonyl fluoride, propanesulfonyl fluoride, 2-propanesulfonyl fluoride, butanesulfonyl fluoride, 2-butanesulfonyl fluoride, hexanesulfonyl fluoride, trifluoromethanesulfonyl fluoride, perfluoroethanesulfonyl fluoride , Perfluoropropanesulfonyl fluoride, or perfluorobutanesulfonyl fluoride is more preferable,
Methanesulfonyl fluoride, ethanesulfonyl fluoride, propanesulfonyl fluoride, 2-propanesulfonyl fluoride, butanesulfonyl fluoride, 2-butanesulfonyl fluoride, or hexanesulfonyl fluoride is more preferable,
Methanesulfonyl fluoride, ethanesulfonyl fluoride, or propanesulfonyl fluoride is more preferable,
Methanesulfonyl fluoride is particularly preferred.
 添加剤Cは、下記式(C)で表される化合物からなる群から選択される少なくとも1種である。 The additive C is at least one selected from the group consisting of compounds represented by the following formula (C).
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式(C)中、Rc1~Rc4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6の炭化水素基、炭素数1~6のハロゲン化炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のハロゲン化炭化水素オキシ基を表す。 In the formula (C), R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, Or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms.
 式(C)中、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が更に好ましい。 In the formula (C), as the halogen atom, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is more preferable, and a fluorine atom is preferable. Is more preferred.
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素基は、直鎖の炭化水素基であってもよいし、分岐及び/又は環構造を有する炭化水素基であってもよい。
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素基の具体例は、式(B)中のRb1で表される炭素数1~6の炭化水素基の具体例と同様である。
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素基としては、アルキル基、アルケニル基、又はアルキニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が特に好ましい。
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が更に好ましい。
In the formula (C), the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a linear hydrocarbon group or a hydrocarbon group having a branched and / or cyclic structure. It may be.
Specific examples of the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 in the formula (C) are the hydrocarbon groups having 1 to 6 carbon atoms represented by R b1 in the formula (B). This is the same as the specific example.
In the formula (C), the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably an alkyl group, an alkenyl group or an alkynyl group, more preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. Is particularly preferred.
In the formula (C), the number of carbon atoms of the hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素基は、少なくとも1つのハロゲン原子で置換された炭素数1~6の炭化水素基を意味する。
 ハロゲン化炭化水素基におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が更に好ましい。
In the formula (C), the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 means a hydrocarbon group having 1 to 6 carbon atoms substituted by at least one halogen atom.
As the halogen atom in the halogenated hydrocarbon group, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is more preferable, and a fluorine atom Is more preferred.
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素基は、直鎖のハロゲン化炭化水素基であってもよいし、分岐及び/又は環構造を有するハロゲン化炭化水素基であってもよい。
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素基としては、ハロゲン化アルキル基、ハロゲン化アルケニル基、又はハロゲン化アルキニル基が好ましく、ハロゲン化アルキル基又はハロゲン化アルケニル基がより好ましく、ハロゲン化アルキル基が特に好ましい。
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が更に好ましい。
In the formula (C), the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a straight-chain halogenated hydrocarbon group, or may have a branched and / or cyclic structure. And a halogenated hydrocarbon group having the same.
In the formula (C), as the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 , a halogenated alkyl group, a halogenated alkenyl group, or a halogenated alkynyl group is preferable. Groups or alkenyl halide groups are more preferred, and halogenated alkyl groups are particularly preferred.
In the formula (C), the number of carbon atoms of the halogenated hydrocarbon group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素オキシ基は、直鎖の炭化水素オキシ基であってもよいし、分岐及び/又は環構造を有する炭化水素オキシ基であってもよい。
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素オキシ基としては、アルコキシ基、アルケニルオキシ基、又はアルキニルオキシ基が好ましく、アルコキシ基又はアルケニルオキシ基がより好ましく、アルコキシ基が特に好ましい。
 式(C)中、Rc1~Rc4で表される炭素数1~6の炭化水素オキシ基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が更に好ましい。
In the formula (C), the hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a straight-chain hydrocarbon oxy group or a hydrocarbon having a branched and / or cyclic structure. It may be a hydrogenoxy group.
In the formula (C), the hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably an alkoxy group, an alkenyloxy group, or an alkynyloxy group, and more preferably an alkoxy group or an alkenyloxy group. Preferably, an alkoxy group is particularly preferred.
In the formula (C), the number of carbon atoms of the hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1.
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素オキシ基は、少なくとも1つのハロゲン原子で置換された炭素数1~6の炭化水素オキシ基を意味する。
 ハロゲン化炭化水素オキシ基におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が好ましく、フッ素原子、塩素原子、又は臭素原子がより好ましく、フッ素原子又は塩素原子が更に好ましく、フッ素原子が更に好ましい。
In the formula (C), the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 means a hydrocarbon oxy group having 1 to 6 carbon atoms substituted by at least one halogen atom. I do.
As the halogen atom in the halogenated hydrocarbon oxy group, a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom is preferable, a fluorine atom, a chlorine atom, or a bromine atom is more preferable, a fluorine atom or a chlorine atom is more preferable, and fluorine Atoms are more preferred.
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素オキシ基は、直鎖のハロゲン化炭化水素オキシ基であってもよいし、分岐及び/又は環構造を有するハロゲン化炭化水素オキシ基であってもよい。
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素オキシ基としては、ハロゲン化アルコキシ基、ハロゲン化アルケニルオキシ基、又はハロゲン化アルキニルオキシ基が好ましく、ハロゲン化アルコキシ基又はハロゲン化アルケニルオキシ基がより好ましく、ハロゲン化アルコキシ基が特に好ましい。
 式(C)中、Rc1~Rc4で表される炭素数1~6のハロゲン化炭化水素オキシ基の炭素数としては、1~3が好ましく、1又は2がより好ましく、1が更に好ましい。
In the formula (C), the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 may be a straight-chain halogenated hydrocarbon oxy group, or may be a branched and / or cyclic ring. It may be a halogenated hydrocarbon oxy group having a structure.
In the formula (C), the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably a halogenated alkoxy group, a halogenated alkenyloxy group, or a halogenated alkynyloxy group, A halogenated alkoxy group or a halogenated alkenyloxy group is more preferable, and a halogenated alkoxy group is particularly preferable.
In the formula (C), the number of carbon atoms of the halogenated hydrocarbon oxy group having 1 to 6 carbon atoms represented by R c1 to R c4 is preferably 1 to 3, more preferably 1 or 2, and still more preferably 1. .
 式(C)中、Rc1~Rc4としては、それぞれ独立に、水素原子、フッ素原子、塩素原子、メチル基、エチル基、ビニル基、エチニル基、アリル基、トリフルオロメチル基、又はメトキシ基が好ましく、水素原子が特に好ましい。 In the formula (C), R c1 to R c4 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, an ethyl group, a vinyl group, an ethynyl group, an allyl group, a trifluoromethyl group, or a methoxy group. Is preferable, and a hydrogen atom is particularly preferable.
 式(C)で表される化合物の具体例としては、
スルホ安息香酸無水物、
フルオロスルホ安息香酸無水物、
クロロ安息香酸無水物、
ジフルオロスルホ安息香酸無水物、
ジクロロスルホ安息香酸無水物、
トリフルオロスルホ安息香酸無水物、
テトラフルオロスルホ安息香酸無水物、
メチルスルホ安息香酸無水物、
ジメチルスルホ安息香酸無水物、
トリメチルスルホ安息香酸無水物、
エチルスルホ安息香酸無水物、
プロピルスルホ安息香酸無水物、
ビニルスルホ安息香酸無水物、
エチニルスルホ安息香酸無水物、
アリルスルホ安息香酸無水物、
(トリフルオロメチル)スルホ安息香酸無水物、
ジ(トリフルオロ)(メチル)スルホ安息香酸無水物、
(トリフルオロメトキシ)スルホ安息香酸無水物、
(フルオロ)(メチル)スルホ安息香酸無水物、
(クロロ)(メチル)スルホ安息香酸無水物、
(フルオロ)(メトキシ)スルホ安息香酸無水物、
(クロロ)(メトキシ)スルホ安息香酸無水物、
ジ(フルオロ)(メトキシ)スルホ安息香酸無水物、
ジ(トリフルオロ)(ビニル)スルホ安息香酸無水物、
(フルオロ)(ビニル)スルホ安息香酸無水物、
ジ(トリフルオロ)(エチニル)スルホ安息香酸無水物、
(フルオロ)(エチニル)スルホ安息香酸無水物、
等が挙げられる。
 これらのうち、スルホ安息香酸無水物(以下、「化合物(C-1)」ともいう)が特に好ましい。
Specific examples of the compound represented by the formula (C) include:
Sulfobenzoic anhydride,
Fluorosulfobenzoic anhydride,
Chlorobenzoic anhydride,
Difluorosulfobenzoic anhydride,
Dichlorosulfobenzoic anhydride,
Trifluorosulfobenzoic anhydride,
Tetrafluorosulfobenzoic anhydride,
Methylsulfobenzoic anhydride,
Dimethylsulfobenzoic anhydride,
Trimethylsulfobenzoic anhydride,
Ethylsulfobenzoic anhydride,
Propylsulfobenzoic anhydride,
Vinylsulfobenzoic anhydride,
Ethynyl sulfobenzoic anhydride,
Allyl sulfobenzoic anhydride,
(Trifluoromethyl) sulfobenzoic anhydride,
Di (trifluoro) (methyl) sulfobenzoic anhydride,
(Trifluoromethoxy) sulfobenzoic anhydride,
(Fluoro) (methyl) sulfobenzoic anhydride,
(Chloro) (methyl) sulfobenzoic anhydride,
(Fluoro) (methoxy) sulfobenzoic anhydride,
(Chloro) (methoxy) sulfobenzoic anhydride,
Di (fluoro) (methoxy) sulfobenzoic anhydride,
Di (trifluoro) (vinyl) sulfobenzoic anhydride,
(Fluoro) (vinyl) sulfobenzoic anhydride,
Di (trifluoro) (ethynyl) sulfobenzoic anhydride,
(Fluoro) (ethynyl) sulfobenzoic anhydride,
And the like.
Among these, sulfobenzoic anhydride (hereinafter also referred to as “compound (C-1)”) is particularly preferred.
 添加剤Dは、下記式(D)で表される化合物からなる群から選択される少なくとも1種である。 The additive D is at least one selected from the group consisting of compounds represented by the following formula (D).
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式(D)中、Rd21~Rd24は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。 In the formula (D), R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a group represented by the formula (b) Represents In the formulas (a) and (b), * represents a bonding position.
 式(D)中、Rd21~Rd24で表される炭素数1~6の炭化水素基としては、アルキル基、アルケニル基、又はアルキニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が特に好ましい。
 式(D)中、Rd21~Rd24で表される炭素数1~6の炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
In the formula (D), the hydrocarbon group having 1 to 6 carbon atoms represented by R d21 to R d24 is preferably an alkyl group, an alkenyl group or an alkynyl group, more preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. Is particularly preferred.
In the formula (D), the number of carbon atoms of the hydrocarbon group having 1 to 6 carbon atoms represented by R d21 to R d24 is preferably 1 or 2, and particularly preferably 1.
 式(D)で表される化合物の具体例としては、下記式(D2-1)~下記式(D2-4)で表される化合物(以下、それぞれ、化合物(D2-1)~化合物(D2-4)ともいう)が挙げられるが、式(D)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(D2-1)~化合物(D2-3)が特に好ましい。
Specific examples of the compound represented by the formula (D) include compounds represented by the following formulas (D2-1) to (D2-4) (hereinafter, compounds (D2-1) to (D2), respectively) -4)), but the compound represented by the formula (D) is not limited to these specific examples.
Among these, compounds (D2-1) to (D2-3) are particularly preferred.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
<非水溶媒>
 非水電解液は、一般的に、非水溶媒を含有する。
 非水電解液に含有される非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
 非水溶媒としては、種々公知のものを適宜選択することができる。
 非水溶媒としては、例えば、特開2017-45723号公報の段落0069~0087に記載の非水溶媒を用いることができる。
<Non-aqueous solvent>
The non-aqueous electrolyte generally contains a non-aqueous solvent.
The non-aqueous solvent contained in the non-aqueous electrolyte may be only one kind or two or more kinds.
Various known nonaqueous solvents can be appropriately selected.
As the non-aqueous solvent, for example, the non-aqueous solvents described in paragraphs 0069 to 0087 of JP-A-2017-45723 can be used.
 非水溶媒は、環状カーボネート化合物及び鎖状カーボネート化合物を含むことが好ましい。
 この場合、非水溶媒に含まれる環状カーボネート化合物及び鎖状カーボネート化合物は、それぞれ、1種のみであってもよいし2種以上であってもよい。
The non-aqueous solvent preferably contains a cyclic carbonate compound and a chain carbonate compound.
In this case, each of the cyclic carbonate compound and the chain carbonate compound contained in the non-aqueous solvent may be only one kind or two or more kinds.
 環状カーボネート化合物としては、例えば、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネート等が挙げられる。
 これらのうち、誘電率が高い、エチレンカーボネート及びプロピレンカーボネートが好適である。黒鉛を含む負極活物質を使用した電池の場合は、非水溶媒は、エチレンカーボネートを含むことがより好ましい。
Examples of the cyclic carbonate compound include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and the like.
Of these, ethylene carbonate and propylene carbonate, which have a high dielectric constant, are preferred. In the case of a battery using a negative electrode active material containing graphite, the non-aqueous solvent more preferably contains ethylene carbonate.
 鎖状カーボネート化合物としては、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、等が挙げられる。 As the chain carbonate compound, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, ethyl pentyl Examples thereof include carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, and dioctyl carbonate.
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。 As a combination of a cyclic carbonate and a chain carbonate, specifically, ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, propylene carbonate and Diethyl carbonate, ethylene carbonate, propylene carbonate, and methyl ethyl carbonate, ethylene carbonate, propylene carbonate, and diethyl carbonate, ethylene carbonate, dimethyl carbonate, and methyl ethyl carbonate, ethylene carbonate, dimethyl carbonate, and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl Examples include carbonate and diethyl carbonate, ethylene carbonate, propylene carbonate, dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate.
 環状カーボネート化合物と鎖状カーボネート化合物の混合割合は、質量比で表して、環状カーボネート化合物:鎖状カーボネート化合物が、例えば5:95~80:20、好ましくは10:90~70:30、更に好ましくは15:85~55:45である。このような比率にすることによって、非水電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる非水電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた非水電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。 The mixing ratio of the cyclic carbonate compound and the chain carbonate compound is represented by mass ratio, and the ratio of the cyclic carbonate compound to the chain carbonate compound is, for example, 5:95 to 80:20, preferably 10:90 to 70:30, and more preferably. Is from 15:85 to 55:45. With such a ratio, the increase in the viscosity of the non-aqueous electrolyte can be suppressed, and the degree of dissociation of the electrolyte can be increased. Therefore, the conductivity of the non-aqueous electrolyte relating to the charge and discharge characteristics of the battery can be increased. . Further, the solubility of the electrolyte can be further increased. Therefore, a non-aqueous electrolyte having excellent electrical conductivity at normal temperature or low temperature can be obtained, and the load characteristics of the battery at normal temperature to low temperature can be improved.
 非水溶媒は、環状カーボネート化合物及び鎖状カーボネート化合物以外のその他の化合物を含んでいてもよい。
 この場合、非水溶媒に含まれるその他の化合物は、1種のみであってもよいし、2種以上であってもよい。
 その他の化合物としては、環状カルボン酸エステル化合物(例えばγブチロラクトン)、環状スルホン化合物、環状エーテル化合物、鎖状カルボン酸エステル化合物、鎖状エーテル化合物、鎖状リン酸エステル化合物、アミド化合物、鎖状カーバメート化合物、環状アミド化合物、環状ウレア化合物、ホウ素化合物、ポリエチレングリコール誘導体、等が挙げられる。
 これらの化合物については、特開2017-45723号公報の段落0069~0087の記載を適宜参照できる。
The non-aqueous solvent may contain other compounds other than the cyclic carbonate compound and the chain carbonate compound.
In this case, the other compound contained in the non-aqueous solvent may be only one kind or two or more kinds.
Other compounds include a cyclic carboxylate compound (eg, γ-butyrolactone), a cyclic sulfone compound, a cyclic ether compound, a linear carboxylate compound, a linear ether compound, a linear phosphate ester compound, an amide compound, and a linear carbamate. Compounds, cyclic amide compounds, cyclic urea compounds, boron compounds, polyethylene glycol derivatives, and the like.
Regarding these compounds, the description in paragraphs 0069 to 0087 of JP-A-2017-45723 can be appropriately referred to.
 非水溶媒中に占める、環状カーボネート化合物及び鎖状カーボネート化合物の割合は、好ましくは80質量%以上であり、より好ましくは90質量%以上であり、更に好ましくは95質量%以上である。
 非水溶媒中に占める、環状カーボネート化合物及び鎖状カーボネート化合物の割合は、100質量%であってもよい。
The proportion of the cyclic carbonate compound and the chain carbonate compound in the nonaqueous solvent is preferably 80% by mass or more, more preferably 90% by mass or more, and further preferably 95% by mass or more.
The proportion of the cyclic carbonate compound and the chain carbonate compound in the nonaqueous solvent may be 100% by mass.
 非水電解液中に占める非水溶媒の割合は、好ましくは60質量%以上であり、より好ましくは70質量%以上である。
 非水電解液中に占める非水溶媒の割合の上限は、他の成分(添加剤、電解質、等)の含有量にもよるが、上限は、例えば99質量%であり、好ましくは97質量%であり、更に好ましくは90質量%である。
The proportion of the non-aqueous solvent in the non-aqueous electrolyte is preferably at least 60% by mass, more preferably at least 70% by mass.
Although the upper limit of the proportion of the nonaqueous solvent in the nonaqueous electrolyte depends on the content of other components (additives, electrolytes, etc.), the upper limit is, for example, 99% by mass, and preferably 97% by mass. And more preferably 90% by mass.
 第1実施形態の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。 The non-aqueous electrolyte of the first embodiment is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, It can also be used as an electrolyte for multilayer capacitors and aluminum electrolytic capacitors.
〔電池用非水電解液(第2実施形態)〕
 本開示の第2実施形態の電池用非水電解液(以下、単に「第2実施形態の非水電解液」ともいう)は、
 ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを含む電解質と、
 下記式(E)で表される化合物からなる群から選択される少なくとも1種である添加剤と、を含有する。
[Non-aqueous electrolyte for battery (second embodiment)]
The non-aqueous electrolyte for a battery according to the second embodiment of the present disclosure (hereinafter, also simply referred to as “non-aqueous electrolyte of the second embodiment”) is
An electrolyte comprising lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide;
And at least one additive selected from the group consisting of compounds represented by the following formula (E).
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 式(E)中、R11~R14は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。 In the formula (E), R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.
 第2実施形態の非水電解液によれば、保存後の電池抵抗を低減できる。
 かかる効果が奏される理由は明らかではないが、上記式(E)で表される化合物からなる群から選択される少なくとも1つである添加剤を含有する非水電解液に対し、電解質として、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを組み合わせたものを使用することにより、電池保存後における抵抗が低い良質な被膜が、電極表面に形成されるためと考えられる。
According to the non-aqueous electrolyte of the second embodiment, the battery resistance after storage can be reduced.
The reason why such an effect is exhibited is not clear, but a non-aqueous electrolytic solution containing at least one additive selected from the group consisting of the compounds represented by the above formula (E), as an electrolyte, It is considered that by using a combination of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide, a good quality film having low resistance after storage of the battery is formed on the electrode surface.
 したがって、第2実施形態の非水電解液では、電解質として、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを併用することにより、電解質として、ヘキサフルオロリン酸リチウムを単独で使用した場合と比較して、保存時の電解質の安定性が向上すると考えられる。その結果、電池の保存特性(特に高温保存特性)に優れる。 Therefore, in the non-aqueous electrolyte of the second embodiment, by using lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in combination as the electrolyte, the case where lithium hexafluorophosphate is used alone as the electrolyte is used. In comparison, it is considered that the stability of the electrolyte during storage is improved. As a result, the storage characteristics (particularly, high-temperature storage characteristics) of the battery are excellent.
 以下、第2実施形態の非水電解液の各成分について説明する。 Hereinafter, each component of the nonaqueous electrolyte of the second embodiment will be described.
<電解質>
 第2実施形態の非水電解液は、ヘキサフルオロリン酸リチウム(以下、LiPFともいう)及びリチウムビス(フルオロスルホニル)イミド(以下、LiFSIともいう。)を両方含む電解質を含有する。
<Electrolyte>
The non-aqueous electrolyte of the second embodiment contains an electrolyte containing both lithium hexafluorophosphate (hereinafter also referred to as LiPF 6 ) and lithium bis (fluorosulfonyl) imide (hereinafter also referred to as LiFSI).
 第2実施形態の非水電解液における電解質において、LiPF及びLiFSIの合計に対するLiFSIの含有モル比(以下、モル比〔LiFSI/(LiPF+LiFSI)〕ともいう)は、0.050以上0.85以下である。
 モル比〔LiFSI/(LiPF+LiFSI)〕が0.050以上であることにより、保存後の電池抵抗が低減される。保存後の電池抵抗をより低減させる観点から、モル比〔LiFSI/(LiPF+LiFSI)〕は、好ましくは0.080以上であり、より好ましくは0.10以上であり、更に好ましくは0.15以上である。
 一方、モル比〔LiFSI/(LiPF+LiFSI)〕が、0.85以下であることは、電気伝導率、耐酸化性等の点で有利である。電気伝導率及び耐酸化性の観点から、モル比〔LiFSI/(LiPF+LiFSI)〕は、0.50以下であってもよいし、0.50未満であってもよいし、0.40以下であってもよし、0.30以下であってもよいし、0.20以下であってもよい。
In the electrolyte in the nonaqueous electrolytic solution of the second embodiment, the molar ratio of the content of LiFSI to the sum of LiPF 6 and LiFSI (hereinafter, also referred to as the molar ratio [LiFSI / (LiPF 6 + LiFSI)]) is 0.050 0. 85 or less.
When the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.050 or more, the battery resistance after storage is reduced. From the viewpoint of further reducing the battery resistance after storage, the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is preferably 0.080 or more, more preferably 0.10 or more, and still more preferably 0.15 or more. That is all.
On the other hand, the fact that the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.85 or less is advantageous in terms of electrical conductivity, oxidation resistance, and the like. From the viewpoints of electrical conductivity and oxidation resistance, the molar ratio [LiFSI / (LiPF 6 + LiFSI)] may be 0.50 or less, may be less than 0.50, or may be 0.40 or less. , May be 0.30 or less, or may be 0.20 or less.
 第2実施形態の非水電解液において、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドの総濃度は特に制限はないが、総濃度は、好ましくは0.1mol/L~3mol/Lであり、より好ましくは0.5mol/L~2mol/Lである。 In the non-aqueous electrolyte of the second embodiment, the total concentration of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide is not particularly limited, but the total concentration is preferably 0.1 mol / L to 3 mol / L. And more preferably from 0.5 mol / L to 2 mol / L.
 第2実施形態の非水電解液における電解質は、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミド以外のその他の化合物を少なくとも1種含んでいてもよい。
 第2実施形態における電解質に含まれ得るその他の化合物の例は、前述した第1実施形態における電解質に含まれ得るその他の化合物の例と同様である。
The electrolyte in the nonaqueous electrolyte of the second embodiment may contain at least one compound other than lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide.
Examples of other compounds that can be included in the electrolyte according to the second embodiment are the same as the examples of other compounds that can be included in the electrolyte according to the first embodiment.
 第2実施形態における電解質中に占める、ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドの合計の質量比率は、好ましくは50質量%~100質量%であり、より好ましくは80質量%~100質量%であり、更に好ましくは90質量%~100質量%である。 The total mass ratio of lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide in the electrolyte in the second embodiment is preferably 50% by mass to 100% by mass, and more preferably 80% by mass to 100% by mass. %, More preferably 90 to 100% by mass.
<添加剤>
 第2実施形態の非水電解液は、下記式(E)で表される化合物(以下、「添加剤E」ともいう)からなる群から選択される少なくとも1種である添加剤を含有する。
<Additives>
The non-aqueous electrolyte solution of the second embodiment contains at least one additive selected from the group consisting of compounds represented by the following formula (E) (hereinafter, also referred to as “additive E”).
 上記の添加剤Eの含有量は、非水電解液の全量に対し、0.001質量%~10質量%が好ましく、0.003質量%~5質量%がより好ましく、0.003質量%~3質量%であることが更に好ましく、0.03質量%~3質量%であることが更に好ましく、0.1~3質量%であることが特に好ましい。 The content of the above-mentioned additive E is preferably 0.001% by mass to 10% by mass, more preferably 0.003% by mass to 5% by mass, and more preferably 0.003% by mass to the total amount of the nonaqueous electrolyte. The content is more preferably 3% by mass, more preferably 0.03% by mass to 3% by mass, and particularly preferably 0.1% to 3% by mass.
 添加剤Eは、下記式(E)で表される化合物からなる群から選択される少なくとも1種である。 The additive E is at least one selected from the group consisting of compounds represented by the following formula (E).
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 式(E)中、R11~R14は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。 In the formula (E), R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms.
 式(E)中、R11~R14で表される炭素数1~3の炭化水素基としては、アルキル基、アルケニル基、又はアルキニル基が好ましく、アルキル基又はアルケニル基がより好ましく、アルキル基が特に好ましい。
 式(A)中、R11~R14で表される炭素数1~3の炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
In Formula (E), the hydrocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably an alkyl group, an alkenyl group, or an alkynyl group, more preferably an alkyl group or an alkenyl group, and more preferably an alkyl group. Is particularly preferred.
In the formula (A), the number of carbon atoms of the hydrocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably 1 or 2, and particularly preferably 1.
 式(E)中、R11~R14で表される炭素数1~3のフッ化炭化水素基としては、フッ化アルキル基、フッ化アルケニル基、又はフッ化アルキニル基が好ましく、フッ化アルキル基又はフッ化アルケニル基がより好ましく、フッ化アルキル基が特に好ましい。
 式(E)中、R11~R14で表される炭素数1~3のフッ化炭化水素基の炭素数としては、1又は2が好ましく、1が特に好ましい。
In the formula (E), the fluorocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably an alkyl fluoride group, an alkenyl fluoride group, or an alkynyl fluoride group. Groups or alkenyl fluoride groups are more preferred, and fluorinated alkyl groups are particularly preferred.
In the formula (E), the number of carbon atoms of the fluorocarbon group having 1 to 3 carbon atoms represented by R 11 to R 14 is preferably 1 or 2, and particularly preferably 1.
 式(E)中、R11~R14は、それぞれ独立に、水素原子、フッ素原子、メチル基、エチル基、トリフルオロメチル基、又はペンタフルオロエチル基が好ましく、水素原子又はメチル基がより好ましく、水素原子が特に好ましい。 In the formula (E), R 11 to R 14 are each independently preferably a hydrogen atom, a fluorine atom, a methyl group, an ethyl group, a trifluoromethyl group, or a pentafluoroethyl group, more preferably a hydrogen atom or a methyl group. And a hydrogen atom is particularly preferred.
 式(E)で表される化合物の具体例としては、下記式(E-1)~下記式(E-21)で表される化合物(以下、それぞれ、化合物(E-1)~化合物(E-21)ともいう)が挙げられるが、式(E)で表される化合物は、これらの具体例には限定されない。
 これらのうち、化合物(E-1)(即ち、1,3-プロペンスルトン;以下、「PRS」ともいう)が特に好ましい。
Specific examples of the compound represented by the formula (E) include compounds represented by the following formulas (E-1) to (E-21) (hereinafter, compounds (E-1) to (E), respectively) -21)), but the compound represented by the formula (E) is not limited to these specific examples.
Among these, compound (E-1) (that is, 1,3-propene sultone; hereinafter, also referred to as “PRS”) is particularly preferred.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
<非水溶媒>
 第2実施形態の非水電解液は、一般的に、非水溶媒を含有する。
 第2実施形態の非水電解液に含有される非水溶媒の好ましい態様は、第1実施形態の非水電解液に含有される非水溶媒の好ましい態様と同様である。
<Non-aqueous solvent>
The non-aqueous electrolyte of the second embodiment generally contains a non-aqueous solvent.
Preferred aspects of the non-aqueous solvent contained in the non-aqueous electrolyte of the second embodiment are the same as preferred aspects of the non-aqueous solvent contained in the non-aqueous electrolyte of the first embodiment.
 第2実施形態の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。 The non-aqueous electrolyte of the second embodiment is not only suitable as a non-aqueous electrolyte for a lithium secondary battery, but also a non-aqueous electrolyte for a primary battery, a non-aqueous electrolyte for an electrochemical capacitor, It can also be used as an electrolyte for multilayer capacitors and aluminum electrolytic capacitors.
〔リチウム二次電池〕
 次に、本開示のリチウム二次電池について説明する。
 本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液(即ち、前述した第1実施形態の非水電解液又は第2実施形態の非水電解液。以下同じ。)と、を含む。
[Lithium secondary battery]
Next, the lithium secondary battery of the present disclosure will be described.
The lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and a non-aqueous electrolyte of the present disclosure (that is, the non-aqueous electrolyte of the first embodiment or the non-aqueous electrolyte of the second embodiment described above. The same applies hereinafter. ).
(負極)
 負極は、負極活物質及び負極集電体を含んでもよい。
 負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
 これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状いずれの形態であってもよい。
(Negative electrode)
The negative electrode may include a negative electrode active material and a negative electrode current collector.
As the negative electrode active material of the negative electrode, metallic lithium, a lithium-containing alloy, a metal or alloy capable of being alloyed with lithium, an oxide capable of doping / undoping lithium ions, and capable of doping / dedoping lithium ions At least one selected from the group consisting of a transition metal nitride and a carbon material capable of doping / dedoping lithium ions (may be used alone, or a mixture containing two or more thereof may be used. Good) can be used.
Examples of the metal or alloy that can be alloyed with lithium (or lithium ion) include silicon, a silicon alloy, tin, and a tin alloy. Further, lithium titanate may be used.
Among these, carbon materials capable of doping / dedoping lithium ions are preferable. Examples of such a carbon material include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), and amorphous carbon materials. The form of the carbon material may be any of a fibrous form, a spherical form, a potato form, and a flake form.
 上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
 上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
Specific examples of the amorphous carbon material include hard carbon, coke, mesocarbon microbeads (MCMB) fired at 1500 ° C. or lower, mesophase pitch carbon fiber (MCF), and the like.
Examples of the graphite material include natural graphite and artificial graphite. As artificial graphite, graphitized MCMB, graphitized MCF and the like are used. As the graphite material, a material containing boron or the like can be used. As the graphite material, a material coated with a metal such as gold, platinum, silver, copper, tin, etc., a material coated with amorphous carbon, or a mixture of amorphous carbon and graphite can also be used.
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
These carbon materials may be used alone or in combination of two or more.
As the carbon material, a carbon material having a plane distance d (002) of (002) plane measured by X-ray analysis of 0.340 nm or less is particularly preferable. Further, as the carbon material, graphite having a true density of 1.70 g / cm 3 or more, or a highly crystalline carbon material having properties close thereto is also preferable. The use of such a carbon material can further increase the energy density of the battery.
 負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
The material of the negative electrode current collector in the negative electrode is not particularly limited, and any known material can be used.
Specific examples of the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel-plated steel. Among them, copper is particularly preferable from the viewpoint of ease of processing.
(正極)
 正極は、正極活物質及び正極集電体を含んでもよい。
 正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、α-NaFeO型結晶構造を有するLi1+αMe1-α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1-α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
 正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
(Positive electrode)
The positive electrode may include a positive electrode active material and a positive electrode current collector.
As the positive electrode active material in the positive electrode, transition metal oxides or transition metal sulfides such as MoS 2 , TiS 2 , MnO 2 , V 2 O 5 , LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , LiNiO 2 , and LiNi X Co (1-X) O 2 [0 <X <1], Li 1 + α Me 1-α O 2 having α-NaFeO 2 type crystal structure (Me is a transition metal element containing Mn, Ni and Co, 1.0 ≤ (1 + α) / (1-α) ≤1.6), LiNi x Co y Mn z O 2 [x + y + z = 1, 0 <x <1, 0 <y <1, 0 <z <1] (for example, A composite oxide composed of lithium and a transition metal, such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 ), LiFePO 4 , LiMnPO 4 , Polyaniline, Li thiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazoles, conductive polymer materials such as polyaniline complex thereof. Among these, a composite oxide composed of lithium and a transition metal is particularly preferable. When the negative electrode is lithium metal or a lithium alloy, a carbon material can be used as the positive electrode. In addition, a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
One type of the positive electrode active material may be used, or two or more types may be mixed and used. When the positive electrode active material has insufficient conductivity, the positive electrode can be used together with a conductive auxiliary to form a positive electrode. Examples of the conductive auxiliary agent include carbon materials such as carbon black, amorphous whiskers, and graphite.
 正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
The material of the positive electrode current collector in the positive electrode is not particularly limited, and any known material can be used.
Specific examples of the positive electrode current collector include, for example, metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium, and tantalum; carbon materials such as carbon cloth and carbon paper;
(セパレータ)
 本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
 セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
(Separator)
The lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
The separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include a porous film and a polymer electrolyte.
As the porous film, a microporous polymer film is suitably used, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester, and the like.
In particular, a porous polyolefin is preferable, and specific examples thereof include a porous polyethylene film, a porous polypropylene film, and a multilayer film of a porous polyethylene film and a polypropylene film. Another resin having excellent thermal stability may be coated on the porous polyolefin film.
Examples of the polymer electrolyte include a polymer in which a lithium salt is dissolved, a polymer swelled with an electrolytic solution, and the like.
The non-aqueous electrolyte of the present disclosure may be used for the purpose of obtaining a polymer electrolyte by swelling a polymer.
(電池の構成)
 本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
(Battery configuration)
The lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical shape, a coin shape, a square shape, a laminate shape, a film shape, or any other shape. However, the basic structure of the battery is the same regardless of the shape, and the design can be changed according to the purpose.
 本開示のリチウム二次電池(非水電解液二次電池)の例として、ラミネート型電池が挙げられる。
 図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
 図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
 ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
 上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
 同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
 なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
Examples of the lithium secondary battery (nonaqueous electrolyte secondary battery) of the present disclosure include a laminated battery.
FIG. 1 is a schematic perspective view illustrating an example of a laminated battery that is an example of the lithium secondary battery of the present disclosure. FIG. 2 is a diagram illustrating a thickness of a laminated electrode body housed in the laminated battery illustrated in FIG. It is a schematic sectional drawing of a direction.
The laminated battery shown in FIG. 1 contains a non-aqueous electrolyte (not shown in FIG. 1) and a laminated electrode body (not shown in FIG. 1), and the peripheral edge is sealed. And a laminate exterior body 1 the inside of which is sealed. As the laminate case 1, for example, a laminate case made of aluminum is used.
As shown in FIG. 2, the laminated electrode body accommodated in the laminate exterior body 1 includes a laminated body in which a positive electrode plate 5 and a negative electrode plate 6 are alternately laminated with a separator 7 interposed therebetween. And a separator 8 surrounding the periphery. The non-aqueous electrolyte of the present disclosure is impregnated in the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8.
Each of the plurality of positive plates 5 in the stacked electrode body is electrically connected to the positive terminal 2 via a positive tab (not shown). It protrudes outward from the peripheral end (FIG. 1). The portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate exterior body 1 is sealed by an insulating seal 4.
Similarly, each of the plurality of negative electrodes 6 in the stacked electrode body is electrically connected to the negative electrode terminal 3 via a negative electrode tab (not shown). It protrudes outward from the peripheral end of the body 1 (FIG. 1). The portion where the negative electrode terminal 3 protrudes at the peripheral end of the laminate exterior body 1 is sealed with an insulating seal 4.
In the laminated battery according to the above-described example, the number of the positive electrode plates 5 is five and the number of the negative electrode plates 6 is six. The outer layers are all laminated so as to be the negative electrode plate 6. However, the number of positive electrodes, the number of negative electrodes, and the arrangement in the laminated battery are not limited to this example, and it goes without saying that various changes may be made.
 本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
 図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
 図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
 この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。
Another example of the lithium secondary battery of the present disclosure includes a coin-type battery.
FIG. 3 is a schematic perspective view illustrating an example of a coin-type battery which is another example of the lithium secondary battery of the present disclosure.
In the coin-type battery shown in FIG. 3, the disc-shaped negative electrode 12, the separator 15 into which a non-aqueous electrolyte is injected, the disc-shaped positive electrode 11, and spacer plates 17 and 18 made of stainless steel or aluminum are arranged in this order. In a stacked state, it is housed between a positive electrode can 13 (hereinafter, also referred to as a “battery can”) and a sealing plate 14 (hereinafter, also referred to as a “battery can lid”). The positive electrode can 13 and the sealing plate 14 are caulked and sealed via a gasket 16.
In this example, the non-aqueous electrolyte of the present disclosure is used as the non-aqueous electrolyte injected into the separator 15.
 なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
 即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
Note that the lithium secondary battery of the present disclosure is obtained by charging and discharging a lithium secondary battery (a lithium secondary battery before charging and discharging) including a negative electrode, a positive electrode, and the nonaqueous electrolyte of the present disclosure. Lithium secondary battery may be used.
That is, the lithium secondary battery of the present disclosure is, first, a negative electrode, a positive electrode, the non-aqueous electrolyte of the present disclosure, to prepare a lithium secondary battery before charging and discharging, and then, before this charging and discharging A lithium secondary battery (charged / discharged lithium secondary battery) manufactured by charging / discharging a lithium secondary battery at least once may be used.
 本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。 用途 The use of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known uses. For example, notebook computers, mobile computers, mobile phones, headphone stereos, video movies, LCD TVs, handy cleaners, electronic organizers, calculators, radios, backup power supplies, motors, automobiles, electric vehicles, motorcycles, electric motorcycles, bicycles, electric vehicles It can be widely used for small portable devices and large devices such as bicycles, lighting equipment, game machines, watches, power tools, cameras and the like.
 以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
 以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を意味する。
 また、「wt%」は、質量%を意味する。
Hereinafter, examples of the present disclosure will be described, but the present disclosure is not limited to the following examples.
In the following examples, “addition amount” means the content in the finally obtained non-aqueous electrolyte (that is, the amount based on the total amount of the finally obtained non-aqueous electrolyte).
Further, “wt%” means mass%.
 以下、実施例1~6、並びに、比較例1~6、A、及びBは、第1実施形態の非水電解液の実施例及び比較例であり、実施例101及び比較例101~104は、第2実施形態の非水電解液の実施例及び比較例である。 Hereinafter, Examples 1 to 6 and Comparative Examples 1 to 6, A and B are Examples and Comparative Examples of the non-aqueous electrolyte solution of the first embodiment, and Example 101 and Comparative Examples 101 to 104 are Examples and comparative examples of the non-aqueous electrolyte according to the second embodiment.
〔実施例1〕
 以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
 アモルファスコート天然黒鉛(97質量部)、カルボキシメチルセルロース(1質量部)及びSBRラテックス(2質量部)を水溶媒で混練してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ10μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層からなるシート状の負極を得た。このときの負極活物質層の塗布密度は12mg/cmであり、充填密度は1.5g/mlであった。
[Example 1]
A coin-type battery (test battery) as a lithium secondary battery was manufactured in the following procedure.
<Preparation of negative electrode>
Amorphous natural graphite (97 parts by mass), carboxymethylcellulose (1 part by mass) and SBR latex (2 parts by mass) were kneaded with an aqueous solvent to prepare a paste-like negative electrode mixture slurry.
Next, the negative electrode mixture slurry was applied to a 10 μm-thick strip-shaped copper foil negative electrode current collector, dried, and then compressed by a roll press to form a sheet-shaped negative electrode comprising the negative electrode current collector and the negative electrode active material layer. I got At this time, the coating density of the negative electrode active material layer was 12 mg / cm 2 , and the packing density was 1.5 g / ml.
<正極の作製>
 LiNi0.5Mn0.3Co0.2(90質量部)、アセチレンブラック(5質量部)及びポリフッ化ビニリデン(5質量部)を、N-メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質層とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は22mg/cmであり、充填密度は2.5g/mlであった。
<Preparation of positive electrode>
LiNi 0.5 Mn 0.3 Co 0.2 O 2 (90 parts by mass), acetylene black (5 parts by mass), and polyvinylidene fluoride (5 parts by mass) are kneaded using N-methylpyrrolidinone as a solvent to form a paste. Was prepared.
Next, this positive electrode mixture slurry is applied to a 20 μm-thick strip-shaped aluminum foil positive electrode current collector, dried, and then compressed by a roll press to form a sheet-shaped positive electrode comprising a positive electrode current collector and a positive electrode active material layer. I got At this time, the coating density of the positive electrode active material layer was 22 mg / cm 2 , and the packing density was 2.5 g / ml.
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質としてのLiPF及びLiFSI(リチウムビス(フルオロメチルスルホニル)イミドを、最終的に得られる非水電解液中におけるLiPFの濃度が1.0mol/Lとなり、かつ、最終的に得られる非水電解液中におけるLiFSIの濃度が0.2mol/Lとなるように溶解させた。即ち、最終的に得られる非水電解液中において、LiPF及びLiFSIの総濃度は1.2mol/Lであり、モル比〔LiFSI/(LiPF+LiFSI)〕は、0.17である。
 上記で得られた溶液に対して、
添加剤としてトリフルオロメチルスルホン酸リチウム(以下、「TFMSL」ともいう;添加剤Aの具体例)(添加量0.5質量%)、を添加し、非水電解液を得た。
<Preparation of non-aqueous electrolyte>
As non-aqueous solvents, ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 30:35:35 (mass ratio), respectively, to obtain a mixed solvent.
In the obtained mixed solvent, LiPF 6 and LiFSI (lithium bis (fluoromethylsulfonyl) imide) as electrolytes are used, and the concentration of LiPF 6 in the finally obtained non-aqueous electrolyte is 1.0 mol / L, and Was dissolved so that the concentration of LiFSI in the finally obtained non-aqueous electrolyte was 0.2 mol / L, that is, the total concentration of LiPF 6 and LiFSI in the finally obtained non-aqueous electrolyte. Is 1.2 mol / L, and the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.17.
For the solution obtained above,
Lithium trifluoromethylsulfonate (hereinafter also referred to as “TFMSL”; a specific example of additive A) (addition amount: 0.5% by mass) was added as an additive to obtain a non-aqueous electrolyte.
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
 得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に、上述の非水電解液20μLを注入し、セパレータと正極と負極とに含漬させた。
 次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
 以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウム二次電池)を得た。
<Preparation of coin battery>
The above-mentioned negative electrode was punched into a disk shape with a diameter of 14 mm and the above-mentioned positive electrode with a diameter of 13 mm, to obtain a coin-shaped negative electrode and a coin-shaped positive electrode, respectively. Further, a microporous polyethylene film having a thickness of 20 μm was punched into a disk having a diameter of 17 mm to obtain a separator.
The obtained coin-shaped negative electrode, separator, and coin-shaped positive electrode are laminated in this order in a stainless steel battery can (2032 size), and then 20 μL of the above-described non-aqueous electrolyte is placed in the battery can. It was injected and impregnated in the separator, the positive electrode and the negative electrode.
Next, an aluminum plate (thickness: 1.2 mm, diameter: 16 mm) and a spring were placed on the positive electrode, and the battery can was sealed by caulking the battery can lid via a polypropylene gasket.
As described above, a coin-type battery (that is, a coin-type lithium secondary battery) having a configuration shown in FIG. 3 having a diameter of 20 mm and a height of 3.2 mm was obtained.
<電池抵抗の評価>
 得られたコイン型電池に対し、コンディショニングを施し、コンディショニング後のコイン型電池について、電池抵抗の評価を行った。
 ここで、「コンディショニング」とは、コイン型電池を、恒温槽内で25℃にて、2.75Vと4.2Vとの間で充放電を三回繰り返すことを指す。
 以下、「高温保存」とは、コイン型電池を、恒温槽内で、80℃で48時間保存する操作を意味する。
 以下、電池抵抗(DCIR)は、-20℃の温度条件にて測定した。
<Evaluation of battery resistance>
Conditioning was performed on the obtained coin-type battery, and the battery resistance of the conditioned coin-type battery was evaluated.
Here, “conditioning” means that the coin-type battery is repeatedly charged and discharged three times between 2.75 V and 4.2 V at 25 ° C. in a thermostat.
Hereinafter, “high temperature storage” means an operation of storing coin type batteries at 80 ° C. for 48 hours in a thermostat.
Hereinafter, the battery resistance (DCIR) was measured under a temperature condition of −20 ° C.
(高温保存前の電池抵抗(DCIR)の測定)
 コンディショニング後のコイン型電池のSOC(State of Charge)を80%に調整し、次いで、以下の方法により、コイン型電池の高温保存前のDCIR(Direct current internal resistance;直流抵抗)を測定した。
 上述のSOC80%に調整されたコイン型電池を用い、放電レート0.2CでのCC10s放電を行った。
 ここで、CC10s放電とは、定電流(Constant Current)にて10秒間放電することを意味する。
 上記「放電レート0.2CでのCC10s放電」における、電流値(即ち、放電レート0.2Cに相当する電流値)と、電圧低下量(=放電開始前の電圧-放電開始後10秒目の電圧)と、に基づき直流抵抗を求め、得られた直流抵抗(Ω)を、コイン型電池の高温保存前の電池抵抗(Ω)とした。
(Measurement of battery resistance (DCIR) before high temperature storage)
The SOC (State of Charge) of the coin-type battery after conditioning was adjusted to 80%, and then the DCIR (Direct current internal resistance; DC resistance) of the coin-type battery before storage at high temperature was measured by the following method.
Using the coin-type battery adjusted to the above-mentioned SOC of 80%, CC10s discharge was performed at a discharge rate of 0.2C.
Here, the CC10s discharge means discharging at a constant current (Constant Current) for 10 seconds.
The current value (that is, the current value corresponding to a discharge rate of 0.2 C) and the voltage drop amount (= voltage before the start of discharge−10 seconds after the start of the discharge) in the “CC10s discharge at a discharge rate of 0.2 C” described above ), And the obtained DC resistance (Ω) was defined as the battery resistance (Ω) of the coin-type battery before storage at high temperature.
(高温保存後の電池抵抗(DCIR)の測定)
 コンディショニング後であってSOCを80%に調整する前のコイン型電池に対し、恒温槽内で25℃にて充電レート0.2Cで4.25VまでCC-CV充電し、次いで高温保存を施す操作を追加したこと以外は前述の高温保存前の電池抵抗の測定と同様にして、高温保存後の電池抵抗(Ω)を測定した。
 結果を表1に示す。
 ここで、CC-CV充電とは、定電流定電圧(Constant Current - Constant Voltage)を意味する。
(Measurement of battery resistance (DCIR) after high temperature storage)
CC-CV charging of the coin-type battery after conditioning and before adjusting the SOC to 80% to 4.25 V at a charging rate of 0.2 C at 25 ° C. in a thermostat, and then performing high-temperature storage. The battery resistance (Ω) after the high-temperature storage was measured in the same manner as the measurement of the battery resistance before the high-temperature storage described above, except that was added.
Table 1 shows the results.
Here, the CC-CV charging means a constant current-constant voltage.
(高温保存による電池抵抗の上昇率の測定)
 下記式により、高温保存による電池抵抗の上昇率(表1中では、単に「上昇率(%)」とする)を算出した。結果を表1に示す。
 高温保存による電池抵抗の上昇率(%)
= 〔(高温保存後の電池抵抗(Ω)-高温保存前の電池抵抗(Ω))/高温保存前の電池抵抗(Ω)〕×100
(Measurement of rise rate of battery resistance due to high temperature storage)
The rate of increase in battery resistance due to high-temperature storage (in Table 1, simply referred to as “rate of increase (%)”) was calculated by the following equation. Table 1 shows the results.
Increase rate of battery resistance due to high temperature storage (%)
= [(Battery resistance after high temperature storage (Ω)-battery resistance before high temperature storage (Ω)) / battery resistance before high temperature storage (Ω)] x 100
 上昇率(%)は、正の値となる場合だけでなく、負の値となる場合や0となる場合もある。
 上昇率(%)が正の値であることは、高温保存により、電池抵抗が上昇したことを意味し、上昇率(%)が負の値であることは、高温保存により、電池抵抗が低減されたことを意味し、上昇率(%)が0であることは、高温保存により、電池抵抗が変化しなかったことを意味する。
The rise rate (%) may be not only a positive value, but also a negative value or 0.
A positive rise rate (%) means that the battery resistance increased due to high-temperature storage, and a negative rise rate (%) means that the battery resistance decreased due to high-temperature storage. The fact that the rate of increase (%) is 0 means that the battery resistance did not change due to high-temperature storage.
〔実施例2~6、比較例1~6、A、B〕
 電解質の種類、電解質の濃度、添加剤の添加量の組み合わせを、表1に示すように変更したこと以外は実施例1と同様の操作を行った。
 結果を表1に示す。
[Examples 2 to 6, Comparative Examples 1 to 6, A and B]
The same operation as in Example 1 was performed except that the combination of the type of the electrolyte, the concentration of the electrolyte, and the amount of the additive was changed as shown in Table 1.
Table 1 shows the results.
 表1中、「-」は、該当する成分を含有しないことを意味する。
 表1中、添加剤の略称の下のかっこ内の数値は、その添加剤の添加量(質量%)を意味する。例えば、「TFMSL(0.5)」は、トリフルオロメチルスルホン酸リチウム(添加量0.5質量%)という意味である。また、「MSF(0.5)」は、メタンスルホニルフルオリド(添加量0.5質量%)という意味である。
 表1中、スルホ安息香酸は、式(C)で表される化合物のRc1~Rc4全てがそれぞれ水素原子であるものである。また、表1中、(D2-1)、(D2-2)、(D2-3)は、式(D)で表される化合物の具体例であり、詳細には、下記の化合物である。
In Table 1, "-" means that the corresponding component is not contained.
In Table 1, the numerical value in parentheses below the abbreviation of the additive means the amount (% by mass) of the additive. For example, “TFMSL (0.5)” means lithium trifluoromethylsulfonate (addition amount: 0.5% by mass). “MSF (0.5)” means methanesulfonyl fluoride (addition amount: 0.5% by mass).
In Table 1, sulfobenzoic acid is a compound represented by the formula (C) in which all of R c1 to R c4 are each a hydrogen atom. In Table 1, (D2-1), (D2-2), and (D2-3) are specific examples of the compound represented by the formula (D), and specifically, the following compounds.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表1に示すように、非水電解液中の電解質としてLiPF及びLiFSIを含有し、かつ、添加剤(添加剤A~Dの少なくとも1つ)を含有する実施例1~6の電池では、これらの条件のいずれか一つを満足しない比較例1~6、A、Bの電池と比較して、高温保存後の電池抵抗が低減されていた。
 特に、実施例1~6の電池では、LiPF及びLiFSIを含有するが、添加剤が含まれていない比較例Aの電池と比べ、いずれも高温保存後の電池抵抗が低減されていた。
 また、実施例1の電池と、実施例1と同様の添加剤を含有するがLiFSIが含有されていない比較例1の電池とを対比すると、実施例1の電池は高温保存後の電池抵抗が低減されていた。さらに、実施例1の電池は、同じ添加剤を含有する比較例1の電池と比べ、高温保存による電池抵抗の上昇率が抑制されていた。他の実施例2~6の電池についても同様の結果であった。
As shown in Table 1, in the batteries of Examples 1 to 6 containing LiPF 6 and LiFSI as electrolytes in the non-aqueous electrolyte and containing additives (at least one of additives A to D), The battery resistance after high-temperature storage was reduced as compared with the batteries of Comparative Examples 1 to 6, A and B, which did not satisfy any one of these conditions.
In particular, the batteries of Examples 1 to 6 each contained LiPF 6 and LiFSI, but had lower battery resistance after high-temperature storage than the batteries of Comparative Example A, which contained no additives.
Further, when comparing the battery of Example 1 with the battery of Comparative Example 1 containing the same additive as in Example 1 but not containing LiFSI, the battery of Example 1 has a battery resistance after high-temperature storage. Had been reduced. Further, in the battery of Example 1, the rate of increase in battery resistance due to high-temperature storage was suppressed as compared with the battery of Comparative Example 1 containing the same additive. Similar results were obtained for the batteries of the other Examples 2 to 6.
〔実施例101〕
 以下の手順にて、リチウム二次電池であるコイン型電池(試験用電池)を作製した。
<負極の作製>
 実施例1における負極の作製と同様にして、負極を作製した。
(Example 101)
A coin-type battery (test battery) as a lithium secondary battery was manufactured in the following procedure.
<Preparation of negative electrode>
A negative electrode was produced in the same manner as in the production of the negative electrode in Example 1.
<正極の作製>
 実施例1における正極の作製と同様にして、正極を作製した。
<Preparation of positive electrode>
A positive electrode was produced in the same manner as in the production of the positive electrode in Example 1.
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ30:35:35(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質としてのLiPF及びLiFSI(リチウムビス(フルオロメチルスルホニル)イミドを、最終的に得られる非水電解液中におけるLiPFの濃度が1.0mol/Lとなり、かつ、最終的に得られる非水電解液中におけるLiFSIの濃度が0.2mol/Lとなるように溶解させた。即ち、最終的に得られる非水電解液中において、LiPF及びLiFSIの総濃度は1.2mol/Lであり、モル比〔LiFSI/(LiPF+LiFSI)〕は、0.17である。
 上記で得られた溶液に対して、
添加剤として1,3-プロペンスルトン(以下、「PRS」ともいう;添加剤Eの具体例)(添加量0.5質量%)、を添加し、非水電解液を得た。
<Preparation of non-aqueous electrolyte>
As non-aqueous solvents, ethylene carbonate (EC), dimethyl carbonate (DMC), and methyl ethyl carbonate (EMC) were mixed at a ratio of 30:35:35 (mass ratio), respectively, to obtain a mixed solvent.
In the obtained mixed solvent, LiPF 6 and LiFSI (lithium bis (fluoromethylsulfonyl) imide) as electrolytes are used, and the concentration of LiPF 6 in the finally obtained non-aqueous electrolyte is 1.0 mol / L, and Was dissolved so that the concentration of LiFSI in the finally obtained non-aqueous electrolyte was 0.2 mol / L, that is, the total concentration of LiPF 6 and LiFSI in the finally obtained non-aqueous electrolyte. Is 1.2 mol / L, and the molar ratio [LiFSI / (LiPF 6 + LiFSI)] is 0.17.
For the solution obtained above,
As an additive, 1,3-propene sultone (hereinafter also referred to as “PRS”; a specific example of the additive E) (addition amount: 0.5% by mass) was added to obtain a non-aqueous electrolyte.
<コイン型電池の作製>
 非水電解液として、本実施例101における非水電解液を用いたこと以外は実施例1におけるコイン型電池の作製と同様にして、コイン型電池を得た。
<Preparation of coin battery>
A coin-type battery was obtained in the same manner as in the production of the coin-type battery in Example 1, except that the non-aqueous electrolyte in Example 101 was used as the non-aqueous electrolyte.
<電池抵抗の評価>
 上記で得られたコイン型電池に対し、電池抵抗(DCIR)の温度条件を、-20℃から25℃に変更したこと以外は実施例1における電池抵抗の評価と同様にして、電池抵抗の評価を行った。
 結果を表2に示す。
<Evaluation of battery resistance>
With respect to the coin-type battery obtained above, the evaluation of the battery resistance was performed in the same manner as the evaluation of the battery resistance in Example 1 except that the temperature condition of the battery resistance (DCIR) was changed from −20 ° C. to 25 ° C. Was done.
Table 2 shows the results.
〔比較例101~104〕
 電解質の種類、電解質の濃度、添加剤の添加量の組み合わせを、表2に示すように変更したこと以外は実施例101と同様の操作を行った。
 結果を表2に示す。
[Comparative Examples 101 to 104]
The same operation as in Example 101 was performed, except that the combination of the type of the electrolyte, the concentration of the electrolyte, and the amount of the additive was changed as shown in Table 2.
Table 2 shows the results.
 表2中、「-」は、該当する成分を含有しないことを意味する。
 表2中、添加剤の略称の下のかっこ内の数値は、その添加剤の添加量(質量%)を意味する。例えば、「PRS(0.5)」は、1,3-プロペンスルトン(添加量0.5質量%)という意味である。
In Table 2, "-" means that the corresponding component was not contained.
In Table 2, the numerical value in parentheses below the abbreviation of the additive means the amount (% by mass) of the additive. For example, “PRS (0.5)” means 1,3-propene sultone (addition amount: 0.5% by mass).
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表2に示すように、非水電解液中の電解質としてLiPF及びLiFSI、及び添加剤Eを含有し、かつ、モル比〔LiFSI/(LiPF+LiFSI)〕が0.050以上0.85以下の範囲内である実施例101の電池では、これらの条件のいずれか一つでも満足しない比較例101~104と比較して、高温保存後の電池抵抗が低減されていた。また、同様に実施例101の電池は、比較例101~104の電池と比較して、高温保存による電池抵抗の上昇が抑制されていた(表2の「上昇率」参照)。 As shown in Table 2, LiPF 6 and LiFSI as electrolytes in the non-aqueous electrolyte and additive E were contained, and the molar ratio [LiFSI / (LiPF 6 + LiFSI)] was 0.050 or more and 0.85 or less. In the battery of Example 101 falling within the range, the battery resistance after high-temperature storage was reduced as compared with Comparative Examples 101 to 104 which did not satisfy any one of these conditions. Similarly, in the battery of Example 101, the increase in battery resistance due to high-temperature storage was suppressed as compared with the batteries of Comparative Examples 101 to 104 (see “Rise rate” in Table 2).
 2018年9月13日に出願された日本国特許出願2018-171411の開示及び2018年7月30日に出願された日本国特許出願2018-142884の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2018-171411 filed on September 13, 2018 and the disclosure of Japanese Patent Application No. 2018-142884 filed on July 30, 2018 are incorporated herein by reference in their entirety. It is captured.
All documents, patent applications, and technical standards mentioned herein are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference. Incorporated herein by reference.

Claims (8)

  1.  ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを含む電解質と、
     下記式(A)で表される化合物、下記式(B)で表される化合物、下記式(C)で表される化合物、及び下記式(D)で表される化合物からなる群から選択される少なくとも1種である添加剤と、
    を含有する電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    〔式(A)中、Ra1は、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のフッ化炭化水素基を表す。〕
    Figure JPOXMLDOC01-appb-C000002

    〔式(B)中、Rb1は、水素原子、フッ素原子、炭素数1~6の炭化水素基、炭素数1~6の炭化水素オキシ基、又は炭素数1~6のフッ化炭化水素基を表す。〕
    Figure JPOXMLDOC01-appb-C000003

    〔式(C)中、Rc1~Rc4は、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6の炭化水素基、炭素数1~6のハロゲン化炭化水素基、炭素数1~6の炭化水素オキシ基、又は、炭素数1~6のハロゲン化炭化水素オキシ基を表す。〕
    Figure JPOXMLDOC01-appb-C000004

    〔式(D)中、Rd21~Rd24は、それぞれ独立に、水素原子、炭素数1~6の炭化水素基、式(a)で表される基、又は式(b)で表される基を表す。式(a)及び式(b)において、*は、結合位置を表す。〕
    An electrolyte comprising lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide;
    Selected from the group consisting of a compound represented by the following formula (A), a compound represented by the following formula (B), a compound represented by the following formula (C), and a compound represented by the following formula (D) At least one additive,
    Non-aqueous electrolyte for batteries containing.
    Figure JPOXMLDOC01-appb-C000001

    [In the formula (A), R a1 represents a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbon oxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. . ]
    Figure JPOXMLDOC01-appb-C000002

    [In the formula (B), R b1 represents a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 6 carbon atoms, a hydrocarbonoxy group having 1 to 6 carbon atoms, or a fluorinated hydrocarbon group having 1 to 6 carbon atoms. Represents ]
    Figure JPOXMLDOC01-appb-C000003

    [In the formula (C), R c1 to R c4 each independently represent a hydrogen atom, a halogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a halogenated hydrocarbon group having 1 to 6 carbon atoms, 6 represents a hydrocarbon oxy group or a halogenated hydrocarbon oxy group having 1 to 6 carbon atoms. ]
    Figure JPOXMLDOC01-appb-C000004

    [In the formula (D), R d21 to R d24 each independently represent a hydrogen atom, a hydrocarbon group having 1 to 6 carbon atoms, a group represented by the formula (a), or a formula (b) Represents a group. In the formulas (a) and (b), * represents a bonding position. ]
  2.  前記ヘキサフルオロリン酸リチウムと前記リチウムビス(フルオロスルホニル)イミドとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの含有モル比が0.01以上0.85以下である請求項1に記載の電池用非水電解液。 2. The battery according to claim 1, wherein a molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.01 to 0.85. 3. Non-aqueous electrolyte.
  3.  前記ヘキサフルオロリン酸リチウムと前記リチウムビス(フルオロスルホニル)イミドとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの含有モル比が0.08以上0.85以下である請求項1又は請求項2に記載の電池用非水電解液。 The content molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.08 or more and 0.85 or less. The non-aqueous electrolyte for a battery according to the above.
  4.  ヘキサフルオロリン酸リチウム及びリチウムビス(フルオロスルホニル)イミドを含む電解質と、
     下記式(E)で表される化合物からなる群から選択される少なくとも1種である添加剤と、
    を含有し、
     前記ヘキサフルオロリン酸リチウムと前記リチウムビス(フルオロスルホニル)イミドとの合計に対する前記リチウムビス(フルオロスルホニル)イミドの含有モル比が0.050以上0.85以下である電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000005

    〔式(E)中、R11~R14は、それぞれ独立に、水素原子、フッ素原子、炭素数1~3の炭化水素基、又は炭素数1~3のフッ化炭化水素基を表す。〕
    An electrolyte comprising lithium hexafluorophosphate and lithium bis (fluorosulfonyl) imide;
    An additive which is at least one selected from the group consisting of compounds represented by the following formula (E):
    Containing
    A nonaqueous electrolyte solution for a battery, wherein the molar ratio of the lithium bis (fluorosulfonyl) imide to the total of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.050 to 0.85.
    Figure JPOXMLDOC01-appb-C000005

    [In the formula (E), R 11 to R 14 each independently represent a hydrogen atom, a fluorine atom, a hydrocarbon group having 1 to 3 carbon atoms, or a fluorinated hydrocarbon group having 1 to 3 carbon atoms. ]
  5.  前記ヘキサフルオロリン酸リチウム及び前記リチウムビス(フルオロスルホニル)イミドの総濃度が、0.1mol/L以上3mol/L以下である請求項1~請求項4のいずれか1項に記載の電池用非水電解液。 The non-battery for a battery according to any one of claims 1 to 4, wherein a total concentration of the lithium hexafluorophosphate and the lithium bis (fluorosulfonyl) imide is 0.1 mol / L or more and 3 mol / L or less. Water electrolyte.
  6.  前記添加剤の含有量が、電池用非水電解液の全量に対し、0.001質量%以上10質量%以下である請求項1~請求項5のいずれか1項に記載の電池用非水電解液。 The non-aqueous solution for a battery according to any one of claims 1 to 5, wherein the content of the additive is 0.001% by mass or more and 10% by mass or less based on the total amount of the non-aqueous electrolyte for a battery. Electrolyte.
  7.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
     請求項1~請求項6のいずれか1項に記載の電池用非水電解液と、
    を含むリチウム二次電池。
    A positive electrode,
    Lithium metal, lithium-containing alloy, metal or alloy capable of being alloyed with lithium, oxide capable of doping / dedoping lithium ion, transition metal nitride capable of doping / dedoping lithium ion, and lithium A negative electrode containing, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of doping and undoping ions;
    A non-aqueous electrolyte for a battery according to any one of claims 1 to 6,
    Including lithium secondary batteries.
  8.  請求項7に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。 A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to claim 7.
PCT/JP2019/028479 2018-07-30 2019-07-19 Non-aqueous electrolytic solution for batteries, and lithium secondary battery WO2020026853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020533429A JP7264899B2 (en) 2018-07-30 2019-07-19 Non-aqueous electrolyte for batteries and lithium secondary batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018142884 2018-07-30
JP2018-142884 2018-07-30
JP2018171411 2018-09-13
JP2018-171411 2018-09-13

Publications (1)

Publication Number Publication Date
WO2020026853A1 true WO2020026853A1 (en) 2020-02-06

Family

ID=69231733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028479 WO2020026853A1 (en) 2018-07-30 2019-07-19 Non-aqueous electrolytic solution for batteries, and lithium secondary battery

Country Status (2)

Country Link
JP (1) JP7264899B2 (en)
WO (1) WO2020026853A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258205B1 (en) 2022-06-01 2023-04-14 住友精化株式会社 Electrodes for lithium ion batteries and lithium ion batteries

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379743B2 (en) * 2006-12-08 2009-12-09 ソニー株式会社 Electrolyte and secondary battery
JP2010219011A (en) * 2009-03-19 2010-09-30 Nec Energy Devices Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP2014192143A (en) * 2013-03-28 2014-10-06 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP5935318B2 (en) * 2011-12-26 2016-06-15 ソニー株式会社 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2016110900A (en) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
JP2016167437A (en) * 2014-03-25 2016-09-15 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same
JP6065367B2 (en) * 2011-06-07 2017-01-25 ソニー株式会社 Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2017204225A1 (en) * 2016-05-26 2017-11-30 森田化学工業株式会社 Method for producing bis(fluorosulfonyl)imide alkali metal salt and bis(fluorosulfonyl)imide alkali metal salt composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815150B2 (en) 2016-09-30 2021-01-20 旭化成株式会社 Non-aqueous lithium storage element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4379743B2 (en) * 2006-12-08 2009-12-09 ソニー株式会社 Electrolyte and secondary battery
JP2010219011A (en) * 2009-03-19 2010-09-30 Nec Energy Devices Ltd Nonaqueous electrolyte and nonaqueous electrolyte secondary battery using the same
JP6065367B2 (en) * 2011-06-07 2017-01-25 ソニー株式会社 Nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP5935318B2 (en) * 2011-12-26 2016-06-15 ソニー株式会社 Electrolyte for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, electric tool and electronic device
JP2014192143A (en) * 2013-03-28 2014-10-06 Shin Kobe Electric Mach Co Ltd Lithium ion battery
JP2016167437A (en) * 2014-03-25 2016-09-15 株式会社日本触媒 Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2016110900A (en) * 2014-12-09 2016-06-20 三星エスディアイ株式会社Samsung SDI Co., Ltd. Lithium ion secondary battery
WO2017204225A1 (en) * 2016-05-26 2017-11-30 森田化学工業株式会社 Method for producing bis(fluorosulfonyl)imide alkali metal salt and bis(fluorosulfonyl)imide alkali metal salt composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7258205B1 (en) 2022-06-01 2023-04-14 住友精化株式会社 Electrodes for lithium ion batteries and lithium ion batteries
WO2023234016A1 (en) * 2022-06-01 2023-12-07 住友精化株式会社 Electrode for lithium ion batteries, and lithium ion battery
JP2023176984A (en) * 2022-06-01 2023-12-13 住友精化株式会社 Electrode for lithium ion battery, and lithium ion battery

Also Published As

Publication number Publication date
JPWO2020026853A1 (en) 2021-08-02
JP7264899B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP7115724B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7103713B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
WO2020022452A1 (en) Nonaqueous electrolyte solution for batteries and lithium secondary battery
JP2022126851A (en) Nonaqueous electrolyte solution for batteries, and lithium secondary battery
JP7168158B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7264899B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7216805B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7395816B2 (en) Non-aqueous electrolytes for batteries and lithium secondary batteries
JP7060190B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6980502B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP6957179B2 (en) Non-aqueous electrolyte for batteries and lithium secondary battery
JP2019179614A (en) Electrolyte solution for batteries and lithium secondary battery
JP7347768B2 (en) Non-aqueous electrolytes for batteries and lithium secondary batteries
JP7206556B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7326681B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7070978B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7070979B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP7314458B2 (en) Non-aqueous electrolyte for batteries and lithium-ion secondary batteries
JP7423889B2 (en) Nonaqueous electrolytes for batteries and lithium ion secondary batteries
JP7259196B2 (en) Non-aqueous electrolyte for batteries and lithium secondary batteries
JP2018190569A (en) Nonaqueous electrolyte solution for battery, additive agent for battery, and lithium secondary battery
JP2022121281A (en) Non-aqueous electrolyte, lithium secondary battery precursor, lithium secondary battery, and lithium secondary battery production method
JP2019179613A (en) Electrolyte solution for batteries and lithium secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845056

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533429

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845056

Country of ref document: EP

Kind code of ref document: A1