WO2020026766A1 - Method for producing glass bulk body - Google Patents

Method for producing glass bulk body Download PDF

Info

Publication number
WO2020026766A1
WO2020026766A1 PCT/JP2019/027715 JP2019027715W WO2020026766A1 WO 2020026766 A1 WO2020026766 A1 WO 2020026766A1 JP 2019027715 W JP2019027715 W JP 2019027715W WO 2020026766 A1 WO2020026766 A1 WO 2020026766A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
laser
bulk body
glass layer
concrete
Prior art date
Application number
PCT/JP2019/027715
Other languages
French (fr)
Japanese (ja)
Inventor
秀 阪口
川人 洋介
由弦 山本
修 桑野
公則 和鹿
達己 川渕
Original Assignee
国立研究開発法人海洋研究開発機構
株式会社ヒロテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人海洋研究開発機構, 株式会社ヒロテック filed Critical 国立研究開発法人海洋研究開発機構
Priority to JP2020533389A priority Critical patent/JP7279883B2/en
Publication of WO2020026766A1 publication Critical patent/WO2020026766A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/352Working by laser beam, e.g. welding, cutting or boring for surface treatment
    • B23K26/354Working by laser beam, e.g. welding, cutting or boring for surface treatment by melting
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/68Silicic acid; Silicates
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/04Treating liquids
    • G21F9/06Processing
    • G21F9/16Processing by fixation in stable solid media

Definitions

  • the present invention relates to a method for producing a glass bulk body, and more specifically, to a method for producing a glass bulk body capable of vitrifying an arbitrary region on the surface of aggregates of rock, rock or concrete.
  • laser processing can be basically performed without noise and without vibration, and attention has been paid not only to processing and welding of metal materials, but also to processing of concrete materials. A survey has been started on the applicability of this.
  • Patent Document 1 JP-A-6-80485
  • a surface adhering material mainly composed of an inorganic substance is arranged on the surface of a building material base material, and the surface layer is melted by irradiating a laser.
  • a surface treatment method for obtaining a building material on which a strong film is formed has been proposed.
  • a hardened cured film can be formed because both the building material base material and the surface adhering material are melted, and a colored cured film is formed on the surface of the construction material. It can be easily formed, and the surface of the construction material can be provided with heat insulation and sound insulation effects.
  • Patent Document 2 Japanese Patent Application Laid-Open No. H11-19785
  • a method of perforating a hardened cement body characterized in that perforation is performed by the method.
  • a low-noise, low-vibration apparatus is used to form a fragile layer having sufficiently reduced strength on the hardened cement body to be pierced, and then to form the fragile layer.
  • the fragile layer can be removed using a slow rotating mechanical or manual tool. As a result, generation of vibration and noise during drilling can be suppressed as much as possible, and the working environment and surrounding environment during drilling can be improved.
  • the construction material and the surface treatment method described in Patent Document 1 described above require the use of a surface-adhering material mainly composed of an inorganic substance whose components are adjusted for laser irradiation.
  • the surface adhering material is melted by irradiation, and is coated on the surface of the building material base material.
  • the surface treatment method described in Patent Document 1 is a method of coating an inorganic substance using laser irradiation, and uses a silica (SiO 2 ) component contained in an aggregate of sand particles, rock or concrete as a raw material, This is completely different from the method for manufacturing a glass bulk body in which a glass layer is formed in the region.
  • the method for perforating a hardened cement body described in Patent Document 2 is to form a fragile layer in the hardened cement body by using laser irradiation, and to form a dense glass layer in which formation of defects and the like is suppressed.
  • This is a technique having a direction completely opposite to that of the method of forming a region.
  • the formation of the fragile layer is limited to a narrow region corresponding to the perforated region, and it is not necessary to form the fragile layer continuously. That is, in the known prior art, a silica (SiO 2 ) component contained in an aggregate of sand grains, rock or concrete is used as a raw material, and a dense glass layer is continuously formed in an arbitrary area (particularly in a wide area). There is no way to do this.
  • an object of the present invention is to irradiate a laser to an aggregate of sand particles, rock or concrete, and use silica (SiO 2) contained in the aggregate of these sand particles, rock or concrete. It is an object of the present invention to provide a simple method for producing a glass bulk body in which a dense glass layer is continuously formed in an arbitrary region (particularly in a wide region) using a component as a raw material. Another object of the present invention is to provide a glass bulk body in which the surface of a substrate made of an aggregate of sand grains, rock or concrete is vitrified, and a glass layer is continuously formed in an arbitrary region.
  • the present inventor has conducted intensive studies on a laser irradiation method capable of forming a dense glass layer continuously and over a wide area in order to achieve the above object. After the formation of, the present inventors have found that it is extremely important to continuously expand the melted portion by laser scanning, and have reached the present invention.
  • the present invention An aggregate of sand grains, a method for producing a glass bulk body for vitrifying the surface of rock or concrete,
  • the aggregate of sand grains, the rock and the concrete include a silica (SiO 2 ) component, A first step of irradiating the surface with a laser at a fixed point and forming a fused portion, The second step of moving the irradiation position of the laser at a scanning speed at which the melting portion continuously expands, and forming a glass layer, Performing the first step and the second step continuously,
  • a method for producing a glass bulk body characterized in that:
  • a molten portion serving as a seed of a glass layer can be formed.
  • the melted portion can be expanded.
  • the scanning speed is too fast, the melted portion is divided or narrowed, and a dense glass layer cannot be formed continuously.
  • dense silica (SiO 2 ) components required for forming the glass layer steam explosion, aggregates of sand particles serving as a base material, changes in the shape of rock or concrete, and the like will cause a dense structure.
  • the glass layer cannot be formed continuously.
  • a powder containing a silica (SiO 2 ) component is disposed on the surface as the preliminary treatment step of the first step.
  • the pretreatment step, the first step, and the second step are performed on the glass layer to increase the thickness of the glass layer.
  • the glass layer can be formed by performing the first step and the second step once, respectively. However, by supplying the silica (SiO 2 ) component again by powder and performing the first step and the second step, the glass layer can be formed. The thickness and area of the layer can be increased.
  • the processing is not limited to one time, and a glass layer having an arbitrary thickness and area can be formed by repeating the processing a plurality of times as necessary.
  • the powder is supplied to the melting portion.
  • a powder containing a silica (SiO 2 ) component to the fusion zone in the second step, a dense glass layer can be formed more stably and efficiently.
  • the method of supplying the powder is not particularly limited, and may be supplied by various conventionally known methods. For example, it is possible to use a powder supply method used in laser cladding (a nozzle for supplying powder near the melting portion, a nozzle for supplying powder coaxially with laser irradiation, and the like).
  • the power density of the laser on the surface is 3 to 15 W / mm 2 .
  • the silica (SiO 2 ) component and the like contained in the base material can be sufficiently melted to form a seed region of the glass layer.
  • the power density of the laser on the surface be 20 to 40 W / mm 2 .
  • the power density of the laser is set to 20 W / mm 2 or more, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged.
  • the wattage to 40 W / mm 2 or less it is possible to suppress evaporation of the silica (SiO 2 ) component, steam explosion, deformation of the base material, and the like.
  • the scanning speed is 0.01 to 2.0 m / min.
  • the scanning speed of the laser it is preferable that in the second step, the scanning speed is 0.01 to 2.0 m / min.
  • the scanning speed of the laser it is preferable that in the second step, the scanning speed is 0.01 to 2.0 m / min.
  • the scanning speed of the laser it is preferable that in the second step, the scanning speed is 0.01 to 2.0 m / min.
  • the scanning speed of the laser is 0.01 m / min or more, evaporation of a silica (SiO 2 ) component, steam explosion, deformation of a substrate, and the like can be suppressed.
  • the irradiation speed is 2.0 m / min or less, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged.
  • the aggregate of sand and / or the rock is present at an outer edge of an excavation area when excavating the ground or the seabed.
  • the outer edge of the excavation area collapses with the excavation.
  • excavation is carried out using a casing.
  • a stratum eg, an oil field stratum
  • the casing easily collapses, and there are cases where a casing cannot be formed.
  • vitrifying the easily collapsed region the inner diameter becomes constant, and the casing can be easily installed.
  • the inner diameter becomes smaller as the excavation depth increases. Disappears.
  • high-level radioactive waste is introduced into the melting portion.
  • high-level radioactive waste is enclosed in a stainless steel container together with molten glass to form a vitrified material, and the container is buried in an underground facility.
  • large burial sites are required.
  • incorporation of high-level radioactive waste into the melting portion makes it possible to extremely easily form a vitrified body, and a large-sized stainless steel container is not required.
  • the vitrified body can be formed deep underground, and a large-scale burial site is not required.
  • the powder is disposed in a groove of a concrete member, and the groove is filled with the glass layer.
  • the groove of the concrete member By filling the groove of the concrete member with the glass layer, it is possible to improve the corrosion resistance, aesthetic appearance, and the like of the concrete member.
  • these concrete members can be joined via the glass layer by filling the groove with a glass layer. Simple joining can also be achieved by butting concrete members together and forming a glass layer along the joining line.
  • the present invention An aggregate of sand grains, a base material made of rock or concrete, And a glass layer, The base member and the glass layer are continuously integrated via a boundary region having bubbles,
  • the present invention also provides a glass bulk body characterized in that:
  • a glass layer is formed from a silica (SiO 2 ) component contained in a base material portion made of an aggregate of sand grains, rock or concrete, and therefore, the base material portion and the dense glass layer are formed. Are continuously integrated.
  • bubbles are present in the boundary region between the base material portion and the glass layer, and the difference in physical properties between the base material portion and the glass layer is effectively reduced by the bubbles.
  • the glass layer has transparency. Since the glass layer formed in the glass bulk body of the present invention is dense and the glass layer has transparency, for example, a building member (external wall or the like) having an excellent appearance utilizing light transmission ). In addition, the glass bulk body of this invention can be suitably obtained by the manufacturing method of the glass bulk body of this invention.
  • an aggregate of sand particles, rock or concrete is irradiated with a laser, and a silica (SiO 2 ) component contained in the aggregate of sand particles, rock or concrete is used as a raw material.
  • a silica (SiO 2 ) component contained in the aggregate of sand particles, rock or concrete is used as a raw material.
  • an aggregate of sand particles, a surface of a base material made of rock or concrete is vitrified, and a glass bulk body in which a dense glass layer is continuously formed in an arbitrary region. Can be provided.
  • FIG. 2 is a cross-sectional view of a sample obtained in Example 1.
  • 3 is a photograph showing a state in which light passes through the glass layer formed in Example 1.
  • 6 is an external appearance photograph of a sample obtained in Example 2.
  • 4 is a photograph of the appearance of a sample obtained in Example 3. It is a photograph of the appearance of the concrete piece in which the groove used in Example 4 was formed. It is an enlarged photograph of the groove formed in the concrete piece. It is an appearance photograph of a groove filled with powder. It is an external appearance photograph which shows the state which vitrified the powder.
  • 14 is an appearance photograph of a processing region finally obtained in Example 4.
  • 9 is a photograph of the appearance of a concrete joint obtained in Example 5.
  • the method for producing a glass bulk body of the present invention is a method for producing a glass bulk body for vitrifying a surface of an aggregate of sand particles, rock or concrete, and includes a method of irradiating a fixed point with a laser. It has one step and a second step of scanning with a laser.
  • a method for producing a glass bulk body for vitrifying a surface of an aggregate of sand particles, rock or concrete includes a method of irradiating a fixed point with a laser. It has one step and a second step of scanning with a laser.
  • each step and the like will be described in detail.
  • the first process (fixed point irradiation of laser)
  • the first step is a step for irradiating a surface of an aggregate of sand particles, rock or concrete with a laser at a fixed point to form a seed (melted portion) which will later become a glass layer.
  • the aggregate of sand grains, rock, or concrete serving as the base material on which the glass layer is formed contains a silica (SiO 2 ) component, and the silica (SiO 2 ) component becomes the glass layer.
  • the “aggregate of sand grains” means a broad aggregate of sand grains, and includes, for example, a solidified body of sand aggregates by applying pressure, and sand grains existing on the ground or the seabed.
  • the aggregate of sand grains, rock or concrete is not particularly limited as long as it contains a silica (SiO 2 ) component, and conventionally known aggregates of various sand grains, rocks or concrete can be used.
  • silica sand, masago, or the like can be used for the sand particles, and granite, sandstone, mudstone, tuff, or the like can be used for the rock.
  • chimney which is a structure formed by depositing and precipitating metal contained in hot water ejected from the sea floor, can also be targeted.
  • the type of laser used for irradiation is not particularly limited as long as the silica (SiO 2 ) component contained in the aggregate of sand particles, rocks or concrete can be sufficiently melted, and various conventionally known lasers may be used. Can be.
  • a laser that can be preferably used a semiconductor-excited solid-state laser can be given, and for example, a semiconductor laser can be used.
  • the power density of the laser on the surface of the base material is preferably 3 to 15 W / mm 2 .
  • the silica (SiO 2 ) component and the like contained in the base material can be sufficiently melted to form a seed region of the glass layer.
  • the power density of the laser is more preferably 5 to 10 W / mm 2 .
  • a powder containing a silica (SiO 2 ) component on the surface of the base material.
  • the silica (SiO 2 ) component By supplying the silica (SiO 2 ) component from the powder in addition to the silica (SiO 2 ) component contained in the base material, the glass layer can be formed more stably and efficiently.
  • the powder is not particularly limited as long as it contains a silica (SiO 2 ) component.
  • glass powder, silica particles, silica sand, masago, and the like can be used. Is also good.
  • the method of the arrangement is not particularly limited.For example, after arranging an appropriate amount of powder in a laser irradiation region, the powder is knife-edged. And the like.
  • the second step is a step for scanning the laser continuously from the fixed point irradiation of the laser in the first step to enlarge the molten portion (the seed region of the glass layer).
  • the power density of the laser on the surface of the base material is preferably set to 20 to 40 W / mm 2 .
  • the power density of the laser is set to 20 W / mm 2 or more, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged.
  • the wattage to 40 W / mm 2 or less, it is possible to suppress evaporation of the silica (SiO 2 ) component, steam explosion, deformation of the base material, and the like.
  • the more preferable power density of the laser is 25 to 35 W / mm 2 .
  • the scanning speed of the laser is preferably 0.01 to 2.0 m / min.
  • the scanning speed of the laser is preferably 0.01 m / min or more.
  • evaporation of a silica (SiO 2 ) component can be suppressed.
  • the irradiation speed is 2.0 m / min or less, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged.
  • a more preferable laser scanning speed is 0.1 to 1.0 m / min.
  • the second step it is preferable to supply a powder containing the above-mentioned silica (SiO 2 ) component to the melting part.
  • a powder containing a silica (SiO 2 ) component By supplying a powder containing a silica (SiO 2 ) component to the fusion zone in the second step, a dense glass layer can be formed more stably and efficiently.
  • the method of supplying the powder is not particularly limited, and may be supplied by various conventionally known methods. For example, it is possible to use a powder supply method used in laser cladding (a nozzle for supplying powder near the melting portion, a nozzle for supplying powder coaxially with laser irradiation, and the like).
  • the thickness of the glass layer can be increased.
  • the glass layer can be formed by performing the first step and the second step once, respectively. However, by supplying the silica (SiO 2 ) component again by powder and performing the first step and the second step, the glass layer can be formed. The thickness and area of the layer can be increased.
  • the processing is not limited to one time, and a glass layer having an arbitrary thickness and area can be formed by repeating the processing a plurality of times as necessary.
  • the atmosphere in the laser irradiation region is not particularly limited in both the first step and the second step, and can be performed, for example, in the air or in an inert gas atmosphere.
  • the manufacturing method of the glass bulk body of the present invention is not only capable of forming a dense glass layer on an aggregate of sand particles, an arbitrary region of the surface of rock or concrete, but also various methods. There are effective applications of.
  • vitrified waste containing high-level radioactive waste not only eliminates the need for large-scale production equipment, but also enables the use of a minimum number of burial sites. High-level radioactive waste can be reduced very effectively.
  • the timing of taking the high-level radioactive waste into the glass layer and the like are not particularly limited, for example, when arranging the powder on the surface of the substrate as a preliminary treatment of the first step, between the powder and the substrate By arranging the high-level radioactive waste and then performing the first step and the second step, the high-level radioactive waste can be incorporated into the glass layer.
  • a high-level radioactive substance may be supplied at the same time.
  • a concrete member can be repaired and / or reinforced by placing a powder containing a silica (SiO 2 ) component in a groove of the concrete member and filling the groove with a glass layer.
  • the groove may be intentionally formed, or a crack or the like which has occurred naturally may be used as the groove.
  • the formation of the glass layer not only improves the mechanical properties and corrosion resistance, but also improves the appearance.
  • a groove when a groove is present between two or more concrete members, by forming a glass layer in the groove, these concrete members can be joined via the glass layer. Furthermore, simple joining can also be achieved by butting concrete members and forming a glass layer along the butting line.
  • FIG. 1 shows a schematic cross-sectional view of the glass bulk body of the present invention.
  • the glass bulk body 2 has a base portion 4 made of an aggregate of sand grains, rock or concrete, and a glass layer 6, and the base portion 4 and the glass layer 6 are interposed via a boundary region having bubbles 8. Continuously integrated.
  • the base member 4 is made of an aggregate of sand grains, rock or concrete, and contains a silica (SiO 2 ) component.
  • the aggregate of sand grains, rock or concrete is not particularly limited as long as it contains a silica (SiO 2 ) component, and is a conventionally known aggregate of various sand grains, rock or concrete.
  • the sand grains are quartz sand or masago, and the rocks are granite, sandstone, mudstone, tuff, and the like.
  • concrete contains silica sand and clay, and these components have silica (SiO 2 ).
  • the size of the bubbles 8 is preferably 50 to 2000 ⁇ m, more preferably 100 to 1500 ⁇ m.
  • the size of the bubble 8 is 50 ⁇ m or more, the difference between the glass layer 6 and the base member 4 can be reduced, and when the size is 2000 ⁇ m or less, embrittlement of the boundary region can be suppressed.
  • the glass layer 6 preferably has transparency. Since the glass layer 6 has transparency, it can be used, for example, as a building member (outer wall or the like) having an excellent appearance utilizing light transmission. In addition, the glass bulk body of this invention can be suitably obtained by the manufacturing method of the glass bulk body of this invention.
  • Example 1 Laser irradiation was performed on the surface of the sandstone using a semiconductor laser manufactured by Laser Line. Specifically, the laser output was 800 W, the laser beam diameter on the surface of the sandstone was 2 ⁇ 39 mm, and fixed-point irradiation was performed for 60 seconds (first step). The laser power density in the first step is 10 W / mm 2 .
  • FIG. 2 shows a cross-sectional photograph of the sandstone after the treatment.
  • a dense glass layer is formed in a wide area in the surface region of the sandstone. Further, the glass layer is formed continuously from sandstone as a base material, and bubbles are formed at the boundary between the glass layer and the base material.
  • the cracks generated in the sandstone were mainly generated during the preparation of the cross-sectional sample.
  • FIG. 3 shows a state in which the obtained glass layer is separated and light is irradiated from the back surface. Light emitted from the back surface has transmitted through the glass layer, and it can be confirmed that the formed glass layer has transparency.
  • Example 2 Laser irradiation was performed on the surface of the tuff using a semiconductor laser manufactured by Laser Line. Specifically, the laser output was 800 W, the laser beam diameter on the surface of the tuff was 2 ⁇ 39 mm, and fixed-point irradiation was performed for 60 seconds (first step). The laser power density in the first step is 10 W / mm 2 .
  • the laser output was increased to 2800 W, and the laser irradiation position was moved at a moving speed of 48 mm / min (second step).
  • the laser power density in the second step is 35 W / mm 2 .
  • FIG. 4 shows a photograph of the appearance of the tuff after the treatment.
  • a dense and bulky glass body having transparency is formed in a wide area in the surface region of the tuff. Further, the glass bulk body is formed continuously from the tuff as the base material, and no defect such as a crack is recognized at the boundary between the glass bulk body and the base material.
  • Example 3 The surface of the concrete was irradiated with laser using a semiconductor laser manufactured by Laser Line. Specifically, the laser output was 2800 W, the laser beam diameter on the concrete surface was 2 ⁇ 39 mm, and fixed-point irradiation was performed for 1 second (first step). The laser power density in the first step is 35 W / mm 2 .
  • the laser irradiation position was moved at a moving speed of 48 mm / min (second step). In this embodiment, the laser output in the second step is not increased from that in the first step.
  • Example 3 An appearance photograph of the obtained sample is shown in FIG. In Example 3, it can be seen that the black glass layer is formed in a wide area.
  • Example 4 An attempt was made to fill a groove (depth: 20 mm, length: 100 mm) formed on the concrete surface with a glass layer using a semiconductor laser manufactured by Laser Line.
  • FIG. 6 shows a photograph of the appearance of a concrete piece having a groove.
  • FIG. 7 shows an enlarged photograph of the groove.
  • the first layer directly irradiates a laser to the bottom of the groove to form a glass layer
  • the second to fifth layers fill the groove with sand-like powder obtained by pulverizing silica sand, and apply laser to the area.
  • To form a glass layer sequentially.
  • the laser output was set to 540 W, the laser beam diameter at the bottom of the groove was set to 2 ⁇ 27 mm, and fixed-point irradiation was performed for 1 second (first step).
  • the laser power density in the first step is 10 W / mm 2 .
  • the laser output was set to 1900 W and the laser was scanned at a speed of 48 mm / min.
  • the laser power density in the second step is 35 W / mm 2 .
  • sandy powder obtained by pulverizing silica sand was supplied to the melting portion, the laser output was set to 1900 W, and laser scanning was performed at a speed of 48 mm / min.
  • the laser power density in this step is 35 W / mm 2 .
  • FIGS. 8 and 9 show an external appearance photograph of the groove filled with the powder and an external appearance photograph after vitrifying the region. It can be seen that the filled powder (silica sand powder) is turned into a dense glass by laser irradiation.
  • FIG. 10 shows an enlarged photograph of the groove of the sample finally obtained. It can be seen that the grooves are completely filled with the dense glass layer, and even the deep grooves can be filled up to the surface by the multilayer glass layer.
  • Example 5 The joining of concrete pieces was attempted using a semiconductor laser manufactured by Laser Line. The concrete pieces were brought into contact with each other at the end face, and the outer peripheral area of the end face was joined by vitrification. Here, a powder having a height of about 3 mm to 5 mm was supplied to the laser irradiation surface, and a sand-like powder obtained by pulverizing sandstone was used as the powder.
  • the laser output was 1900 W
  • the laser beam diameter on the concrete surface was 2 ⁇ 27 mm
  • fixed-point irradiation was performed for 1 second (first step).
  • the laser power density in the first step is 35 W / mm 2 .
  • the laser irradiation position was moved at a speed of 48 mm / min along the outer peripheral area of the end face (second step). In this embodiment, the laser output in the second step is not increased from that in the first step.
  • FIG. 11 shows an external appearance photograph of the sample after irradiating the outer peripheral region of the end face with the laser for two rounds. It can be confirmed that the outer peripheral area of the butted end face is vitrified, and two concrete pieces are joined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Laser Beam Processing (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

Provided is a method for producing a glass bulk body in a simple manner, comprising irradiating an aggregate of sand granules, a rock or concrete with laser to form a dense glass layer contiguously in an arbitrary region using a silica (SiO2) component contained in the aggregate of sand granules, the rock or the concrete as a raw material. Also provided is a glass bulk body in which the surface of a base material composed of an aggregate of sand granules, a rock or concrete is vitrified and a glass layer is formed contiguously in an arbitrary region. A method for producing a glass bulk body by vitrifying the surface of an aggregate of sand granules, a rock or concrete, the method being characterized by comprising a first step of carrying out the fixed point irradiation of the surface with laser to form a molten part wherein each of the aggregate of sand granules, the rock and the concrete contains a silica (SiO2) component, and a second step of shifting the position of the irradiation with the laser at such a scanning speed that the molten part can be enlarged continuously to form a glass layer, wherein the first step and the second step are carried out sequentially.

Description

ガラスバルク体の製造方法Manufacturing method of glass bulk body
 本発明はガラスバルク体の製造方法に関し、より具体的には、砂粒の集合体、岩石又はコンクリートの表面の任意の領域をガラス化することができるガラスバルク体の製造方法に関する。 {Circle over (1)} The present invention relates to a method for producing a glass bulk body, and more specifically, to a method for producing a glass bulk body capable of vitrifying an arbitrary region on the surface of aggregates of rock, rock or concrete.
 レーザビームには質量が無いため、レーザ加工は基本的に無騒音かつ無振動で行うことができ、金属材の加工及び溶接等のみならず、コンクリート材への処理についても注目され、建築分野への適用可能性についての調査が開始されている。 Since the laser beam has no mass, laser processing can be basically performed without noise and without vibration, and attention has been paid not only to processing and welding of metal materials, but also to processing of concrete materials. A survey has been started on the applicability of this.
 具体的には、シリカ成分を含むコンクリートや岩に対してレーザを照射すると、照射領域のシリカ成分が溶融してガラス化することが報告されており、当該現象を利用して、岩盤切削やコンクリート材への孔あけ及び表面処理等が検討されている。 Specifically, it has been reported that when a laser beam is irradiated on concrete or rock containing a silica component, the silica component in the irradiated area is melted and vitrified. Drilling and surface treatment of materials are being studied.
 例えば、特許文献1(特開平6-80485号公報)においては、建築用材料基材の表面に無機物質を主成分とする表面付着材を配置し、レーザを照射することにより表面層を溶融し、強固な膜が形成された建築材料を得る表面処理方法が提案されている。 For example, in Patent Document 1 (JP-A-6-80485), a surface adhering material mainly composed of an inorganic substance is arranged on the surface of a building material base material, and the surface layer is melted by irradiating a laser. There has been proposed a surface treatment method for obtaining a building material on which a strong film is formed.
 上記特許文献1に記載のレーザ溶接装置においては、建築用材料基材と表面付着材の両方を溶融するため強固な硬化膜を作成することができ、建設用材料の表面に着色した硬化膜を容易に形成することや、建設用材料の表面に断熱、遮音効果を持たせることができる、としている。 In the laser welding apparatus described in Patent Document 1, a hardened cured film can be formed because both the building material base material and the surface adhering material are melted, and a colored cured film is formed on the surface of the construction material. It can be easily formed, and the surface of the construction material can be provided with heat insulation and sound insulation effects.
 また、特許文献2(特開平11-19785号公報)においては、セメント硬化体にレーザを照射して、セメント硬化体の強度を低下させた脆弱層を形成した後に、当該脆弱層を除去することにより穿孔することを特徴とするセメント硬化体の穿孔方法が提案されている。 Further, in Patent Document 2 (Japanese Patent Application Laid-Open No. H11-19785), after irradiating a hardened cement body with a laser to form a fragile layer having reduced strength of the hardened cement body, the fragile layer is removed. There has been proposed a method of perforating a hardened cement body, characterized in that perforation is performed by the method.
 上記特許文献2に記載のセメント硬化体の穿孔方法においては、低騒音・低振動の装置を用いて穿孔対象物たるセメント硬化体に十分強度を低下させた脆弱層を形成し、その後に当該脆弱層を除去するため、低速回転の機械式又は手動式の工具を用いて当該脆弱層を除去することができる。その結果、穿孔時における振動や騒音の発生を極力抑えることができ、穿孔時における作業環境及び周辺環境の改善を図ることができる、としている。 In the method for piercing a hardened cement body described in Patent Document 2, a low-noise, low-vibration apparatus is used to form a fragile layer having sufficiently reduced strength on the hardened cement body to be pierced, and then to form the fragile layer. To remove the layer, the fragile layer can be removed using a slow rotating mechanical or manual tool. As a result, generation of vibration and noise during drilling can be suppressed as much as possible, and the working environment and surrounding environment during drilling can be improved.
特開平6-80485号公報JP-A-6-80485 特開平11-19785号公報JP-A-11-19785
 しかしながら、上記特許文献1に記載の建設用材料及びその表面処理方法は、レーザ照射に対して成分等が調整された無機物質を主成分とする表面付着材を使用することが必須であり、レーザ照射によって当該表面付着材を溶融させ、建築用材料基材の表面に被覆するものである。即ち、上記特許文献1に記載の表面処理方法はレーザ照射を用いた無機物質の被覆方法であり、砂粒の集合体、岩石又はコンクリートに含まれるシリカ(SiO)成分を原料とし、これらの任意の領域にガラス層を形成させるガラスバルク体の製造方法とは全く異なる。 However, the construction material and the surface treatment method described in Patent Document 1 described above require the use of a surface-adhering material mainly composed of an inorganic substance whose components are adjusted for laser irradiation. The surface adhering material is melted by irradiation, and is coated on the surface of the building material base material. That is, the surface treatment method described in Patent Document 1 is a method of coating an inorganic substance using laser irradiation, and uses a silica (SiO 2 ) component contained in an aggregate of sand particles, rock or concrete as a raw material, This is completely different from the method for manufacturing a glass bulk body in which a glass layer is formed in the region.
 また、上記特許文献2に記載のセメント硬化体の穿孔方法は、レーザ照射を用いてセメント硬化体に脆弱層を形成させるものであり、欠陥等の形成が抑制された緻密なガラス層を任意の領域に形成させる方法とは全く逆の方向性を有する技術である。更に、脆弱層を形成させるのは穿孔領域に相当する狭い領域に限定されることに加え、当該脆弱層を連続的に形成させる必要もない。つまり、公知の従来技術においては、砂粒の集合体、岩石又はコンクリートに含まれるシリカ(SiO)成分を原料とし、これらの任意の領域に(特に広い領域に)緻密なガラス層を連続的に形成させる方法は存在しない。 In addition, the method for perforating a hardened cement body described in Patent Document 2 is to form a fragile layer in the hardened cement body by using laser irradiation, and to form a dense glass layer in which formation of defects and the like is suppressed. This is a technique having a direction completely opposite to that of the method of forming a region. Further, the formation of the fragile layer is limited to a narrow region corresponding to the perforated region, and it is not necessary to form the fragile layer continuously. That is, in the known prior art, a silica (SiO 2 ) component contained in an aggregate of sand grains, rock or concrete is used as a raw material, and a dense glass layer is continuously formed in an arbitrary area (particularly in a wide area). There is no way to do this.
 以上のような従来技術における問題点に鑑み、本発明の目的は、砂粒の集合体、岩石又はコンクリートに対してレーザ照射し、これらの砂粒の集合体、岩石又はコンクリートに含まれるシリカ(SiO)成分を原料として、任意の領域に(特に広い領域に)緻密なガラス層を連続的に形成させる簡便なガラスバルク体の製造方法を提供することにある。また、本発明は、砂粒の集合体、岩石又はコンクリートからなる基材の表面がガラス化され、任意の領域にガラス層が連続的に形成されたガラスバルク体を提供することも目的としている。 In view of the problems in the prior art as described above, an object of the present invention is to irradiate a laser to an aggregate of sand particles, rock or concrete, and use silica (SiO 2) contained in the aggregate of these sand particles, rock or concrete. It is an object of the present invention to provide a simple method for producing a glass bulk body in which a dense glass layer is continuously formed in an arbitrary region (particularly in a wide region) using a component as a raw material. Another object of the present invention is to provide a glass bulk body in which the surface of a substrate made of an aggregate of sand grains, rock or concrete is vitrified, and a glass layer is continuously formed in an arbitrary region.
 本発明者は上記目的を達成すべく、緻密なガラス層を連続的かつ広域に形成させることができるレーザ照射方法について鋭意研究を重ねた結果、レーザの定点照射によってガラス層の種となる溶融部を形成した後、レーザの走査によって当該溶融部を連続して拡張すること等が極めて重要であるということを見出し、本発明に到達した。 The present inventor has conducted intensive studies on a laser irradiation method capable of forming a dense glass layer continuously and over a wide area in order to achieve the above object. After the formation of, the present inventors have found that it is extremely important to continuously expand the melted portion by laser scanning, and have reached the present invention.
 即ち、本発明は、
 砂粒の集合体、岩石又はコンクリートの表面をガラス化するガラスバルク体の製造方法であって、
 前記砂粒の集合体、前記岩石及び前記コンクリートはシリカ(SiO)成分を含み、
 前記表面にレーザを定点照射し、溶融部を形成させる第一工程と、
 前記溶融部が連続して拡大する走査速度で前記レーザの照射位置を移動させ、ガラス層を形成させる第二工程と、を有し、
 前記第一工程と前記第二工程を連続して行うこと、
 を特徴とするガラスバルク体の製造方法、を提供する。
That is, the present invention
An aggregate of sand grains, a method for producing a glass bulk body for vitrifying the surface of rock or concrete,
The aggregate of sand grains, the rock and the concrete include a silica (SiO 2 ) component,
A first step of irradiating the surface with a laser at a fixed point and forming a fused portion,
The second step of moving the irradiation position of the laser at a scanning speed at which the melting portion continuously expands, and forming a glass layer,
Performing the first step and the second step continuously,
And a method for producing a glass bulk body, characterized in that:
 シリカ(SiO)成分を含む砂粒の集合体、岩石又はコンクリートの表面にレーザを定点照射することで、ガラス層の種となる溶融部を形成することができる。その後、レーザを任意の方向に走査することで、当該溶融部を拡張することができる。ここで、走査速度が早過ぎる場合は、溶融部が分断又は狭くなり、緻密なガラス層を連続的に形成させることができない。一方で、走査速度が遅過ぎる場合は、ガラス層の形成に必要なシリカ(SiO)成分の蒸発や水蒸気爆発、基材である砂粒の集合体、岩石又はコンクリートの形状変化等によって、緻密なガラス層を連続的に形成させることができない。 By irradiating a fixed-point laser to the surface of an aggregate of sand particles containing a silica (SiO 2 ) component, rock or concrete, a molten portion serving as a seed of a glass layer can be formed. After that, by scanning the laser in an arbitrary direction, the melted portion can be expanded. Here, if the scanning speed is too fast, the melted portion is divided or narrowed, and a dense glass layer cannot be formed continuously. On the other hand, if the scanning speed is too slow, dense silica (SiO 2 ) components required for forming the glass layer, steam explosion, aggregates of sand particles serving as a base material, changes in the shape of rock or concrete, and the like will cause a dense structure. The glass layer cannot be formed continuously.
 本発明のガラスバルク体の製造方法においては、前記第一工程の予備処理工程として、前記表面にシリカ(SiO)成分を含む粉末を配置すること、が好ましい。砂粒の集合体、岩石又はコンクリートに含まれるシリカ(SiO)成分に加えて、粉末からもシリカ(SiO)成分を供給することで、より安定的かつ効率的にガラス層を形成することができる。 In the method for producing a glass bulk body of the present invention, it is preferable that a powder containing a silica (SiO 2 ) component is disposed on the surface as the preliminary treatment step of the first step. By supplying the silica (SiO 2 ) component from the powder in addition to the silica (SiO 2 ) component contained in the aggregate of sand grains, rocks or concrete, the glass layer can be formed more stably and efficiently. it can.
 また、本発明のガラスバルク体の製造方法においては、前記ガラス層に対して前記予備処理工程、前記第一工程及び前記第二工程を施し、前記ガラス層の厚さを増加させること、が好ましい。第一工程及び第二工程をそれぞれ一回施すことでもガラス層を形成させることができるが、粉末によってシリカ(SiO)成分を再度供給し、第一工程及び第二工程を施すことで、ガラス層の厚さ及び面積を増加させることができる。ここで、当該処理は一度に限られず、必要に応じて複数回繰り返すことで、任意の厚さ及び面積を有するガラス層を形成することができる。 In the method for producing a glass bulk body of the present invention, it is preferable that the pretreatment step, the first step, and the second step are performed on the glass layer to increase the thickness of the glass layer. . The glass layer can be formed by performing the first step and the second step once, respectively. However, by supplying the silica (SiO 2 ) component again by powder and performing the first step and the second step, the glass layer can be formed. The thickness and area of the layer can be increased. Here, the processing is not limited to one time, and a glass layer having an arbitrary thickness and area can be formed by repeating the processing a plurality of times as necessary.
 また、本発明のガラスバルク体の製造方法においては、前記第二工程において、前記溶融部に前記粉末を供給すること、が好ましい。第二工程において溶融部にシリカ(SiO)成分を含む粉末を供給することで、より安定的かつ効率的に緻密なガラス層を形成することができる。粉末の供給方法は特に限定されず、従来公知の種々の方法で供給すればよい。例えば、レーザクラッディングで用いられている粉末供給方法(溶融部近傍への粉末供給用ノズルや、レーザ照射に対して同軸に粉末を供給するノズル等)を用いることができる。 In the method for producing a glass bulk body of the present invention, it is preferable that, in the second step, the powder is supplied to the melting portion. By supplying a powder containing a silica (SiO 2 ) component to the fusion zone in the second step, a dense glass layer can be formed more stably and efficiently. The method of supplying the powder is not particularly limited, and may be supplied by various conventionally known methods. For example, it is possible to use a powder supply method used in laser cladding (a nozzle for supplying powder near the melting portion, a nozzle for supplying powder coaxially with laser irradiation, and the like).
 また、本発明のガラスバルク体の製造方法においては、前記第一工程において、前記表面における前記レーザのパワー密度を3~15W/mmとすること、が好ましい。レーザのパワー密度を3W/mm以上とすることで、基材に含まれるシリカ(SiO)成分等を十分に溶融し、ガラス層の種領域を形成させることができる。また、15W/mm以下とすることで、水蒸気爆発等によるガラス層の緻密化阻害を抑制することができ、基材の変形等も抑制することができる。 In the method of manufacturing a glass bulk body according to the present invention, it is preferable that in the first step, the power density of the laser on the surface is 3 to 15 W / mm 2 . By setting the power density of the laser to 3 W / mm 2 or more, the silica (SiO 2 ) component and the like contained in the base material can be sufficiently melted to form a seed region of the glass layer. In addition, by setting it to 15 W / mm 2 or less, it is possible to suppress the densification of the glass layer due to a steam explosion or the like, and it is also possible to suppress the deformation or the like of the base material.
 また、本発明のガラスバルク体の製造方法においては、前記第二工程において、前記表面における前記レーザのパワー密度を20~40W/mmとすること、が好ましい。レーザのパワー密度を20W/mm以上とすることで、レーザの照射位置を移動させても溶融状態を十分に維持することができ、溶融部を連続的に拡大することができる。また、40W/mm以下とすることで、シリカ(SiO)成分の蒸発、水蒸気爆発及び基材の変形等を抑制することができる。 In the method of manufacturing a glass bulk body according to the present invention, it is preferable that, in the second step, the power density of the laser on the surface be 20 to 40 W / mm 2 . By setting the power density of the laser to 20 W / mm 2 or more, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged. Further, by controlling the wattage to 40 W / mm 2 or less, it is possible to suppress evaporation of the silica (SiO 2 ) component, steam explosion, deformation of the base material, and the like.
 また、本発明のガラスバルク体の製造方法においては、前記第二工程において、前記走査速度を0.01~2.0m/minとすること、が好ましい。レーザの走査速度を0.01m/min以上とすることで、シリカ(SiO)成分等の蒸発や水蒸気爆発、基材の変形等を抑制することができる。また、2.0m/min以下とすることで、レーザの照射位置を移動させても溶融状態を十分に維持することができ、溶融部を連続的に拡大することができる。 In the method of manufacturing a glass bulk body according to the present invention, it is preferable that in the second step, the scanning speed is 0.01 to 2.0 m / min. By setting the scanning speed of the laser to 0.01 m / min or more, evaporation of a silica (SiO 2 ) component, steam explosion, deformation of a substrate, and the like can be suppressed. Further, when the irradiation speed is 2.0 m / min or less, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged.
 また、本発明のガラスバルク体の製造方法においては、前記砂の集合体及び/又は前記岩石が、地盤又は海底を掘削する際の掘削領域外縁に存在すること、が好ましい。地盤又は海底を掘削する場合、当該掘削に伴って掘削領域外縁が崩落することが問題となっている。一般的にはケーシングを用いて掘削を進めていくが、地層が立っている場合(油田の地層等)は崩落しやすく、ケーシングできない場合が存在する。ここで、崩落しやすい領域をガラス化することで内径が一定となり、ケーシングを容易に設置することができる。また、ケーシングを用いる場合は掘削深さの増加に伴って内径が小さくなるという問題も存在するが、掘削領域外縁(掘削領域内径)をガラス化することで崩落を抑制できれば、ケーシングを使用する必要がなくなる。 In the method of manufacturing a glass bulk body according to the present invention, it is preferable that the aggregate of sand and / or the rock is present at an outer edge of an excavation area when excavating the ground or the seabed. When excavating the ground or the seabed, there is a problem that the outer edge of the excavation area collapses with the excavation. Generally, excavation is carried out using a casing. However, when a stratum is standing (eg, an oil field stratum), the casing easily collapses, and there are cases where a casing cannot be formed. Here, by vitrifying the easily collapsed region, the inner diameter becomes constant, and the casing can be easily installed. In addition, when using a casing, there is a problem that the inner diameter becomes smaller as the excavation depth increases. Disappears.
 また、本発明のガラスバルク体の製造方法においては、高レベル放射性廃棄物を前記溶融部に取り込むこと、が好ましい。現在、高レベル放射性廃棄物はステンレス鋼製の容器中に溶融ガラスと共に封入してガラス固化体とし、当該容器ごと地下施設に埋設されているが、ガラス固化体の製造には大型の製造設備が必要となることに加えて、大規模な埋設場が必要となる。これに対し、高レベル放射性廃棄物を溶融部に取り込むことで極めて容易にガラス固化体とすることができることに加え、ステンレス鋼製の大型容器も不要となる。また、地中深くに当該ガラス固化体を形成させることもでき、大規模な埋設場も不要となる。 In the method for producing a glass bulk body according to the present invention, it is preferable that high-level radioactive waste is introduced into the melting portion. At present, high-level radioactive waste is enclosed in a stainless steel container together with molten glass to form a vitrified material, and the container is buried in an underground facility. In addition to the need, large burial sites are required. On the other hand, incorporation of high-level radioactive waste into the melting portion makes it possible to extremely easily form a vitrified body, and a large-sized stainless steel container is not required. In addition, the vitrified body can be formed deep underground, and a large-scale burial site is not required.
 上記のように高レベル放射性廃棄物を含むガラス固化体を「その場製造埋設」することにより、大型の製造設備が不要となることに加えて最小限の埋設場で対応が可能となるため、2次的な高レベル放射性廃棄物を極めて効果的に削減することができる。 As described above, by virtue of `` built-in-place production '' of vitrified waste containing high-level radioactive waste, large-scale production equipment becomes unnecessary, and in addition, it is possible to respond with a minimum burial site, Secondary high-level radioactive waste can be reduced very effectively.
 更に、本発明のガラスバルク体の製造方法においては、前記粉末をコンクリート部材の溝部に配置し、前記溝部を前記ガラス層で埋めること、が好ましい。コンクリート部材の溝部をガラス層で埋めることで、コンクリート部材の耐食性や美観等を向上させることができる。また、2つ以上のコンクリート部材の間に溝部が存在する場合は、当該溝部をガラス層で充填することで、ガラス層を介してこれらのコンクリート部材を接合することができる。また、コンクリート部材同士を突合せ、当該突合せ線に沿ってガラス層を形成させることでも簡易な接合を達成することができる。 Further, in the method for producing a glass bulk body of the present invention, it is preferable that the powder is disposed in a groove of a concrete member, and the groove is filled with the glass layer. By filling the groove of the concrete member with the glass layer, it is possible to improve the corrosion resistance, aesthetic appearance, and the like of the concrete member. In addition, when a groove is present between two or more concrete members, these concrete members can be joined via the glass layer by filling the groove with a glass layer. Simple joining can also be achieved by butting concrete members together and forming a glass layer along the joining line.
 また、本発明は、
 砂粒の集合体、岩石又はコンクリートからなる基材部と、
 ガラス層と、を有し、
 前記基材部と前記ガラス層とが、気泡を有する境界領域を介して連続的に一体化していること、
 を特徴とするガラスバルク体、も提供する。
Also, the present invention
An aggregate of sand grains, a base material made of rock or concrete,
And a glass layer,
The base member and the glass layer are continuously integrated via a boundary region having bubbles,
The present invention also provides a glass bulk body characterized in that:
 本発明のガラスバルク体は砂粒の集合体、岩石又はコンクリートからなる基材部に含まれるシリカ(SiO)成分を原料とするガラス層が形成されているため、基材部と緻密なガラス層とは連続的に一体化されている。また、基材部とガラス層との境界領域には気泡が存在し、当該気泡によって基材部とガラス層の物性的な差異が効果的に緩和された構造となっている。 In the glass bulk body of the present invention, a glass layer is formed from a silica (SiO 2 ) component contained in a base material portion made of an aggregate of sand grains, rock or concrete, and therefore, the base material portion and the dense glass layer are formed. Are continuously integrated. In addition, bubbles are present in the boundary region between the base material portion and the glass layer, and the difference in physical properties between the base material portion and the glass layer is effectively reduced by the bubbles.
 また、本発明のガラスバルク体においては、前記ガラス層が透明性を有していること、が好ましい。本発明のガラスバルク体において形成されているガラス層は緻密であり、当該ガラス層が透明性を有していることで、例えば、光の透過を利用した優れた美観を有する建築部材(外壁等)として活用することができる。なお、本発明のガラスバルク体は、本発明のガラスバルク体の製造方法によって好適に得ることができる。 In the glass bulk body of the present invention, it is preferable that the glass layer has transparency. Since the glass layer formed in the glass bulk body of the present invention is dense and the glass layer has transparency, for example, a building member (external wall or the like) having an excellent appearance utilizing light transmission ). In addition, the glass bulk body of this invention can be suitably obtained by the manufacturing method of the glass bulk body of this invention.
 本発明のガラスバルク体の製造方法によれば、砂粒の集合体、岩石又はコンクリートに対してレーザ照射し、これらの砂粒の集合体、岩石又はコンクリートに含まれるシリカ(SiO)成分を原料として、任意の領域に(特に広い領域に)緻密なガラス層を連続的に形成させる簡便なガラスバルク体の製造方法を提供することができる。 According to the method for producing a glass bulk body of the present invention, an aggregate of sand particles, rock or concrete is irradiated with a laser, and a silica (SiO 2 ) component contained in the aggregate of sand particles, rock or concrete is used as a raw material. In addition, it is possible to provide a simple method of manufacturing a glass bulk body in which a dense glass layer is continuously formed in an arbitrary region (particularly, in a wide region).
 また、本発明のガラスバルク体によれば、砂粒の集合体、岩石又はコンクリートからなる基材の表面がガラス化され、任意の領域に緻密なガラス層が連続的に形成されたガラスバルク体を提供することができる。 Further, according to the glass bulk body of the present invention, an aggregate of sand particles, a surface of a base material made of rock or concrete is vitrified, and a glass bulk body in which a dense glass layer is continuously formed in an arbitrary region. Can be provided.
本発明のガラスバルク体の概略断面図である。It is a schematic sectional drawing of the glass bulk body of this invention. 実施例1で得られた試料の断面図である。FIG. 2 is a cross-sectional view of a sample obtained in Example 1. 実施例1で形成したガラス層を光が透過する状態を示す写真である。3 is a photograph showing a state in which light passes through the glass layer formed in Example 1. 実施例2で得られた試料の外観写真である。6 is an external appearance photograph of a sample obtained in Example 2. 実施例3で得られた試料の外観写真である。4 is a photograph of the appearance of a sample obtained in Example 3. 実施例4で用いた溝を形成させたコンクリート片の外観写真である。It is a photograph of the appearance of the concrete piece in which the groove used in Example 4 was formed. コンクリート片に形成させた溝の拡大写真である。It is an enlarged photograph of the groove formed in the concrete piece. 粉末を充填した溝の外観写真である。It is an appearance photograph of a groove filled with powder. 粉末をガラス化した状態を示す外観写真である。It is an external appearance photograph which shows the state which vitrified the powder. 実施例4で最終的に得られた処理領域の外観写真である。14 is an appearance photograph of a processing region finally obtained in Example 4. 実施例5で得られたコンクリート接合体の外観写真である。9 is a photograph of the appearance of a concrete joint obtained in Example 5.
 以下、図面を参照しながら本発明のガラスバルク体の製造方法及びガラスバルク体の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。 Hereinafter, a method for manufacturing a glass bulk body and a typical embodiment of the glass bulk body of the present invention will be described in detail with reference to the drawings, but the present invention is not limited thereto. In the following description, the same or corresponding parts are denoted by the same reference characters, and redundant description may be omitted. Further, since the drawings are for conceptually explaining the present invention, dimensions of components shown and ratios thereof may be different from actual ones.
(1) ガラスバルク体の製造方法
 本発明のガラスバルク体の製造方法は、砂粒の集合体、岩石又はコンクリートの表面をガラス化するガラスバルク体の製造方法であって、レーザを定点照射する第一工程と、レーザを走査する第二工程と、を有している。以下、各工程等について詳細に説明する。
(1) Method for Producing Glass Bulk Body The method for producing a glass bulk body of the present invention is a method for producing a glass bulk body for vitrifying a surface of an aggregate of sand particles, rock or concrete, and includes a method of irradiating a fixed point with a laser. It has one step and a second step of scanning with a laser. Hereinafter, each step and the like will be described in detail.
1.第一工程(レーザの定点照射)
 第一工程は、砂粒の集合体、岩石又はコンクリートの表面に対してレーザを定点照射し、後にガラス層となる種(溶融部)を形成するための工程である。
1. The first process (fixed point irradiation of laser)
The first step is a step for irradiating a surface of an aggregate of sand particles, rock or concrete with a laser at a fixed point to form a seed (melted portion) which will later become a glass layer.
 ガラス層を形成させる基材となる砂粒の集合体、岩石又はコンクリートはシリカ(SiO)成分を含んでおり、当該シリカ(SiO)成分がガラス層となる。なお、「砂粒の集合体」とは、広く砂粒が集合したものを意味し、例えば、砂粒の集合体に圧力を印加して固めたものや、地盤や海底に存在する砂粒等を含む。 The aggregate of sand grains, rock, or concrete serving as the base material on which the glass layer is formed contains a silica (SiO 2 ) component, and the silica (SiO 2 ) component becomes the glass layer. The “aggregate of sand grains” means a broad aggregate of sand grains, and includes, for example, a solidified body of sand aggregates by applying pressure, and sand grains existing on the ground or the seabed.
 また、砂粒の集合体、岩石又はコンクリートはシリカ(SiO)成分を含んでいる限り特に限定されず、従来公知の種々の砂粒の集合体、岩石又はコンクリートを使用することができる。例えば、砂粒には珪砂や真砂土等を用いることができ、岩石には花崗岩、砂岩、泥岩及び凝灰岩等を用いることができる。また、例えば、海底から噴出する熱水に含まれる金属などが析出・沈殿してできる構造物であるチムニーを対象とすることもできる。 The aggregate of sand grains, rock or concrete is not particularly limited as long as it contains a silica (SiO 2 ) component, and conventionally known aggregates of various sand grains, rocks or concrete can be used. For example, silica sand, masago, or the like can be used for the sand particles, and granite, sandstone, mudstone, tuff, or the like can be used for the rock. In addition, for example, chimney, which is a structure formed by depositing and precipitating metal contained in hot water ejected from the sea floor, can also be targeted.
 また、砂粒の集合体、岩石又はコンクリートに含まれるシリカ(SiO)成分を十分に溶融させることができる限りにおいて照射に用いるレーザの種類は特に限定されず、従来公知の種々のレーザを用いることができる。ここで、好適に用いることができるレーザとしては半導体励起の固体レーザを挙げることができ、例えば、半導体レーザを用いることができる。 The type of laser used for irradiation is not particularly limited as long as the silica (SiO 2 ) component contained in the aggregate of sand particles, rocks or concrete can be sufficiently melted, and various conventionally known lasers may be used. Can be. Here, as a laser that can be preferably used, a semiconductor-excited solid-state laser can be given, and for example, a semiconductor laser can be used.
 第一工程においては、基材表面におけるレーザのパワー密度は3~15W/mmとすることが好ましい。レーザのパワー密度を3W/mm以上とすることで、基材に含まれるシリカ(SiO)成分等を十分に溶融し、ガラス層の種領域を形成させることができる。また、15W/mm以下とすることで、水蒸気爆発等によるガラス層の緻密化阻害を抑制することができ、基材の変形等も抑制することができる。なお、レーザのパワー密度は5~10W/mmとすることがより好ましい。 In the first step, the power density of the laser on the surface of the base material is preferably 3 to 15 W / mm 2 . By setting the power density of the laser to 3 W / mm 2 or more, the silica (SiO 2 ) component and the like contained in the base material can be sufficiently melted to form a seed region of the glass layer. In addition, by setting it to 15 W / mm 2 or less, it is possible to suppress the densification of the glass layer due to a steam explosion or the like, and it is also possible to suppress the deformation or the like of the base material. The power density of the laser is more preferably 5 to 10 W / mm 2 .
 また、第一工程の予備処理工程として、基材表面にシリカ(SiO)成分を含む粉末を配置することが好ましい。基材に含まれるシリカ(SiO)成分に加えて、粉末からもシリカ(SiO)成分を供給することで、より安定的かつ効率的にガラス層を形成することができる。なお、粉末はシリカ(SiO)成分が含まれている限りにおいて特に限定されないが、例えば、ガラス粉末、シリカ粒子、珪砂及び真砂土等を使用することができ、これらを混合して使用してもよい。 In addition, as a preliminary treatment step of the first step, it is preferable to arrange a powder containing a silica (SiO 2 ) component on the surface of the base material. By supplying the silica (SiO 2 ) component from the powder in addition to the silica (SiO 2 ) component contained in the base material, the glass layer can be formed more stably and efficiently. The powder is not particularly limited as long as it contains a silica (SiO 2 ) component. For example, glass powder, silica particles, silica sand, masago, and the like can be used. Is also good.
 第一工程の予備処理工程として基材表面に粉末を配置する場合、当該配置の方法は特に限定されないが、例えば、レーザ照射する領域に適当な量の粉末を配置した後、当該粉末をナイフエッジ等で均すことが好ましい。 When arranging the powder on the surface of the base material as a pretreatment step of the first step, the method of the arrangement is not particularly limited.For example, after arranging an appropriate amount of powder in a laser irradiation region, the powder is knife-edged. And the like.
 2.第二工程(レーザの走査)
 第二工程は、第一工程におけるレーザの定点照射から連続的にレーザを走査し、溶融部(ガラス層の種領域)を拡大するための工程である。
2. Second step (laser scanning)
The second step is a step for scanning the laser continuously from the fixed point irradiation of the laser in the first step to enlarge the molten portion (the seed region of the glass layer).
 第二工程においては、基材表面におけるレーザのパワー密度を20~40W/mmとすることが好ましい。レーザのパワー密度を20W/mm以上とすることで、レーザの照射位置を移動させても溶融状態を十分に維持することができ、溶融部を連続的に拡大することができる。また、40W/mm以下とすることで、シリカ(SiO)成分の蒸発、水蒸気爆発及び基材の変形等を抑制することができる。なお、より好ましいレーザのパワー密度は25~35W/mmである。 In the second step, the power density of the laser on the surface of the base material is preferably set to 20 to 40 W / mm 2 . By setting the power density of the laser to 20 W / mm 2 or more, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged. Further, by controlling the wattage to 40 W / mm 2 or less, it is possible to suppress evaporation of the silica (SiO 2 ) component, steam explosion, deformation of the base material, and the like. The more preferable power density of the laser is 25 to 35 W / mm 2 .
 また、レーザの走査速度は0.01~2.0m/minとすることが好ましい。レーザの走査速度を0.01m/min以上とすることで、シリカ(SiO)成分等の蒸発や水蒸気爆発、基材の変形等を抑制することができる。また、2.0m/min以下とすることで、レーザの照射位置を移動させても溶融状態を十分に維持することができ、溶融部を連続的に拡大することができる。なお、より好ましいレーザの走査速度は0.1~1.0m/minである。 Further, the scanning speed of the laser is preferably 0.01 to 2.0 m / min. By setting the scanning speed of the laser to 0.01 m / min or more, evaporation of a silica (SiO 2 ) component, steam explosion, deformation of a substrate, and the like can be suppressed. Further, when the irradiation speed is 2.0 m / min or less, the molten state can be sufficiently maintained even when the irradiation position of the laser is moved, and the molten portion can be continuously enlarged. A more preferable laser scanning speed is 0.1 to 1.0 m / min.
 第二工程では、上述のシリカ(SiO)成分を含む粉末を溶融部に供給することが好ましい。第二工程において溶融部にシリカ(SiO)成分を含む粉末を供給することで、より安定的かつ効率的に緻密なガラス層を形成することができる。粉末の供給方法は特に限定されず、従来公知の種々の方法で供給すればよい。例えば、レーザクラッディングで用いられている粉末供給方法(溶融部近傍への粉末供給用ノズルや、レーザ照射に対して同軸に粉末を供給するノズル等)を用いることができる。 In the second step, it is preferable to supply a powder containing the above-mentioned silica (SiO 2 ) component to the melting part. By supplying a powder containing a silica (SiO 2 ) component to the fusion zone in the second step, a dense glass layer can be formed more stably and efficiently. The method of supplying the powder is not particularly limited, and may be supplied by various conventionally known methods. For example, it is possible to use a powder supply method used in laser cladding (a nozzle for supplying powder near the melting portion, a nozzle for supplying powder coaxially with laser irradiation, and the like).
 第二工程で得られたガラス層に対して、予備処理工程、第一工程及び第二工程を施すことで、当該ガラス層の厚さを増加させることができる。第一工程及び第二工程をそれぞれ一回施すことでもガラス層を形成させることができるが、粉末によってシリカ(SiO)成分を再度供給し、第一工程及び第二工程を施すことで、ガラス層の厚さ及び面積を増加させることができる。ここで、当該処理は一度に限られず、必要に応じて複数回繰り返すことで、任意の厚さ及び面積を有するガラス層を形成することができる。 By performing the pretreatment step, the first step, and the second step on the glass layer obtained in the second step, the thickness of the glass layer can be increased. The glass layer can be formed by performing the first step and the second step once, respectively. However, by supplying the silica (SiO 2 ) component again by powder and performing the first step and the second step, the glass layer can be formed. The thickness and area of the layer can be increased. Here, the processing is not limited to one time, and a glass layer having an arbitrary thickness and area can be formed by repeating the processing a plurality of times as necessary.
 なお、第一工程及び第二工程共に、レーザ照射領域の雰囲気は特に限定されず、例えば、大気中や不活性ガス雰囲気で行うことができる。 The atmosphere in the laser irradiation region is not particularly limited in both the first step and the second step, and can be performed, for example, in the air or in an inert gas atmosphere.
 3.ガラスバルク体の製造方法の応用例
 本発明のガラスバルク体の製造方法は、砂粒の集合体、岩石又はコンクリートの表面の任意の領域に緻密なガラス層を形成させることができるのみならず、種々の効果的な応用例が存在する。
3. Application Example of Manufacturing Method of Glass Bulk Body The manufacturing method of the glass bulk body of the present invention is not only capable of forming a dense glass layer on an aggregate of sand particles, an arbitrary region of the surface of rock or concrete, but also various methods. There are effective applications of.
 3-1.掘削領域の崩落防止
 地盤又は海底を掘削する場合、当該掘削に伴って掘削領域外縁が崩落することが問題となっている。これに対し、掘削領域外縁(掘削領域内径)をガラス化することで当該崩落を極めて効果的に抑制することができる。
3-1. Prevention of collapse of excavation area When excavating the ground or the seabed, there is a problem that the outer edge of the excavation area collapses with the excavation. In contrast, by vitrifying the outer edge of the excavation area (the inner diameter of the excavation area), the collapse can be extremely effectively suppressed.
 例えば、油田の地層等では地層が立っており、脆弱な層に起因する崩落が深刻な問題となる。当該崩落が生じた場合はケーシングできないが、掘削領域の内壁にガラス層を形成させることで、崩落を抑制することができる。加えて、内壁の径及び形状が安定化することで、ケーシングを設置することも可能である。 For example, strata in oil field strata stand, and collapse due to vulnerable strata is a serious problem. Although casing cannot be performed when the collapse occurs, the collapse can be suppressed by forming a glass layer on the inner wall of the excavation area. In addition, the casing can be installed by stabilizing the diameter and shape of the inner wall.
 また、ケーシングを用いる場合は掘削深さの増加に伴って内径が小さくなるという問題も存在するが、掘削領域外縁(掘削領域内径)をガラス化することで崩落を抑制できれば、ケーシングを使用する必要がなくなる。 In addition, when using a casing, there is a problem that the inner diameter becomes smaller as the excavation depth increases. Disappears.
 3-2.高レベル放射性廃棄物の処理
 現在、高レベル放射性廃棄物はステンレス鋼製の容器中に溶融ガラスと共に封入してガラス固化体とし、当該容器ごと地下施設に埋設されているが、ガラス固化体の製造には大型の製造設備が必要となることに加えて、大規模な埋設場が必要となる。これに対し、高レベル放射性廃棄物を溶融部に取り込むことで極めて容易にガラス固化体とすることができることに加え、ステンレス鋼製の大型容器も不要となる。また、地中深くに当該ガラス固化体を形成させることもでき、大規模な埋設場も不要となる。
3-2. Treatment of high-level radioactive waste Currently, high-level radioactive waste is enclosed in a stainless steel container together with molten glass to form a vitrified body, and the entire container is buried in an underground facility. Requires large-scale manufacturing facilities and large-scale burial sites. On the other hand, incorporation of high-level radioactive waste into the melting portion makes it possible to extremely easily form a vitrified body, and a large-sized stainless steel container is not required. In addition, the vitrified body can be formed deep underground, and a large-scale burial site is not required.
 高レベル放射性廃棄物を含むガラス固化体を「その場製造埋設」することにより、大型の製造設備が不要となることに加えて最小限の埋設場で対応が可能となる結果、2次的な高レベル放射性廃棄物を極めて効果的に削減することができる。 The “in-situ production burial” of vitrified waste containing high-level radioactive waste not only eliminates the need for large-scale production equipment, but also enables the use of a minimum number of burial sites. High-level radioactive waste can be reduced very effectively.
 ここで、高レベル放射性廃棄物をガラス層に取り込むタイミング等は特に限定されないが、例えば、第一工程の予備処理として基材の表面に粉末を配置する際に、当該粉末と基材の間に高レベル放射性廃棄物を配置し、その後、第一工程及び第二工程を施すことで、高レベル放射性廃棄物をガラス層に取り込むことができる。その他、第二工程において溶融部に粉末を供給する際に、高レベル放射性物質を同時に供給してもよい。 Here, the timing of taking the high-level radioactive waste into the glass layer and the like are not particularly limited, for example, when arranging the powder on the surface of the substrate as a preliminary treatment of the first step, between the powder and the substrate By arranging the high-level radioactive waste and then performing the first step and the second step, the high-level radioactive waste can be incorporated into the glass layer. In addition, when the powder is supplied to the melting part in the second step, a high-level radioactive substance may be supplied at the same time.
 3-3.コンクリート部材の補修補強及び接合
 シリカ(SiO)成分を含む粉末をコンクリート部材の溝部に配置し、当該溝部をガラス層で埋めることで、コンクリート部材を補修及び/又は補強することができる。ここで、溝部は意図的に形成させてもよく、自然に発生した亀裂等を溝部としてもよい。ガラス層の形成によって機械的性質や耐食性が改善されるだけでなく、美観も向上させることができる。
3-3. Repair and reinforcement and joining of concrete member A concrete member can be repaired and / or reinforced by placing a powder containing a silica (SiO 2 ) component in a groove of the concrete member and filling the groove with a glass layer. Here, the groove may be intentionally formed, or a crack or the like which has occurred naturally may be used as the groove. The formation of the glass layer not only improves the mechanical properties and corrosion resistance, but also improves the appearance.
 また、2つ以上のコンクリート部材の間に溝部が存在する場合、当該溝部にガラス層を形成させることで、ガラス層を介してこれらのコンクリート部材を接合することができる。更に、コンクリート部材を突合せ、突合せ線に沿ってガラス層を形成させることで、簡易な接合を達成することもできる。 Also, when a groove is present between two or more concrete members, by forming a glass layer in the groove, these concrete members can be joined via the glass layer. Furthermore, simple joining can also be achieved by butting concrete members and forming a glass layer along the butting line.
(2) ガラスバルク体
 図1に本発明のガラスバルク体の概略断面図を示す。ガラスバルク体2は、砂粒の集合体、岩石又はコンクリートからなる基材部4と、ガラス層6と、を有し、基材部4とガラス層6とは気泡8を有する境界領域を介して連続的に一体化している。
(2) Glass Bulk Body FIG. 1 shows a schematic cross-sectional view of the glass bulk body of the present invention. The glass bulk body 2 has a base portion 4 made of an aggregate of sand grains, rock or concrete, and a glass layer 6, and the base portion 4 and the glass layer 6 are interposed via a boundary region having bubbles 8. Continuously integrated.
 基材部4は砂粒の集合体、岩石又はコンクリートからなり、これらはシリカ(SiO)成分を含んでいる。砂粒の集合体、岩石又はコンクリートはシリカ(SiO)成分を含んでいる限り特に限定されず、従来公知の種々の砂粒の集合体、岩石又はコンクリートとなっている。例えば、砂粒は珪砂や真砂土等であり、岩石は花崗岩、砂岩、泥岩及び凝灰岩等である。なお、コンクリートには珪砂や粘土が含まれており、これらの成分がシリカ(SiO)を有している。 The base member 4 is made of an aggregate of sand grains, rock or concrete, and contains a silica (SiO 2 ) component. The aggregate of sand grains, rock or concrete is not particularly limited as long as it contains a silica (SiO 2 ) component, and is a conventionally known aggregate of various sand grains, rock or concrete. For example, the sand grains are quartz sand or masago, and the rocks are granite, sandstone, mudstone, tuff, and the like. In addition, concrete contains silica sand and clay, and these components have silica (SiO 2 ).
 緻密なガラス層6と基材部4との境界領域に形成されている気泡8により、ガラス層6と基材部4の密度差や物性的な差異が緩和され、ガラス層6と基材部4とは連続的に一体化されている。ここで、気泡8のサイズは50~2000μmであることが好ましく、100~1500μmであることがより好ましい。気泡8のサイズが50μm以上となることでガラス層6と基材部4との差異を緩和することができ、2000μm以下となることで境界領域の脆化を抑制することができる。 Due to the bubbles 8 formed in the boundary region between the dense glass layer 6 and the base member 4, the difference in density and the difference in physical properties between the glass layer 6 and the base member 4 are alleviated. 4 are continuously integrated. Here, the size of the bubbles 8 is preferably 50 to 2000 μm, more preferably 100 to 1500 μm. When the size of the bubble 8 is 50 μm or more, the difference between the glass layer 6 and the base member 4 can be reduced, and when the size is 2000 μm or less, embrittlement of the boundary region can be suppressed.
 ガラス層6は透明性を有していることが好ましい。ガラス層6が透明性を有していることで、例えば、光の透過を利用した優れた美観を有する建築部材(外壁等)として活用することができる。なお、本発明のガラスバルク体は、本発明のガラスバルク体の製造方法によって好適に得ることができる。 The glass layer 6 preferably has transparency. Since the glass layer 6 has transparency, it can be used, for example, as a building member (outer wall or the like) having an excellent appearance utilizing light transmission. In addition, the glass bulk body of this invention can be suitably obtained by the manufacturing method of the glass bulk body of this invention.
 以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。 As described above, the representative embodiments of the present invention have been described. However, the present invention is not limited thereto, and various design changes are possible, and all of the design changes are included in the technical scope of the present invention. It is.
≪実施例1≫
 レーザライン社製の半導体レーザを用い、砂岩の表面に対してレーザ照射を行った。具体的には、レーザ出力を800W、砂岩の表面におけるレーザビーム径を2×39mmとし、60秒間定点照射した(第一工程)。第一工程におけるレーザパワー密度は10W/mmである。
<< Example 1 >>
Laser irradiation was performed on the surface of the sandstone using a semiconductor laser manufactured by Laser Line. Specifically, the laser output was 800 W, the laser beam diameter on the surface of the sandstone was 2 × 39 mm, and fixed-point irradiation was performed for 60 seconds (first step). The laser power density in the first step is 10 W / mm 2 .
 第一工程における定点照射によって十分な溶融領域の形成が確認されたため、レーザ出力を2800Wに増加させ、移動速度を48mm/minとしてレーザ照射位置を移動させた(第二工程)。第二工程におけるレーザパワー密度は35W/mmである。適当なレーザパワー密度及び移動速度を設定したことにより、レーザの走査によって溶融部が途切れることなく、連続的に溶融部が拡大された。処理後の砂岩の断面写真を図2に示す。 Since the formation of a sufficient molten region was confirmed by the fixed point irradiation in the first step, the laser output was increased to 2800 W, and the laser irradiation position was moved at a moving speed of 48 mm / min (second step). The laser power density in the second step is 35 W / mm 2 . By setting appropriate laser power density and moving speed, the melted portion was continuously enlarged without interruption of the melted portion due to laser scanning. FIG. 2 shows a cross-sectional photograph of the sandstone after the treatment.
 図2より、砂岩の表面領域には緻密なガラス層が広域に形成されていることが分かる。また、ガラス層は基材である砂岩から連続的に形成しており、ガラス層と基材の境界には気泡が形成されている。なお、砂岩に生じている亀裂は、主として断面試料作製時に生じたものである。 From FIG. 2, it can be seen that a dense glass layer is formed in a wide area in the surface region of the sandstone. Further, the glass layer is formed continuously from sandstone as a base material, and bubbles are formed at the boundary between the glass layer and the base material. The cracks generated in the sandstone were mainly generated during the preparation of the cross-sectional sample.
 得られたガラス層を分離し、裏面から光を照射した状態を図3に示す。裏面から照射した光はガラス層を透過しており、形成されたガラス層が透明性を有していることが確認できる。 FIG. 3 shows a state in which the obtained glass layer is separated and light is irradiated from the back surface. Light emitted from the back surface has transmitted through the glass layer, and it can be confirmed that the formed glass layer has transparency.
≪実施例2≫
 レーザライン社製の半導体レーザを用い、凝灰岩の表面に対してレーザ照射を行った。具体的には、レーザ出力を800W、凝灰岩の表面におけるレーザビーム径を2×39mmとし、60秒間定点照射した(第一工程)。第一工程におけるレーザパワー密度は10W/mmである。
<< Example 2 >>
Laser irradiation was performed on the surface of the tuff using a semiconductor laser manufactured by Laser Line. Specifically, the laser output was 800 W, the laser beam diameter on the surface of the tuff was 2 × 39 mm, and fixed-point irradiation was performed for 60 seconds (first step). The laser power density in the first step is 10 W / mm 2 .
 第一工程における定点照射によって十分な溶融領域の形成が確認されたため、レーザ出力を2800Wに増加させ、移動速度を48mm/minとしてレーザ照射位置を移動させた(第二工程)。第二工程におけるレーザパワー密度は35W/mmである。適当なレーザパワー密度及び移動速度を設定したことにより、レーザの走査によって溶融部が途切れることなく、連続的に溶融部が拡大された。 Since the formation of a sufficient molten region was confirmed by the fixed point irradiation in the first step, the laser output was increased to 2800 W, and the laser irradiation position was moved at a moving speed of 48 mm / min (second step). The laser power density in the second step is 35 W / mm 2 . By setting appropriate laser power density and moving speed, the melted portion was continuously enlarged without interruption of the melted portion due to laser scanning.
 第二工程では、凝灰岩の成分を含む粉末を溶融部に供給した。第二工程において溶融部に凝灰岩の成分を含む粉末を供給することで、より安定的かつ効率的に緻密なガラス層を形成することができる。処理後の凝灰岩の外観写真を図4に示す。 In the second step, powder containing the components of the tuff was supplied to the melting part. By supplying the powder containing the component of the tuff to the molten portion in the second step, a dense glass layer can be formed more stably and efficiently. FIG. 4 shows a photograph of the appearance of the tuff after the treatment.
 図4より、凝灰岩の表面領域には透明性を有する緻密なガラスバルク体が広域に形成されていることが分かる。また、ガラスバルク体は基材である凝灰岩から連続的に形成しており、ガラスバルク体と基材の境界に亀裂等の欠陥は認められない。 よ り From FIG. 4, it can be seen that a dense and bulky glass body having transparency is formed in a wide area in the surface region of the tuff. Further, the glass bulk body is formed continuously from the tuff as the base material, and no defect such as a crack is recognized at the boundary between the glass bulk body and the base material.
≪実施例3≫
 レーザライン社製の半導体レーザを用い、コンクリートの表面に対してレーザ照射を行った。具体的には、レーザ出力を2800W、コンクリートの表面におけるレーザビーム径を2×39mmとし、1秒間定点照射した(第一工程)。第一工程におけるレーザパワー密度は35W/mmである。
Example 3
The surface of the concrete was irradiated with laser using a semiconductor laser manufactured by Laser Line. Specifically, the laser output was 2800 W, the laser beam diameter on the concrete surface was 2 × 39 mm, and fixed-point irradiation was performed for 1 second (first step). The laser power density in the first step is 35 W / mm 2 .
 第一工程における定点照射によって十分な溶融領域の形成が確認されたため、移動速度を48mm/minとしてレーザ照射位置を移動させた(第二工程)。なお、本実施例では第二工程のレーザ出力を第一工程から増加させていない。 (4) Since the formation of a sufficient melting region was confirmed by the fixed point irradiation in the first step, the laser irradiation position was moved at a moving speed of 48 mm / min (second step). In this embodiment, the laser output in the second step is not increased from that in the first step.
 得られた試料の外観写真を図5に示す。実施例3では黒色のガラス層が広域に形成されていることが分かる。 (5) An appearance photograph of the obtained sample is shown in FIG. In Example 3, it can be seen that the black glass layer is formed in a wide area.
≪実施例4≫
 レーザライン社製の半導体レーザを用い、コンクリートの表面に形成した溝(深さ20mm,長さ100mm)をガラス層で埋めることを試みた。溝を有するコンクリート片の外観写真を図6に示す。また、溝の拡大写真を図7に示す。ここで、1層目は溝の底部に直接レーザ照射してガラス層を形成し、2層目から5層目は珪砂を粉砕処理した砂状粉末で溝を埋めつつ、当該領域に対してレーザを照射して、順次ガラス層を形成させた。
Example 4
An attempt was made to fill a groove (depth: 20 mm, length: 100 mm) formed on the concrete surface with a glass layer using a semiconductor laser manufactured by Laser Line. FIG. 6 shows a photograph of the appearance of a concrete piece having a groove. FIG. 7 shows an enlarged photograph of the groove. Here, the first layer directly irradiates a laser to the bottom of the groove to form a glass layer, and the second to fifth layers fill the groove with sand-like powder obtained by pulverizing silica sand, and apply laser to the area. To form a glass layer sequentially.
 1層目の形成には、レーザ出力を540W、溝の底面におけるレーザビーム径を2×27 mmとし、1秒間定点照射した(第一工程)。第一工程におけるレーザパワー密度は10W/mmである。その後、レーザ出力を1900Wとし、48mm/minの速度でレーザを走査した。第二工程におけるレーザパワー密度は35W/mmである。 For the formation of the first layer, the laser output was set to 540 W, the laser beam diameter at the bottom of the groove was set to 2 × 27 mm, and fixed-point irradiation was performed for 1 second (first step). The laser power density in the first step is 10 W / mm 2 . Thereafter, the laser output was set to 1900 W and the laser was scanned at a speed of 48 mm / min. The laser power density in the second step is 35 W / mm 2 .
 2層目から5層目の形成には、珪砂を粉砕処理した砂状粉末を溶融部に供給し、レーザ出力を1900Wとし、48mm/minの速度でレーザを走査した。この工程におけるレーザパワー密度は35W/mmである。 For the formation of the second to fifth layers, sandy powder obtained by pulverizing silica sand was supplied to the melting portion, the laser output was set to 1900 W, and laser scanning was performed at a speed of 48 mm / min. The laser power density in this step is 35 W / mm 2 .
 粉末を充填した状態の溝の外観写真及び当該領域をガラス化した後の外観写真を図8及び図9にそれぞれ示す。充填した粉末(珪砂の粉末)がレーザ照射によって緻密なガラスとなっていることが分かる。 外 観 FIGS. 8 and 9 show an external appearance photograph of the groove filled with the powder and an external appearance photograph after vitrifying the region. It can be seen that the filled powder (silica sand powder) is turned into a dense glass by laser irradiation.
 最終的に得られた試料の溝の拡大写真を図10に示す。溝は完全に緻密なガラス層で充填されており、多層のガラス層によって深い溝であっても表面まで充填できることが分かる。 FIG. 10 shows an enlarged photograph of the groove of the sample finally obtained. It can be seen that the grooves are completely filled with the dense glass layer, and even the deep grooves can be filled up to the surface by the multilayer glass layer.
≪実施例5≫
 レーザライン社製の半導体レーザを用い、コンクリート片同士の接合を試みた。コンクリート片同士を端面で当接させ、当該端面の外周領域のガラス化により接合を行った。ここで、レーザ照射面に対して、3mm~5mm程度の高さとなる粉末を供給し、当該粉末には砂岩を粉砕処理した砂状粉末を用いた。
Example 5
The joining of concrete pieces was attempted using a semiconductor laser manufactured by Laser Line. The concrete pieces were brought into contact with each other at the end face, and the outer peripheral area of the end face was joined by vitrification. Here, a powder having a height of about 3 mm to 5 mm was supplied to the laser irradiation surface, and a sand-like powder obtained by pulverizing sandstone was used as the powder.
 具体的には、レーザ出力を1900W、コンクリート表面におけるレーザビーム径を2×27mmとし、1秒間定点照射した(第一工程)。第一工程におけるレーザパワー密度は35 W/mmである。その後、端面の外周領域に沿って48mm/minの速度でレーザ照射位置を移動させた(第二工程)。なお、本実施例では第二工程のレーザ出力を第一工程から増加させていない。 Specifically, the laser output was 1900 W, the laser beam diameter on the concrete surface was 2 × 27 mm, and fixed-point irradiation was performed for 1 second (first step). The laser power density in the first step is 35 W / mm 2 . Thereafter, the laser irradiation position was moved at a speed of 48 mm / min along the outer peripheral area of the end face (second step). In this embodiment, the laser output in the second step is not increased from that in the first step.
 端面の外周領域を2周レーザ照射した後の試料の外観写真を図11に示す。突合せ端面の外周領域がガラス化しており、2個のコンクリート片が接合されていることが確認できる。 外 観 FIG. 11 shows an external appearance photograph of the sample after irradiating the outer peripheral region of the end face with the laser for two rounds. It can be confirmed that the outer peripheral area of the butted end face is vitrified, and two concrete pieces are joined.
2・・・ガラスバルク体、
4・・・基材部、
6・・・ガラス層、
8・・・気泡。
2 ... glass bulk,
4 ... substrate part,
6 ... glass layer,
8 ... air bubbles.

Claims (12)

  1.  砂粒の集合体、岩石又はコンクリートの表面をガラス化するガラスバルク体の製造方法であって、
     前記砂粒の集合体、前記岩石及び前記コンクリートはシリカ(SiO)成分を含み、
     前記表面にレーザを定点照射し、溶融部を形成させる第一工程と、
     前記溶融部が連続して拡大する走査速度で前記レーザの照射位置を移動させ、ガラス層を形成させる第二工程と、を有し、
     前記第一工程と前記第二工程を連続して行うこと、
     を特徴とするガラスバルク体の製造方法。
    An aggregate of sand grains, a method for producing a glass bulk body for vitrifying the surface of rock or concrete,
    The aggregate of sand grains, the rock and the concrete include a silica (SiO 2 ) component,
    A first step of irradiating the surface with a laser at a fixed point and forming a fused portion,
    The second step of moving the irradiation position of the laser at a scanning speed at which the melting portion continuously expands, and forming a glass layer,
    Performing the first step and the second step continuously,
    A method for producing a glass bulk body, characterized by comprising:
  2.  前記第一工程の予備処理工程として、前記表面にシリカ(SiO)成分を含む粉末を配置すること、
     を特徴とする請求項1に記載のガラスバルク体の製造方法。
    Placing a powder containing a silica (SiO 2 ) component on the surface as a pretreatment step of the first step;
    The method for producing a glass bulk body according to claim 1, wherein:
  3.  前記ガラス層に対して前記予備処理工程、前記第一工程及び前記第二工程を施し、前記ガラス層の厚さを増加させること、
     を特徴とする請求項2に記載のガラスバルク体の製造方法。
    Performing the pretreatment step, the first step, and the second step on the glass layer to increase the thickness of the glass layer,
    The method for producing a glass bulk body according to claim 2, characterized in that:
  4.  前記第二工程において、前記溶融部に前記粉末を供給すること、
     を特徴とする請求項2又は3に記載のガラスバルク体の製造方法。
    In the second step, supplying the powder to the melting portion,
    The method for producing a glass bulk body according to claim 2 or 3, wherein:
  5.  前記第一工程において、前記表面における前記レーザのパワー密度を3~15W/mmとすること、
     を特徴とする請求項1~4のうちのいずれかに記載のガラスバルク体の製造方法。
    In the first step, the power density of the laser on the surface is 3 to 15 W / mm 2 ;
    The method for producing a glass bulk body according to any one of claims 1 to 4, characterized in that:
  6.  前記第二工程において、前記表面における前記レーザのパワー密度を20~40W/mmとすること、
     を特徴とする請求項1~5のうちのいずれかに記載のガラスバルク体の製造方法。
    In the second step, a power density of the laser on the surface is set to 20 to 40 W / mm 2 ;
    The method for producing a glass bulk body according to any one of claims 1 to 5, characterized in that:
  7.  前記第二工程において、前記走査速度を0.01~2.0m/minとすること、
     を特徴とする請求項1~6のうちのいずれかに記載のガラスバルク体の製造方法。
    In the second step, the scanning speed is 0.01 to 2.0 m / min;
    The method for producing a glass bulk body according to any one of claims 1 to 6, characterized in that:
  8.  前記砂の集合体及び/又は前記岩石が、地盤又は海底を掘削する際の掘削領域外縁に存在すること、
     を特徴とする請求項1~7のうちのいずれかに記載のガラスバルク体の製造方法。
    The aggregate of sand and / or the rocks are present at the outer edge of a digging area when digging the ground or the seabed,
    The method for producing a glass bulk body according to any one of claims 1 to 7, characterized in that:
  9.  高レベル放射性廃棄物を前記溶融部に取り込むこと、
     を特徴とする請求項1~8のうちのいずれかに記載のガラスバルク体の製造方法。
    Taking high-level radioactive waste into the fusion zone;
    The method for producing a glass bulk body according to any one of claims 1 to 8, characterized in that:
  10.  前記粉末をコンクリート部材の溝部に配置し、
     前記溝部を前記ガラス層で埋めること、
     を特徴とする請求項2~7のうちのいずれかに記載のガラスバルク体の製造方法。
    Placing the powder in the groove of the concrete member,
    Filling the groove with the glass layer;
    The method for producing a glass bulk body according to any one of claims 2 to 7, characterized in that:
  11.  砂粒の集合体、岩石又はコンクリートからなる基材部と、
     ガラス層と、を有し、
     前記基材部と前記ガラス層とが、気泡を有する境界領域を介して連続的に一体化していること、
     を特徴とするガラスバルク体。
    An aggregate of sand grains, a base material made of rock or concrete,
    And a glass layer,
    The base member and the glass layer are continuously integrated via a boundary region having bubbles,
    A glass bulk body characterized by the above.
  12.  前記ガラス層が透明性を有していること、
     を特徴とする請求項11に記載のガラスバルク体。
     
    The glass layer has transparency,
    The glass bulk body according to claim 11, characterized in that:
PCT/JP2019/027715 2018-07-31 2019-07-12 Method for producing glass bulk body WO2020026766A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020533389A JP7279883B2 (en) 2018-07-31 2019-07-12 A method for manufacturing a glass bulk body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018143231 2018-07-31
JP2018-143231 2018-07-31

Publications (1)

Publication Number Publication Date
WO2020026766A1 true WO2020026766A1 (en) 2020-02-06

Family

ID=69231694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027715 WO2020026766A1 (en) 2018-07-31 2019-07-12 Method for producing glass bulk body

Country Status (2)

Country Link
JP (1) JP7279883B2 (en)
WO (1) WO2020026766A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100085A (en) * 1986-10-16 1988-05-02 株式会社イナックス Elongated glazed prestressed concrete material and manufacture
JPH03174376A (en) * 1989-09-04 1991-07-29 Taisei Corp Surface melting hardening treatment for stone and material made of concrete and surface-molten-hardened building material
JPH10507275A (en) * 1995-07-26 1998-07-14 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー Waste treatment method and waste treatment apparatus
JP2017141581A (en) * 2016-02-09 2017-08-17 前田建設工業株式会社 Tunnel construction method and tunnel excavator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161318A (en) * 1984-01-30 1985-08-23 Hitachi Chem Co Ltd Process and apparatus for preparing molten amorphous silica
JPS61121113A (en) * 1984-11-19 1986-06-09 Hitachi Ltd Position control mechanism for automatic analyzer
US8636085B2 (en) * 2008-08-20 2014-01-28 Foro Energy, Inc. Methods and apparatus for removal and control of material in laser drilling of a borehole
WO2011077559A1 (en) * 2009-12-25 2011-06-30 日本海洋掘削株式会社 Method for working rock using laser and device therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63100085A (en) * 1986-10-16 1988-05-02 株式会社イナックス Elongated glazed prestressed concrete material and manufacture
JPH03174376A (en) * 1989-09-04 1991-07-29 Taisei Corp Surface melting hardening treatment for stone and material made of concrete and surface-molten-hardened building material
JPH10507275A (en) * 1995-07-26 1998-07-14 ブリティッシュ・ニュークリア・フューエルズ・パブリック・リミテッド・カンパニー Waste treatment method and waste treatment apparatus
JP2017141581A (en) * 2016-02-09 2017-08-17 前田建設工業株式会社 Tunnel construction method and tunnel excavator

Also Published As

Publication number Publication date
JPWO2020026766A1 (en) 2021-08-26
JP7279883B2 (en) 2023-05-23

Similar Documents

Publication Publication Date Title
US6880646B2 (en) Laser wellbore completion apparatus and method
US20140231398A1 (en) High power laser tunneling mining and construction equipment and methods of use
JP4270577B2 (en) Rock processing method and apparatus using laser
CN105637172A (en) Solids in borehole fluids
US9545692B2 (en) Long stand off distance high power laser tools and methods of use
US11590606B2 (en) High power laser tunneling mining and construction equipment and methods of use
RU2012137540A (en) METHOD FOR DEVELOPING OIL AND GAS DEPOSITS USING A POWERFUL LASER RADIATOR FOR THEIR MOST COMPLETE EXTRACTION
WO2014149114A2 (en) High power laser tunneling mining and construction equipment and methods of use
EP3810893B1 (en) Laser tool that combines purging medium and laser beam
EP3857016B1 (en) Laser tool configured for downhole movement
WO2020026766A1 (en) Method for producing glass bulk body
Figueroa et al. Rock removal using high-power lasers for petroleum exploitation purposes
Xu et al. Application of high powered lasers to perforated completions
RU2404883C1 (en) Laser electric drill
JPH1119785A (en) Method of drilling cement hardened body
CA2142709A1 (en) Method and apparatus for in-situ treatment of landfill waste and contaminated soil
RU2523901C1 (en) Device for laser-mechanical drilling of silica-containing materials
JP2024068260A (en) Crack repair device
Gahan et al. Laser Drilling-Drilling with the Power of Light
Bakhtbidar et al. Application of laser technology for oil and gas wells perforation
JP2024068259A (en) Crack repair device
JP2024068258A (en) How to Repair Cracks
JP6473065B2 (en) Construction method of jointed pavement
Wignarajah New horizons for high-power lasers: applications in civil engineering
KR101267298B1 (en) Formation of microstructured fiber preforms using porous glass deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020533389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844058

Country of ref document: EP

Kind code of ref document: A1