WO2020026832A1 - Photoelectric sensor - Google Patents

Photoelectric sensor Download PDF

Info

Publication number
WO2020026832A1
WO2020026832A1 PCT/JP2019/028266 JP2019028266W WO2020026832A1 WO 2020026832 A1 WO2020026832 A1 WO 2020026832A1 JP 2019028266 W JP2019028266 W JP 2019028266W WO 2020026832 A1 WO2020026832 A1 WO 2020026832A1
Authority
WO
WIPO (PCT)
Prior art keywords
determination
model
photoelectric sensor
fifo memory
signal values
Prior art date
Application number
PCT/JP2019/028266
Other languages
French (fr)
Japanese (ja)
Inventor
火炎 木焦
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2020026832A1 publication Critical patent/WO2020026832A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H35/00Switches operated by change of a physical condition
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches

Definitions

  • the present invention relates to a photoelectric sensor having a function of determining a state of an object.
  • a sensor that detects the presence or absence of an object, it irradiates the object with light, detects light passing through the object, detects blocking of light by the object, and detects light reflected by the object Photoelectric sensors are used.
  • a visual sensor that images the target object with a camera and performs image analysis may be used.
  • Patent Document 1 stores a detection value corresponding to a background level as a zero reset reference value so that an arbitrary detection value can be displayed as a relative value based on the background level.
  • a structured photoelectric sensor is described.
  • Patent Document 2 a steel sheet surface is scanned with a laser beam, a plurality of characteristic amounts representing a reflected light waveform are calculated, and the characteristic amount is added to a neural network trained in advance, and a flaw / An inspection method for performing no output is described.
  • the present invention provides a photoelectric sensor that determines the state of an object with a simple configuration and with a small time delay.
  • a photoelectric sensor is a light emitting unit that emits light toward a detection range where an object arrives, a light receiving unit that acquires a time-series signal value based on light reception, A FIFO memory that stores a predetermined number of signal values in order and periodically updates the predetermined number of signal values with newly acquired signal values, and a predetermined number of signal values stored in the FIFO memory.
  • Storage unit for storing a determination model for determining the rank of the degree of coincidence between the waveform and the reference waveform corresponding to the specific state of the object, and a frequency once every time the FIFO memory is updated one or more times
  • a determination unit that performs a determination by the determination model and determines the state of the target object based on the rank of the degree of coincidence.
  • the waveform composed of the signal values stored in the FIFO memory and the reference waveform corresponding to the specific state of the target object are updated once every time the FIFO memory is updated one or more times.
  • the judgment model ⁇ may be a learned model generated by machine learning.
  • the learned model determines the rank of the degree of coincidence between the waveform constituted by the signal values stored in the FIFO memory and the reference waveform corresponding to the specific state of the target object, thereby enabling the conveyance. It is possible to more flexibly determine the state of an object that is successively carried on a line.
  • the determination model includes calculating a degree of coincidence from a difference between a predetermined number of signal values stored in the FIFO memory and a reference value corresponding to the predetermined number of signal values and representing a reference waveform. It may be.
  • the rank of the degree of coincidence between the waveform constituted by the signal values stored in the FIFO memory and the reference waveform corresponding to the specific state of the object is determined by a relatively simple model. It is possible to determine the state of an object that is successively transported on a transport line at a higher speed.
  • the determination model is a model that determines that the degree of coincidence is high when the degree of coincidence is higher than a predetermined value.
  • the determination unit The state of an object may be determined to be a specific state.
  • the determination model is a model that further determines that the matching degree is the middle rank when the matching degree is not higher than the predetermined value but is higher than a second predetermined value that is smaller than the predetermined value. In the range of time required for the object to pass through the detection range, when there is no case of the high rank and there is a case of the middle rank, even if it is determined that an object that is not in a specific state has arrived Good.
  • an operation control unit that generates a determination model based on the signal value and stores the generated determination model in the model storage unit may be further provided.
  • the photoelectric sensor can generate the determination model by itself, the determination model generated according to the actual target object can be used without acquiring the determination model from outside.
  • the operation control unit is configured to output a signal belonging to the fluctuation period when a fluctuation period in which the fluctuation of the time-series signal value is relatively large follows the stable period in which the fluctuation of the time-series signal value is relatively small.
  • the determination model may be generated based on the value.
  • the determination model can be generated by selectively using the signal value generated by the object from the signal values.
  • the operation control unit may be capable of outputting the determination model to the outside.
  • the generated determination model can be used by another photoelectric sensor, it is not necessary to repeat generation of the determination model for each of a plurality of photoelectric sensors used in the same target object and installation situation.
  • the operation control unit may be capable of outputting a time-series signal value to the outside.
  • the operation control unit may acquire the determination model from outside and store the determination model in the model storage unit.
  • the generation of the determination model can be omitted by diverting the determination model generated by another device, for example, another photoelectric sensor.
  • a photoelectric sensor that determines the state of an object with a simple configuration and with a small time delay.
  • FIG. 5 is a flowchart of processing in a learning mode and a determination mode of the photoelectric sensor according to the embodiment. 5 is a flowchart of a first example of a process of determining a state of an object by the photoelectric sensor according to the embodiment. It is a flowchart of the 2nd example of the process which determines the state of a target object by the photoelectric sensor which concerns on this embodiment.
  • FIG. 5 is a flowchart of processing in a learning mode and a determination mode of the photoelectric sensor according to the embodiment. 5 is a flowchart of a first example of a process of determining a state of an object by the photoelectric sensor according to the embodiment. It is a flowchart of the 2nd example of the process which determines the state of a target object by the photoelectric sensor which concerns on this embodiment.
  • FIG. 9 is a diagram illustrating an example of a signal value measured in an n-th cycle of the photoelectric sensor according to the embodiment.
  • FIG. 7 is a diagram illustrating an example of a signal value measured in an (n + 1) th cycle of the photoelectric sensor according to the embodiment.
  • FIG. 9 is a diagram illustrating another example of a signal value measured in an n-th cycle of the photoelectric sensor according to the embodiment. It is a figure showing other examples of the composition of the processing part of the photoelectric sensor concerning this embodiment. It is a figure showing the example which installs a judgment model from the outside in the photoelectric sensor concerning this embodiment.
  • the present embodiment an embodiment according to one aspect of the present invention (hereinafter, referred to as “the present embodiment”) will be described with reference to the drawings.
  • the components denoted by the same reference numerals have the same or similar configurations.
  • FIG. 1 is a diagram illustrating an outline of a detection system 1 including a photoelectric sensor 10 according to the present embodiment.
  • the detection system 1 includes a photoelectric sensor 10, a controller 20, a computer 30, a robot 40, and a transfer device 50.
  • the photoelectric sensor 10 is a device that detects that the object 100 has arrived in the detection range 10a of the photoelectric sensor 10 based on the acquired signal value, and determines the state of the object 100.
  • the photoelectric sensor 10 may be a reflection type photoelectric sensor, a transmission type photoelectric sensor, or a regression reflection type photoelectric sensor.
  • the photoelectric sensor 10 may be a displacement sensor that emits a laser beam to the object 100 and obtains a signal value corresponding to the distance to the object 100 based on the principle of triangulation.
  • the photoelectric sensor 10 may be a distance measuring sensor that obtains a signal value corresponding to the distance to the object 100 based on the round trip time of light reflected by the object 100.
  • the “signal value” includes a signal value corresponding to the distance to the object 100 in addition to the value of the amount of received light.
  • the target object 100 is an object to be detected by the photoelectric sensor 10, and may be, for example, a completed product to be produced or an unfinished product such as a part.
  • the object 100 illustrated in FIG. 1 is an object having a shape with a projection on a base.
  • the photoelectric sensor 10 is, for example, a reflective photoelectric sensor
  • the amount of reflected light detected increases.
  • the object 100 has a shape with a projection on the base, the amount of reflected light further increases if the object 100 has a projection in the detection range 10a.
  • the controller 20 controls the robot 40 and the transfer device 50.
  • the controller 20 may be composed of, for example, a PLC (Programmable Logic Controller).
  • the controller 20 detects that the object 100 has arrived based on the output from the photoelectric sensor 10, and further controls the robot 40 according to the determined state of the object 100.
  • the computer 30 sets the photoelectric sensor 10, the controller 20, and the robot 40. Further, the computer 30 acquires, from the controller 20, an execution result of the control by the controller 20. Furthermore, the computer 30 may include a learning device that generates a determination model for determining the state of the target object 100 by the photoelectric sensor 10 by machine learning.
  • the judgment model may be constituted by, for example, a neural network or a decision tree.
  • the robot 40 operates and processes the target object 100 under the control of the controller 20.
  • the robot 40 may, for example, pick up the object 100 and move it to another location, or cut or assemble the object 100.
  • the robot 40 may change the processing content or the destination depending on whether or not the target object 100 has a protrusion.
  • the transport device 50 is a device that transports the target object 100 under the control of the controller 20.
  • the transfer device 50 may be, for example, a belt conveyor, and may transfer the target object 100 at a speed set by the controller 20.
  • FIG. 2 is a diagram illustrating a configuration of the photoelectric sensor 10 according to the present embodiment.
  • the photoelectric sensor 10 includes a light emitting unit 11, a light receiving unit 12, a processing unit 13, an operation unit 14, and an output unit 15.
  • the light projecting unit 11 emits light toward the detection range 10a where the object 100 arrives.
  • the light projecting unit 11 may include a light projecting element 11a and a drive circuit 11b.
  • the light emitting element 11a may be configured by an LED (Light Emitting Diode) or a laser diode, and the drive circuit 11b controls a current for causing the light emitting element 11a to emit light.
  • the drive circuit 11b may cause the light emitting element 11a to emit pulses intermittently, for example, at a period of 0.1 ms.
  • the light emitted from the light projecting element 11a may be applied to the detection range 10a via a lens or an optical fiber (not shown).
  • the light receiving unit 12 acquires a time-series signal value based on light reception.
  • the light receiving section 12 may include a light receiving element 12a, an amplifier 12b, a sample / hold circuit 12c, and an A / D converter 12d.
  • the light receiving element 12a may be constituted by a photodiode, and converts the amount of received light into an electric output signal.
  • the light receiving unit 12 may make the light reflected or transmitted in the detection range 10a incident on the light receiving element 12a via a lens or an optical fiber (not shown).
  • the amplifier 12b amplifies the output signal of the light receiving element 12a.
  • the sample / hold circuit 12c holds the output signal of the light receiving element 12a amplified by the amplifier 12b in synchronization with the timing of pulse emission by the light projecting unit 11. Thereby, the influence of disturbance light is reduced.
  • the A / D converter 12d converts the analog signal value held by the sample / hold circuit 12c into a digital value of the amount of received light.
  • the processing unit 13 includes an operation control unit 13a, a FIFO (First In First Out) memory 13b, a model storage unit 13c, and a determination unit 13d.
  • the processing unit 13 may be configured as, for example, a computer including a microprocessor, a memory, and a program stored in the memory.
  • the operation control unit 13a may integrally control the operation of the photoelectric sensor 10 as a whole, in addition to processing for handling a determination model described later.
  • the ⁇ ⁇ ⁇ FIFO memory 13b stores a predetermined number of signal values in the order of acquisition, and periodically updates the predetermined number of signal values with newly acquired signal values.
  • the number of signal values stored in the FIFO memory 13b that is, the predetermined number is arbitrary, but may be, for example, about 100.
  • the FIFO memory 13b may be realized by dedicated hardware, or may be realized on a memory of the processing unit 13 according to a program of the processing unit 13. In this case, the shift of the signal value to the subsequent stage of the FIFO memory 13b can be performed not by physically shifting the stored data but by updating the access location on the memory.
  • the model storage unit 13c stores a determination model for determining a rank of the degree of coincidence between a waveform composed of a predetermined number of signal values stored in the FIFO memory 13b and a reference waveform corresponding to a specific state of the object 100.
  • the reference waveform may be a waveform of a typical signal value corresponding to a specific state of the object 100, for example, an average of waveforms obtained for a plurality of objects 100 in a specific state. Good.
  • the model storage unit 13c may store a learned model generated by machine learning as a determination model.
  • the learned model is learned so as to determine the rank of the degree of coincidence between a waveform composed of a predetermined number of signal values stored in the FIFO memory 13b and a reference waveform corresponding to a specific state of the object 100. Good.
  • the learned model may be generated by the computer 30 and stored in the model storage unit 13c.
  • the determination unit 13d performs the determination based on the determination model once every time the update of the FIFO memory 13b is performed once or a plurality of times, and generates a waveform composed of a predetermined number of signal values stored in the FIFO memory 13b.
  • the state of the object 100 is determined based on the rank of the degree of coincidence with the reference waveform corresponding to the specific state of the object 100. For example, when the reference waveform is a waveform of an object having a protrusion on the base, the determination unit 13d performs a determination using a determination model, and when the degree of coincidence is sufficiently high, the object 100 is It may be determined that the state is attached.
  • the waveform constituted by the signal values stored in the FIFO memory 13b and the reference corresponding to the specific state of the object 100 are updated once every time the FIFO memory 13b is updated one or more times.
  • the judgment model is a model including calculating the degree of coincidence from a difference between a predetermined number of signal values stored in the FIFO memory 13b and a reference value corresponding to the predetermined number of signal values and representing a reference waveform. May be.
  • the determination model may be a model that determines that the degree of coincidence is high when the degree of coincidence is higher than a predetermined value.
  • the determination unit 13 d May be determined to be a specific state.
  • the determination unit 13d may maintain the output indicating that the state of the target object 100 is in a specific state for a predetermined period even after the high rank determination result disappears.
  • the predetermined period may be approximately the time required for the object 100 to pass through the detection range 10a.
  • the determination unit 13d may determine the state of the target object 100 a plurality of times within a time range required for the target object 100 to pass through the detection range 10a.
  • the range of time required for the object 100 to pass through the detection range 10a may be incorporated in the determination model as the duration of the signal value fluctuation actually measured when the determination model is generated. Further, at the time of the determination operation, without detecting the start of the signal value fluctuation, the determination result obtained from the present to the past by the number of shifts corresponding to the duration is referred to as “the time required to pass through the detection range 10a”. Range ". Note that the period from when the start of the signal value fluctuation is detected to when the number of shifts corresponding to the duration is shifted may be defined as "the range of time required to pass through the detection range 10a".
  • the waveform constituted by the signal values stored in the FIFO memory 13b and the reference corresponding to the specific state of the object 100 It can be determined whether or not the rank of the degree of coincidence with the waveform is higher than a predetermined value.
  • the determination model may be a model that determines that the degree of coincidence is the middle rank when the degree of coincidence is not higher than the predetermined value but is higher than a second predetermined value that is smaller than the predetermined value.
  • the determination unit 13d determines the state of the target object 100 a plurality of times within the time required for the target object 100 to pass through the detection range 10a, and the determination result is not high rank in any of the plurality of determinations.
  • the determination unit 13d may determine that the matching degree is the middle rank.
  • the determination unit 13d may adjust the signal value magnification in consideration of the light amount deterioration due to window contamination or the like, and determine whether or not the coincidence is sufficiently high. That is, the determination unit 13d determines that the degree of coincidence between the waveform obtained by changing the magnification of the waveform constituted by the signal values stored in the FIFO memory 13b and the reference waveform corresponding to the specific state of the object 100 is higher than a predetermined value.
  • the state of the target object 100 may be determined depending on whether or not. By doing so, the state of the target object 100 can be stably determined even when the amount of projected light or the amount of received light changes due to window contamination or the like.
  • the determination model When a plurality of types of objects are mixed and conveyed, the determination model includes a waveform composed of signal values stored in the FIFO memory 13b and a reference waveform corresponding to a specific state of any type of the object 100. If the degree of coincidence with is higher than a predetermined value, the model may be determined to have a high degree of coincidence. Further, when the degree of coincidence is a high rank or a middle rank, the determination model itself indicates which type of object is the determination result, so that the determination unit 13d is determined to be a high rank or a middle rank.
  • the type of the target object 100 may be specified. Alternatively, the judgment model is prepared for each type of the object 100, and the judgment unit 13d specifies the type of the object 100 judged as the high rank or the middle rank depending on which judgment model judges the high rank or the middle rank. May be.
  • the determination unit 13d determines the waveform constituted by the acquired signal values and the reference corresponding to the first type of object.
  • the state of the transported object may be determined to be a specific state of the first type of object.
  • the determination unit 13d determines the state of the object being conveyed. May be determined to be a specific state of the second type of object.
  • the determination unit 13d does not determine the high rank of any of the objects, and determines that the degree of coincidence between the waveform formed by the acquired signal values and the reference waveform corresponding to the first type of object is medium.
  • the transported target object may be determined to be a first type target object that is not in a specific state.
  • the determination unit 13d does not determine a high rank for any of the objects, and determines that the degree of coincidence between the waveform formed by the acquired signal values and the reference waveform corresponding to the second type of object is medium.
  • the state of the transported object may be determined to be a second type of object that is not a specific state.
  • the determination unit 13d determines that the transported object is a first type of object that is not in a specific state or a second type of object that is not in a specific state. May not be specified.
  • the operation unit 14 operates the photoelectric sensor 10 and may include an operation switch, a display, and the like.
  • the operator of the photoelectric sensor 10 can use the operation unit 14 to input an instruction such as setting an operation mode of the photoelectric sensor 10 and to confirm an operation state.
  • the photoelectric sensor 10 according to the present embodiment includes, as operation modes, a learning mode for generating a determination model and a determination mode for determining the state of the target object 100 using the generated determination model. Good.
  • the output unit 15 outputs various data including the determination result by the determination unit 13d.
  • the output unit 15 may simply output the determination result by the determination unit 13d in binary.
  • the photoelectric sensor 10 may include a communication unit instead of the output unit 15 so that a large amount of data can be input and output.
  • FIG. 3 is a diagram illustrating an example of a configuration of the processing unit 13 of the photoelectric sensor 10 according to the present embodiment.
  • the processing unit 13 shifts the signal value stored in each stage of the FIFO memory 13b to the next stage by one, and converts the digital value of the received light amount output from the A / D converter 12d. It is stored in the first stage q0.
  • the number of stages of the FIFO memory 13b is set to ten from q0 to q9 to explain the principle, but the number of stages of the FIFO memory 13b may be larger, for example, about 100. .
  • the first cycle for updating the FIFO memory 13b may be the same as or different from the cycle of pulse emission by the light projecting unit 11.
  • the first cycle for updating the FIFO memory 13b may be the same as or different from the cycle of pulse emission of the light projecting unit 11 and conversion by the A / D converter 12d (referred to as a second cycle).
  • the second cycle may be fixed to a value unique to the photoelectric sensor 10 (for example, 0.1 ms).
  • the first cycle may be settable from the computer 30 shown in FIG.
  • the first cycle needs to be determined so that the range of signal value waveforms to be processed simultaneously falls within the FIFO memory 13b.
  • the first cycle is often longer than the second cycle, and may be, for example, 1 ms.
  • the determination unit 13d determines the rank of the degree of coincidence between the waveform formed by the signal values stored in the plurality of stages of the FIFO memory 13b and the reference waveform corresponding to the specific state of the object using a determination model. The state of the object is determined based on the rank of the coincidence, and the determination result is output to the operation control unit 13a in the first cycle.
  • the model storage unit 13c may store, as a determination model, a learned model that is generated by machine learning and determines a rank of a matching degree.
  • the determination model may be configured by, for example, a neural network or a decision tree, and may include a learned model generated by another known machine learning method.
  • the determination unit 13d may perform the determination using the learned model once every time the FIFO memory 13b is updated one or more times, and determine the state of the target object based on the rank of the matching degree. .
  • the operation control unit 13a generates a judgment model based on the signal value, and stores the generated judgment model in the model storage unit 13c.
  • the operation control unit 13a may execute machine learning of a learning model based on the acquired signal value, generate a learned model, and store the generated learned model in the model storage unit 13c.
  • the determination model can be generated by the operation control unit 13a. That is, since the photoelectric sensor can generate the determination model by itself, the determination model generated according to the actual target object can be used without acquiring the determination model from outside.
  • the operation control unit 13a may be capable of outputting the determination model to the outside.
  • the generated determination model can be used by another photoelectric sensor, so that it is not necessary to repeat generation of the determination model for each of a plurality of photoelectric sensors used in the same target object and installation situation. Therefore, it is possible to efficiently prepare the photoelectric sensor that determines the state of the object.
  • the operation control unit 13a based on a signal value belonging to the fluctuation period, when a fluctuation period in which the fluctuation of the time-series signal value is relatively large follows a stable period in which the fluctuation of the time-series signal value is relatively small. May be used to generate a judgment model.
  • the stable period in which the change in the time-series signal value is relatively small may be a period in which there is substantially no change in the time-series signal value when the influence of noise is subtracted.
  • the fluctuation period in which the fluctuation of the time-series signal value is relatively large may be a period in which the fluctuation of the time-series signal value is substantially present when the influence of noise is subtracted.
  • FIG. 4 is a flowchart of processing in the learning mode and the determination mode of the photoelectric sensor 10 according to the present embodiment.
  • the photoelectric sensor 10 determines whether or not it is in a learning mode for generating a determination model (S10).
  • the switching between the learning mode and the determination mode may be performed by the operation unit 14.
  • the photoelectric sensor 10 When the photoelectric sensor 10 is in the learning mode (S10: YES), the photoelectric sensor 10 acquires a time-series signal value, and generates a determination model by the operation control unit 13a (S11).
  • the photoelectric sensor 10 when the photoelectric sensor 10 is not in the learning mode (S10: NO), that is, when the photoelectric sensor 10 is in the determination mode, the photoelectric sensor 10 updates the FIFO memory 13b with a new signal value (S12), and stores the data in the FIFO memory 13b.
  • the state of the object is determined by applying a determination model to the stored signal values (S13).
  • the determination process (S13) will be described in more detail with reference to FIGS.
  • the photoelectric sensor 10 determines whether to end the determination mode (S14).
  • the termination of the determination mode may occur when the operation of the photoelectric sensor 10 is terminated or when the mode is switched from the determination mode to the learning mode. If the determination mode is not ended (S14: NO), the photoelectric sensor 10 acquires the time-series signal values again (S12), and applies the determination model to the acquired signal values to change the state of the target object. A determination is made (S13). On the other hand, when ending the determination mode (S14: YES), the processes in the learning mode and the determination mode are ended.
  • FIG. 5 is a flowchart of a first example of the process (S13) of determining the state of the target by the photoelectric sensor 10 according to the present embodiment.
  • the photoelectric sensor 10 determines the rank of the degree of coincidence between the waveform constituted by the acquired signal values and the reference waveform using the determination model (S131).
  • the rank of the degree of coincidence may be represented by discrete values such as “high rank”, “medium rank”, and “low rank”.
  • the photoelectric sensor 10 determines that the state of the target object is a specific state corresponding to the reference waveform (S133). On the other hand, if the degree of coincidence is not high (S132: NO), the photoelectric sensor 10 ends the determination process and determines whether the degree of coincidence is high again when determining the next cycle. Thus, the first example of the determination processing ends.
  • FIG. 6 is a flowchart of a second example of the process (S13) of determining the state of the target by the photoelectric sensor 10 according to the present embodiment.
  • the photoelectric sensor 10 determines the rank of the degree of coincidence between the waveform constituted by the acquired signal values and the reference waveform using the determination model (S134).
  • the photoelectric sensor 10 determines that the state of the target object is a specific state corresponding to the reference waveform (S136). On the other hand, if the degree of coincidence is not high (S135: NO) and the degree of coincidence is determined to be medium (S137: YES), the photoelectric sensor 10 determines without immediately determining the state of the target object. The process ends.
  • the degree of coincidence is not high (S135: NO), the degree of coincidence is not middle (S137: NO), and there is no case where the degree of coincidence is high during the time when the object passes through the detection range.
  • S138: YES the photoelectric sensor 10 determines that an object that is not in a specific state has arrived (S139).
  • S139 the degree of coincidence is not high
  • S137: YES the degree of coincidence is high within the time when the object passes through the detection range. If there is no case and it is not determined that there is a case of the middle rank (S138: NO), the determination processing ends.
  • the photoelectric sensor 10 In order to determine whether or not there is a case where the degree of coincidence is high and there is a case where the degree of middle is within the range of the time when the object passes through the detection range (S138), the photoelectric sensor 10 A series of determination results obtained by determining the rank of the matching degree by the determination model within the time required for the object to pass through the detection range may be stored in a not-shown FIFO memory for storing the determination results. Also, the photoelectric sensor 10 does not store a series of determination results in the FIFO memory, and measures the time required for the object to pass through the detection range when the determination model determines that the matching degree is the middle rank.
  • the high-rank judgment result does not appear before the timing ends, it is determined that an object that is not in a specific state has arrived, and if the high-rank judgment result appears before the timing ends. Alternatively, it may be determined that an object in a specific state has arrived. Thus, the second example of the determination processing ends.
  • FIG. 7A is a diagram illustrating an example of a signal value measured in the n-th cycle of the photoelectric sensor 10 according to the present embodiment.
  • FIG. 7B is a diagram illustrating an example of a signal value measured in the (n + 1) th cycle of the photoelectric sensor 10 according to the present embodiment.
  • the ordinate represents the value of the amount of received light
  • the abscissa represents the time and the corresponding stage of the FIFO memory 13b.
  • the latest value of the received light amount (value at time t9) is stored in the first stage q0 of the FIFO memory 13b
  • the oldest received light amount value time t0 value
  • the FIFO memory 13b is stored in the last stage q9.
  • the FIFO memory 13b stores ten signal values in the order of acquisition.
  • the shape S1 of the object indicated by the broken line schematically shows the shape of the object in accordance with the timing at which the value of each received light amount is obtained. According to the shape S1 of the object, it can be read that the object has a shape with a projection on the base.
  • a waveform W1 indicated by a solid line in FIG. 7A is a waveform obtained in the n-th cycle and configured by the signal values stored in the FIFO memory 13b.
  • a waveform W2 indicated by a solid line in FIG. 7B is a waveform obtained in the (n + 1) th cycle and configured by the signal values stored in the FIFO memory 13b.
  • the signal value stored in the FIFO memory 13b in the n-th cycle is shifted to the next stage by one in the (n + 1) -th cycle and stored in the FIFO memory 13b.
  • the detection range 10a Since the detection range 10a has a certain extent, near the timing corresponding to the step of the object 100, reflected light from both the upper surface and the lower surface of the step is received, and the signal values forming the waveforms W1 and W2 are It is an intermediate value.
  • the value of the intermediate amount of received light is likely to fluctuate greatly due to a slight difference in the acquisition timing. Therefore, the value of the amount of received light may vary each time even for the target 100 having the same shape.
  • the operation control unit 13a based on a signal value belonging to the fluctuation period, when a fluctuation period in which the fluctuation of the time-series signal value is relatively large follows a stable period in which the fluctuation of the time-series signal value is relatively small. May be used to generate a judgment model.
  • the stable period in which the fluctuation of the time-series signal value is relatively small is from time t0 to t1
  • the fluctuation period in which the fluctuation of the time-series signal value is relatively large is from time t2 to t8. It is.
  • the operation control unit 13a compares values stored in adjacent stages from the last stage to the first stage of the FIFO memory 13b, and when there is an adjacent stage whose difference is greater than or equal to the threshold, the operation control unit 13a It is determined that the signal value belonging to the fluctuation period from the stage closer to the first stage toward the first stage is stored, and the signal belonging to the stable period from the stage closer to the last stage of the adjacent stages toward the last stage. It may be determined that a value is stored.
  • the operation control unit 13a compares the values stored in the final stage q9 and the eighth stage q8 and finds that the difference is 0, which is equal to or smaller than the threshold.
  • the value stored in the stage q8 and the value stored in the seventh stage q7 may be compared, and the difference may be determined to be 2 and equal to or greater than the threshold.
  • the threshold value may be 1, for example.
  • the operation control unit 13a belongs to the fluctuation period from the seventh stage q7, which is closer to the first stage q0, to the first stage q0 of the eighth stage q8 and the seventh stage q7 in which the difference between the stored values is equal to or larger than the threshold. It is determined that the signal value is stored, and the signal value belonging to the stable period from the eighth stage q8, which is closer to the final stage, of the eighth stage q8 and the seventh stage q7 toward the final stage q9 is stored. May be determined.
  • the determination unit 13d is configured to perform the update of the FIFO memory 13b once or a plurality of times, once each time, the waveform W1 composed of a predetermined number of signal values stored in the FIFO memory 13b, and the specific The degree of coincidence with the reference waveform corresponding to the state may be determined by a determination model, and the state of the target object may be determined based on the rank of the degree of coincidence. For example, when the reference waveform is a waveform substantially equal to the shape S1 of the object shown by the broken line in FIG. 7A, the determination unit 13d compares the signal value stored in each stage of the FIFO memory 13b with the signal value of the reference waveform.
  • the sum of the absolute values of the differences may be determined, and the smaller the value is, the higher the matching degree may be, and it may be determined whether the state of the target object is a specific state.
  • the conveyed object 100 is an object having a protrusion when the photoelectric sensor 10 is operating in the determination mode
  • the amount of received light in the specific shift cycle of the FIFO memory 13b is determined.
  • the degree of coincidence between the waveform constituted by the value and the reference waveform constituted by the value of the amount of received light at the time of model generation becomes high.
  • FIG. 8 is a diagram illustrating another example of the signal value measured in the nth cycle of the photoelectric sensor 10 according to the present embodiment.
  • the vertical axis indicates the value of the amount of received light
  • the horizontal axis indicates the time and the corresponding stage of the FIFO memory 13b.
  • the waveform W3 indicated by the solid line in FIG. 8 is a waveform obtained in the nth cycle and configured by the signal values stored in the FIFO memory 13b.
  • the shape S2 of the object indicated by the broken line schematically shows the shape of the object in accordance with the timing at which the value of each received light amount is obtained. According to the shape S2 of the object, it can be read that the object is a shape of only the base having no projection.
  • the determining unit 13d may determine that an object having some commonality with the object having the protrusion has arrived, although the object is not the object having the protrusion, but the degree of coincidence may be medium. .
  • the degree of coincidence was medium because the base portions of the objects are common.
  • FIG. 9 is a diagram illustrating another example of the configuration of the processing unit 13 of the photoelectric sensor 10 according to the present embodiment.
  • the example of the configuration of the processing unit 13 shown in FIG. 3 is different from the example of the configuration of the processing unit 13 shown in FIG. 3 in that the reference value R is stored in the model storage unit 13c.
  • the configuration is common.
  • the model storage unit 13c calculates a degree of coincidence from a difference between a predetermined number of signal values stored in the FIFO memory 13b and a reference value R corresponding to the predetermined number of signal values and representing a reference waveform, as a determination model.
  • the model may be stored.
  • the model for calculating the degree of coincidence calculates the sum of the absolute values of the differences between the five reference values R and the signal values stored in the corresponding stages q0 to q4 of the FIFO memory.
  • a model that calculates the degree of coincidence such that the smaller the value is, the higher the degree of coincidence may be.
  • Reference values r4, r3, r2, r1, and r0 are stored in the model storage unit 13c, and may correspond to values stored in q0, q2, q4, q6, and q8 of the FIFO memory 13b, respectively.
  • the determination model provided in the determination unit 13d determines the absolute value of the difference between the values in the corresponding relationship, determines that the sum of the absolute values of the differences is smaller than a first threshold as a first criterion, and matches when the first criterion is satisfied.
  • a model that determines that the degree is a high rank may be used.
  • the judgment model provided in the judgment unit 13d further uses the fact that the sum of the absolute values of the differences is between the first threshold and a second threshold larger than the first threshold as a second criterion. If the second criterion is satisfied but the first criterion is not satisfied within the required time range, the model may determine that the matching degree is the middle rank.
  • the judgment unit 13d may execute the judgment by the judgment model once every time the FIFO memory 13b is updated once or plural times, and may judge the state of the target object based on the rank of the matching degree. As described above, by using a relatively simple model to determine the degree of coincidence between the waveform composed of the signal values stored in the FIFO memory 13b and the reference waveform corresponding to the specific state of the target object 100, the transport is performed. It is possible to determine the state of the object 100 that is successively carried on the line at a higher speed.
  • the determination unit 13d determines the state of the target object 100 a plurality of times within a time period required for the target object 100 to pass through the detection range 10a, and determines a predetermined number of signal values stored in the FIFO memory 13b, When the first criterion for determining that the difference from the predetermined number of reference values R representing the reference waveform respectively corresponding to the signal values of the numbers is small is at least once, the state of the target object 100 is a specific state. It may be determined that there is.
  • the determination unit 13d corresponds to a predetermined number of signal values stored in the FIFO memory 13b and a predetermined number of signal values, respectively, within a time period required for the target object 100 to pass through the detection range 10a.
  • the target object 100 is a target object having a shape with a protrusion on the base. Good.
  • the waveform constituted by the signal values stored in the FIFO memory 13b and the reference corresponding to the specific state of the object 100 It can be determined whether or not the degree of coincidence with the waveform is higher than a predetermined value.
  • the determination unit 13d determines the state of the target object 100 a plurality of times within the time required for the target object 100 to pass through the detection range 10a, and the first criterion is not satisfied in all of the plurality of determinations. , For determining that the difference between the predetermined number of signal values stored in the FIFO memory 13b and the predetermined number of reference values R corresponding to the predetermined number of signal values and representing the reference waveform is moderate. When the two criteria are satisfied at least once, it may be determined that the target object 100 that is not in the specific state has arrived.
  • the determination unit 13d determines that a predetermined number of signal values stored in the FIFO memory 13b and a predetermined number of reference values R representing the reference waveform are within a range required for the object 100 to pass through the detection range 10a. Does not meet the first criterion for determining that the difference is small, but satisfies at least once the second criterion for determining that the difference is moderate, the object 100 has no protrusion and only the base May be determined. As described above, even when the state of the target object 100 is not the specific state, it is possible to determine that the target object 100 has arrived and that the state of the target object 100 is not the specific state.
  • FIG. 10 is a diagram illustrating an example in which a determination model is externally installed in the photoelectric sensor 10 according to the present embodiment.
  • the example of the configuration of the processing unit 13 of the photoelectric sensor 10 illustrated in FIG. 3 is different from the example of the configuration of the processing unit 13 illustrated in FIG. 3 in that the operation control unit 13a outputs a time-series value of the received light amount to the outside.
  • the difference is that a judgment model generated by an external computer is input based on that, and the input judgment model is stored in the model storage unit 13c, and the other configurations are common.
  • the operation control unit 13a may be capable of outputting a time-series signal value to the outside.
  • the signal value output to the outside may be a signal value stored in the FIFO memory 13b.
  • the signal value can be output to the outside, and the judgment model can be generated by the external device. This eliminates the need for the photoelectric sensor itself to have computational resources for the process of generating the determination model.
  • the operation control unit 13a may acquire the determination model from the outside and store it in the model storage unit 13c.
  • the operation control unit 13a may obtain a determination model generated by an external computer, or may obtain a determination model generated by another photoelectric sensor. By diverting a determination model generated by another device, for example, another photoelectric sensor, generation of a determination model can be omitted.
  • the operation control unit 13a does not output a time-series signal value to the outside, and outputs an external model based on a model generated by another photoelectric sensor or a time-series signal value acquired by another photoelectric sensor.
  • a computer-generated model may be input and used.
  • a determining unit (13d) for performing A photoelectric sensor (10) comprising:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Geophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Switches Operated By Changes In Physical Conditions (AREA)
  • Electronic Switches (AREA)

Abstract

Provided is a photoelectric sensor that determines the state of a target by means of a simple configuration and without a time lag. A photoelectric sensor that comprises a light projection unit, a light reception unit, FIFO memory, a model storage unit, and a determination unit. The light projection unit emits light toward a detection area to which a target will arrive. The light reception unit acquires chronological signal values that are based on received light. The FIFO memory stores a prescribed number of signal values in the order of the acquisition thereof and periodically updates the prescribed number of signal values using newly acquired signal values. The model storage unit stores a determination model that determines a rank for the agreement between: a waveform that is formed from the prescribed number of signal values stored in the FIFO memory; and a reference waveform that corresponds to a specific state for the target. The determination unit uses the determination model to make a determination each time the FIFO memory is updated or once every time the FIFO memory is updated a plurality of times and determines the state of the target on the basis of the rank for the agreement.

Description

光電センサPhotoelectric sensor
 本発明は、対象物の状態についての判定機能を備える光電センサに関する。 The present invention relates to a photoelectric sensor having a function of determining a state of an object.
 従来、対象物の有無を検出するセンサとして、対象物に光を照射し、対象物を透過する光を検出したり、対象物による光の遮蔽を検出したり、対象物により反射した光を検出したりする光電センサが用いられている。また、対象物の有無ではなく、対象物の状態を検出する場合には、カメラで対象物を撮像し、画像分析を行う視覚センサを用いることがある。 Conventionally, as a sensor that detects the presence or absence of an object, it irradiates the object with light, detects light passing through the object, detects blocking of light by the object, and detects light reflected by the object Photoelectric sensors are used. In addition, when detecting the state of the target object instead of the presence or absence of the target object, a visual sensor that images the target object with a camera and performs image analysis may be used.
 光電センサについて、例えば下記特許文献1には、背景レベルに相当する検出値をゼロリセット基準値として記憶させることにより、任意の検出値を、背景レベルを基準とした相対値で表示し得るように構成した光電センサが記載されている。 Regarding the photoelectric sensor, for example, Patent Document 1 below stores a detection value corresponding to a background level as a zero reset reference value so that an arbitrary detection value can be displayed as a relative value based on the background level. A structured photoelectric sensor is described.
 また、下記特許文献2には、鋼板表面をレーザ光で走査し、反射光波形を代表する複数個の特徴量を算出し、その特徴量を予め学習させた神経回路網に加えて疵有/無出力を行う検査方法が記載されている。 Further, in Patent Document 2 below, a steel sheet surface is scanned with a laser beam, a plurality of characteristic amounts representing a reflected light waveform are calculated, and the characteristic amount is added to a neural network trained in advance, and a flaw / An inspection method for performing no output is described.
特開2001-124594号公報JP 2001-124594 A 特開平2-298840号公報JP-A-2-298840
 普及している光電センサ1つでできる対象物の有無の検出よりは難しいが、光電センサに比べれば大型、高価である視覚センサの多様な能力が必要というほどではないような対象物の状態の検出需要がある。例えば、形状や模様が大きく異なる対象物を見分ける場合、単に対象物の有無を検出するだけでは足りないが、視覚センサの多様な能力が必要というほどではない。 It is more difficult to detect the presence or absence of an object with a single popular photoelectric sensor, but the state of the object is not so large as to require various capabilities of a visual sensor that is large and expensive compared to the photoelectric sensor. There is a demand for detection. For example, when discriminating an object having a significantly different shape or pattern, simply detecting the presence or absence of the object is not sufficient, but the various capabilities of the visual sensor are not required.
 ここで、従来の光電センサと特許文献1に示されているような受光量波形を分析する手法とを組み合わせることで、原理的には対象物の状態についての判定が可能と考えられる。しかし、判定に必要な部分(特許文献2における疵の大きさに対応する部分)の波形のみを取得するための適切なトリガが得られないため、判定に必要な部分よりも長い時間範囲の波形の取得を完了してから波形分析を行うこととなり、例えば搬送ライン上を次々と運ばれてくる対象物に適用するにはリアルタイム性に欠ける。 Here, by combining the conventional photoelectric sensor with a method of analyzing the waveform of the amount of received light as disclosed in Patent Document 1, it can be considered that the state of the target object can be determined in principle. However, since an appropriate trigger for acquiring only a waveform of a portion necessary for determination (a portion corresponding to the size of a flaw in Patent Document 2) cannot be obtained, a waveform in a time range longer than that required for determination is not obtained. After completion of the acquisition, waveform analysis is performed. For example, real-time performance is lacking when applied to an object that is successively carried on a transport line.
 そこで、本発明は、簡易な構成で、時間遅れ少なく、対象物の状態を判定する光電センサを提供する。 Therefore, the present invention provides a photoelectric sensor that determines the state of an object with a simple configuration and with a small time delay.
 本開示の一態様に係る光電センサは、対象物が到来する検出範囲に向けて光を出射する投光部と、光の受光に基づく時系列の信号値を取得する受光部と、取得された順に順序付けて所定数の信号値を記憶し、周期的に、新たに取得された信号値により所定数の信号値を更新するFIFOメモリと、FIFOメモリに記憶された所定数の信号値により構成される波形と、対象物の特定の状態に対応する基準波形との一致度のランクを判定する判定モデルを記憶するモデル記憶部と、FIFOメモリの更新を1回又は複数回行う毎に一度の頻度で、判定モデルによる判定を実行し、一致度のランクに基づいて、対象物の状態を判定する判定部と、を備える。 A photoelectric sensor according to an aspect of the present disclosure is a light emitting unit that emits light toward a detection range where an object arrives, a light receiving unit that acquires a time-series signal value based on light reception, A FIFO memory that stores a predetermined number of signal values in order and periodically updates the predetermined number of signal values with newly acquired signal values, and a predetermined number of signal values stored in the FIFO memory. Storage unit for storing a determination model for determining the rank of the degree of coincidence between the waveform and the reference waveform corresponding to the specific state of the object, and a frequency once every time the FIFO memory is updated one or more times A determination unit that performs a determination by the determination model and determines the state of the target object based on the rank of the degree of coincidence.
 この態様によれば、FIFOメモリの更新を1回又は複数回行う毎に一度の頻度で、FIFOメモリに記憶された信号値により構成される波形と、対象物の特定の状態に対応する基準波形との一致度のランクを判定することで、簡易な構成で、時間遅れ少なく、搬送ライン上を次々と運ばれてくる対象物の状態を判定することができる。 According to this aspect, the waveform composed of the signal values stored in the FIFO memory and the reference waveform corresponding to the specific state of the target object are updated once every time the FIFO memory is updated one or more times. By determining the rank of the degree of coincidence with, it is possible to determine the state of the objects that are successively transported on the transport line with a simple configuration and with little time delay.
 上記態様において、判定モデルは 、機械学習によって生成された学習済みモデルであってよい。 {In the above aspect, the judgment model} may be a learned model generated by machine learning.
 この態様によれば、学習済みモデルによって、FIFOメモリに記憶された信号値により構成される波形と、対象物の特定の状態に対応する基準波形との一致度のランクを判定することで、搬送ライン上を次々と運ばれてくる対象物の状態をより柔軟に判定することができる。 According to this aspect, the learned model determines the rank of the degree of coincidence between the waveform constituted by the signal values stored in the FIFO memory and the reference waveform corresponding to the specific state of the target object, thereby enabling the conveyance. It is possible to more flexibly determine the state of an object that is successively carried on a line.
 上記態様において、判定モデルは、FIFOメモリに記憶された所定数の信号値と、所定数の信号値にそれぞれ対応する、基準波形を表す参照値との差異から一致度を算出することを含むモデルであってよい。 In the above aspect, the determination model includes calculating a degree of coincidence from a difference between a predetermined number of signal values stored in the FIFO memory and a reference value corresponding to the predetermined number of signal values and representing a reference waveform. It may be.
 この態様によれば、比較的簡単なモデルによって、FIFOメモリに記憶された信号値により構成される波形と、対象物の特定の状態に対応する基準波形との一致度のランクを判定することで、搬送ライン上を次々と運ばれてくる対象物の状態をより高速に判定することができる。 According to this aspect, the rank of the degree of coincidence between the waveform constituted by the signal values stored in the FIFO memory and the reference waveform corresponding to the specific state of the object is determined by a relatively simple model. It is possible to determine the state of an object that is successively transported on a transport line at a higher speed.
 上記態様において、判定モデルは、一致度が所定値よりも高い場合に一致度が高ランクであると判定するモデルであり、判定部は、前記高ランクの判定結果が得られた場合に、対象物の状態は特定の状態であると判定してもよい。 In the above aspect, the determination model is a model that determines that the degree of coincidence is high when the degree of coincidence is higher than a predetermined value. When the result of the determination of the high rank is obtained, the determination unit The state of an object may be determined to be a specific state.
 上記態様において、判定モデルは、さらに、一致度が所定値よりも高くないが所定値より小さい第2所定値よりも高い場合に一致度が中ランクであると判定するモデルであり、判定部は、対象物が検出範囲を通過するのに要する時間の範囲内で、前記高ランクの場合がなく前記中ランクの場合があるときに、特定の状態ではない対象物が到来したと判定してもよい。 In the above aspect, the determination model is a model that further determines that the matching degree is the middle rank when the matching degree is not higher than the predetermined value but is higher than a second predetermined value that is smaller than the predetermined value. In the range of time required for the object to pass through the detection range, when there is no case of the high rank and there is a case of the middle rank, even if it is determined that an object that is not in a specific state has arrived Good.
 この態様によれば、対象物の状態が特定の状態ではない場合であっても、対象物が到来したことと、その対象物の状態が特定の状態ではないことを判定することができる。 According to this aspect, even when the state of the target is not the specific state, it is possible to determine that the target has arrived and that the state of the target is not the specific state.
 上記態様において、信号値に基づいて判定モデルを生成し、生成した判定モデルをモデル記憶部に記憶させる動作制御部をさらに備えてもよい。 In the above aspect, an operation control unit that generates a determination model based on the signal value and stores the generated determination model in the model storage unit may be further provided.
 この態様によれば、光電センサが自ら判定モデルを生成できるので、判定モデルを外部から取得することなく、実際の対象物に応じて生成された判定モデルを使用することができる。 According to this aspect, since the photoelectric sensor can generate the determination model by itself, the determination model generated according to the actual target object can be used without acquiring the determination model from outside.
 上記態様において、動作制御部は、時系列の信号値の変動が比較的小さい安定期に続いて、時系列の信号値の変動が比較的大きい変動期が現れた場合に、変動期に属する信号値に基づいて判定モデルを生成してもよい。 In the above aspect, the operation control unit is configured to output a signal belonging to the fluctuation period when a fluctuation period in which the fluctuation of the time-series signal value is relatively large follows the stable period in which the fluctuation of the time-series signal value is relatively small. The determination model may be generated based on the value.
 この態様によれば、信号値の中から対象物によって生じた信号値を選択的に使用して判定モデルを生成することができる。 According to this aspect, the determination model can be generated by selectively using the signal value generated by the object from the signal values.
 上記態様において、動作制御部は、判定モデルを外部に出力可能であってもよい。 In the above aspect, the operation control unit may be capable of outputting the determination model to the outside.
 この態様によれば、生成した判定モデルを他の光電センサで用いることができるので、同様の対象物及び設置状況で使用される複数の光電センサごとに判定モデルの生成を繰り返す必要が無くなる。 According to this aspect, since the generated determination model can be used by another photoelectric sensor, it is not necessary to repeat generation of the determination model for each of a plurality of photoelectric sensors used in the same target object and installation situation.
 上記態様において、動作制御部は、時系列の信号値を外部に出力可能であってもよい。 In the above aspect, the operation control unit may be capable of outputting a time-series signal value to the outside.
 この態様によれば、信号値を外部に出力し、外部機器で判定モデルを生成することができる。これにより、判定モデルを生成する処理に関する計算資源を光電センサ自身で持つ必要がなくなる。 According to this aspect, it is possible to output the signal value to the outside and generate the judgment model by the external device. This eliminates the need for the photoelectric sensor itself to have computational resources for the process of generating the determination model.
 上記態様において、動作制御部は、判定モデルを外部から取得し、モデル記憶部に記憶させてもよい。 In the above aspect, the operation control unit may acquire the determination model from outside and store the determination model in the model storage unit.
 この態様によれば、他の装置、例えば他の光電センサにより生成された判定モデルを流用することで判定モデルの生成を省略することができる。 According to this aspect, the generation of the determination model can be omitted by diverting the determination model generated by another device, for example, another photoelectric sensor.
 本発明によれば、簡易な構成で、時間遅れ少なく、対象物の状態を判定する光電センサが提供される。 According to the present invention, there is provided a photoelectric sensor that determines the state of an object with a simple configuration and with a small time delay.
本発明の実施形態に係る光電センサを含む検出システムの概要を示す図である。It is a figure showing the outline of the detection system containing the photoelectric sensor concerning the embodiment of the present invention. 本実施形態に係る光電センサの構成を示す図である。It is a figure showing composition of a photoelectric sensor concerning this embodiment. 本実施形態に係る光電センサの処理部の構成の一例を示す図である。It is a figure showing an example of composition of a processing part of a photoelectric sensor concerning this embodiment. 本実施形態に係る光電センサの学習モード及び判定モードの処理のフローチャートである。5 is a flowchart of processing in a learning mode and a determination mode of the photoelectric sensor according to the embodiment. 本実施形態に係る光電センサにより対象物の状態を判定する処理の第1例のフローチャートである。5 is a flowchart of a first example of a process of determining a state of an object by the photoelectric sensor according to the embodiment. 本実施形態に係る光電センサにより対象物の状態を判定する処理の第2例のフローチャートである。It is a flowchart of the 2nd example of the process which determines the state of a target object by the photoelectric sensor which concerns on this embodiment. 本実施形態に係る光電センサの第nサイクルに測定された信号値の一例を示す図である。FIG. 9 is a diagram illustrating an example of a signal value measured in an n-th cycle of the photoelectric sensor according to the embodiment. 本実施形態に係る光電センサの第n+1サイクルに測定された信号値の一例を示す図である。FIG. 7 is a diagram illustrating an example of a signal value measured in an (n + 1) th cycle of the photoelectric sensor according to the embodiment. 本実施形態に係る光電センサの第nサイクルに測定された信号値の他の例を示す図である。FIG. 9 is a diagram illustrating another example of a signal value measured in an n-th cycle of the photoelectric sensor according to the embodiment. 本実施形態に係る光電センサの処理部の構成の他の例を示す図である。It is a figure showing other examples of the composition of the processing part of the photoelectric sensor concerning this embodiment. 本実施形態に係る光電センサに外部から判定モデルをインストールする例を示す図である。It is a figure showing the example which installs a judgment model from the outside in the photoelectric sensor concerning this embodiment.
 以下、本発明の一側面に係る実施の形態(以下、「本実施形態」と表記する。)を、図面に基づいて説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 Hereinafter, an embodiment according to one aspect of the present invention (hereinafter, referred to as “the present embodiment”) will be described with reference to the drawings. In each of the drawings, the components denoted by the same reference numerals have the same or similar configurations.
 [構成例]
 図1から図3を参照しつつ、本実施形態に係る光電センサ10の構成の一例について説明する。図1は、本実施形態に係る光電センサ10を含む検出システム1の概要を示す図である。検出システム1は、光電センサ10と、コントローラ20と、コンピュータ30と、ロボット40と、搬送装置50とを備える。
[Configuration example]
An example of the configuration of the photoelectric sensor 10 according to the present embodiment will be described with reference to FIGS. FIG. 1 is a diagram illustrating an outline of a detection system 1 including a photoelectric sensor 10 according to the present embodiment. The detection system 1 includes a photoelectric sensor 10, a controller 20, a computer 30, a robot 40, and a transfer device 50.
 光電センサ10は、取得される信号値に基づいて、光電センサ10の検出範囲10aに対象物100が到来したことを検出し、その対象物100の状態を判定する装置である。光電センサ10は、反射型の光電センサであったり、透過型の光電センサであったり、回帰反射型の光電センサであったりしてよい。また、光電センサ10は、対象物100にレーザビームを投光し、三角測距の原理に基づいて対象物100までの距離に対応する信号値を得る変位センサであってもよい。また、光電センサ10は、対象物100で反射される光の往復時間に基づいて対象物100までの距離に対応する信号値を得る測距センサであってもよい。本明細書において、「信号値」は、受光量の値のほか、対象物100までの距離に対応する信号値も含むものとする。 The photoelectric sensor 10 is a device that detects that the object 100 has arrived in the detection range 10a of the photoelectric sensor 10 based on the acquired signal value, and determines the state of the object 100. The photoelectric sensor 10 may be a reflection type photoelectric sensor, a transmission type photoelectric sensor, or a regression reflection type photoelectric sensor. The photoelectric sensor 10 may be a displacement sensor that emits a laser beam to the object 100 and obtains a signal value corresponding to the distance to the object 100 based on the principle of triangulation. Further, the photoelectric sensor 10 may be a distance measuring sensor that obtains a signal value corresponding to the distance to the object 100 based on the round trip time of light reflected by the object 100. In this specification, the “signal value” includes a signal value corresponding to the distance to the object 100 in addition to the value of the amount of received light.
 対象物100は、光電センサ10による検出の対象となる物であり、例えば生産される製品の完成品であったり、部品等の未完成品であったりしてよい。図1に例示する対象物100は、ベースの上に突起が付いた形状の対象物である。また、異種対象物として、同じベースを有するが突起が付いていない形状の対象物も混入して搬送されるものとする。光電センサ10が、例えば反射型の光電センサである場合、対象物100が光電センサ10の検出範囲10aに到来すると、検出される反射光量が増加する。また、対象物100がベースの上に突起が付いた形状の場合、検出範囲10aに対象物100の突起があるとさらに反射光量が増加する。 The target object 100 is an object to be detected by the photoelectric sensor 10, and may be, for example, a completed product to be produced or an unfinished product such as a part. The object 100 illustrated in FIG. 1 is an object having a shape with a projection on a base. In addition, it is assumed that an object having the same base but having no protrusion is mixed and transported as a heterogeneous object. When the photoelectric sensor 10 is, for example, a reflective photoelectric sensor, when the target object 100 reaches the detection range 10a of the photoelectric sensor 10, the amount of reflected light detected increases. When the object 100 has a shape with a projection on the base, the amount of reflected light further increases if the object 100 has a projection in the detection range 10a.
 コントローラ20は、ロボット40及び搬送装置50を制御する。コントローラ20は、例えばPLC(Programmable Logic Controller)で構成されてよい。コントローラ20は、光電センサ10からの出力により対象物100が到来したことを検知し、さらに、判定された対象物100の状態に応じてロボット40を制御する。 (4) The controller 20 controls the robot 40 and the transfer device 50. The controller 20 may be composed of, for example, a PLC (Programmable Logic Controller). The controller 20 detects that the object 100 has arrived based on the output from the photoelectric sensor 10, and further controls the robot 40 according to the determined state of the object 100.
 コンピュータ30は、光電センサ10、コントローラ20及びロボット40の設定を行う。また、コンピュータ30は、コントローラ20から、コントローラ20による制御の実行結果を取得する。さらに、コンピュータ30は、光電センサ10により対象物100の状態を判定するための判定モデルを機械学習により生成する学習装置を含んでよい。ここで、判定モデルは、例えばニューラルネットワークにより構成されたり、決定木により構成されたりしてよい。 (4) The computer 30 sets the photoelectric sensor 10, the controller 20, and the robot 40. Further, the computer 30 acquires, from the controller 20, an execution result of the control by the controller 20. Furthermore, the computer 30 may include a learning device that generates a determination model for determining the state of the target object 100 by the photoelectric sensor 10 by machine learning. Here, the judgment model may be constituted by, for example, a neural network or a decision tree.
 ロボット40は、コントローラ20による制御に従って、対象物100を操作したり加工したりする。ロボット40は、例えば対象物100をピックアップして別の場所に移動させたり、対象物100を切削したり、組み立てたりしてよい。また、ロボット40は、対象物100に突起が有るか無いかによって、加工内容又は移動先を変えてもよい。 The robot 40 operates and processes the target object 100 under the control of the controller 20. The robot 40 may, for example, pick up the object 100 and move it to another location, or cut or assemble the object 100. The robot 40 may change the processing content or the destination depending on whether or not the target object 100 has a protrusion.
 搬送装置50は、コントローラ20による制御に従って、対象物100を搬送する装置である。搬送装置50は、例えばベルトコンベアであってよく、コントローラ20により設定された速度で対象物100を搬送してよい。 The transport device 50 is a device that transports the target object 100 under the control of the controller 20. The transfer device 50 may be, for example, a belt conveyor, and may transfer the target object 100 at a speed set by the controller 20.
 図2は、本実施形態に係る光電センサ10の構成を示す図である。光電センサ10は、投光部11、受光部12、処理部13、操作部14及び出力部15を備える。 FIG. 2 is a diagram illustrating a configuration of the photoelectric sensor 10 according to the present embodiment. The photoelectric sensor 10 includes a light emitting unit 11, a light receiving unit 12, a processing unit 13, an operation unit 14, and an output unit 15.
 <投光部>
 投光部11は、対象物100が到来する検出範囲10aに向けて光を出射する。投光部11は、投光素子11a及び駆動回路11bを含んでよい。投光素子11aは、LED(Light Emitting Diode)やレーザダイオードで構成されてよく、駆動回路11bは、投光素子11aを発光させるための電流を制御する。駆動回路11bは、投光素子11aを間欠的に、例えば0.1ms周期でパルス発光させてよい。投光素子11aから出射した光は、図示しないレンズ又は光ファイバを介して、検出範囲10aに照射されてよい。
<Light emitting part>
The light projecting unit 11 emits light toward the detection range 10a where the object 100 arrives. The light projecting unit 11 may include a light projecting element 11a and a drive circuit 11b. The light emitting element 11a may be configured by an LED (Light Emitting Diode) or a laser diode, and the drive circuit 11b controls a current for causing the light emitting element 11a to emit light. The drive circuit 11b may cause the light emitting element 11a to emit pulses intermittently, for example, at a period of 0.1 ms. The light emitted from the light projecting element 11a may be applied to the detection range 10a via a lens or an optical fiber (not shown).
 <受光部>
 受光部12は、光の受光に基づく時系列の信号値を取得する。受光部12は、受光素子12a、増幅器12b、サンプル/ホールド回路12c及びA/D変換器12dを含んでよい。受光素子12aは、フォトダイオードによって構成されてよく、受光量を電気的な出力信号に変換する。受光部12は、検出範囲10aにおいて反射又は透過した光を、図示しないレンズ又は光ファイバを介して受光素子12aに入射させてよい。増幅器12bは、受光素子12aの出力信号を増幅する。サンプル/ホールド回路12cは、投光部11によるパルス発光のタイミングに同期して、増幅器12bにより増幅された受光素子12aの出力信号を保持する。これにより外乱光の影響が低減される。A/D変換器12dは、サンプル/ホールド回路12cにより保持されたアナログの信号値をデジタル値である受光量の値に変換する。
<Light receiving section>
The light receiving unit 12 acquires a time-series signal value based on light reception. The light receiving section 12 may include a light receiving element 12a, an amplifier 12b, a sample / hold circuit 12c, and an A / D converter 12d. The light receiving element 12a may be constituted by a photodiode, and converts the amount of received light into an electric output signal. The light receiving unit 12 may make the light reflected or transmitted in the detection range 10a incident on the light receiving element 12a via a lens or an optical fiber (not shown). The amplifier 12b amplifies the output signal of the light receiving element 12a. The sample / hold circuit 12c holds the output signal of the light receiving element 12a amplified by the amplifier 12b in synchronization with the timing of pulse emission by the light projecting unit 11. Thereby, the influence of disturbance light is reduced. The A / D converter 12d converts the analog signal value held by the sample / hold circuit 12c into a digital value of the amount of received light.
 <処理部>
 処理部13は、動作制御部13a、FIFO(First In First Out)メモリ13b、モデル記憶部13c及び判定部13dを含む。処理部13は、例えば、マイクロプロセッサ、メモリ及びメモリに格納されたプログラム等から構成されるコンピュータとして構成されてよい。
<Processing unit>
The processing unit 13 includes an operation control unit 13a, a FIFO (First In First Out) memory 13b, a model storage unit 13c, and a determination unit 13d. The processing unit 13 may be configured as, for example, a computer including a microprocessor, a memory, and a program stored in the memory.
 動作制御部13aは、後述する判定モデルを取り扱う処理の他、光電センサ10全体の動作を統括制御してよい。 The operation control unit 13a may integrally control the operation of the photoelectric sensor 10 as a whole, in addition to processing for handling a determination model described later.
 FIFOメモリ13bは、取得された順に順序付けて所定数の信号値を記憶し、周期的に、新たに取得された信号値により所定数の信号値を更新する。ここで、FIFOメモリ13bに記憶される信号値の数、すなわち所定数は、任意であるが、例えば100程度であってよい。FIFOメモリ13bは、専用のハードウェアによって実現できるほか、処理部13のメモリ上に処理部13のプログラムに従って実現されてもよい。その場合、FIFOメモリ13bの後段への信号値のシフトは、格納されているデータの物理的なシフトではなく、メモリ上のアクセス箇所の更新によって行うことができる。 The メ モ リ FIFO memory 13b stores a predetermined number of signal values in the order of acquisition, and periodically updates the predetermined number of signal values with newly acquired signal values. Here, the number of signal values stored in the FIFO memory 13b, that is, the predetermined number is arbitrary, but may be, for example, about 100. The FIFO memory 13b may be realized by dedicated hardware, or may be realized on a memory of the processing unit 13 according to a program of the processing unit 13. In this case, the shift of the signal value to the subsequent stage of the FIFO memory 13b can be performed not by physically shifting the stored data but by updating the access location on the memory.
 モデル記憶部13cは、FIFOメモリ13bに記憶された所定数の信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度のランクを判定する判定モデルを記憶する。ここで、基準波形は、対象物100の特定の状態に対応する典型的な信号値の波形であってよく、例えば、特定の状態の複数の対象物100について取得された波形の平均であってよい。 The model storage unit 13c stores a determination model for determining a rank of the degree of coincidence between a waveform composed of a predetermined number of signal values stored in the FIFO memory 13b and a reference waveform corresponding to a specific state of the object 100. I do. Here, the reference waveform may be a waveform of a typical signal value corresponding to a specific state of the object 100, for example, an average of waveforms obtained for a plurality of objects 100 in a specific state. Good.
 モデル記憶部13cは、判定モデルとして、機械学習によって生成された学習済みモデルを記憶してよい。学習済みモデルは、FIFOメモリ13bに記憶された所定数の信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度のランクを判定するように学習されてよい。ここで、学習済みモデルは、コンピュータ30によって生成されて、モデル記憶部13cに記憶されてもよい。 The model storage unit 13c may store a learned model generated by machine learning as a determination model. The learned model is learned so as to determine the rank of the degree of coincidence between a waveform composed of a predetermined number of signal values stored in the FIFO memory 13b and a reference waveform corresponding to a specific state of the object 100. Good. Here, the learned model may be generated by the computer 30 and stored in the model storage unit 13c.
 判定部13dは、FIFOメモリ13bの更新を1回又は複数回行う毎に一度の頻度で、判定モデルによる判定を実行し、FIFOメモリ13bに記憶された所定数の信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度のランクに基づいて、対象物100の状態を判定する。例えば、基準波形が、ベースに突起が付いた対象物の波形である場合、判定部13dは、判定モデルによる判定を実行し、一致度が十分に高い場合に、対象物100は、ベースに突起が付いた状態であると判定してよい。このように、FIFOメモリ13bの更新を1回又は複数回行う毎に一度の頻度で、FIFOメモリ13bに記憶された信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度のランクを判定することで、簡易な構成で、時間遅れ少なく、搬送ライン上を次々と運ばれてくる対象物100の状態を判定することができる。これにより、普及している光電センサに近い簡易な構成で、すなわち画像処理や別途のトリガ手段を必要としないで、時間遅れ少なく、対象物100の状態を判定することができる。 The determination unit 13d performs the determination based on the determination model once every time the update of the FIFO memory 13b is performed once or a plurality of times, and generates a waveform composed of a predetermined number of signal values stored in the FIFO memory 13b. The state of the object 100 is determined based on the rank of the degree of coincidence with the reference waveform corresponding to the specific state of the object 100. For example, when the reference waveform is a waveform of an object having a protrusion on the base, the determination unit 13d performs a determination using a determination model, and when the degree of coincidence is sufficiently high, the object 100 is It may be determined that the state is attached. In this manner, the waveform constituted by the signal values stored in the FIFO memory 13b and the reference corresponding to the specific state of the object 100 are updated once every time the FIFO memory 13b is updated one or more times. By determining the rank of the degree of coincidence with the waveform, it is possible to determine the state of the object 100 that is successively transported on the transport line with a simple configuration and with little time delay. Accordingly, the state of the target object 100 can be determined with a simple configuration close to a widely used photoelectric sensor, that is, without the need for image processing or a separate trigger unit and with a small time delay.
 判定モデルは、FIFOメモリ13bに記憶された所定数の信号値と、所定数の信号値にそれぞれ対応する、基準波形を表す参照値との差異から前記一致度を算出することを含むモデルであってよい。 The judgment model is a model including calculating the degree of coincidence from a difference between a predetermined number of signal values stored in the FIFO memory 13b and a reference value corresponding to the predetermined number of signal values and representing a reference waveform. May be.
 判定モデルは、一致度が所定値よりも高い場合に一致度が高ランクであると判定するモデルであってよく、判定部13dは、高ランクの判定結果が得られた場合に、対象物100の状態は特定の状態であると判定してもよい。判定部13dは、高ランクの判定結果が得られた場合に、高ランクの判定結果が消失した後も、対象物100の状態は特定の状態であるとの出力を所定期間維持してよい。ここで、所定期間は、対象物100が検出範囲10aを通過するのに要する時間程度であってよい。判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲で、対象物100の状態を複数回判定してよい。ここで、「対象物100が検出範囲10aを通過するのに要する時間の範囲」は、判定モデル生成時に実測された信号値変動の継続時間として判定モデルに組み込んでよい。また、判定動作時には、信号値変動の開始を検出せずに、現在から、継続時間に対応するシフト回数分過去までの間に得られた判定結果を「検出範囲10aを通過するのに要する時間の範囲」としてもよい。なお、信号値変動の開始が検出されてから継続時間に対応する回数のシフトをするまでを「検出範囲10aを通過するのに要する時間の範囲」とすることも考えられる。このように、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、FIFOメモリ13bに記憶された信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度のランクが所定値よりも高いときがあるか否かを判定することができる。 The determination model may be a model that determines that the degree of coincidence is high when the degree of coincidence is higher than a predetermined value. When the determination result of the high rank is obtained, the determination unit 13 d May be determined to be a specific state. When a high rank determination result is obtained, the determination unit 13d may maintain the output indicating that the state of the target object 100 is in a specific state for a predetermined period even after the high rank determination result disappears. Here, the predetermined period may be approximately the time required for the object 100 to pass through the detection range 10a. The determination unit 13d may determine the state of the target object 100 a plurality of times within a time range required for the target object 100 to pass through the detection range 10a. Here, "the range of time required for the object 100 to pass through the detection range 10a" may be incorporated in the determination model as the duration of the signal value fluctuation actually measured when the determination model is generated. Further, at the time of the determination operation, without detecting the start of the signal value fluctuation, the determination result obtained from the present to the past by the number of shifts corresponding to the duration is referred to as “the time required to pass through the detection range 10a”. Range ". Note that the period from when the start of the signal value fluctuation is detected to when the number of shifts corresponding to the duration is shifted may be defined as "the range of time required to pass through the detection range 10a". As described above, within the time required for the object 100 to pass through the detection range 10a, the waveform constituted by the signal values stored in the FIFO memory 13b and the reference corresponding to the specific state of the object 100 It can be determined whether or not the rank of the degree of coincidence with the waveform is higher than a predetermined value.
 判定モデルは、さらに、一致度が所定値よりも高くないが所定値より小さい第2所定値よりも高い場合に一致度が中ランクであると判定するモデルであってよく、判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、高ランクの場合がなく中ランクの場合があるときに、特定の状態ではない対象物が到来したと判定してよい。判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、対象物100の状態を複数回判定し、複数回の判定のいずれにおいても判定結果が高ランクでないが、複数回の判定のうち少なくとも一度判定結果が中ランクである場合に、特定の状態ではない対象物が到来したと判定してよい。第2所定値は、ゼロより大きい値である。第2所定値は、特定の状態ではない対象物100が検出範囲10aに到来した場合における信号値に基づいて定められる閾値であってよい。これにより、対象物100の状態が特定の状態ではない場合であっても、対象物100が到来したことと、その対象物100の状態が特定の状態ではないことを判定することができる。例えば、特定の状態がベースに突起が付いた状態である場合、突起が付いていないベースのみの対象物が到来した場合、判定部13dは、一致度が中ランクであると判定してよい。 The determination model may be a model that determines that the degree of coincidence is the middle rank when the degree of coincidence is not higher than the predetermined value but is higher than a second predetermined value that is smaller than the predetermined value. When there is no high rank and there is a middle rank within the time required for the object 100 to pass through the detection range 10a, it may be determined that an object that is not in a specific state has arrived. The determination unit 13d determines the state of the target object 100 a plurality of times within the time required for the target object 100 to pass through the detection range 10a, and the determination result is not high rank in any of the plurality of determinations. Alternatively, when the result of the determination is at least one of the middle ranks among the plurality of determinations, it may be determined that an object that is not in a specific state has arrived. The second predetermined value is a value greater than zero. The second predetermined value may be a threshold value that is determined based on a signal value when the target object 100 that is not in a specific state reaches the detection range 10a. Accordingly, even when the state of the target object 100 is not the specific state, it is possible to determine that the target object 100 has arrived and that the state of the target object 100 is not the specific state. For example, when the specific state is a state in which the base has a protrusion, or when an object with only the base without the protrusion arrives, the determination unit 13d may determine that the matching degree is the middle rank.
 判定部13dは、窓汚れ等による光量劣化を考慮して、信号値倍率を調節して、一致度が十分に高くなるか否かを判定してもよい。すなわち、判定部13dは、FIFOメモリ13bに記憶された信号値により構成される波形の倍率を変更した波形と、対象物100の特定の状態に対応する基準波形との一致度が所定値より高いか否かによって、対象物100の状態を判定してもよい。このようにすることで、窓汚れ等により投光量や受光量が変化する場合であっても、安定して対象物100の状態を判定することができる。 The determination unit 13d may adjust the signal value magnification in consideration of the light amount deterioration due to window contamination or the like, and determine whether or not the coincidence is sufficiently high. That is, the determination unit 13d determines that the degree of coincidence between the waveform obtained by changing the magnification of the waveform constituted by the signal values stored in the FIFO memory 13b and the reference waveform corresponding to the specific state of the object 100 is higher than a predetermined value. The state of the target object 100 may be determined depending on whether or not. By doing so, the state of the target object 100 can be stably determined even when the amount of projected light or the amount of received light changes due to window contamination or the like.
 また、複数種類の対象物が混合搬送される場合、判定モデルは、FIFOメモリ13bに記憶された信号値により構成される波形といずれかの種類の対象物100の特定の状態に対応する基準波形との一致度が所定値よりも高い場合に一致度が高ランクであると判定するモデルであってよい。さらに、一致度が高ランクまたは中ランクである場合に、判定モデル自体が、どの種類の対象物についての判定結果であるかを示すことにより、判定部13dは、高ランク又は中ランクと判定された対象物100の種類を特定してもよい。あるいは、判定モデルは対象物100の種類別に用意され、判定部13dは、どの判定モデルが高ランク又は中ランクの判定をしたかによって高ランク又は中ランクと判定された対象物100の種類を特定してもよい。 When a plurality of types of objects are mixed and conveyed, the determination model includes a waveform composed of signal values stored in the FIFO memory 13b and a reference waveform corresponding to a specific state of any type of the object 100. If the degree of coincidence with is higher than a predetermined value, the model may be determined to have a high degree of coincidence. Further, when the degree of coincidence is a high rank or a middle rank, the determination model itself indicates which type of object is the determination result, so that the determination unit 13d is determined to be a high rank or a middle rank. The type of the target object 100 may be specified. Alternatively, the judgment model is prepared for each type of the object 100, and the judgment unit 13d specifies the type of the object 100 judged as the high rank or the middle rank depending on which judgment model judges the high rank or the middle rank. May be.
 例えば、第1種の対象物と第2種の対象物とが混合搬送される場合、判定部13dは、取得された信号値により構成される波形と、第1種の対象物に対応する基準波形との一致度が高ランクである場合に、搬送されている対象物の状態は、第1種の対象物の特定の状態であると判定してよい。また、判定部13dは、取得された信号値により構成される波形と、第2種の対象物に対応する基準波形との一致度が高ランクである場合に、搬送されている対象物の状態は、第2種の対象物の特定の状態であると判定してよい。さらに、判定部13dは、いずれの対象物についても高ランクの判定がされず、取得された信号値により構成される波形と、第1種の対象物に対応する基準波形との一致度が中ランクである場合に、搬送されている対象物は、特定の状態ではない第1種の対象物であると判定してよい。また、判定部13dは、いずれの対象物についても高ランクの判定がされず、取得された信号値により構成される波形と、第2種の対象物に対応する基準波形との一致度が中ランクである場合に、搬送されている対象物の状態は、特定の状態ではない第2種の対象物であると判定してよい。第1種の対象物と第2種の対象物とが類似していたり、中ランクの判定をするための第2所定値が低い値であったりする場合には、取得された信号値により構成される波形と、第1種の対象物に対応する基準波形との一致度及び第2種の対象物に対応する基準波形との一致度が、どちらも中ランクの判定結果となることも起こりうる。このような場合には、判定部13dは、搬送されている対象物は、特定の状態ではない第1種の対象物又は特定の状態ではない第2種の対象物であり、どちらの対象物であるかは特定できない、と判定してよい。 For example, when the first type of object and the second type of object are mixed and conveyed, the determination unit 13d determines the waveform constituted by the acquired signal values and the reference corresponding to the first type of object. When the degree of matching with the waveform is high, the state of the transported object may be determined to be a specific state of the first type of object. In addition, when the degree of coincidence between the waveform constituted by the acquired signal values and the reference waveform corresponding to the second type of object is high, the determination unit 13d determines the state of the object being conveyed. May be determined to be a specific state of the second type of object. Further, the determination unit 13d does not determine the high rank of any of the objects, and determines that the degree of coincidence between the waveform formed by the acquired signal values and the reference waveform corresponding to the first type of object is medium. In the case of the rank, the transported target object may be determined to be a first type target object that is not in a specific state. In addition, the determination unit 13d does not determine a high rank for any of the objects, and determines that the degree of coincidence between the waveform formed by the acquired signal values and the reference waveform corresponding to the second type of object is medium. In the case of the rank, the state of the transported object may be determined to be a second type of object that is not a specific state. When the first type of object and the second type of object are similar or the second predetermined value for determining the middle rank is a low value, it is configured by the acquired signal value. The coincidence between the generated waveform, the reference waveform corresponding to the first type of object, and the coincidence between the reference waveform corresponding to the second type of object may both result in a middle rank determination result. sell. In such a case, the determination unit 13d determines that the transported object is a first type of object that is not in a specific state or a second type of object that is not in a specific state. May not be specified.
 <操作部>
 操作部14は、光電センサ10の操作を行うためのものであり、操作スイッチ、表示器などを含んでよい。光電センサ10の操作者は、操作部14を用いて、光電センサ10の動作モードの設定等の指示の入力や動作状態の確認を行うことができる。なお、本実施形態に係る光電センサ10は、動作モードとして、判定モデルを生成するための学習モードと、生成された判定モデルを用いて対象物100の状態を判定するための判定モードを備えてよい。
<Operation section>
The operation unit 14 operates the photoelectric sensor 10 and may include an operation switch, a display, and the like. The operator of the photoelectric sensor 10 can use the operation unit 14 to input an instruction such as setting an operation mode of the photoelectric sensor 10 and to confirm an operation state. The photoelectric sensor 10 according to the present embodiment includes, as operation modes, a learning mode for generating a determination model and a determination mode for determining the state of the target object 100 using the generated determination model. Good.
 <出力部>
 出力部15は、判定部13dによる判定結果を含む様々なデータの出力を行う。出力部15は、最も簡単には判定部13dによる判定結果の2値出力を行ってよい。なお、光電センサ10は、出力部15に代えて通信部を備え、大量のデータの入出力を行えるようにしてもよい。
<Output section>
The output unit 15 outputs various data including the determination result by the determination unit 13d. The output unit 15 may simply output the determination result by the determination unit 13d in binary. The photoelectric sensor 10 may include a communication unit instead of the output unit 15 so that a large amount of data can be input and output.
 図3は、本実施形態に係る光電センサ10の処理部13の構成の一例を示す図である。処理部13は、第1周期で、FIFOメモリ13bの各ステージに記憶されている信号値を1つ後方のステージにシフトして、A/D変換器12dから出力された受光量のデジタル値を初段q0に記憶する。なお、同図では、原理を説明するために、FIFOメモリ13bの段数をq0~q9の10段としているが、FIFOメモリ13bの段数はさらに多くてもよく、例えば100段程度であってもよい。 FIG. 3 is a diagram illustrating an example of a configuration of the processing unit 13 of the photoelectric sensor 10 according to the present embodiment. In the first cycle, the processing unit 13 shifts the signal value stored in each stage of the FIFO memory 13b to the next stage by one, and converts the digital value of the received light amount output from the A / D converter 12d. It is stored in the first stage q0. In the figure, the number of stages of the FIFO memory 13b is set to ten from q0 to q9 to explain the principle, but the number of stages of the FIFO memory 13b may be larger, for example, about 100. .
 FIFOメモリ13bの更新を行う第1周期は、投光部11によるパルス発光の周期と同じであってもよいし、異なっていてもよい。また、FIFOメモリ13bの更新を行う第1周期は、投光部11のパルス発光及びA/D変換器12dによる変換の周期(第2周期とする)と同じであってもよいし、異なっていてもよい。例えば、第2周期は、光電センサ10に固有の値(例えば0.1ms)に固定されていてもよい。第1周期は、図1に示すコンピュータ30からコントローラ20経由で設定可能であってもよい。第1周期は、同時に処理したい信号値波形の範囲がFIFOメモリ13bに収まるように決められる必要がある。第1周期は、第2周期よりも長い場合が多く、例えば1msであってよい。 The first cycle for updating the FIFO memory 13b may be the same as or different from the cycle of pulse emission by the light projecting unit 11. The first cycle for updating the FIFO memory 13b may be the same as or different from the cycle of pulse emission of the light projecting unit 11 and conversion by the A / D converter 12d (referred to as a second cycle). You may. For example, the second cycle may be fixed to a value unique to the photoelectric sensor 10 (for example, 0.1 ms). The first cycle may be settable from the computer 30 shown in FIG. The first cycle needs to be determined so that the range of signal value waveforms to be processed simultaneously falls within the FIFO memory 13b. The first cycle is often longer than the second cycle, and may be, for example, 1 ms.
 判定部13dは、FIFOメモリ13bの複数の段に格納されている信号値により構成される波形と、対象物の特定の状態に対応する基準波形との一致度のランクを判定モデルにより判定し、一致度のランクに基づいて対象物の状態を判定して、判定結果を第1周期で動作制御部13aに対して出力する。 The determination unit 13d determines the rank of the degree of coincidence between the waveform formed by the signal values stored in the plurality of stages of the FIFO memory 13b and the reference waveform corresponding to the specific state of the object using a determination model. The state of the object is determined based on the rank of the coincidence, and the determination result is output to the operation control unit 13a in the first cycle.
 モデル記憶部13cは、判定モデルとして、機械学習によって生成され、一致度のランクを判定する学習済みモデルを記憶してよい。ここで、判定モデルは、例えばニューラルネットワークにより構成されたり、決定木により構成されたりしてよく、その他の公知の機械学習の手法により生成された学習済みモデルを含んでよい。判定部13dは、FIFOメモリ13bの更新を1回又は複数回行う毎に一度の頻度で、学習済みモデルによる判定を実行し、一致度のランクに基づいて、対象物の状態を判定してよい。 The model storage unit 13c may store, as a determination model, a learned model that is generated by machine learning and determines a rank of a matching degree. Here, the determination model may be configured by, for example, a neural network or a decision tree, and may include a learned model generated by another known machine learning method. The determination unit 13d may perform the determination using the learned model once every time the FIFO memory 13b is updated one or more times, and determine the state of the target object based on the rank of the matching degree. .
 動作制御部13aは、信号値に基づいて判定モデルを生成し、生成した判定モデルをモデル記憶部13cに記憶させる。例えば、動作制御部13aは、取得された信号値に基づいて学習モデルの機械学習を実行し、学習済みモデルを生成して、生成した学習済みモデルをモデル記憶部13cに記憶させてよい。このように、動作制御部13aによって、判定モデルを生成することができる。すなわち、光電センサが自ら判定モデルを生成できるので、判定モデルを外部から取得することなく、実際の対象物に応じて生成された判定モデルを使用することができる。 The operation control unit 13a generates a judgment model based on the signal value, and stores the generated judgment model in the model storage unit 13c. For example, the operation control unit 13a may execute machine learning of a learning model based on the acquired signal value, generate a learned model, and store the generated learned model in the model storage unit 13c. As described above, the determination model can be generated by the operation control unit 13a. That is, since the photoelectric sensor can generate the determination model by itself, the determination model generated according to the actual target object can be used without acquiring the determination model from outside.
 動作制御部13aは、判定モデルを外部に出力可能であってよい。これにより、生成した判定モデルを他の光電センサで用いることができるので、同様の対象物及び設置状況で使用される複数の光電センサごとに判定モデルの生成を繰り返す必要が無くなる。したがって、対象物の状態を判定する光電センサを効率良く準備することができる。 The operation control unit 13a may be capable of outputting the determination model to the outside. Thus, the generated determination model can be used by another photoelectric sensor, so that it is not necessary to repeat generation of the determination model for each of a plurality of photoelectric sensors used in the same target object and installation situation. Therefore, it is possible to efficiently prepare the photoelectric sensor that determines the state of the object.
 動作制御部13aは、時系列の信号値の変動が比較的小さい安定期に続いて、時系列の信号値の変動が比較的大きい変動期が現れた場合に、変動期に属する信号値に基づいて判定モデルを生成してよい。ここで、時系列の信号値の変動が比較的小さい安定期は、ノイズの影響を差し引いた場合に、実質的に時系列の信号値の変動が無い期間であってよい。また、時系列の信号値の変動が比較的大きい変動期は、ノイズの影響を差し引いた場合に、実質的に時系列の信号値の変動が有る期間であってよい。このように、変動期に属する信号値に基づいて判定モデルを生成することで、信号値の中から対象物によって生じた信号値を選択的に使用して判定モデルを生成することができる。なお、時系列の信号値の変動が比較的小さい安定期と、時系列の信号値の変動が比較的大きい変動期との具体例は、図7a及び図7bを用いて説明する。 The operation control unit 13a, based on a signal value belonging to the fluctuation period, when a fluctuation period in which the fluctuation of the time-series signal value is relatively large follows a stable period in which the fluctuation of the time-series signal value is relatively small. May be used to generate a judgment model. Here, the stable period in which the change in the time-series signal value is relatively small may be a period in which there is substantially no change in the time-series signal value when the influence of noise is subtracted. Further, the fluctuation period in which the fluctuation of the time-series signal value is relatively large may be a period in which the fluctuation of the time-series signal value is substantially present when the influence of noise is subtracted. As described above, by generating the determination model based on the signal values belonging to the fluctuation period, it is possible to generate the determination model by selectively using the signal value generated by the object from the signal values. Note that specific examples of a stable period in which the fluctuation of the time-series signal value is relatively small and a fluctuation period in which the fluctuation of the time-series signal value is relatively large will be described with reference to FIGS. 7A and 7B.
 図4は、本実施形態に係る光電センサ10の学習モード及び判定モードの処理のフローチャートである。はじめに、光電センサ10は、判定モデルの生成を行う学習モードであるか否かを判定する(S10)。なお、学習モード及び判定モードの切り替えは、操作部14によって行われてよい。 FIG. 4 is a flowchart of processing in the learning mode and the determination mode of the photoelectric sensor 10 according to the present embodiment. First, the photoelectric sensor 10 determines whether or not it is in a learning mode for generating a determination model (S10). The switching between the learning mode and the determination mode may be performed by the operation unit 14.
 光電センサ10が学習モードである場合(S10:YES)、光電センサ10は、時系列の信号値を取得し、動作制御部13aにより判定モデルを生成する(S11)。 When the photoelectric sensor 10 is in the learning mode (S10: YES), the photoelectric sensor 10 acquires a time-series signal value, and generates a determination model by the operation control unit 13a (S11).
 一方、光電センサ10が学習モードでない場合(S10:NO)、すなわち光電センサ10が判定モードである場合、光電センサ10は、新しい信号値によりFIFOメモリ13bを更新し(S12)、FIFOメモリ13bに記憶された信号値に対して判定モデルを適用することにより、対象物の状態を判定する(S13)。ここで、判定処理(S13)については、図5及び6を用いてより詳細に説明する。 On the other hand, when the photoelectric sensor 10 is not in the learning mode (S10: NO), that is, when the photoelectric sensor 10 is in the determination mode, the photoelectric sensor 10 updates the FIFO memory 13b with a new signal value (S12), and stores the data in the FIFO memory 13b. The state of the object is determined by applying a determination model to the stored signal values (S13). Here, the determination process (S13) will be described in more detail with reference to FIGS.
 その後、光電センサ10は、判定モードを終了するか否かを判定する(S14)。判定モードの終了は、光電センサ10の稼働を終了する場合や、判定モードから学習モードに切り替えられる場合に生じてよい。判定モードを終了しない場合(S14:NO)、光電センサ10は、再び時系列の信号値を取得し(S12)、取得した信号値に対して判定モデルを適用することにより、対象物の状態を判定する(S13)。一方、判定モードを終了する場合(S14:YES)、学習モード及び判定モードの処理が終了する。 (4) Thereafter, the photoelectric sensor 10 determines whether to end the determination mode (S14). The termination of the determination mode may occur when the operation of the photoelectric sensor 10 is terminated or when the mode is switched from the determination mode to the learning mode. If the determination mode is not ended (S14: NO), the photoelectric sensor 10 acquires the time-series signal values again (S12), and applies the determination model to the acquired signal values to change the state of the target object. A determination is made (S13). On the other hand, when ending the determination mode (S14: YES), the processes in the learning mode and the determination mode are ended.
 図5は、本実施形態に係る光電センサ10により対象物の状態を判定する処理(S13)の第1例のフローチャートである。はじめに、光電センサ10は、判定モデルにより、取得した信号値により構成される波形と、基準波形との一致度のランクを判定する(S131)。一致度のランクは、例えば「高ランク」、「中ランク」、「低ランク」のような離散値で表されてよい。 FIG. 5 is a flowchart of a first example of the process (S13) of determining the state of the target by the photoelectric sensor 10 according to the present embodiment. First, the photoelectric sensor 10 determines the rank of the degree of coincidence between the waveform constituted by the acquired signal values and the reference waveform using the determination model (S131). The rank of the degree of coincidence may be represented by discrete values such as “high rank”, “medium rank”, and “low rank”.
 一致度が高ランクの場合(S132:YES)、光電センサ10は、対象物の状態は、基準波形に対応する特定の状態であると判定する(S133)。一方、一致度が高ランクでない場合(S132:NO)、光電センサ10は、判定処理を終了して、次の周期の判定時に改めて一致度が高ランクであるか否かを判定する。以上により判定処理の第1例が終了する。 If the matching degree is high (S132: YES), the photoelectric sensor 10 determines that the state of the target object is a specific state corresponding to the reference waveform (S133). On the other hand, if the degree of coincidence is not high (S132: NO), the photoelectric sensor 10 ends the determination process and determines whether the degree of coincidence is high again when determining the next cycle. Thus, the first example of the determination processing ends.
 図6は、本実施形態に係る光電センサ10により対象物の状態を判定する処理(S13)の第2例のフローチャートである。はじめに、光電センサ10は、判定モデルにより、取得した信号値により構成される波形と、基準波形との一致度のランクを判定する(S134)。 FIG. 6 is a flowchart of a second example of the process (S13) of determining the state of the target by the photoelectric sensor 10 according to the present embodiment. First, the photoelectric sensor 10 determines the rank of the degree of coincidence between the waveform constituted by the acquired signal values and the reference waveform using the determination model (S134).
 光電センサ10は、判定した一致度が高ランクの場合(S135:YES)、対象物の状態は、基準波形に対応する特定の状態であると判定する(S136)。一方、一致度が高ランクでなく(S135:NO)、一致度が中ランクであると判定された場合(S137:YES)、光電センサ10は、対象物の状態をただちに判定せずに、判定処理を終了する。 (4) If the determined degree of coincidence is high (S135: YES), the photoelectric sensor 10 determines that the state of the target object is a specific state corresponding to the reference waveform (S136). On the other hand, if the degree of coincidence is not high (S135: NO) and the degree of coincidence is determined to be medium (S137: YES), the photoelectric sensor 10 determines without immediately determining the state of the target object. The process ends.
 一致度が高ランクでなく(S135:NO)、一致度が中ランクでもなく(S137:NO)、対象物が検出範囲を通過する時間の範囲内に、一致度が高ランクの場合がなく、かつ、中ランクの場合があると判定された場合(S138:YES)、光電センサ10は、特定の状態ではない対象物が到来したと判定する(S139)。一方、一致度が高ランクでなく(S135:NO)、一致度が中ランクでなくても(S137:YES)、対象物が検出範囲を通過する時間の範囲内に、一致度が高ランクの場合がなく、かつ、中ランクの場合があると判定されない場合(S138:NO)、判定処理を終了する。 The degree of coincidence is not high (S135: NO), the degree of coincidence is not middle (S137: NO), and there is no case where the degree of coincidence is high during the time when the object passes through the detection range. When it is determined that there is a middle rank case (S138: YES), the photoelectric sensor 10 determines that an object that is not in a specific state has arrived (S139). On the other hand, even if the degree of coincidence is not high (S135: NO) and the degree of coincidence is not middle (S137: YES), the degree of coincidence is high within the time when the object passes through the detection range. If there is no case and it is not determined that there is a case of the middle rank (S138: NO), the determination processing ends.
 対象物が検出範囲を通過する時間の範囲内に、一致度が高ランクの場合がなく、かつ、中ランクの場合があるか判定するため(S138)、光電センサ10は、現時点から過去の、対象物が検出範囲を通過するのに要する時間の範囲内に判定モデルにより一致度のランクを判定した一連の判定結果を判定結果格納用の図示しないFIFOメモリに記憶してよい。また、光電センサ10は、一連の判定結果をFIFOメモリに記憶せず、判定モデルにより一致度が中ランクであると判定された場合に、対象物が検出範囲を通過するのに要する時間の計時を開始し、計時が終了するまでに高ランクの判定結果が出現しなければ、特定の状態ではない対象物が到来したと判定し、計時が終了するまでに高ランクの判定結果が出現すれば、特定の状態の対象物が到来したと判定してもよい。以上により判定処理の第2例が終了する。 In order to determine whether or not there is a case where the degree of coincidence is high and there is a case where the degree of middle is within the range of the time when the object passes through the detection range (S138), the photoelectric sensor 10 A series of determination results obtained by determining the rank of the matching degree by the determination model within the time required for the object to pass through the detection range may be stored in a not-shown FIFO memory for storing the determination results. Also, the photoelectric sensor 10 does not store a series of determination results in the FIFO memory, and measures the time required for the object to pass through the detection range when the determination model determines that the matching degree is the middle rank. If the high-rank judgment result does not appear before the timing ends, it is determined that an object that is not in a specific state has arrived, and if the high-rank judgment result appears before the timing ends. Alternatively, it may be determined that an object in a specific state has arrived. Thus, the second example of the determination processing ends.
 図7aは、本実施形態に係る光電センサ10の第nサイクルに測定された信号値の一例を示す図である。また、図7bは、本実施形態に係る光電センサ10の第n+1サイクルに測定された信号値の一例を示す図である。図7a及び図7bでは、縦軸に受光量の値を示し、横軸に時間とそれに対応するFIFOメモリ13bのステージを示している。両図に示すように、最新の受光量の値(時間t9の値)は、FIFOメモリ13bの初段q0に記憶されており、最も過去の受光量の値(時間t0の値)は、FIFOメモリ13bの最終段q9に記憶されている。本例では、FIFOメモリ13bは、取得された順に順序付けて10の信号値を記憶している。 FIG. 7A is a diagram illustrating an example of a signal value measured in the n-th cycle of the photoelectric sensor 10 according to the present embodiment. FIG. 7B is a diagram illustrating an example of a signal value measured in the (n + 1) th cycle of the photoelectric sensor 10 according to the present embodiment. 7A and 7B, the ordinate represents the value of the amount of received light, and the abscissa represents the time and the corresponding stage of the FIFO memory 13b. As shown in both figures, the latest value of the received light amount (value at time t9) is stored in the first stage q0 of the FIFO memory 13b, and the oldest received light amount value (time t0 value) is stored in the FIFO memory 13b. 13b is stored in the last stage q9. In this example, the FIFO memory 13b stores ten signal values in the order of acquisition.
 破線により示す対象物の形状S1は、各受光量の値が得られるタイミングに合わせて対象物の形状を模式的に示すものである。対象物の形状S1によれば、対象物は、ベースに突起の付いた形状であることが読み取れる。 The shape S1 of the object indicated by the broken line schematically shows the shape of the object in accordance with the timing at which the value of each received light amount is obtained. According to the shape S1 of the object, it can be read that the object has a shape with a projection on the base.
 図7aにおいて実線により示す波形W1は、第nサイクルに取得され、FIFOメモリ13bに記憶された信号値により構成された波形である。また、図7bにおいて実線により示す波形W2は、第n+1サイクルに取得され、FIFOメモリ13bに記憶された信号値により構成された波形である。両図に示すように、第nサイクルにFIFOメモリ13bに記憶されていた信号値は、第n+1サイクルにおいて1つ後段にシフトされてFIFOメモリ13bに記憶されている。 波形 A waveform W1 indicated by a solid line in FIG. 7A is a waveform obtained in the n-th cycle and configured by the signal values stored in the FIFO memory 13b. Further, a waveform W2 indicated by a solid line in FIG. 7B is a waveform obtained in the (n + 1) th cycle and configured by the signal values stored in the FIFO memory 13b. As shown in both figures, the signal value stored in the FIFO memory 13b in the n-th cycle is shifted to the next stage by one in the (n + 1) -th cycle and stored in the FIFO memory 13b.
 検出範囲10aには一定の広がりがあるため、対象物100の段差に対応するタイミング付近では段差の上面と下面との両方からの反射光が受光され、波形W1及び波形W2を構成する信号値は中間的な値となる。中間的な受光量の値は、わずかな取得タイミングの違いで大きく変動しやすい。したがって、同一形状の対象物100についても毎回受光量の値は変動し得る。判定モデルの生成にあたっては、平均化の効果が得られるように、ある程度の回数にわたって対象物100を搬送させて、受光量の値の取得を繰り返すことが好ましい。 Since the detection range 10a has a certain extent, near the timing corresponding to the step of the object 100, reflected light from both the upper surface and the lower surface of the step is received, and the signal values forming the waveforms W1 and W2 are It is an intermediate value. The value of the intermediate amount of received light is likely to fluctuate greatly due to a slight difference in the acquisition timing. Therefore, the value of the amount of received light may vary each time even for the target 100 having the same shape. In generating the judgment model, it is preferable that the object 100 be transported a certain number of times and the acquisition of the value of the amount of received light be repeated so that an averaging effect is obtained.
 動作制御部13aは、時系列の信号値の変動が比較的小さい安定期に続いて、時系列の信号値の変動が比較的大きい変動期が現れた場合に、変動期に属する信号値に基づいて判定モデルを生成してよい。図7aの例の場合、時系列の信号値の変動が比較的小さい安定期は、時間t0からt1までであり、時系列の信号値の変動が比較的大きい変動期は、時間t2からt8までである。また、図7bの例の場合、時系列の信号値の変動が比較的小さい安定期は、時間t8以降であり、時系列の信号値の変動が比較的大きい変動期は、時間t2からt7までである。動作制御部13aは、FIFOメモリ13bの最終段から初段に向かって隣り合うステージに記憶された値を比較して、その差が閾値以上である隣り合うステージが存在する場合に、隣り合うステージのうち初段に近い側のステージから初段に向かって変動期に属する信号値が記憶されていると判定し、隣り合うステージのうち最終段に近い側のステージから最終段に向かって安定期に属する信号値が記憶されていると判定してもよい。具体的には、動作制御部13aは、図7aの例の場合、最終段q9と第8段q8に記憶された値を比較して、その差が0であり閾値以下であるため、第8段q8と第7段q7に記憶された値を比較して、その差が2であり閾値以上であると判定してよい。ここで、閾値は、例えば1であってよい。そして、動作制御部13aは、記憶された値の差が閾値以上である第8段q8と第7段q7のうち初段q0に近い側の第7段q7から初段q0に向かって変動期に属する信号値が記憶されていると判定し、第8段q8と第7段q7のうち最終段に近い側の第8段q8から最終段q9に向かって安定期に属する信号値が記憶されていると判定してよい。 The operation control unit 13a, based on a signal value belonging to the fluctuation period, when a fluctuation period in which the fluctuation of the time-series signal value is relatively large follows a stable period in which the fluctuation of the time-series signal value is relatively small. May be used to generate a judgment model. In the case of the example of FIG. 7A, the stable period in which the fluctuation of the time-series signal value is relatively small is from time t0 to t1, and the fluctuation period in which the fluctuation of the time-series signal value is relatively large is from time t2 to t8. It is. In the case of the example of FIG. 7B, the stable period in which the fluctuation of the time-series signal value is relatively small is after time t8, and the fluctuation period in which the fluctuation of the time-series signal value is relatively large is from time t2 to t7. It is. The operation control unit 13a compares values stored in adjacent stages from the last stage to the first stage of the FIFO memory 13b, and when there is an adjacent stage whose difference is greater than or equal to the threshold, the operation control unit 13a It is determined that the signal value belonging to the fluctuation period from the stage closer to the first stage toward the first stage is stored, and the signal belonging to the stable period from the stage closer to the last stage of the adjacent stages toward the last stage. It may be determined that a value is stored. Specifically, in the case of the example of FIG. 7A, the operation control unit 13a compares the values stored in the final stage q9 and the eighth stage q8 and finds that the difference is 0, which is equal to or smaller than the threshold. The value stored in the stage q8 and the value stored in the seventh stage q7 may be compared, and the difference may be determined to be 2 and equal to or greater than the threshold. Here, the threshold value may be 1, for example. Then, the operation control unit 13a belongs to the fluctuation period from the seventh stage q7, which is closer to the first stage q0, to the first stage q0 of the eighth stage q8 and the seventh stage q7 in which the difference between the stored values is equal to or larger than the threshold. It is determined that the signal value is stored, and the signal value belonging to the stable period from the eighth stage q8, which is closer to the final stage, of the eighth stage q8 and the seventh stage q7 toward the final stage q9 is stored. May be determined.
 判定部13dは、FIFOメモリ13bの更新を1回又は複数回行う毎に一度の頻度で、FIFOメモリ13bに記憶された所定数の信号値により構成される波形W1と、対象物100の特定の状態に対応する基準波形との一致度を判定モデルにより判定し、一致度のランクに基づいて、対象物の状態を判定してよい。例えば、基準波形が図7aに破線で示した対象物の形状S1とほぼ等しい波形である場合、判定部13dは、FIFOメモリ13bの各ステージに記憶された信号値と基準波形の信号値との差の絶対値の総和を求めて、その値が小さいほど一致度が高いとして、対象物の状態が特定の状態であるか判定してよい。このように、光電センサ10が判定モードで動作している時に、搬送されてきた対象物100が突起のある対象物である場合、FIFOメモリ13bの特定のシフトサイクルにおいて、取得される受光量の値で構成される波形とモデル生成時における受光量の値で構成される基準波形との一致の程度が高くなる。 The determination unit 13d is configured to perform the update of the FIFO memory 13b once or a plurality of times, once each time, the waveform W1 composed of a predetermined number of signal values stored in the FIFO memory 13b, and the specific The degree of coincidence with the reference waveform corresponding to the state may be determined by a determination model, and the state of the target object may be determined based on the rank of the degree of coincidence. For example, when the reference waveform is a waveform substantially equal to the shape S1 of the object shown by the broken line in FIG. 7A, the determination unit 13d compares the signal value stored in each stage of the FIFO memory 13b with the signal value of the reference waveform. The sum of the absolute values of the differences may be determined, and the smaller the value is, the higher the matching degree may be, and it may be determined whether the state of the target object is a specific state. As described above, when the conveyed object 100 is an object having a protrusion when the photoelectric sensor 10 is operating in the determination mode, the amount of received light in the specific shift cycle of the FIFO memory 13b is determined. The degree of coincidence between the waveform constituted by the value and the reference waveform constituted by the value of the amount of received light at the time of model generation becomes high.
 図8は、本実施形態に係る光電センサ10の第nサイクルに測定された信号値の他の例を示す図である。同図では、縦軸に受光量の値を示し、横軸に時間とそれに対応するFIFOメモリ13bのステージを示している。 FIG. 8 is a diagram illustrating another example of the signal value measured in the nth cycle of the photoelectric sensor 10 according to the present embodiment. In the figure, the vertical axis indicates the value of the amount of received light, and the horizontal axis indicates the time and the corresponding stage of the FIFO memory 13b.
 図8において実線により示す波形W3は、第nサイクルに取得され、FIFOメモリ13bに記憶された信号値により構成された波形である。また、破線により示す対象物の形状S2は、各受光量の値が得られるタイミングに合わせて対象物の形状を模式的に示すものである。対象物の形状S2によれば、対象物は、突起が無いベースのみの形状であることが読み取れる。 波形 The waveform W3 indicated by the solid line in FIG. 8 is a waveform obtained in the nth cycle and configured by the signal values stored in the FIFO memory 13b. The shape S2 of the object indicated by the broken line schematically shows the shape of the object in accordance with the timing at which the value of each received light amount is obtained. According to the shape S2 of the object, it can be read that the object is a shape of only the base having no projection.
 波形W3を図7aに示す波形W1と比較すると、時間t4からt6までの間の受光量の値に差異がある。判定モードで動作しているときに搬送されるものが突起のない対象物である場合、対象物の通過に要する時間の範囲内で、FIFOメモリ13bのいくつかのシフトサイクルにおいて、取得される受光量の値で構成される波形と、判定モデル生成時における受光量の値で構成される基準波形との一致度は、第2所定値より大きくなり、中程度になるが、所定値より高くならず、高程度になることはない。従って、判定部13dは、突起のある対象物ではないが、一致度が中程度となることがあることをもって、突起のある対象物と何らかの共通性のある対象物が到来したと判定してよい。本例では、対象物のベース部分が共通しているので一致の程度が中程度となった。 Comparing the waveform W3 with the waveform W1 shown in FIG. 7A, there is a difference in the value of the amount of received light between the times t4 and t6. If the object to be conveyed while operating in the determination mode is an object without a protrusion, the light reception acquired in several shift cycles of the FIFO memory 13b within the time required for the object to pass through. The degree of coincidence between the waveform composed of the value of the amount and the reference waveform composed of the value of the amount of received light at the time of generation of the judgment model is larger than the second predetermined value and is medium, but if it is higher than the predetermined value, Not high. Accordingly, the determining unit 13d may determine that an object having some commonality with the object having the protrusion has arrived, although the object is not the object having the protrusion, but the degree of coincidence may be medium. . In this example, the degree of coincidence was medium because the base portions of the objects are common.
 図9は、本実施形態に係る光電センサ10の処理部13の構成の他の例を示す図である。同図に示す処理部13の構成の例は、図3に示す処理部13の構成の例と比較して、モデル記憶部13cに参照値Rが記憶されている点で相違し、それ以外の構成について共通する。 FIG. 9 is a diagram illustrating another example of the configuration of the processing unit 13 of the photoelectric sensor 10 according to the present embodiment. The example of the configuration of the processing unit 13 shown in FIG. 3 is different from the example of the configuration of the processing unit 13 shown in FIG. 3 in that the reference value R is stored in the model storage unit 13c. The configuration is common.
 モデル記憶部13cは、判定モデルとして、FIFOメモリ13bに記憶された所定数の信号値と、所定数の信号値にそれぞれ対応する、基準波形を表す参照値Rとの差異から一致度を算出するモデルを記憶してよい。一致度を算出するモデルは、本例の場合、5つの参照値Rと、それらに対応するFIFOメモリのq0からq4までのステージに記憶された信号値との差の絶対値の総和を算出し、その値が小さいほど一致度が大きくなるように一致度を算出するモデルであってよい。モデル記憶部13cには、参照値r4、r3、r2、r1及びr0が格納され、それぞれFIFOメモリ13bのq0、q2、q4、q6及びq8に格納されている値と対応していてよい。 The model storage unit 13c calculates a degree of coincidence from a difference between a predetermined number of signal values stored in the FIFO memory 13b and a reference value R corresponding to the predetermined number of signal values and representing a reference waveform, as a determination model. The model may be stored. In this example, the model for calculating the degree of coincidence calculates the sum of the absolute values of the differences between the five reference values R and the signal values stored in the corresponding stages q0 to q4 of the FIFO memory. Alternatively, a model that calculates the degree of coincidence such that the smaller the value is, the higher the degree of coincidence may be. Reference values r4, r3, r2, r1, and r0 are stored in the model storage unit 13c, and may correspond to values stored in q0, q2, q4, q6, and q8 of the FIFO memory 13b, respectively.
 判定部13dが備える判定モデルは、対応関係にある各値の差の絶対値を求め、各差の絶対値の総和が第1閾値より小さいことを第1基準とし、第1基準を満たすとき一致度が高ランクであると判定するモデルであってよい。判定部13dが備える判定モデルは、さらに、各差の絶対値の総和が第1閾値と、第1閾値より大きい第2閾値との間にあることを第2基準とし、対象物100の通過に要する時間の範囲内で、第2基準は満たすことがあるが第1基準は満たすことがないときに一致度が中ランクであると判定するモデルであってよい。 The determination model provided in the determination unit 13d determines the absolute value of the difference between the values in the corresponding relationship, determines that the sum of the absolute values of the differences is smaller than a first threshold as a first criterion, and matches when the first criterion is satisfied. A model that determines that the degree is a high rank may be used. The judgment model provided in the judgment unit 13d further uses the fact that the sum of the absolute values of the differences is between the first threshold and a second threshold larger than the first threshold as a second criterion. If the second criterion is satisfied but the first criterion is not satisfied within the required time range, the model may determine that the matching degree is the middle rank.
 判定部13dは、FIFOメモリ13bの更新を1回又は複数回行う毎に一度の頻度で、判定モデルによる判定を実行し、一致度のランクに基づいて、対象物の状態を判定してよい。このように、比較的簡単なモデルによって、FIFOメモリ13bに記憶された信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度を判定することで、搬送ライン上を次々と運ばれてくる対象物100の状態をより高速に判定することができる。 The judgment unit 13d may execute the judgment by the judgment model once every time the FIFO memory 13b is updated once or plural times, and may judge the state of the target object based on the rank of the matching degree. As described above, by using a relatively simple model to determine the degree of coincidence between the waveform composed of the signal values stored in the FIFO memory 13b and the reference waveform corresponding to the specific state of the target object 100, the transport is performed. It is possible to determine the state of the object 100 that is successively carried on the line at a higher speed.
 判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、対象物100の状態を複数回判定し、FIFOメモリ13bに記憶された所定数の信号値と、所定数の信号値にそれぞれ対応する、基準波形を表す所定数の参照値Rとの差異が小さいことを判定するための第1基準を少なくとも一度満たす場合に、対象物100の状態は特定の状態であると判定してよい。例えば、判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、FIFOメモリ13bに記憶された所定数の信号値と、所定数の信号値にそれぞれ対応する、基準波形を表す所定数の参照値Rとの差異が小さいことを判定するための第1基準を少なくとも一度満たす場合、対象物100がベースに突起が付いた形状の対象物であると判定してよい。このように、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、FIFOメモリ13bに記憶された信号値により構成される波形と、対象物100の特定の状態に対応する基準波形との一致度が所定値よりも高いときがあるか否かを判定することができる。 The determination unit 13d determines the state of the target object 100 a plurality of times within a time period required for the target object 100 to pass through the detection range 10a, and determines a predetermined number of signal values stored in the FIFO memory 13b, When the first criterion for determining that the difference from the predetermined number of reference values R representing the reference waveform respectively corresponding to the signal values of the numbers is small is at least once, the state of the target object 100 is a specific state. It may be determined that there is. For example, the determination unit 13d corresponds to a predetermined number of signal values stored in the FIFO memory 13b and a predetermined number of signal values, respectively, within a time period required for the target object 100 to pass through the detection range 10a. When the first criterion for determining that the difference from the predetermined number of reference values R representing the reference waveform is small is at least once, it is determined that the target object 100 is a target object having a shape with a protrusion on the base. Good. As described above, within the time required for the object 100 to pass through the detection range 10a, the waveform constituted by the signal values stored in the FIFO memory 13b and the reference corresponding to the specific state of the object 100 It can be determined whether or not the degree of coincidence with the waveform is higher than a predetermined value.
 また、判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、対象物100の状態を複数回判定し、複数回の判定全てにおいて第1基準を満たさないが、FIFOメモリ13bに記憶された所定数の信号値と、所定数の信号値にそれぞれ対応する、基準波形を表す所定数の参照値Rとの差異が中程度であることを判定するための第2基準を少なくとも一度満たす場合に、特定の状態ではない対象物100が到来したと判定してよい。例えば、判定部13dは、対象物100が検出範囲10aを通過するのに要する時間の範囲内で、FIFOメモリ13bに記憶された所定数の信号値と、基準波形を表す所定数の参照値Rとの差異が小さいことを判定するための第1基準を満たさないが、差異が中程度であることを判定するための第2基準を少なくとも一度満たす場合、対象物100に突起が無く、ベースのみの形状の対象物であると判定してよい。このように、対象物100の状態が特定の状態ではない場合であっても、対象物100が到来したことと、その対象物100の状態が特定の状態ではないことを判定することができる。 Also, the determination unit 13d determines the state of the target object 100 a plurality of times within the time required for the target object 100 to pass through the detection range 10a, and the first criterion is not satisfied in all of the plurality of determinations. , For determining that the difference between the predetermined number of signal values stored in the FIFO memory 13b and the predetermined number of reference values R corresponding to the predetermined number of signal values and representing the reference waveform is moderate. When the two criteria are satisfied at least once, it may be determined that the target object 100 that is not in the specific state has arrived. For example, the determination unit 13d determines that a predetermined number of signal values stored in the FIFO memory 13b and a predetermined number of reference values R representing the reference waveform are within a range required for the object 100 to pass through the detection range 10a. Does not meet the first criterion for determining that the difference is small, but satisfies at least once the second criterion for determining that the difference is moderate, the object 100 has no protrusion and only the base May be determined. As described above, even when the state of the target object 100 is not the specific state, it is possible to determine that the target object 100 has arrived and that the state of the target object 100 is not the specific state.
 図10は、本実施形態に係る光電センサ10に外部から判定モデルをインストールする例を示す図である。同図に示す光電センサ10の処理部13の構成の例は、図3に示す処理部13の構成の例と比較して、動作制御部13aが、時系列の受光量の値を外部に出力し、それに基づいて外部のコンピュータで生成された判定モデルを入力し、入力した判定モデルをモデル記憶部13cに記憶させる点で相違し、それ以外の構成について共通する。 FIG. 10 is a diagram illustrating an example in which a determination model is externally installed in the photoelectric sensor 10 according to the present embodiment. The example of the configuration of the processing unit 13 of the photoelectric sensor 10 illustrated in FIG. 3 is different from the example of the configuration of the processing unit 13 illustrated in FIG. 3 in that the operation control unit 13a outputs a time-series value of the received light amount to the outside. However, the difference is that a judgment model generated by an external computer is input based on that, and the input judgment model is stored in the model storage unit 13c, and the other configurations are common.
 動作制御部13aは、時系列の信号値を外部に出力可能であってよい。外部に出力される信号値は、FIFOメモリ13bに記憶されている信号値であってよい。信号値を外部に出力し、外部機器で判定モデルを生成することができる。これにより、判定モデルを生成する処理に関する計算資源を光電センサ自身で持つ必要がなくなる。 The operation control unit 13a may be capable of outputting a time-series signal value to the outside. The signal value output to the outside may be a signal value stored in the FIFO memory 13b. The signal value can be output to the outside, and the judgment model can be generated by the external device. This eliminates the need for the photoelectric sensor itself to have computational resources for the process of generating the determination model.
 動作制御部13aは、判定モデルを外部から取得し、モデル記憶部13cに記憶させてよい。動作制御部13aは、外部のコンピュータで生成された判定モデルを取得したり、他の光電センサにより生成された判定モデルを取得したりしてよい。他の装置、例えば他の光電センサにより生成された判定モデルを流用することで判定モデルの生成を省略することができる。 The operation control unit 13a may acquire the determination model from the outside and store it in the model storage unit 13c. The operation control unit 13a may obtain a determination model generated by an external computer, or may obtain a determination model generated by another photoelectric sensor. By diverting a determination model generated by another device, for example, another photoelectric sensor, generation of a determination model can be omitted.
 なお、動作制御部13aは、時系列の信号値を外部に出力することなく、他の光電センサにおいて生成されたモデル、又は他の光電センサで取得された時系列の信号値に基づいて外部のコンピュータで生成されたモデルを入力して使用するようにしてもよい。 The operation control unit 13a does not output a time-series signal value to the outside, and outputs an external model based on a model generated by another photoelectric sensor or a time-series signal value acquired by another photoelectric sensor. A computer-generated model may be input and used.
 以上説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are intended to facilitate understanding of the present invention, and are not intended to limit and interpret the present invention. The components included in the embodiment and their arrangement, material, condition, shape, size, and the like are not limited to those illustrated, but can be appropriately changed. It is also possible to partially replace or combine the configurations shown in the different embodiments.
 [附記]
 対象物(100)が到来する検出範囲(10a)に向けて光を出射する投光部(11)と、
 前記光の受光に基づく時系列の信号値を取得する受光部(12)と、
 取得された順に順序付けて所定数の前記信号値を記憶し、周期的に、新たに取得された前記信号値により所定数の前記信号値を更新するFIFOメモリ(13b)と、
 前記FIFOメモリ(13b)に記憶された所定数の前記信号値により構成される波形と、前記対象物(100)の特定の状態に対応する基準波形との一致度のランクを判定する判定モデルを記憶するモデル記憶部(13c)と、
 前記FIFOメモリ(13b)の更新を1回又は複数回行う毎に一度の頻度で、前記判定モデルによる判定を実行し、前記一致度のランクに基づいて、前記対象物(100)の状態を判定する判定部(13d)と、
 を備える光電センサ(10)。
[Appendix]
A light projecting unit (11) for emitting light toward a detection range (10a) where an object (100) arrives;
A light receiving unit (12) for acquiring a time-series signal value based on the light reception,
A FIFO memory (13b) that stores a predetermined number of the signal values in an order of acquisition and periodically updates the predetermined number of the signal values with the newly acquired signal values;
A determination model for determining a rank of the degree of coincidence between a waveform constituted by a predetermined number of the signal values stored in the FIFO memory (13b) and a reference waveform corresponding to a specific state of the object (100) is provided. A model storage unit (13c) for storing;
The determination by the determination model is performed once every time the FIFO memory (13b) is updated one or more times, and the state of the object (100) is determined based on the rank of the matching degree. A determining unit (13d) for performing
A photoelectric sensor (10) comprising:

Claims (10)

  1.  対象物が到来する検出範囲に向けて光を出射する投光部と、
     前記光の受光に基づく時系列の信号値を取得する受光部と、
     取得された順に順序付けて所定数の前記信号値を記憶し、周期的に、新たに取得された前記信号値により所定数の前記信号値を更新するFIFOメモリと、
     前記FIFOメモリに記憶された所定数の前記信号値により構成される波形と、前記対象物の特定の状態に対応する基準波形との一致度のランクを判定する判定モデルを記憶するモデル記憶部と、
     前記FIFOメモリの更新を1回又は複数回行う毎に一度の頻度で、前記判定モデルによる判定を実行し、前記一致度のランクに基づいて、前記対象物の状態を判定する判定部と、
     を備える光電センサ。
    A light-emitting unit that emits light toward a detection range where an object arrives,
    A light receiving unit that acquires a time-series signal value based on the light reception of the light,
    A FIFO memory that stores a predetermined number of the signal values in the order of acquisition and periodically updates the predetermined number of the signal values with the newly obtained signal values;
    A model storage unit for storing a determination model for determining a rank of a degree of coincidence between a waveform composed of a predetermined number of the signal values stored in the FIFO memory and a reference waveform corresponding to a specific state of the object; ,
    A determination unit that performs determination by the determination model once every time the FIFO memory is updated one or more times, and determines a state of the target object based on the rank of the matching degree;
    A photoelectric sensor comprising:
  2.  前記判定モデルは、機械学習によって生成された学習済みモデルである、
     請求項1に記載の光電センサ。
    The determination model is a learned model generated by machine learning,
    The photoelectric sensor according to claim 1.
  3.  前記判定モデルは、前記FIFOメモリに記憶された前記所定数の信号値と、前記所定数の信号値にそれぞれ対応する、前記基準波形を表す参照値との差異から前記一致度を算出することを含むモデルである、
     請求項1に記載の光電センサ。
    The determination model calculates the degree of coincidence from a difference between the predetermined number of signal values stored in the FIFO memory and a reference value representing the reference waveform corresponding to each of the predetermined number of signal values. Including the model,
    The photoelectric sensor according to claim 1.
  4.  前記判定モデルは、前記一致度が所定値よりも高い場合に一致度が高ランクであると判定するモデルであり、
     前記判定部は、前記高ランクの判定結果が得られた場合に、前記対象物の状態は前記特定の状態であると判定する、
     請求項1から3のいずれか一項に記載の光電センサ。
    The determination model is a model for determining that the degree of coincidence is high when the degree of coincidence is higher than a predetermined value,
    The determination unit, when the determination result of the high rank is obtained, determines that the state of the object is the specific state,
    The photoelectric sensor according to claim 1.
  5.  前記判定モデルは、さらに、前記一致度が前記所定値よりも高くないが前記所定値より小さい第2所定値よりも高い場合に一致度が中ランクであると判定するモデルであり、
     前記判定部は、前記対象物が前記検出範囲を通過するのに要する時間の範囲内で、前記高ランクの場合がなく前記中ランクの場合があるときに、前記特定の状態ではない前記対象物が到来したと判定する、
     請求項4に記載の光電センサ。
    The determination model is a model that further determines that the matching degree is a middle rank when the matching degree is not higher than the predetermined value but is higher than a second predetermined value smaller than the predetermined value,
    The determination unit is configured such that, within the time required for the object to pass through the detection range, when there is no case of the high rank and there is a case of the middle rank, the object not in the specific state Is determined to have arrived,
    The photoelectric sensor according to claim 4.
  6.  前記信号値に基づいて前記判定モデルを生成し、生成した前記判定モデルを前記モデル記憶部に記憶させる動作制御部をさらに備える、
     請求項1から5のいずれか一項に記載の光電センサ。
    An operation control unit that generates the determination model based on the signal value, and stores the generated determination model in the model storage unit,
    The photoelectric sensor according to claim 1.
  7.  前記動作制御部は、時系列の前記信号値の変動が比較的小さい安定期に続いて、時系列の前記信号値の変動が比較的大きい変動期が現れた場合に、前記変動期に属する前記信号値に基づいて前記判定モデルを生成する、
     請求項6に記載の光電センサ。
    The operation control unit, when following a stable period in which the fluctuation of the signal value in time series is relatively small, when a fluctuation period in which the fluctuation of the signal value in time series is relatively large appears, the operation belonging to the fluctuation period. Generating the determination model based on the signal value,
    The photoelectric sensor according to claim 6.
  8.  前記動作制御部は、前記判定モデルを外部に出力可能である、
     請求項6又は7に記載の光電センサ。
    The operation control unit can output the determination model to the outside,
    The photoelectric sensor according to claim 6.
  9.  前記動作制御部は、時系列の前記信号値を外部に出力可能である、
     請求項6又は7に記載の光電センサ。
    The operation control unit can output the signal value in time series to the outside,
    The photoelectric sensor according to claim 6.
  10.  前記判定モデルを外部から取得し、前記モデル記憶部に記憶させる動作制御部をさらに備える、
     請求項1から5のいずれか一項に記載の光電センサ。
    The apparatus further includes an operation control unit that acquires the determination model from the outside and stores the model in the model storage unit.
    The photoelectric sensor according to claim 1.
PCT/JP2019/028266 2018-08-01 2019-07-18 Photoelectric sensor WO2020026832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-145201 2018-08-01
JP2018145201A JP7035890B2 (en) 2018-08-01 2018-08-01 Photoelectric sensor

Publications (1)

Publication Number Publication Date
WO2020026832A1 true WO2020026832A1 (en) 2020-02-06

Family

ID=69231703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/028266 WO2020026832A1 (en) 2018-08-01 2019-07-18 Photoelectric sensor

Country Status (3)

Country Link
JP (1) JP7035890B2 (en)
TW (1) TWI691166B (en)
WO (1) WO2020026832A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3968520B1 (en) 2020-09-10 2022-08-31 Sick Ag Sensor for detecting an object and method for evaluating a sensor signal

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248829A (en) * 1992-03-02 1993-09-28 Taiyo Yuden Co Ltd Apperance inspecting apparatus for electronic part
JPH09252243A (en) * 1996-03-18 1997-09-22 Keyence Corp Detection switch
JP2004320373A (en) * 2003-04-15 2004-11-11 Yamatake Corp Photodetecting sensor device
JP2007072665A (en) * 2005-09-06 2007-03-22 Fujitsu Ten Ltd Object discrimination device, object discrimination method and object discrimination program
JP2009236751A (en) * 2008-03-27 2009-10-15 Asahi Kasei Electronics Co Ltd Infrared sensor, and detecting method using infrared sensor
JP2016191568A (en) * 2015-03-30 2016-11-10 京セラディスプレイ株式会社 Proximity sensor device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014021901A (en) * 2012-07-23 2014-02-03 Casio Comput Co Ltd Object detection device, object detection method and program
US9286690B2 (en) * 2014-03-14 2016-03-15 National Taipei University Of Technology Method and apparatus for moving object detection using fisher's linear discriminant based radial basis function network
JP6189978B2 (en) * 2016-01-08 2017-08-30 株式会社ダイシン Conveyed object discrimination control system and conveying apparatus
TWI623740B (en) * 2016-03-31 2018-05-11 松下知識產權經營股份有限公司 Inspection method, inspection system, production method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05248829A (en) * 1992-03-02 1993-09-28 Taiyo Yuden Co Ltd Apperance inspecting apparatus for electronic part
JPH09252243A (en) * 1996-03-18 1997-09-22 Keyence Corp Detection switch
JP2004320373A (en) * 2003-04-15 2004-11-11 Yamatake Corp Photodetecting sensor device
JP2007072665A (en) * 2005-09-06 2007-03-22 Fujitsu Ten Ltd Object discrimination device, object discrimination method and object discrimination program
JP2009236751A (en) * 2008-03-27 2009-10-15 Asahi Kasei Electronics Co Ltd Infrared sensor, and detecting method using infrared sensor
JP2016191568A (en) * 2015-03-30 2016-11-10 京セラディスプレイ株式会社 Proximity sensor device

Also Published As

Publication number Publication date
JP2020022091A (en) 2020-02-06
TW202008724A (en) 2020-02-16
JP7035890B2 (en) 2022-03-15
TWI691166B (en) 2020-04-11

Similar Documents

Publication Publication Date Title
JP5974561B2 (en) Optical sensor and setting method for sensitivity adjustment control
WO2020026832A1 (en) Photoelectric sensor
JP2005064586A (en) Imaging apparatus for inspection/selection apparatus provided with imaging timing automatic detection function
JP2010537175A (en) Method and apparatus for dynamic weighing inspection
JP6671422B2 (en) Method and system for parameterizing a sensor
WO2020026833A1 (en) Photoelectric sensor
US20130235365A1 (en) Distance-measuring sensor and method for synchronizing measurement value generation and measurement value output
TW202001204A (en) Detection method and setting method of detection device
JP6121488B2 (en) Distance measuring sensor for object recognition and distance measurement
JP7034440B2 (en) Photoelectric sensor
US10537189B2 (en) Reception system for receiving objects
JP7406724B2 (en) photoelectric sensor
JP7100826B2 (en) Detection device
JP7021631B2 (en) Photoelectric sensor
JP7483205B2 (en) Photoelectric Sensor
JPH1123710A (en) Range finder
JP4286646B2 (en) Photoelectric switch detection method
WO2022176372A1 (en) Input/output device
TWI774959B (en) Detection device
JP7066113B2 (en) Photoelectric sensor
JP7386724B2 (en) Inspection system and light emission controller used therein
JP2019158604A (en) Light detection device, light detection method and lidar device
JP2732915B2 (en) Article detection method
JP2005221330A (en) Distance calibration method of range sensor
JP3823866B2 (en) Foreign matter adhesion determination device and method of outer diameter measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845446

Country of ref document: EP

Kind code of ref document: A1