WO2020025277A1 - Charge-air cooler - Google Patents

Charge-air cooler Download PDF

Info

Publication number
WO2020025277A1
WO2020025277A1 PCT/EP2019/068553 EP2019068553W WO2020025277A1 WO 2020025277 A1 WO2020025277 A1 WO 2020025277A1 EP 2019068553 W EP2019068553 W EP 2019068553W WO 2020025277 A1 WO2020025277 A1 WO 2020025277A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge air
cooler
charge
side block
matrix
Prior art date
Application number
PCT/EP2019/068553
Other languages
German (de)
French (fr)
Inventor
Hermann Baumann
Konstantin RUNDEL
Original Assignee
Mtu Friedrichshafen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Friedrichshafen Gmbh filed Critical Mtu Friedrichshafen Gmbh
Publication of WO2020025277A1 publication Critical patent/WO2020025277A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/1015Air intakes; Induction systems characterised by the engine type
    • F02M35/10157Supercharged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10288Air intakes combined with another engine part, e.g. cylinder head cover or being cast in one piece with the exhaust manifold, cylinder head or engine block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/104Intake manifolds
    • F02M35/116Intake manifolds for engines with cylinders in V-arrangement or arranged oppositely relative to the main shaft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a charge air cooler for an internal combustion engine in a V arrangement with a cooler matrix, with a housing surrounding the cooler matrix and with a vertical supply of the charge air to the cooler matrix.
  • a charge air cooler for an internal combustion engine in a V arrangement is known from DE 10 2011 075 617 A1. This is arranged in the cylinder V, i.e. on the top of the
  • the hot charge air flows sequentially first through the charge air cooler and then through a connection box.
  • the cooled charge air is divided into a first and a second volume flow, which are fed to an A-side cylinder bank and a B-side cylinder bank.
  • the invention is therefore based on the object, the thermal tuning of
  • the invention therefore proposes a charge air cooler in which the cooler matrix is divided into two blocks and a lane is formed between the two blocks.
  • the two blocks are referred to as the A-side block and as the B-side block.
  • the A-side block is used to cool the charge air for the A-side cylinder bank and the B-side block is used to cool the charge air for the B-side cylinder bank.
  • the alley has a double functionality here.
  • the uncooled, ie hot, charge air is guided through the cooler matrix in the vertical direction and, on the other hand, the A-side and B-side block are spaced apart.
  • the charge air is drawn from the vertical direction within the cooler matrix coming redirected in the horizontal direction.
  • the cooled charge air is discharged through several access windows in the side walls of the charge air cooler.
  • bulkheads are provided, via which the inflow surfaces of the A-side block and the B-side block can be specified.
  • the air-guiding connection box can be omitted. In addition to the resulting cost reduction, the
  • connection box is no longer required, the component surface and component mass of the charge air path are reduced, which in turn results in a faster response when the charge air temperature changes.
  • the uncooled, hot charge air can flow through the cooler matrix in a vertical direction with little pressure loss and be distributed continuously on the A-side and B-side block.
  • the charge air routing across the alley also ensures that only uncooled charge air hits an upper cover of the charge air cooler, which effectively prevents the formation of condensate.
  • Charge air cooler 1 the hot charge air LL, which was compressed, for example, by the compressor of an exhaust gas turbocharger, is cooled.
  • the charge air cooler 1 is arranged on the top of an internal combustion engine 2 in a V arrangement.
  • the A side corresponds to the left side
  • the B side corresponds to the right side as seen from the power take-off side.
  • the power take-off side is the side on which, for example, a gearbox is flanged.
  • the illustration in the figure corresponds to a view of the charge air cooler 1 seen from the power take-off side.
  • the components are identified on the A side with the index A.
  • the components on the B side are marked with the index B accordingly.
  • the cooled charge air is supplied to an A-side cylinder bank 3A and a B-side cylinder bank 3B via the charge air cooler 1.
  • the loading air cooler 1 comprises a cooler matrix 4 and a housing 5. The latter in turn is made up of a base plate 6, two side walls 7A / 7B and a cover 8. In the figure, the base plate 6 and the side walls 7A / 7B are made in one piece.
  • the cooler matrix 4 comprises an A-side block 9A, a B-side block 9B and an alley 10.
  • the cooler matrix 4 is fastened within the housing 5 via bulkhead walls 11, the base plate 6 and the cover 8.
  • the bulkhead wall 11 in turn can be separate Component or as an integral part of the cover 8 or the base plate 6. In the figure is the bulkhead 11 is designed as a separate component which is detachably attached to the cover 8 or the base plate 6.
  • the arrangement has the following functionality:
  • the uncooled, ie hot, charge air LL, coming from an exhaust gas turbocharger, is fed to the charge air cooler 1 in a vertical direction via a pipe socket 12.
  • the charge air LL is divided into a first volume flow VI and a second volume flow V2.
  • the first volume flow VI in turn is divided into an A-side first volume flow VI A and a B-side first volume flow V1B.
  • the A-side first volume flow VI A flows directly through the A-side block 9A in the vertical direction and is deflected in this in the horizontal direction.
  • the A-side first volume flow VI A is defined via a lower one
  • the inflow surface 13A of the A-side block 9A corresponds to the protrusion of the A-side block 9A over the bulkhead 11.
  • the second volume flow V2 flows through the lane 10. In the lane 10, the second volume flow V2 is divided into two partial volumes V2A / V2B and a third volume flow V3. The two partial volumes V2A / V2B flow through the A-side block 9A or the B-side block 9B in the horizontal direction.
  • the third volume flow V3 of the hot charge air LL is guided onto the cover 8.
  • the cover 8 in turn is deflected in the horizontal direction and then flows through an upper inflow surface 14A through the A-side block 9A or through an upper inflow surface 14B through the B-side block 9B.
  • the upper inflow surface 14A is defined by the protrusion of the A-side block 9A over the bulkhead 11.
  • the upper inflow surface 14B is defined by the protrusion of the B-side block 9B and the bulkhead 11. After cooling the charge air in the A-side block 9A, it flows through the transfer window 15A and via a pipe 16A to the A-side cylinder bank 3A. This applies analogously to the B side. In the figure is with the
  • Reference numeral 17 shows a precooler. This can be used to further adjust the cooling capacity and thermal tuning. LIST OF REFERENCE NUMBERS

Abstract

A charge-air cooler (1) is proposed for an internal combustion engine (2) in a V-arrangement with a cooler matrix (4), with a housing (5) which surrounds the cooler matrix (4), and with a vertical feed of the charge air (LL) to the cooler matrix (4). The invention is characterized in that the cooler matrix (4) comprises an A-side block (9A) for cooling the charge air (LL) for an A-side cylinder bank (3A), a B-side block (9B) for cooling the charge air (LL) for a B-side cylinder bank (3B), and a channel (10) which runs in the vertical direction for spacing apart the two blocks (9A, 9B), wherein a deflection of the charge air (LL) within the charge-air cooler (1) takes place into the horizontal direction, and the cooled charge air (LL) exits via transfer windows (15A, 15B) in the side walls (7A, 7B) of the housing (5).

Description

Ladeluftkühler  Intercooler
Die Erfindung betrifft einen Ladeluftkühler für eine Brennkraftmaschine in V-Anordnung mit einer Kühlermatrix, mit einem die Kühlermatrix umgebenden Gehäuse und mit einer vertikalen Zuführung der Ladeluft zur Kühlermatrix. The invention relates to a charge air cooler for an internal combustion engine in a V arrangement with a cooler matrix, with a housing surrounding the cooler matrix and with a vertical supply of the charge air to the cooler matrix.
Aus der DE 10 2011 075 617 Al ist ein Ladeluftkühler für eine Brennkraftmaschine in V- Anordnung bekannt. Angeordnet ist dieser im Zylinder-V, also auf der Oberseite der A charge air cooler for an internal combustion engine in a V arrangement is known from DE 10 2011 075 617 A1. This is arranged in the cylinder V, i.e. on the top of the
Brennkraftmaschine. Die heiße Ladeluft durchströmt in vertikaler Richtung sequentiell zuerst den Ladeluftkühler und danach einen Anschlusskasten. Im Anschlusskasten wiederum wird die gekühlte Ladeluft in einen ersten und zweiten Volumenstrom aufgeteilt, welche einer A-seitigen Zylinderbank und einer B-seitigen Zylinderbank zugeführt werden. Internal combustion engine. In the vertical direction, the hot charge air flows sequentially first through the charge air cooler and then through a connection box. In the plenum box, the cooled charge air is divided into a first and a second volume flow, which are fed to an A-side cylinder bank and a B-side cylinder bank.
In der Praxis hat es sich nun gezeigt, dass sich, aufgrund der Anströmung des Anschlusskastens mit der gekühlten Ladeluft, Kondensat an der kalten Wand des Anschlusskastens niederschlagen und Korrosion bewirken kann.  In practice, it has now been shown that, due to the flow of the cooled charge air in the connection box, condensate can precipitate on the cold wall of the connection box and cause corrosion.
Der Erfindung liegt daher die Aufgabe zugrunde, die thermische Abstimmung des The invention is therefore based on the object, the thermal tuning of
Ladeluftkühlers zu verbessern. Intercooler improve.
Gelöst wird diese Aufgabe durch die Merkmale von Anspruch 1. Die Ausgestaltungen sind in den Unteransprüchen dargestellt. This object is achieved by the features of claim 1. The configurations are shown in the subclaims.
Die Erfindung schlägt also einen Ladeluftkühler vor, bei dem die Kühlermatrix in zwei Blöcke aufgeteilt ist und zwischen den beiden Blöcken eine Gasse ausgebildet ist. Im weiteren Text werden die beiden Blöcke als A-seitiger Block und als B-seitiger Block bezeichnet. Der A- seitige Block dient zur Kühlung der Ladeluft für die A-seitige Zylinderbank und der B-seitige Block dient zur Kühlung der Ladeluft für die B-seitige Zylinderbank. Die Gasse besitzt hierbei eine doppelte Lunktionalität. Zum einen wird die ungekühlte, also heiße, Ladeluft in vertikal Richtung durch die Kühlermatrix geführt und zum anderen werden der A-seitige und der B- seitige Block beabstandet. Innerhalb der Kühlermatrix wird die Ladeluft aus vertikaler Richtung kommend in horizontaler Richtung umgelenkt. Der Austritt der gekühlten Ladeluft erfolgt mittels mehrerer Übertrittfenster in den Seitenwänden des Ladeluftkühlers. In einer Ergänzung sind Schottwände vorgesehen, über welche die Anströmflächen des A-seitigen Blocks und des B-seitigen Blocks vorgebbar sind. The invention therefore proposes a charge air cooler in which the cooler matrix is divided into two blocks and a lane is formed between the two blocks. In the rest of the text, the two blocks are referred to as the A-side block and as the B-side block. The A-side block is used to cool the charge air for the A-side cylinder bank and the B-side block is used to cool the charge air for the B-side cylinder bank. The alley has a double functionality here. On the one hand, the uncooled, ie hot, charge air is guided through the cooler matrix in the vertical direction and, on the other hand, the A-side and B-side block are spaced apart. The charge air is drawn from the vertical direction within the cooler matrix coming redirected in the horizontal direction. The cooled charge air is discharged through several access windows in the side walls of the charge air cooler. In addition, bulkheads are provided, via which the inflow surfaces of the A-side block and the B-side block can be specified.
Indem die Umlenkung der Ladeluft bereits im Ladeluftkühler erfolgt, kann der luftführende Anschlusskasten entfallen. Neben der sich hieraus ergebenden Kostenreduktion ist die Since the charge air is already deflected in the charge air cooler, the air-guiding connection box can be omitted. In addition to the resulting cost reduction, the
Bauhöhenverringerung von Vorteil. Aufgrund des nicht mehr erforderlichen Anschlusskastens verringern sich die Bauteiloberfläche und die Bauteilmasse des Ladeluftpfads, woraus wiederum ein schnelleres Ansprechverhalten bei Änderung der Ladelufttemperatur resultiert. Über die Gasse in der Kühlermatrix kann die ungekühlte, heiße Ladeluft in vertikaler Richtung die Kühlermatrix druckverlustarm durchströmen und sich kontinuierlich auf den A-seitigen und B- seitigen Block verteilen. Durch die Ladeluftführung über die Gasse wird ebenfalls bewirkt, dass nur ungekühlte Ladeluft auf einen oberen Deckel des Ladeluftkühlers trifft, wodurch einer Kondensatbildung wirksam vorgebeugt wird. Reduced overall height is an advantage. Because the connection box is no longer required, the component surface and component mass of the charge air path are reduced, which in turn results in a faster response when the charge air temperature changes. Via the alley in the cooler matrix, the uncooled, hot charge air can flow through the cooler matrix in a vertical direction with little pressure loss and be distributed continuously on the A-side and B-side block. The charge air routing across the alley also ensures that only uncooled charge air hits an upper cover of the charge air cooler, which effectively prevents the formation of condensate.
In der einzigen Figur ist ein Ladeluftkühler 1 gemäß der Erfindung dargestellt. Über den In the single figure, an intercooler 1 according to the invention is shown. On the
Ladeluftkühler 1 wird die heiße Ladeluft LL, welche zum Beispiel vom Verdichter eines Abgasturboladers verdichtet wurde, gekühlt. Angeordnet ist der Ladeluftkühler 1 auf der Oberseite einer Brennkraftmaschine 2 in V-Anordnung. Bei einer Brennkraftmaschine in V- Anordnung entspricht die A-Seite der linken Seite und die B-Seite der rechten Seite von der Kraftabnahmeseite aus gesehen. Die Kraftabnahmeseite wiederum ist diejenige Seite, an der zum Beispiel ein Getriebe angeflanscht wird. Die Darstellung in der Figur entspricht insofern einer Ansicht auf den Ladeluftkühler 1 von der Kraftabnahmeseite aus gesehen. In der Figur sind die Komponenten auf der A-Seite mit dem Index A gekennzeichnet. Die Komponenten der B-Seite sind mit dem Index B entsprechend gekennzeichnet. Über den Ladeluftkühler 1 wird die gekühlte Ladeluft einer A-seitigen Zylinderbank 3A und einer B-seitigen Zylinderbank 3B zugeführt. Der Lade luftkühler 1 umfasst eine Kühlermatrix 4 und ein Gehäuse 5. Letzteres wiederum komplettiert sich aus einer Bodenplatte 6, zwei Seitenwänden 7A/7B und einem Deckel 8. In der Figur sind die Bodenplatte 6 und die Seitenwände 7A/7B einstückig ausgeführt. Die Kühlermatrix 4 umfasst einen A-seitigen Block 9A, einen B-seitigen Block 9B und eine Gasse 10. Befestigt ist die Kühlermatrix 4 innerhalb des Gehäuses 5 über Schottwände 11, die Bodenplatte 6 und den Deckel 8. Die Schottwand 11 wiederum kann als gesondertes Bauteil oder als integraler Bestandteil des Deckels 8 bzw. der Bodenplatte 6 ausgeführt sein. In der Figur ist die Schottwand 11 als gesondertes Bauteil ausgeführt, welches lösbar am Deckel 8 bzw. der Bodenplatte 6 befestigt ist. Charge air cooler 1, the hot charge air LL, which was compressed, for example, by the compressor of an exhaust gas turbocharger, is cooled. The charge air cooler 1 is arranged on the top of an internal combustion engine 2 in a V arrangement. In the case of an internal combustion engine in a V arrangement, the A side corresponds to the left side and the B side corresponds to the right side as seen from the power take-off side. The power take-off side is the side on which, for example, a gearbox is flanged. In this respect, the illustration in the figure corresponds to a view of the charge air cooler 1 seen from the power take-off side. In the figure, the components are identified on the A side with the index A. The components on the B side are marked with the index B accordingly. The cooled charge air is supplied to an A-side cylinder bank 3A and a B-side cylinder bank 3B via the charge air cooler 1. The loading air cooler 1 comprises a cooler matrix 4 and a housing 5. The latter in turn is made up of a base plate 6, two side walls 7A / 7B and a cover 8. In the figure, the base plate 6 and the side walls 7A / 7B are made in one piece. The cooler matrix 4 comprises an A-side block 9A, a B-side block 9B and an alley 10. The cooler matrix 4 is fastened within the housing 5 via bulkhead walls 11, the base plate 6 and the cover 8. The bulkhead wall 11 in turn can be separate Component or as an integral part of the cover 8 or the base plate 6. In the figure is the bulkhead 11 is designed as a separate component which is detachably attached to the cover 8 or the base plate 6.
Die Anordnung besitzt folgende Funktionalität: Die ungekühlte, also heiße Ladeluft LL, wird von einem Abgasturbolader kommend über einen Rohrstutzen 12 dem Ladeluftkühler 1 in vertikaler Richtung zugeführt. Im Ladeluftkühler 1 teilt sich die Ladeluft LL in einen ersten Volumenstrom VI und in einen zweiten Volumenstrom V2 auf. Der erste Volumenstrom VI wiederum teilt sich auf in einen A-seitigen ersten Volumenstrom VI A und einen B-seitigen ersten Volumenstrom V1B. Der A-seitige erste Volumenstrom VI A durchströmt in vertikaler Richtung unmittelbar den A-seitigen Block 9A und wird in diesem in horizontaler Richtung umgelenkt. Definiert wird der A-seitige erste Volumenstrom VI A über eine untere The arrangement has the following functionality: The uncooled, ie hot, charge air LL, coming from an exhaust gas turbocharger, is fed to the charge air cooler 1 in a vertical direction via a pipe socket 12. In the charge air cooler 1, the charge air LL is divided into a first volume flow VI and a second volume flow V2. The first volume flow VI in turn is divided into an A-side first volume flow VI A and a B-side first volume flow V1B. The A-side first volume flow VI A flows directly through the A-side block 9A in the vertical direction and is deflected in this in the horizontal direction. The A-side first volume flow VI A is defined via a lower one
Anströmfläche 13A des A-seitigen Blocks 9A. Die untere Anströmfläche 13A entspricht dem Überstand des A-seitigen Blocks 9A über die Schottwand 11. Für den B-seitigen Block 9B gilt dies in analoger Weise, das heißt, der B-seitige erste Volumenstrom V1B durchströmt über eine untere Anströmfläche 13B den B-seitigen Block 9B und wird in horizontaler Richtung umgelenkt. Der zweite Volumenstrom V2 durchströmt die Gasse 10. In der Gasse 10 teilt sich der zweite Volumenstrom V2 in zwei Teilvolumina V2A/V2B und einen dritten Volumenstrom V3 auf. Die beiden Teilvolumina V2A/V2B durchströmen in horizontaler Richtung den A- seitigen Block 9A bzw. den B-seitigen Block 9B. Der dritte Volumenstrom V3 der heißen Ladeluft LL wird auf den Deckel 8 geführt. Über den Deckel 8 wiederum wird dieser in horizontaler Richtung umgelenkt und durchströmt dann über eine obere Anströmfläche 14A den A-seitigen Block 9A bzw. über eine obere Anströmfläche 14B den B-seitigen Block 9B. Inflow surface 13A of the A-side block 9A. The lower inflow surface 13A corresponds to the protrusion of the A-side block 9A over the bulkhead 11. This applies analogously to the B-side block 9B, that is to say that the B-side first volume flow V1B flows through the B- via a lower inflow surface 13B. block 9B and is deflected in the horizontal direction. The second volume flow V2 flows through the lane 10. In the lane 10, the second volume flow V2 is divided into two partial volumes V2A / V2B and a third volume flow V3. The two partial volumes V2A / V2B flow through the A-side block 9A or the B-side block 9B in the horizontal direction. The third volume flow V3 of the hot charge air LL is guided onto the cover 8. The cover 8 in turn is deflected in the horizontal direction and then flows through an upper inflow surface 14A through the A-side block 9A or through an upper inflow surface 14B through the B-side block 9B.
Definiert wird die obere Anströmfläche 14A durch den Überstand des A-seitigen Blocks 9A über die Schottwand 11. Die obere Anströmfläche 14B wird durch den Überstand des B-seitigen Blocks 9B und der Schottwand 11 festgelegt. Nach Kühlung der Ladeluft im A-seitigen Block 9A strömt diese durch das Übertrittsfenster 15A und via einer Rohrleitung 16A zur A-seitigen Zylinderbank 3A. Für die B-Seite gilt dies in analoger Weise. In der Figur ist mit dem  The upper inflow surface 14A is defined by the protrusion of the A-side block 9A over the bulkhead 11. The upper inflow surface 14B is defined by the protrusion of the B-side block 9B and the bulkhead 11. After cooling the charge air in the A-side block 9A, it flows through the transfer window 15A and via a pipe 16A to the A-side cylinder bank 3A. This applies analogously to the B side. In the figure is with the
Bezugszeichen 17 ein Vorkühler dargestellt. Über diesen kann ergänzend die Kühlleistung und die thermische Abstimmung nochmals angepasst werden. BEZUGSZEICHENLISTE Reference numeral 17 shows a precooler. This can be used to further adjust the cooling capacity and thermal tuning. LIST OF REFERENCE NUMBERS
1 Ladeluftkühler 2 Brennkraftmaschine1 intercooler 2 internal combustion engine
3A, B Zylinderbank3A, B cylinder bank
4 Kühlermatrix4 cooler matrix
5 Gehäuse 5 housing
6 Bodenplatte  6 base plate
7A, B Seitenwand 7A, B side wall
8 Deckel  8 lids
9A, B Block  9A, B block
10 Gasse 10 alley
11 Schottwand 11 bulkhead
12 Rohrstutzen 12 pipe sockets
13A, B Anströmfläche, unten 14A, B Anströmfläche, oben 15A, B Übertrittsfenster 16A, B Rohrleitung  13A, B inflow surface, bottom 14A, B inflow surface, top 15A, B transfer window 16A, B pipeline
17 Vorkühler 17 precooler
LL Ladeluft LL charge air

Claims

ANSPRÜCHE EXPECTATIONS
1. Ladeluftkühler (1) für eine Brennkraftmaschine (2) in V-Anordnung mit einer 1. charge air cooler (1) for an internal combustion engine (2) in a V arrangement with a
Kühlermatrix (4), mit einem die Kühlermatrix (4) umgebenden Gehäuse (5) und mit einer vertikalen Zuführung der Ladeluft (LL) zur Kühlermatrix (4), dadurch gekennzeichnet, dass die Kühlermatrix (4) einen A-seitigen Block (9A) zur Kühlung der Ladeluft (LL) für eine A-seitige Zylinderbank (3A), einen B-seitigen Block (9B) zur Kühlung der Ladeluft Cooler matrix (4), with a housing (5) surrounding the cooler matrix (4) and with a vertical supply of the charge air (LL) to the cooler matrix (4), characterized in that the cooler matrix (4) has an A-side block (9A) for cooling the charge air (LL) for an A-side cylinder bank (3A), a B-side block (9B) for cooling the charge air
(LL) für eine B-seitigen Zylinderbank (3B) und eine in vertikaler Richtung verlaufende Gasse (10) zur Beabstandung der beiden Blöcke (9A, 9B) umfasst, wobei eine Umlenkung der Ladeluft (LL) innerhalb des Ladekühlers (1) in horizontale Richtung erfolgt und die gekühlte Ladeluft (LL) durch Übertrittsfenster (15A, 15B) in den Seitenwänden (7A, 7B) des Gehäuses (5) austritt. (LL) for a B-side cylinder bank (3B) and a vertically extending lane (10) for spacing the two blocks (9A, 9B), with a deflection of the charge air (LL) inside the charge cooler (1) into horizontal Direction occurs and the cooled charge air (LL) exits through transfer windows (15A, 15B) in the side walls (7A, 7B) of the housing (5).
2. Ladeluftkühler (1) nach Anspruch 1, dadurch gekennzeichnet, dass Anströmflächen (13A, 14A) des A-seitigen Blocks (9A) und Anströmflächen (13B, 14B) des B-seitigen Blocks (9B) über jeweils eine in horizontal verlaufende Schottwand (11) vorgebbar sind. 2. Intercooler (1) according to claim 1, characterized in that the inflow surfaces (13A, 14A) of the A-side block (9A) and inflow surfaces (13B, 14B) of the B-side block (9B) each have a horizontally extending bulkhead (11) can be specified.
3. Ladeluftkühler (1) nach Anspruch 2, dadurch gekennzeichnet, dass in der vertikalen 3. intercooler (1) according to claim 2, characterized in that in the vertical
Zuführung ergänzend ein Vorkühler (17) angeordnet ist.  In addition, a precooler (17) is arranged.
PCT/EP2019/068553 2018-07-30 2019-07-10 Charge-air cooler WO2020025277A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018006010.2A DE102018006010B4 (en) 2018-07-30 2018-07-30 Intercooler
DE102018006010.2 2018-07-30

Publications (1)

Publication Number Publication Date
WO2020025277A1 true WO2020025277A1 (en) 2020-02-06

Family

ID=67390056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/068553 WO2020025277A1 (en) 2018-07-30 2019-07-10 Charge-air cooler

Country Status (2)

Country Link
DE (1) DE102018006010B4 (en)
WO (1) WO2020025277A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029637A (en) * 1998-12-16 2000-02-29 General Motors Corporation Induction assembly for supercharged internal combustion engine
EP1433936A1 (en) * 2001-09-26 2004-06-30 Ogura Clutch Co., Ltd. V-engine supercharging device
FR2890699A1 (en) * 2005-09-12 2007-03-16 Valeo Systemes Thermiques HEAT EXCHANGE MODULE FOR CONTROLLING THE GAS TEMPERATURE ADMITTED IN A VEHICLE ENGINE OF A VEHICLE WITH V-CYLINDER BENCHES
DE102011075617A1 (en) 2011-05-10 2012-11-15 Mtu Friedrichshafen Gmbh A method for guiding a charge air, terminal box for a radiator assembly and radiator assembly for an internal combustion engine and internal combustion engine with a two-stage supercharging

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664152B2 (en) * 2008-01-06 2017-05-30 Callaway Cars, Inc. Induction assembly and system for a supercharged internal combustion engine, and method for assembly for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6029637A (en) * 1998-12-16 2000-02-29 General Motors Corporation Induction assembly for supercharged internal combustion engine
EP1433936A1 (en) * 2001-09-26 2004-06-30 Ogura Clutch Co., Ltd. V-engine supercharging device
FR2890699A1 (en) * 2005-09-12 2007-03-16 Valeo Systemes Thermiques HEAT EXCHANGE MODULE FOR CONTROLLING THE GAS TEMPERATURE ADMITTED IN A VEHICLE ENGINE OF A VEHICLE WITH V-CYLINDER BENCHES
DE102011075617A1 (en) 2011-05-10 2012-11-15 Mtu Friedrichshafen Gmbh A method for guiding a charge air, terminal box for a radiator assembly and radiator assembly for an internal combustion engine and internal combustion engine with a two-stage supercharging

Also Published As

Publication number Publication date
DE102018006010A1 (en) 2020-01-30
DE102018006010B4 (en) 2020-03-12

Similar Documents

Publication Publication Date Title
DE19750588B4 (en) Device for exhaust gas recirculation for an internal combustion engine
DE3930076C1 (en)
DE102006048667A1 (en) Heat exchanger arrangement and method for heat transfer
DE3019599A1 (en) Car front with thermostat controlled radiator louvres - which are pivoted in horizontally intersecting forward pointing planes for air flow control
EP1094288A2 (en) Cooling system
DE102006032205A1 (en) Heat exchanger with coupling connection and coupling connection
DE102005031300A1 (en) Internal combustion engine with cooling system and exhaust gas recirculation system
DE202015100764U1 (en) Stackable end plates for radiator openings
DE102015016185A1 (en) Exhaust gas recirculation system for a motor
DE2828557C2 (en) Intercooler for internal combustion engines
DE102012105392A1 (en) Intercooler for a vehicle
DE102017214822A1 (en) HEAT EXCHANGERS
DE102019210222B4 (en) Compressor cooling unit for a refrigerator or a cooler
EP3313678B1 (en) Evaporator unit for a rooftop air-conditioning system of a road-going vehicle
DE102009059930A1 (en) Cooling device for an internal combustion engine of a motor vehicle
DE102015204984A1 (en) Heat exchanger, in particular for a waste heat utilization device
WO2020025277A1 (en) Charge-air cooler
DE102006061440A1 (en) Heat exchanger e.g. cooling liquid heat exchanger for use in motor vehicle, has tubes interacting with openings of collecting tank and header tank such that end of each tube has contour
DE102020003394A1 (en) Cooled cylinder head
EP2083151A1 (en) Air suction channel system with an integrated charge air cooler
DE19509002C2 (en) Thermostat mounting structure
DE10250287C1 (en) Heat exchanger for automobile heating and/or air-conditioning device has bundle of flat pipes divided into 2 blocks by free intermediate space fitted with partition wall device
DE19639422C2 (en) Water-air heat exchangers for large engines
EP3134676B1 (en) Heat exchanger
DE2227120C2 (en) Air-cooled reciprocating internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19742318

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19742318

Country of ref document: EP

Kind code of ref document: A1