WO2020026671A1 - Heat treatment apparatus - Google Patents

Heat treatment apparatus Download PDF

Info

Publication number
WO2020026671A1
WO2020026671A1 PCT/JP2019/026045 JP2019026045W WO2020026671A1 WO 2020026671 A1 WO2020026671 A1 WO 2020026671A1 JP 2019026045 W JP2019026045 W JP 2019026045W WO 2020026671 A1 WO2020026671 A1 WO 2020026671A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
semiconductor wafer
chamber
treatment apparatus
trap
Prior art date
Application number
PCT/JP2019/026045
Other languages
French (fr)
Japanese (ja)
Inventor
和彦 布施
森 和也
郁 松尾
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2020026671A1 publication Critical patent/WO2020026671A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D8/00Cold traps; Cold baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Definitions

  • the present invention relates to a heat treatment apparatus for heating a thin precision electronic substrate (hereinafter simply referred to as a “substrate”) such as a semiconductor wafer by light irradiation or the like.
  • a substrate such as a semiconductor wafer by light irradiation or the like.
  • Flash lamp annealing uses a xenon flash lamp (hereinafter, simply referred to as a xenon flash lamp when simply referred to as a "flash lamp”) to irradiate the surface of the semiconductor wafer with flash light, thereby extremely exposing only the surface of the semiconductor wafer.
  • a xenon flash lamp hereinafter, simply referred to as a xenon flash lamp when simply referred to as a "flash lamp”
  • the xenon flash lamp has an emission spectral distribution from the ultraviolet to the near infrared, which has a shorter wavelength than that of a conventional halogen lamp, and substantially matches the basic absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. In addition, it has been found that when the flash light is irradiated for a very short time of several milliseconds or less, only the vicinity of the surface of the semiconductor wafer can be selectively heated.
  • Such flash lamp annealing is used for a process requiring heating for an extremely short time, for example, activation of impurities typically implanted into a semiconductor wafer.
  • the surface of the semiconductor wafer By irradiating the surface of the semiconductor wafer into which impurities are implanted by the ion implantation method with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for a very short time, and the impurities can be diffused deeply. Only the impurity activation can be performed without causing the impurity activation.
  • Patent Document 1 discloses that a semiconductor thin film of gallium arsenide containing tin, germanium, lead, or the like is subjected to flash lamp annealing to obtain a semiconductor thin film with high carrier mobility and high quality. ing.
  • a scrubber and an exclusion device are connected to factory exhaust as a measure to prevent harmful substances such as arsenic from being released into the atmosphere.
  • incorporating such a scrubber or exclusion device into a flash lamp annealing device is not realistic from the viewpoint of cost performance and footprint.
  • the present invention has been made in view of the above problems, and has as its object to provide a heat treatment apparatus capable of preventing harmful substances from being discharged to the outside with a simple configuration.
  • a first aspect of the present invention is directed to a heat treatment apparatus for heating a substrate, wherein a chamber for housing the substrate, a heating source for heating the substrate housed in the chamber, An exhaust path for exhausting the atmosphere, and a trap section provided in the exhaust path and capturing a substance contained in the atmosphere. And a cooling unit for cooling the cooling unit.
  • the trap unit further includes a trap plate with which the airflow cooled by the cooling unit collides, inside the housing.
  • the trap unit includes a storage unit that stores a collection substrate to which the substance deposited by cooling the airflow is attached. It is further provided inside the housing.
  • the heating source includes a lamp for irradiating the substrate with light to heat the substrate.
  • the substance is arsenic.
  • the trap section provided in the exhaust path is included in the atmosphere because the cooling section that cools the airflow passing through the casing is provided inside the casing.
  • the harmful substance can be prevented from being discharged outside by a simple configuration.
  • the trap unit since the trap unit includes the trap plate against which the airflow cooled by the cooling unit collides, it is possible to capture harmful substances more reliably.
  • the trap section since the trap section includes the storage section that stores the collection substrate to which the substance deposited by cooling the airflow is attached, the trap section is analyzed. By doing so, the capture of harmful substances can be confirmed.
  • FIG. 1 is a longitudinal sectional view showing the configuration of the heat treatment apparatus 1 according to the present invention.
  • the heat treatment apparatus 1 of FIG. 1 is a flash lamp annealing apparatus that heats a semiconductor wafer W having a disk shape as a substrate by irradiating the semiconductor wafer W with flash light.
  • the size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, ⁇ 300 mm or ⁇ 450 mm ( ⁇ 300 mm in the present embodiment).
  • a semiconductor thin film of gallium arsenide is formed on the semiconductor wafer W before being loaded into the heat treatment apparatus 1, and the heat treatment performed by the heat treatment apparatus 1 activates the impurities implanted into the gallium arsenide. Note that, in FIG. 1 and each of the following drawings, the dimensions and the numbers of the respective parts are exaggerated or simplified as necessary for easy understanding.
  • the heat treatment apparatus 1 includes a chamber 6 for accommodating the semiconductor wafer W, a flash heating unit 5 containing a plurality of flash lamps FL, and a halogen heating unit 4 containing a plurality of halogen lamps HL.
  • a flash heating unit 5 is provided above the chamber 6, and a halogen heating unit 4 is provided below the chamber 6.
  • the heat treatment apparatus 1 further includes a holding unit 7 that holds the semiconductor wafer W in a horizontal position inside the chamber 6, a transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the outside of the apparatus, Is provided.
  • the heat treatment apparatus 1 includes a trap box 90 for removing harmful arsenic from the gas exhausted from the chamber 6.
  • the heat treatment apparatus 1 includes a control unit 3 that controls each operation mechanism provided in the halogen heating unit 4, the flash heating unit 5, and the chamber 6 to execute the heat treatment of the semiconductor wafer W.
  • the chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61.
  • the chamber side portion 61 has a substantially cylindrical shape with an open top and bottom.
  • the upper opening is provided with an upper chamber window 63 mounted and closed, and the lower opening is provided with a lower chamber window 64 mounted and closed.
  • the upper chamber window 63 constituting the ceiling of the chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window for transmitting flash light emitted from the flash heating unit 5 into the chamber 6.
  • the lower chamber window 64 constituting the floor of the chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen heating unit 4 into the chamber 6.
  • Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part.
  • the reflection rings 68 and 69 are both formed in an annular shape.
  • the upper reflecting ring 68 is mounted by being fitted from above the chamber side 61.
  • the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61.
  • the space inside the chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61 and the reflection rings 68 and 69 is defined as the heat treatment space 65.
  • a concave portion 62 is formed on the inner wall surface of the chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. .
  • the concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W.
  • the chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
  • a transfer opening (furnace opening) 66 for carrying the semiconductor wafer W in and out of the chamber 6 is formed in the chamber side 61.
  • the transport opening 66 can be opened and closed by a gate valve 185.
  • the transport opening 66 is connected to the outer peripheral surface of the concave portion 62 in communication. Therefore, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is transferred from the transfer opening 66 through the concave portion 62 to the heat treatment space 65 and unloaded from the heat treatment space 65. It can be performed.
  • the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the chamber 6 becomes a closed space.
  • a through hole 61a is formed in the chamber side 61.
  • the radiation thermometer 20 is attached to a portion of the outer wall surface of the chamber side 61 where the through hole 61a is provided.
  • the through hole 61a is a cylindrical hole for guiding infrared light emitted from the lower surface of the semiconductor wafer W held by a susceptor 74 described later to the radiation thermometer 20.
  • the through hole 61a is provided to be inclined with respect to the horizontal direction so that the axis of the through hole 61a intersects with the main surface of the semiconductor wafer W held by the susceptor 74.
  • a transparent window 21 made of a barium fluoride material that transmits infrared light in a wavelength range that can be measured by the radiation thermometer 20 is mounted.
  • a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the chamber 6.
  • the gas supply hole 81 is formed above the concave portion 62 and may be provided on the reflection ring 68.
  • the gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the chamber 6.
  • the gas supply pipe 83 is connected to a processing gas supply source 85.
  • An air supply valve 84 is interposed in the middle of the path of the gas supply pipe 83. When the air supply valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82.
  • the processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply holes 81, and is supplied from the gas supply holes 81 into the heat treatment space 65.
  • an inert gas such as nitrogen (N 2 ), a reactive gas such as hydrogen (H 2 ), ammonia (NH 3 ), or a mixed gas obtained by mixing them can be used.
  • nitrogen gas nitrogen gas
  • a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the chamber 6.
  • the gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69.
  • the gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the chamber 6.
  • the gas exhaust pipe 88 is connected to the exhaust part 190.
  • An exhaust valve 89 and a trap box 90 are interposed in the middle of the path of the gas exhaust pipe 88. When the exhaust valve 89 is opened, the gas in the heat treatment space 65 is exhausted from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87.
  • a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the chamber 6 or may be slit-shaped.
  • an exhaust utility of a factory where the vacuum pump and the heat treatment apparatus 1 are installed can be used.
  • a vacuum pump is adopted as the exhaust unit 190, the air supply valve 84 is closed, and the atmosphere in the heat treatment space 65, which is a closed space, is exhausted without supplying any gas from the gas supply hole 81, the inside of the chamber 6 becomes a vacuum atmosphere The pressure can be reduced to Further, even when a vacuum pump is not used as the exhaust unit 190, the inside of the chamber 6 can be depressurized to a pressure lower than the atmospheric pressure by performing the exhaust without supplying the gas from the gas supply hole 81. .
  • FIG. 8 is a perspective view showing the configuration of the trap box 90.
  • FIG. 9 is a front view of the trap box 90
  • FIG. 10 is a plan view of the trap box 90.
  • an XYZ orthogonal coordinate system is used in which the Z-axis direction is a vertical direction and the XY plane is a horizontal plane in order to clarify the directional relationship.
  • the trap box 90 is provided in the path of the gas exhaust pipe 88.
  • the installation position of the trap box 90 is not particularly limited, but it is preferable that the trap box 90 be provided as close to the gas exhaust hole 86 of the chamber 6 as possible in the course of the gas exhaust pipe 88.
  • the trap box 90 includes a radiator 92, a trap plate 95, and a wafer accommodating portion 96 as main components inside a casing 91.
  • the housing 91 is a hollow rectangular parallelepiped box.
  • the housing 91 is provided with an air supply port 97 for taking in gas inside and an exhaust port 98 for discharging gas inside.
  • the supply port 97 and the exhaust port 98 are connected to a gas exhaust pipe 88 that guides the gas exhausted from the chamber 6.
  • the radiator 92 is provided on the entire cross section (YZ cross section) of the housing 91 so as to separate the internal space of the housing 91.
  • the radiator 92 includes a plurality of cooling pipes 93, a tank (not shown), and a circulation pump.
  • the plurality of cooling pipes 93 are arranged in parallel at predetermined intervals.
  • Each of the plurality of cooling pipes 93 is formed of a material having excellent heat conductivity, for example, aluminum.
  • the cooling liquid for example, cooling water
  • the cooling liquid whose temperature is controlled to a predetermined temperature stored in the tank is configured to flow and circulate through the plurality of cooling pipes 93 by a circulation pump.
  • the gas passing between the plurality of cooling pipes 93 is cooled by the cooling pipes 93 through which the cooling liquid flows.
  • the radiator 92 Since the radiator 92 is provided on the entire cross section of the casing 91, it cools the entire airflow passing through the casing 91.
  • the cooling pipe 93 may have a meandering shape with a large surface area, or a plurality of cooling pipes 93 may be arranged in a grid.
  • the trap plate 95 is a plate-like member provided in the housing 91 in parallel with the radiator 92. As shown in FIGS. 8 and 9, the trap plate 95 is provided so as to shield an upper part of a cross section (YZ cross section) of the housing 91. Therefore, the lower part of the trap plate 95 is open in the cross section of the housing 91 in which the trap plate 95 is installed.
  • the material of the trap plate 95 is not particularly limited, for example, a vinyl chloride resin can be used.
  • the radiator 92 and the trap plate 95 are provided detachably with respect to the housing 91. Therefore, the radiator 92 and the trap plate 95 can be exchanged as needed.
  • the wafer accommodating portion 96 is installed below the trap plate 95 inside the housing 91.
  • the wafer accommodating section 96 places the measurement wafer MW in a horizontal position below the trap plate 95. That is, the wafer accommodating portion 96 places the measurement wafer MW perpendicular to the trap plate 95.
  • the measurement wafer MW is a silicon substrate having the same shape and size as a general semiconductor wafer W. However, no pattern formation or film formation processing has been performed on the measurement wafer MW.
  • FIG. 2 is a perspective view showing the overall appearance of the holding unit 7.
  • the holding unit 7 includes a base ring 71, a connecting unit 72, and a susceptor 74.
  • the base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding section 7 is formed of quartz.
  • the base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape.
  • the missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71.
  • the base ring 71 is supported on the wall surface of the chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 1).
  • a plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape.
  • the connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
  • FIG. 3 is a plan view of the susceptor 74.
  • FIG. 4 is a sectional view of the susceptor 74.
  • the susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77.
  • the holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a larger planar size than the semiconductor wafer W.
  • a guide ring 76 is provided on the periphery of the upper surface of the holding plate 75.
  • the guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is ⁇ 300 mm, the inner diameter of the guide ring 76 is ⁇ 320 mm.
  • the inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75.
  • the guide ring 76 is formed of the same quartz as the holding plate 75.
  • the guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
  • a region inside the guide ring 76 on the upper surface of the holding plate 75 is a flat holding surface 75a for holding the semiconductor wafer W.
  • a plurality of substrate support pins 77 are provided upright on the holding surface 75 a of the holding plate 75.
  • a total of 12 substrate support pins 77 are erected at every 30 ° along the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76).
  • the diameter of the circle in which the twelve substrate support pins 77 are arranged is smaller than the diameter of the semiconductor wafer W.
  • Each substrate support pin 77 is formed of quartz.
  • the plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
  • the four connecting portions 72 erected on the base ring 71 and the peripheral edge of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72.
  • the holder 7 is mounted on the chamber 6.
  • the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line coincides with the vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
  • the semiconductor wafer W carried into the chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the chamber 6.
  • the semiconductor wafer W is supported by twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the semiconductor wafer W is placed in a horizontal posture by the twelve substrate support pins 77. Can be supported.
  • the semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75.
  • the thickness of the guide ring 76 is larger than the height of the substrate support pins 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
  • the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically.
  • the opening 78 is provided for the radiation thermometer 20 to receive radiation light (infrared light) radiated from the lower surface of the semiconductor wafer W. That is, the radiation thermometer 20 receives the light radiated from the lower surface of the semiconductor wafer W through the opening 78 and the transparent window 21 attached to the through hole 61a of the chamber side portion 61, and reduces the temperature of the semiconductor wafer W. Measure.
  • the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10 to be described later pass for transferring the semiconductor wafer W.
  • FIG. 5 is a plan view of the transfer mechanism 10.
  • FIG. 6 is a side view of the transfer mechanism 10.
  • the transfer mechanism 10 includes two transfer arms 11.
  • the transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62.
  • Each transfer arm 11 is provided with two lift pins 12 standing upright.
  • the transfer arm 11 and the lift pins 12 are formed of quartz.
  • Each transfer arm 11 is rotatable by a horizontal movement mechanism 13.
  • the horizontal movement mechanism 13 moves the pair of transfer arms 11 to a transfer operation position (solid line position in FIG. 5) where the semiconductor wafer W is transferred to the holding unit 7 and the semiconductor wafer W held by the holding unit 7.
  • the horizontal movement is performed between a retracted position (a position indicated by a two-dot chain line in FIG. 5) that does not overlap in a plan view.
  • the horizontal movement mechanism 13 may be configured to rotate each transfer arm 11 by an individual motor, or may be rotated by linking a pair of transfer arms 11 by a single
  • the pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13.
  • the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 2 and 3) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74.
  • the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal movement mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position.
  • the retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7.
  • the retreat position of the transfer arm 11 is inside the concave portion 62.
  • An exhaust mechanism (not shown) is also provided near the portion where the driving unit (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided. Is discharged to the outside of the chamber 6.
  • the flash heating unit 5 provided above the chamber 6 includes a light source including a plurality of (30 in this embodiment) xenon flash lamps FL and a light source above the light source. And a reflector 52 provided so as to cover the reflector.
  • a lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash heating unit 5.
  • the lamp light emission window 53 constituting the floor of the flash heating unit 5 is a plate-shaped quartz window made of quartz.
  • the flash lamp FL irradiates the heat treatment space 65 with flash light from above the chamber 6 through the lamp light emission window 53 and the upper chamber window 63.
  • the plurality of flash lamps FL are rod-shaped lamps each having a long cylindrical shape, and each of the plurality of flash lamps FL has a longitudinal direction along the main surface of the semiconductor wafer W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane.
  • the area where the plurality of flash lamps FL are arranged is larger than the plane size of the semiconductor wafer W.
  • the xenon flash lamp FL has a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a condenser are disposed at both ends thereof, and is provided on the outer peripheral surface of the glass tube. And a trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by the excitation of xenon atoms or molecules at that time.
  • the flash lamp FL since the electrostatic energy stored in the condenser in advance is converted into an extremely short light pulse of 0.1 to 100 milliseconds, continuous lighting such as a halogen lamp HL is performed. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
  • the reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof.
  • the basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side.
  • the reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
  • the halogen heating unit 4 provided below the chamber 6 has a plurality of (in this embodiment, 40) halogen lamps HL inside the housing 41.
  • the halogen heating unit 4 heats the semiconductor wafer W by irradiating the heat treatment space 65 from below the chamber 6 through the lower chamber window 64 with a plurality of halogen lamps HL.
  • FIG. 7 is a plan view showing an arrangement of a plurality of halogen lamps HL.
  • the forty halogen lamps HL are arranged in two upper and lower stages. Twenty halogen lamps HL are arranged in an upper stage near the holding unit 7 and 20 halogen lamps HL are arranged in a lower stage farther from the holding unit 7 than the upper stage.
  • Each halogen lamp HL is a rod-shaped lamp having a long cylindrical shape.
  • the upper and lower 20 halogen lamps HL are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holder 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
  • the arrangement density of the halogen lamps HL in the region opposed to the peripheral portion is higher than the region opposed to the central portion of the semiconductor wafer W held by the holding portion 7 in both the upper and lower stages. I have. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W where the temperature is likely to decrease during heating by light irradiation from the halogen heating unit 4.
  • a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of the 20 halogen lamps HL arranged in the upper stage and the longitudinal direction of the 20 halogen lamps HL arranged in the lower stage are orthogonal to each other. I have.
  • the halogen lamp HL is a filament type light source which emits light by incandescent the filament by energizing the filament provided inside the glass tube.
  • a gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube.
  • a halogen element iodine, bromine, or the like
  • the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that emits light continuously for at least one second. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life.
  • a reflector 43 is provided below the two-stage halogen lamp HL in the housing 41 of the halogen heating unit 4 (FIG. 1).
  • the reflector 43 reflects the light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
  • the control unit 3 controls the various operation mechanisms described above provided in the heat treatment apparatus 1.
  • the configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU that is a circuit for performing various arithmetic processing, a ROM that is a read-only memory that stores a basic program, a RAM that is a readable and writable memory that stores various information, and control software and data. It has a magnetic disk for storing.
  • the processing in the heat treatment apparatus 1 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
  • the heat treatment apparatus 1 prevents an excessive rise in temperature of the halogen heating unit 4, the flash heating unit 5, and the chamber 6 due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, it has various cooling structures.
  • a water cooling tube (not shown) is provided on the wall of the chamber 6.
  • the halogen heating unit 4 and the flash heating unit 5 have an air cooling structure that forms a gas flow inside and discharges heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash heating unit 5 and the upper chamber window 63.
  • the processing operation in the heat treatment apparatus 1 will be described.
  • the semiconductor wafer W to be processed is a semiconductor substrate having a gallium arsenide semiconductor thin film formed on a silicon base material.
  • the activation of the impurities implanted in the gallium arsenide semiconductor thin film is performed by flash light irradiation heat treatment (annealing) by the heat treatment apparatus 1.
  • the processing procedure of the semiconductor wafer W described below proceeds by the control unit 3 controlling each operation mechanism of the heat treatment apparatus 1.
  • the air supply valve 84 is opened, and the exhaust valve 89 is opened, and air supply and exhaust to the chamber 6 are started.
  • nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65.
  • the exhaust valve 89 is opened, the gas in the chamber 6 is exhausted from the gas exhaust hole 86. Thereby, the nitrogen gas supplied from the upper part of the heat treatment space 65 in the chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
  • the gate valve 185 is opened to open the transfer opening 66, and the semiconductor wafer W to be processed is carried into the heat treatment space 65 in the chamber 6 via the transfer opening 66 by the transfer robot outside the apparatus.
  • the atmosphere outside the apparatus may be involved when the semiconductor wafer W is loaded, but since the nitrogen gas is continuously supplied to the chamber 6, the nitrogen gas flows out from the transfer opening 66, and Entrapment of an external atmosphere can be minimized.
  • the semiconductor wafer W carried in by the transfer robot advances to a position immediately above the holding unit 7 and stops.
  • the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79.
  • the lift pins 12 rise above the upper ends of the substrate support pins 77.
  • the transfer robot exits the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185.
  • the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held from below in a horizontal posture.
  • the semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on a holding plate 75 and held by a susceptor 74.
  • the semiconductor wafer W is held by the holder 7 with the surface on which the gallium arsenide semiconductor thin film is formed as the upper surface.
  • a predetermined gap is formed between the back surface (main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75.
  • the pair of transfer arms 11 descending to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the concave portion 62.
  • the 40 halogen lamps HL of the halogen heating unit 4 are simultaneously turned on to perform preliminary heating (assist heating). ) Is started.
  • the halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz and irradiates the lower surface of the semiconductor wafer W.
  • the semiconductor wafer W is preheated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, there is no obstacle to heating by the halogen lamp HL.
  • the temperature of the semiconductor wafer W is measured by the radiation thermometer 20. That is, the radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78 through the transparent window 21 and measures the temperature of the wafer being heated.
  • the measured temperature of the semiconductor wafer W is transmitted to the control unit 3.
  • the control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W which is heated by the irradiation of light from the halogen lamp HL has reached a predetermined preheating temperature T1. That is, the control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 20 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1.
  • the control unit 3 After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 temporarily maintains the semiconductor wafer W at the preheating temperature T1. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 20 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL to substantially reduce the temperature of the semiconductor wafer W to the preliminary temperature. The heating temperature T1 is maintained.
  • the entire semiconductor wafer W is uniformly heated to the preheating temperature T1.
  • the temperature of the peripheral portion of the semiconductor wafer W where heat radiation tends to occur tends to be lower than that of the central portion, but the arrangement density of the halogen lamp HL in the halogen heating section 4 is:
  • the region facing the peripheral portion is higher than the region facing the center of the substrate W. For this reason, the amount of light applied to the peripheral portion of the semiconductor wafer W where heat radiation easily occurs is increased, and the in-plane temperature distribution of the semiconductor wafer W in the preheating stage can be made uniform.
  • the flash lamp FL of the flash heating unit 5 irradiates the surface of the semiconductor wafer W held by the susceptor 74 with flash light. At this time, a part of the flash light radiated from the flash lamp FL goes directly into the chamber 6, and the other part is once reflected by the reflector 52 and then goes into the chamber 6. The flash heating of the semiconductor wafer W is performed by the irradiation.
  • the surface temperature of the semiconductor wafer W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 millisecond to about 100 milliseconds. It is a strong flash. Then, the surface temperature of the semiconductor wafer W, which is flash-heated by flash light irradiation from the flash lamp FL, instantaneously rises to the processing temperature T2, and after the impurities injected into the semiconductor wafer W are activated, the surface temperature becomes higher. Falls rapidly.
  • the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time, it is possible to activate the impurities while suppressing diffusion of the impurities injected into the semiconductor wafer W due to heat. Can be. Since the time required for activating the impurity is extremely shorter than the time required for thermal diffusion, the activation is performed even in a short time in which diffusion of about 0.1 to 100 milliseconds does not occur. Complete.
  • the halogen lamp HL is turned off after a lapse of a predetermined time.
  • the temperature of the semiconductor wafer W rapidly drops from the preheating temperature T1.
  • the temperature of the semiconductor wafer W during the temperature decrease is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3.
  • the control unit 3 monitors whether or not the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20.
  • the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12
  • the semiconductor wafer W protruding from the upper surface of the semiconductor wafer 74 and having undergone the heat treatment is received from the susceptor 74.
  • the transfer opening 66 closed by the gate valve 185 is opened, and the semiconductor wafer W mounted on the lift pins 12 is unloaded by the transfer robot outside the apparatus, and the semiconductor wafer W is heated in the heat treatment apparatus 1 by heat treatment. Is completed.
  • the semiconductor wafer W on which the gallium arsenide semiconductor thin film is formed is subjected to the heat treatment. It is known that gallium arsenide is released from a semiconductor thin film by outward diffusion when heated to 400 ° C. or higher. If the above preheating temperature T1 is 400 ° C. or higher, arsenic is released from the semiconductor wafer W during preheating by the halogen lamp HL. If the processing temperature T2 is 400 ° C. or higher, arsenic is released from the semiconductor wafer W even during flash heating by the flash lamp FL for a short time. Arsenic released from the semiconductor wafer W exists in the heat treatment space 65 in the chamber 6 as a gas. Arsenic is harmful even in a trace amount, and it is necessary to prevent arsenic released from the semiconductor wafer W from being discharged outside the heat treatment apparatus 1.
  • a trap box 90 is provided in the heat treatment apparatus 1.
  • the exhaust valve 89 When the exhaust valve 89 is opened, the atmosphere in the chamber 6 containing arsenic is exhausted from the gas exhaust hole 86 to the gas exhaust pipe 88.
  • the gas containing arsenic flows through the gas exhaust pipe 88 and flows into the trap box 90 from the air supply port 97.
  • the gas flowing into the trap box 90 from the air supply port 97 passes between the plurality of cooling pipes 93 of the radiator 92.
  • the gas containing arsenic passes between the plurality of cooling tubes 93, it is cooled to room temperature, whereby gaseous arsenic precipitates as a solid.
  • the gas flow cooled by the radiator 92 collides with the trap plate 95.
  • the gas flow colliding with the trap plate 95 changes the direction of the flow downward of the open trap plate 95.
  • the solid arsenic precipitated by cooling is attached to the trap plate 95 and captured.
  • the gas flow that has passed below the trap plate 95 flows out of the exhaust port 98 again into the gas exhaust pipe 88 and is discharged to the exhaust section 190.
  • Arsenic contained in the gas flowing from the air supply port 97 of the trap box 90 is precipitated as a solid by being cooled by the radiator 92, and the deposited arsenic adheres to the trap plate 95 and the measurement wafer MW to be captured. Is done. Accordingly, harmful arsenic is not contained in the gas flowing out from the exhaust port 98 of the trap box 90, and harmless gas is discharged from the exhaust unit 190 to the outside of the heat treatment apparatus 1.
  • arsenic is harmful, it has the property of being precipitated as a solid when cooled to about room temperature.
  • the present invention has been completed by utilizing such characteristics of arsenic.
  • the arsenic is deposited as a solid, and the arsenic is harmful. Has been removed.
  • the arsenic released from the semiconductor wafer W during the heat treatment is collected and rendered harmless by the trap box 90 having a simple configuration in which the radiator 92 and the trap plate 95 are provided inside the casing 91. . Therefore, it is possible to prevent harmful arsenic from being discharged to the outside with a simple configuration without incorporating a scrubber or a special exclusion device.
  • the measurement wafer MW placed in the wafer accommodating portion 96 is taken out, and particles attached to the surface of the measurement wafer MW are analyzed to confirm whether or not arsenic is deposited and captured. Can be. If arsenic is not detected from the surface of measurement wafer MW, or if the amount of arsenic detected is remarkably small, it is suspected that arsenic may not be sufficiently collected by trap box 90.
  • radiator 92 and the trap plate 95 are detachably provided, the radiator 92 and the trap plate 95 which are contaminated by the deposited arsenic can be replaced at an appropriate timing.
  • the radiator 92 and the trap plate 95 may be replaced periodically, or may be replaced based on the state of contamination.
  • the radiator 92, the trap plate 95, and the wafer accommodating portion 96 are provided inside the housing 91.
  • the trap plate 95 and the wafer accommodating portion 96 are not essential elements. It is sufficient that a radiator 92 is provided in the inside. If at least the radiator 92 is provided, the gas discharged from the chamber 6 can be cooled to deposit arsenic as a solid, and the arsenic can be captured by the inner wall surface of the housing 91. Even in this case, it is possible to prevent arsenic from being discharged to the outside.
  • the trap plate 95 is provided as in the above embodiment, the deposited arsenic can be more reliably captured and recovered.
  • the gas flow is cooled by the radiator 92 having the plurality of cooling pipes 93.
  • the present invention is not limited to this.
  • the gas flow is cooled by another cooling mechanism such as a Peltier device. You may make it cool.
  • the semiconductor wafer W may be subjected to a heat treatment by setting the inside of the chamber 6 to a reduced pressure atmosphere. Even in this case, the same effect as in the above embodiment can be obtained by depositing and capturing arsenic released from the semiconductor wafer W in the trap box 90.
  • the inside of the chamber 6 is set to a reduced pressure atmosphere
  • the inside of the trap box 90 is also set to a reduced pressure lower than the atmospheric pressure. Therefore, the material of the trap plate 95 is preferably a metal material that can be used even under reduced pressure.
  • the flash heating unit 5 is provided with 30 flash lamps FL, but the present invention is not limited to this, and the number of flash lamps FL can be any number.
  • the flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp.
  • the number of halogen lamps HL provided in the halogen heating unit 4 is not limited to 40 but may be any number.
  • the preheating of the semiconductor wafer W is performed by using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more.
  • the present invention is not limited to this.
  • the preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.
  • the heating source for heating the semiconductor wafer W is not limited to a lamp, and the semiconductor wafer W may be heated by, for example, a hot plate provided with a heater.
  • the substrate to be processed by the heat treatment apparatus 1 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell.
  • the film formed on the substrate is not limited to gallium arsenide, and may be any film containing arsenic. Further, the technology according to the present invention is suitable for heat treatment of a substrate that releases not only arsenic but also harmful substances that precipitate as a solid when cooled.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A trap box is provided partway along the pathway of a gas exhaust pipe for discharging a gas from inside a chamber. The gas, which includes arsenic released from a semiconductor wafer due to a heat treatment inside the chamber, flows into the trap box and is cooled by a radiator, whereby the arsenic is deposited as a solid. The cooled gaseous flow collides with a trap plate, whereby the deposited arsenic adheres to the trap plate and is captured. A non-hazardous gas from which arsenic has been captured and removed is discharged to outside of the apparatus. Through this simple configuration, in which the radiator and the trap plate are provided inside a casing, it is possible to prevent hazardous substances from being discharged to the outside.

Description

熱処理装置Heat treatment equipment
 本発明は、半導体ウェハー等の薄板状精密電子基板(以下、単に「基板」と称する)を光照射等によって加熱する熱処理装置に関する。 The present invention relates to a heat treatment apparatus for heating a thin precision electronic substrate (hereinafter simply referred to as a “substrate”) such as a semiconductor wafer by light irradiation or the like.
 半導体デバイスの製造プロセスにおいて、極めて短時間で半導体ウェハーを加熱するフラッシュランプアニール(FLA)が注目されている。フラッシュランプアニールは、キセノンフラッシュランプ(以下、単に「フラッシュランプ」とするときにはキセノンフラッシュランプを意味する)を使用して半導体ウェハーの表面にフラッシュ光を照射することにより、半導体ウェハーの表面のみを極めて短時間(数ミリ秒以下)に昇温させる熱処理技術である。 フ ラ ッ シ ュ In a semiconductor device manufacturing process, flash lamp annealing (FLA), which heats a semiconductor wafer in a very short time, has attracted attention. Flash lamp annealing uses a xenon flash lamp (hereinafter, simply referred to as a xenon flash lamp when simply referred to as a "flash lamp") to irradiate the surface of the semiconductor wafer with flash light, thereby extremely exposing only the surface of the semiconductor wafer. This is a heat treatment technology that raises the temperature in a short time (several milliseconds or less).
 キセノンフラッシュランプの放射分光分布は紫外域から近赤外域であり、従来のハロゲンランプよりも波長が短く、シリコンの半導体ウェハーの基礎吸収帯とほぼ一致している。よって、キセノンフラッシュランプから半導体ウェハーにフラッシュ光を照射したときには、透過光が少なく半導体ウェハーを急速に昇温することが可能である。また、数ミリ秒以下の極めて短時間のフラッシュ光照射であれば、半導体ウェハーの表面近傍のみを選択的に昇温できることも判明している。 放射 The xenon flash lamp has an emission spectral distribution from the ultraviolet to the near infrared, which has a shorter wavelength than that of a conventional halogen lamp, and substantially matches the basic absorption band of a silicon semiconductor wafer. Therefore, when the semiconductor wafer is irradiated with flash light from the xenon flash lamp, the transmitted light is small and the temperature of the semiconductor wafer can be rapidly raised. In addition, it has been found that when the flash light is irradiated for a very short time of several milliseconds or less, only the vicinity of the surface of the semiconductor wafer can be selectively heated.
 このようなフラッシュランプアニールは、極短時間の加熱が必要とされる処理、例えば典型的には半導体ウェハーに注入された不純物の活性化に利用される。イオン注入法によって不純物が注入された半導体ウェハーの表面にフラッシュランプからフラッシュ光を照射すれば、当該半導体ウェハーの表面を極短時間だけ活性化温度にまで昇温することができ、不純物を深く拡散させることなく、不純物活性化のみを実行することができるのである。 (4) Such flash lamp annealing is used for a process requiring heating for an extremely short time, for example, activation of impurities typically implanted into a semiconductor wafer. By irradiating the surface of the semiconductor wafer into which impurities are implanted by the ion implantation method with flash light from a flash lamp, the surface of the semiconductor wafer can be heated to the activation temperature for a very short time, and the impurities can be diffused deeply. Only the impurity activation can be performed without causing the impurity activation.
 一方、半導体デバイスは典型的にはシリコンを用いて形成されるのであるが、微細化の限界を迎えつつある近年においては、シリコンに代わる材料にて半導体デバイスを形成する試みも盛んである。ゲルマニウムやガリウムヒ素(GaAs)等の半導体は、シリコンよりも移動度が高く、これらの材料を用いてトランジスタを形成すればシリコンよりも高い性能を有した半導体デバイスの製作が可能である。例えば、特許文献1には、ガリウムヒ素の半導体薄膜に錫、ゲルマニウム、鉛等を含有させたものにフラッシュランプアニールを行うことにより、高キャリア移動度および高品質の半導体薄膜を得ることが開示されている。 On the other hand, semiconductor devices are typically formed using silicon, but in recent years, which has reached the limit of miniaturization, attempts to form semiconductor devices using materials instead of silicon have been active. Semiconductors such as germanium and gallium arsenide (GaAs) have higher mobility than silicon. When a transistor is formed using these materials, a semiconductor device having higher performance than silicon can be manufactured. For example, Patent Document 1 discloses that a semiconductor thin film of gallium arsenide containing tin, germanium, lead, or the like is subjected to flash lamp annealing to obtain a semiconductor thin film with high carrier mobility and high quality. ing.
特開2002-252174号公報JP-A-2002-252174
 しかしながら、ガリウムヒ素の半導体を400℃以上に加熱するとヒ素(As)が外方拡散によって半導体薄膜から放出されることが判明している。フラッシュランプアニールにおいても、短時間ではあるものの半導体薄膜が400℃以上の温度域に到達するため、外方拡散によるヒ素の放出が懸念される。ヒ素は、微量でも有害であることが知られている。 However, it has been found that when a gallium arsenide semiconductor is heated to 400 ° C. or higher, arsenic (As) is released from the semiconductor thin film by outward diffusion. Also in flash lamp annealing, the semiconductor thin film reaches a temperature range of 400 ° C. or higher for a short period of time, and there is a concern that arsenic may be released due to outward diffusion. Arsenic is known to be harmful even in trace amounts.
 このため、加熱時に放出されたヒ素をフラッシュランプアニール装置から外部に排出しないようにすることが求められる。一般的には、ヒ素等の有害物質を大気中に放散させないための対策として、工場排気にスクラバや除外装置が接続されている。しかし、このようなスクラバや除外装置をフラッシュランプアニール装置に組み込むことは、コストパフォーマンスおよびフットプリントの観点から現実的ではない。 Therefore, it is necessary to prevent arsenic released during heating from being discharged from the flash lamp annealing apparatus to the outside. Generally, a scrubber and an exclusion device are connected to factory exhaust as a measure to prevent harmful substances such as arsenic from being released into the atmosphere. However, incorporating such a scrubber or exclusion device into a flash lamp annealing device is not realistic from the viewpoint of cost performance and footprint.
 本発明は、上記課題に鑑みてなされたものであり、簡易な構成にて有害物質の外部への排出を防止することができる熱処理装置を提供することを目的とする。 The present invention has been made in view of the above problems, and has as its object to provide a heat treatment apparatus capable of preventing harmful substances from being discharged to the outside with a simple configuration.
 上記課題を解決するため、この発明の第1の態様は、基板を加熱する熱処理装置において、基板を収容するチャンバーと、前記チャンバー内に収容された前記基板を加熱する加熱源と、前記チャンバー内の雰囲気を排出する排気経路と、前記排気経路に設けられ、前記雰囲気中に含まれる物質を捕獲するトラップ部と、を備え、前記トラップ部は、筐体の内部に当該筐体を通過する気流を冷却する冷却部を設ける。 In order to solve the above problems, a first aspect of the present invention is directed to a heat treatment apparatus for heating a substrate, wherein a chamber for housing the substrate, a heating source for heating the substrate housed in the chamber, An exhaust path for exhausting the atmosphere, and a trap section provided in the exhaust path and capturing a substance contained in the atmosphere. And a cooling unit for cooling the cooling unit.
 また、第2の態様は、第1の態様に係る熱処理装置において、前記トラップ部は、前記冷却部によって冷却された気流が衝突するトラップ板を前記筐体の内部にさらに備える。 According to a second aspect, in the heat treatment apparatus according to the first aspect, the trap unit further includes a trap plate with which the airflow cooled by the cooling unit collides, inside the housing.
 また、第3の態様は、第2の態様に係る熱処理装置において、前記トラップ部は、前記冷却部が前記気流を冷却することによって析出した前記物質を付着させる捕集基板を収容する収容部を前記筐体の内部にさらに備える。 According to a third aspect, in the heat treatment apparatus according to the second aspect, the trap unit includes a storage unit that stores a collection substrate to which the substance deposited by cooling the airflow is attached. It is further provided inside the housing.
 また、第4の態様は、第1から第3のいずれかの態様に係る熱処理装置において、前記加熱源は、基板に光を照射して加熱するランプを備える。 According to a fourth aspect, in the heat treatment apparatus according to any one of the first to third aspects, the heating source includes a lamp for irradiating the substrate with light to heat the substrate.
 また、第5の態様は、第1から第4のいずれかの態様に係る熱処理装置において、前記物質はヒ素であることを特徴とする。 In a fifth aspect, in the heat treatment apparatus according to any one of the first to fourth aspects, the substance is arsenic.
 第1から第5の態様に係る熱処理装置によれば、排気経路に設けられたトラップ部は、筐体の内部に当該筐体を通過する気流を冷却する冷却部を設けるため、雰囲気中に含まれる物質を固体として析出させて捕獲することができ、簡易な構成にて有害物質の外部への排出を防止することができる。 According to the heat treatment apparatuses according to the first to fifth aspects, the trap section provided in the exhaust path is included in the atmosphere because the cooling section that cools the airflow passing through the casing is provided inside the casing. The harmful substance can be prevented from being discharged outside by a simple configuration.
 特に、第2の態様に係る熱処理装置によれば、トラップ部は、冷却部によって冷却された気流が衝突するトラップ板を備えるため、有害物質をより確実に捕獲することができる。 Particularly, according to the heat treatment apparatus of the second aspect, since the trap unit includes the trap plate against which the airflow cooled by the cooling unit collides, it is possible to capture harmful substances more reliably.
 特に、第3の態様に係る熱処理装置によれば、トラップ部は、冷却部が気流を冷却することによって析出した物質を付着させる捕集基板を収容する収容部を備えるため、捕集基板を分析することによって有害物質の捕獲を確認することができる。 In particular, according to the heat treatment apparatus according to the third aspect, since the trap section includes the storage section that stores the collection substrate to which the substance deposited by cooling the airflow is attached, the trap section is analyzed. By doing so, the capture of harmful substances can be confirmed.
本発明に係る熱処理装置の構成を示す縦断面図である。It is a longitudinal section showing the composition of the heat treatment equipment concerning the present invention. 保持部の全体外観を示す斜視図である。It is a perspective view showing the whole appearance of a maintenance part. サセプタの平面図である。It is a top view of a susceptor. サセプタの断面図である。It is sectional drawing of a susceptor. 移載機構の平面図である。It is a top view of a transfer mechanism. 移載機構の側面図である。It is a side view of a transfer mechanism. 複数のハロゲンランプの配置を示す平面図である。It is a top view showing arrangement of a plurality of halogen lamps. トラップボックスの構成を示す斜視図である。It is a perspective view which shows the structure of a trap box. トラップボックスの正面図である。It is a front view of a trap box. トラップボックスの平面図である。It is a top view of a trap box.
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は、本発明に係る熱処理装置1の構成を示す縦断面図である。図1の熱処理装置1は、基板として円板形状の半導体ウェハーWに対してフラッシュ光照射を行うことによってその半導体ウェハーWを加熱するフラッシュランプアニール装置である。処理対象となる半導体ウェハーWのサイズは特に限定されるものではないが、例えばφ300mmやφ450mmである(本実施形態ではφ300mm)。熱処理装置1に搬入される前の半導体ウェハーWには、ガリウムヒ素の半導体薄膜が形成されており、熱処理装置1による加熱処理によってガリウムヒ素に注入された不純物の活性化が実行される。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。 FIG. 1 is a longitudinal sectional view showing the configuration of the heat treatment apparatus 1 according to the present invention. The heat treatment apparatus 1 of FIG. 1 is a flash lamp annealing apparatus that heats a semiconductor wafer W having a disk shape as a substrate by irradiating the semiconductor wafer W with flash light. The size of the semiconductor wafer W to be processed is not particularly limited, but is, for example, φ300 mm or φ450 mm (φ300 mm in the present embodiment). A semiconductor thin film of gallium arsenide is formed on the semiconductor wafer W before being loaded into the heat treatment apparatus 1, and the heat treatment performed by the heat treatment apparatus 1 activates the impurities implanted into the gallium arsenide. Note that, in FIG. 1 and each of the following drawings, the dimensions and the numbers of the respective parts are exaggerated or simplified as necessary for easy understanding.
 熱処理装置1は、半導体ウェハーWを収容するチャンバー6と、複数のフラッシュランプFLを内蔵するフラッシュ加熱部5と、複数のハロゲンランプHLを内蔵するハロゲン加熱部4と、を備える。チャンバー6の上側にフラッシュ加熱部5が設けられるとともに、下側にハロゲン加熱部4が設けられている。また、熱処理装置1は、チャンバー6の内部に、半導体ウェハーWを水平姿勢に保持する保持部7と、保持部7と装置外部との間で半導体ウェハーWの受け渡しを行う移載機構10と、を備える。また、熱処理装置1は、チャンバー6から排気される気体から有害物質であるヒ素を除去するトラップボックス90を備える。さらに、熱処理装置1は、ハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6に設けられた各動作機構を制御して半導体ウェハーWの熱処理を実行させる制御部3を備える。 The heat treatment apparatus 1 includes a chamber 6 for accommodating the semiconductor wafer W, a flash heating unit 5 containing a plurality of flash lamps FL, and a halogen heating unit 4 containing a plurality of halogen lamps HL. A flash heating unit 5 is provided above the chamber 6, and a halogen heating unit 4 is provided below the chamber 6. The heat treatment apparatus 1 further includes a holding unit 7 that holds the semiconductor wafer W in a horizontal position inside the chamber 6, a transfer mechanism 10 that transfers the semiconductor wafer W between the holding unit 7 and the outside of the apparatus, Is provided. Further, the heat treatment apparatus 1 includes a trap box 90 for removing harmful arsenic from the gas exhausted from the chamber 6. Further, the heat treatment apparatus 1 includes a control unit 3 that controls each operation mechanism provided in the halogen heating unit 4, the flash heating unit 5, and the chamber 6 to execute the heat treatment of the semiconductor wafer W.
 チャンバー6は、筒状のチャンバー側部61の上下に石英製のチャンバー窓を装着して構成されている。チャンバー側部61は上下が開口された概略筒形状を有しており、上側開口には上側チャンバー窓63が装着されて閉塞され、下側開口には下側チャンバー窓64が装着されて閉塞されている。チャンバー6の天井部を構成する上側チャンバー窓63は、石英により形成された円板形状部材であり、フラッシュ加熱部5から出射されたフラッシュ光をチャンバー6内に透過する石英窓として機能する。また、チャンバー6の床部を構成する下側チャンバー窓64も、石英により形成された円板形状部材であり、ハロゲン加熱部4からの光をチャンバー6内に透過する石英窓として機能する。 The chamber 6 is configured by mounting a quartz chamber window above and below a cylindrical chamber side 61. The chamber side portion 61 has a substantially cylindrical shape with an open top and bottom. The upper opening is provided with an upper chamber window 63 mounted and closed, and the lower opening is provided with a lower chamber window 64 mounted and closed. ing. The upper chamber window 63 constituting the ceiling of the chamber 6 is a disk-shaped member formed of quartz, and functions as a quartz window for transmitting flash light emitted from the flash heating unit 5 into the chamber 6. Further, the lower chamber window 64 constituting the floor of the chamber 6 is also a disc-shaped member formed of quartz, and functions as a quartz window for transmitting light from the halogen heating unit 4 into the chamber 6.
 また、チャンバー側部61の内側の壁面の上部には反射リング68が装着され、下部には反射リング69が装着されている。反射リング68,69は、ともに円環状に形成されている。上側の反射リング68は、チャンバー側部61の上側から嵌め込むことによって装着される。一方、下側の反射リング69は、チャンバー側部61の下側から嵌め込んで図示省略のビスで留めることによって装着される。すなわち、反射リング68,69は、ともに着脱自在にチャンバー側部61に装着されるものである。チャンバー6の内側空間、すなわち上側チャンバー窓63、下側チャンバー窓64、チャンバー側部61および反射リング68,69によって囲まれる空間が熱処理空間65として規定される。 反射 Reflection ring 68 is attached to the upper part of the inner wall surface of chamber side part 61, and reflection ring 69 is attached to the lower part. The reflection rings 68 and 69 are both formed in an annular shape. The upper reflecting ring 68 is mounted by being fitted from above the chamber side 61. On the other hand, the lower reflective ring 69 is mounted by being fitted from below the chamber side 61 and fastened with screws (not shown). That is, the reflection rings 68 and 69 are both detachably attached to the chamber side 61. The space inside the chamber 6, that is, the space surrounded by the upper chamber window 63, the lower chamber window 64, the chamber side 61 and the reflection rings 68 and 69 is defined as the heat treatment space 65.
 チャンバー側部61に反射リング68,69が装着されることによって、チャンバー6の内壁面に凹部62が形成される。すなわち、チャンバー側部61の内壁面のうち反射リング68,69が装着されていない中央部分と、反射リング68の下端面と、反射リング69の上端面とで囲まれた凹部62が形成される。凹部62は、チャンバー6の内壁面に水平方向に沿って円環状に形成され、半導体ウェハーWを保持する保持部7を囲繞する。チャンバー側部61および反射リング68,69は、強度と耐熱性に優れた金属材料(例えば、ステンレススチール)にて形成されている。 凹 部 By attaching the reflection rings 68 and 69 to the chamber side 61, a concave portion 62 is formed on the inner wall surface of the chamber 6. That is, a concave portion 62 is formed which is surrounded by a central portion of the inner wall surface of the chamber side portion 61 where the reflection rings 68 and 69 are not mounted, a lower end surface of the reflection ring 68, and an upper end surface of the reflection ring 69. . The concave portion 62 is formed in an annular shape along the horizontal direction on the inner wall surface of the chamber 6 and surrounds the holding portion 7 that holds the semiconductor wafer W. The chamber side 61 and the reflection rings 68 and 69 are formed of a metal material (for example, stainless steel) having excellent strength and heat resistance.
 また、チャンバー側部61には、チャンバー6に対して半導体ウェハーWの搬入および搬出を行うための搬送開口部(炉口)66が形設されている。搬送開口部66は、ゲートバルブ185によって開閉可能とされている。搬送開口部66は凹部62の外周面に連通接続されている。このため、ゲートバルブ185が搬送開口部66を開放しているときには、搬送開口部66から凹部62を通過して熱処理空間65への半導体ウェハーWの搬入および熱処理空間65からの半導体ウェハーWの搬出を行うことができる。また、ゲートバルブ185が搬送開口部66を閉鎖するとチャンバー6内の熱処理空間65が密閉空間とされる。 {Circle around (6)} A transfer opening (furnace opening) 66 for carrying the semiconductor wafer W in and out of the chamber 6 is formed in the chamber side 61. The transport opening 66 can be opened and closed by a gate valve 185. The transport opening 66 is connected to the outer peripheral surface of the concave portion 62 in communication. Therefore, when the gate valve 185 opens the transfer opening 66, the semiconductor wafer W is transferred from the transfer opening 66 through the concave portion 62 to the heat treatment space 65 and unloaded from the heat treatment space 65. It can be performed. When the gate valve 185 closes the transfer opening 66, the heat treatment space 65 in the chamber 6 becomes a closed space.
 さらに、チャンバー側部61には、貫通孔61aが穿設されている。チャンバー側部61の外壁面の貫通孔61aが設けられている部位には放射温度計20が取り付けられている。貫通孔61aは、後述するサセプタ74に保持された半導体ウェハーWの下面から放射された赤外光を放射温度計20に導くための円筒状の孔である。貫通孔61aは、その貫通方向の軸がサセプタ74に保持された半導体ウェハーWの主面と交わるように、水平方向に対して傾斜して設けられている。貫通孔61aの熱処理空間65に臨む側の端部には、放射温度計20が測定可能な波長領域の赤外光を透過させるフッ化バリウム材料からなる透明窓21が装着されている。 Furthermore, a through hole 61a is formed in the chamber side 61. The radiation thermometer 20 is attached to a portion of the outer wall surface of the chamber side 61 where the through hole 61a is provided. The through hole 61a is a cylindrical hole for guiding infrared light emitted from the lower surface of the semiconductor wafer W held by a susceptor 74 described later to the radiation thermometer 20. The through hole 61a is provided to be inclined with respect to the horizontal direction so that the axis of the through hole 61a intersects with the main surface of the semiconductor wafer W held by the susceptor 74. At the end of the through hole 61a on the side facing the heat treatment space 65, a transparent window 21 made of a barium fluoride material that transmits infrared light in a wavelength range that can be measured by the radiation thermometer 20 is mounted.
 また、チャンバー6の内壁上部には熱処理空間65に処理ガスを供給するガス供給孔81が形設されている。ガス供給孔81は、凹部62よりも上側位置に形設されており、反射リング68に設けられていても良い。ガス供給孔81はチャンバー6の側壁内部に円環状に形成された緩衝空間82を介してガス供給管83に連通接続されている。ガス供給管83は処理ガス供給源85に接続されている。また、ガス供給管83の経路途中には給気バルブ84が介挿されている。給気バルブ84が開放されると、処理ガス供給源85から緩衝空間82に処理ガスが送給される。緩衝空間82に流入した処理ガスは、ガス供給孔81よりも流体抵抗の小さい緩衝空間82内を拡がるように流れてガス供給孔81から熱処理空間65内へと供給される。処理ガスとしては、例えば窒素(N)等の不活性ガス、または、水素(H)、アンモニア(NH)等の反応性ガス、或いはそれらを混合した混合ガスを用いることができる(本実施形態では窒素ガス)。 Further, a gas supply hole 81 for supplying a processing gas to the heat treatment space 65 is formed in an upper portion of an inner wall of the chamber 6. The gas supply hole 81 is formed above the concave portion 62 and may be provided on the reflection ring 68. The gas supply hole 81 is connected to a gas supply pipe 83 through a buffer space 82 formed in an annular shape inside the side wall of the chamber 6. The gas supply pipe 83 is connected to a processing gas supply source 85. An air supply valve 84 is interposed in the middle of the path of the gas supply pipe 83. When the air supply valve 84 is opened, the processing gas is supplied from the processing gas supply source 85 to the buffer space 82. The processing gas flowing into the buffer space 82 flows so as to expand in the buffer space 82 having a smaller fluid resistance than the gas supply holes 81, and is supplied from the gas supply holes 81 into the heat treatment space 65. As the processing gas, for example, an inert gas such as nitrogen (N 2 ), a reactive gas such as hydrogen (H 2 ), ammonia (NH 3 ), or a mixed gas obtained by mixing them can be used. In the embodiment, nitrogen gas).
 一方、チャンバー6の内壁下部には熱処理空間65内の気体を排気するガス排気孔86が形設されている。ガス排気孔86は、凹部62よりも下側位置に形設されており、反射リング69に設けられていても良い。ガス排気孔86はチャンバー6の側壁内部に円環状に形成された緩衝空間87を介してガス排気管88に連通接続されている。ガス排気管88は排気部190に接続されている。また、ガス排気管88の経路途中には排気バルブ89およびトラップボックス90が介挿されている。排気バルブ89が開放されると、熱処理空間65の気体がガス排気孔86から緩衝空間87を経てガス排気管88へと排出される。なお、ガス供給孔81およびガス排気孔86は、チャンバー6の周方向に沿って複数設けられていても良いし、スリット状のものであっても良い。 On the other hand, a gas exhaust hole 86 for exhausting the gas in the heat treatment space 65 is formed in the lower portion of the inner wall of the chamber 6. The gas exhaust hole 86 is formed at a position lower than the concave portion 62, and may be provided on the reflection ring 69. The gas exhaust hole 86 is connected to a gas exhaust pipe 88 via a buffer space 87 formed in an annular shape inside the side wall of the chamber 6. The gas exhaust pipe 88 is connected to the exhaust part 190. An exhaust valve 89 and a trap box 90 are interposed in the middle of the path of the gas exhaust pipe 88. When the exhaust valve 89 is opened, the gas in the heat treatment space 65 is exhausted from the gas exhaust hole 86 to the gas exhaust pipe 88 via the buffer space 87. Note that a plurality of gas supply holes 81 and gas exhaust holes 86 may be provided along the circumferential direction of the chamber 6 or may be slit-shaped.
 排気部190としては、真空ポンプや熱処理装置1が設置される工場の排気ユーティリティを用いることができる。排気部190として真空ポンプを採用し、給気バルブ84を閉止してガス供給孔81から何らのガス供給を行うことなく密閉空間である熱処理空間65の雰囲気を排気すると、チャンバー6内を真空雰囲気にまで減圧することができる。また、排気部190として真空ポンプを用いていない場合であっても、ガス供給孔81からガス供給を行うことなく排気を行うことにより、チャンバー6内を大気圧未満の気圧に減圧することができる。 (4) As the exhaust unit 190, an exhaust utility of a factory where the vacuum pump and the heat treatment apparatus 1 are installed can be used. When a vacuum pump is adopted as the exhaust unit 190, the air supply valve 84 is closed, and the atmosphere in the heat treatment space 65, which is a closed space, is exhausted without supplying any gas from the gas supply hole 81, the inside of the chamber 6 becomes a vacuum atmosphere The pressure can be reduced to Further, even when a vacuum pump is not used as the exhaust unit 190, the inside of the chamber 6 can be depressurized to a pressure lower than the atmospheric pressure by performing the exhaust without supplying the gas from the gas supply hole 81. .
 図8は、トラップボックス90の構成を示す斜視図である。また、図9はトラップボックス90の正面図であり、図10はトラップボックス90の平面図である。図8~図10の各図においては、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を付している。 FIG. 8 is a perspective view showing the configuration of the trap box 90. FIG. 9 is a front view of the trap box 90, and FIG. 10 is a plan view of the trap box 90. In each of FIGS. 8 to 10, an XYZ orthogonal coordinate system is used in which the Z-axis direction is a vertical direction and the XY plane is a horizontal plane in order to clarify the directional relationship.
 トラップボックス90は、ガス排気管88の経路途中に設けられている。トラップボックス90の設置位置は特に限定されるものではないが、ガス排気管88の経路途中において可能な限りチャンバー6のガス排気孔86の近くに設けるのが好ましい。 The trap box 90 is provided in the path of the gas exhaust pipe 88. The installation position of the trap box 90 is not particularly limited, but it is preferable that the trap box 90 be provided as close to the gas exhaust hole 86 of the chamber 6 as possible in the course of the gas exhaust pipe 88.
 トラップボックス90は、筐体91の内部に、主たる構成要素としてラジエーター92、トラッププレート95およびウェハー収容部96を備える。筐体91は、中空の直方体形状の箱である。筐体91には、内部に気体を取り入れる給気口97および内部の気体を排出する排気口98が設けられている。給気口97および排気口98は、チャンバー6から排出された気体を導くガス排気管88に接続される。 The trap box 90 includes a radiator 92, a trap plate 95, and a wafer accommodating portion 96 as main components inside a casing 91. The housing 91 is a hollow rectangular parallelepiped box. The housing 91 is provided with an air supply port 97 for taking in gas inside and an exhaust port 98 for discharging gas inside. The supply port 97 and the exhaust port 98 are connected to a gas exhaust pipe 88 that guides the gas exhausted from the chamber 6.
 ラジエーター92は、筐体91の内部空間を隔てるように、筐体91の断面(YZ断面)の全面に設けられている。ラジエーター92は、複数の冷却管93、図示を省略するタンクおよび循環ポンプを備える。複数の冷却管93は、所定の間隔を隔てて平行に並べて配置されている。複数の冷却管93のそれぞれは、熱伝導性に優れた材質、例えばアルミニウムによって形成されている。タンクに貯留されている所定温度に温調された冷却液(例えば、冷却水)が循環ポンプによって複数の冷却管93内を流れて循環されるように構成されている。複数の冷却管93の間を通る気体は冷却液が流れる冷却管93によって冷却されることとなる。ラジエーター92は、筐体91の断面全面に設けられているため、筐体91を通過する気流全体を冷却する。なお、ラジエーター92の冷却効率を高めるために、冷却管93は表面積の大きな蛇行形状とされていていても良いし、複数の冷却管93が格子状に配置されていても良い。 The radiator 92 is provided on the entire cross section (YZ cross section) of the housing 91 so as to separate the internal space of the housing 91. The radiator 92 includes a plurality of cooling pipes 93, a tank (not shown), and a circulation pump. The plurality of cooling pipes 93 are arranged in parallel at predetermined intervals. Each of the plurality of cooling pipes 93 is formed of a material having excellent heat conductivity, for example, aluminum. The cooling liquid (for example, cooling water) whose temperature is controlled to a predetermined temperature stored in the tank is configured to flow and circulate through the plurality of cooling pipes 93 by a circulation pump. The gas passing between the plurality of cooling pipes 93 is cooled by the cooling pipes 93 through which the cooling liquid flows. Since the radiator 92 is provided on the entire cross section of the casing 91, it cools the entire airflow passing through the casing 91. In order to increase the cooling efficiency of the radiator 92, the cooling pipe 93 may have a meandering shape with a large surface area, or a plurality of cooling pipes 93 may be arranged in a grid.
 トラッププレート95は、筐体91の内部にてラジエーター92と平行に設けられた板状部材である。図8および図9に示すように、トラッププレート95は、筐体91の断面(YZ断面)の上部を遮蔽するように設けられている。従って、トラッププレート95が設置された筐体91の断面において、トラッププレート95の下方は開放されている。トラッププレート95の材質は特に限定されるものではないが、例えば塩化ビニル樹脂を用いることができる。 The trap plate 95 is a plate-like member provided in the housing 91 in parallel with the radiator 92. As shown in FIGS. 8 and 9, the trap plate 95 is provided so as to shield an upper part of a cross section (YZ cross section) of the housing 91. Therefore, the lower part of the trap plate 95 is open in the cross section of the housing 91 in which the trap plate 95 is installed. Although the material of the trap plate 95 is not particularly limited, for example, a vinyl chloride resin can be used.
 ラジエーター92およびトラッププレート95は、筐体91に対して着脱可能に設けられている。従って、必要に応じてラジエーター92およびトラッププレート95を交換することが可能である。 The radiator 92 and the trap plate 95 are provided detachably with respect to the housing 91. Therefore, the radiator 92 and the trap plate 95 can be exchanged as needed.
 ウェハー収容部96は、筐体91の内部にてトラッププレート95の下方に設置されている。ウェハー収容部96は、トラッププレート95の下方にて計測用ウェハーMWを水平姿勢に載置する。つまり、ウェハー収容部96は、トラッププレート95と垂直に計測用ウェハーMWを載置する。計測用ウェハーMWは、一般的な半導体ウェハーWと同じ形状およびサイズを有するシリコン基板である。但し、計測用ウェハーMWには、パターン形成や成膜処理はなされていない。 The wafer accommodating portion 96 is installed below the trap plate 95 inside the housing 91. The wafer accommodating section 96 places the measurement wafer MW in a horizontal position below the trap plate 95. That is, the wafer accommodating portion 96 places the measurement wafer MW perpendicular to the trap plate 95. The measurement wafer MW is a silicon substrate having the same shape and size as a general semiconductor wafer W. However, no pattern formation or film formation processing has been performed on the measurement wafer MW.
 図2は、保持部7の全体外観を示す斜視図である。保持部7は、基台リング71、連結部72およびサセプタ74を備えて構成される。基台リング71、連結部72およびサセプタ74はいずれも石英にて形成されている。すなわち、保持部7の全体が石英にて形成されている。 FIG. 2 is a perspective view showing the overall appearance of the holding unit 7. The holding unit 7 includes a base ring 71, a connecting unit 72, and a susceptor 74. The base ring 71, the connecting portion 72, and the susceptor 74 are all formed of quartz. That is, the entire holding section 7 is formed of quartz.
 基台リング71は円環形状から一部が欠落した円弧形状の石英部材である。この欠落部分は、後述する移載機構10の移載アーム11と基台リング71との干渉を防ぐために設けられている。基台リング71は凹部62の底面に載置されることによって、チャンバー6の壁面に支持されることとなる(図1参照)。基台リング71の上面に、その円環形状の周方向に沿って複数の連結部72(本実施形態では4個)が立設される。連結部72も石英の部材であり、溶接によって基台リング71に固着される。 The base ring 71 is an arc-shaped quartz member in which a part is omitted from the ring shape. The missing portion is provided to prevent interference between a transfer arm 11 of the transfer mechanism 10 described below and the base ring 71. The base ring 71 is supported on the wall surface of the chamber 6 by being placed on the bottom surface of the concave portion 62 (see FIG. 1). A plurality of connecting portions 72 (four in this embodiment) are erected on the upper surface of the base ring 71 along the circumferential direction of the ring shape. The connecting portion 72 is also a quartz member, and is fixed to the base ring 71 by welding.
 サセプタ74は基台リング71に設けられた4個の連結部72によって支持される。図3は、サセプタ74の平面図である。また、図4は、サセプタ74の断面図である。サセプタ74は、保持プレート75、ガイドリング76および複数の基板支持ピン77を備える。保持プレート75は、石英にて形成された略円形の平板状部材である。保持プレート75の直径は半導体ウェハーWの直径よりも大きい。すなわち、保持プレート75は、半導体ウェハーWよりも大きな平面サイズを有する。 The susceptor 74 is supported by four connecting portions 72 provided on the base ring 71. FIG. 3 is a plan view of the susceptor 74. FIG. 4 is a sectional view of the susceptor 74. The susceptor 74 includes a holding plate 75, a guide ring 76, and a plurality of substrate support pins 77. The holding plate 75 is a substantially circular plate-shaped member formed of quartz. The diameter of the holding plate 75 is larger than the diameter of the semiconductor wafer W. That is, the holding plate 75 has a larger planar size than the semiconductor wafer W.
 保持プレート75の上面周縁部にガイドリング76が設置されている。ガイドリング76は、半導体ウェハーWの直径よりも大きな内径を有する円環形状の部材である。例えば、半導体ウェハーWの直径がφ300mmの場合、ガイドリング76の内径はφ320mmである。ガイドリング76の内周は、保持プレート75から上方に向けて広くなるようなテーパ面とされている。ガイドリング76は、保持プレート75と同様の石英にて形成される。ガイドリング76は、保持プレート75の上面に溶着するようにしても良いし、別途加工したピンなどによって保持プレート75に固定するようにしても良い。或いは、保持プレート75とガイドリング76とを一体の部材として加工するようにしても良い。 ガ イ ド A guide ring 76 is provided on the periphery of the upper surface of the holding plate 75. The guide ring 76 is an annular member having an inner diameter larger than the diameter of the semiconductor wafer W. For example, when the diameter of the semiconductor wafer W is φ300 mm, the inner diameter of the guide ring 76 is φ320 mm. The inner circumference of the guide ring 76 has a tapered surface that widens upward from the holding plate 75. The guide ring 76 is formed of the same quartz as the holding plate 75. The guide ring 76 may be welded to the upper surface of the holding plate 75, or may be fixed to the holding plate 75 by a separately processed pin or the like. Alternatively, the holding plate 75 and the guide ring 76 may be processed as an integral member.
 保持プレート75の上面のうちガイドリング76よりも内側の領域が半導体ウェハーWを保持する平面状の保持面75aとされる。保持プレート75の保持面75aには、複数の基板支持ピン77が立設されている。本実施形態においては、保持面75aの外周円(ガイドリング76の内周円)と同心円の周上に沿って30°毎に計12個の基板支持ピン77が立設されている。12個の基板支持ピン77を配置した円の径(対向する基板支持ピン77間の距離)は半導体ウェハーWの径よりも小さく、半導体ウェハーWの径がφ300mmであればφ270mm~φ280mm(本実施形態ではφ270mm)である。それぞれの基板支持ピン77は石英にて形成されている。複数の基板支持ピン77は、保持プレート75の上面に溶接によって設けるようにしても良いし、保持プレート75と一体に加工するようにしても良い。 の う ち A region inside the guide ring 76 on the upper surface of the holding plate 75 is a flat holding surface 75a for holding the semiconductor wafer W. A plurality of substrate support pins 77 are provided upright on the holding surface 75 a of the holding plate 75. In the present embodiment, a total of 12 substrate support pins 77 are erected at every 30 ° along the outer circumference of the holding surface 75a (the inner circumference of the guide ring 76). The diameter of the circle in which the twelve substrate support pins 77 are arranged (the distance between the opposing substrate support pins 77) is smaller than the diameter of the semiconductor wafer W. If the diameter of the semiconductor wafer W is φ300 mm, φ270 mm to φ280 mm (this embodiment) (Φ270 mm in the form). Each substrate support pin 77 is formed of quartz. The plurality of substrate support pins 77 may be provided on the upper surface of the holding plate 75 by welding, or may be processed integrally with the holding plate 75.
 図2に戻り、基台リング71に立設された4個の連結部72とサセプタ74の保持プレート75の周縁部とが溶接によって固着される。すなわち、サセプタ74と基台リング71とは連結部72によって固定的に連結されている。このような保持部7の基台リング71がチャンバー6の壁面に支持されることによって、保持部7がチャンバー6に装着される。保持部7がチャンバー6に装着された状態においては、サセプタ74の保持プレート75は水平姿勢(法線が鉛直方向と一致する姿勢)となる。すなわち、保持プレート75の保持面75aは水平面となる。 Returning to FIG. 2, the four connecting portions 72 erected on the base ring 71 and the peripheral edge of the holding plate 75 of the susceptor 74 are fixed by welding. That is, the susceptor 74 and the base ring 71 are fixedly connected by the connecting portion 72. By supporting the base ring 71 of the holder 7 on the wall surface of the chamber 6, the holder 7 is mounted on the chamber 6. When the holding unit 7 is mounted on the chamber 6, the holding plate 75 of the susceptor 74 is in a horizontal posture (a posture in which the normal line coincides with the vertical direction). That is, the holding surface 75a of the holding plate 75 is a horizontal plane.
 チャンバー6に搬入された半導体ウェハーWは、チャンバー6に装着された保持部7のサセプタ74の上に水平姿勢にて載置されて保持される。このとき、半導体ウェハーWは保持プレート75上に立設された12個の基板支持ピン77によって支持されてサセプタ74に保持される。より厳密には、12個の基板支持ピン77の上端部が半導体ウェハーWの下面に接触して当該半導体ウェハーWを支持する。12個の基板支持ピン77の高さ(基板支持ピン77の上端から保持プレート75の保持面75aまでの距離)は均一であるため、12個の基板支持ピン77によって半導体ウェハーWを水平姿勢に支持することができる。 The semiconductor wafer W carried into the chamber 6 is placed and held in a horizontal posture on the susceptor 74 of the holding unit 7 mounted on the chamber 6. At this time, the semiconductor wafer W is supported by twelve substrate support pins 77 erected on the holding plate 75 and held by the susceptor 74. More precisely, the upper ends of the twelve substrate support pins 77 contact the lower surface of the semiconductor wafer W to support the semiconductor wafer W. Since the height of the twelve substrate support pins 77 (the distance from the upper end of the substrate support pins 77 to the holding surface 75a of the holding plate 75) is uniform, the semiconductor wafer W is placed in a horizontal posture by the twelve substrate support pins 77. Can be supported.
 また、半導体ウェハーWは複数の基板支持ピン77によって保持プレート75の保持面75aから所定の間隔を隔てて支持されることとなる。基板支持ピン77の高さよりもガイドリング76の厚さの方が大きい。従って、複数の基板支持ピン77によって支持された半導体ウェハーWの水平方向の位置ずれはガイドリング76によって防止される。 {Circle around (1)} The semiconductor wafer W is supported by the plurality of substrate support pins 77 at a predetermined distance from the holding surface 75a of the holding plate 75. The thickness of the guide ring 76 is larger than the height of the substrate support pins 77. Therefore, the horizontal displacement of the semiconductor wafer W supported by the plurality of substrate support pins 77 is prevented by the guide ring 76.
 また、図2および図3に示すように、サセプタ74の保持プレート75には、上下に貫通して開口部78が形成されている。開口部78は、放射温度計20が半導体ウェハーWの下面から放射される放射光(赤外光)を受光するために設けられている。すなわち、放射温度計20が開口部78およびチャンバー側部61の貫通孔61aに装着された透明窓21を介して半導体ウェハーWの下面から放射された光を受光して当該半導体ウェハーWの温度を測定する。さらに、サセプタ74の保持プレート75には、後述する移載機構10のリフトピン12が半導体ウェハーWの受け渡しのために貫通する4個の貫通孔79が穿設されている。 {Circle around (2)} As shown in FIGS. 2 and 3, the holding plate 75 of the susceptor 74 has an opening 78 penetrating vertically. The opening 78 is provided for the radiation thermometer 20 to receive radiation light (infrared light) radiated from the lower surface of the semiconductor wafer W. That is, the radiation thermometer 20 receives the light radiated from the lower surface of the semiconductor wafer W through the opening 78 and the transparent window 21 attached to the through hole 61a of the chamber side portion 61, and reduces the temperature of the semiconductor wafer W. Measure. Further, the holding plate 75 of the susceptor 74 is provided with four through holes 79 through which the lift pins 12 of the transfer mechanism 10 to be described later pass for transferring the semiconductor wafer W.
 図5は、移載機構10の平面図である。また、図6は、移載機構10の側面図である。移載機構10は、2本の移載アーム11を備える。移載アーム11は、概ね円環状の凹部62に沿うような円弧形状とされている。それぞれの移載アーム11には2本のリフトピン12が立設されている。移載アーム11およびリフトピン12は石英にて形成されている。各移載アーム11は水平移動機構13によって回動可能とされている。水平移動機構13は、一対の移載アーム11を保持部7に対して半導体ウェハーWの移載を行う移載動作位置(図5の実線位置)と保持部7に保持された半導体ウェハーWと平面視で重ならない退避位置(図5の二点鎖線位置)との間で水平移動させる。水平移動機構13としては、個別のモータによって各移載アーム11をそれぞれ回動させるものであっても良いし、リンク機構を用いて1個のモータによって一対の移載アーム11を連動させて回動させるものであっても良い。 FIG. 5 is a plan view of the transfer mechanism 10. FIG. 6 is a side view of the transfer mechanism 10. The transfer mechanism 10 includes two transfer arms 11. The transfer arm 11 is formed in a circular arc shape along the generally annular concave portion 62. Each transfer arm 11 is provided with two lift pins 12 standing upright. The transfer arm 11 and the lift pins 12 are formed of quartz. Each transfer arm 11 is rotatable by a horizontal movement mechanism 13. The horizontal movement mechanism 13 moves the pair of transfer arms 11 to a transfer operation position (solid line position in FIG. 5) where the semiconductor wafer W is transferred to the holding unit 7 and the semiconductor wafer W held by the holding unit 7. The horizontal movement is performed between a retracted position (a position indicated by a two-dot chain line in FIG. 5) that does not overlap in a plan view. The horizontal movement mechanism 13 may be configured to rotate each transfer arm 11 by an individual motor, or may be rotated by linking a pair of transfer arms 11 by a single motor using a link mechanism. It may be moved.
 また、一対の移載アーム11は、昇降機構14によって水平移動機構13とともに昇降移動される。昇降機構14が一対の移載アーム11を移載動作位置にて上昇させると、計4本のリフトピン12がサセプタ74に穿設された貫通孔79(図2,3参照)を通過し、リフトピン12の上端がサセプタ74の上面から突き出る。一方、昇降機構14が一対の移載アーム11を移載動作位置にて下降させてリフトピン12を貫通孔79から抜き取り、水平移動機構13が一対の移載アーム11を開くように移動させると各移載アーム11が退避位置に移動する。一対の移載アーム11の退避位置は、保持部7の基台リング71の直上である。基台リング71は凹部62の底面に載置されているため、移載アーム11の退避位置は凹部62の内側となる。なお、移載機構10の駆動部(水平移動機構13および昇降機構14)が設けられている部位の近傍にも図示省略の排気機構が設けられており、移載機構10の駆動部周辺の雰囲気がチャンバー6の外部に排出されるように構成されている。 (4) The pair of transfer arms 11 is moved up and down by the elevating mechanism 14 together with the horizontal moving mechanism 13. When the lifting mechanism 14 raises the pair of transfer arms 11 at the transfer operation position, a total of four lift pins 12 pass through the through holes 79 (see FIGS. 2 and 3) formed in the susceptor 74, and The upper end of 12 protrudes from the upper surface of susceptor 74. On the other hand, when the elevating mechanism 14 lowers the pair of transfer arms 11 at the transfer operation position, pulls out the lift pins 12 from the through holes 79, and moves the horizontal movement mechanism 13 to open the pair of transfer arms 11, The transfer arm 11 moves to the retreat position. The retracted position of the pair of transfer arms 11 is immediately above the base ring 71 of the holding unit 7. Since the base ring 71 is placed on the bottom surface of the concave portion 62, the retreat position of the transfer arm 11 is inside the concave portion 62. An exhaust mechanism (not shown) is also provided near the portion where the driving unit (the horizontal moving mechanism 13 and the elevating mechanism 14) of the transfer mechanism 10 is provided. Is discharged to the outside of the chamber 6.
 図1に戻り、チャンバー6の上方に設けられたフラッシュ加熱部5は、筐体51の内側に、複数本(本実施形態では30本)のキセノンフラッシュランプFLからなる光源と、その光源の上方を覆うように設けられたリフレクタ52と、を備えて構成される。また、フラッシュ加熱部5の筐体51の底部にはランプ光放射窓53が装着されている。フラッシュ加熱部5の床部を構成するランプ光放射窓53は、石英により形成された板状の石英窓である。フラッシュ加熱部5がチャンバー6の上方に設置されることにより、ランプ光放射窓53が上側チャンバー窓63と相対向することとなる。フラッシュランプFLはチャンバー6の上方からランプ光放射窓53および上側チャンバー窓63を介して熱処理空間65にフラッシュ光を照射する。 Returning to FIG. 1, the flash heating unit 5 provided above the chamber 6 includes a light source including a plurality of (30 in this embodiment) xenon flash lamps FL and a light source above the light source. And a reflector 52 provided so as to cover the reflector. A lamp light emission window 53 is mounted on the bottom of the housing 51 of the flash heating unit 5. The lamp light emission window 53 constituting the floor of the flash heating unit 5 is a plate-shaped quartz window made of quartz. When the flash heating unit 5 is installed above the chamber 6, the lamp light emission window 53 faces the upper chamber window 63. The flash lamp FL irradiates the heat treatment space 65 with flash light from above the chamber 6 through the lamp light emission window 53 and the upper chamber window 63.
 複数のフラッシュランプFLは、それぞれが長尺の円筒形状を有する棒状ランプであり、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように平面状に配列されている。よって、フラッシュランプFLの配列によって形成される平面も水平面である。複数のフラッシュランプFLが配列される領域は半導体ウェハーWの平面サイズよりも大きい。 The plurality of flash lamps FL are rod-shaped lamps each having a long cylindrical shape, and each of the plurality of flash lamps FL has a longitudinal direction along the main surface of the semiconductor wafer W held by the holding unit 7 (that is, along the horizontal direction). They are arranged in a plane so as to be parallel to each other. Therefore, the plane formed by the arrangement of the flash lamps FL is also a horizontal plane. The area where the plurality of flash lamps FL are arranged is larger than the plane size of the semiconductor wafer W.
 キセノンフラッシュランプFLは、その内部にキセノンガスが封入されその両端部にコンデンサーに接続された陽極および陰極が配設された棒状のガラス管(放電管)と、該ガラス管の外周面上に付設されたトリガー電極とを備える。キセノンガスは電気的には絶縁体であることから、コンデンサーに電荷が蓄積されていたとしても通常の状態ではガラス管内に電気は流れない。しかしながら、トリガー電極に高電圧を印加して絶縁を破壊した場合には、コンデンサーに蓄えられた電気がガラス管内に瞬時に流れ、そのときのキセノンの原子あるいは分子の励起によって光が放出される。このようなキセノンフラッシュランプFLにおいては、予めコンデンサーに蓄えられていた静電エネルギーが0.1ミリセカンドないし100ミリセカンドという極めて短い光パルスに変換されることから、ハロゲンランプHLの如き連続点灯の光源に比べて極めて強い光を照射し得るという特徴を有する。すなわち、フラッシュランプFLは、1秒未満の極めて短い時間で瞬間的に発光するパルス発光ランプである。なお、フラッシュランプFLの発光時間は、フラッシュランプFLに電力供給を行うランプ電源のコイル定数によって調整することができる。 The xenon flash lamp FL has a rod-shaped glass tube (discharge tube) in which xenon gas is sealed and an anode and a cathode connected to a condenser are disposed at both ends thereof, and is provided on the outer peripheral surface of the glass tube. And a trigger electrode. Since xenon gas is electrically an insulator, electricity does not flow in a glass tube in a normal state even if charges are stored in a capacitor. However, when a high voltage is applied to the trigger electrode to break the insulation, the electricity stored in the capacitor flows instantaneously into the glass tube, and light is emitted by the excitation of xenon atoms or molecules at that time. In such a xenon flash lamp FL, since the electrostatic energy stored in the condenser in advance is converted into an extremely short light pulse of 0.1 to 100 milliseconds, continuous lighting such as a halogen lamp HL is performed. It has a feature that it can emit extremely strong light compared to a light source. That is, the flash lamp FL is a pulsed lamp that emits light instantaneously in a very short time of less than one second. The light emission time of the flash lamp FL can be adjusted by the coil constant of a lamp power supply that supplies power to the flash lamp FL.
 また、リフレクタ52は、複数のフラッシュランプFLの上方にそれら全体を覆うように設けられている。リフレクタ52の基本的な機能は、複数のフラッシュランプFLから出射されたフラッシュ光を熱処理空間65の側に反射するというものである。リフレクタ52はアルミニウム合金板にて形成されており、その表面(フラッシュランプFLに臨む側の面)はブラスト処理により粗面化加工が施されている。 (4) The reflector 52 is provided above the plurality of flash lamps FL so as to cover the entirety thereof. The basic function of the reflector 52 is to reflect flash light emitted from the plurality of flash lamps FL to the heat treatment space 65 side. The reflector 52 is made of an aluminum alloy plate, and its surface (the surface facing the flash lamp FL) is roughened by blasting.
 チャンバー6の下方に設けられたハロゲン加熱部4は、筐体41の内側に複数本(本実施形態では40本)のハロゲンランプHLを内蔵している。ハロゲン加熱部4は、複数のハロゲンランプHLによってチャンバー6の下方から下側チャンバー窓64を介して熱処理空間65への光照射を行って半導体ウェハーWを加熱する。 (4) The halogen heating unit 4 provided below the chamber 6 has a plurality of (in this embodiment, 40) halogen lamps HL inside the housing 41. The halogen heating unit 4 heats the semiconductor wafer W by irradiating the heat treatment space 65 from below the chamber 6 through the lower chamber window 64 with a plurality of halogen lamps HL.
 図7は、複数のハロゲンランプHLの配置を示す平面図である。40本のハロゲンランプHLは上下2段に分けて配置されている。保持部7に近い上段に20本のハロゲンランプHLが配設されるとともに、上段よりも保持部7から遠い下段にも20本のハロゲンランプHLが配設されている。各ハロゲンランプHLは、長尺の円筒形状を有する棒状ランプである。上段、下段ともに20本のハロゲンランプHLは、それぞれの長手方向が保持部7に保持される半導体ウェハーWの主面に沿って(つまり水平方向に沿って)互いに平行となるように配列されている。よって、上段、下段ともにハロゲンランプHLの配列によって形成される平面は水平面である。 FIG. 7 is a plan view showing an arrangement of a plurality of halogen lamps HL. The forty halogen lamps HL are arranged in two upper and lower stages. Twenty halogen lamps HL are arranged in an upper stage near the holding unit 7 and 20 halogen lamps HL are arranged in a lower stage farther from the holding unit 7 than the upper stage. Each halogen lamp HL is a rod-shaped lamp having a long cylindrical shape. The upper and lower 20 halogen lamps HL are arranged so that their respective longitudinal directions are parallel to each other along the main surface of the semiconductor wafer W held by the holder 7 (that is, along the horizontal direction). I have. Therefore, the plane formed by the arrangement of the halogen lamps HL in both the upper and lower stages is a horizontal plane.
 また、図7に示すように、上段、下段ともに保持部7に保持される半導体ウェハーWの中央部に対向する領域よりも周縁部に対向する領域におけるハロゲンランプHLの配設密度が高くなっている。すなわち、上下段ともに、ランプ配列の中央部よりも周縁部の方がハロゲンランプHLの配設ピッチが短い。このため、ハロゲン加熱部4からの光照射による加熱時に温度低下が生じやすい半導体ウェハーWの周縁部により多い光量の照射を行うことができる。 Further, as shown in FIG. 7, the arrangement density of the halogen lamps HL in the region opposed to the peripheral portion is higher than the region opposed to the central portion of the semiconductor wafer W held by the holding portion 7 in both the upper and lower stages. I have. That is, in both upper and lower stages, the arrangement pitch of the halogen lamps HL is shorter at the periphery than at the center of the lamp array. For this reason, it is possible to irradiate a larger amount of light to the peripheral portion of the semiconductor wafer W where the temperature is likely to decrease during heating by light irradiation from the halogen heating unit 4.
 また、上段のハロゲンランプHLからなるランプ群と下段のハロゲンランプHLからなるランプ群とが格子状に交差するように配列されている。すなわち、上段に配置された20本のハロゲンランプHLの長手方向と下段に配置された20本のハロゲンランプHLの長手方向とが互いに直交するように計40本のハロゲンランプHLが配設されている。 {Also, a lamp group composed of the upper halogen lamps HL and a lamp group composed of the lower halogen lamps HL are arranged so as to intersect in a grid pattern. That is, a total of 40 halogen lamps HL are arranged such that the longitudinal direction of the 20 halogen lamps HL arranged in the upper stage and the longitudinal direction of the 20 halogen lamps HL arranged in the lower stage are orthogonal to each other. I have.
 ハロゲンランプHLは、ガラス管内部に配設されたフィラメントに通電することでフィラメントを白熱化させて発光させるフィラメント方式の光源である。ガラス管の内部には、窒素やアルゴン等の不活性ガスにハロゲン元素(ヨウ素、臭素等)を微量導入した気体が封入されている。ハロゲン元素を導入することによって、フィラメントの折損を抑制しつつフィラメントの温度を高温に設定することが可能となる。したがって、ハロゲンランプHLは、通常の白熱電球に比べて寿命が長くかつ強い光を連続的に照射できるという特性を有する。すなわち、ハロゲンランプHLは少なくとも1秒以上連続して発光する連続点灯ランプである。また、ハロゲンランプHLは棒状ランプであるため長寿命であり、ハロゲンランプHLを水平方向に沿わせて配置することにより上方の半導体ウェハーWへの放射効率が優れたものとなる。 The halogen lamp HL is a filament type light source which emits light by incandescent the filament by energizing the filament provided inside the glass tube. A gas in which a trace amount of a halogen element (iodine, bromine, or the like) is introduced into an inert gas such as nitrogen or argon is sealed inside the glass tube. By introducing a halogen element, it is possible to set the temperature of the filament to a high temperature while suppressing breakage of the filament. Therefore, the halogen lamp HL has a characteristic that it has a longer life and can continuously emit strong light as compared with a normal incandescent lamp. That is, the halogen lamp HL is a continuous lighting lamp that emits light continuously for at least one second. Further, since the halogen lamp HL is a rod-shaped lamp, it has a long life. By arranging the halogen lamp HL along the horizontal direction, the radiation efficiency to the upper semiconductor wafer W becomes excellent.
 また、ハロゲン加熱部4の筐体41内にも、2段のハロゲンランプHLの下側にリフレクタ43が設けられている(図1)。リフレクタ43は、複数のハロゲンランプHLから出射された光を熱処理空間65の側に反射する。 {Circle around (1)} Also, a reflector 43 is provided below the two-stage halogen lamp HL in the housing 41 of the halogen heating unit 4 (FIG. 1). The reflector 43 reflects the light emitted from the plurality of halogen lamps HL to the heat treatment space 65 side.
 制御部3は、熱処理装置1に設けられた上記の種々の動作機構を制御する。制御部3のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部3は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく磁気ディスクを備えている。制御部3のCPUが所定の処理プログラムを実行することによって熱処理装置1における処理が進行する。 The control unit 3 controls the various operation mechanisms described above provided in the heat treatment apparatus 1. The configuration of the control unit 3 as hardware is the same as that of a general computer. That is, the control unit 3 includes a CPU that is a circuit for performing various arithmetic processing, a ROM that is a read-only memory that stores a basic program, a RAM that is a readable and writable memory that stores various information, and control software and data. It has a magnetic disk for storing. The processing in the heat treatment apparatus 1 proceeds when the CPU of the control unit 3 executes a predetermined processing program.
 上記の構成以外にも熱処理装置1は、半導体ウェハーWの熱処理時にハロゲンランプHLおよびフラッシュランプFLから発生する熱エネルギーによるハロゲン加熱部4、フラッシュ加熱部5およびチャンバー6の過剰な温度上昇を防止するため、様々な冷却用の構造を備えている。例えば、チャンバー6の壁体には水冷管(図示省略)が設けられている。また、ハロゲン加熱部4およびフラッシュ加熱部5は、内部に気体流を形成して排熱する空冷構造とされている。また、上側チャンバー窓63とランプ光放射窓53との間隙にも空気が供給され、フラッシュ加熱部5および上側チャンバー窓63を冷却する。 In addition to the above-described configuration, the heat treatment apparatus 1 prevents an excessive rise in temperature of the halogen heating unit 4, the flash heating unit 5, and the chamber 6 due to heat energy generated from the halogen lamp HL and the flash lamp FL during the heat treatment of the semiconductor wafer W. Therefore, it has various cooling structures. For example, a water cooling tube (not shown) is provided on the wall of the chamber 6. Further, the halogen heating unit 4 and the flash heating unit 5 have an air cooling structure that forms a gas flow inside and discharges heat. Air is also supplied to the gap between the upper chamber window 63 and the lamp light emission window 53 to cool the flash heating unit 5 and the upper chamber window 63.
 次に、熱処理装置1における処理動作について説明する。まず、処理対象となる半導体ウェハーWに対する熱処理の手順について説明する。ここで処理対象となる半導体ウェハーWは、シリコンの基材上にガリウムヒ素の半導体薄膜が形成された半導体基板である。そのガリウムヒ素の半導体薄膜に注入された不純物の活性化が熱処理装置1によるフラッシュ光照射加熱処理(アニール)により実行される。以下に説明する半導体ウェハーWの処理手順は、制御部3が熱処理装置1の各動作機構を制御することにより進行する。 Next, the processing operation in the heat treatment apparatus 1 will be described. First, the procedure of the heat treatment for the semiconductor wafer W to be processed will be described. Here, the semiconductor wafer W to be processed is a semiconductor substrate having a gallium arsenide semiconductor thin film formed on a silicon base material. The activation of the impurities implanted in the gallium arsenide semiconductor thin film is performed by flash light irradiation heat treatment (annealing) by the heat treatment apparatus 1. The processing procedure of the semiconductor wafer W described below proceeds by the control unit 3 controlling each operation mechanism of the heat treatment apparatus 1.
 まず、給気バルブ84が開放されるとともに、排気バルブ89が開放されてチャンバー6内に対する給排気が開始される。給気バルブ84が開放されると、ガス供給孔81から熱処理空間65に窒素ガスが供給される。また、排気バルブ89が開放されると、ガス排気孔86からチャンバー6内の気体が排気される。これにより、チャンバー6内の熱処理空間65の上部から供給された窒素ガスが下方へと流れ、熱処理空間65の下部から排気される。 {Circle around (1)} First, the air supply valve 84 is opened, and the exhaust valve 89 is opened, and air supply and exhaust to the chamber 6 are started. When the air supply valve 84 is opened, nitrogen gas is supplied from the gas supply hole 81 to the heat treatment space 65. When the exhaust valve 89 is opened, the gas in the chamber 6 is exhausted from the gas exhaust hole 86. Thereby, the nitrogen gas supplied from the upper part of the heat treatment space 65 in the chamber 6 flows downward, and is exhausted from the lower part of the heat treatment space 65.
 続いて、ゲートバルブ185が開いて搬送開口部66が開放され、装置外部の搬送ロボットにより搬送開口部66を介して処理対象となる半導体ウェハーWがチャンバー6内の熱処理空間65に搬入される。このときには、半導体ウェハーWの搬入にともなって装置外部の雰囲気を巻き込むおそれがあるが、チャンバー6には窒素ガスが供給され続けているため、搬送開口部66から窒素ガスが流出して、そのような外部雰囲気の巻き込みを最小限に抑制することができる。 (4) Subsequently, the gate valve 185 is opened to open the transfer opening 66, and the semiconductor wafer W to be processed is carried into the heat treatment space 65 in the chamber 6 via the transfer opening 66 by the transfer robot outside the apparatus. At this time, there is a possibility that the atmosphere outside the apparatus may be involved when the semiconductor wafer W is loaded, but since the nitrogen gas is continuously supplied to the chamber 6, the nitrogen gas flows out from the transfer opening 66, and Entrapment of an external atmosphere can be minimized.
 搬送ロボットによって搬入された半導体ウェハーWは保持部7の直上位置まで進出して停止する。そして、移載機構10の一対の移載アーム11が退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12が貫通孔79を通ってサセプタ74の保持プレート75の上面から突き出て半導体ウェハーWを受け取る。このとき、リフトピン12は基板支持ピン77の上端よりも上方にまで上昇する。 (4) The semiconductor wafer W carried in by the transfer robot advances to a position immediately above the holding unit 7 and stops. When the pair of transfer arms 11 of the transfer mechanism 10 move horizontally from the retreat position to the transfer operation position and rise, the lift pins 12 protrude from the upper surface of the holding plate 75 of the susceptor 74 through the through holes 79. To receive the semiconductor wafer W. At this time, the lift pins 12 rise above the upper ends of the substrate support pins 77.
 半導体ウェハーWがリフトピン12に載置された後、搬送ロボットが熱処理空間65から退出し、ゲートバルブ185によって搬送開口部66が閉鎖される。そして、一対の移載アーム11が下降することにより、半導体ウェハーWは移載機構10から保持部7のサセプタ74に受け渡されて水平姿勢にて下方より保持される。半導体ウェハーWは、保持プレート75上に立設された複数の基板支持ピン77によって支持されてサセプタ74に保持される。また、半導体ウェハーWは、ガリウムヒ素の半導体薄膜が形成された表面を上面として保持部7に保持される。複数の基板支持ピン77によって支持された半導体ウェハーWの裏面(表面とは反対側の主面)と保持プレート75の保持面75aとの間には所定の間隔が形成される。サセプタ74の下方にまで下降した一対の移載アーム11は水平移動機構13によって退避位置、すなわち凹部62の内側に退避する。 After the semiconductor wafer W is mounted on the lift pins 12, the transfer robot exits the heat treatment space 65, and the transfer opening 66 is closed by the gate valve 185. When the pair of transfer arms 11 is lowered, the semiconductor wafer W is transferred from the transfer mechanism 10 to the susceptor 74 of the holding unit 7 and is held from below in a horizontal posture. The semiconductor wafer W is supported by a plurality of substrate support pins 77 erected on a holding plate 75 and held by a susceptor 74. The semiconductor wafer W is held by the holder 7 with the surface on which the gallium arsenide semiconductor thin film is formed as the upper surface. A predetermined gap is formed between the back surface (main surface opposite to the front surface) of the semiconductor wafer W supported by the plurality of substrate support pins 77 and the holding surface 75a of the holding plate 75. The pair of transfer arms 11 descending to below the susceptor 74 are retracted by the horizontal moving mechanism 13 to the retracted position, that is, to the inside of the concave portion 62.
 半導体ウェハーWが石英にて形成された保持部7のサセプタ74によって水平姿勢にて下方より保持された後、ハロゲン加熱部4の40本のハロゲンランプHLが一斉に点灯して予備加熱(アシスト加熱)が開始される。ハロゲンランプHLから出射されたハロゲン光は、石英にて形成された下側チャンバー窓64およびサセプタ74を透過して半導体ウェハーWの下面に照射される。ハロゲンランプHLからの光照射を受けることによって半導体ウェハーWが予備加熱されて温度が上昇する。なお、移載機構10の移載アーム11は凹部62の内側に退避しているため、ハロゲンランプHLによる加熱の障害となることは無い。 After the semiconductor wafer W is held from below in a horizontal position by the susceptor 74 of the holding unit 7 formed of quartz, the 40 halogen lamps HL of the halogen heating unit 4 are simultaneously turned on to perform preliminary heating (assist heating). ) Is started. The halogen light emitted from the halogen lamp HL passes through the lower chamber window 64 and the susceptor 74 formed of quartz and irradiates the lower surface of the semiconductor wafer W. Upon receiving the light irradiation from the halogen lamp HL, the semiconductor wafer W is preheated and the temperature rises. Since the transfer arm 11 of the transfer mechanism 10 is retracted inside the concave portion 62, there is no obstacle to heating by the halogen lamp HL.
 ハロゲンランプHLによる予備加熱を行うときには、半導体ウェハーWの温度が放射温度計20によって測定されている。すなわち、サセプタ74に保持された半導体ウェハーWの下面から開口部78を介して放射された赤外光を透明窓21を通して放射温度計20が受光して昇温中のウェハー温度を測定する。測定された半導体ウェハーWの温度は制御部3に伝達される。制御部3は、ハロゲンランプHLからの光照射によって昇温する半導体ウェハーWの温度が所定の予備加熱温度T1に到達したか否かを監視しつつ、ハロゲンランプHLの出力を制御する。すなわち、制御部3は、放射温度計20による測定値に基づいて、半導体ウェハーWの温度が予備加熱温度T1となるようにハロゲンランプHLの出力をフィードバック制御する。 (4) When performing preliminary heating by the halogen lamp HL, the temperature of the semiconductor wafer W is measured by the radiation thermometer 20. That is, the radiation thermometer 20 receives infrared light radiated from the lower surface of the semiconductor wafer W held by the susceptor 74 through the opening 78 through the transparent window 21 and measures the temperature of the wafer being heated. The measured temperature of the semiconductor wafer W is transmitted to the control unit 3. The control unit 3 controls the output of the halogen lamp HL while monitoring whether or not the temperature of the semiconductor wafer W which is heated by the irradiation of light from the halogen lamp HL has reached a predetermined preheating temperature T1. That is, the control unit 3 performs feedback control of the output of the halogen lamp HL based on the value measured by the radiation thermometer 20 so that the temperature of the semiconductor wafer W becomes the preheating temperature T1.
 半導体ウェハーWの温度が予備加熱温度T1に到達した後、制御部3は半導体ウェハーWをその予備加熱温度T1に暫時維持する。具体的には、放射温度計20によって測定される半導体ウェハーWの温度が予備加熱温度T1に到達した時点にて制御部3がハロゲンランプHLの出力を調整し、半導体ウェハーWの温度をほぼ予備加熱温度T1に維持している。 (4) After the temperature of the semiconductor wafer W reaches the preheating temperature T1, the control unit 3 temporarily maintains the semiconductor wafer W at the preheating temperature T1. Specifically, when the temperature of the semiconductor wafer W measured by the radiation thermometer 20 reaches the preheating temperature T1, the control unit 3 adjusts the output of the halogen lamp HL to substantially reduce the temperature of the semiconductor wafer W to the preliminary temperature. The heating temperature T1 is maintained.
 このようなハロゲンランプHLによる予備加熱を行うことによって、半導体ウェハーWの全体を予備加熱温度T1に均一に昇温している。ハロゲンランプHLによる予備加熱の段階においては、より放熱が生じやすい半導体ウェハーWの周縁部の温度が中央部よりも低下する傾向にあるが、ハロゲン加熱部4におけるハロゲンランプHLの配設密度は、基板Wの中央部に対向する領域よりも周縁部に対向する領域の方が高くなっている。このため、放熱が生じやすい半導体ウェハーWの周縁部に照射される光量が多くなり、予備加熱段階における半導体ウェハーWの面内温度分布を均一なものとすることができる。 (4) By performing such preheating by the halogen lamp HL, the entire semiconductor wafer W is uniformly heated to the preheating temperature T1. At the stage of preheating by the halogen lamp HL, the temperature of the peripheral portion of the semiconductor wafer W where heat radiation tends to occur tends to be lower than that of the central portion, but the arrangement density of the halogen lamp HL in the halogen heating section 4 is: The region facing the peripheral portion is higher than the region facing the center of the substrate W. For this reason, the amount of light applied to the peripheral portion of the semiconductor wafer W where heat radiation easily occurs is increased, and the in-plane temperature distribution of the semiconductor wafer W in the preheating stage can be made uniform.
 半導体ウェハーWの温度が予備加熱温度T1に到達して所定時間が経過した時点にてフラッシュ加熱部5のフラッシュランプFLがサセプタ74に保持された半導体ウェハーWの表面にフラッシュ光照射を行う。このとき、フラッシュランプFLから放射されるフラッシュ光の一部は直接にチャンバー6内へと向かい、他の一部は一旦リフレクタ52により反射されてからチャンバー6内へと向かい、これらのフラッシュ光の照射により半導体ウェハーWのフラッシュ加熱が行われる。 (4) When a predetermined time has elapsed after the temperature of the semiconductor wafer W reaches the preheating temperature T1, the flash lamp FL of the flash heating unit 5 irradiates the surface of the semiconductor wafer W held by the susceptor 74 with flash light. At this time, a part of the flash light radiated from the flash lamp FL goes directly into the chamber 6, and the other part is once reflected by the reflector 52 and then goes into the chamber 6. The flash heating of the semiconductor wafer W is performed by the irradiation.
 フラッシュ加熱は、フラッシュランプFLからのフラッシュ光(閃光)照射により行われるため、半導体ウェハーWの表面温度を短時間で上昇することができる。すなわち、フラッシュランプFLから照射されるフラッシュ光は、予めコンデンサーに蓄えられていた静電エネルギーが極めて短い光パルスに変換された、照射時間が0.1ミリセカンド以上100ミリセカンド以下程度の極めて短く強い閃光である。そして、フラッシュランプFLからのフラッシュ光照射によりフラッシュ加熱される半導体ウェハーWの表面温度は、瞬間的に処理温度T2まで上昇し、半導体ウェハーWに注入された不純物が活性化された後、表面温度が急速に下降する。このように、熱処理装置1では、半導体ウェハーWの表面温度を極めて短時間で昇降することができるため、半導体ウェハーWに注入された不純物の熱による拡散を抑制しつつ不純物の活性化を行うことができる。なお、不純物の活性化に必要な時間はその熱拡散に必要な時間に比較して極めて短いため、0.1ミリセカンドないし100ミリセカンド程度の拡散が生じない短時間であっても活性化は完了する。 (4) Since the flash heating is performed by irradiating flash light (flash light) from the flash lamp FL, the surface temperature of the semiconductor wafer W can be increased in a short time. That is, the flash light emitted from the flash lamp FL is converted into a light pulse in which the electrostatic energy previously stored in the condenser is extremely short, and the irradiation time is extremely short, from about 0.1 millisecond to about 100 milliseconds. It is a strong flash. Then, the surface temperature of the semiconductor wafer W, which is flash-heated by flash light irradiation from the flash lamp FL, instantaneously rises to the processing temperature T2, and after the impurities injected into the semiconductor wafer W are activated, the surface temperature becomes higher. Falls rapidly. As described above, in the heat treatment apparatus 1, since the surface temperature of the semiconductor wafer W can be raised and lowered in a very short time, it is possible to activate the impurities while suppressing diffusion of the impurities injected into the semiconductor wafer W due to heat. Can be. Since the time required for activating the impurity is extremely shorter than the time required for thermal diffusion, the activation is performed even in a short time in which diffusion of about 0.1 to 100 milliseconds does not occur. Complete.
 フラッシュ加熱処理が終了した後、所定時間経過後にハロゲンランプHLが消灯する。これにより、半導体ウェハーWが予備加熱温度T1から急速に降温する。降温中の半導体ウェハーWの温度は放射温度計20によって測定され、その測定結果は制御部3に伝達される。制御部3は、放射温度計20の測定結果より半導体ウェハーWの温度が所定温度まで降温したか否かを監視する。そして、半導体ウェハーWの温度が所定以下にまで降温した後、移載機構10の一対の移載アーム11が再び退避位置から移載動作位置に水平移動して上昇することにより、リフトピン12がサセプタ74の上面から突き出て熱処理後の半導体ウェハーWをサセプタ74から受け取る。続いて、ゲートバルブ185により閉鎖されていた搬送開口部66が開放され、リフトピン12上に載置された半導体ウェハーWが装置外部の搬送ロボットにより搬出され、熱処理装置1における半導体ウェハーWの加熱処理が完了する。 (4) After the flash heating process is completed, the halogen lamp HL is turned off after a lapse of a predetermined time. As a result, the temperature of the semiconductor wafer W rapidly drops from the preheating temperature T1. The temperature of the semiconductor wafer W during the temperature decrease is measured by the radiation thermometer 20, and the measurement result is transmitted to the control unit 3. The control unit 3 monitors whether or not the temperature of the semiconductor wafer W has dropped to a predetermined temperature based on the measurement result of the radiation thermometer 20. Then, after the temperature of the semiconductor wafer W has dropped to a predetermined value or less, the pair of transfer arms 11 of the transfer mechanism 10 move horizontally again from the retreat position to the transfer operation position and rise, so that the lift pins 12 The semiconductor wafer W protruding from the upper surface of the semiconductor wafer 74 and having undergone the heat treatment is received from the susceptor 74. Subsequently, the transfer opening 66 closed by the gate valve 185 is opened, and the semiconductor wafer W mounted on the lift pins 12 is unloaded by the transfer robot outside the apparatus, and the semiconductor wafer W is heated in the heat treatment apparatus 1 by heat treatment. Is completed.
 ところで、本実施形態においては、ガリウムヒ素の半導体薄膜が形成された半導体ウェハーWの加熱処理を行っている。ガリウムヒ素は400℃以上に加熱されるとヒ素が外方拡散によって半導体薄膜から放出されることが知られている。上記の予備加熱温度T1が400℃以上であると、ハロゲンランプHLによる予備加熱時に半導体ウェハーWからヒ素が放出されることとなる。また、処理温度T2が400℃以上であれば、短時間ではあるもののフラッシュランプFLによるフラッシュ加熱時にも半導体ウェハーWからヒ素が放出される。半導体ウェハーWから放出されたヒ素は気体としてチャンバー6内の熱処理空間65に存在している。ヒ素は微量でも有害であり、半導体ウェハーWから放出されたヒ素が熱処理装置1の外部に排出されないようにする必要がある。 In the present embodiment, the semiconductor wafer W on which the gallium arsenide semiconductor thin film is formed is subjected to the heat treatment. It is known that gallium arsenide is released from a semiconductor thin film by outward diffusion when heated to 400 ° C. or higher. If the above preheating temperature T1 is 400 ° C. or higher, arsenic is released from the semiconductor wafer W during preheating by the halogen lamp HL. If the processing temperature T2 is 400 ° C. or higher, arsenic is released from the semiconductor wafer W even during flash heating by the flash lamp FL for a short time. Arsenic released from the semiconductor wafer W exists in the heat treatment space 65 in the chamber 6 as a gas. Arsenic is harmful even in a trace amount, and it is necessary to prevent arsenic released from the semiconductor wafer W from being discharged outside the heat treatment apparatus 1.
 このため、熱処理装置1にはトラップボックス90を設けている。排気バルブ89が開放されると、ヒ素を含むチャンバー6内の雰囲気はガス排気孔86からガス排気管88へと排出される。ヒ素を含む気体はガス排気管88を流れて給気口97からトラップボックス90の内部に流入する。図9に示すように、給気口97からトラップボックス90の内部に流入した気体は、ラジエーター92の複数の冷却管93の間を通り抜ける。ヒ素を含む気体が複数の冷却管93の間を通り抜けるときに室温にまで冷却され、これによって気体のヒ素が固体として析出する。 Therefore, a trap box 90 is provided in the heat treatment apparatus 1. When the exhaust valve 89 is opened, the atmosphere in the chamber 6 containing arsenic is exhausted from the gas exhaust hole 86 to the gas exhaust pipe 88. The gas containing arsenic flows through the gas exhaust pipe 88 and flows into the trap box 90 from the air supply port 97. As shown in FIG. 9, the gas flowing into the trap box 90 from the air supply port 97 passes between the plurality of cooling pipes 93 of the radiator 92. As the gas containing arsenic passes between the plurality of cooling tubes 93, it is cooled to room temperature, whereby gaseous arsenic precipitates as a solid.
 続いて、ラジエーター92によって冷却された気体流がトラッププレート95に衝突する。図9に示すように、トラッププレート95に衝突した気体流は、開放されているトラッププレート95の下方に向けて流れの向きを変える。このときに、冷却されて析出した固体のヒ素がトラッププレート95に付着することによって捕獲される。 Subsequently, the gas flow cooled by the radiator 92 collides with the trap plate 95. As shown in FIG. 9, the gas flow colliding with the trap plate 95 changes the direction of the flow downward of the open trap plate 95. At this time, the solid arsenic precipitated by cooling is attached to the trap plate 95 and captured.
 トラッププレート95の下方へと向かった気体流は、トラッププレート95下方の開放部分を超えてトラップボックス90の奥側へ流れる。このときに、気体流はウェハー収容部96に載置された計測用ウェハーMWの表面にも接触することとなり、析出した固体のヒ素の一部は計測用ウェハーMWの表面にも付着する。また、トラッププレート95に捕獲されたヒ素の一部は計測用ウェハーMWの表面に落下する。 (4) The gas flow directed to the lower side of the trap plate 95 flows to the far side of the trap box 90 beyond the open portion below the trap plate 95. At this time, the gas flow also comes into contact with the surface of the measurement wafer MW placed in the wafer accommodating section 96, and a part of the deposited solid arsenic also adheres to the surface of the measurement wafer MW. Further, a part of the arsenic captured by the trap plate 95 falls on the surface of the measurement wafer MW.
 トラッププレート95の下方を超えた気体流は排気口98から再びガス排気管88に流出して排気部190へと排出される。トラップボックス90の給気口97から流入した気体に含まれていたヒ素はラジエーター92で冷却されることによって固体として析出し、その析出したヒ素はトラッププレート95および計測用ウェハーMWに付着して捕獲される。従って、トラップボックス90の排気口98から流出する気体には有害なヒ素が含まれておらず、無害な気体が排気部190から熱処理装置1の外部に排出されることとなる。 The gas flow that has passed below the trap plate 95 flows out of the exhaust port 98 again into the gas exhaust pipe 88 and is discharged to the exhaust section 190. Arsenic contained in the gas flowing from the air supply port 97 of the trap box 90 is precipitated as a solid by being cooled by the radiator 92, and the deposited arsenic adheres to the trap plate 95 and the measurement wafer MW to be captured. Is done. Accordingly, harmful arsenic is not contained in the gas flowing out from the exhaust port 98 of the trap box 90, and harmless gas is discharged from the exhaust unit 190 to the outside of the heat treatment apparatus 1.
 このように、ヒ素は有害ではあるものの、室温程度にまで冷却されることによって固体として析出するという特性を有する。本発明は、このようなヒ素の特性を利用して完成されたものであり、チャンバー6から排出された気体をラジエーター92で冷却することによってヒ素を固体として析出させて捕獲することにより有害なヒ素を除去している。そして、本実施形態においては、筐体91の内部にラジエーター92およびトラッププレート95を設けるという簡易な構成のトラップボックス90によって加熱処理時に半導体ウェハーWから放出されたヒ素を回収して無害化している。よって、スクラバや特殊な除外装置等を組み込むことなく、簡易な構成にて有害物質であるヒ素の外部への排出を防止することができる。 ヒ Although arsenic is harmful, it has the property of being precipitated as a solid when cooled to about room temperature. The present invention has been completed by utilizing such characteristics of arsenic. By cooling the gas discharged from the chamber 6 with the radiator 92, the arsenic is deposited as a solid, and the arsenic is harmful. Has been removed. In the present embodiment, the arsenic released from the semiconductor wafer W during the heat treatment is collected and rendered harmless by the trap box 90 having a simple configuration in which the radiator 92 and the trap plate 95 are provided inside the casing 91. . Therefore, it is possible to prevent harmful arsenic from being discharged to the outside with a simple configuration without incorporating a scrubber or a special exclusion device.
 また、ウェハー収容部96に載置された計測用ウェハーMWを取り出し、その計測用ウェハーMWの表面に付着した粒子を分析することによって、ヒ素が析出して捕獲されているか否かを確認することができる。計測用ウェハーMWの表面からヒ素が検出されない、或いはヒ素の検出量が顕著に少ない場合には、トラップボックス90によって十分にヒ素が回収されていない可能性が疑われる。 In addition, the measurement wafer MW placed in the wafer accommodating portion 96 is taken out, and particles attached to the surface of the measurement wafer MW are analyzed to confirm whether or not arsenic is deposited and captured. Can be. If arsenic is not detected from the surface of measurement wafer MW, or if the amount of arsenic detected is remarkably small, it is suspected that arsenic may not be sufficiently collected by trap box 90.
 また、ラジエーター92およびトラッププレート95は着脱可能に設けられているため、析出したヒ素が付着することによって汚染されたラジエーター92およびトラッププレート95を適当なタイミングで交換することができる。ラジエーター92およびトラッププレート95は、定期的に交換するようにしても良いし、汚染状況に基づいて交換するようにしても良い。 Further, since the radiator 92 and the trap plate 95 are detachably provided, the radiator 92 and the trap plate 95 which are contaminated by the deposited arsenic can be replaced at an appropriate timing. The radiator 92 and the trap plate 95 may be replaced periodically, or may be replaced based on the state of contamination.
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態においては、筐体91の内部にラジエーター92、トラッププレート95およびウェハー収容部96を備えていたが、トラッププレート95およびウェハー収容部96は必須の要素ではなく、少なくとも筐体91の内部にラジエーター92が設けられていれば良い。少なくともラジエーター92が設けられていれば、チャンバー6から排出された気体を冷却してヒ素を固体として析出させ、そのヒ素を筐体91の内壁面によって捕獲することができる。このようにしても、ヒ素の外部への排出を防止することができる。もっとも、上記実施形態のように、トラッププレート95を設けている方がより確実に析出したヒ素を捕獲して回収することができる。 Although the embodiments of the present invention have been described above, various changes other than those described above can be made without departing from the spirit of the present invention. For example, in the above-described embodiment, the radiator 92, the trap plate 95, and the wafer accommodating portion 96 are provided inside the housing 91. However, the trap plate 95 and the wafer accommodating portion 96 are not essential elements. It is sufficient that a radiator 92 is provided in the inside. If at least the radiator 92 is provided, the gas discharged from the chamber 6 can be cooled to deposit arsenic as a solid, and the arsenic can be captured by the inner wall surface of the housing 91. Even in this case, it is possible to prevent arsenic from being discharged to the outside. However, when the trap plate 95 is provided as in the above embodiment, the deposited arsenic can be more reliably captured and recovered.
 また、上記実施形態においては、複数の冷却管93を備えたラジエーター92によって気体流を冷却していたが、これに限定されるものではなく、例えばペルチェ素子等の他の冷却機構によって気体流を冷却するようにしても良い。 Further, in the above embodiment, the gas flow is cooled by the radiator 92 having the plurality of cooling pipes 93. However, the present invention is not limited to this. For example, the gas flow is cooled by another cooling mechanism such as a Peltier device. You may make it cool.
 また、チャンバー6内を減圧雰囲気として半導体ウェハーWの加熱処理を行うようにしても良い。この場合であっても、半導体ウェハーWから放出されたヒ素をトラップボックス90にて析出させて捕獲することにより、上記実施形態と同様の効果を得ることができる。但し、チャンバー6内を減圧雰囲気としたときにはトラップボックス90の内部も大気圧未満の減圧状態となるため、トラッププレート95の材質は減圧下でも使用可能な金属材料が好ましい。 (4) The semiconductor wafer W may be subjected to a heat treatment by setting the inside of the chamber 6 to a reduced pressure atmosphere. Even in this case, the same effect as in the above embodiment can be obtained by depositing and capturing arsenic released from the semiconductor wafer W in the trap box 90. However, when the inside of the chamber 6 is set to a reduced pressure atmosphere, the inside of the trap box 90 is also set to a reduced pressure lower than the atmospheric pressure. Therefore, the material of the trap plate 95 is preferably a metal material that can be used even under reduced pressure.
 また、上記実施形態においては、フラッシュ加熱部5に30本のフラッシュランプFLを備えるようにしていたが、これに限定されるものではなく、フラッシュランプFLの本数は任意の数とすることができる。また、フラッシュランプFLはキセノンフラッシュランプに限定されるものではなく、クリプトンフラッシュランプであっても良い。また、ハロゲン加熱部4に備えるハロゲンランプHLの本数も40本に限定されるものではなく、任意の数とすることができる。 Further, in the above embodiment, the flash heating unit 5 is provided with 30 flash lamps FL, but the present invention is not limited to this, and the number of flash lamps FL can be any number. . The flash lamp FL is not limited to a xenon flash lamp, but may be a krypton flash lamp. Further, the number of halogen lamps HL provided in the halogen heating unit 4 is not limited to 40 but may be any number.
 また、上記実施形態においては、1秒以上連続して発光する連続点灯ランプとしてフィラメント方式のハロゲンランプHLを用いて半導体ウェハーWの予備加熱を行っていたが、これに限定されるものではなく、ハロゲンランプHLに代えて放電型のアークランプ(例えば、キセノンアークランプ)を連続点灯ランプとして用いて予備加熱を行うようにしても良い。 Further, in the above-described embodiment, the preheating of the semiconductor wafer W is performed by using the filament type halogen lamp HL as a continuous lighting lamp that emits light continuously for 1 second or more. However, the present invention is not limited to this. The preliminary heating may be performed using a discharge type arc lamp (for example, a xenon arc lamp) as a continuous lighting lamp instead of the halogen lamp HL.
 また、半導体ウェハーWを加熱する加熱源はランプに限定されるものではなく、例えばヒータを備えたホットプレートによって半導体ウェハーWを加熱するようにしても良い。 The heating source for heating the semiconductor wafer W is not limited to a lamp, and the semiconductor wafer W may be heated by, for example, a hot plate provided with a heater.
 また、熱処理装置1によって処理対象となる基板は半導体ウェハーに限定されるものではなく、液晶表示装置などのフラットパネルディスプレイに用いるガラス基板や太陽電池用の基板であっても良い。基板に形成される膜はガリウムヒ素に限定されるものではなく、ヒ素を含む膜であれば良い。さらには、ヒ素に限らず、冷却されることによって固体として析出する有害物質を放出する基板の熱処理に本発明に係る技術は好適である。 The substrate to be processed by the heat treatment apparatus 1 is not limited to a semiconductor wafer, but may be a glass substrate used for a flat panel display such as a liquid crystal display device or a substrate for a solar cell. The film formed on the substrate is not limited to gallium arsenide, and may be any film containing arsenic. Further, the technology according to the present invention is suitable for heat treatment of a substrate that releases not only arsenic but also harmful substances that precipitate as a solid when cooled.
 1 熱処理装置
 3 制御部
 4 ハロゲン加熱部
 5 フラッシュ加熱部
 6 チャンバー
 7 保持部
 10 移載機構
 63 上側チャンバー窓
 64 下側チャンバー窓
 65 熱処理空間
 74 サセプタ
 88 ガス排気管
 90 トラップボックス
 91 筐体
 92 ラジエーター
 93 冷却管
 95 トラッププレート
 96 ウェハー収容部
 FL フラッシュランプ
 HL ハロゲンランプ
 MW 計測用ウェハー
 W 半導体ウェハー
REFERENCE SIGNS LIST 1 heat treatment device 3 control unit 4 halogen heating unit 5 flash heating unit 6 chamber 7 holding unit 10 transfer mechanism 63 upper chamber window 64 lower chamber window 65 heat treatment space 74 susceptor 88 gas exhaust pipe 90 trap box 91 casing 92 radiator 93 Cooling tube 95 Trap plate 96 Wafer accommodating section FL Flash lamp HL Halogen lamp MW Measurement wafer W Semiconductor wafer

Claims (5)

  1.  基板を加熱する熱処理装置であって、
     基板を収容するチャンバーと、
     前記チャンバー内に収容された前記基板を加熱する加熱源と、
     前記チャンバー内の雰囲気を排出する排気経路と、
     前記排気経路に設けられ、前記雰囲気中に含まれる物質を捕獲するトラップ部と、
    を備え、
     前記トラップ部は、筐体の内部に当該筐体を通過する気流を冷却する冷却部を設ける熱処理装置。
    A heat treatment apparatus for heating a substrate,
    A chamber for accommodating the substrate;
    A heating source for heating the substrate housed in the chamber,
    An exhaust path for exhausting the atmosphere in the chamber;
    A trap unit that is provided in the exhaust path and captures a substance contained in the atmosphere;
    With
    The heat treatment apparatus, wherein the trap unit includes a cooling unit that cools an airflow passing through the housing inside the housing.
  2.  請求項1記載の熱処理装置において、
     前記トラップ部は、前記冷却部によって冷却された気流が衝突するトラップ板を前記筐体の内部にさらに備える熱処理装置。
    The heat treatment apparatus according to claim 1,
    The heat treatment apparatus, wherein the trap unit further includes a trap plate with which the airflow cooled by the cooling unit collides, inside the housing.
  3.  請求項2記載の熱処理装置において、
     前記トラップ部は、前記冷却部が前記気流を冷却することによって析出した前記物質を付着させる捕集基板を収容する収容部を前記筐体の内部にさらに備える熱処理装置。
    The heat treatment apparatus according to claim 2,
    The heat treatment apparatus, wherein the trap unit further includes a storage unit that stores a collection substrate to which the substance deposited by the cooling unit cooling the airflow is attached.
  4.  請求項1から請求項3のいずれかに記載の熱処理装置において、
     前記加熱源は、基板に光を照射して加熱するランプを備える熱処理装置。
    The heat treatment apparatus according to any one of claims 1 to 3,
    The heat treatment apparatus further includes a lamp configured to irradiate the substrate with light to heat the substrate.
  5.  請求項1から請求項4のいずれかに記載の熱処理装置において、
     前記物質はヒ素である熱処理装置。
    The heat treatment apparatus according to any one of claims 1 to 4,
    A heat treatment apparatus, wherein the substance is arsenic.
PCT/JP2019/026045 2018-08-01 2019-07-01 Heat treatment apparatus WO2020026671A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-144759 2018-08-01
JP2018144759A JP7177619B2 (en) 2018-08-01 2018-08-01 Heat treatment equipment

Publications (1)

Publication Number Publication Date
WO2020026671A1 true WO2020026671A1 (en) 2020-02-06

Family

ID=69232188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/026045 WO2020026671A1 (en) 2018-08-01 2019-07-01 Heat treatment apparatus

Country Status (3)

Country Link
JP (1) JP7177619B2 (en)
TW (1) TWI713118B (en)
WO (1) WO2020026671A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915132U (en) * 1972-05-15 1974-02-08
JPH01102924A (en) * 1987-10-16 1989-04-20 Showa Denko Kk Heat treatment of semiconductor substrate
JPH0883773A (en) * 1994-09-13 1996-03-26 Toshiba Corp Thin film forming device
JP2009206167A (en) * 2008-02-26 2009-09-10 Stanley Electric Co Ltd Vapor growth device
JP2014535164A (en) * 2011-10-05 2014-12-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Particle control in laser processing systems.

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102424961B1 (en) * 2015-07-07 2022-07-25 삼성전자주식회사 Lanthanum compound, method of synthesis of lanthanum compound, lanthanum precursor composition, and methods of forming thin film and integrated circuit device
JP6539568B2 (en) * 2015-11-04 2019-07-03 株式会社Screenホールディングス Heat treatment method and heat treatment apparatus
US10115900B2 (en) * 2015-11-16 2018-10-30 Kateeva, Inc. Systems and methods for thermal processing of a substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4915132U (en) * 1972-05-15 1974-02-08
JPH01102924A (en) * 1987-10-16 1989-04-20 Showa Denko Kk Heat treatment of semiconductor substrate
JPH0883773A (en) * 1994-09-13 1996-03-26 Toshiba Corp Thin film forming device
JP2009206167A (en) * 2008-02-26 2009-09-10 Stanley Electric Co Ltd Vapor growth device
JP2014535164A (en) * 2011-10-05 2014-12-25 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Particle control in laser processing systems.

Also Published As

Publication number Publication date
TWI713118B (en) 2020-12-11
TW202008466A (en) 2020-02-16
JP2020021831A (en) 2020-02-06
JP7177619B2 (en) 2022-11-24

Similar Documents

Publication Publication Date Title
US9799517B2 (en) Apparatus and method for light-irradiation heat treatment
US10249519B2 (en) Light-irradiation heat treatment apparatus
JP6804398B2 (en) Heat treatment equipment and heat treatment method
US10319616B2 (en) Heat treatment method and heat treatment apparatus of light irradiation type
KR20190051859A (en) Heat treatment apparatus and heat treatment method
JP2019220565A (en) Thermal treatment apparatus
KR102514880B1 (en) Thermal processing apparatus
TWI642136B (en) Heat treatment apparatus
JP6770915B2 (en) Heat treatment equipment
JP7032955B2 (en) Heat treatment method
JP7013259B2 (en) Heat treatment equipment and heat treatment method
WO2020026671A1 (en) Heat treatment apparatus
WO2020166249A1 (en) Heat treatment method and heat treatment device
TWI703638B (en) Heat treatment apparatus
JP6637321B2 (en) Susceptor and heat treatment equipment for heat treatment
JP7208100B2 (en) Heat treatment apparatus and heat treatment method
JP6975687B2 (en) Heat treatment equipment
WO2019244583A1 (en) Heat treatment device
WO2020044775A1 (en) Heat treatment method
JP2019216287A (en) Heat treatment device and heat treatment method
JP2020096065A (en) Heat treatment method and heat treatment apparatus
JP2018098315A (en) Heat treatment method and heat treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19843580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19843580

Country of ref document: EP

Kind code of ref document: A1