WO2020025885A1 - Vertical take-off and landing aircraft - Google Patents

Vertical take-off and landing aircraft Download PDF

Info

Publication number
WO2020025885A1
WO2020025885A1 PCT/FR2019/051848 FR2019051848W WO2020025885A1 WO 2020025885 A1 WO2020025885 A1 WO 2020025885A1 FR 2019051848 W FR2019051848 W FR 2019051848W WO 2020025885 A1 WO2020025885 A1 WO 2020025885A1
Authority
WO
WIPO (PCT)
Prior art keywords
propeller
aircraft
propellers
rotation
aircraft according
Prior art date
Application number
PCT/FR2019/051848
Other languages
French (fr)
Inventor
Gaetan CHESNEAU
Original Assignee
Safran
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran filed Critical Safran
Publication of WO2020025885A1 publication Critical patent/WO2020025885A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8236Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft including pusher propellers

Definitions

  • the present invention relates to a vertical take-off and / or landing aircraft known by the acronym VTOL (Vertical Take-off and Landing aircraft).
  • VTOL Vertical Take-off and Landing aircraft
  • Such an aircraft is conventionally equipped with at least one lift rotor.
  • the term “rotor” or “lift rotor” here covers the rotors used for helicopters and tilting propellers, in particular, and more generally any rotor with non-ttled blades.
  • Takeoff and vertical landing are characteristics regularly taken into account on different flying means of transportation (here aircraft), because they make it possible to dispense with the take-off runway and / or to be able to land on restricted spaces. even unprepared and therefore potentially evolve in town.
  • Helicopters have this characteristic with their main rotor. However, this limits cruising performance with speeds not exceeding 300 km / h.
  • the take-off and / or vertical landing constraint and / or displacements along substantially the vertical axis make it necessary to generate a vertical thrust, while flight in "airplane" mode - privileged axis of displacement then supposed to be horizontal, to create a thrust in the opposite direction to this privileged advance direction -, much more effective for traveling distance, requires horizontal thrust.
  • helicopters with hybrid configuration are known, also called combined since they comprise, in addition to the lift rotor, lateral lift wings or propulsion means according to the direction of advance.
  • This type of machine optimizes the operating in stationary mode and improving capacities at high speeds as well as transitions while having an optimal structural architecture to minimize weight, increase comfort and improve safety.
  • the implementation is complex and costly.
  • VTOL VTOL
  • the lift is produced 100% by the rotors in VTOL mode and 100% by the wings in forward flight mode (airplane). In Consequently, the convertibles are overpowered in horizontal flight leading to lower efficiency than an airplane.
  • stiffness of the rigid blades, the tilting mechanism of the rotors and the motors, and the design of the wings producing 100% lift in forward flight lead to an increase in weight which greatly reduces the efficiency of the convertibles in horizontal modes. and vertical.
  • Hybrid helicopters are also known, comprising a lift rotor and two lateral propellers in a forward direction. These propellers are positioned at the ends of the arms connected to an upper part of the fuselage under the lift rotor.
  • the cabin must be stiff and strong enough to react without deformation to the inertial forces which increase in the event of a collision with the ground at vertical speed. This requirement leads to having a high structural mass and reducing the cabin space. For combined aircraft, this is compounded by the weight of the wings and engines that are attached to the root.
  • the propellers must operate in the turbulent zone under the rotor reducing their efficiency and increasing the generation of noise.
  • the propellers are arranged at the end of the lift wing, the ends of said wings being substantially aligned with the rear plane of the aircraft.
  • this type of handset can be tricky to maneuver in the event of a heavy attitude and damage to one of the propellers.
  • the diameter of the propellers is small to ensure a high-speed propulsion function, that is to say greater than 450 km / h, while a larger diameter, with adjustable propellers, is likely to pose relatively problems ground clearance, and
  • the anti-torque function must be ensured by at least one of the propellers and to produce a horizontal differential thrust (while the management of this differential thrust is not easy to deal with).
  • the present invention relates firstly to an aircraft with vertical takeoff and landing comprising a fuselage above which is arranged at least one lift rotor, characterized in that it comprises at least a first propeller and a second propeller each carried by a shank and articulated in displacement thereon between at least a first position in which the propeller considered is suitable for serving as an anti-torque rotor and at least one second position in which the propeller considered is capable of allowing a propulsion thrust of the aircraft in a direction of advance, the axes of rotation of said first propeller and second propeller being substantially coaxial when said first propeller and second propeller are in their first position.
  • the aircraft comprises two propellers positioned on the tail and articulated in movement between two positions, which makes it possible to perform the anti-torque function when the propellers are in their first position and to perform the function of propulsion in their second position.
  • Each propeller is able to move from its first position to its second position independently of the other propellers.
  • the movement of the propellers between the first position and the second position allows boarding of passengers or loading of cargo with the first propeller and the second propeller in their first position, which prevents the propellers from presenting a risk of aspiration for a passenger. a ground operator.
  • the aircraft according to the invention thus makes it possible to increase the operating capacities in helicopter mode and the capacities in airplane mode while increasing safety. There will also be a reduced footprint favoring access for service personnel for fueling or maintenance operations.
  • each of the two propellers can have a fixed rotation speed and have a variable collective pitch which varies the thrust for a given diameter and a twisted blade.
  • each of the two propellers has a fixed pitch and it is the variation in the rotation speed which makes the variation in thrust for a given diameter and twist of the blade.
  • a third variant can combine the two systems at the expense of being more overweight.
  • Each of the propellers can be electrically powered by an electrical power bar which can itself be powered by the generator of the main engine of the aircraft or that of the second engine or that of a dedicated battery.
  • the first and second propellers can rotate in the same direction or in opposite directions.
  • the propellers can take other positions other than the first and second positions.
  • first propeller and the second propeller can be arranged in a substantially symmetrical manner with respect to one plane containing the longitudinal axis of the aircraft and the axis of the rotor of lift. It is thus understood that such a position allows an anti-torque function when the propellers are in their first position and a propulsion in their second position.
  • said first and second propellers are mounted at one end of an arm, the other opposite end of which is articulated in rotation on the tail of the aircraft.
  • the two lever arms are held in their second position thanks to a dedicated mechanism such as a mechanical locking finger known in particular in an automatic gearbox parking brake in an automobile, in complement of a worm-type tilting mechanism connected to a stepper motor.
  • a dedicated mechanism such as a mechanical locking finger known in particular in an automatic gearbox parking brake in an automobile, in complement of a worm-type tilting mechanism connected to a stepper motor.
  • Each of the two tail propellers can be connected to an electric motor and offers a propulsion capacity which advantageously blows the profile. a stabilization and maneuvering surface, which improves aerodynamic efficiency and therefore its lift capacity for a given span / width.
  • the axis of rotation of each arm is arranged longitudinally between the propeller and the downstream end of the tail when the propeller is in its first position.
  • the propellers are thus arranged at a distance at least equal to that of the lever arms of a stabilization and downstream maneuvering plane when the propellers are in the first position.
  • the propellers can be positioned under the lift rotor when the propellers are in their second position.
  • each propeller is arranged longitudinally between the axis of rotation of the articulation of the arm and the downstream end of the tail when the propeller is in its first position, which makes it possible to move the lift rotor propellers and increases the efficiency of the aircraft.
  • said first and second propellers are articulated in displacement over an angular distance of approximately 90 ° so that the axis of rotation of each of the first and second propellers is substantially parallel to the longitudinal axis of the aircraft, when the propellers are in their second position.
  • the diameter of the first and second propellers is such that the circle circumscribed at the radially outer ends of the blades of each of the propellers intercepts the outer contour of the fuselage of the aircraft when the aircraft is seen from upstream downstream along the longitudinal axis.
  • the distance between the axes of said first propeller and second propeller can be less than the transverse dimension of the stabilization and maneuvering surface.
  • the diameter of the first and second propellers may be such that the circle circumscribed at the radially outer ends of the blades of each of the propellers does not intercept the outer contour of the fuselage of the aircraft when the aircraft is seen from l upstream downstream along the longitudinal axis. In this configuration, the propellers are then provided with a smaller diameter than in the precast embodiment. The distance between the axes of said first propeller and second propeller can thus be greater than the transverse dimension of the stabilization and maneuvering surface.
  • the invention also relates to a method of passing the aircraft, as described above, from a slow-forward configuration to a fast-forward configuration, in which it comprises the following successive steps:
  • the first propeller being in anti-torque operation, the second propeller is moved from its first position to its second position, - The second propeller is put into operation so as to provide thrust in the longitudinal direction,
  • the first propeller is moved from its first position to its second position
  • the first propeller is put into operation so as to provide thrust in the longitudinal direction.
  • FIG. 1 A is a schematic view from above of an aircraft according to a first embodiment, the propellers being in a first position;
  • Figure 1B is a schematic top view of an aircraft according to the first embodiment, the propellers being in a second position;
  • FIGS. 2A, 2B, 2C and 2D are schematic views from above, successively illustrating the transition from helicopter mode to airplane mode of the aircraft described with reference to FIGS. 1A and 1B;
  • Figure 3A is a schematic view from upstream of an aircraft such as that of Figures 1A and 1B, for example, the propellers being in their first position;
  • FIG. 3B is a schematic view from upstream of an aircraft such as that of FIGS. 1A and 1B, for example, the propellers being in their second position, having a first diameter and being arranged upstream of a surface of stabilization and maneuver;
  • FIG. 3C is a schematic view from upstream of an aircraft such as that of FIGS. 1A and 1B, for example, the propellers being in their second position, having a second diameter smaller than the first diameter and being arranged laterally on the side on the other side of the stabilization and maneuvering surface;
  • Figures 4A and 4B show another embodiment in which the propellers are arranged near a stabilization and maneuvering surface
  • FIGS. 5A and 5B represent yet another embodiment in which the tail has no stabilization and maneuvering surface.
  • FIGS. 1A and 1B represent a first embodiment of an aircraft 10 comprising a fuselage 12 comprising a part forming a cabin 14 for transporting passengers or freight and a part forming a tail 16 extending downstream from the cabin 14 and connected at its downstream end to a surface 18 of stabilization and maneuvering comprising a rear tail unit comprising two fins 20, 22 for longitudinal control of the aircraft 10.
  • the longitudinal axis of the aircraft 10 is shown at A in the various figures.
  • the aircraft 10 comprises a main lift rotor 24 mounted above the cabin 14. This rotor 24 is entirely conventional and will not be described in more detail.
  • the aircraft 10 comprises a first propeller 26 and a second propeller 28 each mounted at a first end of a movable arm 30, 32 the second end of which is articulated in rotation on the tail 16 of the aircraft 10.
  • Each propeller 26, 28 can be articulated by a dedicated electric motor or by means already present in the aircraft 10.
  • Each propeller 26, 28 has an axis of rotation 26a, 28a.
  • each arm 34, 36 is perpendicular to the longitudinal axis A of the aircraft 10 and is substantially parallel to the axis of rotation 24a of the main lift rotor 24.
  • Each arm 30, 32 is articulated in rotation between a first position in which the first propeller 26 or the second propeller 28 is capable of serving as an anti-torque rotor, the axes of rotation 26a, 28a of the propellers 26, 28 being coaxial, and a second position in which the first propeller 26 and the second propeller 28 are capable of allowing propulsion of the aircraft 10 in a direction of advance, the axes 26a, 28a of the propellers being parallel to the longitudinal axis A.
  • first propeller 26 and the second propeller 28 are arranged in a manner substantially symmetrical to one another with respect to a plane containing the longitudinal axis A of the aircraft 10 and the axis 24a of the lift rotor 24. It is observed that this symmetry is achieved when the propellers 26, 28 are in their first and second positions.
  • the first propeller 26 and the second propeller 28 are each positioned relative to their respective axis 34, 36 of rotation so that the propeller 26, 28 is arranged longitudinally between the axis 34, 36 of rotation and the downstream end of the tail 16 plus specifically the stabilization and maneuvering surface 18.
  • the first propeller 26 and the second propeller 28 therefore performs a rotational movement upstream of the aircraft 10. More particularly, the rotational movement of the first propeller 26 or right propeller is a clockwise and upstream movement and the rotational movement the second propeller 28 or left propeller is a rotation movement counterclockwise and upstream. It is also observed that the propellers 26, 28 are arranged under the lift rotor 24 when the propellers 26, 28 are in their second position.
  • each of the propellers 26, 28 To achieve a passage of each of the propellers 26, 28 from its first position to its second position so that the aircraft 10 passes from a helicopter configuration where at least one of the first propeller 26 and the second propeller 28 is rotatable to perform an anti-torque function in an airplane configuration where the first propeller 26 and the second propeller 28 provides propulsion in a direction of advance, the procedure is as follows. Firstly, the first propeller 26 being in anti-torque operation, the second propeller 28 which is not in operation is moved from its first position to its second position (FIG. 2A). The first propeller 26 is then stopped and the second propeller 28 is put into operation so as to provide advance propulsion (FIG. 2B and FIG. 2C). The first propeller 26 is then moved to its second position (Figure 2D) and then put into operation to provide propulsion ( Figure 2D).
  • FIG. 3A shows an aircraft 10 similar to that of Figures 1 A and 1 B which comprises two propellers 26, 28 arranged to move between a first position and a second position as described above.
  • the first propeller 26 and the second propeller 28 are in their first position, which explains why they are not visible since the arms 30, 32 are aligned with the longitudinal axis A and hidden by the fuselage 12.
  • FIG. 3B represents an embodiment in which the diameter of the first propeller 26 and of the second propeller 28 is such that the circle 38 circumscribed at the radially outer ends of the blades of each of the first propeller 26 and of the second propeller 28 intercepts the external contour of the fuselage of the aircraft 10 when the latter is seen from upstream to downstream along the longitudinal axis A.
  • the propellers 26, 28 obviously do not penetrate into the fuselage since the latter has a section which reduces when going towards the downstream.
  • the distance between the axes 26a, 28a of said first propeller 26 and second propeller 28 is less than the transverse dimension of the surface 18 for stabilization and maneuver. More particularly, the axis 26a, 28a of rotation is of each of the propellers 26, 28 is here substantially aligned with a fin 20, 22 when the propeller 26, 28 is in its second position.
  • FIG. 3C represents another embodiment of an aircraft
  • the diameter of the first propeller 26 and of the second propeller 28 is such that the circle 40 circumscribed at the radially outer ends of the blades of each of the first propeller 26 and of the second propeller 28 does not intercept the outer contour of the fuselage 12 of the aircraft 11 when the aircraft 11 is seen from upstream to downstream along the longitudinal axis A.
  • the distance between the axes 26a, 28a of said first propeller 26 and second propeller 28 is here greater than the transverse dimension of the stabilization and maneuvering surface 18.
  • the axes 26a, 28a of rotation of the propellers 26, 28 are located on either side of the surface 18 for stabilization and maneuver in a transverse direction, that is to say perpendicular to a plane containing l 'longitudinal axis A and the axis 24a of rotation of the main rotor 24. It is also noted that in this embodiment, the diameter of the propellers 26, 28 is less than the diameter of the propellers of the embodiment shown in Figure 3B.
  • the first propeller 26 and the second propeller 28 are each positioned relative to the axis 34, 36 of the arm 30, 32 so that the axis 34, 36 of rotation is arranged longitudinally between the propeller 26, 28 and the downstream end of the tail 16, more specifically the surface 18 of stabilization and maneuver.
  • the first propeller 26 and the second propeller 28 therefore perform a rotational movement downstream of the aircraft 13. More particularly, the rotational movement of the first propeller 26 or right propeller is a rotational movement counterclockwise and downstream and the rotational movement of the second propeller 28 or left propeller is a rotational movement clockwise and downstream.
  • propellers 26, 28 are not arranged under the lift rotor when the propellers 26, 28 are in their second position so that the influence of the rotor 24 is reduced compared to the embodiment shown in FIGS. 1A and 1 B.
  • the first propeller 26 and the second propeller 28 are arranged in the downstream extension of the stabilization and maneuvering surface 18 as has been described with reference to FIG. 3B. It is understood that the propellers 26, 28 could also be arranged on either side of the stabilization and maneuvering surface 18 as illustrated in FIG. 3C.
  • Figures 5A and 5B shows an aircraft 15 similar to that of Figures 4A and 4B with the difference that the downstream end of the tail has no surface 18 for stabilization and maneuvering. It can be seen that the first propeller 26 and the second propeller 28 are not arranged under the lift rotor when they are in their second position.
  • first propeller 26 and the second propeller 28 are articulated in rotation over a stroke of 90 ° so that the axes 26a, 28a of the propellers 26, 28 are substantially parallel to the longitudinal axis A when the propellers 26, 28 are in their second position.

Abstract

The invention concerns a vertical take-off and landing aircraft (10, 11, 13, 15) comprising a fuselage (12) above which at least one lift rotor (24) is arranged, characterised in that it comprises at least a first propeller (26) and a second propeller (28), each carried by a tail (16) and hinged thereto in such a way as to be able to move between at least one first position in which it is capable of acting as an anti-torque rotor and at least one second position in which it is capable of providing thrust propelling the aircraft (10, 11, 13, 15) in a forward direction, the rotation axes (26a, 28a) of the first propeller (26) and the second propeller (28) being substantially coaxial when the first propeller (26) and the second propeller (28) are in their first position.

Description

AERONEF A DECOLLAGE ET ATTERRISSAGE VERTICAL  TAKE-OFF AND VERTICAL LANDING AIRCRAFT
DOMAINE FIELD
[001] La présente invention concerne un aéronef à décollage et/ou atterrissage vertical connu sous l’acronyme anglais de VTOL (Vertical Take-off and Landing aircraft). The present invention relates to a vertical take-off and / or landing aircraft known by the acronym VTOL (Vertical Take-off and Landing aircraft).
CONTEXTE CONTEXT
[002] Un tel aéronef est classiquement équipé d’au moins un rotor de sustentation. L’expression « rotor » ou « rotor de sustentation » couvre ici les rotors utilisés pour les hélicoptères et les hélices basculantes, en particulier, et plus généralement tout rotor à pales non carénées. Such an aircraft is conventionally equipped with at least one lift rotor. The term "rotor" or "lift rotor" here covers the rotors used for helicopters and tilting propellers, in particular, and more generally any rotor with non-faired blades.
[003] Le décollage et l’atterrissage vertical sont des caractéristiques régulièrement prises en compte sur différents moyens de transports volants (ici aéronefs), car elles permettent de s’affranchir de piste de décollage et/ou de pouvoir se poser sur des espaces restreints voire non préparés et donc potentiellement d’évoluer en ville.  Takeoff and vertical landing are characteristics regularly taken into account on different flying means of transportation (here aircraft), because they make it possible to dispense with the take-off runway and / or to be able to land on restricted spaces. even unprepared and therefore potentially evolve in town.
[004] Les hélicoptères présentent cette caractéristique avec leur rotor principal. Mais celui-ci limite les performances en croisière avec des vitesses ne dépassant pas 300 km/h. La contrainte de décollage et/ou atterrissage vertical et/ou des déplacements selon sensiblement l’axe vertical imposent de générer une poussée verticale, alors que le vol en mode « avion » - axe privilégié de déplacement alors supposé horizontal, pour créer une poussée dans le sens opposé à ce sens privilégié d’avance -, bien plus efficace pour parcourir de la distance, nécessite de la poussée horizontale.  Helicopters have this characteristic with their main rotor. However, this limits cruising performance with speeds not exceeding 300 km / h. The take-off and / or vertical landing constraint and / or displacements along substantially the vertical axis make it necessary to generate a vertical thrust, while flight in "airplane" mode - privileged axis of displacement then supposed to be horizontal, to create a thrust in the opposite direction to this privileged advance direction -, much more effective for traveling distance, requires horizontal thrust.
[005] Ainsi, on connaît des hélicoptères à configuration hybride, également appelé combiné puisqu’ils comprennent en plus du rotor de sustentation des ailes latérales de portance ou des moyens de propulsion selon la direction d’avance. Ce type de machine permet d’optimiser le fonctionnement en mode stationnaire et d’améliorer les capacités à hautes vitesses ainsi que les transitions tout en ayant une architecture structurelle optimale pour minimiser le poids, augmenter le confort et améliorer la sécurité. Toutefois, la mise en œuvre s’avère complexe et coûteuse. Thus, helicopters with hybrid configuration are known, also called combined since they comprise, in addition to the lift rotor, lateral lift wings or propulsion means according to the direction of advance. This type of machine optimizes the operating in stationary mode and improving capacities at high speeds as well as transitions while having an optimal structural architecture to minimize weight, increase comfort and improve safety. However, the implementation is complex and costly.
[006] Ainsi, cela explique que la formule hélicoptère simple comprenant au moins un rotor de sustentation et un rotor de queue anti- couple se soit imposée malgré le fait que la vitesse maximale est inférieure à la vitesse d’un type combinée ou convertible. [006] Thus, this explains why the simple helicopter formula comprising at least one lift rotor and an anti-torque tail rotor has imposed itself despite the fact that the maximum speed is less than the speed of a combined or convertible type.
[007] Des solutions améliorées des formules hybrides ont été proposées mais elles compliquent les réalisations techniques et impliquent des augmentations de masses qui imposent une augmentation de la puissance installée et par conséquent de coût, sans pour autant parvenir à une optimisation satisfaisante de l'appareil.  Improved solutions of hybrid formulas have been proposed but they complicate the technical achievements and imply increases in mass which impose an increase in the installed power and therefore in cost, without however achieving satisfactory optimization of the device. .
[008] Concernant les aéronefs dit combinés, des demi-ailes de part et d’autre du fuselage permettent d'augmenter le facteur de charge et d'atteindre une plus haute manœuvrabilité. Cela améliore l’efficacité de l’aéronef à vitesse moyenne au détriment d'une efficacité réduite à faible vitesse et en mode stationnaire. Comme la sustentation durant la croisière est simultanément produite par le rotor et les ailes, cet aéronef surmonte donc les limites de sustentation du rotor au moyen des ailes et les limites de poussée du rotor au moyen des hélices. L'utilisation d’hélices de propulsion reparties de part et d’autres du fuselage permet de faire la fonction anti- couple à faible vitesse (vol verticaux et stationnaire).  Regarding so-called combined aircraft, half-wings on either side of the fuselage make it possible to increase the load factor and achieve higher maneuverability. This improves the efficiency of the aircraft at medium speed at the expense of reduced efficiency at low speed and in stationary mode. As the lift during cruise is produced simultaneously by the rotor and the wings, this aircraft therefore overcomes the limits of lift of the rotor by means of the wings and the limits of thrust of the rotor by means of propellers. The use of propellers distributed on either side of the fuselage makes it possible to perform the anti-torque function at low speed (vertical and hovering flights).
[009] En comparaison des avions, la puissance requise et la masse du système propulsif d'un hélicoptère sont deux à trois fois plus importants que ceux d'un avion à la même MTOW (Max Take Off Weight : masse maximum au décollage) car un VTOL a besoin de puissance pour soulever son propre poids alors qu'un avion doit uniquement contrer la traînée aérodynamique qui est une fraction de son propre poids. Sur les convertibles (VTOL), la sustentation est produite à 100 % par les rotors en mode VTOL et à 100% par les ailes en mode vol d'avancement (avion). En conséquence, les convertibles sont sur-motorisés en vol horizontal conduisant à une efficacité moindre qu'un avion. De plus la raideur des pales rigides, le mécanisme de basculement des rotors et des moteurs, et la conception des ailles produisant 100% de sustentation en vol d’avancement conduisent à une augmentation du poids lequel réduit fortement l'efficacité des convertibles en modes horizontaux et verticaux. In comparison with airplanes, the power required and the mass of the propulsion system of a helicopter are two to three times greater than that of a plane with the same MTOW (Max Take Off Weight) because a VTOL needs power to lift its own weight, whereas an airplane must only counter the aerodynamic drag which is a fraction of its own weight. On convertibles (VTOL), the lift is produced 100% by the rotors in VTOL mode and 100% by the wings in forward flight mode (airplane). In Consequently, the convertibles are overpowered in horizontal flight leading to lower efficiency than an airplane. In addition, the stiffness of the rigid blades, the tilting mechanism of the rotors and the motors, and the design of the wings producing 100% lift in forward flight lead to an increase in weight which greatly reduces the efficiency of the convertibles in horizontal modes. and vertical.
[010] On connaît également des hélicoptères hybrides comprenant un rotor de sustentation et deux hélices latérales de propulsion dans un sens d’avance. Ces hélices sont positionnées aux extrémités de bras reliés à une partie haute du fuselage sous le rotor de sustentation. Compte tenu des contraintes de sécurité en cas de chute, la cabine doit être raide et assez résistante pour réagir sans déformation aux forces d'inertie qui augmentent en cas de collision avec le sol à vitesse verticale. Cette exigence conduit à avoir une masse structurelle élevée et à réduire l'espace cabine. Pour les aéronefs combinés, ce fait est aggravé par le poids des ailes et des moteurs qui sont accrochés à l'emplanture. De plus, sur les combinés conventionnels, les hélices doivent opérer dans la zone turbulente sous le rotor réduisant leur efficacité et augmentant la génération de bruit. La localisation des hélices non carénés près de la cabine, nécessite de recourir à des équipements structuraux additionnels source d'augmentation de la masse en cas d'éclatement de pales. Enfin les hélices ouvertes étant placées à côté des portes d’accès à la cabine par les passagers, il génère des problèmes de sécurité évidents à l'embarquement/débarquement des passagers et augmente le bruit ressenti à l’intérieur de la cabine.  [010] Hybrid helicopters are also known, comprising a lift rotor and two lateral propellers in a forward direction. These propellers are positioned at the ends of the arms connected to an upper part of the fuselage under the lift rotor. Given the safety constraints in the event of a fall, the cabin must be stiff and strong enough to react without deformation to the inertial forces which increase in the event of a collision with the ground at vertical speed. This requirement leads to having a high structural mass and reducing the cabin space. For combined aircraft, this is compounded by the weight of the wings and engines that are attached to the root. In addition, on conventional handsets, the propellers must operate in the turbulent zone under the rotor reducing their efficiency and increasing the generation of noise. The location of non-faired propellers near the cabin requires the use of additional structural equipment, a source of mass increase in the event of blades bursting. Finally, the open propellers being placed next to the passenger access doors to the cabin, it generates obvious safety problems when boarding / disembarking passengers and increases the noise felt inside the cabin.
[011] Dans une autre version du combiné précité, les hélices de propulsion sont agencées à l’extrémité d’aile de portance, les extrémités desdites ailes étant sensiblement alignées avec le plan arrière de l’aéronef. Toutefois, ce type de combiné peut être délicat à manœuvrer en cas de forte assiette et d’endommagement de l’une des hélices. In another version of the above-mentioned handset, the propellers are arranged at the end of the lift wing, the ends of said wings being substantially aligned with the rear plane of the aircraft. However, this type of handset can be tricky to maneuver in the event of a heavy attitude and damage to one of the propellers.
[012] Dans encore une autre version d’un aéronef, il a été proposé de disposer deux hélices non carénées aux extrémités de bras latéraux positionnés à l’extrémité amont du fuselage, les ailes de portance étant telles que décrites au paragraphe précédent. Les hélices peuvent être pivotées entre une première position de sustentation et une seconde position de propulsion. Cela donne à cet aéronef une meilleure capacité en stationnaire et une capacité en croisière meilleur que celle d'un combiné. Mais cela est intéressant, les inconvénients suivants existent : In yet another version of an aircraft, it has been proposed to have two non-faired propellers at the ends of the arms lateral positioned at the upstream end of the fuselage, the lift wings being as described in the previous paragraph. The propellers can be pivoted between a first lift position and a second propulsion position. This gives this aircraft better hover capacity and better cruise capacity than a handset. But this is interesting, the following disadvantages exist:
- le diamètre des hélices est petit pour assurer une fonction de propulsion à haute vitesse, c’est-à-dire supérieur à 450 km/h, alors qu'un diamètre plus grand, avec des hélices orientables, risque de poser des problèmes relativement à la garde au sol, et  - the diameter of the propellers is small to ensure a high-speed propulsion function, that is to say greater than 450 km / h, while a larger diameter, with adjustable propellers, is likely to pose relatively problems ground clearance, and
- la fonction anti-couple doit être obligatoirement assurée par au moins une des hélices et pour produire une poussée différentielle horizontale (alors que la gestion de cette poussée différentielle n’est pas facile à traiter).  - the anti-torque function must be ensured by at least one of the propellers and to produce a horizontal differential thrust (while the management of this differential thrust is not easy to deal with).
[013] Au regard de l’exposé précédent, si l’idée d’un combiné avec deux hélices (carénés ou pas) réparties de chaque côté de l’axe longitudinale du fuselage, et fixées en bout de deux demi ailes, est séduisante pour les raisons évoquées initialement, l’embarquement/débarquement des passagers avec les hélices tournantes, même avec des hélices positionnées en bord de fuite des demie-ailes plutôt qu’en bord d’attaque, reste dangereux à cause des risques d’aspiration humaine à proximité du fuselage. In view of the previous presentation, if the idea of a combined with two propellers (faired or not) distributed on each side of the longitudinal axis of the fuselage, and fixed at the end of two half wings, is attractive for the reasons mentioned initially, the embarkation / disembarkation of passengers with the rotating propellers, even with propellers positioned on the trailing edge of the half-wings rather than on the leading edge, remains dangerous because of the risks of human aspiration near the fuselage.
[014] On comprend donc qu’il existe un besoin pour un combiné convertible offrant des conditions de sécurité optimales à l’embarquement de passagers.  It is therefore understood that there is a need for a convertible handset offering optimal safety conditions for the boarding of passengers.
RESUME DE L’INVENTION SUMMARY OF THE INVENTION
[015] La présente invention concerne tout d’abord un aéronef à décollage et atterrissage vertical comprenant un fuselage au-dessus duquel est agencé au moins un rotor de sustentation, caractérisé en ce qu’il comprend au moins une première hélice et une seconde hélice chacune portée par une queue et articulée en déplacement sur celle-ci entre au moins une première position dans laquelle l’hélice considérée est apte à servir de rotor d’anti-couple et au moins une seconde position dans laquelle l’hélice considérée est apte à permettre une poussée de propulsion de l’aéronef dans une direction d’avance, les axes de rotation desdites première hélice et seconde hélice étant sensiblement coaxiaux lorsque lesdites première hélice et seconde hélice sont dans leur première position. The present invention relates firstly to an aircraft with vertical takeoff and landing comprising a fuselage above which is arranged at least one lift rotor, characterized in that it comprises at least a first propeller and a second propeller each carried by a shank and articulated in displacement thereon between at least a first position in which the propeller considered is suitable for serving as an anti-torque rotor and at least one second position in which the propeller considered is capable of allowing a propulsion thrust of the aircraft in a direction of advance, the axes of rotation of said first propeller and second propeller being substantially coaxial when said first propeller and second propeller are in their first position.
[016] Selon l’invention, l’aéronef comprend deux hélices positionnées sur la queue et articulées en déplacement entre deux positions, ce qui permet de réaliser la fonction anti-couple lorsque les hélices sont dans leur première position et de réaliser la fonction de propulsion dans leur seconde position. Chaque hélice est apte à se déplacer de sa première position à sa seconde position de manière indépendante des autres hélices. Le mouvement des hélices entre la première position et la seconde position autorise un embarquement de passagers ou le chargement de fret avec la première hélice et la seconde hélice dans leur première position, ce qui évite que les hélices présentent un risque d’aspiration pour un passager un ou opérateur au sol. L’aéronef selon l’invention permet ainsi d’augmenter les capacités de fonctionnement en mode hélicoptère et les capacités en mode avion tout en augmentant la sécurité. On notera également une emprunte au sol réduite favorisant l’accès du personnel de service pour des opérations de remplissage en carburant ou de maintenance.  According to the invention, the aircraft comprises two propellers positioned on the tail and articulated in movement between two positions, which makes it possible to perform the anti-torque function when the propellers are in their first position and to perform the function of propulsion in their second position. Each propeller is able to move from its first position to its second position independently of the other propellers. The movement of the propellers between the first position and the second position allows boarding of passengers or loading of cargo with the first propeller and the second propeller in their first position, which prevents the propellers from presenting a risk of aspiration for a passenger. a ground operator. The aircraft according to the invention thus makes it possible to increase the operating capacities in helicopter mode and the capacities in airplane mode while increasing safety. There will also be a reduced footprint favoring access for service personnel for fueling or maintenance operations.
[017] L’ une seule de la première hélice et de la seconde hélice peut être utilisée lorsque la première hélice et la seconde hélice sont dans leur première position. Ainsi, cette seule hélice assure la fonction anti-couple, l’autre hélice assurant une redondance de la fonction anti-couple. Cela s’avère particulièrement intéressant puisqu’une fonction essentielle du mode hélicoptère est ainsi doublée, certes avec un ajout de masse mais les deux hélices sont toutefois utilisées en mode de propulsion d’avance. [018] Dans une première variante chacune des deux hélices peut avoir un régime de rotation fixe et avoir un pas collectif variable qui fait varier la poussée pour un diamètre et un vrillage de pale donné. Dans une seconde variante, chacune des deux hélices est à pas fixe et c’est la variation du régime de rotation qui fait la variation de poussée pour un diamètre et un vrillage de pale donné. Une troisième variante peut cumuler les deux systèmes au détriment d’un surpoids plus conséquent. Chacune des hélices peut être alimentée électriquement par une barre d’alimentation électrique qui peut être elle-même alimentée par la génératrice du moteur principal de l’aéronef ou celle du second moteur voir celle d’une batterie dédiée. Les première et seconde hélices peuvent tourner dans le même sens ou bien dans des sens opposés. Only one of the first propeller and the second propeller can be used when the first propeller and the second propeller are in their first position. Thus, this single propeller ensures the anti-torque function, the other propeller ensuring a redundancy of the anti-torque function. This is particularly interesting since an essential function of the helicopter mode is thus doubled, certainly with an addition of mass but the two propellers are however used in advance propulsion mode. In a first variant, each of the two propellers can have a fixed rotation speed and have a variable collective pitch which varies the thrust for a given diameter and a twisted blade. In a second variant, each of the two propellers has a fixed pitch and it is the variation in the rotation speed which makes the variation in thrust for a given diameter and twist of the blade. A third variant can combine the two systems at the expense of being more overweight. Each of the propellers can be electrically powered by an electrical power bar which can itself be powered by the generator of the main engine of the aircraft or that of the second engine or that of a dedicated battery. The first and second propellers can rotate in the same direction or in opposite directions.
[019] Les hélices peuvent prendre d’autres positions autres que les première et seconde positions.  [019] The propellers can take other positions other than the first and second positions.
[020] Dans une réalisation particulière, la première hélice et la seconde hélice peuvent être agencées de manière sensiblement symétrique l’une de l’autre par rapport à un plan contenant l’axe longitudinal de l’aéronef et l’axe du rotor de sustentation. On comprend ainsi qu’une telle position autorise une fonction anti-couple lorsque les hélices sont dans leur première position et une propulsion dans leur seconde position. In a particular embodiment, the first propeller and the second propeller can be arranged in a substantially symmetrical manner with respect to one plane containing the longitudinal axis of the aircraft and the axis of the rotor of lift. It is thus understood that such a position allows an anti-torque function when the propellers are in their first position and a propulsion in their second position.
[021] Selon une caractéristique de la présente description, lesdites première et seconde hélices sont montées à une extrémité d’un bras dont l’autre extrémité opposée est articulée en rotation sur la queue de l’aéronef.  According to a feature of the present description, said first and second propellers are mounted at one end of an arm, the other opposite end of which is articulated in rotation on the tail of the aircraft.
[022] En vol d’avancement rapide, les deux bras de leviers sont maintenus dans leur seconde position grâce à un mécanisme dédié tel qu’un doigt de verrouillage mécanique connu notamment dans un frein de parking de boite de vitesse automatique en automobile, en complément d’un mécanisme de basculement type vis sans fin relié à un moteur pas à pas. Chacune des deux hélices de queue peut être reliée à un moteur électrique et offre une capacité de propulsion qui souffle avantageusement le profil d’une surface de stabilisation et de manœuvre, ce qui améliore l’efficacité aérodynamique et donc sa capacité de portance pour une envergure/largeur donnée. [022] In fast forward flight, the two lever arms are held in their second position thanks to a dedicated mechanism such as a mechanical locking finger known in particular in an automatic gearbox parking brake in an automobile, in complement of a worm-type tilting mechanism connected to a stepper motor. Each of the two tail propellers can be connected to an electric motor and offers a propulsion capacity which advantageously blows the profile. a stabilization and maneuvering surface, which improves aerodynamic efficiency and therefore its lift capacity for a given span / width.
[023] Dans une réalisation, l'axe de rotation de chaque bras est agencé longitudinalement entre l'hélice et l'extrémité aval de la queue lorsque l'hélice est dans sa première position. Les hélices sont ainsi agencées à une distance au moins égale à celle des bras de levier d’un plan de stabilisation et de manœuvre aval lorsque les hélices sont dans la première position.  [023] In one embodiment, the axis of rotation of each arm is arranged longitudinally between the propeller and the downstream end of the tail when the propeller is in its first position. The propellers are thus arranged at a distance at least equal to that of the lever arms of a stabilization and downstream maneuvering plane when the propellers are in the first position.
[024] Dans cette configuration, les hélices peuvent être positionnées sous le rotor de sustentation lorsque les hélices sont dans leur seconde position. In this configuration, the propellers can be positioned under the lift rotor when the propellers are in their second position.
[025] Dans une autre réalisation, chaque hélice est agencée longitudinalement entre l’axe de rotation de l’articulation du bras et l’extrémité aval de la queue lorsque l’hélice est dans sa première position, ce qui permet d’éloigner les hélices du rotor de sustentation et augmente le rendement de l’aéronef.  In another embodiment, each propeller is arranged longitudinally between the axis of rotation of the articulation of the arm and the downstream end of the tail when the propeller is in its first position, which makes it possible to move the lift rotor propellers and increases the efficiency of the aircraft.
[026] Dans une réalisation de l’invention, lesdites première et seconde hélices sont articulées en déplacement sur une distance angulaire d’environ 90° de manière à ce que l’axe de rotation de chacune des première et seconde hélices soit sensiblement parallèle à l’axe longitudinal de l’aéronef, lorsque les hélices sont dans leur seconde position.  [026] In one embodiment of the invention, said first and second propellers are articulated in displacement over an angular distance of approximately 90 ° so that the axis of rotation of each of the first and second propellers is substantially parallel to the longitudinal axis of the aircraft, when the propellers are in their second position.
[027] Selon une caractéristique de la demande, le diamètre des première et seconde hélices est tel que le cercle circonscrit aux extrémités radialement externes des pales de chacune des hélices intercepte le contour externe du fuselage de l’aéronef lorsque l’aéronef est vu de l’amont vers l’aval selon l’axe longitudinal.  According to a characteristic of the application, the diameter of the first and second propellers is such that the circle circumscribed at the radially outer ends of the blades of each of the propellers intercepts the outer contour of the fuselage of the aircraft when the aircraft is seen from upstream downstream along the longitudinal axis.
[028] Egalement, la distance entre les axes desdites première hélice et seconde hélice peut être inférieure à la dimension transverse de la surface de stabilisation et de manœuvre. [029] Aussi, le diamètre des première et secondes hélices peut être tel que le cercle circonscrit aux extrémités radialement externes des pales de chacune des hélices n’intercepte pas le contour externe du fuselage de l’aéronef lorsque l’aéronef est vu de l’amont vers l’aval selon l’axe longitudinal. Dans cette configuration, les hélices sont alors prévues d’un diamètre plus petit que dans la réalisation préceinte. La distance entre les axes desdites première hélice et seconde hélice peut ainsi être supérieure à la dimension transverse de la surface de stabilisation et de manœuvre. [028] Also, the distance between the axes of said first propeller and second propeller can be less than the transverse dimension of the stabilization and maneuvering surface. [029] Also, the diameter of the first and second propellers may be such that the circle circumscribed at the radially outer ends of the blades of each of the propellers does not intercept the outer contour of the fuselage of the aircraft when the aircraft is seen from l upstream downstream along the longitudinal axis. In this configuration, the propellers are then provided with a smaller diameter than in the precast embodiment. The distance between the axes of said first propeller and second propeller can thus be greater than the transverse dimension of the stabilization and maneuvering surface.
[030] L’invention concerne aussi un procédé de passage de l’aéronef, tel que décrit ci-dessus, d’une configuration à avancement lent à une configuration à avancement rapide, dans lequel il comprend les étapes successives suivantes : The invention also relates to a method of passing the aircraft, as described above, from a slow-forward configuration to a fast-forward configuration, in which it comprises the following successive steps:
La première hélice étant en fonctionnement anti-couple, la seconde hélice est déplacée de sa première position vers sa seconde position, - La seconde hélice est mise en fonctionnement de manière à fournir une poussée dans la direction longitudinale,  The first propeller being in anti-torque operation, the second propeller is moved from its first position to its second position, - The second propeller is put into operation so as to provide thrust in the longitudinal direction,
La rotation de la première hélice est stoppée,  The rotation of the first propeller is stopped,
La première hélice est déplacée de sa première position vers sa seconde position,  The first propeller is moved from its first position to its second position,
- La première hélice est mise en fonctionnement de manière à fournir une poussée dans la direction longitudinale. - The first propeller is put into operation so as to provide thrust in the longitudinal direction.
[031] L’ invention sera mieux comprise et d’autres détails, caractéristiques et avantages de l’invention apparaîtront à la lecture de la description suivante faite à titre d’exemple non limitatif en référence aux dessins annexés.  [031] The invention will be better understood and other details, characteristics and advantages of the invention will appear on reading the following description given by way of nonlimiting example with reference to the accompanying drawings.
BREVE DESCRIPTION DES FIGURES la figure 1 A est une vue schématique de dessus d’un aéronef selon une première réalisation, les hélices étant dans une première position ; la figure 1 B est une vue schématique de dessus d’un aéronef selon la première réalisation, les hélices étant dans une seconde position ; BRIEF DESCRIPTION OF THE FIGURES FIG. 1 A is a schematic view from above of an aircraft according to a first embodiment, the propellers being in a first position; Figure 1B is a schematic top view of an aircraft according to the first embodiment, the propellers being in a second position;
les figures 2A, 2B, 2C et 2D sont des vues schématiques du dessus, illustrant successivement le passage du mode hélicoptère au mode avion de l’aéronef décrit en référence aux figures 1 A et 1 B ;  FIGS. 2A, 2B, 2C and 2D are schematic views from above, successively illustrating the transition from helicopter mode to airplane mode of the aircraft described with reference to FIGS. 1A and 1B;
la figure 3A est une vue schématique depuis l’amont d’un aéronef tel que celui des figures 1A et 1 B, par exemple, les hélices étant dans leur première position ;  Figure 3A is a schematic view from upstream of an aircraft such as that of Figures 1A and 1B, for example, the propellers being in their first position;
la figure 3B est une vue schématique depuis l’amont d’un aéronef tel que celui des figures 1A et 1 B, par exemple, les hélices étant dans leur seconde position, présentant un premier diamètre et étant agencés en amont d’une surface de stabilisation et de manœuvre ;  FIG. 3B is a schematic view from upstream of an aircraft such as that of FIGS. 1A and 1B, for example, the propellers being in their second position, having a first diameter and being arranged upstream of a surface of stabilization and maneuver;
la figure 3C est une vue schématique depuis l’amont d’un aéronef tel que celui des figures 1A et 1 B, par exemple, les hélices étant dans leur seconde position, présentant un second diamètre inférieur au premier diamètre et étant agencées latéralement de part et d’autre de la surface de stabilisation et de manœuvre ;  FIG. 3C is a schematic view from upstream of an aircraft such as that of FIGS. 1A and 1B, for example, the propellers being in their second position, having a second diameter smaller than the first diameter and being arranged laterally on the side on the other side of the stabilization and maneuvering surface;
les figures 4A et 4B représentent une autre réalisation dans laquelle les hélices sont agencées à proximité d’une surface de stabilisation et de manœuvre ;  Figures 4A and 4B show another embodiment in which the propellers are arranged near a stabilization and maneuvering surface;
les figures 5A et 5B représentent encore une autre réalisation dans laquelle la queue est dépourvue de surface de stabilisation et de manœuvre.  FIGS. 5A and 5B represent yet another embodiment in which the tail has no stabilization and maneuvering surface.
DESCRIPTION DETAILLEE [032] On se réfère tout d’abord aux figures 1A et 1 B qui représentent un première réalisation d’un aéronef 10 comprenant un fuselage 12 comportant une partie formant une cabine 14 de transport de passagers ou fret et une partie formant une queue 16 s’étendant vers l’aval depuis la cabine 14 et reliée à son extrémité aval à une surface 18 de stabilisation et de manœuvre comportant un empennage arrière comportant deux dérives 20, 22 de contrôle longitudinal de l’aéronef 10. L’axe longitudinal de l’aéronef 10 est représenté en A sur les différentes figures. DETAILED DESCRIPTION [032] First of all, reference is made to FIGS. 1A and 1B which represent a first embodiment of an aircraft 10 comprising a fuselage 12 comprising a part forming a cabin 14 for transporting passengers or freight and a part forming a tail 16 extending downstream from the cabin 14 and connected at its downstream end to a surface 18 of stabilization and maneuvering comprising a rear tail unit comprising two fins 20, 22 for longitudinal control of the aircraft 10. The longitudinal axis of the aircraft 10 is shown at A in the various figures.
[033] L’aéronef 10 comprend un rotor principal 24 de sustentation monté au-dessus de la cabine 14. Ce rotor 24 est tout à fait classique et ne sera pas décrit plus en détail. The aircraft 10 comprises a main lift rotor 24 mounted above the cabin 14. This rotor 24 is entirely conventional and will not be described in more detail.
[034] Comme cela est bien représenté, l’aéronef 10 comprend une première hélice 26 et une seconde hélice 28 chacune montée à une première extrémité d’un bras 30, 32 mobile dont la seconde extrémité est articulée en rotation sur la queue 16 de l’aéronef 10. Chaque hélice 26, 28 peut être articulée par un moteur électrique dédiée ou bien par des moyens déjà présents dans l’aéronef 10. Chaque hélice 26, 28 présente un axe de rotation 26a, 28a.  [034] As is well represented, the aircraft 10 comprises a first propeller 26 and a second propeller 28 each mounted at a first end of a movable arm 30, 32 the second end of which is articulated in rotation on the tail 16 of the aircraft 10. Each propeller 26, 28 can be articulated by a dedicated electric motor or by means already present in the aircraft 10. Each propeller 26, 28 has an axis of rotation 26a, 28a.
[035] L’axe de rotation 34, 36 de chaque bras 34, 36 est perpendiculaire à l’axe longitudinal A de l’aéronef 10 et est sensiblement parallèle à l’axe de rotation 24a du rotor 24 principal de sustentation. Chaque bras 30, 32 est articulé en rotation entre une première position dans laquelle la première hélice 26 ou la seconde hélice 28 est apte à servir de rotor anti- couple, les axes de rotation 26a, 28a des hélices 26, 28 étant coaxiaux, et une seconde position dans laquelle la première hélice 26 et la seconde hélice 28 sont aptes à permettre une propulsion de l’aéronef 10 selon une direction d’avance, les axes 26a, 28a des hélices étant parallèle à l’axe longitudinal A. Plus particulièrement, la première hélice 26 et la seconde hélice 28 sont agencées de manière sensiblement symétrique l’une de l’autre par rapport à un plan contenant l’axe longitudinal A de l’aéronef 10 et l’axe 24a du rotor 24 de sustentation. On observe que cette symétrie est réalisée lorsque les hélices 26, 28 sont dans leur première et seconde positions.  The axis of rotation 34, 36 of each arm 34, 36 is perpendicular to the longitudinal axis A of the aircraft 10 and is substantially parallel to the axis of rotation 24a of the main lift rotor 24. Each arm 30, 32 is articulated in rotation between a first position in which the first propeller 26 or the second propeller 28 is capable of serving as an anti-torque rotor, the axes of rotation 26a, 28a of the propellers 26, 28 being coaxial, and a second position in which the first propeller 26 and the second propeller 28 are capable of allowing propulsion of the aircraft 10 in a direction of advance, the axes 26a, 28a of the propellers being parallel to the longitudinal axis A. More particularly , the first propeller 26 and the second propeller 28 are arranged in a manner substantially symmetrical to one another with respect to a plane containing the longitudinal axis A of the aircraft 10 and the axis 24a of the lift rotor 24. It is observed that this symmetry is achieved when the propellers 26, 28 are in their first and second positions.
[036] Dans cette première réalisation, la première hélice 26 et la seconde hélice 28 sont chacune positionnées par rapport leur axe 34, 36 de rotation respectif de sorte que l’hélice 26, 28 soit agencée longitudinalement entre l’axe 34, 36 de rotation et l’extrémité aval de la queue 16, plus spécifiquement la surface 18 de stabilisation et de manœuvre. Dans cette configuration, pour être déplacée de la première position vers la seconde position, la première hélice 26 et la seconde hélice 28 effectue donc un mouvement de rotation vers l’amont de l’aéronef 10. Plus particulièrement, le mouvement de rotation de la première hélice 26 ou hélice de droite est un mouvement dans le sens horaire et vers l’amont et le mouvement de rotation la seconde hélice 28 ou hélice de gauche est un mouvement de rotation dans le sens antihoraire et vers l’amont. On observe également que les hélices 26, 28 sont agencées sous le rotor 24 de sustentation lorsque les hélices 26, 28 sont dans leur seconde position. In this first embodiment, the first propeller 26 and the second propeller 28 are each positioned relative to their respective axis 34, 36 of rotation so that the propeller 26, 28 is arranged longitudinally between the axis 34, 36 of rotation and the downstream end of the tail 16 plus specifically the stabilization and maneuvering surface 18. In this configuration, in order to be moved from the first position to the second position, the first propeller 26 and the second propeller 28 therefore performs a rotational movement upstream of the aircraft 10. More particularly, the rotational movement of the first propeller 26 or right propeller is a clockwise and upstream movement and the rotational movement the second propeller 28 or left propeller is a rotation movement counterclockwise and upstream. It is also observed that the propellers 26, 28 are arranged under the lift rotor 24 when the propellers 26, 28 are in their second position.
[037] Bien que seules deux positions des hélices 26, 28 aient été décrites, on comprend que chacune de celles-ci peut prendre des positions intermédiaires.  [037] Although only two positions of the propellers 26, 28 have been described, it is understood that each of these can take intermediate positions.
[038] Pour réaliser un passage de chacune des hélices 26, 28 de sa première position à sa seconde position afin que l’aéronef 10 passe d’une configuration hélicoptère où l’une au moins de la première hélice 26 et de la seconde hélice 28 est rotative pour réaliser une fonction anti-couple à une configuration avion où la première hélice 26 et la seconde hélice 28 assure une propulsion dans une direction d’avance, on procède de la manière suivante. En premier lieu, la première hélice 26 étant en fonctionnement anti- couple, la seconde hélice 28 qui n'est pas en fonctionnement est déplacée de sa première position vers sa seconde position (figure 2A). La première hélice 26 est ensuite mise à l’arrêt et la seconde hélice 28 est mise en fonctionnement de manière à assurer une propulsion d’avance (figure 2B et figure 2C). La première hélice 26 est ensuite déplacée dans sa seconde position (figure 2D) puis mise en fonctionnement pour assurer une propulsion (figure 2D).  To achieve a passage of each of the propellers 26, 28 from its first position to its second position so that the aircraft 10 passes from a helicopter configuration where at least one of the first propeller 26 and the second propeller 28 is rotatable to perform an anti-torque function in an airplane configuration where the first propeller 26 and the second propeller 28 provides propulsion in a direction of advance, the procedure is as follows. Firstly, the first propeller 26 being in anti-torque operation, the second propeller 28 which is not in operation is moved from its first position to its second position (FIG. 2A). The first propeller 26 is then stopped and the second propeller 28 is put into operation so as to provide advance propulsion (FIG. 2B and FIG. 2C). The first propeller 26 is then moved to its second position (Figure 2D) and then put into operation to provide propulsion (Figure 2D).
[039] La figure 3A représente un aéronef 10 similaire à celui des figures 1 A et 1 B qui comprend deux hélices 26, 28 agencées à déplacement entre une première position et une seconde position comme cela a été décrit précédemment. En figure 3A, la première hélice 26 et la seconde hélice 28 sont dans leur première position, ce qui explique qu’elles ne soient pas visibles puisque les bras 30, 32 sont alignés avec l’axe longitudinal A et cachés par le fuselage 12. La figure 3B représente une réalisation dans laquelle le diamètre de la première hélice 26 et de la seconde hélice 28 est tel que le cercle 38 circonscrit aux extrémités radialement externes des pales de chacune de la première hélice 26 et de la seconde hélice 28 intercepte le contour externe du fuselage de l’aéronef 10 lorsque celui-ci est vu de l’amont vers l’aval selon l’axe longitudinal A. En pratique, on comprend que les hélices 26, 28 ne pénètrent bien évidemment pas dans le fuselage puisque celui-ci présente une section qui se réduit en allant vers l’aval. La distance entre les axes 26a, 28a desdites première hélice 26 et seconde hélice 28 est inférieure à la dimension transverse de la surface 18 de stabilisation et de manœuvre. Plus particulièrement, l’axe 26a, 28a de rotation est de chacune des hélices 26, 28 est ici sensiblement aligné avec une dérive 20, 22 lorsque l’hélice 26, 28 est dans sa seconde position. [039] Figure 3A shows an aircraft 10 similar to that of Figures 1 A and 1 B which comprises two propellers 26, 28 arranged to move between a first position and a second position as described above. In FIG. 3A, the first propeller 26 and the second propeller 28 are in their first position, which explains why they are not visible since the arms 30, 32 are aligned with the longitudinal axis A and hidden by the fuselage 12. FIG. 3B represents an embodiment in which the diameter of the first propeller 26 and of the second propeller 28 is such that the circle 38 circumscribed at the radially outer ends of the blades of each of the first propeller 26 and of the second propeller 28 intercepts the external contour of the fuselage of the aircraft 10 when the latter is seen from upstream to downstream along the longitudinal axis A. In practice, it is understood that the propellers 26, 28 obviously do not penetrate into the fuselage since the latter has a section which reduces when going towards the downstream. The distance between the axes 26a, 28a of said first propeller 26 and second propeller 28 is less than the transverse dimension of the surface 18 for stabilization and maneuver. More particularly, the axis 26a, 28a of rotation is of each of the propellers 26, 28 is here substantially aligned with a fin 20, 22 when the propeller 26, 28 is in its second position.
[040] La figure 3C représente une autre réalisation d’un aéronef [040] FIG. 3C represents another embodiment of an aircraft
11 réalisation dans laquelle le diamètre de la première hélice 26 et de la seconde hélice 28 est tel que le cercle 40 circonscrit aux extrémités radialement externes des pales de chacune de la première hélice 26 et de la seconde hélice 28 n’intercepte pas le contour externe du fuselage 12 de l’aéronef 11 lorsque l’aéronef 11 est vu de l’amont vers l’aval selon l’axe longitudinal A. La distance entre les axes 26a, 28a desdites première hélice 26 et seconde hélice 28 est ici supérieure à la dimension transverse de la surface 18 de stabilisation et de manœuvre. Autrement dit, les axes 26a, 28a de rotation des hélices 26, 28 sont situés de part et d’autre de la surface 18 de stabilisation et de manœuvre dans une direction transverse, c’est-à-dire perpendiculaire à un plan contenant l’axe longitudinal A et l’axe 24a de rotation du rotor principal 24. On remarque également que dans cette réalisation, le diamètre des hélices 26, 28 est inférieur au diamètre des hélices de la réalisation représentée en figure 3B. [041] Dans une autre réalisation d’un aéronef 13 représenté aux figures 4A et 4B, la première hélice 26 et la seconde hélice 28 sont chacune positionnées par rapport l’axe 34, 36 du bras 30, 32 de sorte que l’axe 34, 36 de rotation soit agencé longitudinalement entre l’hélice 26, 28 et l’extrémité aval de la queue 16, plus spécifiquement la surface 18 de stabilisation et de manœuvre. Dans cette configuration, pour être déplacée de la première position vers la seconde position, la première hélice 26 et la seconde hélice 28 effectuent donc un mouvement de rotation vers l’aval de l’aéronef 13. Plus particulièrement, le mouvement de rotation de la première hélice 26 ou hélice de droite est un mouvement de rotation dans le sens antihoraire et vers l’aval et le mouvement de rotation de la seconde hélice 28 ou hélice de gauche est un mouvement de rotation dans le sens horaire et vers l’aval. On observe également que les hélices 26, 28 ne sont pas agencées sous le rotor de sustentation lorsque les hélices 26, 28 sont dans leur seconde position de sorte que l’influence du rotor 24 est diminuée par rapport à la réalisation représentée aux figures 1A et 1 B. La première hélice 26 et la seconde hélice 28 sont agencées dans le prolongement aval de la surface 18 de stabilisation et de manœuvre comme cela a été décrit en référence à la figure 3B. On comprend que les hélices 26, 28 pourraient également être agencées de part et d’autre de la surface 18 de stabilisation et de manœuvre comme illustré en figure 3C. 11 embodiment in which the diameter of the first propeller 26 and of the second propeller 28 is such that the circle 40 circumscribed at the radially outer ends of the blades of each of the first propeller 26 and of the second propeller 28 does not intercept the outer contour of the fuselage 12 of the aircraft 11 when the aircraft 11 is seen from upstream to downstream along the longitudinal axis A. The distance between the axes 26a, 28a of said first propeller 26 and second propeller 28 is here greater than the transverse dimension of the stabilization and maneuvering surface 18. In other words, the axes 26a, 28a of rotation of the propellers 26, 28 are located on either side of the surface 18 for stabilization and maneuver in a transverse direction, that is to say perpendicular to a plane containing l 'longitudinal axis A and the axis 24a of rotation of the main rotor 24. It is also noted that in this embodiment, the diameter of the propellers 26, 28 is less than the diameter of the propellers of the embodiment shown in Figure 3B. [041] In another embodiment of an aircraft 13 shown in Figures 4A and 4B, the first propeller 26 and the second propeller 28 are each positioned relative to the axis 34, 36 of the arm 30, 32 so that the axis 34, 36 of rotation is arranged longitudinally between the propeller 26, 28 and the downstream end of the tail 16, more specifically the surface 18 of stabilization and maneuver. In this configuration, to be moved from the first position to the second position, the first propeller 26 and the second propeller 28 therefore perform a rotational movement downstream of the aircraft 13. More particularly, the rotational movement of the first propeller 26 or right propeller is a rotational movement counterclockwise and downstream and the rotational movement of the second propeller 28 or left propeller is a rotational movement clockwise and downstream. It is also observed that the propellers 26, 28 are not arranged under the lift rotor when the propellers 26, 28 are in their second position so that the influence of the rotor 24 is reduced compared to the embodiment shown in FIGS. 1A and 1 B. The first propeller 26 and the second propeller 28 are arranged in the downstream extension of the stabilization and maneuvering surface 18 as has been described with reference to FIG. 3B. It is understood that the propellers 26, 28 could also be arranged on either side of the stabilization and maneuvering surface 18 as illustrated in FIG. 3C.
[042] Les figures 5A et 5B représente un aéronef 15 similaire à celui des figures 4A et 4B à la différence que l’extrémité aval de la queue est dépourvue de surface 18 de stabilisation et de manœuvre. On observe que la première hélice 26 et la seconde hélice 28 ne sont pas agencées sous le rotor de sustentation lorsqu’elles sont dans leur seconde position.  [042] Figures 5A and 5B shows an aircraft 15 similar to that of Figures 4A and 4B with the difference that the downstream end of the tail has no surface 18 for stabilization and maneuvering. It can be seen that the first propeller 26 and the second propeller 28 are not arranged under the lift rotor when they are in their second position.
[043] Dans une réalisation particulière, la première hélice 26 et la seconde hélice 28 sont articulées en rotation sur une course de 90° de sorte que les axes 26a, 28a des hélices 26, 28 sont sensiblement parallèles à l’axe longitudinal A lorsque les hélices 26, 28 sont dans leur seconde position.  [043] In a particular embodiment, the first propeller 26 and the second propeller 28 are articulated in rotation over a stroke of 90 ° so that the axes 26a, 28a of the propellers 26, 28 are substantially parallel to the longitudinal axis A when the propellers 26, 28 are in their second position.

Claims

REVENDICATIONS
1 . Aéronef (10, 1 1 , 13, 15) à décollage et atterrissage vertical comprenant un fuselage (12) au-dessus duquel est agencé au moins un rotor (24) de sustentation, caractérisé en ce qu’il comprend au moins une première hélice (26) et une seconde hélice (28) chacune portée par une queue (16) et articulée en déplacement sur celle-ci entre au moins une première position dans laquelle elle est apte à servir de rotor d’anti-couple et au moins une seconde position dans laquelle elle est apte à permettre une poussée de propulsion de l’aéronef (10, 1 1 , 13, 15) dans une direction d’avance, les axes (26a, 28a) de rotation desdites première hélice (26) et seconde hélice (28) étant sensiblement coaxiaux lorsque lesdites première hélice (26) et seconde hélice (28) sont dans leur première position. 1. Aircraft (10, 1 1, 13, 15) with vertical takeoff and landing comprising a fuselage (12) above which is arranged at least one lift rotor (24), characterized in that it comprises at least one first propeller (26) and a second propeller (28) each carried by a shank (16) and articulated in displacement thereon between at least a first position in which it is able to serve as an anti-torque rotor and at least one second position in which it is capable of allowing a propulsion thrust of the aircraft (10, 1 1, 13, 15) in a direction of advance, the axes (26a, 28a) of rotation of said first propeller (26) and second propeller (28) being substantially coaxial when said first propeller (26) and second propeller (28) are in their first position.
2. Aéronef selon la revendication 1 , dans lequel la première hélice (26) et la seconde hélice (28) sont agencées de manière sensiblement symétrique l’une de l’autre par rapport à un plan contenant l’axe longitudinal (A) de l’aéronef (10) et l’axe (24a) du rotor (24) de sustentation.  2. Aircraft according to claim 1, in which the first propeller (26) and the second propeller (28) are arranged in a manner substantially symmetrical to each other with respect to a plane containing the longitudinal axis (A) of the aircraft (10) and the axis (24a) of the lift rotor (24).
3. Aéronef selon la revendication 1 ou 2, dans lequel lesdites première et seconde hélices (26, 28) sont montées à une extrémité d’un bras (30, 32) dont l’autre extrémité opposée est articulée en rotation sur la queue (16) de l’aéronef (10).  3. Aircraft according to claim 1 or 2, in which said first and second propellers (26, 28) are mounted at one end of an arm (30, 32) whose opposite opposite end is articulated in rotation on the tail ( 16) of the aircraft (10).
4. Aéronef selon la revendication 3, dans lequel l’axe (34, 36) de rotation de l’articulation de chaque bras (30, 32) est agencé longitudinalement entre l’hélice (26, 28) et l’extrémité aval de la queue (16) lorsque l’hélice (26, 28) est dans sa première position.  4. Aircraft according to claim 3, in which the axis (34, 36) of rotation of the articulation of each arm (30, 32) is arranged longitudinally between the propeller (26, 28) and the downstream end of the tail (16) when the propeller (26, 28) is in its first position.
5. Aéronef selon la revendication 3, dans lequel chaque hélice (26, 28) est agencée longitudinalement entre l’axe (34, 36) de rotation du bras (30, 32) et l’extrémité aval de la queue (16) lorsque l’hélice (26, 28) est dans sa première position.  5. Aircraft according to claim 3, in which each propeller (26, 28) is arranged longitudinally between the axis (34, 36) of rotation of the arm (30, 32) and the downstream end of the tail (16) when the propeller (26, 28) is in its first position.
6. Aéronef selon l’une des revendications 1 à 5, dans lequel lesdites première et seconde hélices (26, 28) sont articulées en déplacement sur une distance angulaire d’environ 90° de manière à ce que l’axe de rotation de chacune des première hélice (26) et seconde hélice (28) soit sensiblement parallèle à l’axe longitudinal (A) de l’aéronef (10). 6. Aircraft according to one of claims 1 to 5, wherein said first and second propellers (26, 28) are articulated in displacement over an angular distance of approximately 90 ° so that the axis of rotation of each of the first propeller (26) and second propeller (28) is substantially parallel to the longitudinal axis (A) of the aircraft (10 ).
7. Aéronef selon l’une des revendication 1 à 6, dans lequel l’extrémité aval de la queue (16) comprend au moins une surface (18) de stabilisation et de manœuvre.  7. The aircraft as claimed in claim 1, in which the downstream end of the tail (16) comprises at least one stabilization and maneuvering surface (18).
8. Aéronef selon l’une des revendications 1 à 7, dans lequel le diamètre des première et secondes hélices (26, 28) est tel que le cercle circonscrit aux extrémités radialement externes des pales de chacune des hélices (26, 28) intercepte le contour externe du fuselage (12) de l’aéronef lorsque l’aéronef est vu de l’amont vers l’aval selon l’axe longitudinal (A).  8. Aircraft according to one of claims 1 to 7, in which the diameter of the first and second propellers (26, 28) is such that the circle circumscribed at the radially outer ends of the blades of each of the propellers (26, 28) intercepts the external contour of the fuselage (12) of the aircraft when the aircraft is seen from upstream to downstream along the longitudinal axis (A).
9. Aéronef selon les revendications 7 et 8, dans lequel la distance entre les axes (26a, 28a) desdites première hélice (26) et seconde hélice (8) est inférieure à la dimension transverse de la surface (18) de stabilisation et de manœuvre.  9. Aircraft according to claims 7 and 8, in which the distance between the axes (26a, 28a) of said first propeller (26) and second propeller (8) is less than the transverse dimension of the surface (18) for stabilization and maneuver.
10. Aéronef selon l’une des revendications 1 à 7, dans lequel le diamètre des première et secondes hélices (26, 28) est tel que le cercle circonscrit aux extrémités radialement externes des pales de chacune des hélices (26, 28) n’intercepte pas le contour externe du fuselage (12) de l’aéronef lorsque l’aéronef (11 ) est vu de l’amont vers l’aval selon l’axe longitudinal (A).  10. Aircraft according to one of claims 1 to 7, in which the diameter of the first and second propellers (26, 28) is such that the circle circumscribed at the radially outer ends of the blades of each of the propellers (26, 28) does not not intercept the external contour of the fuselage (12) of the aircraft when the aircraft (11) is seen from upstream to downstream along the longitudinal axis (A).
11. Aéronef selon les revendications 7 et 10, dans lequel la distance entre les axes (26a, 28a) desdites première hélice (26) et seconde hélice (28) est supérieure à la dimension transverse de la surface (18) de stabilisation et de manœuvre.  11. Aircraft according to claims 7 and 10, in which the distance between the axes (26a, 28a) of said first propeller (26) and second propeller (28) is greater than the transverse dimension of the surface (18) for stabilization and maneuver.
12. Aéronef selon l’une des revendications précédentes, dans lequel l’une et/ou l’autre de la première hélice (26) et de la seconde hélice (28) sont articulées en déplacement au moyen d’un moteur électrique.  12. Aircraft according to one of the preceding claims, in which one and / or the other of the first propeller (26) and of the second propeller (28) are articulated in movement by means of an electric motor.
13. Procédé de passage de l’aéronef selon l’une des revendications 1 à 10 d’une configuration à avancement lent à une configuration à avancement rapide, dans lequel il comprend les étapes successives suivantes : 13. The method of passing the aircraft according to one of claims 1 to 10 from a slowly advancing configuration to a fast forward configuration, in which it comprises the following successive steps:
La première hélice (26) étant en fonctionnement anti-couple, la seconde hélice (28) est déplacée de sa première position vers sa seconde position,  The first propeller (26) being in anti-torque operation, the second propeller (28) is moved from its first position to its second position,
La seconde hélice (28) est mise en fonctionnement de manière à fournir une poussée dans la direction longitudinale (A),  The second propeller (28) is put into operation so as to provide thrust in the longitudinal direction (A),
La rotation de la première hélice (26) est stoppée,  The rotation of the first propeller (26) is stopped,
La première hélice (26) est déplacée de sa première position vers sa seconde position,  The first propeller (26) is moved from its first position to its second position,
La première hélice (26) est mise en fonctionnement de manière à fournir une poussée dans la direction longitudinale (A).  The first propeller (26) is operated to provide thrust in the longitudinal direction (A).
PCT/FR2019/051848 2018-08-02 2019-07-25 Vertical take-off and landing aircraft WO2020025885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1857246 2018-08-02
FR1857246A FR3084647B1 (en) 2018-08-02 2018-08-02 VERTICAL TAKE-OFF AND LANDING AIRCRAFT

Publications (1)

Publication Number Publication Date
WO2020025885A1 true WO2020025885A1 (en) 2020-02-06

Family

ID=65200996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/051848 WO2020025885A1 (en) 2018-08-02 2019-07-25 Vertical take-off and landing aircraft

Country Status (2)

Country Link
FR (1) FR3084647B1 (en)
WO (1) WO2020025885A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009090755A (en) * 2007-10-05 2009-04-30 Mitsubishi Heavy Ind Ltd Tail rotor
US20100127114A1 (en) * 2007-08-17 2010-05-27 Shuichi Nakayama Helicopter
EP3251952A1 (en) * 2016-06-03 2017-12-06 Bell Helicopter Textron Inc. Variable directional thrust for helicopter tail anti-torque system
EP3254962A1 (en) * 2016-06-03 2017-12-13 Bell Helicopter Textron Inc. Electric distributed propulsion anti-torque redundant power and control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100127114A1 (en) * 2007-08-17 2010-05-27 Shuichi Nakayama Helicopter
JP2009090755A (en) * 2007-10-05 2009-04-30 Mitsubishi Heavy Ind Ltd Tail rotor
EP3251952A1 (en) * 2016-06-03 2017-12-06 Bell Helicopter Textron Inc. Variable directional thrust for helicopter tail anti-torque system
EP3254962A1 (en) * 2016-06-03 2017-12-13 Bell Helicopter Textron Inc. Electric distributed propulsion anti-torque redundant power and control system

Also Published As

Publication number Publication date
FR3084647B1 (en) 2021-02-26
FR3084647A1 (en) 2020-02-07

Similar Documents

Publication Publication Date Title
EP2567893B1 (en) Long-range high-speed aircraft
EP3294624B1 (en) Convertible airplane with exposable rotors
EP2105378B1 (en) Fast hybrid helicopter with large range
EP3118112B1 (en) A compound aircraft having an additional anti-torque device
EP2146895B1 (en) Long range fast hybrid helicopter and optimised lift rotor
EP2148814B1 (en) Long range fast hybrid helicopter with longitudinal attitude control
EP2146896B1 (en) Long range fast hybrid helicopter
FR2952612A1 (en) HIGH-DISTANCE AIRCRAFT WITH A HIGH SPEED OF ADVANCEMENT IN CRUISE FLIGHT
FR2983171A1 (en) ANTI-TORQUE DEVICE WITH LONGITUDINAL PUSH FOR A GIRAVION
FR2798359A1 (en) IMPROVEMENTS ON CONVERTIBLE AIRCRAFT WITH TILTING ROTORS
FR2980771A1 (en) HYBRID AIRCRAFT WITH ROTATING WING
WO2012107650A1 (en) Airplane having a rear propulsion system
FR2864030A1 (en) Convertiplane, has two tilt fans arranged on both sides of fuselage, another fan arranged between two tail booms, and openings evacuate exhaust gas from two engines on top of fuselage
EP3765364B1 (en) Procedure for operating a hybrid aerodyne of the vtol or stol type
FR3022217A1 (en) CONVERTIBLE AIRCRAFT WITH TILTING WING
EP3495266B1 (en) Aircraft with adaptive configuration in flight
WO2020025885A1 (en) Vertical take-off and landing aircraft
FR3071223A1 (en) HYBRID HELICOPTER COMPRISING INCLINED PROPULSION PROPELLERS
EP3828082B1 (en) Hybrid rotorcraft comprising at least one pusher or tractor propeller and associated control method
FR3123320A1 (en) Aircraft having at least one propeller and a rotary wing equipped with two rotors carried by two half-wings
WO2022171958A1 (en) Vtol aircraft having four rotors in a cruciform arrangement, and associated method for managing an emergency landing
FR3103463A1 (en) Emergency landing management method in a VTOL aircraft with four opposing rotors in pairs and associated VTOL aircraft
FR3106811A1 (en) Rotary and fixed-wing drone with vertical take-off and landing, with optimized drag for these two uses
FR3074779A1 (en) AIRCRAFT
CH322530A (en) Aerograft type flight apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19759652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19759652

Country of ref document: EP

Kind code of ref document: A1