WO2020026750A1 - Welding method by welding robot, and welding robot - Google Patents

Welding method by welding robot, and welding robot Download PDF

Info

Publication number
WO2020026750A1
WO2020026750A1 PCT/JP2019/027517 JP2019027517W WO2020026750A1 WO 2020026750 A1 WO2020026750 A1 WO 2020026750A1 JP 2019027517 W JP2019027517 W JP 2019027517W WO 2020026750 A1 WO2020026750 A1 WO 2020026750A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
feeding device
filler wire
guide tube
speed
Prior art date
Application number
PCT/JP2019/027517
Other languages
French (fr)
Japanese (ja)
Inventor
俊英 加藤
達也 天野
準一 齋藤
真弘 田代
Original Assignee
株式会社アマダホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アマダホールディングス filed Critical 株式会社アマダホールディングス
Priority to JP2019554706A priority Critical patent/JP6727456B2/en
Publication of WO2020026750A1 publication Critical patent/WO2020026750A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting

Definitions

  • the present invention relates to a welding method and a welding robot in a welding robot.
  • a laser welding robot is an example of a welding robot.
  • the laser welding robot includes a guide tube (flexible conduit) that guides the filler wire to a laser beam irradiation position.
  • a guide nozzle that guides the filler wire toward the welding position is provided on the distal end side of the guide tube.
  • JP-A-6-87073 Japanese Patent Application Laid-Open No. 7-24572 Japanese Patent Application Publication No. 2018-27571
  • a guide tube (flexible conduit) connected to a wire feeding device for feeding a filler wire can follow the movement of a robot arm or the like while smoothly guiding the filler wire, and has a bending habit. It is requested that there is not.
  • the guide tube has a triple structure including a lower winding in which a steel wire is spirally formed, a resin liner tube provided inside the lower winding, and a resin coating covering the lower winding. is there.
  • the liner tube moves in the feed direction of the filler wire, and shifts between the lower winding and the liner tube. May occur. If the supply of the filler wire becomes excessive and the liner tube moves greatly, the guide tube may be damaged.
  • One aspect of the present invention is a wire feeding device that feeds a filler wire, and a sub feeding device that is provided near a guide nozzle that guides the filler wire to a welding position and feeds the filler wire.
  • a welding tube provided between the wire feeding device and the sub-feeding device, and a guide tube for guiding the filler wire, the welding robot comprising: When detecting the fine movement of the guide tube, a step of controlling the driving state of the wire feeding device to stop or low-speed driving, and when detecting the return of the guide tube, the driving state of the wire feeding device is And a step of returning to the original driving state during the continuous feeding of the filler wire by the sub-feeding device.
  • Another aspect of the present invention is a wire feeding device that feeds a filler wire, and a sub feeding device that is provided near a guide nozzle that guides the filler wire to a welding position and feeds the filler wire.
  • a guide tube provided between the wire feeding device and the sub-feeding device, for guiding the filler wire, fine movement of the guide tube in the feeding direction of the filler wire, and A fine motion detector for detecting the return, and when the fine motion is detected by the fine motion detector, the driving state of the wire feeding device is stopped or controlled to a low speed drive, and the return of the guide tube is performed by the fine motion detector.
  • a control device for returning the driving state of the wire feeding device to the original driving state when the detection is detected.
  • FIG. 1 is a diagram conceptually and schematically showing the entire configuration of the welding robot according to the embodiment.
  • FIG. 2 is a partial cross-sectional view showing the configuration of the fine movement detector.
  • 3A and 3B are external views of the fine motion detector, wherein FIG. 3A is a side view, and FIG. 3B is a view as viewed from the direction of arrow IIIB of FIG. 4A and 4B are diagrams schematically illustrating the operation of the embodiment.
  • FIG. 4A illustrates a case where filler wire feeding speeds of the wire feeding device and the sub feeding device are substantially equal, and FIG. The case where the feeding speed of the device is higher than the feeding speed of the sub feeding device will be described.
  • FIG. 5 is a flowchart illustrating the operation of the embodiment.
  • FIG. 6 is a partial cross-sectional view schematically showing the configuration of another embodiment of the guide tube.
  • the welding robot 1 is, for example, a laser welding robot.
  • the welding robot 1 has a base frame 3.
  • a swivel table 5 that can be swiveled horizontally is provided.
  • the turntable 5 can turn horizontally by appropriately controlling a servomotor (not shown).
  • the turntable 5 supports the base end of the first arm 7 so as to be swingable in the direction of arrow A about a horizontal axis.
  • the base end of the second arm 9 is supported so as to be swingable in the direction of arrow B about a horizontal axis.
  • the second arm 9 is rotatable around its axis in the direction of arrow C.
  • the base end of the third arm 13 provided with the laser processing head 11 is supported so as to be swingable in the direction of arrow D.
  • the laser processing head 11 is provided with an end effector 15.
  • the end effector 15 is connected via an optical fiber 17 to a laser oscillator 19 such as a fiber laser oscillator.
  • a focusing lens 21 for focusing the laser beam LB is provided in the laser processing head 11.
  • the welding robot 1 is provided with a configuration for feeding the filler wire FW to the laser beam condensing position by the condensing lens 21, that is, the welding position of the work W.
  • a wire reel 23 wound with a filler wire FW and a wire feeding device 25 for feeding the filler wire FW are provided.
  • the welding robot 1 is provided with a guide nozzle 27 that guides the filler wire FW fed by the wire feeding device 25 to a welding position.
  • a sub-feeding device 29 that assists the feeding of the filler wire FW into the guide nozzle 27 is provided at a position upstream of the guide nozzle 27 and close to the guide nozzle 27.
  • a plurality of pairs of pinch rollers 33 for feeding the filler wire FW are rotatably provided in the casing 31 of the wire feeder 25, a plurality of pairs of pinch rollers 33 for feeding the filler wire FW are rotatably provided.
  • a pinch roller 36 for feeding the filler wire FW to the guide nozzle 27 is rotatably provided in the casing 35 of the sub feeding device 29.
  • the pinch roller 33 of the wire feeding device 25 and the pinch roller 36 of the sub feeding device 29 are rotationally driven by separate motors in synchronization with each other.
  • a guide tube 37 for guiding the filler wire FW fed (sent) from the outlet of the wire feeding device 25 to the entrance of the sub feeding device 29 is provided. Is provided. That is, the wire feeding device 25 is provided on the upstream side of the guide tube 37 in the feeding direction F of the filler wire FW, and the sub-feeding device 29 is provided on the downstream side of the feeding direction F.
  • the pinch roller 33 of the wire feeder 25 and the pinch roller 36 of the sub feeder 29 are used to feed the filler wire FW in the wire feeder 25 and feed the filler wire FW in the sub feeder 29. They are rotated synchronously so that their speeds are equal to each other.
  • the feed rate is the feed rate [m / min] of the filler wire FW per unit time.
  • the guide tube 37 may be damaged due to the following phenomenon.
  • a mechanism is provided that detects that the feed speed of the filler wire FW by the wire feed device 25 is higher than the feed speed of the sub feed device 29 and prevents the guide tube 37 from being damaged. Have been.
  • the fine movement detector 39 is provided in the casing 31 of the wire feeding device 25.
  • the fine movement detector 39 detects the fine movement of the guide tube 37 in the feeding direction F of the filler wire FW.
  • “Slight movement” means that the relative position or posture (such as an angle) of the guide tube 37 with respect to the wire feeding device 25 is displaced from the normal position and posture shown in FIG.
  • a control device 41 is connected to the fine movement detector 39 as shown in FIG.
  • the control device 41 controls the driving state of the wire feeding device 25 (hereinafter, also referred to as “driving mode”) to “stop” when detecting the slight movement of the guide tube 37, or the “low speed driving” set in advance. Is controlled.
  • the drive of the wire feeding device 25 is stopped for a predetermined time set in advance.
  • the predetermined time that is, the stop time is not particularly limited, but is, for example, 0.1 [sec].
  • the drive stop may be a continuous stop or an intermittent stop.
  • “Low-speed driving” refers to driving the wire feeding device 25 so as to satisfy the following condition A.
  • Condition A is that the feeding speed of the wire feeding device 25 is lower than the feeding speed of the sub feeding device 29 and is lower than the feeding speed of the wire feeding device 25 when "slight movement" is not detected. It is to be smaller.
  • the control device 41 can be composed of, for example, a general-purpose microcomputer including a CPU (Central Processing Unit), a storage unit, and an input / output unit.
  • CPU Central Processing Unit
  • the fine movement detector 39 includes a cylindrical base member 47 which can be attached to the casing 31 of the wire feeder 25 by a fixing tool 45 such as a bolt.
  • the base member 47 includes a flange portion 47F, and a cylindrical movable member 51 urged toward the base member 47 by an elastic member 49 such as a plurality of coil springs is provided on the flange portion 47F.
  • the elastic member 49 is held in a compressed and deformed state by a bolt 49B screwed to the base member 47, and urges the movable member 51 toward the base member 47.
  • the movable member 51 is provided with a tube connector 53 for connecting the end of the guide tube 37 to the movable member 51.
  • the tube connector 53 has, for example, a configuration similar to a collet chuck, includes a cylindrical collet 53A screwed to the movable member 51, and includes a fastener 53B such as a nut capable of tightening the collet 53A. I have.
  • the movable member 51 tends to be moved in the feeding direction F by the guide tube 37.
  • the force (thrust) for moving the movable member 51 in the feeding direction F becomes larger than the urging force of the elastic member 49, the movable member 51 moves (displaces) away from the base member 47. I do.
  • the movable member 51 is provided with a sensor 55 for detecting that the movable member 51 has been displaced away from the base member 47.
  • the fine movement detector 39 can detect fine movement with such a simple configuration.
  • the sensor 55 can be composed of an appropriate sensor such as a limit switch or a proximity sensor. As shown in FIGS. 3A and 3B, the sensors 55 may be provided around the movable member 51 at equal intervals in the circumferential direction. By the way, when the robot arms 7, 9, and 13 operate, the filler wire FW delivered into the guide tube 37 may be twisted or bent in the guide tube 37. Then, the force applied from the filler wire FW to the inner peripheral surface of the guide tube 37 due to the torsion, bending, or the like may not be balanced in the direction orthogonal to the axis of the guide tube 37, and a bending moment may be applied to the movable member 51. In this case, the movable member 51 may be slightly inclined with respect to the base member 47.
  • the attitude (angle) of the movable member 51 with respect to the base member 47 can be changed.
  • the plurality of sensors 55 are provided around the movable member 51, at least one of the inclination (displacement) in which a part of the movable member 51 in the circumferential direction is separated from the base member 47 is determined. It can be detected (detected) by the sensors 55. That is, the inclination of the movable member 51 can be detected regardless of the inclination direction.
  • the sensor 55 may be provided on one or both of the base member 47 and the movable member 51.
  • the length of the filler wire FW in the guide tube 37 is not appropriate. Is maintained at a suitable length. However, when the feeding speed of the wire feeding device 25 is higher than the feeding speed of the sub feeding device 29, the length of the filler wire FW in the guide tube 37 gradually becomes longer than the length of the guide tube 37. Become.
  • the filler wire FW in the guide tube 37 curves between the sub-feeding device 29 and the wire feeding device 25 to contact the inner surface of the guide tube 37. become.
  • the filler wire FW presses the guide tube 37 in the feeding direction F.
  • the pressing force (thrust) becomes larger than the urging force of the elastic member 49, the movable member 51 is moved in the feeding direction F as shown in an exaggerated manner in FIG. That is, the movable member 51 is slightly separated from the base member 47 fixed to the casing 31.
  • the movable member 51 When the movable member 51 is separated from the base member 47, for example, all of the plurality of sensors 55 are turned on to detect (detect) the separation.
  • the movable member 51 may be inclined with respect to the base member 47 such that a part of the movable member 51 in the circumferential direction is separated from the base member 47 depending on the positions and postures of the robot arms 7, 9, and 13. Also in this case, at least one of the plurality of sensors 55 provided around the movable member 51 is turned on.
  • the detection signal of the sensor 55 is input to the control device 41.
  • the control device 41 stops driving the wire feeding device 25 in step S1 or changes the driving state of the wire feeding device 25 in step S1, as shown in FIG. Is controlled to a preset low-speed drive.
  • the driving of the sub-feeding device 29 is not stopped, and the feeding of the filler wire FW is continuously performed. Therefore, the filler wire FW in the guide tube 37 is pulled from the downstream side by the sub-feeding device 29. Thereby, as shown in FIG. 4D, the bending of the filler wire FW and the contact with the guide tube 37 are eliminated, and the pressing of the guide tube 37 in the feeding direction F due to these is eliminated. For this reason, the guide tube 37 returns to the original state with respect to the wire feeding device 25, that is, the normal position and posture in which “fine movement” is not detected, and the sensor 55 is turned off. The elastic member 49 assists the guide tube 37 to return to the normal position and posture.
  • step S2 the control device 41 determines whether or not the detection signal has been turned off. In the case of YES in step S2, the control device 41 proceeds to step S3, and returns the drive state of the wire feeding device 25 to the “original drive state”.
  • the “original driving state” is a driving state or a driving mode when “fine movement” is not detected. For example, the feeding speed of the wire feeding device 25 and the feeding speed of the sub feeding device 29 become equal. It is such a drive mode. Then, after returning the drive state of the wire feeding device 25 to the original drive state, the control device 41 ends the process. In the case of NO in step S2, the control device 41 determines in step S4 whether a predetermined time set in advance after the start of the processing in step S1.
  • step S4 If NO in step S4, the process returns to step S2.
  • the control device 41 notifies the operator of the occurrence of the abnormal state in step S5, and ends the process. Then, when the fine movement detection signal is input again from the sensor 55, the control device 41 restarts the process from step S1. Thereby, the control device 41 controls the driving state of the wire feeding device 25 to be stopped or low-speed driving when detecting fine movement, and drives the wire feeding device 25 when detecting return of the guide tube 37. Returning the state to the original driving state can be alternately repeated.
  • the control device 41 of the welding robot 1 stops driving the wire feeding device 25 while continuing the feeding of the filler wire FW by the sub feeding device 29 while the fine movement is detected.
  • the driving state is controlled to low-speed driving. Then, when the fine movement is no longer detected, the driving state of the wire feeding device 25 is returned to the original driving state.
  • the wire feeder 25 and the sub feeder 25 are controlled from the time when the fine movement is detected until the time when it is no longer detected, that is, while the driving state of the wire feeder 25 is stopped or controlled to the low speed drive.
  • the feeding speed of each of the 29 is not particularly limited as long as the above condition A is satisfied.
  • the sub-feeding device 29 may continue to feed the filler wire FW at a preset predetermined feeding speed regardless of whether the driving of the wire feeding device 25 is stopped or driven at a low speed. Thereby, even when fine movement occurs, the filler wire FW can be continuously fed to the welding position and welding can be continued.
  • the feeding speed of the wire feeding device 25 in low-speed driving may be set to a feeding speed obtained by multiplying the feeding speed in the original driving state by a preset reduction ratio.
  • the feed speed in the original driving state is determined according to the moving speed of the laser processing head 11 with respect to the workpiece W, that is, the welding speed [mm / min]. It is determined according to welding processing conditions such as the material, material, and shape of the weld joint.
  • the deceleration ratio can be set according to filler information such as the material and diameter of the filler wire FW.
  • filler information such as the material and diameter of the filler wire FW.
  • the speed reduction ratio can be set to 80 [%].
  • the material of the filler wire FW is stainless steel (SUS) and the diameter is 0.3 [mm], it can be set to 50 [%].
  • the control device 41 may obtain the deceleration ratio from the filler information by calculation or from a map.
  • the feed rate in the low-speed drive should be a feed rate that matches the welding speed in the original drive state. Can be. Further, by setting the deceleration ratio at least based on the material and diameter of the filler wire FW as described above, it is possible to perform deceleration more suitable for welding processing conditions.
  • the set deceleration ratio may be set and changed by an operator as appropriate. Thus, even when the welding processing conditions and the welding speed are changed, the operator can set the feed speed of the filler wire FW suitable for the changed conditions in a timely manner.
  • control device 41 of the welding robot 1 controls the driving state of the wire feeding device 25 to stop or to control the driving speed to low speed when the feeding of the filler wire FW by the sub feeding device 29 is continuously performed. And returning to the original driving state may be alternately repeated. By alternately repeating, even when there is an error in the feeding speed between the wire feeding device 25 and the sub feeding device 29, the feeding of the filler wire FW to the welding position can be continuously continued. .
  • the control device 41 may control the low-speed driving continuously after stopping the driving of the wire feeding device 25, or may control the low-speed driving continuously after stopping the driving of the wire feeding device 25. That is, the control device 41 may alternately repeat the control of the drive state of the wire feeding device 25 to stop and the control of low-speed drive. Thereby, by changing the magnitude of the tensile force applied to the filler wire FW in the guide tube 37 with time, the contact, pressing, etc. of the filler wire FW with the guide tube 37 can be more efficiently eliminated. Can be.
  • the filler wire FW comes into contact with the inner peripheral surface of the guide tube 37 and moves the guide tube 37 in the feeding direction F.
  • the fine movement detector 39 detects the fine movement of the guide tube 37. Then, when the fine movement of the guide tube 37 is detected, the driving of the wire feeding device 25 is stopped, or the driving state of the wire feeding device 25 is controlled to low speed driving. At this time, by continuously operating the sub-feeding device 29 provided on the guide nozzle 27 side, the filler wire FW is pulled from the downstream side, the contact with the inner peripheral surface of the guide tube 37 is eliminated, and the pushing is performed. Progress is also canceled.
  • the fine movement detector 39 may be provided in the wire feeding device 25 as described above.
  • the thrust acting on the guide tube 37 in the feed direction F of the filler wire FW tends to be larger on the upstream side than on the downstream side. Since the fine movement detector 39 is provided in the wire feeding device 25 located on the upstream side of the guide tube 37, fine movement can be detected more efficiently.
  • a plurality of sensors 55 are provided around the movable member 51. Therefore, when at least one of the plurality of sensors 55 detects displacement in the feeding direction F, the driving state of the wire feeding device 25 is set to low-speed driving, and all of the plurality of sensors 55 move in the feeding direction F. When the displacement is detected, the driving can be stopped. As described above, by changing the drive mode of the wire feeding device 25 according to the detected form or magnitude of the displacement, the contact, pressing, and the like of the filler wire FW against the guide tube 37 are more efficiently eliminated. be able to. Note that the relationship between the number of sensors 55 that have detected the displacement and the drive mode of the wire feeding device 25 is not limited to the above.
  • the driving state of the wire feeding device 25 is set to the low-speed driving, and the number of the sensors 55 (for example, two) larger than the predetermined number is changed.
  • the drive of the wire feeding device 25 may be stopped when it is detected.
  • the guide tube 37 is inserted into a resin tube 61 such as a nylon tube, and the outer peripheral surface of the copper pipe 57 provided integrally at both ends of the guide tube 37 and the outer surface of the tube 61.
  • the inner peripheral surfaces at both ends may be integrally bonded with the adhesive 59.
  • the load applied to the guide tube 37 can be shared between the tube 61 and the guide tube 37, so that the tensile strength of the guide tube 37 can be improved. Therefore, damage to the guide tube 37 due to the feeding speed of the wire feeding device 25 being higher than the feeding speed of the sub feeding device 29 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a welding method by a welding robot (1) provided with: a wire supply device (25) for supplying a filler wire (FW); a sub-supply device (29) that is provided in the vicinity of a guide nozzle (27) for guiding the filler wire to a welding position and supplies the filler wire; and a guide tube (37) that is provided between the wire supply device and the sub-supply device and guides the filler wire, wherein both a step for controlling the wire supply device to stop operating or operate at low speed when a slight motion of the guide tube in the supply direction (F) of the filler wire is detected, and a step for returning the wire supply device to the original operation state when the return of the guide tube is detected are performed while continuously supplying the filler wire by means of the sub-supply device.

Description

溶接ロボットにおける溶接方法及び溶接ロボットWelding method and welding robot in welding robot
 本発明は、溶接ロボットにおける溶接方法及び溶接ロボットに関する。 The present invention relates to a welding method and a welding robot in a welding robot.
 溶接ロボットの一例として、レーザ溶接ロボットがある。レーザ溶接ロボットは、レーザ光の照射位置へフィラーワイヤを案内するガイドチューブ(フレキシブルコンジット)を備えている。ガイドチューブの先端側には、フィラーワイヤを溶接位置へ向けて案内するガイドノズルが設けられている。特許文献1~3は、関連する技術を開示している。 レ ー ザ A laser welding robot is an example of a welding robot. The laser welding robot includes a guide tube (flexible conduit) that guides the filler wire to a laser beam irradiation position. A guide nozzle that guides the filler wire toward the welding position is provided on the distal end side of the guide tube. Patent Documents 1 to 3 disclose related technologies.
日本国特開平6-87073号公報JP-A-6-87073 日本国特開平7-24572号公報Japanese Patent Application Laid-Open No. 7-24572 日本国特開2018-27571号公報Japanese Patent Application Publication No. 2018-27571
 溶接ロボットにおいて、フィラーワイヤを送給するワイヤ送給装置に接続されたガイドチューブ(フレキシブルコンジット)には、フィラーワイヤを滑らかに案内しつつ、ロボットアーム等の動きに追従でき、曲がり癖等が付かないことが要望される。ガイドチューブには、鋼線を螺旋状に形成した下巻線と、下巻線の内部に設けられた樹脂製のライナーチューブと、下巻線を被覆する樹脂コーティングとを備えた3重構造を有するものがある。 In a welding robot, a guide tube (flexible conduit) connected to a wire feeding device for feeding a filler wire can follow the movement of a robot arm or the like while smoothly guiding the filler wire, and has a bending habit. It is requested that there is not. The guide tube has a triple structure including a lower winding in which a steel wire is spirally formed, a resin liner tube provided inside the lower winding, and a resin coating covering the lower winding. is there.
 上記ガイドチューブでは、フィラーワイヤを案内する際にライナーチューブの内周面にフィラーワイヤが接触することで、フィラーワイヤの送給方向にライナーチューブが移動し、下巻線とライナーチューブとの間にずれが生じることがある。そして、フィラーワイヤの送給が過剰になり、ライナーチューブが大きく移動すれば、ガイドチューブに損傷が生じる可能性がある。 In the above guide tube, when the filler wire comes into contact with the inner peripheral surface of the liner tube when guiding the filler wire, the liner tube moves in the feed direction of the filler wire, and shifts between the lower winding and the liner tube. May occur. If the supply of the filler wire becomes excessive and the liner tube moves greatly, the guide tube may be damaged.
 本発明の一態様は、フィラーワイヤの送給を行うワイヤ送給装置と、前記フィラーワイヤを溶接位置へ案内するガイドノズルの近傍に設けられ、前記フィラーワイヤの送給を行うサブ送給装置と、前記ワイヤ送給装置と前記サブ送給装置との間に設けられ、前記フィラーワイヤを案内するガイドチューブと、を備えた溶接ロボットにおける溶接方法であって、前記フィラーワイヤの送給方向への前記ガイドチューブの微動を検知した際に、前記ワイヤ送給装置の駆動状態を停止または低速駆動に制御する工程と、前記ガイドチューブの戻りを検知した際に、前記ワイヤ送給装置の駆動状態を元の駆動状態に復帰させる工程と、を前記サブ送給装置による前記フィラーワイヤの送給を継続して行っている間に行う、溶接方法である。 One aspect of the present invention is a wire feeding device that feeds a filler wire, and a sub feeding device that is provided near a guide nozzle that guides the filler wire to a welding position and feeds the filler wire. A welding tube provided between the wire feeding device and the sub-feeding device, and a guide tube for guiding the filler wire, the welding robot comprising: When detecting the fine movement of the guide tube, a step of controlling the driving state of the wire feeding device to stop or low-speed driving, and when detecting the return of the guide tube, the driving state of the wire feeding device is And a step of returning to the original driving state during the continuous feeding of the filler wire by the sub-feeding device.
 本発明の他の態様は、フィラーワイヤの送給を行うワイヤ送給装置と、前記フィラーワイヤを溶接位置へ案内するガイドノズルの近傍に設けられ、前記フィラーワイヤの送給を行うサブ送給装置と、前記ワイヤ送給装置と前記サブ送給装置との間に設けられ、前記フィラーワイヤを案内するガイドチューブと、前記フィラーワイヤの送給方向への前記ガイドチューブの微動と、前記ガイドチューブの戻りとを検出する微動検出器と、前記微動検出器によって前記微動を検出した際に、前記ワイヤ送給装置の駆動状態を停止または低速駆動に制御し、前記微動検出器によって前記ガイドチューブの戻りを検知した際に、前記ワイヤ送給装置の駆動状態を元の駆動状態に復帰させる制御装置と、を備えた溶接ロボットである。 Another aspect of the present invention is a wire feeding device that feeds a filler wire, and a sub feeding device that is provided near a guide nozzle that guides the filler wire to a welding position and feeds the filler wire. And a guide tube provided between the wire feeding device and the sub-feeding device, for guiding the filler wire, fine movement of the guide tube in the feeding direction of the filler wire, and A fine motion detector for detecting the return, and when the fine motion is detected by the fine motion detector, the driving state of the wire feeding device is stopped or controlled to a low speed drive, and the return of the guide tube is performed by the fine motion detector. And a control device for returning the driving state of the wire feeding device to the original driving state when the detection is detected.
図1は、実施形態に係る溶接ロボットの全体構成を概念的、概略的に示す図である。FIG. 1 is a diagram conceptually and schematically showing the entire configuration of the welding robot according to the embodiment. 図2は、微動検出器の構成を示す一部断面図である。FIG. 2 is a partial cross-sectional view showing the configuration of the fine movement detector. 図3は、微動検出器の外観図であり、(A)は側面図、(B)は(A)の矢印IIIBの方向からみた矢視図である。3A and 3B are external views of the fine motion detector, wherein FIG. 3A is a side view, and FIG. 3B is a view as viewed from the direction of arrow IIIB of FIG. 図4は、実施形態の動作を概略的に説明する図であり、(A)はワイヤ送給装置及びサブ送給装置のフィラーワイヤの送給速度が略等しい場合、(B)はワイヤ送給装置の送給速度がサブ送給装置の送給速度より大きい場合をそれぞれ示す。また、(C)はガイドチューブの微動が生じた状態、(D)はガイドチューブの微動が解消した状態をそれぞれ示す。4A and 4B are diagrams schematically illustrating the operation of the embodiment. FIG. 4A illustrates a case where filler wire feeding speeds of the wire feeding device and the sub feeding device are substantially equal, and FIG. The case where the feeding speed of the device is higher than the feeding speed of the sub feeding device will be described. (C) shows a state in which the fine movement of the guide tube has occurred, and (D) shows a state in which the fine movement of the guide tube has been eliminated. 図5は、実施形態の動作を示すフローチャートである。FIG. 5 is a flowchart illustrating the operation of the embodiment. 図6は、ガイドチューブの別形態の構成を概略的に示す一部断面図である。FIG. 6 is a partial cross-sectional view schematically showing the configuration of another embodiment of the guide tube.
 図1に示すように、実施形態に係る溶接ロボット1は、例えばレーザ溶接ロボットである。溶接ロボット1は、ベースフレーム3を備えている。ベースフレーム3上には、水平に旋回自在な旋回台5が設けられている。旋回台5は、サーボモータ(図示省略)を適宜に制御することにより、水平に旋回することができる。旋回台5には、第1アーム7の基端部側が、水平な軸心回りに矢印A方向に揺動自在に支持されている。 As shown in FIG. 1, the welding robot 1 according to the embodiment is, for example, a laser welding robot. The welding robot 1 has a base frame 3. On the base frame 3, a swivel table 5 that can be swiveled horizontally is provided. The turntable 5 can turn horizontally by appropriately controlling a servomotor (not shown). The turntable 5 supports the base end of the first arm 7 so as to be swingable in the direction of arrow A about a horizontal axis.
 第1アーム7の先端部には、第2アーム9の基端部側が、水平な軸心回りに矢印B方向に揺動自在に支持されている。第2アーム9は、その軸心回りに矢印C方向に回動自在である。第2アーム9の先端部には、レーザ加工ヘッド11を備えた第3アーム13の基端部側が、矢印D方向に揺動自在に支持されている。レーザ加工ヘッド11には、エンドエフェクタ15が設けられている。エンドエフェクタ15は、光ファイバー17を介して、例えばファイバーレーザ発振器等のレーザ発振器19に接続されている。レーザ加工ヘッド11内には、レーザ光LBを集光する集光レンズ21が設けられている。 に は At the distal end of the first arm 7, the base end of the second arm 9 is supported so as to be swingable in the direction of arrow B about a horizontal axis. The second arm 9 is rotatable around its axis in the direction of arrow C. At the distal end of the second arm 9, the base end of the third arm 13 provided with the laser processing head 11 is supported so as to be swingable in the direction of arrow D. The laser processing head 11 is provided with an end effector 15. The end effector 15 is connected via an optical fiber 17 to a laser oscillator 19 such as a fiber laser oscillator. A focusing lens 21 for focusing the laser beam LB is provided in the laser processing head 11.
 溶接ロボット1には、集光レンズ21によるレーザ光の集光位置、即ち、ワークWの溶接位置へフィラーワイヤFWを送給するための構成が設けられている。溶接ロボット1の適宜位置には、フィラーワイヤFWを巻いたワイヤリール23や、フィラーワイヤFWの送給を行うワイヤ送給装置25が設けられている。 The welding robot 1 is provided with a configuration for feeding the filler wire FW to the laser beam condensing position by the condensing lens 21, that is, the welding position of the work W. At an appropriate position of the welding robot 1, a wire reel 23 wound with a filler wire FW and a wire feeding device 25 for feeding the filler wire FW are provided.
 溶接ロボット1には、ワイヤ送給装置25によって送給されたフィラーワイヤFWを溶接位置へ案内するガイドノズル27が設けられている。ガイドノズル27より上流側でガイドノズル27に近接する位置には、フィラーワイヤFWのガイドノズル27内への送給を補助するサブ送給装置29が設けられている。 The welding robot 1 is provided with a guide nozzle 27 that guides the filler wire FW fed by the wire feeding device 25 to a welding position. A sub-feeding device 29 that assists the feeding of the filler wire FW into the guide nozzle 27 is provided at a position upstream of the guide nozzle 27 and close to the guide nozzle 27.
 ワイヤ送給装置25のケーシング31内には、フィラーワイヤFWの送給を行う複数対のピンチローラ33が回転自在に設けられている。サブ送給装置29のケーシング35内には、フィラーワイヤFWをガイドノズル27に送給するピンチローラ36が回転自在に設けられている。ワイヤ送給装置25のピンチローラ33と、サブ送給装置29のピンチローラ36とは、それぞれ別個のモータにより、互いに同期して回転駆動される。 In the casing 31 of the wire feeder 25, a plurality of pairs of pinch rollers 33 for feeding the filler wire FW are rotatably provided. A pinch roller 36 for feeding the filler wire FW to the guide nozzle 27 is rotatably provided in the casing 35 of the sub feeding device 29. The pinch roller 33 of the wire feeding device 25 and the pinch roller 36 of the sub feeding device 29 are rotationally driven by separate motors in synchronization with each other.
 ワイヤ送給装置25とサブ送給装置29との間には、ワイヤ送給装置25の出口から送給(送出)されるフィラーワイヤFWをサブ送給装置29の入口へ案内するガイドチューブ37が設けられている。即ち、ガイドチューブ37に対し、フィラーワイヤFWの送給方向Fの上流側にワイヤ送給装置25が設けられ、送給方向Fの下流側にサブ送給装置29が設けられている。 Between the wire feeding device 25 and the sub feeding device 29, a guide tube 37 for guiding the filler wire FW fed (sent) from the outlet of the wire feeding device 25 to the entrance of the sub feeding device 29 is provided. Is provided. That is, the wire feeding device 25 is provided on the upstream side of the guide tube 37 in the feeding direction F of the filler wire FW, and the sub-feeding device 29 is provided on the downstream side of the feeding direction F.
 ワイヤ送給装置25のピンチローラ33と、サブ送給装置29のピンチローラ36とは、ワイヤ送給装置25におけるフィラーワイヤFWの送給速度と、サブ送給装置29におけるフィラーワイヤFWの送給速度とが互いに等しくなるように同期回転される。送給速度とは、単位時間当たりのフィラーワイヤFWの送給量[m/min]である。しかし、ワイヤ送給装置25とサブ送給装置29との間に送給速度の誤差が生じると、以下の現象によりガイドチューブ37が損傷する可能性がある。 The pinch roller 33 of the wire feeder 25 and the pinch roller 36 of the sub feeder 29 are used to feed the filler wire FW in the wire feeder 25 and feed the filler wire FW in the sub feeder 29. They are rotated synchronously so that their speeds are equal to each other. The feed rate is the feed rate [m / min] of the filler wire FW per unit time. However, if an error in the feeding speed occurs between the wire feeding device 25 and the sub feeding device 29, the guide tube 37 may be damaged due to the following phenomenon.
 即ち、ワイヤ送給装置25の送給速度がサブ送給装置29の送給速度よりも大きい場合には、送給速度の誤差が、ワイヤ送給装置25とサブ送給装置29との間にフィラーワイヤFWの余剰長さとして蓄積していく。ガイドチューブ37内に位置するフィラーワイヤFWの長さが過剰になると、フィラーワイヤFWがガイドチューブ37内で湾曲してこれを内側から押圧するようになり、ガイドチューブ37を損傷する可能性がある。 That is, when the feeding speed of the wire feeding device 25 is higher than the feeding speed of the sub feeding device 29, an error in the feeding speed causes a difference between the wire feeding device 25 and the sub feeding device 29. It accumulates as the surplus length of the filler wire FW. If the length of the filler wire FW located in the guide tube 37 is excessive, the filler wire FW is bent in the guide tube 37 and presses it from the inside, and the guide tube 37 may be damaged. .
 本実施形態では、ワイヤ送給装置25によるフィラーワイヤFWの送給速度がサブ送給装置29の送給速度よりも大きくなったことを検出して、ガイドチューブ37の損傷を防止する機構が設けられている。 In the present embodiment, a mechanism is provided that detects that the feed speed of the filler wire FW by the wire feed device 25 is higher than the feed speed of the sub feed device 29 and prevents the guide tube 37 from being damaged. Have been.
 即ち、ワイヤ送給装置25のケーシング31に、微動検出器39が設けられている。微動検出器39は、フィラーワイヤFWの送給方向Fへのガイドチューブ37の微動を検出する。「微動」とは、ワイヤ送給装置25に対するガイドチューブ37の相対的な位置または姿勢(角度など)が、図2に示す正規の位置及び姿勢から変位することを言う。微動検出器39には、図1に示すように制御装置41が接続されている。制御装置41は、ガイドチューブ37の微動を検出した際に、ワイヤ送給装置25の駆動状態(以下「駆動モード」とも言う)を「停止」に制御するか、或いは、予め設定した「低速駆動」に制御する。「停止」では、ワイヤ送給装置25の駆動を予め設定した所定時間だけ停止する。所定時間、即ち停止時間は、特に限定されないが、例えば0.1[sec]である。駆動の停止は、連続的な停止であっても断続的な停止であってもよい。また、「低速駆動」とは、次の条件Aを満たすようにワイヤ送給装置25を駆動することを言う。条件Aとは、ワイヤ送給装置25の送給速度が、サブ送給装置29の送給速度よりも小さく、かつ、「微動」が検出されないときのワイヤ送給装置25の送給速度よりも小さくなることである。制御装置41は、例えば、CPU(中央処理演算部)、記憶部、及び入出力部を備えた汎用のマイクロコンピュータから構成できる。 That is, the fine movement detector 39 is provided in the casing 31 of the wire feeding device 25. The fine movement detector 39 detects the fine movement of the guide tube 37 in the feeding direction F of the filler wire FW. “Slight movement” means that the relative position or posture (such as an angle) of the guide tube 37 with respect to the wire feeding device 25 is displaced from the normal position and posture shown in FIG. A control device 41 is connected to the fine movement detector 39 as shown in FIG. The control device 41 controls the driving state of the wire feeding device 25 (hereinafter, also referred to as “driving mode”) to “stop” when detecting the slight movement of the guide tube 37, or the “low speed driving” set in advance. Is controlled. In "stop", the drive of the wire feeding device 25 is stopped for a predetermined time set in advance. The predetermined time, that is, the stop time is not particularly limited, but is, for example, 0.1 [sec]. The drive stop may be a continuous stop or an intermittent stop. “Low-speed driving” refers to driving the wire feeding device 25 so as to satisfy the following condition A. Condition A is that the feeding speed of the wire feeding device 25 is lower than the feeding speed of the sub feeding device 29 and is lower than the feeding speed of the wire feeding device 25 when "slight movement" is not detected. It is to be smaller. The control device 41 can be composed of, for example, a general-purpose microcomputer including a CPU (Central Processing Unit), a storage unit, and an input / output unit.
 微動検出器39は、図2に示すように、ワイヤ送給装置25のケーシング31にボルト等の固定具45によって取付け自在な筒状のベース部材47を備えている。ベース部材47は、フランジ部47Fを備えており、フランジ部47Fには、複数のコイルスプリング等の弾性部材49によってベース部材47側へ付勢された筒状の可動部材51が設けられている。なお、弾性部材49は、ベース部材47に螺着したボルト49Bによって圧縮変形された状態で保持され、可動部材51をベース部材47側へ付勢している。 (2) As shown in FIG. 2, the fine movement detector 39 includes a cylindrical base member 47 which can be attached to the casing 31 of the wire feeder 25 by a fixing tool 45 such as a bolt. The base member 47 includes a flange portion 47F, and a cylindrical movable member 51 urged toward the base member 47 by an elastic member 49 such as a plurality of coil springs is provided on the flange portion 47F. The elastic member 49 is held in a compressed and deformed state by a bolt 49B screwed to the base member 47, and urges the movable member 51 toward the base member 47.
 可動部材51には、ガイドチューブ37の端部を可動部材51に接続するためのチューブ接続具53が設けられている。チューブ接続具53は、例えばコレットチャックと同様の構成を有し、可動部材51に螺着した筒状のコレット53Aを備えると共に、コレット53Aを締付自在なナットのごとき締付具53Bを備えている。 The movable member 51 is provided with a tube connector 53 for connecting the end of the guide tube 37 to the movable member 51. The tube connector 53 has, for example, a configuration similar to a collet chuck, includes a cylindrical collet 53A screwed to the movable member 51, and includes a fastener 53B such as a nut capable of tightening the collet 53A. I have.
 微動検出器39にガイドチューブ37を接続する際は、ガイドチューブ37の端部をチューブ接続具53に挿通すると共にベース部材47内に挿通する。そして、ガイドチューブ37の端面をピンチローラ33から送出されるフィラーワイヤFWに対応する位置に調整して、チューブ接続具53を締付けることにより、ガイドチューブ37を可動部材51に一体的に接続する。 接 続 When connecting the guide tube 37 to the fine motion detector 39, the end of the guide tube 37 is inserted into the tube connector 53 and into the base member 47. Then, the end face of the guide tube 37 is adjusted to a position corresponding to the filler wire FW sent out from the pinch roller 33, and the tube connector 53 is tightened, so that the guide tube 37 is integrally connected to the movable member 51.
 ワイヤ送給装置25が、ガイドチューブ37内へフィラーワイヤFWを送給(送出)すると、フィラーワイヤFWは、ガイドチューブ37の内周面に接触して、ガイドチューブ37をフィラーワイヤFWの送給方向Fに押圧する。従って、可動部材51は、ガイドチューブ37によって送給方向Fに移動させられる傾向にある。ここで、可動部材51を送給方向Fに移動させようとする力(スラスト)が、弾性部材49の付勢力よりも大きくなると、可動部材51は、ベース部材47から離れるように移動(変位)する。可動部材51には、可動部材51がベース部材47から離れるように変位したことを検出するためのセンサ55が設けられている。微動検出器39は、このような簡易な構成により微動を検出することができる。 When the wire feeding device 25 feeds (sends) the filler wire FW into the guide tube 37, the filler wire FW contacts the inner peripheral surface of the guide tube 37 and feeds the guide tube 37 to the filler wire FW. Press in direction F. Accordingly, the movable member 51 tends to be moved in the feeding direction F by the guide tube 37. Here, when the force (thrust) for moving the movable member 51 in the feeding direction F becomes larger than the urging force of the elastic member 49, the movable member 51 moves (displaces) away from the base member 47. I do. The movable member 51 is provided with a sensor 55 for detecting that the movable member 51 has been displaced away from the base member 47. The fine movement detector 39 can detect fine movement with such a simple configuration.
 センサ55は、例えばリミットスイッチ、近接センサなど適宜のセンサから構成できる。センサ55は、図3(A)及び(B)に示すように、可動部材51の周囲に周方向に等間隔に設けられてもよい。ところで、ロボットアーム7,9,13が動作することによって、ガイドチューブ37内へ送出されるフィラーワイヤFWが、ガイドチューブ37内で捩れたり湾曲したりすることがある。そして、この捩れ、湾曲等によってフィラーワイヤFWからガイドチューブ37の内周面に加わる力が、ガイドチューブ37の軸直交方向において釣り合わなくなり、可動部材51に曲げモーメントが加わることがある。この場合は、可動部材51がベース部材47に対して僅かに傾斜し得る。即ち、ベース部材47に対する可動部材51の姿勢(角度)が変位し得る。本実施形態では、可動部材51の周囲に複数のセンサ55を備えているので、可動部材51の周方向の一部分がベース部材47から離間するように傾斜したこと(変位)を、少なくともいずれか1個のセンサ55により検知(検出)することができる。即ち、傾斜方向に関わりなく、可動部材51の傾斜を検出することができる。 The sensor 55 can be composed of an appropriate sensor such as a limit switch or a proximity sensor. As shown in FIGS. 3A and 3B, the sensors 55 may be provided around the movable member 51 at equal intervals in the circumferential direction. By the way, when the robot arms 7, 9, and 13 operate, the filler wire FW delivered into the guide tube 37 may be twisted or bent in the guide tube 37. Then, the force applied from the filler wire FW to the inner peripheral surface of the guide tube 37 due to the torsion, bending, or the like may not be balanced in the direction orthogonal to the axis of the guide tube 37, and a bending moment may be applied to the movable member 51. In this case, the movable member 51 may be slightly inclined with respect to the base member 47. That is, the attitude (angle) of the movable member 51 with respect to the base member 47 can be changed. In the present embodiment, since the plurality of sensors 55 are provided around the movable member 51, at least one of the inclination (displacement) in which a part of the movable member 51 in the circumferential direction is separated from the base member 47 is determined. It can be detected (detected) by the sensors 55. That is, the inclination of the movable member 51 can be detected regardless of the inclination direction.
 なお、センサ55は、ベース部材47側及び可動部材51側のいずれか一方または両方に備えてもよい。 The sensor 55 may be provided on one or both of the base member 47 and the movable member 51.
 ワイヤ送給装置25及びサブ送給装置29によるフィラーワイヤFWの送給速度が略等しい場合には、図4(A)に示すように、ガイドチューブ37内のフィラーワイヤFWの長さは、適正な長さに保持される。しかしながら、ワイヤ送給装置25による送給速度がサブ送給装置29の送給速度よりも大きい場合には、ガイドチューブ37内のフィラーワイヤFWの長さは、次第にガイドチューブ37の長さよりも長くなる。 When the feeding speed of the filler wire FW by the wire feeding device 25 and the sub feeding device 29 is substantially equal, as shown in FIG. 4A, the length of the filler wire FW in the guide tube 37 is not appropriate. Is maintained at a suitable length. However, when the feeding speed of the wire feeding device 25 is higher than the feeding speed of the sub feeding device 29, the length of the filler wire FW in the guide tube 37 gradually becomes longer than the length of the guide tube 37. Become.
 やがて、ガイドチューブ37内のフィラーワイヤFWは、図4(B)に示すように、サブ送給装置29とワイヤ送給装置25との間で湾曲して、ガイドチューブ37の内面に接触することになる。さらに湾曲が大きくなると、フィラーワイヤFWは、その送給方向Fにガイドチューブ37を押圧するようになる。押圧力(スラスト)が弾性部材49の付勢力よりも大きくなると、図4(C)に誇張して示すように、可動部材51は送給方向Fへ移動させられる。即ち、可動部材51は、ケーシング31に固定したベース部材47から僅かに離隔される。 Eventually, as shown in FIG. 4B, the filler wire FW in the guide tube 37 curves between the sub-feeding device 29 and the wire feeding device 25 to contact the inner surface of the guide tube 37. become. When the curvature is further increased, the filler wire FW presses the guide tube 37 in the feeding direction F. When the pressing force (thrust) becomes larger than the urging force of the elastic member 49, the movable member 51 is moved in the feeding direction F as shown in an exaggerated manner in FIG. That is, the movable member 51 is slightly separated from the base member 47 fixed to the casing 31.
 可動部材51がベース部材47から離隔すると、例えば複数のセンサ55の全てがON作動して、離隔を検知(検出)する。なお、ロボットアーム7,9,13の位置、姿勢によっては、可動部材51の周方向の一部分がベース部材47から離れるように、可動部材51がベース部材47に対して傾斜することがある。この場合でも、可動部材51の周囲に設けられた複数のセンサ55のうち少なくとも1個がON作動する。 When the movable member 51 is separated from the base member 47, for example, all of the plurality of sensors 55 are turned on to detect (detect) the separation. Note that the movable member 51 may be inclined with respect to the base member 47 such that a part of the movable member 51 in the circumferential direction is separated from the base member 47 depending on the positions and postures of the robot arms 7, 9, and 13. Also in this case, at least one of the plurality of sensors 55 provided around the movable member 51 is turned on.
 センサ55がON作動して可動部材51の変位が検出されると、センサ55の検出信号は、制御装置41に入力される。検出信号が制御装置41に入力されると、制御装置41は、図5に示すように、ステップS1においてワイヤ送給装置25の駆動を停止するか、或いは、ワイヤ送給装置25の駆動状態を、予め設定された低速駆動に制御する。 When the sensor 55 is turned on to detect the displacement of the movable member 51, the detection signal of the sensor 55 is input to the control device 41. When the detection signal is input to the control device 41, the control device 41 stops driving the wire feeding device 25 in step S1 or changes the driving state of the wire feeding device 25 in step S1, as shown in FIG. Is controlled to a preset low-speed drive.
 この際、サブ送給装置29の駆動は停止することなく、フィラーワイヤFWの送給を継続して行う。従って、ガイドチューブ37内のフィラーワイヤFWは、サブ送給装置29によって下流側から引っ張られる。これにより、図4(D)に示すように、フィラーワイヤFWの湾曲及びガイドチューブ37への接触が解消され、これらに起因するガイドチューブ37に対する送給方向Fへの押圧が解消される。このため、ガイドチューブ37は、ワイヤ送給装置25に対して元の状態、即ち「微動」が検出されない正規の位置及び姿勢に戻り、センサ55がOFF作動する。弾性部材49は、このガイドチューブ37の正規の位置及び姿勢への戻りを補助する。 At this time, the driving of the sub-feeding device 29 is not stopped, and the feeding of the filler wire FW is continuously performed. Therefore, the filler wire FW in the guide tube 37 is pulled from the downstream side by the sub-feeding device 29. Thereby, as shown in FIG. 4D, the bending of the filler wire FW and the contact with the guide tube 37 are eliminated, and the pressing of the guide tube 37 in the feeding direction F due to these is eliminated. For this reason, the guide tube 37 returns to the original state with respect to the wire feeding device 25, that is, the normal position and posture in which “fine movement” is not detected, and the sensor 55 is turned off. The elastic member 49 assists the guide tube 37 to return to the normal position and posture.
 そして、制御装置41は、ステップS2において、検出信号がOFFになったか否かの判定を行う。ステップS2においてYESの場合には、制御装置41は、ステップS3に移行して、ワイヤ送給装置25の駆動状態を「元の駆動状態」に復帰させる。「元の駆動状態」とは、「微動」が検出されないときの駆動状態或いは駆動モードであり、例えば、ワイヤ送給装置25の送給速度とサブ送給装置29の送給速度とが等しくなるような駆動モードである。そして、制御装置41は、ワイヤ送給装置25の駆動状態を元の駆動状態に復帰させた後、処理を終了する。ステップS2においてNOの場合には、制御装置41は、ステップS4において、ステップS1の処理開始後に予め設定した所定時間が経過したか否かの判定を行う。ステップS4においてNOの場合には、処理はステップS2に戻る。ステップS4においてYESの場合には、制御装置41は、ステップS5において、異常状態が発生したことを作業者に報知し、処理を終了させる。そして、再びセンサ55から微動の検出信号が入力されると、制御装置41は、ステップS1から処理を再開する。これにより、制御装置41は、微動を検出した際にワイヤ送給装置25の駆動状態を停止または低速駆動に制御することと、ガイドチューブ37の戻りを検知した際にワイヤ送給装置25の駆動状態を元の駆動状態に復帰することとを交互に繰り返すことができる。 (4) Then, in step S2, the control device 41 determines whether or not the detection signal has been turned off. In the case of YES in step S2, the control device 41 proceeds to step S3, and returns the drive state of the wire feeding device 25 to the “original drive state”. The “original driving state” is a driving state or a driving mode when “fine movement” is not detected. For example, the feeding speed of the wire feeding device 25 and the feeding speed of the sub feeding device 29 become equal. It is such a drive mode. Then, after returning the drive state of the wire feeding device 25 to the original drive state, the control device 41 ends the process. In the case of NO in step S2, the control device 41 determines in step S4 whether a predetermined time set in advance after the start of the processing in step S1. If NO in step S4, the process returns to step S2. In the case of YES in step S4, the control device 41 notifies the operator of the occurrence of the abnormal state in step S5, and ends the process. Then, when the fine movement detection signal is input again from the sensor 55, the control device 41 restarts the process from step S1. Thereby, the control device 41 controls the driving state of the wire feeding device 25 to be stopped or low-speed driving when detecting fine movement, and drives the wire feeding device 25 when detecting return of the guide tube 37. Returning the state to the original driving state can be alternately repeated.
 上述の通り、溶接ロボット1の制御装置41は、上記微動が検出されている間は、サブ送給装置29によるフィラーワイヤFWの送給を継続しつつ、ワイヤ送給装置25の駆動を停止するか、或いは駆動状態を低速駆動に制御する。そして、当該微動が検出されなくなったとき、ワイヤ送給装置25の駆動状態を元の駆動状態に復帰させる。 As described above, the control device 41 of the welding robot 1 stops driving the wire feeding device 25 while continuing the feeding of the filler wire FW by the sub feeding device 29 while the fine movement is detected. Alternatively, the driving state is controlled to low-speed driving. Then, when the fine movement is no longer detected, the driving state of the wire feeding device 25 is returned to the original driving state.
 なお、上記微動が検出されてから次に検出されなくなるまでの間、即ち、ワイヤ送給装置25の駆動状態が停止或いは低速駆動に制御されている間のワイヤ送給装置25及びサブ送給装置29の各々の送給速度は、上記条件Aを満たす限り特に限定されない。また、サブ送給装置29は、ワイヤ送給装置25の駆動停止または低速駆動に関わりなく、予め設定された所定の送給速度でもってフィラーワイヤFWの送給を継続して行ってもよい。これにより、微動が生じた場合でも、フィラーワイヤFWを溶接位置に連続的に送給して、溶接を継続することができる。 It should be noted that the wire feeder 25 and the sub feeder 25 are controlled from the time when the fine movement is detected until the time when it is no longer detected, that is, while the driving state of the wire feeder 25 is stopped or controlled to the low speed drive. The feeding speed of each of the 29 is not particularly limited as long as the above condition A is satisfied. Further, the sub-feeding device 29 may continue to feed the filler wire FW at a preset predetermined feeding speed regardless of whether the driving of the wire feeding device 25 is stopped or driven at a low speed. Thereby, even when fine movement occurs, the filler wire FW can be continuously fed to the welding position and welding can be continued.
 また、低速駆動におけるワイヤ送給装置25の送給速度は、元の駆動状態における送給速度に予め設定した減速比率を乗じた送給速度に設定してもよい。ここで、元の駆動状態における送給速度は、ワークWに対するレーザ加工ヘッド11の移動速度、即ち、溶接速度[mm/min]に応じて定められており、溶接速度は、母材の板厚、材質、溶接継手形状などの溶接加工条件に応じて定められている。 The feeding speed of the wire feeding device 25 in low-speed driving may be set to a feeding speed obtained by multiplying the feeding speed in the original driving state by a preset reduction ratio. Here, the feed speed in the original driving state is determined according to the moving speed of the laser processing head 11 with respect to the workpiece W, that is, the welding speed [mm / min]. It is determined according to welding processing conditions such as the material, material, and shape of the weld joint.
 減速比率は、フィラーワイヤFWの材質、直径等のフィラー情報に応じて設定することができる。例えば、減速比率は、フィラーワイヤFWの材質がアルミニウムであり、直径が0.2[mm]である場合は、80[%]に設定できる。また、フィラーワイヤFWの材質がステンレス鋼(SUS)であり、直径が0.3[mm]である場合は、50[%]に設定できる。制御装置41は、フィラー情報から減速比率を演算により求めてもよいし、マップから求めてもよい。 The deceleration ratio can be set according to filler information such as the material and diameter of the filler wire FW. For example, when the material of the filler wire FW is aluminum and the diameter is 0.2 [mm], the speed reduction ratio can be set to 80 [%]. When the material of the filler wire FW is stainless steel (SUS) and the diameter is 0.3 [mm], it can be set to 50 [%]. The control device 41 may obtain the deceleration ratio from the filler information by calculation or from a map.
 元の駆動状態における送給速度に減速比率を乗じたものを低速駆動における送給速度とすることで、低速駆動における送給速度を元の駆動状態の溶接速度に適合した送給速度とすることができる。また、上記のように減速比率を少なくともフィラーワイヤFWの材質及び直径に基づいて設定することで、より溶接加工条件に適した減速を行うことができる。なお、設定された減速比率は、作業者が適宜設定変更可能にするとよい。これにより、溶接加工条件や溶接速度に変更が生じた場合でも、作業者が変更後の条件に適したフィラーワイヤFWの送給速度を適時に設定することができる。 By making the feed speed in the original drive state multiplied by the deceleration ratio the feed rate in the low-speed drive, the feed rate in the low-speed drive should be a feed rate that matches the welding speed in the original drive state. Can be. Further, by setting the deceleration ratio at least based on the material and diameter of the filler wire FW as described above, it is possible to perform deceleration more suitable for welding processing conditions. The set deceleration ratio may be set and changed by an operator as appropriate. Thus, even when the welding processing conditions and the welding speed are changed, the operator can set the feed speed of the filler wire FW suitable for the changed conditions in a timely manner.
 また、溶接ロボット1の制御装置41は、サブ送給装置29によるフィラーワイヤFWの送給を継続して行っている際に、ワイヤ送給装置25の駆動状態を停止或いは低速駆動へ制御することと、元の駆動状態に復帰させることとを交互に繰り返してもよい。交互に繰り返すことで、ワイヤ送給装置25とサブ送給装置29との間に送給速度の誤差が存在する場合でも、溶接位置へのフィラーワイヤFWの供給を連続的に継続することができる。なお、制御装置41は、ワイヤ送給装置25の駆動を停止した後に続けて低速駆動に制御してもよいし、低速駆動に制御した後に続けて停止に制御してもよい。即ち、制御装置41は、ワイヤ送給装置25の駆動状態を停止に制御することと、低速駆動に制御することとを交互に繰り返してもよい。これにより、ガイドチューブ37内のフィラーワイヤFWに付与される引張り力の大きさを時間的に変化させることで、フィラーワイヤFWのガイドチューブ37への接触、押圧等をより効率的に解消することができる。 Further, the control device 41 of the welding robot 1 controls the driving state of the wire feeding device 25 to stop or to control the driving speed to low speed when the feeding of the filler wire FW by the sub feeding device 29 is continuously performed. And returning to the original driving state may be alternately repeated. By alternately repeating, even when there is an error in the feeding speed between the wire feeding device 25 and the sub feeding device 29, the feeding of the filler wire FW to the welding position can be continuously continued. . Note that the control device 41 may control the low-speed driving continuously after stopping the driving of the wire feeding device 25, or may control the low-speed driving continuously after stopping the driving of the wire feeding device 25. That is, the control device 41 may alternately repeat the control of the drive state of the wire feeding device 25 to stop and the control of low-speed drive. Thereby, by changing the magnitude of the tensile force applied to the filler wire FW in the guide tube 37 with time, the contact, pressing, etc. of the filler wire FW with the guide tube 37 can be more efficiently eliminated. Can be.
 上記の通り、本実施形態では、ワイヤ送給装置25がフィラーワイヤFWの送給を行っている際に、フィラーワイヤFWが、ガイドチューブ37の内周面に接触してこれを送給方向Fに押進すると、微動検出器39がガイドチューブ37の微動を検出する。そして、ガイドチューブ37の微動が検出されると、ワイヤ送給装置25の駆動を停止するか、或いは、ワイヤ送給装置25の駆動状態を低速駆動に制御する。この際、ガイドノズル27側に設けられたサブ送給装置29が継続して動作することで、フィラーワイヤFWは下流側から引っ張られ、ガイドチューブ37の内周面への接触が解消され、押進も解消される。 As described above, in the present embodiment, when the wire feeding device 25 feeds the filler wire FW, the filler wire FW comes into contact with the inner peripheral surface of the guide tube 37 and moves the guide tube 37 in the feeding direction F. , The fine movement detector 39 detects the fine movement of the guide tube 37. Then, when the fine movement of the guide tube 37 is detected, the driving of the wire feeding device 25 is stopped, or the driving state of the wire feeding device 25 is controlled to low speed driving. At this time, by continuously operating the sub-feeding device 29 provided on the guide nozzle 27 side, the filler wire FW is pulled from the downstream side, the contact with the inner peripheral surface of the guide tube 37 is eliminated, and the pushing is performed. Progress is also canceled.
 従って、フィラーワイヤFWがガイドチューブ37の内周面に接触して押進することに起因するガイドチューブ37の損傷が防止される。具体的には、例えば、ガイドチューブ37のライナーチューブの内周面にフィラーワイヤFWが接触することで、送給方向Fにライナーチューブが移動して、下巻線とライナーチューブとの間にずれが生じること等を防止することができる。これにより、フィラーワイヤFWの送給が過剰になり、ライナーチューブが大きく移動して、ガイドチューブ37に損傷が生じること、を防止することができる。本実施形態によれば、溶接ロボットによる溶接を長時間継続して良好に行い得るものである。 Therefore, damage to the guide tube 37 due to the filler wire FW coming into contact with and pushing the inner peripheral surface of the guide tube 37 is prevented. Specifically, for example, when the filler wire FW comes into contact with the inner peripheral surface of the liner tube of the guide tube 37, the liner tube moves in the feeding direction F, and the gap between the lower winding and the liner tube is reduced. Can be prevented. Accordingly, it is possible to prevent the supply of the filler wire FW from being excessive and the liner tube from being largely moved, and the guide tube 37 from being damaged. According to the present embodiment, the welding by the welding robot can be performed satisfactorily for a long time.
 微動検出器39は、上記の通り、ワイヤ送給装置25に設けられてもよい。ガイドチューブ37に対してフィラーワイヤFWの送給方向Fに作用するスラストは、下流側よりも上流側で大きくなる傾向にある。微動検出器39は、ガイドチューブ37の上流側に位置するワイヤ送給装置25に設けられているので、より効率的に微動を検出することができる。 The fine movement detector 39 may be provided in the wire feeding device 25 as described above. The thrust acting on the guide tube 37 in the feed direction F of the filler wire FW tends to be larger on the upstream side than on the downstream side. Since the fine movement detector 39 is provided in the wire feeding device 25 located on the upstream side of the guide tube 37, fine movement can be detected more efficiently.
 なお、本実施形態では、センサ55を可動部材51の周囲に複数備えている。従って、複数のセンサ55のうち少なくとも1個が送給方向Fへの変位を検出した際はワイヤ送給装置25の駆動状態を低速駆動にし、複数のセンサ55の全てが送給方向Fへの変位を検出した際は駆動を停止することが可能である。このように、検出された変位の形態または大きさに応じてワイヤ送給装置25の駆動モードを変更することで、フィラーワイヤFWのガイドチューブ37への接触、押圧等をより効率的に解消することができる。なお、変位を検出したセンサ55の個数とワイヤ送給装置25の駆動モードとの関係は、上記に限らない。即ち、所定個数(例えば1個)のセンサ55が変位を検出した際にワイヤ送給装置25の駆動状態を低速駆動にし、当該所定個数よりも多い個数(例えば2個)のセンサ55が変位を検出した際にワイヤ送給装置25の駆動を停止するようにしてもよい。 In the present embodiment, a plurality of sensors 55 are provided around the movable member 51. Therefore, when at least one of the plurality of sensors 55 detects displacement in the feeding direction F, the driving state of the wire feeding device 25 is set to low-speed driving, and all of the plurality of sensors 55 move in the feeding direction F. When the displacement is detected, the driving can be stopped. As described above, by changing the drive mode of the wire feeding device 25 according to the detected form or magnitude of the displacement, the contact, pressing, and the like of the filler wire FW against the guide tube 37 are more efficiently eliminated. be able to. Note that the relationship between the number of sensors 55 that have detected the displacement and the drive mode of the wire feeding device 25 is not limited to the above. That is, when the predetermined number (for example, one) of the sensors 55 detects the displacement, the driving state of the wire feeding device 25 is set to the low-speed driving, and the number of the sensors 55 (for example, two) larger than the predetermined number is changed. The drive of the wire feeding device 25 may be stopped when it is detected.
 ガイドチューブ37の強度向上を図るために、ガイドチューブ37の下巻線を太くすることも考えられるが、この場合、ガイドチューブ37の重量が増大し、柔軟性も低下する恐れがある。そこで、図6に示すように、ガイドチューブ37を例えばナイロンチューブ等の樹脂製チューブ61に挿通し、ガイドチューブ37の両端部に一体的に設けられた銅パイプ57の外周面と、チューブ61の両端部の内周面とを接着剤59で一体的に接着してもよい。 In order to improve the strength of the guide tube 37, it is conceivable to increase the thickness of the lower winding of the guide tube 37. However, in this case, the weight of the guide tube 37 may increase, and the flexibility may decrease. Therefore, as shown in FIG. 6, the guide tube 37 is inserted into a resin tube 61 such as a nylon tube, and the outer peripheral surface of the copper pipe 57 provided integrally at both ends of the guide tube 37 and the outer surface of the tube 61. The inner peripheral surfaces at both ends may be integrally bonded with the adhesive 59.
 図6の構成によれば、ガイドチューブ37に掛かる負荷をチューブ61とガイドチューブ37とで分担することができるので、ガイドチューブ37の引張強度の向上を図ることができる。従って、ワイヤ送給装置25の送給速度がサブ送給装置29の送給速度よりも大きいことに起因するガイドチューブ37の損傷を抑制することができる。 According to the configuration of FIG. 6, the load applied to the guide tube 37 can be shared between the tube 61 and the guide tube 37, so that the tensile strength of the guide tube 37 can be improved. Therefore, damage to the guide tube 37 due to the feeding speed of the wire feeding device 25 being higher than the feeding speed of the sub feeding device 29 can be suppressed.
 以上、いくつかの実施形態について説明したが、各実施形態は、本開示の理解を容易にするために記載された単なる例示に過ぎない。本開示の技術的範囲は、上記実施形態で開示した具体的な技術事項に限らず、そこから容易に導きうる様々な変形、変更、代替技術なども含むものである。  Although several embodiments have been described above, each embodiment is merely an example described in order to facilitate understanding of the present disclosure. The technical scope of the present disclosure is not limited to the specific technical matters disclosed in the above embodiments, but also includes various modifications, changes, and alternative technologies that can be easily derived therefrom.
 本出願は、2018年8月2日に出願された日本国特許願第2018-145965号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2018-145965 filed on August 2, 2018, the entire contents of which are incorporated herein by reference.
 1 溶接ロボット
 25 ワイヤ送給装置
 27 ガイドノズル
 29 サブ送給装置
 37 ガイドチューブ
 39 微動検出器
 41 制御装置
 47 ベース部材
 49 弾性部材
 51 可動部材
 53 チューブ接続具
 55 センサ
 F  送給方向
 FW フィラーワイヤ
 
1 Welding Robot 25 Wire Feeding Device 27 Guide Nozzle 29 Sub Feeding Device 37 Guide Tube 39 Fine Motion Detector 41 Controller 47 Base Member 49 Elastic Member 51 Movable Member 53 Tube Connector 55 Sensor F Feeding Direction FW Filler Wire

Claims (10)

  1.  フィラーワイヤの送給を行うワイヤ送給装置と、
     前記フィラーワイヤを溶接位置へ案内するガイドノズルの近傍に設けられ、前記フィラーワイヤの送給を行うサブ送給装置と、
     前記ワイヤ送給装置と前記サブ送給装置との間に設けられ、前記フィラーワイヤを案内するガイドチューブと、
    を備えた溶接ロボットにおける溶接方法であって、
     前記フィラーワイヤの送給方向への前記ガイドチューブの微動を検知した際に、前記ワイヤ送給装置の駆動状態を停止または低速駆動に制御する工程と、
     前記ガイドチューブの戻りを検知した際に、前記ワイヤ送給装置の駆動状態を元の駆動状態に復帰させる工程と、
    を前記サブ送給装置による前記フィラーワイヤの送給を継続して行っている間に行う、溶接方法。
    A wire feeding device for feeding a filler wire,
    A sub-feeding device that is provided near a guide nozzle that guides the filler wire to a welding position and that feeds the filler wire,
    A guide tube provided between the wire feeding device and the sub feeding device, for guiding the filler wire,
    A welding method in a welding robot equipped with
    When detecting the fine movement of the guide tube in the feeding direction of the filler wire, a step of controlling the driving state of the wire feeding device to stop or low-speed driving,
    When detecting the return of the guide tube, a step of returning the driving state of the wire feeding device to the original driving state,
    During the continuous feeding of the filler wire by the sub-feeding device.
  2.  前記ワイヤ送給装置の駆動状態が前記停止であるか前記低速駆動であるかに関わりなく、前記サブ送給装置は、予め設定された所定の送給速度でもって前記フィラーワイヤの送給を継続して行う、請求項1に記載の溶接方法。 Regardless of whether the driving state of the wire feeding device is the stop or the low-speed driving, the sub feeding device continues to feed the filler wire at a predetermined feeding speed set in advance. The welding method according to claim 1, wherein the welding is performed.
  3.  フィラーワイヤの送給を行うワイヤ送給装置と、
     前記フィラーワイヤを溶接位置へ案内するガイドノズルの近傍に設けられ、前記フィラーワイヤの送給を行うサブ送給装置と、
     前記ワイヤ送給装置と前記サブ送給装置との間に設けられ、前記フィラーワイヤを案内するガイドチューブと、
     前記フィラーワイヤの送給方向への前記ガイドチューブの微動と、前記ガイドチューブの戻りとを検出する微動検出器と、
     前記微動検出器によって前記微動を検出した際に、前記ワイヤ送給装置の駆動状態を停止または低速駆動に制御し、前記微動検出器によって前記ガイドチューブの戻りを検知した際に、前記ワイヤ送給装置の駆動状態を元の駆動状態に復帰させる制御装置と、
    を備えた溶接ロボット。
    A wire feeding device for feeding a filler wire,
    A sub-feeding device that is provided near a guide nozzle that guides the filler wire to a welding position and that feeds the filler wire,
    A guide tube provided between the wire feeding device and the sub feeding device, for guiding the filler wire,
    Fine movement of the guide tube in the feed direction of the filler wire, and a fine movement detector that detects the return of the guide tube,
    When the fine movement is detected by the fine movement detector, the driving state of the wire feeding device is controlled to be stopped or low-speed driving, and when the return of the guide tube is detected by the fine movement detector, the wire feeding is controlled. A control device for returning the drive state of the device to the original drive state,
    Welding robot with.
  4.  前記微動検出器が前記ワイヤ送給装置に設けられた、請求項3に記載の溶接ロボット。 The welding robot according to claim 3, wherein the fine movement detector is provided in the wire feeding device.
  5.  前記微動検出器が、
     前記ワイヤ送給装置のケーシングに取付け自在なベース部材と、
     複数の弾性部材によって前記ベース部材側へ付勢された可動部材と、
     前記可動部材に前記ガイドチューブを接続固定するチューブ接続具と、
     前記ベース部材に対する前記可動部材の変位を検出するセンサと、
    を備えた、請求項3または4に記載の溶接ロボット。
    The fine movement detector,
    A base member attachable to a casing of the wire feeding device,
    A movable member biased toward the base member by a plurality of elastic members,
    A tube connector for connecting and fixing the guide tube to the movable member,
    A sensor for detecting displacement of the movable member with respect to the base member,
    The welding robot according to claim 3, further comprising:
  6.  前記センサが前記可動部材の周囲に複数設けられた、請求項5に記載の溶接ロボット。 The welding robot according to claim 5, wherein a plurality of the sensors are provided around the movable member.
  7.  前記制御装置は、所定個数の前記センサが前記変位を検出した際は、前記ワイヤ送給装置の駆動状態を前記低速駆動にし、前記所定個数よりも多い個数の前記センサが前記変位を検出した際は、前記ワイヤ送給装置の駆動を停止する、請求項5または6に記載の溶接ロボット。 When the predetermined number of the sensors detect the displacement, the control device sets the drive state of the wire feeding device to the low-speed drive, and when the number of the sensors greater than the predetermined number detects the displacement, The welding robot according to claim 5, wherein driving of the wire feeding device is stopped.
  8.  前記制御装置は、前記ワイヤ送給装置の駆動状態が前記停止であるか前記低速駆動であるかに関わりなく、前記サブ送給装置は、予め設定された所定の送給速度でもって前記フィラーワイヤの送給を継続して行う、請求項3~7のいずれか一項に記載の溶接ロボット。 Regardless of whether the driving state of the wire feeding device is the stop or the low-speed driving, the control device sets the filler wire at a predetermined feeding speed set in advance. The welding robot according to any one of claims 3 to 7, wherein the welding robot is continuously supplied.
  9.  前記制御装置は、前記元の駆動状態における前記フィラーワイヤの送給速度に予め定められた減速比率を乗じた送給速度を前記低速駆動における前記フィラーワイヤの送給速度とする、請求項3~8のいずれか一項に記載の溶接ロボット。 4. The control device according to claim 3, wherein the control device sets a feed speed obtained by multiplying a feed speed of the filler wire in the original drive state by a predetermined reduction ratio as a feed speed of the filler wire in the low-speed drive. 8. The welding robot according to claim 8.
  10.  前記減速比率は、少なくとも前記フィラーワイヤの材質及び直径に基づいて定められる、請求項9に記載の溶接ロボット。
     
    The welding robot according to claim 9, wherein the speed reduction ratio is determined based on at least a material and a diameter of the filler wire.
PCT/JP2019/027517 2018-08-02 2019-07-11 Welding method by welding robot, and welding robot WO2020026750A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019554706A JP6727456B2 (en) 2018-08-02 2019-07-11 Welding method in welding robot and welding robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-145965 2018-08-02
JP2018145965 2018-08-02

Publications (1)

Publication Number Publication Date
WO2020026750A1 true WO2020026750A1 (en) 2020-02-06

Family

ID=69231765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/027517 WO2020026750A1 (en) 2018-08-02 2019-07-11 Welding method by welding robot, and welding robot

Country Status (2)

Country Link
JP (1) JP6727456B2 (en)
WO (1) WO2020026750A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112176A (en) * 1979-02-19 1980-08-29 Osaka Denki Kk Method and device for controlling wire feeding
JPH07246470A (en) * 1994-03-11 1995-09-26 Babcock Hitachi Kk Wire feeder for welding
JP5411542B2 (en) * 2008-10-27 2014-02-12 和仁 鬼頭 Welding equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55112176A (en) * 1979-02-19 1980-08-29 Osaka Denki Kk Method and device for controlling wire feeding
JPH07246470A (en) * 1994-03-11 1995-09-26 Babcock Hitachi Kk Wire feeder for welding
JP5411542B2 (en) * 2008-10-27 2014-02-12 和仁 鬼頭 Welding equipment

Also Published As

Publication number Publication date
JPWO2020026750A1 (en) 2020-08-06
JP6727456B2 (en) 2020-07-22

Similar Documents

Publication Publication Date Title
TWI466737B (en) An apparatus for controlling the drive of a pay-off
TWI526388B (en) Traverse control method and device thereof
US10576521B2 (en) Roll feeder and coilded material conveyance method
CN205662113U (en) Permanent tension intelligence is rectified and is receive and release a roll system
JP6645854B2 (en) Wire buffer forming device and wire feeding device
JP2008302378A (en) Plastic working method and plastic working system
WO2020026750A1 (en) Welding method by welding robot, and welding robot
JP2006326679A (en) Robot welding controller
TWI728807B (en) Wire electric discharge machining method and wire electric discharge machine
WO2016113994A1 (en) Tension control device and conveying device
GB2120692A (en) Improvements relating to wire supplying
JPS6283984A (en) Continuous long-sized member shifter
JP4562099B2 (en) Grab allowance forming adhesive tape cutting device
CN1300242A (en) Rotary looper
WO2020166608A1 (en) Sheet feeding device and sheet feeding method
JP7080979B2 (en) Sheet supply device and sheet supply method
JP4995514B2 (en) Wire feeder
JPH08310728A (en) Tape accumulating device
JP5083341B2 (en) Film transport device
JPH1160003A (en) Take-up device
WO2017077692A1 (en) Arc welding method
JP7075422B2 (en) Sheet supply method and sheet supply device
US9601273B2 (en) Winding device and winding method
JP2003200265A (en) Torch for arc welding
JPH0329511B2 (en)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019554706

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19845517

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19845517

Country of ref document: EP

Kind code of ref document: A1