WO2020026570A1 - Glucose consumption promoter and glycolysis promoter - Google Patents

Glucose consumption promoter and glycolysis promoter Download PDF

Info

Publication number
WO2020026570A1
WO2020026570A1 PCT/JP2019/020826 JP2019020826W WO2020026570A1 WO 2020026570 A1 WO2020026570 A1 WO 2020026570A1 JP 2019020826 W JP2019020826 W JP 2019020826W WO 2020026570 A1 WO2020026570 A1 WO 2020026570A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucose consumption
glucose
amino
present
group
Prior art date
Application number
PCT/JP2019/020826
Other languages
French (fr)
Japanese (ja)
Inventor
健司 反町
Original Assignee
株式会社親広産業
健司 反町
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2019/003915 external-priority patent/WO2020026471A1/en
Application filed by 株式会社親広産業, 健司 反町 filed Critical 株式会社親広産業
Priority to CN201980002860.XA priority Critical patent/CN111093644A/en
Priority to US16/610,360 priority patent/US20210330606A1/en
Priority to JP2019542649A priority patent/JP6612004B1/en
Priority to EP19801189.2A priority patent/EP3639818B1/en
Publication of WO2020026570A1 publication Critical patent/WO2020026570A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/131Amines acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/133Amines having hydroxy groups, e.g. sphingosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/535Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
    • A61K31/53751,4-Oxazines, e.g. morpholine
    • A61K31/53771,4-Oxazines, e.g. morpholine not condensed and containing further heterocyclic rings, e.g. timolol

Definitions

  • the present invention relates to a glucose consumption promoter and a glycolysis promoter.
  • Diabetes is a disease in which the concentration of glucose (blood sugar level) in the blood continues to be high due to insufficient working of insulin. It is known that over a prolonged period of diabetes, high concentrations of glucose cause vascular damage, causing complications such as heart disease, blindness, renal failure, and amputation of the feet.
  • an object of the present invention is to provide a new drug capable of promoting consumption of glucose.
  • the glucose consumption promoter and the glycolysis promoter of the present invention include 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl ) Methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propylamine, triethanolamine, triethylamine, trishydroxymethylaminomethane.
  • a pharmaceutical composition for use in the treatment of diabetes of the present invention is characterized by containing the glucose consumption promoter or glycolysis promoter of the present invention.
  • the glucose consumption promoting method of the present invention is characterized by including the step of administering the glucose consumption promoting agent of the present invention or the pharmaceutical composition of the present invention. Further, the glycolysis promoting method of the present invention includes a step of administering the glycolysis promoting agent of the present invention or the pharmaceutical composition of the present invention.
  • a new drug capable of promoting glucose consumption can be provided.
  • FIG. 1 is a graph showing the relative value of glucose consumption of fibroblasts to which each drug was added in Example 1.
  • FIG. 2 is a graph showing the relative values of glucose consumption of fibroblasts to which the respective drugs of the comparative example were added in Example 1.
  • FIG. 3 is a graph showing relative values of glucose consumption of fibroblasts to which each drug was added in Example 2.
  • FIG. 4 is a graph showing the relative values of glucose consumption of fibroblasts to which each drug was added in Example 3.
  • FIG. 5 is a graph showing the relative value of glucose consumption of fibroblasts to which each drug was added in Example 4.
  • FIG. 6 is a graph showing the relative value of glucose consumption of liver cancer cells to which each drug was added in Example 5.
  • FIG. 1 is a graph showing the relative value of glucose consumption of fibroblasts to which each drug was added in Example 1.
  • FIG. 2 is a graph showing the relative values of glucose consumption of fibroblasts to which the respective drugs of the comparative example were added in Example 1.
  • FIG. 3 is
  • FIG. 7 is a graph showing the relative values of the lactate concentrations of fibroblasts and liver cancer cells to which each drug was added in Example 6.
  • FIG. 8 is a graph showing the blood glucose level of the mice to which the drug was administered in Example 7.
  • FIG. 9 is a graph showing the calculated value of AUC of the mouse to which the drug was administered in Example 7.
  • FIG. 10 is a graph showing the lactic acid concentration in the culture solution of each cell to which the drug was administered in Example 8.
  • FIG. 11 is a graph showing the lactic acid concentration in the culture solution of each cell to which the drug was administered in Example 9.
  • the glucose consumption promoter and glycolysis promoter of the present invention include, for example, 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, It contains at least one selected from the group consisting of N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propylamine, triethanolamine, triethylamine and trishydroxymethylaminomethane as a main component.
  • the glucose consumption promoter and glycolysis promoter of the present invention further include, for example, an oral additive.
  • the glucose consumption promoter and the glycolysis promoter of the present invention include a compound represented by the following chemical formula (1), a tautomer and a stereoisomer thereof, and a salt thereof (hereinafter, referred to as “the present invention”). (Also referred to as “drug in the invention”).
  • the present invention a compound represented by the following chemical formula (1), a tautomer and a stereoisomer thereof, and a salt thereof.
  • drug in the invention drug in the invention.
  • other configurations and conditions are not particularly limited.
  • R 1 is a hydrogen atom or a hydroxy group. Further, as described later, R 1 and R 6 may be integrally formed to form a ring structure.
  • R 2 is a substituent containing a hydrogen atom, a linear or branched alkyl group, an aryl group, a cycloalkyl group or a hetero ring.
  • the number of carbon atoms of the linear or branched alkyl group is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6, or 1 to 2 (non- And 2 or more in the case of a saturated hydrocarbon group).
  • the alkyl group is specifically, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group, a pentyl group, a hexyl group, Heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl and the like.
  • the aryl group includes, for example, a monocyclic aromatic hydrocarbon group and a polycyclic aromatic hydrocarbon group.
  • Examples of the monocyclic aromatic hydrocarbon group include phenyl.
  • Examples of the polycyclic aromatic hydrocarbon group include 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, and 3-phenanthryl. Group, 4-phenanthryl group, 9-phenanthryl group and the like.
  • the cycloalkyl group examples include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the number of atoms constituting the ring is not particularly limited and is, for example, 3, 4, 5, 6, 7, 8, 9, and 10.
  • the hetero atom in the substituent containing a hetero ring is, for example, at least one selected from the group consisting of O, S, N, and NH.
  • Specific examples of the substituent containing a hetero ring include a group represented by the following chemical formula (R2).
  • the atoms constituting the ring may be CH instead of N, O may be substituted for S, and S may be substituted for O.
  • the further substituent is not particularly limited and includes, for example, carboxy, halogen, alkyl halide (eg, CF 3 , CH 2 CF 3 , CH 2 CCl 3 ), nitro, nitroso, cyano, alkyl (eg, methyl, Ethyl, isopropyl, tert-butyl), alkenyl (eg, vinyl), alkynyl (eg, ethynyl), cycloalkyl (eg, cyclopropyl, adamantyl), cycloalkylalkyl (eg, cyclohexylmethyl, adamantylmethyl), cycloalkenyl ( Examples: cyclopropenyl), aryl (e
  • R 3 , R 4 , and R 5 are each a hydrogen atom, a linear or branched alkyl group, or a linear or branched hydroxyalkyl group.
  • the linear or branched alkyl group and the linear or branched hydroxyalkyl group are, for example, as described above.
  • R 3 , R 4 , and R 5 may each be the same or different.
  • R 5 and R 6 may be integrally formed to form a ring structure.
  • One or more hydrogen atoms bonded to carbon atoms of the alkyl group and the hydroxyalkyl group may be substituted with a further substituent.
  • the further substituent is, for example, as described above.
  • R 6 represents a hydrogen atom, a straight-chain or branched alkyl group, a straight-chain or branched hydroxyalkyl group, a cycloalkyl group, or a substituent containing a hetero atom, And may or may not include a cyclic structure.
  • the linear or branched alkyl group, the linear or branched hydroxyalkyl group, and the cycloalkyl group are, for example, as described above.
  • the carbon number of the substituent containing a hetero atom is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6, or 1 to 2. Is also good.
  • the hetero atom in the substituent containing a hetero atom is, for example, at least one selected from the group consisting of O, S, N, and NH.
  • Specific examples of the substituent containing a heterocyclic ring include groups represented by the following chemical formulas (R6-1) and (R6-2).
  • m, n, o, p, q, r, and s are each a positive integer and are not particularly limited, and for example, 1 to 10, 1 55, 1 ⁇ 3.
  • Specific examples of the substituent containing a hetero ring include groups represented by the following chemical formulas (R6-1-2) and (R6-2-2).
  • One or more of the hydrogen atoms bonded to the carbon atoms of the alkyl, hydroxyalkyl, cycloalkyl, and substituents including heteroatoms may be substituted with additional substituents.
  • the further substituent is, for example, as described above.
  • R 1 and R 6 may be combined to form a cyclic structure.
  • the number of carbon atoms in the cyclic structure is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6.
  • the cyclic structure may or may not have a hetero atom, for example.
  • the hetero atom is, for example, as described above.
  • Specific examples of the cyclic structure include a structure represented by the following chemical formula (R1R6).
  • R 2 , R 3 , R 4 , and R 5 are, for example, as described above.
  • One or more of the hydrogen atoms bonded to the carbon atoms of the cyclic structure may be substituted with a further substituent.
  • the further substituent is, for example, as described above.
  • R 5 and R 6 may be combined to form a cyclic structure.
  • the number of carbon atoms in the cyclic structure is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6.
  • the cyclic structure may or may not have a hetero atom, for example.
  • the hetero atom is, for example, as described above.
  • Specific examples of the cyclic structure include a structure represented by the following chemical formula (R5R6). In the following chemical formula (R5R6), R 1 , R 2 , R 3 , and R 4 are, for example, as described above.
  • t is a positive integer and is not particularly limited, and is, for example, 1 to 10, 1 to 5, 1 to 3, or 2.
  • Specific examples of the cyclic structure include a structure represented by the following chemical formula (R5R6-2).
  • R 1 , R 2 , R 3 , and R 4 are, for example, as described above.
  • One or more of the hydrogen atoms bonded to the carbon atoms of the cyclic structure may be substituted with a further substituent.
  • the further substituent is, for example, as described above.
  • the compound represented by the chemical formula (1) is specifically, for example, 2-amino-1-cyclohexylethanol, 2-aminoethanol, 1-amino-2-propanol, 2-amino-1-phenylethanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, HEPES sodium salt, metoprolol tartrate, morpholine, octopamine, propylamine, triethanolamine, triethylamine , Timolol maleate, trishydroxymethylaminomethane and the like.
  • “consumption of glucose” may be, for example, promotion of a decrease in glucose concentration or suppression of an increase in glucose concentration.
  • Glucose consumption can be measured, for example, by the method described in Examples described later.
  • “Glucose consumption” may be, for example, the consumption of glucose by cells.
  • “consumption of glucose” can also be referred to as, for example, “uptake of glucose into cells”.
  • the glucose consumption promoter of the present invention can also be referred to as, for example, a glucose uptake promoter into cells.
  • the uptake of glucose is via, for example, a glucose transporter present in a cell membrane. From this, the glucose consumption promoter of the present invention can be said to be, for example, an activator of a signaling cascade via a glucose transporter.
  • the present invention is not limited to this.
  • the “glycolysis system” is, for example, a metabolic system starting from glucose. Lactic acid is an example of the glycolytic metabolite. Therefore, for example, by measuring the lactic acid concentration as described later, it is possible to confirm the promotion of the glycolytic system.
  • the glycolysis system is also referred to as, for example, an anaerobic glycolysis system.
  • glucose consumption can be promoted as described above.
  • the glycolytic accelerator of the present invention as described above, the glycolytic accelerator can be promoted. Therefore, the glucose consumption promoter of the present invention and the glycolysis promoter of the present invention can be used, for example, as a pharmaceutical composition for use in treating a disease caused by glucose concentration in a living body. Examples of the disease include diabetes.
  • “treatment” includes, for example, prevention of the disease, improvement of the disease, and improvement of prognosis of the disease, and may be any.
  • the glucose consumption promoting agent of the present invention for example, it is possible to promote the consumption of glucose and the glycolysis system without suppressing the metabolism of lactic acid generated by the consumption of glucose.
  • the glucose consumption promoting agent of the present invention may contain, as an active ingredient, the above-mentioned agent of the present invention, for example, only one kind or two or more kinds in combination, and the number is not particularly limited.
  • the glucose consumption promoting agent of the present invention contains, for example, the agent of the present invention as a main component.
  • the glucose consumption promoter of the present invention may be used, for example, in vivo , or may be used in vitro .
  • the glucose consumption promoting agent of the present invention can be used, for example, as a research reagent, and as described above, can also be used as a pharmaceutical.
  • the administration target of the glucose consumption promoting agent of the present invention is not particularly limited.
  • the subject to which the glucose consumption promoting agent of the present invention is administered is not particularly limited, and examples thereof include humans and non-human animals other than humans.
  • the non-human mammal include non-human animals such as mice, rats, rabbits, dogs, sheep, horses, cats, goats, monkeys, and guinea pigs.
  • the administration subject includes, for example, cells, tissues, organs and the like.
  • the cells may be, for example, cells collected from a living body or cultured cells.
  • the cells are not particularly limited, and include, for example, fibroblasts, hepatocytes, adipocytes and the like.
  • the use conditions (hereinafter, also referred to as “administration conditions”) of the glucose consumption enhancer of the present invention are not particularly limited, and for example, the administration form, administration timing, dosage amount, etc. are appropriately determined according to the type of administration subject and the like. Can be set.
  • Examples of the administration form include oral administration, intraperitoneal administration, and subcutaneous administration when the glucose consumption promoter of the present invention is used in vivo .
  • the dosage form of the glucose consumption promoter of the present invention is not particularly limited, and can be appropriately determined depending on, for example, the administration form.
  • the dosage form is a capsule, an extract, an elixir, a granule, a pill, a suspension, a fine granule, a powder, an alcoholic beverage, a tablet, a syrup, an infusion / decoction, and a tincture.
  • the glucose consumption promoting agent of the present invention may, for example, if necessary, contain an additive.
  • the additive is a pharmaceutically acceptable additive.
  • the additives include excipients, stabilizers, preservatives, buffers, flavoring agents, suspending agents, emulsifiers, flavoring agents, solubilizing agents, coloring agents, thickeners, and the like.
  • the additives include oral additives.
  • Oral additives include, for example, caries preventives, intestinal medicines, corrigents and the like.
  • the amount of the additive is not particularly limited as long as it does not hinder the function of the glucose consumption promoter.
  • the administration conditions of the glucose consumption enhancer of the present invention are not particularly limited, and for example, the administration timing, administration period, dosage, and the like can be appropriately set according to the type, gender, age, administration site, and the like of the administration subject. .
  • the total daily dose is, for example, 100 to 5000 mg and 500 to 2500 mg.
  • the number of administrations per day is, for example, 1 to 5 times and 2 to 3 times.
  • the pharmaceutical composition for use in the treatment of diabetes of the present invention is characterized by containing the glucose consumption promoter of the present invention or the glycolysis promoter of the present invention.
  • the pharmaceutical composition of the present invention is characterized by containing the glucose consumption promoter of the present invention or the glycolysis promoter of the present invention, and other configurations and conditions are not particularly limited.
  • the description of the glucose consumption promoter of the present invention and the glycolysis promoter of the present invention can be referred to for the pharmaceutical composition of the present invention.
  • diabetes can be treated.
  • the glucose consumption promoting method of the present invention includes a step of administering the glucose consumption promoting agent of the present invention to an administration subject.
  • the glycolysis promoting method of the present invention includes a step of administering the glycolysis promoting agent of the present invention to a subject to be administered.
  • the present invention is characterized in that it comprises a step of administering the glucose consumption promoter or glycolysis promoter of the present invention, and other steps and conditions are not particularly limited.
  • the glucose consumption promoter or glycolysis promoter of the present invention is as described above.
  • the administration conditions and the like of the glucose consumption promoter and the glycolytic accelerator of the present invention are not particularly limited, and are, for example, the same as those described for the glucose consumption promoter of the present invention.
  • the present invention is the use of the medicament of the present invention for use in promoting glucose consumption and glycolysis, and the use of the aforementioned medicament for use in treating diabetes.
  • the present invention relates to the use of said medicament for the production of a glucose consumption promoter and a glycolytic accelerator, and the use of said medicament for the production of a pharmaceutical composition for use in the treatment of diabetes. is there.
  • the description of the glucose consumption promoting agent and the glycolytic accelerator, the pharmaceutical composition, and the glucose consumption promoting method and the glycolytic promoting method of the present invention can be cited.
  • Example 1 It was confirmed that the agent of the present invention exerts a glucose consumption promoting effect on fibroblasts.
  • 2-Amino-1-cyclohexylethanol manufactured by Matrix Biochemicals
  • 2-Aminoethanol manufactured by Tokyo Chemical Industry
  • 1-amino-2- Propanol Amino-2-propanol
  • 2-Amino-1-phenylethanol manufactured by Tokyo Chemical Industry Co., Ltd.
  • 1,3-bis [tris (hydroxy Methyl) methylamino] propane (1,3-Bis [tris (hydroxymethyl) -methylamino] propane) (manufactured by Tokyo Chemical Industry Co., Ltd.)
  • N-cyclohexylethanolamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • diethanolamine Diethanolamine (manufactured by Wako Pure Chemical)
  • diethylamine manufactured by Wako Pure Chemical
  • dipropylamine manufactured by Tokyo Chemical Industry
  • sodium salt of HEPES HEPE
  • rat-derived fibroblasts (Py-3Y1-S2, subcultured strain) are seeded on a 24-well microplate at a concentration of ⁇ 2 ⁇ 10 5 cells / mL / well until a monolayer is formed.
  • Cultured In the culture, DMEM (manufactured by Nissui Pharmaceutical Co., Ltd.) was used as a medium. Each of the samples was added to the culture solution so that the final concentration of the drug was 0.5 mg / mL, and the cells were further cultured for 12 to 24 hours.
  • a drug control culturing was performed in the same manner except that distilled water containing no drug was added to the culture solution instead of the sample.
  • the glucose concentration of each culture solution was measured.
  • the glucose concentration was measured using a glucose assay kit (Wako). Then, the glucose concentration after the culture was divided by the glucose concentration (5.6 mmol / L) immediately after the start of the culture to calculate glucose consumption. Further, the glucose consumption in the control was set as a reference value of 100, and the relative value of the glucose consumption in each sample was calculated.
  • FIG. 1 (A) is a graph showing relative values of glucose consumption of fibroblasts when 0.5 mg / mL of each of the above-mentioned drugs was added.
  • the vertical axis indicates a relative value of glucose consumption
  • the horizontal axis indicates a drug.
  • the relative value of the glucose consumption increased to 100 or more and the glucose consumption increased due to the addition of each drug.
  • Triethanolamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • FIG. 1 (B) is a graph showing the relative value of glucose consumption when 1 mg / mL of each of the above-mentioned drugs was added.
  • the vertical axis indicates the relative value of glucose consumption
  • the horizontal axis indicates the drug.
  • the relative value of the glucose consumption increased to 100 or more and the glucose consumption increased due to the addition of each of the agents.
  • FIG. 2 is a graph showing relative values of glucose consumption when each drug of the comparative example was added.
  • A shows a case where 0.5 mg / mL of each drug of the comparative example was added.
  • B shows the results obtained when 1 mg / mL of each drug of the comparative example was added.
  • 2A and 2B the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the drug.
  • the relative value of the glucose consumption was less than 100 by adding 0.5 mg / mL or 1 mg / mL of each drug of the comparative example to each sample. And the glucose consumption did not increase.
  • Example 2 It was confirmed that the agent of the present invention exerts a glucose consumption promoting effect on fibroblasts in a dose-dependent manner.
  • FIG. 3 is a graph showing relative values of glucose consumption of fibroblasts to which the above-mentioned drugs were added.
  • (A) shows the results of adding 2-amino-1-cyclohexylethanol
  • (B) shows the results.
  • the results of adding 2-amino-1-phenylethanol 3A and 3B, the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the concentration of each drug.
  • FIG. 3 (A) in fibroblasts, addition of 0.1, 0.25, and 0.5 mg / mL of 2-amino-1-cyclohexylethanol resulted in about 120, about 130, And up to about 150, the dose-dependent increase in glucose consumption.
  • Example 3 It was confirmed that the agent of the present invention exerted a glucose consumption promoting effect on fibroblasts in which glucose consumption was suppressed.
  • FIG. 4 is a graph showing relative values of glucose consumption of fibroblasts to which each of the above-mentioned drugs was added.
  • the vertical axis indicates the relative value of glucose consumption
  • the horizontal axis indicates the drug.
  • the relative values of the glucose consumption became about 90, about 70, and about 85, respectively, and the glucose consumption was reduced.
  • 2-A-1-P in addition to streptozotocin, alloxan, and nicotinamide
  • the relative value of the glucose consumption became 100 or more in all cases, and the glucose consumption recovered.
  • 2-amino-1-phenylethanol was confirmed to have an effect of promoting glucose consumption even on fibroblasts in which glucose consumption was suppressed.
  • Example 4 It was confirmed that the drug of the present invention further exerted a glucose consumption promoting effect on fibroblasts that promoted glucose consumption.
  • Example 1 the samples of vanadium, V 2 O 5 , and concanavalin A (ConA) were prepared.
  • the fibroblasts were cultured. Each sample was added to this culture solution so that vanadium was 1.0 mg / mL and ConA was 100 ⁇ g / ml.
  • Vanadium, V 2 O 5 , and concanavalin A are all drugs known to show an insulin-like effect when administered to fibroblasts. Then, the relative value of the glucose consumption in each sample was calculated in the same manner as in Example 1.
  • each sample to which 2-amino-1-phenylethanol (2-A-1-P) was further added was prepared in the same manner.
  • the concentration of 2-A-1-P was 0.5 mg / mL, respectively.
  • the relative value of the glucose consumption was calculated in the same manner.
  • FIG. 5 is a graph showing the relative values of glucose consumption of fibroblasts to which the above-mentioned drugs were added.
  • the vertical axis indicates the relative value of glucose consumption
  • the horizontal axis indicates the drug.
  • the addition of vanadium, V 2 O 5 , and concanavalin A resulted in a relative value of the glucose consumption of about 110, about 115, and about 120, indicating an increase in glucose consumption.
  • the relative values of the glucose consumption were about 145, about 140, and about 140, respectively. It was 150 and the glucose consumption was further increasing.
  • 2-amino-1-phenylethanol further exerts a glucose consumption promoting effect on fibroblasts whose glucose consumption has been promoted by vanadium, V 2 O 5 , and concanavalin A.
  • 2-amino-1-phenylethanol further exerts a glucose consumption promoting effect on fibroblasts whose glucose consumption has been promoted by vanadium, V 2 O 5 , and concanavalin A.
  • Example 5 It was confirmed that the agent of the present invention exerts a glucose consumption promoting effect on liver cancer cells.
  • Example 1 the samples of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol were prepared.
  • a rat-derived hepatoma cell (Ry121B, subcultured) was used in place of the rat-derived fibroblast (Py-3Y1-S2, subcultured) under the same conditions as in Example 1 above.
  • Cultured. Each sample was added to this culture solution so as to be 1 mg / mL.
  • culturing was performed in the same manner except that distilled water containing no drug was added to the culture solution instead of the sample. Then, the relative value of the glucose consumption in each sample was calculated in the same manner as in Example 1.
  • FIG. 6 is a graph showing the relative value of glucose consumption of liver cancer cells to which the above-mentioned drugs were added.
  • the vertical axis indicates the relative value of glucose consumption
  • the horizontal axis indicates the drug.
  • Example 2 the samples of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol were prepared.
  • the fibroblasts and hepatoma cells were cultured under the same conditions as in Examples 1 and 5.
  • Each of the samples was added to each of the culture solutions so as to be 1 mg / mL.
  • As a control culturing was performed in the same manner except that distilled water containing no drug was added to the culture solution instead of the sample.
  • the culture solution was diluted so that the weight ratio of culture solution to distilled water was 1:19, and the lactic acid concentration of the diluted culture solution was measured.
  • the lactic acid concentration was measured using a lactic acid assay kit (product name: Lactate @ Assay @ Kit-WST, manufactured by Dojin Chemical Co., Ltd.).
  • the relative value of the lactic acid concentration in each sample was calculated using the lactic acid concentration in the control as the reference value 100.
  • FIG. 7 is a graph showing the relative values of the lactate concentration of each cell to which each of the above-mentioned drugs was added, (A) showing the result in fibroblasts, and (B) showing the result in liver cancer cells. . 7A and 7B, the vertical axis indicates the relative value of the lactic acid concentration, and the horizontal axis indicates the drug.
  • 2- 2-amino-1-phenylethanol was used as a drug.
  • glucose manufactured by Kanto Chemical Co., Ltd.
  • a glucose solution was dissolved in water for injection to a concentration of 200 mg / mL to prepare a glucose solution.
  • the glucose solution is added to the solution so that the final concentrations of the drug and glucose are 2.5 mg / mL and 100 mg / mL, respectively.
  • a sample was prepared.
  • a 100 mg / mL glucose solution containing no drug was used instead of the sample.
  • 6-week-old ICR male mice were purchased from Japan SLC, Inc., and were reared for about one week to confirm that there was no abnormality in their general condition.
  • the conditions for the preliminary breeding were as follows: four mice were each housed in a polycarbonate cage, the room temperature was 23 ° C. ⁇ 3 ° C., and the lighting time was 12 hours / day. Feed (solid feed for mice and rats, manufactured by Nippon Nosan Kogyo Co., Ltd.) and drinking water (tap water) were freely taken.
  • mice were fasted for about 21 hours, and the body weight and the blood glucose level were measured.
  • the test group and the control group were divided into a total of two groups so that blood glucose levels did not vary among the groups.
  • the number of animals in each group was eight.
  • Table 2 shows the weight (g) of the mice at the time of the grouping.
  • the sample and the control were orally administered to the mice of the test group and the control group once, respectively, using a gastric tube so as to have a dose volume of 20 mL / kg. That is, the mice in the test group were administered with the drug and glucose at doses of 50 mg / kg and 2000 mg / kg, respectively, and the mice in the control group were administered glucose at a dose of 2000 mg / kg. Was administered.
  • the blood glucose level was measured at 30 minutes, 60 minutes, 90 minutes, and 120 minutes, with the time of the administration being 0 minutes. Blood glucose was measured by using Accu-Chek Aviva (Roche Diagnostics Co., Ltd.), puncturing the tip of the tail with a syringe needle, collecting blood, and measuring the blood glucose of the collected blood.
  • test group and the control group were compared by a t-test for blood sugar levels at 0, 30, 60, 90 and 120 minutes.
  • the significance level was 5% and 1%.
  • FIG. Table 3 is a table showing measured values (mg / dL) of blood glucose levels at a predetermined time after the administration in each individual.
  • FIG. 8 shows blood glucose levels at a predetermined time after the administration in the test group and the control group. It is a graph which shows the average value of a value.
  • the vertical axis indicates the blood glucose level (mg / dL), and the horizontal axis indicates the time (minute) after administration.
  • FIG. 8A the average value was calculated based on the blood glucose levels obtained for all the individuals (No. 1 to No. 8) in the control group and the test group.
  • Table 3 the blood glucose level of one individual (No.
  • the test group tended to have a lower blood glucose level than the control group at 30, 60, 90 and 120 minutes after administration. It was observed. In particular, at the time 30 minutes after administration, the test group had significantly lower blood glucose levels compared to the control group (P ⁇ 0.05 and P ⁇ 0.01).
  • AUC area @ under @ the @ curve
  • the AUC is calculated by calculating an area surrounded by a straight line parallel to the time axis passing through the measured value at the time of administration and a measured value curve in a graph in which the vertical axis represents measured values and the horizontal axis represents time.
  • the AUC was compared with the control group by the t-test in the same manner as in the above-mentioned comparison with respect to the blood glucose level.
  • FIG. Table 4 is a table showing the calculated value of AUC (mg / dL ⁇ h) in each individual
  • FIG. 9 is a graph showing the average value of AUC in the test group and the control group.
  • the vertical axis indicates AUC (mg / dL ⁇ h)
  • the horizontal axis indicates the control group and the test group.
  • the average value was calculated based on the calculated values of AUC obtained for all the individuals (No. 1 to No. 8) in the control group and the test group.
  • the calculated value (258) of the AUC of one individual (No. 8) in the test group was the same as that of the other seven individuals (No.
  • test group tended to have a lower AUC value than the control group. Also, as shown in FIG. 9 (B), the test group had a significantly lower AUC value than the control group (P ⁇ 0.05).
  • Example 8 It was confirmed that the drug of the present invention exhibited a lactate synthesis promoting effect even after long-term culture.
  • Example 2 the sample of 2-amino-1-cyclohexylethanol (2-amino-1-cyclohexylEOH) was prepared.
  • rat-derived fibroblasts Py-3Y1-S2, subcultured
  • human-derived esophageal cancer cells TE-13, subcultured
  • African green monkey-derived kidney epithelial cells VEO
  • a subculture) and a human-derived hepatoma cell were cultured under the same conditions as in Example 1 above.
  • Each of the samples was added to this culture solution to a concentration of 0.5 mg / mL. Thereafter, the cells were further cultured for 24-48 hours.
  • Control 1 was cultured in the same manner except that distilled water without drug was added to the culture solution instead of the sample.
  • a biguanide (Biguanide) sample was prepared in the same manner as in Example 1 and cultured in the same manner except that the sample was added instead of the sample. Then, in the same manner as in Example 6, the lactic acid concentration in each sample was measured. Using the above four types of cells, a total of five experiments (once for Py-3Y1-S2, TE-13 and HepG2, and twice for VERO) were performed.
  • FIG. 10 is a graph showing the lactic acid concentration in the culture solution of each cell to which each of the above-mentioned drugs was added.
  • the values in each graph show the average value of the results of the above five experiments.
  • the vertical axis indicates the lactic acid concentration (mmol / L) in the culture solution, and the horizontal axis indicates the drug.
  • the lactic acid concentration was 9.35 mmol / L, and control 1 (Control) and increased (P ⁇ 0.05).
  • the concentration of lactic acid in the culture solution is 11.2 mmol. / L. Then, as shown in FIG. 10, the lactic acid concentration in the culture solution when the culture was performed for 24 to 48 hours after the addition of each sample was about 8 to 10 mmol / L.
  • samples of 2-amino-1-cyclohexylethanol (2-amino-1-cyclohexylEOH) and 2-amino-1-phenylethanol (2-amino-1-phenylEOH) were prepared in the same manner as in Example 1. Prepared. In the same manner as in Example 8, each of the four types of cells was used and cultured under the same conditions as in Example 1. Each of the samples was added to this culture solution to a concentration of 0.5 mg / mL. Thereafter, the culturing time was further extended than in Example 8, and culturing was performed for 2 to 3 days (48 to 72 hours). Control 1 was cultured in the same manner except that distilled water without drug was added to the culture solution instead of the sample.
  • Control 2 was similarly cultured except that a biguanide sample prepared in the same manner as in Example 1 was added to the culture solution instead of the sample. Then, in the same manner as in Example 6, the lactic acid concentration in each sample was measured. Using the above four types of cells, a total of four experiments were performed.
  • FIG. 11 is a graph showing the lactate concentration of each cell to which each of the above-mentioned drugs was added.
  • the values in each graph indicate the average of the results of the four experiments.
  • the ordinate indicates the lactic acid concentration (mmol / L) in the culture solution, and the abscissa indicates the drug.
  • the lactic acid concentration was respectively increased.
  • Control 1 Control 1
  • control 2 Biguanide
  • the lactic acid concentration was about 3.5 times that of control 1 when culture was performed for 2 to 3 days after the addition of biguanide (P ⁇ 0.05).
  • P ⁇ 0.05 the lactic acid in a culture solution produced as a glycolytic metabolite is subsequently metabolized.
  • 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol metabolized lactic acid to the same extent as control 1, and did not inhibit the metabolism of lactic acid.
  • biguanide suppressed the metabolism of lactic acid.
  • the present invention by containing at least one selected from the group consisting of the compound represented by the chemical formula (1), tautomers and stereoisomers thereof, and salts thereof , Can promote glucose consumption. And, since the drug can promote glucose consumption in this way, it can be used, for example, as a therapeutic agent for diabetes. Therefore, the present invention can be said to be extremely useful in the field of medicine and the like.

Abstract

Provided is a new drug capable of promoting the consumption of glucose. The glucose consumption promoter of the present invention is characterized by including at least one selected from the group consisting of 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis[tris(hydroxymethyl)methylamino]propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propylamine, triethanolamine, triethylamine, and trishydroxymethylaminomethane.

Description

グルコース消費促進剤および解糖系促進剤Glucose consumption promoter and glycolytic promoter
 本発明は、グルコース消費促進剤および解糖系促進剤に関する。 The present invention relates to a glucose consumption promoter and a glycolysis promoter.
 糖尿病は、インスリンが十分に働かないことで、血液中のグルコース濃度(血糖値)が高い状態が続く病気である。糖尿病が長期にわたると、高濃度のグルコースにより血管の障害が生じ、心臓病、失明、腎不全、足の切断等の合併症が引き起こされることが知られている。 Diabetes is a disease in which the concentration of glucose (blood sugar level) in the blood continues to be high due to insufficient working of insulin. It is known that over a prolonged period of diabetes, high concentrations of glucose cause vascular damage, causing complications such as heart disease, blindness, renal failure, and amputation of the feet.
 糖尿病の治療法としては、例えば、1型糖尿病の場合、インスリン注射による体外からのインスリンの補充、そして、2型糖尿病の場合、食事療法および運動療法に加え、経口血糖降下薬およびインスリン注射等の薬物療法により、血糖値をコントロールする方法が知られている(特許文献1)。しかし、新たな、グルコース濃度をコントロール可能な方法が求められている。 As a method of treating diabetes, for example, in the case of type 1 diabetes, supplementation of insulin from outside the body by insulin injection, and in the case of type 2 diabetes, in addition to diet therapy and exercise therapy, oral hypoglycemic drugs and insulin injection, etc. A method of controlling blood sugar level by drug therapy is known (Patent Document 1). However, there is a need for a new method capable of controlling the glucose concentration.
特開2015-205925号公報JP-A-2005-205925
 そこで、本発明は、グルコースの消費を促進可能な新たな薬剤の提供を目的とする。 Therefore, an object of the present invention is to provide a new drug capable of promoting consumption of glucose.
 前記目的を達成するために、本発明のグルコース消費促進剤および解糖系促進剤は、2-アミノ-1-シクロヘキシルエタノール、1-アミノ-2-プロパノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、モルホリン、プロピルアミン、トリエタノールアミン、トリエチルアミン、トリスヒドロキシメチルアミノメタンからなる群から選択された少なくとも1つを含むことを特徴とする。 In order to achieve the above object, the glucose consumption promoter and the glycolysis promoter of the present invention include 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl ) Methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propylamine, triethanolamine, triethylamine, trishydroxymethylaminomethane. Features.
 本発明の糖尿病の治療に使用するための医薬組成物は、前記本発明のグルコース消費促進剤または解糖系促進剤を含むことを特徴とする。 医 薬 A pharmaceutical composition for use in the treatment of diabetes of the present invention is characterized by containing the glucose consumption promoter or glycolysis promoter of the present invention.
 本発明のグルコース消費促進方法は、前記本発明のグルコース消費促進剤または前記本発明の医薬組成物を投与する工程を含むことを特徴とする。また、本発明の解糖系促進方法は、前記本発明の解糖系促進剤または前記本発明の医薬組成物を投与する工程を含むことを特徴とする。 グ ル コ ー ス The glucose consumption promoting method of the present invention is characterized by including the step of administering the glucose consumption promoting agent of the present invention or the pharmaceutical composition of the present invention. Further, the glycolysis promoting method of the present invention includes a step of administering the glycolysis promoting agent of the present invention or the pharmaceutical composition of the present invention.
 本発明によれば、グルコースの消費を促進可能な新たな薬剤を提供することができる。 According to the present invention, a new drug capable of promoting glucose consumption can be provided.
図1は、実施例1における、各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。FIG. 1 is a graph showing the relative value of glucose consumption of fibroblasts to which each drug was added in Example 1. 図2は、実施例1における、比較例の各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。FIG. 2 is a graph showing the relative values of glucose consumption of fibroblasts to which the respective drugs of the comparative example were added in Example 1. 図3は、実施例2における、各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。FIG. 3 is a graph showing relative values of glucose consumption of fibroblasts to which each drug was added in Example 2. 図4は、実施例3における、各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。FIG. 4 is a graph showing the relative values of glucose consumption of fibroblasts to which each drug was added in Example 3. 図5は、実施例4における、各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。FIG. 5 is a graph showing the relative value of glucose consumption of fibroblasts to which each drug was added in Example 4. 図6は、実施例5における、各薬剤を添加した肝がん細胞のグルコース消費量の相対値を示したグラフである。FIG. 6 is a graph showing the relative value of glucose consumption of liver cancer cells to which each drug was added in Example 5. 図7は、実施例6における、各薬剤を添加した線維芽細胞および肝がん細胞の乳酸濃度の相対値を示したグラフである。FIG. 7 is a graph showing the relative values of the lactate concentrations of fibroblasts and liver cancer cells to which each drug was added in Example 6. 図8は、実施例7における、薬剤を投与したマウスの血糖値を示したグラフである。FIG. 8 is a graph showing the blood glucose level of the mice to which the drug was administered in Example 7. 図9は、実施例7における、薬剤を投与したマウスのAUCの算出値を示したグラフである。FIG. 9 is a graph showing the calculated value of AUC of the mouse to which the drug was administered in Example 7. 図10は、実施例8における、薬剤を投与した各細胞の培養液中の乳酸濃度を示したグラフである。FIG. 10 is a graph showing the lactic acid concentration in the culture solution of each cell to which the drug was administered in Example 8. 図11は、実施例9における、薬剤を投与した各細胞の培養液中の乳酸濃度を示したグラフである。FIG. 11 is a graph showing the lactic acid concentration in the culture solution of each cell to which the drug was administered in Example 9.
 本発明のグルコース消費促進剤および解糖系促進剤は、例えば、2-アミノ-1-シクロヘキシルエタノール、1-アミノ-2-プロパノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、モルホリン、プロピルアミン、トリエタノールアミン、トリエチルアミン、トリスヒドロキシメチルアミノメタンからなる群から選択された少なくとも1つを主成分として含む。 The glucose consumption promoter and glycolysis promoter of the present invention include, for example, 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, It contains at least one selected from the group consisting of N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propylamine, triethanolamine, triethylamine and trishydroxymethylaminomethane as a main component.
 本発明のグルコース消費促進剤および解糖系促進剤は、例えば、さらに、経口用の添加剤を含む。 グ ル コ ー ス The glucose consumption promoter and glycolysis promoter of the present invention further include, for example, an oral additive.
 本明細書で使用する用語は、特に言及しない限り、当該技術分野で通常用いられる意味で用いることができる。 用語 The terms used in the present specification can be used in the meaning usually used in the technical field unless otherwise specified.
 以下に、本発明について、詳細に説明する。 Hereinafter, the present invention will be described in detail.
(グルコース消費促進剤および解糖系促進剤)
 本発明のグルコース消費促進剤および解糖系促進剤は、前述のように、下記化学式(1)で表される化合物、その互変異性体および立体異性体、ならびにそれらの塩(以下、「本発明における薬剤」ともいう)からなる群から選択される少なくとも一つを含むことを特徴とする。本発明のグルコース消費促進剤および解糖系促進剤において、その他の構成及び条件は、特に制限されない。
Figure JPOXMLDOC01-appb-C000001
(Glucose consumption promoter and glycolytic promoter)
As described above, the glucose consumption promoter and the glycolysis promoter of the present invention include a compound represented by the following chemical formula (1), a tautomer and a stereoisomer thereof, and a salt thereof (hereinafter, referred to as “the present invention”). (Also referred to as “drug in the invention”). In the glucose consumption promoter and the glycolysis promoter of the present invention, other configurations and conditions are not particularly limited.
Figure JPOXMLDOC01-appb-C000001
 前記化学式(1)中、Rは、水素原子、またはヒドロキシ基である。また、後述するように、RおよびRは、一体となって、環状構造を形成してもよい。 In the chemical formula (1), R 1 is a hydrogen atom or a hydroxy group. Further, as described later, R 1 and R 6 may be integrally formed to form a ring structure.
 前記化学式(1)中、Rは、水素原子、直鎖もしくは分枝アルキル基、アリール基、シクロアルキル基またはヘテロ環を含む置換基である。前記直鎖もしくは分枝アルキル基の炭素数は、特に限定されず、例えば、1~40、1~32、1~24、1~18、1~12、1~6、または1~2(不飽和炭化水素基の場合は2以上)であってもよい。前記アルキル基は、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基およびtert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、イコシル基等である。アルキル基から誘導される基(ヒドロキシアルキル基)においても同様である。前記アリール基は、例えば、単環芳香族炭化水素基および多環芳香族炭化水素基を含む。前記単環芳香族炭化水素基は、例えば、フェニル等が挙げられる。前記多環芳香族炭化水素基は、例えば、1-ナフチル基、2-ナフチル基、1-アントリル基、2-アントリル基、9-アントリル基、1-フェナントリル基、2-フェナントリル基、3-フェナントリル基、4-フェナントリル基、9-フェナントリル基等が挙げられる。前記シクロアルキル基は、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、およびシクロヘキシル基、シクロヘプチル基、シクロオクチル基等があげられる。前記ヘテロ環を含む置換基における前記ヘテロ環において、環を構成する原子の数は、特に制限されず、例えば、3、4、5、6、7、8、9、および10である。前記ヘテロ環を含む置換基におけるヘテロ原子は、例えば、O、S、N、およびNHからなる群から選択された少なくとも1つである。前記ヘテロ環を含む置換基は、具体的には、例えば、下記化学式(R2)で表される基があげられる。下記化学式(R2)において、環を構成する原子は、Nに代えてCHでもよく、Sに代えてOでもよく、および、Oに代えてSでもよい。
Figure JPOXMLDOC01-appb-C000002
In the above chemical formula (1), R 2 is a substituent containing a hydrogen atom, a linear or branched alkyl group, an aryl group, a cycloalkyl group or a hetero ring. The number of carbon atoms of the linear or branched alkyl group is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6, or 1 to 2 (non- And 2 or more in the case of a saturated hydrocarbon group). The alkyl group is specifically, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group, a pentyl group, a hexyl group, Heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, nonadecyl, icosyl and the like. The same applies to a group derived from an alkyl group (hydroxyalkyl group). The aryl group includes, for example, a monocyclic aromatic hydrocarbon group and a polycyclic aromatic hydrocarbon group. Examples of the monocyclic aromatic hydrocarbon group include phenyl. Examples of the polycyclic aromatic hydrocarbon group include 1-naphthyl, 2-naphthyl, 1-anthryl, 2-anthryl, 9-anthryl, 1-phenanthryl, 2-phenanthryl, and 3-phenanthryl. Group, 4-phenanthryl group, 9-phenanthryl group and the like. Examples of the cycloalkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group. In the hetero ring in the substituent containing a hetero ring, the number of atoms constituting the ring is not particularly limited and is, for example, 3, 4, 5, 6, 7, 8, 9, and 10. The hetero atom in the substituent containing a hetero ring is, for example, at least one selected from the group consisting of O, S, N, and NH. Specific examples of the substituent containing a hetero ring include a group represented by the following chemical formula (R2). In the following chemical formula (R2), the atoms constituting the ring may be CH instead of N, O may be substituted for S, and S may be substituted for O.
Figure JPOXMLDOC01-appb-C000002
 置換基等に異性体が存在する場合は、特に断らない限り、どの異性体でもよい。 場合 When there is an isomer in the substituent or the like, any isomer may be used unless otherwise specified.
 前記アルキル基、前記アリール基、前記シクロアルキル基および前記ヘテロ環を含む置換基の炭素原子に結合した水素原子の1以上は、さらなる置換基で置換されていてもよい。前記さらなる置換基としては、特に限定されず、例えば、カルボキシ、ハロゲン、ハロゲン化アルキル(例:CF、CHCF、CHCCl)、ニトロ、ニトロソ、シアノ、アルキル(例:メチル、エチル、イソプロピル、tert-ブチル)、アルケニル(例:ビニル)、アルキニル(例:エチニル)、シクロアルキル(例:シクロプロピル、アダマンチル)、シクロアルキルアルキル(例:シクロヘキシルメチル、アダマンチルメチル)、シクロアルケニル(例:シクロプロペニル)、アリール(例:フェニル、ナフチル)、アリールアルキル(例:ベンジル、フェネチル)、ヘテロアリール(例:ピリジル、フリル)、ヘテロアリールアルキル(例:ピリジルメチル)、ヘテロシクリル(例:ピペリジル)、ヘテロシクリルアルキル(例:モルホリルメチル)、アルコキシ(例:メトキシ、エトキシ、プロポキシ、ブトキシ)、ペルフルオロアルキル(例:CF)、ハロゲン化アルコキシ(例:OCF)、アシル、アルケニルオキシ(例:ビニルオキシ、アリルオキシ)、アリールオキシ(例:フェニルオキシ)、アルキルオキシカルボニル(例:メトキシカルボニル、エトキシカルボニル、tert-ブトキシカルボニル)、アリールアルキルオキシ(例:ベンジルオキシ)、アミノ[アルキルアミノ(例:メチルアミノ、エチルアミノ、ジメチルアミノ)、アシルアミノ(例:アセチルアミノ、ベンゾイルアミノ)、アリールアルキルアミノ(例:ベンジルアミノ、トリチルアミノ)、ヒドロキシアミノ]、アルキルアミノアルキル(例:ジエチルアミノメチル)、スルファモイル、オキソ等を含む。 One or more of the hydrogen atoms bonded to the carbon atoms of the substituents including the alkyl group, the aryl group, the cycloalkyl group and the hetero ring may be substituted with a further substituent. The further substituent is not particularly limited and includes, for example, carboxy, halogen, alkyl halide (eg, CF 3 , CH 2 CF 3 , CH 2 CCl 3 ), nitro, nitroso, cyano, alkyl (eg, methyl, Ethyl, isopropyl, tert-butyl), alkenyl (eg, vinyl), alkynyl (eg, ethynyl), cycloalkyl (eg, cyclopropyl, adamantyl), cycloalkylalkyl (eg, cyclohexylmethyl, adamantylmethyl), cycloalkenyl ( Examples: cyclopropenyl), aryl (eg, phenyl, naphthyl), arylalkyl (eg, benzyl, phenethyl), heteroaryl (eg, pyridyl, furyl), heteroarylalkyl (eg, pyridylmethyl), heterocyclyl (eg, piperidyl) ), Heterosik Rylalkyl (eg, morpholylmethyl), alkoxy (eg, methoxy, ethoxy, propoxy, butoxy), perfluoroalkyl (eg, CF 3 ), halogenated alkoxy (eg, OCF 3 ), acyl, alkenyloxy (eg, vinyloxy, allyloxy) , Aryloxy (eg, phenyloxy), alkyloxycarbonyl (eg, methoxycarbonyl, ethoxycarbonyl, tert-butoxycarbonyl), arylalkyloxy (eg, benzyloxy), amino [alkylamino (eg, methylamino, ethylamino) , Dimethylamino), acylamino (eg, acetylamino, benzoylamino), arylalkylamino (eg, benzylamino, tritylamino), hydroxyamino], alkylaminoalkyl (eg, diethyl Aminomethyl), sulfamoyl, oxo and the like.
 前記化学式(1)中、R、R、およびRは、それぞれ、水素原子、直鎖もしくは分枝アルキル基、または直鎖もしくは分枝ヒドロキシアルキル基である。前記直鎖もしくは分枝アルキル基、および前記直鎖もしくは分枝ヒドロキシアルキル基は、例えば、前述の通りである。R、R、およびRは、それぞれ、同一でも異なっていてもよい。また、後述するように、RおよびRは、一体となって、環状構造を形成してもよい。前記アルキル基、および前記ヒドロキシアルキル基の炭素原子に結合した水素原子の1以上は、さらなる置換基で置換されていてもよい。前記さらなる置換基は、例えば、前述の通りである。 In the chemical formula (1), R 3 , R 4 , and R 5 are each a hydrogen atom, a linear or branched alkyl group, or a linear or branched hydroxyalkyl group. The linear or branched alkyl group and the linear or branched hydroxyalkyl group are, for example, as described above. R 3 , R 4 , and R 5 may each be the same or different. Further, as described later, R 5 and R 6 may be integrally formed to form a ring structure. One or more hydrogen atoms bonded to carbon atoms of the alkyl group and the hydroxyalkyl group may be substituted with a further substituent. The further substituent is, for example, as described above.
 前記化学式(1)中、Rは、水素原子、直鎖もしくは分岐アルキル基、直鎖もしくは分枝ヒドロキシアルキル基、シクロアルキル基、またはヘテロ原子を含む置換基であり、直鎖状でも分枝状でもよく、環状構造を含んでいてもいなくてもよい。前記直鎖もしくは分枝アルキル基、前記直鎖もしくは分枝ヒドロキシアルキル基、および前記シクロアルキル基は、例えば、前述の通りである。前記ヘテロ原子を含む置換基の炭素数は、特に限定されず、例えば、1~40、1~32、1~24、1~18、1~12、1~6、または1~2であってもよい。前記ヘテロ原子を含む置換基におけるヘテロ原子は、例えば、O、S、N、およびNHからなる群から選択された少なくとも1つである。前記ヘテロ環を含む置換基は、具体的には、例えば、下記化学式(R6-1)および(R6-2)で表される基があげられる。下記化学式(R6-1)および(R6-2)において、m、n、o、p、q、rおよびsは、それぞれ、正の整数であり、特に制限されず、例えば、1~10、1~5、1~3である。前記ヘテロ環を含む置換基は、具体的には、例えば、下記化学式(R6-1-2)および(R6-2-2)で表される基があげられる。前記アルキル基、前記ヒドロキシアルキル基、前記シクロアルキル基、および前記ヘテロ原子を含む置換基の炭素原子に結合した水素原子の1以上は、さらなる置換基で置換されていてもよい。前記さらなる置換基は、例えば、前述の通りである。
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
In the chemical formula (1), R 6 represents a hydrogen atom, a straight-chain or branched alkyl group, a straight-chain or branched hydroxyalkyl group, a cycloalkyl group, or a substituent containing a hetero atom, And may or may not include a cyclic structure. The linear or branched alkyl group, the linear or branched hydroxyalkyl group, and the cycloalkyl group are, for example, as described above. The carbon number of the substituent containing a hetero atom is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6, or 1 to 2. Is also good. The hetero atom in the substituent containing a hetero atom is, for example, at least one selected from the group consisting of O, S, N, and NH. Specific examples of the substituent containing a heterocyclic ring include groups represented by the following chemical formulas (R6-1) and (R6-2). In the following chemical formulas (R6-1) and (R6-2), m, n, o, p, q, r, and s are each a positive integer and are not particularly limited, and for example, 1 to 10, 1 55, 1 ~ 3. Specific examples of the substituent containing a hetero ring include groups represented by the following chemical formulas (R6-1-2) and (R6-2-2). One or more of the hydrogen atoms bonded to the carbon atoms of the alkyl, hydroxyalkyl, cycloalkyl, and substituents including heteroatoms may be substituted with additional substituents. The further substituent is, for example, as described above.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 前記化学式(1)中、RおよびRは、一体となって、環状構造を形成してもよい。前記環状構造の炭素数は、特に限定されず、例えば、1~40、1~32、1~24、1~18、1~12、1~6であってもよい。前記環状構造は、例えば、ヘテロ原子を有していても有していなくてもよい。前記ヘテロ原子は、例えば、前述の通りである。前記環状構造は、具体的には、例えば、下記化学式(R1R6)で表される構造があげられる。下記化学式(R1R6)において、R、R、R、およびRは、例えば、前述の通りである。前記環状構造の炭素原子に結合した水素原子の1以上は、さらなる置換基で置換されていてもよい。前記さらなる置換基は、例えば、前述の通りである。
Figure JPOXMLDOC01-appb-C000007
In the chemical formula (1), R 1 and R 6 may be combined to form a cyclic structure. The number of carbon atoms in the cyclic structure is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6. The cyclic structure may or may not have a hetero atom, for example. The hetero atom is, for example, as described above. Specific examples of the cyclic structure include a structure represented by the following chemical formula (R1R6). In the following chemical formula (R1R6), R 2 , R 3 , R 4 , and R 5 are, for example, as described above. One or more of the hydrogen atoms bonded to the carbon atoms of the cyclic structure may be substituted with a further substituent. The further substituent is, for example, as described above.
Figure JPOXMLDOC01-appb-C000007
 前記化学式(1)中、RおよびRは、一体となって、環状構造を形成してもよい。前記環状構造の炭素数は、特に限定されず、例えば、1~40、1~32、1~24、1~18、1~12、1~6であってもよい。前記環状構造は、例えば、ヘテロ原子を有していても有していなくてもよい。前記ヘテロ原子は、例えば、前述の通りである。前記環状構造は、具体的には、例えば、下記化学式(R5R6)で表される構造があげられる。下記化学式(R5R6)において、R、R、R、およびRは、例えば、前述の通りである。下記化学式(R5R6)において、tは、正の整数であり、特に制限されず、例えば、1~10、1~5、1~3、2である。前記環状構造は、具体的には、例えば、下記化学式(R5R6-2)で表される構造があげられる。下記化学式(R5R6-2)において、R、R、R、およびRは、例えば、前述の通りである。前記環状構造の炭素原子に結合した水素原子の1以上は、さらなる置換基で置換されていてもよい。前記さらなる置換基は、例えば、前述の通りである。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
In the chemical formula (1), R 5 and R 6 may be combined to form a cyclic structure. The number of carbon atoms in the cyclic structure is not particularly limited, and may be, for example, 1 to 40, 1 to 32, 1 to 24, 1 to 18, 1 to 12, 1 to 6. The cyclic structure may or may not have a hetero atom, for example. The hetero atom is, for example, as described above. Specific examples of the cyclic structure include a structure represented by the following chemical formula (R5R6). In the following chemical formula (R5R6), R 1 , R 2 , R 3 , and R 4 are, for example, as described above. In the following chemical formula (R5R6), t is a positive integer and is not particularly limited, and is, for example, 1 to 10, 1 to 5, 1 to 3, or 2. Specific examples of the cyclic structure include a structure represented by the following chemical formula (R5R6-2). In the following chemical formula (R5R6-2), R 1 , R 2 , R 3 , and R 4 are, for example, as described above. One or more of the hydrogen atoms bonded to the carbon atoms of the cyclic structure may be substituted with a further substituent. The further substituent is, for example, as described above.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 前記化学式(1)で表される化合物は、具体的には、例えば、2-アミノ-1-シクロヘキシルエタノール、2-アミノエタノール、1-アミノ-2-プロパノール、2-アミノ-1-フェニルエタノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、HEPESナトリウム塩、メトプロロール酒石酸塩、モルホリン、オクトパミン、プロピルアミン、トリエタノールアミン、トリエチルアミン、チモロールマレイン酸塩、トリスヒドロキシメチルアミノメタン等があげられる。 The compound represented by the chemical formula (1) is specifically, for example, 2-amino-1-cyclohexylethanol, 2-aminoethanol, 1-amino-2-propanol, 2-amino-1-phenylethanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, HEPES sodium salt, metoprolol tartrate, morpholine, octopamine, propylamine, triethanolamine, triethylamine , Timolol maleate, trishydroxymethylaminomethane and the like.
 下記表1に、前記本発明における薬剤の構造を、前記化学式(1)におけるR、R、R、R、R、およびRの組合せで示す。表1において、「化R6-1-2」、および「化R6-2-2」は、それぞれ、前記化学式(R6-1-2)、および前記化学式(R6-2-2)で表される基であることを示す。「(化R5R6-2)」は、前記化学式(1)中、RおよびRが、一体となって、前記化学式(R5R6-2)で表される環状構造を形成していることを示す。また、「(化R1R6)」は、前記化学式(1)中、RおよびRが、一体となって、前記化学式(R1R6)で表される環状構造を形成していることを示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
In Table 1 below, the structure of the drug of the present invention is shown by a combination of R 1 , R 2 , R 3 , R 4 , R 5 and R 6 in the chemical formula (1). In Table 1, “chemical formula R6-1-2” and “chemical formula R6-2-2” are respectively represented by the chemical formula (R6-1-2) and the chemical formula (R6-2-2). Group. “(R5R6-2)” indicates that in the chemical formula (1), R 5 and R 6 together form a cyclic structure represented by the chemical formula (R5R6-2). . “(R1R6)” indicates that, in the chemical formula (1), R 1 and R 6 are united to form a cyclic structure represented by the chemical formula (R1R6).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 前記各薬剤は、いずれも既知の薬剤である。これに対して、本発明者らは、前記化学式(1)で表される化合物であるこれらの薬剤が、メカニズムは不明であるが、グルコースの消費を促進する、および解糖系を促進するとの新たな知見を得て、本発明を見出すに至った。 Each of the above-mentioned drugs is a known drug. In contrast, the present inventors have reported that these drugs, which are compounds represented by the chemical formula (1), promote the consumption of glucose and the glycolytic system, although the mechanism is unknown. The present inventors have obtained new findings and have found the present invention.
 本発明において、「グルコースの消費」は、例えば、グルコース濃度の低下の促進でもよいし、グルコース濃度の上昇の抑制でもよい。グルコースの消費は、例えば、後述する実施例に記載の方法により、測定できる。「グルコースの消費」は、例えば、細胞によるグルコースの消費でもよい。この場合、「グルコースの消費」は、例えば、「グルコースの細胞内への取込み」ということもできる。このため、本発明のグルコース消費促進剤は、例えば、グルコースの細胞内への取込み促進剤ということもできる。また、グルコースの取込みは、例えば、細胞膜に存在するグルコーストランスポーターを介することが知られている。このことから、本発明のグルコース消費促進剤は、例えば、グルコーストランスポーターを介するシグナリングカスケードの活性化剤ということもできる。ただし、本発明は、これには制限されない。 In the present invention, “consumption of glucose” may be, for example, promotion of a decrease in glucose concentration or suppression of an increase in glucose concentration. Glucose consumption can be measured, for example, by the method described in Examples described later. "Glucose consumption" may be, for example, the consumption of glucose by cells. In this case, “consumption of glucose” can also be referred to as, for example, “uptake of glucose into cells”. For this reason, the glucose consumption promoter of the present invention can also be referred to as, for example, a glucose uptake promoter into cells. In addition, it is known that the uptake of glucose is via, for example, a glucose transporter present in a cell membrane. From this, the glucose consumption promoter of the present invention can be said to be, for example, an activator of a signaling cascade via a glucose transporter. However, the present invention is not limited to this.
 本発明において、「解糖系」は、例えば、グルコースを起点とした代謝系である。前記解糖系の代謝産物として、例えば、乳酸があげられる。このため、例えば、後述するように、乳酸濃度を測定することで、解糖系の促進を確認できる。前記解糖系は、例えば、嫌気的解糖系ともいう。 に お い て In the present invention, the “glycolysis system” is, for example, a metabolic system starting from glucose. Lactic acid is an example of the glycolytic metabolite. Therefore, for example, by measuring the lactic acid concentration as described later, it is possible to confirm the promotion of the glycolytic system. The glycolysis system is also referred to as, for example, an anaerobic glycolysis system.
 本発明のグルコースの消費促進剤によれば、前述のように、グルコースの消費を促進できる。また、本発明の解糖系促進剤によれば、前述のように、解糖系を促進できる。このため、本発明のグルコースの消費促進剤および本発明の解糖系促進剤は、例えば、生体内のグルコース濃度に起因する疾患の治療に使用するための医薬組成物として使用できる。前記疾患は、例えば、糖尿病があげられる。本発明において、「治療」は、例えば、前記疾患の予防、前記疾患の改善、前記疾患の予後の改善の意味を含み、いずれでもよい。 According to the glucose consumption promoter of the present invention, glucose consumption can be promoted as described above. Further, according to the glycolytic accelerator of the present invention, as described above, the glycolytic accelerator can be promoted. Therefore, the glucose consumption promoter of the present invention and the glycolysis promoter of the present invention can be used, for example, as a pharmaceutical composition for use in treating a disease caused by glucose concentration in a living body. Examples of the disease include diabetes. In the present invention, “treatment” includes, for example, prevention of the disease, improvement of the disease, and improvement of prognosis of the disease, and may be any.
 本発明のグルコースの消費促進剤によれば、例えば、グルコースの消費により生成された乳酸の代謝を抑制することなく、グルコースの消費の促進、および解糖系の促進をすることができる。 According to the glucose consumption promoting agent of the present invention, for example, it is possible to promote the consumption of glucose and the glycolysis system without suppressing the metabolism of lactic acid generated by the consumption of glucose.
 本発明のグルコース消費促進剤は、有効成分として前記本発明の薬剤を、例えば、一種類のみ含んでもよいし、二種類以上を併用して含んでもよく、その数は、特に制限されない。本発明のグルコース消費促進剤は、前記本発明の薬剤を、例えば、主成分として含む。 グ ル コ ー ス The glucose consumption promoting agent of the present invention may contain, as an active ingredient, the above-mentioned agent of the present invention, for example, only one kind or two or more kinds in combination, and the number is not particularly limited. The glucose consumption promoting agent of the present invention contains, for example, the agent of the present invention as a main component.
 本発明のグルコース消費促進剤は、例えば、in vivoで使用してもよいし、in vitroで使用してもよい。本発明のグルコース消費促進剤は、例えば、研究用試薬として使用することもでき、前述のように、医薬品として使用することもできる。 The glucose consumption promoter of the present invention may be used, for example, in vivo , or may be used in vitro . The glucose consumption promoting agent of the present invention can be used, for example, as a research reagent, and as described above, can also be used as a pharmaceutical.
 本発明のグルコース消費促進剤の投与対象は、特に制限されない。本発明のグルコース消費促進剤をin vivoで使用する場合、本発明のグルコース消費促進剤の投与対象は、特に制限されず、例えば、ヒト、または、ヒトを除く非ヒト動物があげられる。前記非ヒト哺乳類としては、例えば、マウス、ラット、ウサギ、イヌ、ヒツジ、ウマ、ネコ、ヤギ、サル、モルモット等の非ヒト動物等があげられる。前記本発明のグルコース消費促進剤をin vitroで使用する場合、前記投与対象は、例えば、細胞、組織、器官等があげられる。前記細胞は、例えば、生体から採取した細胞でもよいし、培養細胞等でもよい。前記細胞は、特に制限されず、例えば、繊維芽細胞、肝細胞、脂肪細胞等があげられる。 The administration target of the glucose consumption promoting agent of the present invention is not particularly limited. When the glucose consumption promoting agent of the present invention is used in vivo , the subject to which the glucose consumption promoting agent of the present invention is administered is not particularly limited, and examples thereof include humans and non-human animals other than humans. Examples of the non-human mammal include non-human animals such as mice, rats, rabbits, dogs, sheep, horses, cats, goats, monkeys, and guinea pigs. When the glucose consumption promoter of the present invention is used in vitro , the administration subject includes, for example, cells, tissues, organs and the like. The cells may be, for example, cells collected from a living body or cultured cells. The cells are not particularly limited, and include, for example, fibroblasts, hepatocytes, adipocytes and the like.
 本発明のグルコース消費促進剤の使用条件(以下、「投与条件」ともいう。)は、特に制限されず、例えば、投与対象の種類等に応じて、投与形態、投与時期、投与量等を適宜設定できる。前記投与形態は、例えば、本発明のグルコース消費促進剤をin vivoで使用する場合、経口投与、腹腔内投与、皮下投与等があげられる。 The use conditions (hereinafter, also referred to as “administration conditions”) of the glucose consumption enhancer of the present invention are not particularly limited, and for example, the administration form, administration timing, dosage amount, etc. are appropriately determined according to the type of administration subject and the like. Can be set. Examples of the administration form include oral administration, intraperitoneal administration, and subcutaneous administration when the glucose consumption promoter of the present invention is used in vivo .
 本発明のグルコース消費促進剤の剤型は、特に制限されず、例えば、前記投与形態に応じて適宜決定できる。前記剤型は、例えば、経口投与の場合、カプセル剤、エキス剤、エリキシル剤、顆粒剤、丸剤、懸濁剤、細粒剤、散剤、酒精剤、錠剤、シロップ剤、浸剤・煎剤、チンキ剤、芳香水剤、リモナーデ剤、流エキス剤等があげられる。 剤 The dosage form of the glucose consumption promoter of the present invention is not particularly limited, and can be appropriately determined depending on, for example, the administration form. For example, in the case of oral administration, the dosage form is a capsule, an extract, an elixir, a granule, a pill, a suspension, a fine granule, a powder, an alcoholic beverage, a tablet, a syrup, an infusion / decoction, and a tincture. Agents, aromatic agents, limonade agents, liquid extract agents and the like.
 本発明のグルコース消費促進剤は、例えば、必要に応じて、添加剤を含んでもよく、本発明のグルコース消費促進剤を医薬として使用する場合、前記添加剤は、薬学上許容される添加剤が好ましい。前記添加剤は、例えば、賦形剤、安定剤、保存剤、緩衝剤、矯味剤、懸濁化剤、乳化剤、着香剤、溶解補助剤、着色剤、粘稠剤等があげられる。前記添加剤は、例えば、経口用の添加剤があげられる。経口用の添加剤は、例えば、虫歯予防剤、整腸剤、矯味剤等である。本発明において、前記添加剤の配合量は、前記グルコース消費促進剤の機能を妨げるものでなければ、特に制限されない。 The glucose consumption promoting agent of the present invention may, for example, if necessary, contain an additive.When the glucose consumption promoting agent of the present invention is used as a medicine, the additive is a pharmaceutically acceptable additive. preferable. Examples of the additives include excipients, stabilizers, preservatives, buffers, flavoring agents, suspending agents, emulsifiers, flavoring agents, solubilizing agents, coloring agents, thickeners, and the like. Examples of the additives include oral additives. Oral additives include, for example, caries preventives, intestinal medicines, corrigents and the like. In the present invention, the amount of the additive is not particularly limited as long as it does not hinder the function of the glucose consumption promoter.
 本発明のグルコース消費促進剤の投与条件は、特に制限されず、例えば、投与対象の種類、性別、年齢、投与対象の部位等に応じて、投与時期、投与期間、投与量等を適宜設定できる。 The administration conditions of the glucose consumption enhancer of the present invention are not particularly limited, and for example, the administration timing, administration period, dosage, and the like can be appropriately set according to the type, gender, age, administration site, and the like of the administration subject. .
 具体例として、本発明のグルコース消費促進剤をヒトに経口投与する場合、1日あたりの投与量合計は、例えば、100~5000mg、500~2500mgである。1日あたりの投与回数は、例えば、1~5回、2~3回である。 As a specific example, when the glucose consumption enhancer of the present invention is orally administered to a human, the total daily dose is, for example, 100 to 5000 mg and 500 to 2500 mg. The number of administrations per day is, for example, 1 to 5 times and 2 to 3 times.
(医薬用組成物)
 本発明の糖尿病の治療に使用するための医薬組成物は、前述のように、本発明のグルコース消費促進剤または本発明の解糖系促進剤を含むことを特徴とする。本発明の医薬組成物は、前記本発明のグルコース消費促進剤または前記本発明の解糖系促進剤を含むことが特徴であって、その他の構成および条件は、特に制限されない。本発明の医薬用組成物は、前記本発明のグルコース消費促進剤および前記本発明の解糖系促進剤の記載を援用できる。本発明の医薬用組成物によれば、例えば、糖尿病を治療できる。
(Pharmaceutical composition)
As described above, the pharmaceutical composition for use in the treatment of diabetes of the present invention is characterized by containing the glucose consumption promoter of the present invention or the glycolysis promoter of the present invention. The pharmaceutical composition of the present invention is characterized by containing the glucose consumption promoter of the present invention or the glycolysis promoter of the present invention, and other configurations and conditions are not particularly limited. The description of the glucose consumption promoter of the present invention and the glycolysis promoter of the present invention can be referred to for the pharmaceutical composition of the present invention. According to the pharmaceutical composition of the present invention, for example, diabetes can be treated.
(グルコース消費促進方法および解糖系促進方法)
 本発明のグルコース消費促進方法は、投与対象に、前記本発明のグルコース消費促進剤を投与する工程を含むことを特徴とする。また、本発明の解糖系促進方法は、投与対象に、前記本発明の解糖系促進剤を投与する工程を含むことを特徴とする。本発明は、前記本発明のグルコース消費促進剤または解糖系促進剤を投与する工程を含むことが特徴であって、その他の工程および条件は、特に制限されない。前記本発明のグルコース消費促進剤または解糖系促進剤は、前述の通りである。前記本発明のグルコース消費促進剤および解糖系促進剤の投与条件等は、特に制限されず、例えば、本発明のグルコース消費促進剤における記載と同様である。
(Method of promoting glucose consumption and method of promoting glycolysis)
The glucose consumption promoting method of the present invention includes a step of administering the glucose consumption promoting agent of the present invention to an administration subject. Further, the glycolysis promoting method of the present invention includes a step of administering the glycolysis promoting agent of the present invention to a subject to be administered. The present invention is characterized in that it comprises a step of administering the glucose consumption promoter or glycolysis promoter of the present invention, and other steps and conditions are not particularly limited. The glucose consumption promoter or glycolysis promoter of the present invention is as described above. The administration conditions and the like of the glucose consumption promoter and the glycolytic accelerator of the present invention are not particularly limited, and are, for example, the same as those described for the glucose consumption promoter of the present invention.
(薬剤の使用)
 本発明は、グルコースの消費促進および解糖系促進に使用するための、本発明における薬剤の使用であり、また、糖尿病の治療に使用するための前記薬剤の使用である。本発明は、グルコースの消費促進剤および解糖系促進剤の製造のための前記薬剤の使用であり、また、糖尿病の治療に使用するための医薬組成物の製造のための前記薬剤の使用である。本発明は、例えば、前記本発明のグルコース消費促進剤および解糖系促進剤、医薬用組成物、ならびにグルコース消費促進方法および解糖系促進方法の説明を援用できる。
(Use of drugs)
The present invention is the use of the medicament of the present invention for use in promoting glucose consumption and glycolysis, and the use of the aforementioned medicament for use in treating diabetes. The present invention relates to the use of said medicament for the production of a glucose consumption promoter and a glycolytic accelerator, and the use of said medicament for the production of a pharmaceutical composition for use in the treatment of diabetes. is there. In the present invention, for example, the description of the glucose consumption promoting agent and the glycolytic accelerator, the pharmaceutical composition, and the glucose consumption promoting method and the glycolytic promoting method of the present invention can be cited.
 つぎに、本発明の実施例について説明する。ただし、本発明は、下記実施例により制限されない。市販の試薬は、特に示さない限り、それらのプロトコルに基づいて使用した。 Next, embodiments of the present invention will be described. However, the present invention is not limited by the following examples. Commercial reagents were used based on those protocols unless otherwise indicated.
[実施例1]
 本発明の薬剤が、線維芽細胞に対して、グルコース消費促進効果を奏することを確認した。
[Example 1]
It was confirmed that the agent of the present invention exerts a glucose consumption promoting effect on fibroblasts.
 薬剤として、2-アミノ-1-シクロヘキシルエタノール(2-Amino-1-cyclohexylethanol)(Matrix Biochemicals社製)、2-アミノエタノール(2-Aminoethanol)(東京化成工業社製)、1-アミノ-2-プロパノール(Amino-2-propanol)(和光純薬社製)、2-アミノ-1-フェニルエタノール(2-Amino-1-phenylethanol)(東京化成工業社製)、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン(1,3-Bis[tris(hydroxymethyl)-methylamino]propane)(東京化成工業社製)、N-シクロヘキシルエタノールアミン(N-Cyclohexylethanolamine)(東京化成工業社製)、ジエタノールアミン(Diethanolamine)(和光純薬社製)、ジエチルアミン(Diethylamine)(和光純薬社製)、ジプロピルアミン(Dipropylamine)(東京化成工業社製)、HEPESナトリウム塩(HEPES sodium salt)(MP Biomedicals社製)、メトプロロール酒石酸塩(Metoprolol Tartrate)(東京化成工業社製)、モルホリン(Morpholine)(和光純薬社製)、オクトパミン(Octopamine)(MP Biomedicals社製)、プロピルアミン(Propylamine)(東京化成工業社製)、トリエチルアミン(Triethylamine)(和光純薬社製)、チモロールマレイン酸塩(Timolol Maleate)(和光純薬社製)、およびトリスヒドロキシメチルアミノメタン(Tris)(和光純薬社製)を使用した。前記薬剤を蒸留水に溶解し、サンプルを調製した。 As drugs, 2-Amino-1-cyclohexylethanol (manufactured by Matrix Biochemicals), 2-Aminoethanol (manufactured by Tokyo Chemical Industry), 1-amino-2- Propanol (Amino-2-propanol) (manufactured by Wako Pure Chemical Industries), 2-Amino-1-phenylethanol (manufactured by Tokyo Chemical Industry Co., Ltd.), 1,3-bis [tris (hydroxy Methyl) methylamino] propane (1,3-Bis [tris (hydroxymethyl) -methylamino] propane) (manufactured by Tokyo Chemical Industry Co., Ltd.), N-cyclohexylethanolamine (manufactured by Tokyo Chemical Industry Co., Ltd.), diethanolamine ( Diethanolamine (manufactured by Wako Pure Chemical), diethylamine (manufactured by Wako Pure Chemical), dipropylamine (manufactured by Tokyo Chemical Industry), sodium salt of HEPES (HEPES sodium salt) ) (Manufactured by MP Biomedicals), metoprolol tartrate (manufactured by Tokyo Chemical Industry), morpholine (Morpholine) (manufactured by Wako Pure Chemical Industries), octopamine (manufactured by MP Biomedicals), propylamine (Propylamine) ) (Manufactured by Tokyo Chemical Industry Co., Ltd.), triethylamine (manufactured by Wako Pure Chemical Industries, Ltd.), timolol maleate (Timolol Maleate) (manufactured by Wako Pure Chemical Industries, Ltd.), and trishydroxymethylaminomethane (Tris) (Wako Pure Chemical Industries, Ltd.) Was used. The drug was dissolved in distilled water to prepare a sample.
 そして、ラット由来の線維芽細胞(Py-3Y1-S2、継代培養株)を、24ウェルマイクロプレートに、~2×10細胞/mL/ウェルとなるように播種し、単層になるまで培養した。前記培養において、培地として、DMEM(日水製薬社製)を使用した。この培養液に、前記各サンプルを、前記薬剤の終濃度が、それぞれ、0.5mg/mLとなるように添加し、さらに、12~24時間培養した。薬剤のコントロールとしては、前記サンプルに代えて、薬剤未添加の蒸留水を前記培養液に添加した以外は、同様に培養を行った。 Then, rat-derived fibroblasts (Py-3Y1-S2, subcultured strain) are seeded on a 24-well microplate at a concentration of ~ 2 × 10 5 cells / mL / well until a monolayer is formed. Cultured. In the culture, DMEM (manufactured by Nissui Pharmaceutical Co., Ltd.) was used as a medium. Each of the samples was added to the culture solution so that the final concentration of the drug was 0.5 mg / mL, and the cells were further cultured for 12 to 24 hours. As a drug control, culturing was performed in the same manner except that distilled water containing no drug was added to the culture solution instead of the sample.
 前記薬剤添加後、前記培養の開始直後および前記培養後において、それぞれ、前記各培養液のグルコース濃度を測定した。前記グルコース濃度の測定は、グルコースアッセイキット(ワコー社製)を使用した。そして、前記培養後の前記グルコース濃度を、前記培養開始直後の前記グルコース濃度(5.6mmol/L)で除算し、グルコース消費量を算出した。さらに、コントロールにおける前記グルコース消費量を基準値100とし、各サンプルにおける前記グルコース消費量の相対値を算出した。 (4) Immediately after the addition of the drug, immediately after the start of the culture and after the culture, the glucose concentration of each culture solution was measured. The glucose concentration was measured using a glucose assay kit (Wako). Then, the glucose concentration after the culture was divided by the glucose concentration (5.6 mmol / L) immediately after the start of the culture to calculate glucose consumption. Further, the glucose consumption in the control was set as a reference value of 100, and the relative value of the glucose consumption in each sample was calculated.
 この結果を、図1(A)に示す。図1(A)は、0.5mg/mLの前記各薬剤を添加した場合の、線維芽細胞のグルコース消費量の相対値を示したグラフである。図1(A)において、縦軸は、グルコース消費量の相対値を示し、横軸は、薬剤を示す。図1(A)に示すように、いずれのサンプルにおいても、前記各薬剤の添加により、前記グルコース消費量の相対値が100以上となり、グルコース消費量が増加していた。中でも、2-アミノ-1-シクロヘキシルエタノール、2-アミノエタノール、1-アミノ-2-プロパノール、2-アミノ-1-フェニルエタノール、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、HEPESナトリウム塩、メトプロロール酒石酸塩、モルホリン、プロピルアミン、トリエチルアミン、チモロールマレイン酸塩、トリスヒドロキシメチルアミノメタンの添加により、コントロールと比較して有意にグルコース消費量が増加しており(t検定、p<0.05、またはp<0.1、図1(A)において「**」または「*」で表す)、強いグルコース消費促進効果を示すことが確認できた。 The results are shown in FIG. FIG. 1 (A) is a graph showing relative values of glucose consumption of fibroblasts when 0.5 mg / mL of each of the above-mentioned drugs was added. In FIG. 1 (A), the vertical axis indicates a relative value of glucose consumption, and the horizontal axis indicates a drug. As shown in FIG. 1 (A), in each of the samples, the relative value of the glucose consumption increased to 100 or more and the glucose consumption increased due to the addition of each drug. Among them, 2-amino-1-cyclohexylethanol, 2-aminoethanol, 1-amino-2-propanol, 2-amino-1-phenylethanol, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, sodium salt of HEPES , Metoprolol tartrate, morpholine, propylamine, triethylamine, timolol maleate, and trishydroxymethylaminomethane significantly increased glucose consumption compared to controls (t-test, p <0.05 , Or p <0.1, which is represented by “**” or “*” in FIG. 1 (A)).
 さらに、薬剤として、2-アミノ-1-シクロヘキシルエタノール、2-アミノエタノール、1-アミノ-2-プロパノール、2-アミノ-1-フェニルエタノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、HEPESナトリウム塩、メトプロロール酒石酸塩、モルホリン、プロピルアミン、トリエタノールアミン(Triethanolamine)(東京化成工業社製)、トリエチルアミン、チモロールマレイン酸塩、トリスヒドロキシメチルアミノメタンを使用し、前記薬剤の終濃度を、それぞれ、1mg/mLとする以外は、前述の条件と同様にして、グルコース消費促進効果を確認した。 Further, as drugs, 2-amino-1-cyclohexylethanol, 2-aminoethanol, 1-amino-2-propanol, 2-amino-1-phenylethanol, 1,3-bis [tris (hydroxymethyl) methylamino] Propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, sodium salt of HEPES, metoprolol tartrate, morpholine, propylamine, triethanolamine (Triethanolamine) (manufactured by Tokyo Chemical Industry Co., Ltd.), triethylamine, timolol maleate, The effect of promoting glucose consumption was confirmed in the same manner as described above, except that trishydroxymethylaminomethane was used and the final concentration of each of the above-mentioned drugs was 1 mg / mL.
 この結果を、図1(B)に示す。図1(B)は、1mg/mLの前記各薬剤を添加した場合の、グルコース消費量の相対値を示したグラフである。図1(B)において、縦軸は、グルコース消費量の相対値を示し、横軸は、薬剤を示す。図1(B)に示すように、いずれのサンプルにおいても、前記各薬剤の添加により、前記グルコース消費量の相対値が100以上となり、グルコース消費量が増加していた。中でも、2-アミノ-1-シクロヘキシルエタノール、2-アミノエタノール、2-アミノ-1-フェニルエタノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、HEPESナトリウム塩、メトプロロール酒石酸塩、モルホリン、プロピルアミン、トリエチルアミン、チモロールマレイン酸塩、トリスヒドロキシメチルアミノメタンの添加により、コントロールと比較して有意にグルコース消費量が増加しており(t検定、p<0.05、またはp<0.1、図1(B)において「**」または「*」で表す)、強いグルコース消費促進効果を示すことが確認できた。 The results are shown in FIG. FIG. 1 (B) is a graph showing the relative value of glucose consumption when 1 mg / mL of each of the above-mentioned drugs was added. In FIG. 1 (B), the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the drug. As shown in FIG. 1 (B), in each of the samples, the relative value of the glucose consumption increased to 100 or more and the glucose consumption increased due to the addition of each of the agents. Among them, 2-amino-1-cyclohexylethanol, 2-aminoethanol, 2-amino-1-phenylethanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine , Dipropylamine, sodium salt of HEPES, metoprolol tartrate, morpholine, propylamine, triethylamine, timolol maleate, trishydroxymethylaminomethane significantly increased glucose consumption compared to control ( t-test, p <0.05, or p <0.1, represented by “**” or “*” in FIG. 1 (B)), it was confirmed that a strong glucose consumption promoting effect was exhibited.
 つぎに、比較例として、前記化学式(1)で表される構造を有さない薬剤である、トリシン(Tricine)、およびトリメチロールプロパン(Trimethylolpropane)を使用した以外は、前述の条件と同様にして、グルコース消費促進効果を確認した。 Next, as a comparative example, the same conditions as above were used except that Tricine and Trimethylolpropane, which are drugs having no structure represented by the chemical formula (1), were used. The effect of promoting glucose consumption was confirmed.
 この結果を、図2に示す。図2は、前記比較例の各薬剤を添加した場合の、グルコース消費量の相対値を示したグラフであり、(A)は、0.5mg/mLの前記比較例の各薬剤を添加した場合の結果を示し、(B)は、1mg/mLの前記比較例の各薬剤を添加した場合の結果を示す。図2(A)および(B)において、縦軸は、グルコース消費量の相対値を示し、横軸は、薬剤を示す。図2(A)および(B)に示すように、いずれのサンプルにおいても、0.5mg/mLまたは1mg/mLの前記比較例の各薬剤の添加により、前記グルコース消費量の相対値が100未満であり、グルコース消費量が増加しなかった。 The results are shown in FIG. FIG. 2 is a graph showing relative values of glucose consumption when each drug of the comparative example was added. (A) shows a case where 0.5 mg / mL of each drug of the comparative example was added. (B) shows the results obtained when 1 mg / mL of each drug of the comparative example was added. 2A and 2B, the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the drug. As shown in FIGS. 2 (A) and (B), the relative value of the glucose consumption was less than 100 by adding 0.5 mg / mL or 1 mg / mL of each drug of the comparative example to each sample. And the glucose consumption did not increase.
 図1および図2の結果から、本発明の薬剤が、前記化学式(1)で表される構造を有することにより、グルコース消費促進効果を示すことが確認できた。 か ら From the results of FIG. 1 and FIG. 2, it was confirmed that the drug of the present invention has a structure represented by the chemical formula (1) and thus has a glucose consumption promoting effect.
[実施例2]
 本発明の薬剤について、投与量依存的に、繊維芽細胞に対して、グルコース消費促進効果を奏することを確認した。
[Example 2]
It was confirmed that the agent of the present invention exerts a glucose consumption promoting effect on fibroblasts in a dose-dependent manner.
 実施例1において強いグルコース消費促進作用が確認された、2-アミノ-1-シクロヘキシルエタノール、および2-アミノ-1-フェニルエタノールの前記サンプルを調製した。前記線維芽細胞を、実施例1と同じ条件で培養した。この培養液に、前記各サンプルを、前記薬剤の終濃度が、それぞれ、0.1、0.25、および0.5mg/mLとなるように添加した。そして、各サンプルにおける前記グルコース消費量の相対値を、実施例1と同様にして算出した。 前 記 The above samples of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol, which were confirmed to have a strong effect of promoting glucose consumption in Example 1, were prepared. The fibroblasts were cultured under the same conditions as in Example 1. Each sample was added to this culture solution such that the final concentration of the drug was 0.1, 0.25, and 0.5 mg / mL, respectively. Then, the relative value of the glucose consumption in each sample was calculated in the same manner as in Example 1.
 これらの結果を、図3に示す。図3は、前記各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフであり、(A)は、2-アミノ-1-シクロヘキシルエタノールを添加した結果を、(B)は、2-アミノ-1-フェニルエタノールを添加した結果を示す。図3(A)および(B)において、縦軸は、グルコース消費量の相対値を示し、横軸は、前記各薬剤の濃度を示す。図3(A)に示すように、線維芽細胞において、0.1、0.25、および0.5mg/mLの2-アミノ-1-シクロヘキシルエタノールの添加により、それぞれ、約120、約130、および約150まで、投与量依存的にグルコース消費量が増加した。そして、いずれの濃度においても、コントロールと比較して有意にグルコース濃度が増加しており(t検定、p<0.05、図3(A)および(B)において「**」で表す)、強いグルコース消費促進効果を示すことが確認できた。また、図3(B)に示すように、0.1、0.25、および0.5mg/mLの2-アミノ-1-フェニルエタノールの添加により、それぞれ、約130、約140、および約160まで、投与量依存的にグルコース消費量が増加した。そして、コントロールと比較して有意にグルコース濃度が増加しており、強いグルコース消費促進効果を示すことが確認できた。 These results are shown in FIG. FIG. 3 is a graph showing relative values of glucose consumption of fibroblasts to which the above-mentioned drugs were added. (A) shows the results of adding 2-amino-1-cyclohexylethanol, and (B) shows the results. And the results of adding 2-amino-1-phenylethanol. 3A and 3B, the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the concentration of each drug. As shown in FIG. 3 (A), in fibroblasts, addition of 0.1, 0.25, and 0.5 mg / mL of 2-amino-1-cyclohexylethanol resulted in about 120, about 130, And up to about 150, the dose-dependent increase in glucose consumption. Then, at all concentrations, the glucose concentration was significantly increased as compared to the control (t test, p <0.05, represented by “**” in FIGS. 3 (A) and (B)), It was confirmed that a strong glucose consumption promoting effect was exhibited. As shown in FIG. 3B, addition of 0.1, 0.25, and 0.5 mg / mL of 2-amino-1-phenylethanol resulted in about 130, about 140, and about 160, respectively. Up to a dose dependent increase in glucose consumption. Then, the glucose concentration was significantly increased as compared with the control, and it was confirmed that a strong glucose consumption promoting effect was exhibited.
 図3の各グラフに示すように、投与した薬剤はいずれも、投与量依存的にグルコース消費促進効果を示した。また、低用量でも効果的にグルコース消費促進効果を奏することがわかった。 As shown in each graph of FIG. 3, all of the administered drugs showed a glucose consumption promoting effect in a dose-dependent manner. In addition, it was found that even at a low dose, the effect of promoting glucose consumption was effectively exerted.
[実施例3]
 本発明の薬剤が、グルコース消費を抑制した線維芽細胞に対して、グルコース消費促進効果を奏することを確認した。
[Example 3]
It was confirmed that the agent of the present invention exerted a glucose consumption promoting effect on fibroblasts in which glucose consumption was suppressed.
 まず、前記実施例1と同様にして、ストレプトゾトシン(STZ)、アロキサン(Alloxan)、およびニコチンアミド(Nicotinamide)の各サンプルを調製した。また、前記線維芽細胞を培養した。この培養液に、前記各サンプルを、それぞれ、1mg/mLとなるように添加した。ストレプトゾトシン、アロキサン、およびニコチンアミドは、いずれも、生体への投与により、糖尿病の症状を呈することが知られている薬剤である。そして、前記グルコース消費量の相対値を、実施例1と同様にして算出した。 First, in the same manner as in Example 1, samples of streptozotocin (STZ), alloxan (Alloxan), and nicotinamide (Nicotinamide) were prepared. The fibroblasts were cultured. Each of the samples was added to this culture solution so as to be 1 mg / mL. Streptozotocin, alloxan, and nicotinamide are all drugs known to exhibit symptoms of diabetes when administered to a living body. Then, the relative value of the glucose consumption was calculated in the same manner as in Example 1.
 つぎに、ストレプトゾトシン、アロキサン、およびニコチンアミドに加え、さらに、2-アミノ-1-フェニルエタノール(2-A-1-P)を加えた各サンプルを、同様にして調製した。2-A-1-Pの濃度は、それぞれ、1mg/mLとした。そして、前記グルコース消費量の相対値を、同様にして算出した。 サ ン プ ル Next, each sample to which 2-amino-1-phenylethanol (2-A-1-P) was added in addition to streptozotocin, alloxan, and nicotinamide was prepared in the same manner. The concentration of 2-A-1-P was 1 mg / mL. Then, the relative value of the glucose consumption was calculated in the same manner.
 この結果を、図4に示す。図4は、前記各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。図4において、縦軸は、グルコース消費量の相対値を示し、横軸は、薬剤を示す。図4に示すように、1mg/mLのストレプトゾトシン、アロキサン、およびニコチンアミドの添加により、前記グルコース消費量の相対値が、それぞれ、約90、約70、および約85となり、グルコース消費量が減少していた。これに対し、ストレプトゾトシン、アロキサン、およびニコチンアミドに加え、さらに、2-A-1-Pを添加した結果、いずれも、前記グルコース消費量の相対値が100以上となり、グルコース消費量が回復していた。このように、2-アミノ-1-フェニルエタノールは、グルコース消費を抑制した線維芽細胞に対しても、グルコース消費促進効果が確認できた。 The results are shown in FIG. FIG. 4 is a graph showing relative values of glucose consumption of fibroblasts to which each of the above-mentioned drugs was added. In FIG. 4, the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the drug. As shown in FIG. 4, by adding 1 mg / mL of streptozotocin, alloxan, and nicotinamide, the relative values of the glucose consumption became about 90, about 70, and about 85, respectively, and the glucose consumption was reduced. I was On the other hand, as a result of adding 2-A-1-P in addition to streptozotocin, alloxan, and nicotinamide, the relative value of the glucose consumption became 100 or more in all cases, and the glucose consumption recovered. Was. Thus, 2-amino-1-phenylethanol was confirmed to have an effect of promoting glucose consumption even on fibroblasts in which glucose consumption was suppressed.
[実施例4]
 本発明の薬剤が、グルコース消費を促進した線維芽細胞に対して、さらに、グルコース消費促進効果を奏することを確認した。
[Example 4]
It was confirmed that the drug of the present invention further exerted a glucose consumption promoting effect on fibroblasts that promoted glucose consumption.
 まず、前記実施例1と同様にして、バナジウム(Vanadium)、V、およびコンカナバリンA(ConA)の前記サンプルを調製した。また、前記線維芽細胞を培養した。この培養液に、前記各サンプルを、バナジウムは、1.0mg/mL、ConAは、100μg/mlとなるように添加した。バナジウム、V、およびコンカナバリンAは、いずれも、繊維芽細胞への投与により、インスリン様の効果を示すことが知られている薬剤である。そして、各サンプルにおける前記グルコース消費量の相対値を、実施例1と同様にして算出した。 First, in the same manner as in Example 1, the samples of vanadium, V 2 O 5 , and concanavalin A (ConA) were prepared. The fibroblasts were cultured. Each sample was added to this culture solution so that vanadium was 1.0 mg / mL and ConA was 100 μg / ml. Vanadium, V 2 O 5 , and concanavalin A are all drugs known to show an insulin-like effect when administered to fibroblasts. Then, the relative value of the glucose consumption in each sample was calculated in the same manner as in Example 1.
 つぎに、バナジウム、V、およびコンカナバリンAに加え、さらに、2-アミノ-1-フェニルエタノール(2-A-1-P)を加えた各サンプルを、同様にして調製した。2-A-1-Pの濃度は、それぞれ、0.5mg/mLとした。そして、前記グルコース消費量の相対値を、同様にして算出した。 Next, in addition to vanadium, V 2 O 5 , and concanavalin A, each sample to which 2-amino-1-phenylethanol (2-A-1-P) was further added was prepared in the same manner. The concentration of 2-A-1-P was 0.5 mg / mL, respectively. Then, the relative value of the glucose consumption was calculated in the same manner.
 この結果を、図5に示す。図5は、前記各薬剤を添加した線維芽細胞のグルコース消費量の相対値を示したグラフである。図5において、縦軸は、グルコース消費量の相対値を示し、横軸は、薬剤を示す。図5に示すように、バナジウム、V、およびコンカナバリンAの添加により、前記グルコース消費量の相対値が約110、約115および約120となり、グルコース消費量が増加していた。これに対し、バナジウム、V、およびコンカナバリンAに加え、さらに、2-A-1-Pを添加した結果、前記グルコース消費量の相対値が、それぞれ、約145、約140、および約150となり、グルコース消費量がさらに増加していた。このように、2-アミノ-1-フェニルエタノールは、バナジウム、V、およびコンカナバリンAによりグルコース消費を促進した線維芽細胞に対しても、さらに、グルコース消費促進効果を奏することが確認できた。 The result is shown in FIG. FIG. 5 is a graph showing the relative values of glucose consumption of fibroblasts to which the above-mentioned drugs were added. In FIG. 5, the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the drug. As shown in FIG. 5, the addition of vanadium, V 2 O 5 , and concanavalin A resulted in a relative value of the glucose consumption of about 110, about 115, and about 120, indicating an increase in glucose consumption. In contrast, as a result of adding 2-A-1-P in addition to vanadium, V 2 O 5 , and concanavalin A, the relative values of the glucose consumption were about 145, about 140, and about 140, respectively. It was 150 and the glucose consumption was further increasing. Thus, it was confirmed that 2-amino-1-phenylethanol further exerts a glucose consumption promoting effect on fibroblasts whose glucose consumption has been promoted by vanadium, V 2 O 5 , and concanavalin A. Was.
[実施例5]
 本発明の薬剤が、肝がん細胞に対して、グルコース消費促進効果を奏することを確認した。
[Example 5]
It was confirmed that the agent of the present invention exerts a glucose consumption promoting effect on liver cancer cells.
 まず、前記実施例1と同様にして、2-アミノ-1-シクロヘキシルエタノールおよび2-アミノ-1-フェニルエタノールの前記サンプルを調製した。前記ラット由来の線維芽細胞(Py-3Y1-S2、継代培養株)に代えて、ラット由来の肝がん細胞(Ry121B、継代培養株)を使用し、前記実施例1と同じ条件で培養した。この培養液に、前記各サンプルを、1mg/mLとなるように添加した。コントロールは、前記サンプルに代えて、薬剤未添加の蒸留水を前記培養液に添加した以外は、同様に培養を行った。そして、各サンプルにおける前記グルコース消費量の相対値を、前記実施例1と同様にして算出した。 First, in the same manner as in Example 1, the samples of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol were prepared. A rat-derived hepatoma cell (Ry121B, subcultured) was used in place of the rat-derived fibroblast (Py-3Y1-S2, subcultured) under the same conditions as in Example 1 above. Cultured. Each sample was added to this culture solution so as to be 1 mg / mL. As a control, culturing was performed in the same manner except that distilled water containing no drug was added to the culture solution instead of the sample. Then, the relative value of the glucose consumption in each sample was calculated in the same manner as in Example 1.
 これらの結果を、図6に示す。図6は、前記各薬剤を添加した肝がん細胞のグルコース消費量の相対値を示したグラフである。図6において、縦軸は、グルコース消費量の相対値を示し、横軸は、薬剤を示す。 These results are shown in FIG. FIG. 6 is a graph showing the relative value of glucose consumption of liver cancer cells to which the above-mentioned drugs were added. In FIG. 6, the vertical axis indicates the relative value of glucose consumption, and the horizontal axis indicates the drug.
 図6に示すように、肝がん細胞においても、2-アミノ-1-シクロヘキシルエタノールおよび2-アミノ-1-フェニルエタノールの添加により、コントロールと比較した前記グルコース消費量の相対値が、それぞれ約145および約140となり、コントロールと比較して有意にグルコース消費量が増加していた。 As shown in FIG. 6, even in hepatoma cells, by adding 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol, the relative value of the glucose consumption compared to the control was about 145 and about 140, indicating that glucose consumption was significantly increased as compared to the control.
 図6の結果から、本発明の薬剤は、肝がん細胞に対しても、グルコース消費促進効果を奏することが確認できた。 か ら From the results in FIG. 6, it was confirmed that the agent of the present invention also exerts a glucose consumption promoting effect on liver cancer cells.
[実施例6]
 本発明の薬剤によるグルコース消費促進効果が、細胞による解糖系を促進するものであることを確認した。
[Example 6]
It was confirmed that the glucose consumption promoting effect of the agent of the present invention promotes glycolysis by cells.
 まず、前記実施例1と同様にして、2-アミノ-1-シクロヘキシルエタノールおよび2-アミノ-1-フェニルエタノールの前記サンプルを調製した。また、前記線維芽細胞および前記肝がん細胞を、前記実施例1および5と同じ条件で培養した。これらの培養液に、前記各サンプルを、それぞれ、1mg/mLとなるように添加した。コントロールは、前記サンプルに代えて、薬剤未添加の蒸留水を前記培養液に添加した以外は、同様に培養を行った。 First, in the same manner as in Example 1, the samples of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol were prepared. The fibroblasts and hepatoma cells were cultured under the same conditions as in Examples 1 and 5. Each of the samples was added to each of the culture solutions so as to be 1 mg / mL. As a control, culturing was performed in the same manner except that distilled water containing no drug was added to the culture solution instead of the sample.
 前記薬剤添加後、前記培養液を、重量比で培養液:蒸留水=1:19となるように希釈し、前記希釈後の培養液について、乳酸濃度を測定した。前記乳酸濃度の測定は、乳酸アッセイキット(製品名:Lactate Assay Kit-WST、同仁化学社製)を使用した。そして、コントロールにおける乳酸の濃度を基準値100とし、各サンプルにおける前記乳酸濃度の相対値を算出した。 (4) After the addition of the drug, the culture solution was diluted so that the weight ratio of culture solution to distilled water was 1:19, and the lactic acid concentration of the diluted culture solution was measured. The lactic acid concentration was measured using a lactic acid assay kit (product name: Lactate @ Assay @ Kit-WST, manufactured by Dojin Chemical Co., Ltd.). The relative value of the lactic acid concentration in each sample was calculated using the lactic acid concentration in the control as the reference value 100.
 この結果を、図7(A)および(B)に示す。図7は、前記各薬剤を添加した各細胞の乳酸濃度の相対値を示したグラフであり、(A)は、線維芽細胞における結果を、(B)は、肝がん細胞における結果を示す。図7(A)および(B)において、縦軸は、乳酸濃度の相対値を示し、横軸は、薬剤を示す。 The results are shown in FIGS. 7 (A) and (B). FIG. 7 is a graph showing the relative values of the lactate concentration of each cell to which each of the above-mentioned drugs was added, (A) showing the result in fibroblasts, and (B) showing the result in liver cancer cells. . 7A and 7B, the vertical axis indicates the relative value of the lactic acid concentration, and the horizontal axis indicates the drug.
 図7(A)に示すように、線維芽細胞において、2-アミノ-1-シクロヘキシルエタノール、2-アミノ-1-フェニルエタノールの添加により、それぞれ、約145、約185まで、乳酸濃度が上昇していた。また、図7(B)に示すように、肝がん細胞において、2-アミノ-1-シクロヘキシルエタノール、2-アミノ-1-フェニルエタノールの添加により、それぞれ、約140、約135まで、乳酸濃度が上昇していた。 As shown in FIG. 7 (A), in fibroblasts, the addition of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol increased the lactic acid concentration to about 145 and about 185, respectively. I was In addition, as shown in FIG. 7 (B), the lactic acid concentration of the hepatoma cells was increased to about 140 and about 135 by adding 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol, respectively. Was rising.
 図7(A)および(B)の結果から、本発明の薬剤が、線維芽細胞および肝がん細胞において、乳酸濃度を上昇させ、解糖系促進効果を示すことが確認できた。 か ら From the results of FIGS. 7 (A) and (B), it was confirmed that the agent of the present invention increased the lactate concentration in fibroblasts and hepatoma cells and exhibited a glycolytic promoting effect.
[実施例7]
 本発明の薬剤が、マウスの血糖値を低下させることを確認した。
[Example 7]
It was confirmed that the agent of the present invention reduced the blood glucose level of mice.
 薬剤として、2-アミノ-1-フェニルエタノールを使用した。まず、グルコース(関東化学株式会社製)を、200mg/mLとなるように注射用水に溶解し、グルコース溶液を調製した。つぎに、前記薬剤を前記注射用水に溶解した後、この溶液に、前記グルコース溶液を、前記薬剤およびグルコースの終濃度が、それぞれ、2.5mg/mLおよび100mg/mLとなるように添加し、サンプルを調製した。前記薬剤のコントロールとしては、前記サンプルに代えて、薬剤未添加の100mg/mLのグルコース溶液を使用した。 2- 2-amino-1-phenylethanol was used as a drug. First, glucose (manufactured by Kanto Chemical Co., Ltd.) was dissolved in water for injection to a concentration of 200 mg / mL to prepare a glucose solution. Next, after dissolving the drug in the water for injection, the glucose solution is added to the solution so that the final concentrations of the drug and glucose are 2.5 mg / mL and 100 mg / mL, respectively. A sample was prepared. As a control of the drug, a 100 mg / mL glucose solution containing no drug was used instead of the sample.
 6週齢のICR系の雄マウスを日本エスエルシー株式会社から購入し、約1週間の予備飼育を行い、一般状態に異常がないことを確認した。前記予備飼育の条件は、ポリカーボネート製ケージにマウスを各4匹収容し、室温23℃±3℃、照明時間12時間/日とした。飼料(マウス、ラット用固型飼料、日本農産工業株式会社製)および飲料水(水道水)は、自由に摂取させた。 6-week-old ICR male mice were purchased from Japan SLC, Inc., and were reared for about one week to confirm that there was no abnormality in their general condition. The conditions for the preliminary breeding were as follows: four mice were each housed in a polycarbonate cage, the room temperature was 23 ° C. ± 3 ° C., and the lighting time was 12 hours / day. Feed (solid feed for mice and rats, manufactured by Nippon Nosan Kogyo Co., Ltd.) and drinking water (tap water) were freely taken.
 前記予備飼育後、マウスを約21時間絶食させた後、体重および血糖値を測定した。そして、群間で血糖値にばらつきが生じないように、試験群および対照群の計2群に群分けを行った。各群の動物数は8匹とした。表2に、前記群分け時のマウスの体重(g)を示す。
Figure JPOXMLDOC01-appb-T000012
After the preliminary breeding, the mice were fasted for about 21 hours, and the body weight and the blood glucose level were measured. The test group and the control group were divided into a total of two groups so that blood glucose levels did not vary among the groups. The number of animals in each group was eight. Table 2 shows the weight (g) of the mice at the time of the grouping.
Figure JPOXMLDOC01-appb-T000012
 前記群分け後、前記試験群および前記対照群のマウスに、前記サンプルおよび前記コントロールを、それぞれ、20mL/kgの投与容量となるように、胃ゾンデを用いて単回経口投与した。すなわち、前記試験群のマウスには、それぞれ50mg/kgおよび2000mg/kgの用量となるように前記薬剤およびグルコースを投与し、前記対照群のマウスには、2000mg/kgの用量となるようにグルコースを投与した。そして、前記投与時を0分とし、30分、60分、90分および120分において、血糖値を測定した。血糖値の測定は、アキュチェックアビバ(ロシュ・ダイアグノスティックス株式会社)を用い、尾の先端部を注射針で刺して血液を採取し、前記採取した血液について、血糖値を測定した。 (4) After the grouping, the sample and the control were orally administered to the mice of the test group and the control group once, respectively, using a gastric tube so as to have a dose volume of 20 mL / kg. That is, the mice in the test group were administered with the drug and glucose at doses of 50 mg / kg and 2000 mg / kg, respectively, and the mice in the control group were administered glucose at a dose of 2000 mg / kg. Was administered. The blood glucose level was measured at 30 minutes, 60 minutes, 90 minutes, and 120 minutes, with the time of the administration being 0 minutes. Blood glucose was measured by using Accu-Chek Aviva (Roche Diagnostics Co., Ltd.), puncturing the tip of the tail with a syringe needle, collecting blood, and measuring the blood glucose of the collected blood.
 0分、30分、60分、90分および120分における血糖値について、t検定により、前記試験群と前記対照群との比較を行った。有意水準は、5%および1%とした。 比較 The test group and the control group were compared by a t-test for blood sugar levels at 0, 30, 60, 90 and 120 minutes. The significance level was 5% and 1%.
 この結果を、表3および図8に示す。表3は、各個体における、前記投与後所定時間における血糖値の測定値(mg/dL)を示す表であり、図8は、前記試験群および前記対照群における、前記投与後所定時間における血糖値の平均値を示すグラフである。図8において、縦軸は、血糖値(mg/dL)を示し、横軸は、投与後時間(分)を示す。なお、図8(A)は、前記対照群および前記試験群における全個体(No.1~No.8)について得られた血糖値に基づき、平均値を算出した。一方、表3に示すように、前記試験群における1個体(No.8)のグルコース投与後の血糖値は、前記試験群におけるそれ以外の7個体(No.1~No.7)の前記算出値と比較して、異常値を示した。このため、図8(B)では、前記異常値を示した前記試験群における1個体(No.8)のデータを除外し、前記試験群におけるそれ以外の7個体(No.1~No.7)について得られた血糖値に基づき、平均値を算出した。
Figure JPOXMLDOC01-appb-T000013
The results are shown in Table 3 and FIG. Table 3 is a table showing measured values (mg / dL) of blood glucose levels at a predetermined time after the administration in each individual. FIG. 8 shows blood glucose levels at a predetermined time after the administration in the test group and the control group. It is a graph which shows the average value of a value. In FIG. 8, the vertical axis indicates the blood glucose level (mg / dL), and the horizontal axis indicates the time (minute) after administration. In FIG. 8A, the average value was calculated based on the blood glucose levels obtained for all the individuals (No. 1 to No. 8) in the control group and the test group. On the other hand, as shown in Table 3, the blood glucose level of one individual (No. 8) in the test group after glucose administration was calculated for the other seven individuals (No. 1 to No. 7) in the test group. Abnormal values were indicated as compared to the values. For this reason, in FIG. 8B, the data of one individual (No. 8) in the test group showing the abnormal value is excluded, and the other seven individuals (No. 1 to No. 7) in the test group are excluded. The average value was calculated based on the blood glucose level obtained for (2).
Figure JPOXMLDOC01-appb-T000013
 図8(A)および(B)に示すように、前記試験群は、投与後時間30分、60分、90分および120分において、前記対照群と比較して、血糖値の値が低い傾向が見られた。特に、投与後時間30分において、前記試験群は、前記対照群と比較して、血糖値の値が有意に低かった(P<0.05、およびP<0.01)。 As shown in FIGS. 8 (A) and 8 (B), the test group tended to have a lower blood glucose level than the control group at 30, 60, 90 and 120 minutes after administration. It was observed. In particular, at the time 30 minutes after administration, the test group had significantly lower blood glucose levels compared to the control group (P <0.05 and P <0.01).
 さらに、前記測定した血糖値について、AUC(area under the curve)を算出した。AUCの算出は、縦軸を測定値、横軸を時間としたグラフにおける、投与時の測定値を通り時間軸に平行な直線と、測定値曲線とに囲まれた面積を算出することにより行った。そして、血糖値についての前記比較と同様にして、AUCについて、t検定により、前記試験群と前記対照群との比較を行った。 Further, AUC (area @ under @ the @ curve) was calculated for the measured blood sugar level. The AUC is calculated by calculating an area surrounded by a straight line parallel to the time axis passing through the measured value at the time of administration and a measured value curve in a graph in which the vertical axis represents measured values and the horizontal axis represents time. Was. Then, the AUC was compared with the control group by the t-test in the same manner as in the above-mentioned comparison with respect to the blood glucose level.
 この結果を、表4および図9に示す。表4は、各個体におけるAUCの算出値(mg/dL・h)を示す表であり、図9は、前記試験群および前記対照群におけるAUCの平均値を示すグラフである。図9において、縦軸は、AUC(mg/dL・h)を示し、横軸は、前記対照群および前記試験群を示す。なお、図9(A)は、前記対照群および前記試験群における全個体(No.1~No.8)について得られたAUCの算出値に基づき、平均値を算出した。一方、表4に示すように、前記試験群における1個体(No.8)のAUCの算出値(258)は、前記試験群におけるそれ以外の7個体(No.1~No.7)の前記算出値と比較して、異常値を示した。このため、図9(B)では、前記異常値を示した前記試験群における1個体(No.8)のデータを除外し、前記試験群におけるそれ以外の7個体(No.1~No.7)について得られたAUCの算出値に基づき、平均値を算出した。
Figure JPOXMLDOC01-appb-T000014
The results are shown in Table 4 and FIG. Table 4 is a table showing the calculated value of AUC (mg / dL · h) in each individual, and FIG. 9 is a graph showing the average value of AUC in the test group and the control group. In FIG. 9, the vertical axis indicates AUC (mg / dL · h), and the horizontal axis indicates the control group and the test group. In FIG. 9A, the average value was calculated based on the calculated values of AUC obtained for all the individuals (No. 1 to No. 8) in the control group and the test group. On the other hand, as shown in Table 4, the calculated value (258) of the AUC of one individual (No. 8) in the test group was the same as that of the other seven individuals (No. 1 to No. 7) in the test group. Abnormal values were shown as compared to the calculated values. For this reason, in FIG. 9B, the data of one individual (No. 8) in the test group showing the abnormal value is excluded, and the other seven individuals (No. 1 to No. 7) in the test group are excluded. The average value was calculated on the basis of the calculated value of AUC obtained for ()).
Figure JPOXMLDOC01-appb-T000014
 図9(A)に示すように、前記試験群は、前記対照群と比較して、AUCの値が低い傾向が見られた。また、図9(B)に示すように、前記試験群は、前記対照群と比較して、AUCの値が有意に低かった(P<0.05)。 示 す As shown in FIG. 9 (A), the test group tended to have a lower AUC value than the control group. Also, as shown in FIG. 9 (B), the test group had a significantly lower AUC value than the control group (P <0.05).
 図8および図9の結果から、本発明の薬剤が、マウスの血糖値を低下させることを確認することができた。 か ら From the results of FIGS. 8 and 9, it was confirmed that the agent of the present invention reduced the blood glucose level of mice.
[実施例8]
 本発明の薬剤が、長時間培養後においても、乳酸合成促進効果を示すことを確認した。
Example 8
It was confirmed that the drug of the present invention exhibited a lactate synthesis promoting effect even after long-term culture.
 まず、前記実施例1と同様にして、2-アミノ-1-シクロヘキシルエタノール(2-amino-1-cyclohexylEOH)の前記サンプルを調製した。前記ラット由来の線維芽細胞(Py-3Y1-S2、継代培養株)に加えて、ヒト由来の食道がん細胞(TE-13、継代培養株)、アフリカミドリザル由来の腎臓上皮細胞(VERO、継代培養株)、およびヒト由来の肝がん細胞(HepG2、継代培養株)を使用し、それぞれ、前記実施例1と同じ条件で培養した。この培養液に、前記各サンプルを、0.5mg/mLとなるように添加した。その後、さらに、24~48時間培養した。前記サンプル添加後の培養時間は、細胞毎に同一条件とした。コントロール1は、前記サンプルに代えて、薬剤未添加の蒸留水を前記培養液に添加した以外は、同様に培養を行った。また、コントロール2として、ビグアニド(Biguanide)のサンプルを前記実施例1と同様にして調製し、前記サンプルに代えて添加した以外は、同様に培養を行った。そして、前記実施例6と同様にして、各サンプルにおける前記乳酸濃度を測定した。前記4種類の各細胞を使用し、合計5回(Py-3Y1-S2、TE-13及びHepG2については1回、VEROについては2回)の実験を行った。 First, in the same manner as in Example 1, the sample of 2-amino-1-cyclohexylethanol (2-amino-1-cyclohexylEOH) was prepared. In addition to the rat-derived fibroblasts (Py-3Y1-S2, subcultured), human-derived esophageal cancer cells (TE-13, subcultured) and African green monkey-derived kidney epithelial cells (VERO) , A subculture) and a human-derived hepatoma cell (HepG2, subculture) were cultured under the same conditions as in Example 1 above. Each of the samples was added to this culture solution to a concentration of 0.5 mg / mL. Thereafter, the cells were further cultured for 24-48 hours. The culture time after the addition of the sample was the same for each cell. Control 1 was cultured in the same manner except that distilled water without drug was added to the culture solution instead of the sample. As control 2, a biguanide (Biguanide) sample was prepared in the same manner as in Example 1 and cultured in the same manner except that the sample was added instead of the sample. Then, in the same manner as in Example 6, the lactic acid concentration in each sample was measured. Using the above four types of cells, a total of five experiments (once for Py-3Y1-S2, TE-13 and HepG2, and twice for VERO) were performed.
 この結果を、図10に示す。図10は、前記各薬剤を添加した各細胞の培養液中の乳酸濃度を示したグラフである。各グラフの値は、前記5回の実験結果の平均値を示す。図10において、縦軸は、培養液中の乳酸濃度(mmol/L)を示し、横軸は、薬剤を示す。図10に示すように、0.5mg/mLの2-アミノ-1-シクロヘキシルエタノールの添加後、24~48時間の培養を行った場合において、乳酸濃度が9.35mmol/Lであり、コントロール1(Control)と比較して増加していた(P<0.05)。コントロール2(Biguanide)においても、ビグアニドを添加した結果、乳酸濃度が増加していた(P<0.01)。このように、2-アミノ-1-シクロヘキシルエタノールは、長時間培養後においても、乳酸濃度を上昇させ、解糖系促進効果を示すことが確認できた。 The results are shown in FIG. FIG. 10 is a graph showing the lactic acid concentration in the culture solution of each cell to which each of the above-mentioned drugs was added. The values in each graph show the average value of the results of the above five experiments. In FIG. 10, the vertical axis indicates the lactic acid concentration (mmol / L) in the culture solution, and the horizontal axis indicates the drug. As shown in FIG. 10, after adding 0.5 mg / mL of 2-amino-1-cyclohexylethanol and culturing for 24-48 hours, the lactic acid concentration was 9.35 mmol / L, and control 1 (Control) and increased (P <0.05). In control 2 (Biguanide), the addition of biguanide also increased the lactic acid concentration (P <0.01). Thus, it was confirmed that 2-amino-1-cyclohexylethanol increased the lactic acid concentration even after long-term culture, and exhibited a glycolytic promoting effect.
 なお、24~48時間の培養後において、培養液中のグルコースは、ほとんどが乳酸に変化していると考えられる。例えば、1分子のグルコースから2分子の乳酸が合成されることから、前記培養開始直後の前記グルコース(5.6mmol/L)が全て乳酸に変化した場合、培養液中の乳酸濃度は11.2mmol/Lになる。そして、図10に示すように、各サンプルの添加後、前記24~48時間の培養を行った場合の培養液中の乳酸濃度は、約8~10mmol/Lであった。このことから、各サンプルの添加後、前記24~48時間の培養により、例えば、それぞれ、約70~90%のグルコースが消費され、乳酸に変化したといえる。また、2-アミノ-1-シクロヘキシルエタノールは、例えば、低濃度のグルコース存在下においても、グルコース消費促進効果を示すといえる。ただし、本発明はこれには制限されない。 グ ル コ ー ス It is considered that most of the glucose in the culture solution has been changed to lactic acid after culturing for 24 to 48 hours. For example, since two molecules of lactic acid are synthesized from one molecule of glucose, if all of the glucose (5.6 mmol / L) immediately after the start of the culture is changed to lactic acid, the concentration of lactic acid in the culture solution is 11.2 mmol. / L. Then, as shown in FIG. 10, the lactic acid concentration in the culture solution when the culture was performed for 24 to 48 hours after the addition of each sample was about 8 to 10 mmol / L. From this, it can be said that, after the addition of each sample, about 70 to 90% of glucose, for example, was consumed and changed to lactic acid by the culture for 24 to 48 hours, respectively. In addition, it can be said that 2-amino-1-cyclohexylethanol exhibits a glucose consumption promoting effect even in the presence of a low concentration of glucose, for example. However, the present invention is not limited to this.
[実施例9]
 本発明の薬剤が、乳酸代謝を抑制しないことを確認した。
[Example 9]
It was confirmed that the drug of the present invention did not suppress lactate metabolism.
 まず、前記実施例1と同様にして、2-アミノ-1-シクロヘキシルエタノール(2-amino-1-cyclohexylEOH)および2-アミノ-1-フェニルエタノール(2-amino-1-phenylEOH)の前記サンプルを調製した。また、前記実施例8と同様にして、前記4種類の各細胞を使用し、それぞれ、前記実施例1と同じ条件で培養した。この培養液に、前記各サンプルを、0.5mg/mLとなるように添加した。その後、さらに、前記実施例8よりも培養時間を長くし、2~3日間(48~72時間)培養した。コントロール1は、前記サンプルに代えて、薬剤未添加の蒸留水を前記培養液に添加した以外は、同様に培養を行った。また、コントロール2は、前記サンプルに代えて、前記実施例1と同様にして調製したビグアニド(Biguanide)のサンプルを前記培養液に添加した以外は、同様に培養を行った。そして、前記実施例6と同様にして、各サンプルにおける前記乳酸濃度を測定した。前記4種類の各細胞を使用し、合計4回の実験を行った。 First, samples of 2-amino-1-cyclohexylethanol (2-amino-1-cyclohexylEOH) and 2-amino-1-phenylethanol (2-amino-1-phenylEOH) were prepared in the same manner as in Example 1. Prepared. In the same manner as in Example 8, each of the four types of cells was used and cultured under the same conditions as in Example 1. Each of the samples was added to this culture solution to a concentration of 0.5 mg / mL. Thereafter, the culturing time was further extended than in Example 8, and culturing was performed for 2 to 3 days (48 to 72 hours). Control 1 was cultured in the same manner except that distilled water without drug was added to the culture solution instead of the sample. Control 2 was similarly cultured except that a biguanide sample prepared in the same manner as in Example 1 was added to the culture solution instead of the sample. Then, in the same manner as in Example 6, the lactic acid concentration in each sample was measured. Using the above four types of cells, a total of four experiments were performed.
 この結果を、図11に示す。図11は、前記各薬剤を添加した各細胞の乳酸濃度を示したグラフである。各グラフの値は、前記4回の実験結果の平均値を示す。図11において、縦軸は、培養液中の乳酸濃度(mmol/L)を示し、横軸は、薬剤を示す。図11に示すように、0.5mg/mLの2-アミノ-1-シクロヘキシルエタノールおよび2-アミノ-1-フェニルエタノールの添加後、2~3日間の培養を行った場合において、それぞれ、乳酸濃度がコントロール1(Control)と同程度の値であった。一方、コントロール2(Biguanide)は、ビグアニドの添加後、2~3日間の培養を行った場合において、乳酸濃度がコントロール1と比較して約3.5倍であった(P<0.05)。ここで、解糖系の代謝産物として産生される培養液中の乳酸は、その後、代謝されることが知られている。このことから、2-アミノ-1-シクロヘキシルエタノールおよび2-アミノ-1-フェニルエタノールは、コントロール1と同程度に乳酸が代謝されており、前記乳酸の代謝を抑制しないことが示された。一方、ビグアニドは、前記乳酸の代謝を抑制することが確認できた。 The results are shown in FIG. FIG. 11 is a graph showing the lactate concentration of each cell to which each of the above-mentioned drugs was added. The values in each graph indicate the average of the results of the four experiments. In FIG. 11, the ordinate indicates the lactic acid concentration (mmol / L) in the culture solution, and the abscissa indicates the drug. As shown in FIG. 11, after adding 0.5 mg / mL of 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol and culturing for 2 to 3 days, the lactic acid concentration was respectively increased. Was about the same value as Control 1 (Control). On the other hand, in control 2 (Biguanide), the lactic acid concentration was about 3.5 times that of control 1 when culture was performed for 2 to 3 days after the addition of biguanide (P <0.05). . Here, it is known that lactic acid in a culture solution produced as a glycolytic metabolite is subsequently metabolized. This indicated that 2-amino-1-cyclohexylethanol and 2-amino-1-phenylethanol metabolized lactic acid to the same extent as control 1, and did not inhibit the metabolism of lactic acid. On the other hand, it was confirmed that biguanide suppressed the metabolism of lactic acid.
 以上、実施形態および実施例を参照して本発明を説明したが、本発明は、上記実施形態および実施例に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。 Although the present invention has been described with reference to the exemplary embodiments and examples, the present invention is not limited to the exemplary embodiments and examples. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2018年7月31日に出願された日本出願特願2018-143056、2018年9月27日に出願された日本出願特願2018-181302、および国際出願PCT/JP2019/003915を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application is based on Japanese Patent Application No. 2018-143056 filed on Jul. 31, 2018, Japanese Patent Application No. 2018-181302 filed on Sep. 27, 2018, and International Application PCT / JP2019 / 003915. And all of its disclosures are incorporated herein.
 以上のように、本発明によれば、前記化学式(1)で表される化合物、その互変異性体および立体異性体、ならびにそれらの塩からなる群から選択される少なくとも一つを含むことにより、グルコース消費を促進できる。そして、前記薬剤は、このようにグルコース消費を促進できることから、例えば、糖尿病の治療薬として使用できる。このため、本発明は、医薬の分野等において、極めて有用といえる。 As described above, according to the present invention, by containing at least one selected from the group consisting of the compound represented by the chemical formula (1), tautomers and stereoisomers thereof, and salts thereof , Can promote glucose consumption. And, since the drug can promote glucose consumption in this way, it can be used, for example, as a therapeutic agent for diabetes. Therefore, the present invention can be said to be extremely useful in the field of medicine and the like.

Claims (10)

  1. 2-アミノ-1-シクロヘキシルエタノール、1-アミノ-2-プロパノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、モルホリン、プロピルアミン、トリエタノールアミン、トリエチルアミン、トリスヒドロキシメチルアミノメタンからなる群から選択された少なくとも1つを含むことを特徴とする、グルコース消費促進剤。 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propyl A glucose consumption promoter comprising at least one selected from the group consisting of amines, triethanolamine, triethylamine, and trishydroxymethylaminomethane.
  2. 2-アミノ-1-シクロヘキシルエタノール、1-アミノ-2-プロパノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、モルホリン、プロピルアミン、トリエタノールアミン、トリエチルアミン、トリスヒドロキシメチルアミノメタンからなる群から選択された少なくとも1つを主成分として含む、請求項1記載のグルコース消費促進剤。 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propyl The glucose consumption enhancer according to claim 1, comprising at least one selected from the group consisting of amine, triethanolamine, triethylamine, and trishydroxymethylaminomethane as a main component.
  3. さらに、経口用の添加剤を含む、請求項1または2記載のグルコース消費促進剤。 The glucose consumption enhancer according to claim 1 or 2, further comprising an oral additive.
  4. 請求項1から3のいずれか一項に記載のグルコース消費促進剤を含むことを特徴とする、糖尿病の治療に使用するための医薬組成物。 A pharmaceutical composition for use in the treatment of diabetes, comprising the glucose consumption enhancer according to any one of claims 1 to 3.
  5. 請求項1から3のいずれか一項に記載のグルコース消費促進剤または請求項4記載の医薬組成物を投与する工程を含むことを特徴とするグルコース消費促進方法。 A method for promoting glucose consumption, comprising a step of administering the glucose consumption promoting agent according to any one of claims 1 to 3 or the pharmaceutical composition according to claim 4.
  6. 2-アミノ-1-シクロヘキシルエタノール、1-アミノ-2-プロパノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、モルホリン、プロピルアミン、トリエタノールアミン、トリエチルアミン、トリスヒドロキシメチルアミノメタンからなる群から選択された少なくとも1つを含むことを特徴とする、解糖系促進剤。 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propyl A glycolytic accelerator comprising at least one selected from the group consisting of amine, triethanolamine, triethylamine, and trishydroxymethylaminomethane.
  7. 2-アミノ-1-シクロヘキシルエタノール、1-アミノ-2-プロパノール、1,3-ビス〔トリス(ヒドロキシメチル)メチルアミノ〕プロパン、N-シクロヘキシルエタノールアミン、ジエタノールアミン、ジエチルアミン、ジプロピルアミン、モルホリン、プロピルアミン、トリエタノールアミン、トリエチルアミン、トリスヒドロキシメチルアミノメタンからなる群から選択された少なくとも1つを主成分として含む、請求項6記載の解糖系促進剤。 2-amino-1-cyclohexylethanol, 1-amino-2-propanol, 1,3-bis [tris (hydroxymethyl) methylamino] propane, N-cyclohexylethanolamine, diethanolamine, diethylamine, dipropylamine, morpholine, propyl The glycolytic accelerator according to claim 6, comprising at least one selected from the group consisting of amine, triethanolamine, triethylamine, and trishydroxymethylaminomethane as a main component.
  8. さらに、経口用の添加剤を含む、請求項6または7記載の解糖系促進剤。 The glycolytic accelerator according to claim 6 or 7, further comprising an oral additive.
  9. 請求項6から8のいずれか一項に記載の解糖系促進剤を含むことを特徴とする、糖尿病の治療に使用するための医薬組成物。 A pharmaceutical composition for use in the treatment of diabetes, comprising the glycolytic accelerator according to any one of claims 6 to 8.
  10. 請求項6から8のいずれか一項に記載の解糖系促進剤または請求項9記載の医薬組成物を投与する工程を含むことを特徴とする解糖系促進方法。 A method for promoting glycolysis, comprising a step of administering the glycolytic accelerator according to any one of claims 6 to 8 or the pharmaceutical composition according to claim 9.
PCT/JP2019/020826 2018-07-31 2019-05-27 Glucose consumption promoter and glycolysis promoter WO2020026570A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980002860.XA CN111093644A (en) 2018-07-31 2019-05-27 Glucose consumption promoter and glycolysis promoter
US16/610,360 US20210330606A1 (en) 2018-07-31 2019-05-27 Glucose consumption accelerator and glycolysis accelerator
JP2019542649A JP6612004B1 (en) 2018-07-31 2019-05-27 Glucose consumption promoter and glycolysis promoter
EP19801189.2A EP3639818B1 (en) 2018-07-31 2019-05-27 Glucose consumption promoter and glycolysis promoter

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2018-143056 2018-07-31
JP2018143056 2018-07-31
JP2018-181302 2018-09-27
JP2018181302 2018-09-27
JPPCT/JP2019/003915 2019-02-04
PCT/JP2019/003915 WO2020026471A1 (en) 2018-07-31 2019-02-04 Glucose consumption promoter and glycolysis promoter

Publications (1)

Publication Number Publication Date
WO2020026570A1 true WO2020026570A1 (en) 2020-02-06

Family

ID=69232436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/020826 WO2020026570A1 (en) 2018-07-31 2019-05-27 Glucose consumption promoter and glycolysis promoter

Country Status (1)

Country Link
WO (1) WO2020026570A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500589A (en) * 1986-03-21 1989-03-01 ユーラシアム ラボラトリーズ インコーポレーテツド pharmaceutical composition
WO2014080383A1 (en) * 2012-11-26 2014-05-30 Ranbaxy Laboratories Limited Pharmaceutical composition of dipeptidyl peptidase-iv (dpp-iv) inhibitors in combination with other antidiabetics
WO2017046730A1 (en) * 2015-09-15 2017-03-23 Laurus Labs Private Limited Co-crystals of sglt2 inhibitors, process for their preparation and pharmaceutical compositions thereof
JP2018143056A (en) 2017-02-28 2018-09-13 トヨタ自動車株式会社 Thermoelectric generator
JP2018181302A (en) 2017-04-19 2018-11-15 株式会社駐車場綜合研究所 Parking lot server, parking fee adjustment system, parking fee adjustment method, and program
JP2019003915A (en) 2017-06-20 2019-01-10 矢崎総業株式会社 Service plug

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01500589A (en) * 1986-03-21 1989-03-01 ユーラシアム ラボラトリーズ インコーポレーテツド pharmaceutical composition
WO2014080383A1 (en) * 2012-11-26 2014-05-30 Ranbaxy Laboratories Limited Pharmaceutical composition of dipeptidyl peptidase-iv (dpp-iv) inhibitors in combination with other antidiabetics
WO2017046730A1 (en) * 2015-09-15 2017-03-23 Laurus Labs Private Limited Co-crystals of sglt2 inhibitors, process for their preparation and pharmaceutical compositions thereof
JP2018143056A (en) 2017-02-28 2018-09-13 トヨタ自動車株式会社 Thermoelectric generator
JP2018181302A (en) 2017-04-19 2018-11-15 株式会社駐車場綜合研究所 Parking lot server, parking fee adjustment system, parking fee adjustment method, and program
JP2019003915A (en) 2017-06-20 2019-01-10 矢崎総業株式会社 Service plug

Similar Documents

Publication Publication Date Title
KR102188487B1 (en) Pharmaceutical compositions comprising glitazones and nrf2 activators
US20170327521A1 (en) Phosphaplatin complexes and methods for treatment of proliferative diseases using the phosphaplatin complexes
KR20160093000A (en) Tyrosine hydroxylase inhibitors for treating intestinal hyperpermeability
JP2016516772A (en) Formulation of oxacycloheptane and oxabicycloheptene
US9783515B2 (en) Radiomitigating pharmaceutical formulations
US20220273613A1 (en) Composition containing artesunate
EP1970061A1 (en) Medicinal agent for treating viral infections
US20100119499A1 (en) Stilbene-based compositions and methods of use therefor
WO2020026570A1 (en) Glucose consumption promoter and glycolysis promoter
JP6612004B1 (en) Glucose consumption promoter and glycolysis promoter
WO2020026471A1 (en) Glucose consumption promoter and glycolysis promoter
EP4331583A1 (en) Blood carnitine-increasing agent
US20100234366A1 (en) Use of Strobilurins for the Treatment of Disorders of Iron Metabolism
JP7327788B2 (en) Saccharification product production inhibitor and pharmaceutical composition
US20040204599A1 (en) Group of novel anti-cancer compounds with specific structure
RU2601622C1 (en) Agent possessing endothelium protective effect in conditions of experimental diabetes mellitus and cerebral blood circulation disorder
US20240082219A1 (en) Methods for ameliorating and preventing age-related muscle degeneration
JP2020520904A (en) Drugs, compositions, and related methods
JP6959049B2 (en) New hypoalbuminemia improving drug
ES2359910T3 (en) MEDICINAL COMPOSITION TO INHIBIT THE EXPRESSION OF ATP-CITRATE LIASA AND ITS USE.
CN117599039A (en) Use of flavonoid compounds and medicament for preventing and/or treating familial intestinal polyps
CA2924682C (en) Use of 3-carboxy-n-ethyl-n,n-dimethylpropan-1-aminium or a pharmaceutically acceptable salt thereof in the prevention and treatment of diabetes
JP2024512744A (en) New uses of 3-(4-(benzyloxy)phenyl)hex-4-ynoic acid derivatives
WO2017175859A1 (en) Drug for preventing or treating lactic acidosis
WO2010098475A1 (en) Agent for prevention and treatment of eating disorders

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019542649

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019801189

Country of ref document: EP

Effective date: 20200115

NENP Non-entry into the national phase

Ref country code: DE