WO2020024813A1 - 控制信息指示、接收方法和设备 - Google Patents

控制信息指示、接收方法和设备 Download PDF

Info

Publication number
WO2020024813A1
WO2020024813A1 PCT/CN2019/096706 CN2019096706W WO2020024813A1 WO 2020024813 A1 WO2020024813 A1 WO 2020024813A1 CN 2019096706 W CN2019096706 W CN 2019096706W WO 2020024813 A1 WO2020024813 A1 WO 2020024813A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
control information
frequency domain
shared channel
physical shared
Prior art date
Application number
PCT/CN2019/096706
Other languages
English (en)
French (fr)
Inventor
鲁智
孙鹏
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2020024813A1 publication Critical patent/WO2020024813A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present disclosure relates to the field of communication technologies, and more particularly, to a method and device for indicating and receiving control information.
  • 5G Fifth Generation (5 th -Generation, 5G) mobile communication system scenario including enhanced mobile broadband (enhance Mobile Broadband, eMBB), massive machine type communication (massive Machine Type of Communication, mMTC ) as well as high reliability and low latency communication (Ultra Reliable & Low Latency Communication, URLLC), etc.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine Type of Communication
  • URLLC Ultra Reliable & Low Latency Communication
  • TRP transmission and reception point
  • the network side may transmit the same or different data to a terminal device (User Equipment, UE) through multiple TRPs.
  • UE User Equipment
  • the network side only instructs control information for transmitting data from a single TRP, so that the UE can only receive data from multiple TRPs transparently as it receives data from a single TRP, resulting in reliable and effective data transmission. Sex is low.
  • Embodiments of the present disclosure provide a method and a device for indicating and receiving control information to improve the reliability and effectiveness of data transmission.
  • a control information indication method is provided and is applied to a network device.
  • the method includes:
  • the control information is used to instruct the terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters.
  • a method for receiving control information is provided, which is applied to a terminal device.
  • the method includes:
  • Receive control information which is used to instruct a terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters.
  • a network device includes:
  • a sending module is configured to send control information, where the control information is used to instruct a terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters.
  • a terminal device includes:
  • the receiving module is configured to receive control information, where the control information is used to instruct a terminal device to transmit a physical shared channel according to multiple quasi-co-location QCL parameters.
  • a network device includes a memory, a processor, and a wireless communication program stored on the memory and operable on the processor.
  • the wireless communication program is processed by the processor. When executed, the steps of the method as described in the first aspect are carried out.
  • a terminal device includes a memory, a processor, and a wireless communication program stored on the memory and operable on the processor.
  • the wireless communication program is processed by the processor. When executed, implements the steps of the method as described in the second aspect.
  • a computer-readable medium stores a wireless communication program, and when the wireless communication program is executed by a processor, the method according to the first aspect or the second aspect is implemented. step.
  • control information sent by the network device to the terminal device enables the terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters, instead of transparently receiving a physical shared channel such as PDSCH, thereby improving the physical Effectiveness and reliability of shared channel transmission.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic flowchart of a control information indicating method according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a target frequency domain resource determination principle according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a control information receiving method according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a network device 500 according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of a terminal device 600 according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a network device 700 according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal device 800 according to an embodiment of the present disclosure.
  • GSM Global System for Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • Terminal equipment also known as mobile terminals (Mobile), mobile terminal equipment, etc.
  • UE can communicate with at least one core network via a wireless access network (e.g., Radio Access Network, RAN).
  • the device can be a mobile terminal, such as a mobile phone (also called a "cellular" phone) and a computer with a mobile terminal.
  • a mobile terminal such as a mobile phone (also called a "cellular" phone) and a computer with a mobile terminal.
  • it can be a portable, pocket-sized, handheld, computer-built or vehicle-mounted mobile device that connects wirelessly Network access to exchange language and / or data.
  • a network device is a device that is deployed in a radio access network to provide control information indication functions for terminal devices.
  • the network device may be a base station, and the base station may be a base station in GSM or CDMA (Base Transceiver Station, BTS), can also be a base station (NodeB) in WCDMA, or an evolved base station (evolutionary NodeB, eNB or e-NodeB) and 5G base station (gNB) in LTE, and the network side in a subsequent evolved communication system Equipment, however, the wording does not limit the scope of the present disclosure.
  • the size of the sequence numbers of the processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not be implemented in the embodiments of the present disclosure.
  • the process constitutes any qualification.
  • the following uses the 5G system as an example to describe the downlink signal indication, receiving method, and device provided by the embodiments of the present disclosure. It should be understood that the downlink signal indication, receiving method, and device provided by the embodiments of the present disclosure can also be applied to other The communication system is not limited to 5G systems.
  • the technical solution provided in the embodiments of the present disclosure is directed to an application scenario in which one downlink control information (Downlink Control Information) is used to schedule multiple physical shared channels. It should be understood that the DCI is generally carried by a physical downlink control channel (Physical Downlink Control Channel, PDCCH).
  • PDCCH Physical Downlink Control Channel
  • the physical shared channel may include a physical downlink shared channel (PDSCH) and a physical uplink shared channel (PUSCH).
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the physical shared channel is a PDSCH as an example, and various technical solutions provided in the examples of the present disclosure are introduced.
  • a transmission and reception point (Transmission and Reception Point (TRP) 1) sends information to a terminal device 3 through a beam direction 11, and the information is transmitted through PDCCH1 (PDCCH1 carries PDSCH1 and PDSCH2) DCI) and PDSCH1 are carried; at the same time, TRP2 sends information to terminal device 3 through beam direction 21, and this information is carried through PDSCH2. That is, in the scenario shown in FIG. 1, two TRPs send two different PDSCHs to a terminal device under the scheduling of one PDCCH.
  • TRP1 and TRP2 can be the same network device or different network devices.
  • the technical solution provided by the embodiment of the present disclosure may be considered to be an application scenario in which a DCI is used to schedule multiple TRPs to transmit a physical shared channel to a terminal device.
  • the PDSCH transmitted by the multiple TRPs to the terminal device may be the same physical shared channel or different physical shared channels.
  • the one DCI may be transmitted by any one of the plurality of TRPs.
  • the purpose of the embodiments of the present disclosure is to enable a terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters, instead of transmitting transparently, and ultimately improve the reliability and effectiveness of the physical shared channel transmission.
  • FIG. 2 illustrates a control information indication method according to an embodiment of the present disclosure, which is applied to a network device. As shown in FIG. 2, the method may include the following steps:
  • Step 201 Send control information, where the control information is used to instruct a terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters.
  • QCL Quasi Co-location
  • a QCL parameter can be understood as a set consisting of the above-mentioned large-scale parameters.
  • one QCL parameter corresponds to one network device (TRP).
  • TRP network device
  • multiple PDSCHs received according to multiple QCL parameters can be understood as multiple PDSCHs received from multiple TRPs.
  • the multiple QCL parameters in step 201 may be the same multiple QCL parameters, or may be different multiple QCL parameters. Whether the two QCL parameters are the same can be determined by judging whether the large-scale parameters corresponding to the two QCL parameters are the same.
  • a QCL parameter may be considered to correspond to a control resource set (coreset), and a control resource set corresponds to a network device (TRP).
  • the control resource set generally refers to a resource set (mainly a frequency domain resource) carrying a PDCCH.
  • a PDCCH can be configured using a parameter of the control resource set, and a PDCCH can carry a DCI.
  • control information in step 201 may include first instruction information for indicating the multiple QCL parameters.
  • step 201 may specifically include: sending the first indication information through downlink control information DCI.
  • whether multiple PDSCHs are the same can be understood as whether the multiple PDSCHs are scheduled by the same Hybrid Automatic Repeat Request (HARQ) process. If the multiple PDSCHs are scheduled by the same HARQ For process scheduling, the multiple PDSCHs can be considered the same; otherwise, the multiple PDSCHs are different.
  • HARQ Hybrid Automatic Repeat Request
  • the received multiple PDSCHs may be stored in a buffer corresponding to the identifier of the HARQ process; when the terminal device determines that the multiple PDSCHs are When the HARQ process is scheduled, the multiple PDSCHs are stored in the buffers corresponding to the identifiers of the corresponding HARQ processes, which is convenient for the terminal device to process the PDSCHs, thereby improving the reliability and effectiveness of PDSCH transmission.
  • transport block (Transport Block, TB) of the physical shared channel transmitted according to the multiple QCL parameters described above can be the same in the following manners.
  • control information in step 201 may further include second instruction information, and the second instruction information may be used by the terminal device to determine a transmission block of the physical shared channel received according to the multiple QCL parameters. Are the TBs the same? On this basis, the second indication information may also be sent through DCI.
  • a 4-bit second indication information indication field may be additionally added to the DCI, and different field values of the 4-bit indication field are used to indicate the same TB or different TBs.
  • the 4 bits indicate whether the field value of the field and the TB are The same correspondence can be shown in Table 1.
  • the value of the codepoint corresponds to the domain value of the 4-bit second indication information indicating domain, that is, the value of the domain value of the 4-bit indicating domain is "0000-1111".
  • Value it can be determined whether the TB of the same PDSCH received by the terminal device according to the multiple QCL parameters is the same, that is, the second indication information can be determined.
  • the QCL parameter i and the QCL parameter j represent two different QCL parameters.
  • TB1 and TB2 are the identifiers of the two TBs carried by a PDSCH.
  • TB1 and TB2 can be The data is divided into multiple layers. For example, if a network device instructs to use eight DMRS ports to send PDSCH, TB1 can be divided into layers 1-4 correspondingly, and when transmitting TB1, it is mapped to four of the eight DMRS ports for transmission; TB2 is also divided into Layers 1-4, and are mapped to the other 4 ports of the 8 DMRS ports for transmission when sending TB2.
  • DMRS demodulation reference signals
  • the mapping relationship between the TB and the layers in the TB and the DMRS port can be determined according to design rules. For example, if the DMRS port used to transmit PDSCH according to the first QCL parameter is 1-8, and the DMRS port used to transmit PDSCH according to the second QCL parameter is also 1-8, you can map TB1 to these 8 ports The first 4 ports of TB2 are mapped to the last 4 of these 8 ports, that is, if the DMRS port number of the PDSCH received by the terminal device is indicated as 1-4, it means that the TB1 of the PDSCH is transmitted; if The DMRS port number of the PDSCH received by the terminal device is indicated as 5-8, which indicates that the TB2 of the PDSCH is transmitted.
  • the terminal device can determine the TB in the received PDSCH and the layer in the TB according to the DMRS port number indicated by the network, where the DMRS port number can be specifically indicated by the Antenna port (s) field in the DCI.
  • a 2-bit second indication information indication field may be additionally added to the DCI, and different field values of the 2-bit indication field are used to represent the same TB or different TBs. Specifically, if the terminal device receives the PDSCH corresponding to the two QCL parameters, the first bit of the two bits can be used to indicate whether the TB1 corresponding to the PDSCH received for the two QCL parameters is the same. The second bit indicates whether the TB2 of the PDSCH corresponding to the two QCL parameters received is the same.
  • a 4-bit second indication information indication field may be additionally added to the DCI, and different field values of the 4-bit indication field are used to represent the same TB or different TBs.
  • the first bit indicates that TB1 corresponding to the PDSCH received by 2 QCL parameters is for the same TB; the second bit indicates that TB2 corresponding to the PDSCH received by 2 QCL parameters is for the same TB;
  • the third bit indicates that the corresponding TB1 of PDSCH received at QCL parameter i is the same as TB2 of PDSCH received at QCL parameter j;
  • the fourth bit indicates that TB2 of PDSCH received at QCL parameter i and PDSCH received at QCL parameter j TB1 is for the same TB.
  • the QCL parameter i and the QCL parameter j are each one of the two QCL parameters.
  • a 3-bit second indication information indication field may be additionally added to the DCI, and different field values of the 3-bit indication field are used to represent the same TB or different TBs.
  • the first bit is flag information. When the flag information is 0: the second bit indicates that the TB1 of the PDSCH received from the two QCL parameters is for the same TB, and the third bit indicates that the TB2 of the PDSCH received from the two QCL parameters is for the same TB.
  • the second bit indicates the TB1 corresponding to the PDSCH received by the QCL parameter i, and the TB2 corresponding to the PDSCH received by the QCL parameter j is for the same TB; the second bit indicates the received corresponding to the QCL parameter i
  • the TB2 of the PDSCH and the TB1 of the PDSCH corresponding to the QCL parameter j are for the same TB.
  • the QCL parameter i and the QCL parameter j are each one of the two QCL parameters.
  • the second instruction information may be indicated to the terminal device in an implicit manner. Specifically, before step 201, a first preset rule is sent through high-level information, and the first preset rule is used for all The terminal device determines second instruction information according to an identifier of a control resource set used when receiving the DCI, and the second instruction information is used by the terminal device to determine the physical shared channel received according to the multiple QCL parameters. Whether the transport block TB is the same.
  • the network device may configure the first preset rule for the terminal device in advance, and then the terminal device determines the first preset rule according to the identifier of the control resource set and the first preset rule used when receiving the DCI that schedules the PDSCH.
  • Second indication information instead of direct indication by DCI (direct indication by DCI can be understood as an explicit indication mode) second indication information, this implicit indication method can not only use the second indication information to improve communication reliability and effectiveness It can also save resources carrying DCI.
  • the corresponding relationship between them can be configured to the terminal device through high-level information in advance.
  • "mod" represents a modulo operator
  • coreset ID represents an identifier of a control resource set used when receiving DCI
  • x is a fixed value, and can be configured by high-level information.
  • the correspondence between the Y value configured by the high-level information for the terminal device in advance and the second indication information may include the following types, for example:
  • the second indication information may also be indicated to the terminal device in an implicit manner.
  • a preset correspondence is sent through high-level information, and the preset correspondence is a transmission control indication.
  • TCI Transmission Configuration Indication
  • the terminal device determines whether the transport block TB of the physical shared channel received according to the multiple QCL parameters is the same, and the preset correspondence is a correspondence between the TCI domain value and the second indication information.
  • the network device may configure a preset correspondence relationship between the TCI domain value and the second indication information for the terminal device in advance, and then the terminal device according to the preset correspondence relationship and the TCI domain value indicated in the DCI.
  • this implicit instruction method can not only use the second instruction information to improve communication reliability The performance and effectiveness can also save the resources carrying DCI.
  • the network device may add the second indication information (ie, whether the information is the same TB) to the TCI state information element (IE) in advance, and send it to the terminal device through high-level information such as RRC.
  • the following TCI-state IE may be sent to the device in advance:
  • the TCI-state IE contains a line such as "TB-state ENUMERATED ⁇ n1, n2, n3, n4 ⁇ ", and the content of this line is the correspondence between the TCI domain value and the second instruction information. You can use TB specifically State (TB-state) to indicate the second indication information.
  • the TB-state indicates whether the TB of the PDSCH transmitted according to multiple QCL parameters is the same TB. For example: when TB-state is n1, TB1 of PDSCH is transmitted according to QCL parameter i and QCL parameter j, and the same layer data of TB1 is transmitted according to QCL parameter i and QCL parameter j; when TB-state is n2, according to QCL parameter i and QCL parameter j transmit PDSCH's TB1, but according to QCL parameter i and QCL parameter j, different layers of TB1 data are transmitted; when TB-state is n3, PDSCH TB2 is transmitted according to QCL parameter i and QCL parameter j ; When TB-state is n4, TB1 of PDSCH is transmitted according to QCL parameter i and QCL parameter j, and the same layer data of TB1 is transmitted according to QCL parameter i and QCL parameter j, and the PDSCH is transmitted according to QCL parameter
  • the method before sending the DCI, further includes: sending the fourth indication information through high-level information, where the fourth indication information is used to instruct transmission of the according to the multiple QCL parameters Frequency domain resource allocation information for the physical shared channel.
  • the fourth indication information may also be sent through the above DCI, but this will significantly increase the load of the DCI.
  • the frequency domain resource allocation information in the fourth indication information may include a first frequency domain resource, wherein a frequency when transmitting the physical shared channel according to the multiple QCL parameters.
  • the domain resources are all the first frequency domain resources. That is, high-level information can be configured to use the same frequency domain resources for physical shared channels transmitted according to multiple QCL parameters.
  • the frequency domain resource allocation information in the fourth indication information may include a reference frequency domain resource and a second preset rule, where the reference frequency domain resource is transmitted according to a reference QCL parameter transmission.
  • the frequency domain resource of the physical shared channel, the second preset rule is used to determine a target frequency domain resource based on the reference frequency domain resource, and the target frequency domain resource is a frequency of transmitting the physical shared channel according to a target QCL parameter Domain resource, the target QCL parameter is any one of the plurality of QCL parameters.
  • the reference QCL parameter may be one of the plurality of QCL parameters, but the reference QCL parameter is different from the target QCL parameter.
  • the frequency domain resource allocation of PDSCH transmitted according to QCL parameter j target QCL parameter
  • QCL parameter i reference QCL parameter
  • the reference QCL parameter may be the most important QCL parameter among the multiple QCL parameters.
  • the most important QCL parameter may be the first QCL parameter indicated in the QCL parameter domain value of the DCI. For example, suppose that a network device configures eight QCL parameters for a terminal device, and the QCL parameter field value indicated by the DCI is 010000101, which indicates that the network device transmits the same PDSCH according to the second, fourth, and eighth QCL parameters, where: The second QCL parameter can be used as the most important QCL parameter.
  • control information is sent through downlink control information DCI, and the control information may further include fifth indication information for indicating a frequency domain resource offset value.
  • the second preset rule may be determining the target frequency domain resource based on the reference frequency domain resource and the frequency domain resource offset value, and as described above, the second preset rule may High-level information is sent to the terminal device.
  • an n-bit fifth indication information indication field is added to the DCI, so that the terminal device determines a target frequency based on a second preset rule pre-configured by the network device and a reference frequency domain resource (refer to a frequency domain resource of a QCL parameter).
  • Domain resources frequency domain resources of target QCL parameters.
  • a second indication field of 2 bits is added, and the 2 bit indication field may correspond to the four domain values of “00, 01, 10, and 11”, and the four domain values are offset from the frequency domain resource and determined.
  • Table 2 is the frequency domain resource offset value for the entire reference frequency domain resource
  • Table 3 is the resource block (Resource Block) for the reference frequency domain resource. , RB) in the frequency domain resource offset value.
  • BWP refers to the Bandwidth Part
  • floor is a round-down operator
  • target BWP refers to the BWP corresponding to the target QCL parameter, that is, the BWP of the TRP corresponding to the target QCL parameter .
  • the vertical line indicated by reference numeral 34 indicates the BWP of the TRP corresponding to the reference QCL parameter
  • the vertical line indicated by reference numeral 35 indicates the BWP of the TRP corresponding to the target QCL parameter
  • the block indicated by reference numeral 31 Indicates a reference frequency domain resource. If the domain value of the fifth indication information is "00" in Table 2 above, the target frequency domain resource corresponding to the target QCL parameter is as indicated by reference numeral 33, and the target frequency domain resource 33 is relative to the reference.
  • the frequency domain resource 32 is offset from the bandwidth shown by the dashed box 32.
  • control information in step 201 may include sixth indication information, where the sixth indication information is used to indicate modulation and coding information when the physical shared channel is transmitted according to the multiple QCL parameters.
  • the modulation and coding information corresponding to multiple QCL parameters are the same, or the modulation and coding information corresponding to the multiple QCL parameters are different.
  • step 201 may specifically include: sending the sixth indication information through DCI.
  • the modulation and coding information corresponding to multiple QCL parameters may be the same. That is, the PDSCH transmitted according to multiple QCL parameters may use the same modulation and coding information, and the DCI may only indicate the modulation and coding information shown in Table 4 below to the multiple QCLs (which may be referred to as a sharing indication). As shown in Table 4, the modulation and coding information may include a modulation and coding strategy, a new data indication, and a redundant version.
  • the modulation and coding information corresponding to multiple QCL parameters may be different. That is, the PDSCH transmitted according to multiple QCL parameters respectively adopts different modulation and coding information. For example, as shown in Tables 5 and 6, the modulation and coding information corresponding to the QCL parameter i and the QCL parameter j are indicated through DCI, respectively.
  • DCI format identifier DCI format
  • Carrier indicator carrier indication field
  • BWP bandwidth part indication
  • time domain resource allocation Time domain resource assignment
  • VRB virtual resource block
  • PRB-to-PRB mapping PRB Bundle size indication
  • rate matching indication Rate matching, indicator
  • Zero Power Channel State Reference Signal Trigger Zero Power Channel State Information-Reference, Signals, Trigger, ZP, CSI-RS, Tigger
  • downlink allocation index Downlink (assignment index)
  • HARQ process indication field TPC command in scheduled PUCCH (TPC command for scheduled PUCCH), PDSCH-to-HARQ feedback time indication (PDSCH-to-HARQ feedback timing timing indicator), port (Antenna )
  • Instructions, transmission configuration instructions indication sounding reference signal
  • the control information in step 201 is sent through downlink control information DCI, and the control information may include seventh indication information, where the seventh indication information is used to indicate a physical uplink control channel corresponding to multiple physical shared channels.
  • the transmit power control TPC command of the PUCCH, the plurality of physical shared channels are physical shared channels transmitted according to the plurality of QCL parameters, and the TPC commands corresponding to the plurality of QCL parameters in the seventh indication information The same, or the TPC commands corresponding to the multiple QCL parameters in the seventh indication information are different.
  • 2 bits may be added to the DCI to indicate the seventh indication information.
  • a 2m-bit seventh indication information indication field may be added to the DCI.
  • a 2n-bit seventh indication information indication may be added to the DCI. Domain, where n ⁇ m, at this time, the number of QCL parameters scheduled by the network at the same time can be considered as n.
  • control information in step 201 is sent through downlink control information DCI, and the control information may include eighth indication information, where the eighth indication information is used to indicate a physical uplink corresponding to the physical shared channel.
  • Control channel Physical Uplink Control Channel, PUCCH
  • the eighth indication information is used to indicate a first PUCCH resource, the first PUCCH resource corresponding to the physical shared channel transmitted according to a first QCL parameter, or the The first PUCCH resource corresponds to the physical shared channel transmitted according to a second QCL parameter, and the first QCL parameter and the second QCL parameter are different QCL parameters.
  • the first QCL parameter may be the most important QCL parameter described in the second example above, and the first QCL parameter may be a QCL parameter other than the plurality of QCL parameters determined in the first example above,
  • the second QCL parameter may be pre-configured by the network device.
  • the eighth indication information may be used to indicate multiple PUCCH resources equal to the number of the multiple QCL parameters, and the multiple PUCCH resources respectively correspond to The physical shared channel is transmitted by multiple QCL parameters.
  • DCI refers to one DCI for scheduling multiple physical shared channels.
  • the high-level information may be, for example, Radio Resource Control (RRC) information, or MAC layer signaling. ,and many more.
  • RRC Radio Resource Control
  • An embodiment of the present disclosure provides a method for indicating control information. Because control information sent by a network device to a terminal device enables the terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters, instead of transparently receiving physical sharing such as PDSCH Channel, thus improving the effectiveness and reliability of the physical shared channel transmission.
  • control information indication method provided by the embodiment of the present disclosure has been described above, and the control information receiving method provided by the embodiment of the present disclosure is described below.
  • FIG. 4 illustrates a control information receiving method according to an embodiment of the present disclosure, which is applied to a terminal device. As shown in FIG. 4, the method may include the following steps:
  • Step 401 Receive control information, which is used to instruct the terminal device to transmit a physical shared channel according to multiple quasi-co-location QCL parameters.
  • the physical shared channel includes PDSCH and PUSCH.
  • the spatial transmission parameter used by the terminal device to the TRP is a spatial domain transmission filter (spatial domain transmission filter) parameter. That is, similar to transmitting PDSCH according to QCL parameters, for PUSCH, specifically, PUSCH can be transmitted according to a spatial domain transmission filter.
  • control information is received through downlink control information DCI, and the control information includes first indication information for indicating the multiple QCL parameters.
  • transport block (Transport Block, TB) of the physical shared channel transmitted according to the multiple QCL parameters described above can be the same in the following manners.
  • control information further includes second indication information, and the second indication information is used by the terminal device to determine whether the transport block TB of the physical shared channel received according to the multiple QCL parameters is the same.
  • the second indication information may be received in an implicit manner.
  • the method further includes: receiving a first preset rule through high-level information, the first preset The rule is used by the terminal device to determine second instruction information according to an identifier of a control resource set used when receiving the DCI, and the second instruction information is used by the terminal device to determine the transmission according to the multiple QCL parameters. Whether the transport block TB of the physical shared channel is the same.
  • the second indication information may also be received in an implicit manner.
  • the method before receiving the DCI, the method further includes: receiving preset correspondence through high-level information, the preset correspondence The relationship is a correspondence between the TCI domain value and the second indication information; the control information further includes transmission control instruction information TCI domain value, and the TCI domain value is used to determine the second instruction based on a preset correspondence relationship Information, the second indication information is used by the terminal device to determine whether the transport block TB of the physical shared channel transmitted according to the multiple QCL parameters is the same, and the preset correspondence relationship is the TCI domain value and the The corresponding relationship between the second indication information is described.
  • the method before receiving the DCI, further includes: receiving the fourth instruction information through high-level information, and the control information further includes fourth instruction information, where the fourth instruction information is used to indicate Transmitting frequency domain resource allocation information of the physical shared channel according to the multiple QCL parameters.
  • the frequency domain resource allocation information includes a first frequency domain resource, and the frequency domain resources when the physical shared channel is transmitted according to the multiple QCL parameters are all the First frequency domain resource.
  • the frequency domain resource allocation information includes a reference frequency domain resource and a second preset rule
  • the reference frequency domain resource is a signal for transmitting the physical shared channel according to a reference QCL parameter.
  • the second preset rule is used to determine a target frequency domain resource based on the reference frequency domain resource
  • the target frequency domain resource is a frequency domain resource for transmitting the physical shared channel according to a target QCL parameter
  • the The target QCL parameter is any one of the plurality of QCL parameters.
  • the reference QCL parameter may be one of the plurality of QCL parameters, but the reference QCL parameter is different from the target QCL parameter.
  • control information is received through downlink control information DCI, and the control information further includes fifth indication information for indicating a frequency domain resource offset value;
  • the second preset rule is to determine the target frequency domain resource based on the reference frequency domain resource and the frequency domain resource offset value.
  • control information is received through downlink control information DCI, and the control information includes sixth indication information, where the sixth indication information is used to instruct transmission of the physical share according to the multiple QCL parameters
  • the modulation and coding information corresponding to the multiple QCL parameters are the same, or the modulation and coding information corresponding to the multiple QCL parameters are different.
  • the modulation and coding information corresponding to multiple QCL parameters may be the same. In another implementation manner of the third example, the modulation and coding information corresponding to multiple QCL parameters may be different.
  • the control information is received through downlink control information DCI, and the seventh indication information is used to indicate a TPC command for transmitting power control of a physical uplink control channel PUCCH corresponding to multiple physical shared channels.
  • Physical shared channels are physical shared channels transmitted according to the multiple QCL parameters; wherein the TPC commands corresponding to the multiple QCL parameters in the seventh indication information are the same, or The TPC commands corresponding to the multiple QCL parameters are different.
  • 2 bits may be added to the DCI to indicate the seventh indication information.
  • a 2m-bit seventh indication information indication field may be added to the DCI.
  • a 2n-bit seventh indication information indication field may be added to the DCI, where , N ⁇ m.
  • the number of QCL parameters scheduled by the network at the same time can be considered as n.
  • control information is sent through downlink control information DCI
  • eighth indication information is used to indicate fourth indication information of a physical uplink control channel PUCCH resource corresponding to the physical shared channel.
  • the eighth indication information is used to indicate a first PUCCH resource, the first PUCCH resource corresponding to the physical shared channel transmitted according to a first QCL parameter, or the The first PUCCH resource corresponds to the physical shared channel transmitted according to a second QCL parameter, and the first QCL parameter and the second QCL parameter are different QCL parameters.
  • the eighth indication information may be used to indicate multiple PUCCH resources equal to the number of the multiple QCL parameters, and the multiple PUCCH resources respectively correspond to The physical shared channel is transmitted by multiple QCL parameters.
  • DCI refers to one DCI for scheduling multiple physical shared channels.
  • the high-level information may be, for example, Radio Resource Control (RRC) information, or MAC layer signaling. ,and many more.
  • RRC Radio Resource Control
  • An embodiment of the present disclosure provides a method for receiving control information. Because the terminal device receives control information from a network device, the terminal device can transmit a physical shared channel according to multiple quasi-co-located QCL parameters, instead of receiving PDSCH and other physical devices transparently. Shared channels can therefore improve the effectiveness and reliability of the physical shared channel transmission.
  • control information receiving method corresponds to a control information indicating method provided by the embodiment of the present disclosure
  • description of the control information receiving method in this specification is relatively simple. For the related points, please refer The description of the control information indication method is described above.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure. As shown in FIG. 5, the network device 500 includes a sending module 501.
  • the sending module 501 is configured to send control information, where the control information is used to instruct a terminal device to transmit a physical shared channel according to multiple quasi-co-location QCL parameters.
  • control information is sent through downlink control information DCI, and the control information includes first instruction information for indicating the multiple QCL parameters.
  • the sending module 501 may also use the following methods to determine whether the transport block (Transport Block, TB) of the physical shared channel transmitted according to the multiple QCL parameters is the same.
  • control information further includes second indication information, and the second indication information is used by the terminal device to determine whether the transport block TB of the physical shared channel received according to the multiple QCL parameters is the same.
  • the second indication information may be indicated to the terminal device in an implicit manner.
  • the method before sending the DCI, the method further includes: sending a first preset rule through high-level information, the The first preset rule is used by the terminal device to determine second instruction information according to an identifier of a control resource set used when receiving the DCI, and the second instruction information is used by the terminal device to determine according to the multiple QCL parameters Whether the received transport blocks TB of the physical shared channel are the same.
  • the second indication information may also be indicated to the terminal device in an implicit manner.
  • the method before sending the DCI, the method further includes: sending a preset correspondence relationship through high-level information, the The preset correspondence is a correspondence between the TCI domain value and the second indication information, and the TCI domain value is used to determine the second indication information based on the preset correspondence, and the second indication information is used for the terminal.
  • the device determines whether the transport block TB of the physical shared channel received according to the multiple QCL parameters is the same, and the preset correspondence is a correspondence between the TCI domain value and the second indication information.
  • the method before sending the DCI, further includes: sending the fourth indication information through high-level information, where the fourth indication information is used to instruct transmission of the according to the multiple QCL parameters Frequency domain resource allocation information for the physical shared channel.
  • the frequency domain resource allocation information in the fourth indication information may include a first frequency domain resource, and a frequency domain when transmitting the physical shared channel according to the multiple QCL parameters.
  • the resources are all the first frequency domain resources. That is, high-level information can be configured to use the same frequency domain resources for physical shared channels transmitted according to multiple QCL parameters.
  • the frequency domain resource allocation information in the fourth indication information may include a reference frequency domain resource and a second preset rule, where the reference frequency domain resource is transmitted according to a reference QCL parameter transmission.
  • the frequency domain resource of the physical shared channel, the second preset rule is used to determine a target frequency domain resource based on the reference frequency domain resource, and the target frequency domain resource is a frequency of transmitting the physical shared channel according to a target QCL parameter Domain resource, the target QCL parameter is any one of the plurality of QCL parameters.
  • control information is sent through downlink control information DCI, and the control information may further include fifth indication information for indicating a frequency domain resource offset value; wherein The second preset rule is to determine the target frequency domain resource based on the reference frequency domain resource and the frequency domain resource offset value.
  • control information is sent through downlink control information DCI
  • the sixth indication information is used to indicate modulation and coding information when the physical shared channel is transmitted according to the multiple QCL parameters.
  • the modulation and coding information corresponding to the QCL parameters are the same, or the modulation and coding information corresponding to the multiple QCL parameters are different.
  • the modulation and coding information corresponding to multiple QCL parameters may be the same. In another implementation manner of the third example, the modulation and coding information corresponding to multiple QCL parameters may be different.
  • the control information is sent through downlink control information DCI, and the control information includes seventh indication information, where the seventh indication information is used to indicate a physical uplink control channel PUCCH corresponding to multiple physical shared channels.
  • Transmit power control TPC command the plurality of physical shared channels are physical shared channels transmitted according to the plurality of QCL parameters; wherein the TPC commands corresponding to the plurality of QCL parameters in the seventh indication information are the same , Or the TPC commands corresponding to the multiple QCL parameters in the seventh indication information are different.
  • 2 bits may be added to the DCI to indicate the seventh indication information.
  • a 2m-bit seventh indication information indication field may be added to the DCI.
  • a 2n-bit seventh indication information indication may be added to the DCI. Domain, where n ⁇ m, at this time, the number of QCL parameters scheduled by the network at the same time can be considered as n.
  • control information is sent through downlink control information DCI, and the control information includes eighth indication information, where the eighth indication information is used to indicate a physical uplink control channel PUCCH corresponding to the physical shared channel. Resources.
  • the eighth indication information is used to indicate a first PUCCH resource, the first PUCCH resource corresponding to the physical shared channel transmitted according to a first QCL parameter, or the The first PUCCH resource corresponds to the physical shared channel transmitted according to a second QCL parameter, and the first QCL parameter and the second QCL parameter are different QCL parameters.
  • the eighth indication information is used to indicate multiple PUCCH resources equal to the number of the multiple QCL parameters, and the multiple PUCCH resources respectively correspond to the multiple PUCCH resources.
  • the network device 500 provided by the embodiment shown in FIG. 5, because the control information sent to the terminal device enables the terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters, instead of transparently receiving a physical shared channel such as PDSCH Therefore, the effectiveness and reliability of the physical shared channel transmission can be improved.
  • the above-mentioned network device 500 shown in FIG. 5 may be used to implement the embodiments of the method for indicating a downlink signal shown in FIG. 3.
  • the foregoing method embodiments please refer to the foregoing method embodiments.
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure. As shown in FIG. 6, the terminal device 600 includes a receiving module 601.
  • the receiving module 601 is configured to receive control information, where the control information is used to instruct the terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters.
  • the physical shared channel includes PDSCH and PUSCH.
  • the spatial transmission parameter used by the terminal device to the TRP is a spatial domain transmission filter (spatial domain transmission filter) parameter. That is, similar to transmitting PDSCH according to QCL parameters, for PUSCH, specifically, PUSCH can be transmitted according to a spatial domain transmission filter.
  • control information is received through downlink control information DCI, and the control information includes first indication information for indicating the multiple QCL parameters.
  • transport block (Transport Block, TB) of the physical shared channel transmitted according to the multiple QCL parameters described above can be the same in the following manners.
  • control information further includes second indication information, and the second indication information is used by the terminal device to determine whether the transport block TB of the physical shared channel received according to the multiple QCL parameters is the same.
  • the second indication information may be received in an implicit manner.
  • the method before receiving the DCI, the method further includes: receiving a first preset rule through high-level information, and Set a rule for the terminal device to determine the second instruction information according to the identifier of the control resource set used when receiving the DCI, and the second instruction information is used for the terminal device to determine all information transmitted according to the multiple QCL parameters Describe whether the transport block TB of the physical shared channel is the same.
  • the second indication information may also be received in an implicit manner.
  • the method before receiving the DCI, the method further includes: receiving preset correspondence through high-level information, the preset correspondence The relationship is a correspondence between the TCI domain value and the second indication information.
  • the TCI domain value is used to determine the second instruction information based on a preset correspondence relationship, and the second instruction information is used for the terminal device. Determining whether the transport block TB of the physical shared channel transmitted according to the multiple QCL parameters is the same, and the preset correspondence is a correspondence between the TCI domain value and the second indication information.
  • the method before receiving the DCI, further includes: receiving the fourth indication information through high-level information, where the fourth indication information is used to instruct the transmission of the according to the multiple QCL parameters Frequency domain resource allocation information for the physical shared channel.
  • the frequency domain resource allocation information includes a first frequency domain resource, and the frequency domain resources when the physical shared channel is transmitted according to the multiple QCL parameters are all the First frequency domain resource.
  • the frequency domain resource allocation information includes a reference frequency domain resource and a second preset rule
  • the reference frequency domain resource is a signal for transmitting the physical shared channel according to a reference QCL parameter.
  • the second preset rule is used to determine a target frequency domain resource based on the reference frequency domain resource
  • the target frequency domain resource is a frequency domain resource for transmitting the physical shared channel according to a target QCL parameter
  • the The target QCL parameter is any one of the plurality of QCL parameters.
  • the reference QCL parameter may be one of the plurality of QCL parameters, but the reference QCL parameter is different from the target QCL parameter.
  • control information is received through downlink control information DCI, and the control information may further include fifth indication information for indicating a frequency domain resource offset value; wherein The second preset rule is to determine the target frequency domain resource based on the reference frequency domain resource and the frequency domain resource offset value.
  • control information is received through downlink control information DCI, and the control information includes sixth indication information, where the sixth indication information is used to instruct transmission of the physical share according to the multiple QCL parameters
  • the modulation and coding information corresponding to the multiple QCL parameters are the same, or the modulation and coding information corresponding to the multiple QCL parameters are different.
  • the modulation and coding information corresponding to multiple QCL parameters may be the same. In another implementation manner of the third example, the modulation and coding information corresponding to multiple QCL parameters may be different.
  • control information is received through downlink control information DCI, and the control information further includes seventh indication information, where the seventh indication information is used to indicate a physical uplink control channel PUCCH corresponding to multiple physical shared channels.
  • the seventh indication information is used to indicate a physical uplink control channel PUCCH corresponding to multiple physical shared channels.
  • Transmit power control TPC commands the multiple physical shared channels are physical shared channels transmitted according to the multiple QCL parameters; wherein the TPC commands corresponding to the multiple QCL parameters in the seventh indication information are the same, Or the TPC commands corresponding to the multiple QCL parameters in the seventh indication information are different.
  • 2 bits may be added to the DCI to indicate the seventh indication information.
  • a 2m-bit seventh indication information indication field may be added to the DCI.
  • a 2n-bit seventh indication information indication field may be added to the DCI, where , N ⁇ m.
  • the number of QCL parameters scheduled by the network at the same time can be considered as n.
  • control information is sent through downlink control information DCI, and the control information includes eighth indication information, where the eighth indication information is used to indicate a PUCCH resource of a physical uplink control channel corresponding to the physical shared channel.
  • eighth indication information is used to indicate a PUCCH resource of a physical uplink control channel corresponding to the physical shared channel.
  • the eighth indication information is used to indicate a first PUCCH resource, the first PUCCH resource corresponding to the physical shared channel transmitted according to a first QCL parameter, or the The first PUCCH resource corresponds to the physical shared channel transmitted according to a second QCL parameter, and the first QCL parameter and the second QCL parameter are different QCL parameters.
  • the eighth indication information may be used to indicate multiple PUCCH resources equal to the number of the multiple QCL parameters, and the multiple PUCCH resources respectively correspond to The physical shared channel is transmitted by multiple QCL parameters.
  • DCI refers to one DCI for scheduling multiple physical shared channels.
  • the high-level information may be, for example, Radio Resource Control (RRC) information, or MAC layer signaling. ,and many more.
  • RRC Radio Resource Control
  • the terminal device 600 provided by the embodiment of the present disclosure, because the control information received from the network device allows the terminal device to transmit a physical shared channel according to multiple quasi-co-located QCL parameters, instead of transparently receiving a physical shared channel such as PDSCH, so Improve the effectiveness and reliability of the physical shared channel transmission.
  • the above-mentioned terminal device 600 shown in FIG. 6 may be used to implement the embodiments of the downlink signal receiving method shown in FIG. 4.
  • FIG. 7 is a structural diagram of a network device applied in an embodiment of the present disclosure, which can implement the details of the above control information indicating method and achieve the same effect.
  • the network device 700 includes: a processor 701, a transceiver 702, a memory 703, a user interface 704, and a bus interface, where:
  • the network device 700 further includes: a computer program stored in the memory 703 and executable on the processor 701.
  • a computer program stored in the memory 703 and executable on the processor 701.
  • the bus architecture may include any number of interconnected buses and bridges, and at least one processor specifically represented by the processor 701 and various circuits of the memory represented by the memory 703 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the transceiver 702 may be a plurality of elements, including a transmitter and a receiver, providing a unit for communicating with various other devices on a transmission medium.
  • the user interface 704 may also be an interface capable of externally connecting internally required devices.
  • the connected devices include, but are not limited to, a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 701 is responsible for managing the bus architecture and general processing, and the memory 703 can store data used by the processor 701 when performing operations.
  • FIG. 8 is a schematic structural diagram of a terminal device according to another embodiment of the present disclosure.
  • the terminal device 800 shown in FIG. 8 includes: at least one processor 801, a memory 802, at least one network interface 804, and a user interface 803.
  • the various components in the terminal device 800 are coupled together through a bus system 805. It can be understood that the bus system 805 is used to implement connection and communication between these components.
  • the bus system 805 includes a data bus, a power bus, a control bus, and a status signal bus. However, for the sake of clarity, various buses are marked as the bus system 805 in FIG. 8.
  • the user interface 803 may include a display, a keyboard, or a pointing device (for example, a mouse, a trackball, a touch panel, or a touch screen).
  • a pointing device for example, a mouse, a trackball, a touch panel, or a touch screen.
  • the memory 802 in the embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), and an electrically erasable programmable ROM. Except programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDRSDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • DRRAM direct memory bus random access memory
  • the memory 802 stores the following elements, executable modules or data structures, or their subsets, or their extended set: operating system 8021 and application programs 8022.
  • the operating system 8021 includes various system programs, such as a framework layer, a core library layer, and a driver layer, etc., for implementing various basic services and processing hardware-based tasks.
  • the application program 8022 includes various application programs, such as a media player (MediaPlayer), a browser (Browser), and the like, and is used to implement various application services.
  • a program for implementing the method of the embodiment of the present disclosure may be included in the application program 8022.
  • the terminal device 800 further includes: a computer program stored on the memory 802 and executable on the processor 801.
  • the computer program is executed by the processor 801, the processes of the foregoing control information receiving method are implemented, and To achieve the same technical effect, to avoid repetition, it will not be repeated here.
  • the method disclosed in the foregoing embodiment of the present disclosure may be applied to the processor 801, or implemented by the processor 801.
  • the processor 801 may be an integrated circuit chip and has a signal processing capability. In the implementation process, each step of the above method may be completed by using hardware integrated logic circuits or instructions in the form of software in the processor 801.
  • the above processor 801 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA), or other Programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • Various methods, steps, and logical block diagrams disclosed in the embodiments of the present disclosure may be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present disclosure may be directly embodied as being executed by a hardware decoding processor, or may be executed and completed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature computer-readable storage medium, such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the computer-readable storage medium is located in the memory 802, and the processor 801 reads information in the memory 802 and completes the steps of the foregoing method in combination with its hardware.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor 801, each step of the foregoing embodiment of the control information receiving method is implemented.
  • the embodiments described in the embodiments of the present disclosure may be implemented by hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in at least one Application Specific Integrated Circuits (ASIC), Digital Signal Processor (DSP), Digital Signal Processing Device (DSPD), and Programmable Logic Device (Programmable Logic Device, PLD), Field-Programmable Gate Array (FPGA), general-purpose processor, controller, microcontroller, microprocessor, and other electronic units for performing the functions described in this disclosure Or a combination thereof.
  • ASIC Application Specific Integrated Circuits
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processing Device
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the technology described in the embodiments of the present disclosure may be implemented by modules (such as procedures, functions, and the like) that perform the functions described in the embodiments of the present disclosure.
  • Software codes may be stored in a memory and executed by a processor.
  • the memory may be implemented in the processor or external to the processor.
  • the embodiment of the present disclosure also provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, implements each process of the foregoing control information indicating method or the foregoing control information receiving method embodiment. , And can achieve the same technical effect, in order to avoid repetition, will not repeat them here.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • An embodiment of the present disclosure also provides a computer program product including instructions.
  • a computer runs the instructions of the computer program product, the computer executes the control information indicating method or the control information receiving method.
  • the computer program product can run on the network device.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present disclosure is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product, which is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in various embodiments of the present disclosure.
  • the aforementioned storage media include: U disks, mobile hard disks, read-only memory (ROM), random access memory (RAM), magnetic disks or compact discs, and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种控制信息指示、接收方法和设备,所述指示方法包括:发送控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。

Description

控制信息指示、接收方法和设备
相关申请的交叉引用
本申请主张在2018年8月3日在中国提交的中国专利申请No.201810879716.1的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,更具体地涉及一种控制信息指示、接收方法和设备。
背景技术
第五代(5 th-Generation,5G)移动通信系统的应用场景包括增强移动宽带(enhance Mobile Broadband,eMBB)、海量机器类通信(massive Machine Type of Communication,mMTC)以及高可靠和低时延通信(Ultra Reliable&Low Latency Communication,URLLC)等,这些应用场景对系统提出了高可靠性、低时延、高吞吐量、大带宽和广覆盖等要求。由于多发送接接收点(Transmission and Reception Point,TRP)传输,可以增加数据传输的可靠性和吞吐量,因此基于多TRP的信号传输成为5G系统的重要技术之一。例如,网络侧可以通过多个TRP向终端设备(User Equipment,UE)传输相同或不同的数据。
然而,目前网络侧仅对传输单TRP传输数据的控制信息进行了指示,使得UE只能像接收来自单TRP的数据一样,透明地接收来自多个TRP的数据,导致数据传输的可靠性和有效性较低。
发明内容
本公开实施例提供一种控制信息指示、接收方法和设备,以提高数据传输的可靠性和有效性。
第一方面,提供了一种控制信息指示方法,应用于网络设备,所述方法包括:
发送控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
第二方面,提供了一种控制信息接收方法,应用于终端设备,所述方法包括:
接收控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
第三方面,提供了一种网络设备,该网络设备包括:
发送模块,用于发送控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
第四方面,提供了一种终端设备,该终端设备包括:
接收模块,用于接收控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
第五方面,提供了一种网络设备,该网络设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种终端设备,该终端设备包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种计算机可读介质,所述计算机可读介质上存储有无线通信程序,所述无线通信程序被处理器执行时实现如第一方面或第二方面所述的方法的步骤。
在本公开实施例中,由于网络设备向终端设备发送的控制信息,使得终端设备可以根据多个准共址QCL参数传输物理共享信道,而不是透明地接收PDSCH等物理共享信道,因此可以提高物理共享信道传输的有效性和可靠性。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面 描述中的附图仅仅是本公开中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开实施例的一个应用场景示意图。
图2是根据本公开实施例的控制信息指示方法的示意性流程图。
图3是根据本公开实施例的目标频域资源确定原理示意图。
图4是根据本公开实施例的控制信息接收方法的示意性流程图。
图5是根据本公开实施例的网络设备500的结构示意图。
图6是根据本公开实施例的终端设备600的结构示意图。
图7是根据本公开实施例的网络设备700的结构示意图。
图8是根据本公开实施例的终端设备800的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本公开中的技术方案,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都应当属于本公开保护的范围。
应理解,本公开实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)或全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、5G系统,或者说新无线(New Radio,NR)系统。
终端设备(User Equipment,UE),也可称之为移动终端(Mobile Terminal)、 移动终端设备等,可以经无线接入网(例如,Radio Access Network,RAN)与至少一个核心网进行通信,终端设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。
网络设备是一种部署在无线接入网设中用于为终端设备提供控制信息指示功能的装置,所述网络设备可以为基站,所述基站可以是GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(evolutional Node B,eNB或e-NodeB)及5G基站(gNB),以及后续演进通信系统中的网络侧设备,然而用词并不构成对本公开保护范围的限制。
需要说明的是,在描述具体实施例时,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本公开实施例的实施过程构成任何限定。
需要说明的是,下文仅以5G系统为例说明本公开实施例提供的下行信号指示、接收方法及装置,应理解,本公开实施例提供的下行信号指示、接收方法及装置还可以应用于其他通信系统,并不局限于5G系统。
为了更清楚地理解本公开实施例提供的技术方案,下面先结合图1对本公开实施例的应用场景进行说明。
本公开实施例提供的技术方案针对的是利用一个下行控制信息(Downlink Control Information,DCI)调度多个物理共享信道的应用场景。应理解,DCI一般由物理下行控制信道(Physical Downlink Control Channel,PDCCH)承载。
其中,物理共享信道可以包括物理下行共享信道(Physical Downlink Shared Channel,PDSCH)和物理上行共享信道(Physical Uplink Shared Channel,PUSCH)。为了便于描述,在本公开实施例以物理共享信道为PDSCH为例,介绍本公开实例提供的各个技术方案。
如图1所示,在一种应用场景下,发送接收点(Transmission and Reception Point,TRP)1向终端设备3通过波束方向11发送信息,该信息通过PDCCH1 (PDCCH1中承载有用于调用PDSCH1和PDSCH2的DCI)和PDSCH1承载;同时TRP2向终端设备3通过波束方向21发送信息,该信息通过PDSCH2承载。也即在图1所示的场景中,两个TRP在一个PDCCH的调度下向终端设备发送两个不同的PDSCH。
在图1中,TRP1和TRP2可以是同一网络设备,也可以是不同的网络设备。本公开实施例提供的技术方案可以认为针对的是利用一个DCI调度多TRP向终端设备传输物理共享信道的应用场景。其中,这多个TRP向终端设备传输的PDSCH可以是同一物理共享信道,也可以是不同物理共享信道。以及所述一个DCI可以由这多个TRP中的任一个传输。
本公开实施例的目的在于,让终端设备能够根据多个准共址QCL参数传输物理共享信道,而不是透明地传输,最终提高物理共享信道传输的可靠性及有效性。
下面先结合附图2,对应用于网络设备的控制信息指示方法进行说明。
图2示出了根据本公开一个实施例的控制信息指示方法,应用于网络设备。如图2所示,该方法可以包括如下步骤:
步骤201、发送控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
其中,准共址(Quasi Co-location,QCL)用于关联至少两个天线端口。当两个天线之间具有QCL关系时,意味着所述至少两个天线端口到同一终端设备的某些大尺度参数近似或相同,例如多普勒频移、多普勒扩展、平均时延、时延扩展和空间接收参数等参数中的至少一项近似或相同。
在此基础上,一个QCL参数可以理解为是一组上述大尺度参数构成的集合。一般情况下,一个QCL参数对应一个网络设备(TRP),相应的,在上述步骤301中,根据多个QCL参数接收的多个PDSCH,可以理解为是从多个TRP接收的多个PDSCH。
可选地,在本公开实施例中,步骤201中的多个QCL参数可以是相同的多个QCL参数,也可以是不同的多个QCL参数。两个QCL参数是否相同,可以通过判断这两个QCL参数对应的大尺度参数是否相同来确定。
或者,一个QCL参数也可以认为对应一个控制资源集(coreset),一个 控制资源集对应一个网络设备(TRP)。控制资源集通常是指承载PDCCH的资源集(主要是频域资源),一个PDCCH可以使用一个控制资源集的参数配置,一个PDCCH可以承载一个DCI。
在第一个例子中,步骤201中的控制信息可以包括用于指示所述多个QCL参数的第一指示信息。此时,步骤201具体可以包括:通过下行控制信息DCI发送所述第一指示信息。
例如,可以在相关技术中的用于通过单TRP调度PDSCH的DCI中增加m比特(bit)QCL参数域,并通过该QCL参数域向终端设备指示传输的PDSCH相应于那几个QCL参数。具体如,假设在DCI中增加6(m=6)比特QCL参数域,当这6比特QCL参数域的域值为010100时,表示该DCI根据第二个QCL参数和第四个QCL参数传输相同的PDSCH。
在本公开实施例中,多个PDSCH是否相同,可以理解为这多个PDSCH是否由相同的混合自动重发请求(Hybrid Automatic Repeat Request,HARQ)进程调度,如果这多个PDSCH是由相同的HARQ进程调度,则可以认为这多个PDSCH相同,否则,这多个PDSCH不同。
进一步地,当终端设备确定这多个PDSCH由同一HARQ进程调度时,可以将接收到的这多个PDSCH存储在该HARQ进程的标识对应的缓存中;当终端设备确定这多个PDSCH由不同的HARQ进程调度时,将这多个PDSCH分别存储在相应HARQ进程的标识对应的缓存中,方便终端设备对这些PDSCH进行处理,从而提高PDSCH传输的可靠性和有效性。
进一步地,在第一个例子的基础上,还可以通过下述几种方式根据上述多个QCL参数传输的物理共享信道的传输块(Transport Block,TB)是否相同。
在第一种方式中,可以使步骤201中的控制信息进一步包括第二指示信息,该第二指示信息可以用于终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。在此基础上,第二指示信息也可以通过DCI发送。
例如,可以额外地在上述DCI中再增加4比特的第二指示信息指示域,利用这4比特指示域的不同域值来表示相同TB或不同TB,这4比特指示域 的域值与TB是否相同的对应关系可以如表1所示。
表1
Figure PCTCN2019096706-appb-000001
可以理解,在表1中,码点(Codepoint)的取值与4比特的第二指示信息指示域的域值相对应,即4比特指示域的域值的取值为“0000-1111”共16个,分别对应于码点“1-16”,其中,不同的码点对应根据QCL参数i和QCL参数j传输的PDSCH的TB以及TB中的层的关系,这样基于4比特指示域的域值,就可以确定出终端设备根据所述多个QCL参数接收的同一PDSCH的TB是否相同,也即可以确定出第二指示信息。其中,QCL参数i和QCL参数j表示两个不同的QCL参数。
还可以理解,在表1中TB1和TB2是一个PDSCH所承载的两个TB的标识,其中,根据网络设备使用的解调参考信号(Demodulation Reference Signal,DMRS)端口数,可以将TB1和TB2中的数据划分成多个层。例如,假设网络设备指示使用8个DMRS端口发送PDSCH,可以对应的将TB1划 分成1-4层,并在发送TB1时映射至8个DMRS端口中的4个端口上发送;将TB2也划分成1-4层,并在发送TB2时映射至8个DMRS端口中的另4个端口上发送。
TB及TB中的层与DMRS端口的映射关系可以根据设规则确定。例如,假如根据第一个QCL参数传输PDSCH时使用的DMRS端口为1-8,根据第二个QCL参数传输PDSCH时使用的DMRS端口也为1-8,可以将TB1映射至这8个端口中的前4个端口,将TB2映射至这8个端口中的后4个端口,也即如果终端设备接收到的PDSCH的DMRS端口号指示为1-4,说明传输的是该PDSCH的TB1;如果终端设备接收到的PDSCH的DMRS端口号指示为5-8,说明传输的是该PDSCH的TB2。
在此基础上,终端设备可以根据网络指示的DMRS端口号确定接收到的PDSCH中的TB以及TB中的层,其中,DMRS端口号具体可以由DCI中的Antenna port(s)域指示。
再如,可以额外地在上述DCI中增加2比特的第二指示信息指示域,利用这2比特指示域的不同域值来表示相同TB或不同TB。具体来说,假如终端设备接收到相应于2个QCL参数的PDSCH,可以利用这2比特中的第一个比特指示相应于2个QCL参数接收的PDSCH的TB1是否是相同,利用这2比特中的第二个比特指示相应于2个QCL参数接收的PDSCH的TB2是否相同。
或者如,可以额外地在上述DCI中增加4比特的第二指示信息指示域,利用这4比特指示域的不同域值来表示相同TB或不同TB。其中,第一个比特指示相应于2个QCL参数接收的PDSCH的TB1是针对相同TB;第二个比特指示相应于2个QCL参数接收的PDSCH的TB2是针对相同TB;第三个比特指示相应于QCL参数i接收的PDSCH的TB1,与相应于QCL参数j接收PDSCH的TB2是针对相同TB;第四个比特指示相应于QCL参数i接收的PDSCH的TB2与相应于QCL参数j接收的PDSCH的TB1是针对相同TB。在该例子中,QCL参数i和QCL参数j分别是所述2个QCL参数中一个。
或者如,可以额外地在上述DCI中增加3比特的第二指示信息指示域, 利用这3比特指示域的不同域值来表示相同TB或不同TB。其中,第一比特是标志信息。当标志信息为0时:第二个比特指示从2个QCL参数接收的PDSCH的TB1针对相同TB,第三个比特指示从2个QCL参数接收的PDSCH的TB2是针对相同TB。当标志信息为1时:第二个比特指示相应于QCL参数i接收的PDSCH的TB1,与相应于QCL参数j接收PDSCH的TB2是针对相同TB;第二个比特指示相应于QCL参数i接收的PDSCH的TB2与相应于QCL参数j接收的PDSCH的TB1是针对相同TB。同样的,在该例子中,QCL参数i和QCL参数j分别是所述2个QCL参数中一个。
在第二种方式中,可以采用隐式的方式向终端设备指示第二指示信息,具体的,在步骤201之前,通过高层信息发送第一预设规则,所述第一预设规则用于所述终端设备根据接收所述DCI时采用的控制资源集的标识确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
也即,在第二个例子中,网络设备可以预先给终端设备配置第一预设规则,然后终端设备根据接收调度PDSCH的DCI时使用的控制资源集的标识和第一预设规则,确定第二指示信息,而不是由DCI直接指示(由DCI直接指示可以理解为是显式指示方式)第二指示信息,这种隐式指示的方式不但可以利用第二指示信息提高通信可靠性和有效性,还可以节约承载DCI的资源。
例如,第一预设规则可以是,利用公式“mod(coreset ID,x)=Y”计算得到Y,用Y的不同取值表示不同的第二指示信息,Y的取值与第二指示信息之间的对应关系可以事先通过高层信息配置给终端设备。其中,“mod”表示求模运算符,coreset ID表示接收DCI时采用的控制资源集的标识,x为固定值,可由高层信息配置。
高层信息事先给终端设备配置的Y取值与第二指示信息之间的对应关系,例如可以包括如下几种:
如果终端设备在mod(coreset ID,4)=0的控制资源集接收DCI,那么终端设备根据QCL参数i接收的PDSCH的TB1,与根据QCL参数j接收的PDSCH的TB1是相同TB。
如果终端设备在mod(coreset ID,4)=1的控制资源集接收DCI,那么终端设备根据QCL参数i接收的PDSCH的TB1,与终端设备根据QCL参数j接收的PDSCH的TB1是不同TB。
如果终端设备在mod(coreset ID,4)=2的控制资源集接收DCI,那么终端设备根据QCL参数i接收的PDSCH的TB1,与终端设备根据QCL参数j接收的PDSCH的TB1是相同TB,其中,终端设备根据QCL参数i接收的PDSCH的TB2,与终端设备根据QCL参数j接收的PDSCH的TB2是不同TB。
如果终端设备在mod(coreset ID,3)=3的控制资源集接收DCI,那么终端设备根据QCL参数i接收的PDSCH的TB1,与终端设备根据QCL参数j接收TB1是相同TB,并且终端设备根据QCL参数i接收的PDSCH的TB2,与终端设备根据QCL参数j接收的PDSCH的TB2是相同TB,等等,本文不再一一列举。
在第三种方式中,也可以采用隐式的方式向终端设备指示第二指示信息,具体的,在步骤201之前,通过高层信息发送预设对应关系,所述预设对应关系为传输控制指示信息(Transmission Configuration Indication,TCI)域值与所述第二指示信息之间的对应关系,所述TCI域值用于基于预设对应关系确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系。
也即,在第三个例子中,网络设备可以预先给终端设备配置TCI域值与第二指示信息之间的预设对应关系,然后终端设备根据预设对应关系和DCI中指示的TCI域值,确定第二指示信息,而不是由DCI直接指示(由DCI直接指示的方式可以理解为是显式指示方式)第二指示信息,这种隐式指示方式不但可以利用第二指示信息提高通信可靠性和有效性,还可以节约承载DCI的资源。
例如,网络设备可以预先在TCI状态(state)信息元素(Information Element,IE)中增加第二指示信息(即是否是相同TB的信息),并通过RRC等高层信息发送至终端设备。具体的,可以事先向设备发送包含如下TCI-state IE:
Figure PCTCN2019096706-appb-000002
该TCI-state IE中包含有“TB-state ENUMERATED{n1,n2,n3,n4···}”这样一行内容,该行内容就是TCI域值与第二指示信息的对应关系,具体可 以用TB状态(TB-state)来表示第二指示信息。
在该TCI-state IE中,TB-state指示根据多个QCL参数传输的PDSCH的TB是否是相同TB。例如:当TB-state为n1时,根据QCL参数i和QCL参数j传输PDSCH的TB1,且根据QCL参数i和QCL参数j传输的是TB1的相同层数据;当TB-state为n2时,根据QCL参数i和QCL参数j传输PDSCH的TB1,但根据QCL参数i和QCL参数j传输的是TB1的不同层数据;当TB-state为n3时,根据QCL参数i和QCL参数j传输PDSCH的TB2;当TB-state为n4时,根据QCL参数i和QCL参数j传输PDSCH的TB 1,且根据QCL参数i和QCL参数j传输的是TB1的相同层数据,根据QCL参数i传输的是该PDSCH的TB2,等等,此处不一一列举。
在第二个例子中,在发送所述DCI之前,所述方法还包括:通过高层信息发送所述第四指示信息,所述第四指示信息用于指示根据所述多个QCL参数传输所述物理共享信道的频域资源分配信息。当然,第四指示信息也可以通过上述DCI发送,但这会使DCI的载荷显著增加。
在第二个例子的第一种实施方式中,第四指示信息中的频域资源分配信息可以包括第一频域资源,其中,根据所述多个QCL参数传输所述物理共享信道时的频域资源均为所述第一频域资源。也即高层信息可以配置根据多个QCL参数传输的物理共享信道使用相同的频域资源。
在第二个例子的第二种实施方式中,第四指示信息中的频域资源分配信息可以包括参考频域资源和第二预设规则,所述参考频域资源为根据参考QCL参数传输所述物理共享信道的频域资源,所述第二预设规则用于基于所述参考频域资源确定目标频域资源,所述目标频域资源为根据目标QCL参数传输所述物理共享信道的频域资源,所述目标QCL参数为所述多个QCL参数中的任一个。
进一步地,参考QCL参数也可以是所述多个QCL参数中的一个,但参考QCL参数与目标QCL参数不同。此时,如果采用上述第二种实施方式,意味着根据QCL参数j(目标QCL参数)传输的PDSCH的频域资源分配,可以间接地(隐式)通过根据QCL参数i(参考QCL参数)传输的PDSCH的资源资源分配得到。
其中,参考QCL参数可以是所述多个QCL参数中最重要的一个QCL参数,作为一个例子,最重要的QCL参数可以是DCI的QCL参数域值中指示的第一个QCL参数。例如,假设网络设备给终端设备配置了8个QCL参数,且通过DCI指示的QCL参数域值为01010001,表示网络设备根据第二个、第四个和第八个QCL参数传输同一PDSCH,其中,第二个QCL参数可以作为最重要的QCL参数。
进一步地,在上述第二个例子的第二种实施方式中,所述控制信息通过下行控制信息DCI发送,且控制信息还可以包括用于指示频域资源偏移值的第五指示信息。此时,所述第二预设规则可以为,基于所述参考频域资源和所述频域资源偏移值确定所述目标频域资源,且如上文所述,第二预设规则事先会由高层信息发送给终端设备。
具体的,在上述DCI中增加n比特的第五指示信息指示域,以使终端设备基于网络设备预先配置的第二预设规则和参考频域资源(参考QCL参数的频域资源)确定目标频域资源(目标QCL参数的频域资源)。例如,增加2比特的第五指示信息指示域,2比特指示域可以对应存在“00、01、10、11”4个域值,这4个域值与频域资源偏移值、以及确定出的目标频域资源的对应关系可以参见下表2和下表3,其中表2是针对整个参考频域资源的频域资源偏移值,表3是针对参考频域资源的资源块(Resource Block,RB)的频域资源偏移值。
表2
Figure PCTCN2019096706-appb-000003
表3
Figure PCTCN2019096706-appb-000004
在表2和表3中,BWP指带宽部分(Bandwidth Part);“floor”为向下取整运算符;目标BWP,是指目标QCL参数对应的BWP,也即目标QCL参数对应的TRP的BWP。
下面结合图3所示的确定目标频域资源的原理示意图,对基于参考频域资源和频域资源偏移值,确定目标频域资源的过程进行说明。
如图3所示,附图标记34指示的竖线表示参考QCL参数对应的TRP的BWP,附图标记35指示的竖线表示目标QCL参数对应的TRP的BWP,附图标记31指示的方框表示参考频域资源,如果第五指示信息的域值为上表2中的“00”,则目标QCL参数对应的目标频域资源如附图标记33所指,目标频域资源33相对于参考频域资源32偏移了虚线框32所示的带宽。
在第三个例子中,步骤201中的控制信息可以包括第六指示信息,所述第六指示信息用于指示根据所述多个QCL参数传输所述物理共享信道时的调制编码信息,所述多个QCL参数对应的所述调制编码信息相同,或者所述多个QCL参数对应的所述调制编码信息不同。此时,步骤201具体可以包括:通过DCI发送所述第六指示信息。
在第三个例子的一种实施方式中,多个QCL参数对应的所述调制编码信息可以相同。也即,根据多个QCL参数传输的PDSCH,可以采用相同的调制编码信息,DCI对多个QCL仅指示如下表4所示的调制编码信息即可(可称为共享指示)。如表4所示,调制编码信息可以包括调制与编码策略、新数 据指示和冗余版本。
表4
Figure PCTCN2019096706-appb-000005
在第三个例子的另一种实施方式中,多个QCL参数对应的所述调制编码信息可以不同。也即,根据多个QCL参数传输的PDSCH,分别采用不同的调制编码信息。例如,如表5和表6所示,分别通过DCI指示QCL参数i和QCL参数j对应的调制编码信息。
表5
Figure PCTCN2019096706-appb-000006
表6
Figure PCTCN2019096706-appb-000007
同理,除了调制编码信息,对下列信息中的至少一种也可以通过DCI共享指示或分别指示:DCI格式标识(Identifier for DCI formats)、载波指示域(Carrier indicator)、带宽部分指示(Bandwidth part indicator,BWP indicator)、时域资源分配(Time domain resource assignment)、虚拟资源块(Virtual Resource Block,VRB)到物理资源块(Physical Resource Block,PRB)的映射(VRB-to-PRB mapping)、PRB捆绑大小指示(PRB bundling size indicator)、速率匹配指示(Rate matching indicator)、零功率信道状态参考信号触发(Zero Power Channel State Information-Reference Signals trigger,ZP CSI-RS trigger)、下行链路分配索引(Downlink assignment index)、HARQ进程指示域、已调度PUCCH中的TPC命令(TPC command for scheduled PUCCH)、PDSCH-to-HARQ反馈时间指示(PDSCH-to-HARQ feedback timing indicator)、端口(Antenna port(s))指示、传输配置指示(Transmission configuration indication)、侦听参考信号请求(Sounding Reference Signal request,SRS request)、码块组传输信息(Code Block Group Transmission Information,CBGTI)、码块组清除信息(Code Block Group Flushing out Information,CBGFI)和DMRS序列初始化(DMRS sequence initialization),等等。
在第四个例子中,步骤201中的控制信息通过下行控制信息DCI发送,且控制信息可以包括第七指示信息,所述第七指示信息用于指示多个物理共享信道对应的物理上行控制信道PUCCH的发射功率控制TPC命令,所述多个物理共享信道为根据所述多个QCL参数传输的物理共享信道,其中,所述第七指示信息中所述多个QCL参数对应的所述TPC命令相同,或者所述第七指示信息中所述多个QCL参数对应的所述TPC命令不同。
在第四个例子的一种具体实施方式中,可以针对多个QCL参数中的每一QCL参数,在DCI中增加2比特指示第七指示信息。例如,对于共有m个QCL参数的情况,可以在DCI中增加2m比特的第七指示信息指示域。
进一步地,在第四个例子的另一种具体实施方式中,由于在物理共享信道的实际传输中可能并不会使用所有QCL参数,因此,可以在DCI中增加2n比特的第七指示信息指示域,其中,n<m,此时,网络同时调度的QCL参数个数可以认为是n个。
在第五个例子中,步骤201中的所述控制信息通过下行控制信息DCI发送,且控制信息可以包括第八指示信息,所述第八指示信息用于指示所述物理共享信道对应的物理上行控制信道(Physical Uplink Control Channel,PUCCH)资源。
在第五个例子的一种实施方式中,所述第八指示信息用于指示第一PUCCH资源,所述第一PUCCH资源对应于根据第一QCL参数传输的所述物理共享信道,或者所述第一PUCCH资源对应于根据第二QCL参数传输的所述物理共享信道,所述第一QCL参数和所述第二QCL参数为不同的QCL参数。作为一个例子,第一QCL参数可以是上述第二个例子中所述的最重要的QCL参数,第一QCL参数可以是除上述第一个例子中确定出的多个QCL参数以外的QCL参数,第二QCL参数可以由网络设备预先配置。
在第五个例子的另一种实施方式中,所述第八指示信息可以用于指示与所述多个QCL参数数量相等的多个PUCCH资源,所述多个PUCCH资源分别对应于根据所述多个QCL参数传输的所述物理共享信道。
需要说明的是,在上述各实施例中,DCI指的是用于调度多个物理共享信道的一个DCI,高层信息例如可以是无线资源控制(Radio Resource Control,RRC)信息,或者MAC层信令,等等。
本公开实施例提供的一种控制信息指示方法,由于网络设备向终端设备发送的控制信息,使得终端设备可以根据多个准共址QCL参数传输物理共享信道,而不是透明地接收PDSCH等物理共享信道,因此可以提高物理共享信道传输的有效性和可靠性。
以上对本公开实施例提供的一种控制信息指示方法进行了说明,下面对本公开实施例提供的一种控制信息接收方法进行说明。
图4示出了根据本公开一个实施例的控制信息接收方法,应用于终端设备。如图4所示,该方法可以包括如下步骤:
步骤401、接收控制信息,所述控制信息用于指示所述终端设备根据多个准共址QCL参数传输物理共享信道。
其中,所述物理共享信道包括PDSCH和PUSCH。
对于PUSCH,终端设备到TRP使用的空间传输参数为空域传输滤波器 (spatial domain transmission filter)参数。也即,与根据QCL参数传输PDSCH类似,对于PUSCH而言,具体可以根据空域传输滤波器(spatial domain transmission filter)传输PUSCH。
可选地,在第一个例子中,所述控制信息通过下行控制信息DCI接收,且所述控制信息包括用于指示所述多个QCL参数的第一指示信息。
进一步地,在第一个例子的基础上,还可以通过下述几种方式根据上述多个QCL参数传输的物理共享信道的传输块(Transport Block,TB)是否相同。
在第一种方式中,所述控制信息还包括第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
在第二种方式中,可以采用隐式的方式接收第二指示信息,具体的在接收所述DCI之前,所述方法还包括:通过高层信息接收第一预设规则,所述第一预设规则用于所述终端设备根据接收所述DCI时采用的控制资源集的标识确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数传输的所述物理共享信道的传输块TB是否相同。
在第三种方式中,也可以采用隐式的方式接收第二指示信息,具体的,在接收所述DCI之前,所述方法还包括:通过高层信息接收预设对应关系,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系;所述控制信息还包括传输控制指示信息TCI域值,所述TCI域值用于基于预设对应关系确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数传输的所述物理共享信道的传输块TB是否相同,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系。
在第二个例子中,在接收所述DCI之前,所述方法还包括:通过高层信息接收所述第四指示信息,且控制信息还包括第四指示信息,所述第四指示信息用于指示根据所述多个QCL参数传输所述物理共享信道的频域资源分配信息。
在第二个例子的第一种实施方式中,所述频域资源分配信息包括第一频域资源,且根据所述多个QCL参数传输所述物理共享信道时的频域资源均为 所述第一频域资源。
在第二个例子的第二种实施方式中,所述频域资源分配信息包括参考频域资源和第二预设规则,所述参考频域资源为根据参考QCL参数传输所述物理共享信道的频域资源,所述第二预设规则用于基于所述参考频域资源确定目标频域资源,所述目标频域资源为根据目标QCL参数传输所述物理共享信道的频域资源,所述目标QCL参数为所述多个QCL参数中的任一个。
进一步地,参考QCL参数也可以是所述多个QCL参数中的一个,但参考QCL参数与目标QCL参数不同。
进一步地,在上述第二个例子的第二种实施方式中,所述控制信息通过下行控制信息DCI接收,且所述控制信息还包括用于指示频域资源偏移值的第五指示信息;其中,所述第二预设规则为,基于所述参考频域资源和所述频域资源偏移值确定所述目标频域资源。
在第三个例子中,所述控制信息通过下行控制信息DCI接收,且所述控制信息包括第六指示信息,所述第六指示信息用于指示根据所述多个QCL参数传输所述物理共享信道时的调制编码信息,所述多个QCL参数对应的所述调制编码信息相同,或者所述多个QCL参数对应的所述调制编码信息不同。
在第三个例子的一种实施方式中,多个QCL参数对应的所述调制编码信息可以相同。在第三个例子的另一种实施方式中,多个QCL参数对应的所述调制编码信息可以不同。
在第四个例子中,所述控制信息通过下行控制信息DCI接收,且所述第七指示信息用于指示多个物理共享信道对应的物理上行控制信道PUCCH的发射功率控制TPC命令,所述多个物理共享信道为根据所述多个QCL参数传输的物理共享信道;其中,所述第七指示信息中所述多个QCL参数对应的所述TPC命令相同,或者所述第七指示信息中所述多个QCL参数对应的所述TPC命令不同。
在第四个例子的一种具体实施方式中,可以针对多个QCL参数中的每一QCL参数,在DCI中增加2比特指示第七指示信息。例如,对于共有m个QCL参数的情况,可以在DCI中增加2m比特的第七指示信息指示域。
在第四个例子的另一种具体实施方式中,由于在物理共享信道的实际传 输中可能并不会使用所有QCL参数,因此,可以在DCI中增加2n比特的第七指示信息指示域,其中,n<m,此时,网络同时调度的QCL参数个数可以认为是n个。
在第五个例子中,所述控制信息通过下行控制信息DCI发送,且所述第八指示信息用于指示所述物理共享信道对应的物理上行控制信道PUCCH资源的第四指示信息。
在第五个例子的一种实施方式中,所述第八指示信息用于指示第一PUCCH资源,所述第一PUCCH资源对应于根据第一QCL参数传输的所述物理共享信道,或者所述第一PUCCH资源对应于根据第二QCL参数传输的所述物理共享信道,所述第一QCL参数和所述第二QCL参数为不同的QCL参数。
在第五个例子的另一种实施方式中,所述第八指示信息可以用于指示与所述多个QCL参数数量相等的多个PUCCH资源,所述多个PUCCH资源分别对应于根据所述多个QCL参数传输的所述物理共享信道。
需要说明的是,在上述各实施例中,DCI指的是用于调度多个物理共享信道的一个DCI,高层信息例如可以是无线资源控制(Radio Resource Control,RRC)信息,或者MAC层信令,等等。
本公开实施例提供的一种控制信息接收方法,由于终端设备接收的来自网络设备的控制信息,使得终端设备可以根据多个准共址QCL参数传输物理共享信道,而不是透明地接收PDSCH等物理共享信道,因此可以提高物理共享信道传输的有效性和可靠性。
由于本公开实施例提供的一种控制信息接收方法,与本公开实施例提供的一种控制信息指示方法相对应,因此,本说明书对控制信息接收方法的描述较为简单,相关之处,请参考上文中对控制信息指示方法的描述。
下面将结合图5至图6详细描述根据本公开实施例的网络设备和终端设备。
图5示出了本公开实施例提供的一种网络设备的结构示意图,如图5所示,网络设备500包括:发送模块501。
发送模块501,用于发送控制信息,所述控制信息用于指示终端设备根 据多个准共址QCL参数传输物理共享信道。
在第一个例子中,所述控制信息通过下行控制信息DCI发送,且所述控制信息包括用于指示所述多个QCL参数的第一指示信息。
进一步地,在第一个例子的基础上,发送模块501还可以通过下述几种方式根据上述多个QCL参数传输的物理共享信道的传输块(Transport Block,TB)是否相同。
在第一种方式中,所述控制信息还包括第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
在第二种方式中,可以采用隐式的方式向终端设备指示第二指示信息,具体的,在发送所述DCI之前,所述方法还包括:通过高层信息发送第一预设规则,所述第一预设规则用于所述终端设备根据接收所述DCI时采用的控制资源集的标识确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
在第三种方式中,也可以采用隐式的方式向终端设备指示第二指示信息,具体的,在发送所述DCI之前,所述方法还包括:通过高层信息发送预设对应关系,所述预设对应关系为所述TCI域值与第二指示信息之间的对应关系,所述TCI域值用于基于预设对应关系确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系。
在第二个例子中,在发送所述DCI之前,所述方法还包括:通过高层信息发送所述第四指示信息,所述第四指示信息用于指示根据所述多个QCL参数传输所述物理共享信道的频域资源分配信息。
在第二个例子的第一种实施方式中,第四指示信息中的频域资源分配信息可以包括第一频域资源,且根据所述多个QCL参数传输所述物理共享信道时的频域资源均为所述第一频域资源。也即高层信息可以配置根据多个QCL参数传输的物理共享信道使用相同的频域资源。
在第二个例子的第二种实施方式中,第四指示信息中的频域资源分配信 息可以包括参考频域资源和第二预设规则,所述参考频域资源为根据参考QCL参数传输所述物理共享信道的频域资源,所述第二预设规则用于基于所述参考频域资源确定目标频域资源,所述目标频域资源为根据目标QCL参数传输所述物理共享信道的频域资源,所述目标QCL参数为所述多个QCL参数中的任一个。
进一步地,在上述第二个例子的第二种实施方式中,所述控制信息通过下行控制信息DCI发送,且控制信息还可以包括用于指示频域资源偏移值的第五指示信息;其中所述第二预设规则为,基于所述参考频域资源和所述频域资源偏移值确定所述目标频域资源。
在第三个例子中,所述控制信息通过下行控制信息DCI发送,且所述第六指示信息用于指示根据所述多个QCL参数传输所述物理共享信道时的调制编码信息,所述多个QCL参数对应的所述调制编码信息相同,或者所述多个QCL参数对应的所述调制编码信息不同。
在第三个例子的一种实施方式中,多个QCL参数对应的所述调制编码信息可以相同。在第三个例子的另一种实施方式中,多个QCL参数对应的所述调制编码信息可以不同。
在第四个例子中,所述控制信息通过下行控制信息DCI发送,且所述控制信息包括第七指示信息,所述第七指示信息用于指示多个物理共享信道对应的物理上行控制信道PUCCH的发射功率控制TPC命令,所述多个物理共享信道为根据所述多个QCL参数传输的物理共享信道;其中,所述第七指示信息中所述多个QCL参数对应的所述TPC命令相同,或者所述第七指示信息中所述多个QCL参数对应的所述TPC命令不同。
在第四个例子的一种具体实施方式中,可以针对多个QCL参数中的每一QCL参数,在DCI中增加2比特指示第七指示信息。例如,对于共有m个QCL参数的情况,可以在DCI中增加2m比特的第七指示信息指示域。
进一步地,在第四个例子的另一种具体实施方式中,由于在物理共享信道的实际传输中可能并不会使用所有QCL参数,因此,可以在DCI中增加2n比特的第七指示信息指示域,其中,n<m,此时,网络同时调度的QCL参数个数可以认为是n个。
在第五个例子中,所述控制信息通过下行控制信息DCI发送,且所述控制信息包括第八指示信息,所述第八指示信息用于指示所述物理共享信道对应的物理上行控制信道PUCCH资源。
在第五个例子的一种实施方式中,所述第八指示信息用于指示第一PUCCH资源,所述第一PUCCH资源对应于根据第一QCL参数传输的所述物理共享信道,或者所述第一PUCCH资源对应于根据第二QCL参数传输的所述物理共享信道,所述第一QCL参数和所述第二QCL参数为不同的QCL参数。
在第五个例子的另一种实施方式中,所述第八指示信息用于指示与所述多个QCL参数数量相等的多个PUCCH资源,所述多个PUCCH资源分别对应于根据所述多个QCL参数传输的所述物理共享信道。
图5所示的实施例提供的网络设备500,由于向终端设备发送的控制信息,使得终端设备可以根据多个准共址QCL参数传输物理共享信道,而不是透明地接收PDSCH等物理共享信道,因此可以提高物理共享信道传输的有效性和可靠性。
上述图5所示的网络设备500,可以用于实现上述图3所示的下行信号指示方法的各个实施例,相关之处请参考上述方法实施例。
图6示出了本公开实施例提供的一种终端设备的结构示意图,如图6所示,终端设备600包括:接收模块601。
接收模块601,用于接收控制信息,所述控制信息用于指示所述终端设备根据多个准共址QCL参数传输物理共享信道。
其中,所述物理共享信道包括PDSCH和PUSCH。
对于PUSCH,终端设备到TRP使用的空间传输参数为空域传输滤波器(spatial domain transmission filter)参数。也即,与根据QCL参数传输PDSCH类似,对于PUSCH而言,具体可以根据空域传输滤波器(spatial domain transmission filter)传输PUSCH。
可选地,在第一个例子中,所述控制信息通过下行控制信息DCI接收,且所述控制信息包括用于指示所述多个QCL参数的第一指示信息。
进一步地,在第一个例子的基础上,还可以通过下述几种方式根据上述 多个QCL参数传输的物理共享信道的传输块(Transport Block,TB)是否相同。
在第一种方式中,所述控制信息还包括第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
在第二种方式中,可以采用隐式的方式接收第二指示信息,具体的,在接收所述DCI之前,所述方法还包括:通过高层信息接收第一预设规则,所述第一预设规则用于所述终端设备根据接收所述DCI时采用的控制资源集的标识确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数传输的所述物理共享信道的传输块TB是否相同。
在第三种方式中,也可以采用隐式的方式接收第二指示信息,具体的,在接收所述DCI之前,所述方法还包括:通过高层信息接收预设对应关系,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系,所述TCI域值用于基于预设对应关系确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数传输的所述物理共享信道的传输块TB是否相同,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系。
在第二个例子中,在接收所述DCI之前,所述方法还包括:通过高层信息接收所述第四指示信息,所述第四指示信息用于指示根据所述多个QCL参数传输所述物理共享信道的频域资源分配信息。
在第二个例子的第一种实施方式中,所述频域资源分配信息包括第一频域资源,且根据所述多个QCL参数传输所述物理共享信道时的频域资源均为所述第一频域资源。
在第二个例子的第二种实施方式中,所述频域资源分配信息包括参考频域资源和第二预设规则,所述参考频域资源为根据参考QCL参数传输所述物理共享信道的频域资源,所述第二预设规则用于基于所述参考频域资源确定目标频域资源,所述目标频域资源为根据目标QCL参数传输所述物理共享信道的频域资源,所述目标QCL参数为所述多个QCL参数中的任一个。
进一步地,参考QCL参数也可以是所述多个QCL参数中的一个,但参 考QCL参数与目标QCL参数不同。
进一步地,在上述第二个例子的第二种实施方式中,所述控制信息通过下行控制信息DCI接收,且控制信息还可以包括用于指示频域资源偏移值的第五指示信息;其中,所述第二预设规则为,基于所述参考频域资源和所述频域资源偏移值确定所述目标频域资源。
在第三个例子中,所述控制信息通过下行控制信息DCI接收,且所述控制信息包括第六指示信息,所述第六指示信息用于指示根据所述多个QCL参数传输所述物理共享信道时的调制编码信息,所述多个QCL参数对应的所述调制编码信息相同,或者所述多个QCL参数对应的所述调制编码信息不同。
在第三个例子的一种实施方式中,多个QCL参数对应的所述调制编码信息可以相同。在第三个例子的另一种实施方式中,多个QCL参数对应的所述调制编码信息可以不同。
在第四个例子中,所述控制信息通过下行控制信息DCI接收,且控制信息还包括第七指示信息,所述第七指示信息用于指示多个物理共享信道对应的物理上行控制信道PUCCH的发射功率控制TPC命令,所述多个物理共享信道为根据所述多个QCL参数传输的物理共享信道;其中,所述第七指示信息中所述多个QCL参数对应的所述TPC命令相同,或者所述第七指示信息中所述多个QCL参数对应的所述TPC命令不同。
在第四个例子的一种具体实施方式中,可以针对多个QCL参数中的每一QCL参数,在DCI中增加2比特指示第七指示信息。例如,对于共有m个QCL参数的情况,可以在DCI中增加2m比特的第七指示信息指示域。
在第四个例子的另一种具体实施方式中,由于在物理共享信道的实际传输中可能并不会使用所有QCL参数,因此,可以在DCI中增加2n比特的第七指示信息指示域,其中,n<m,此时,网络同时调度的QCL参数个数可以认为是n个。
在第五个例子中,所述控制信息通过下行控制信息DCI发送,且控制信息包括第八指示信息,所述第八指示信息用于指示所述物理共享信道对应的物理上行控制信道PUCCH资源的第四指示信息。
在第五个例子的一种实施方式中,所述第八指示信息用于指示第一 PUCCH资源,所述第一PUCCH资源对应于根据第一QCL参数传输的所述物理共享信道,或者所述第一PUCCH资源对应于根据第二QCL参数传输的所述物理共享信道,所述第一QCL参数和所述第二QCL参数为不同的QCL参数。
在第五个例子的另一种实施方式中,所述第八指示信息可以用于指示与所述多个QCL参数数量相等的多个PUCCH资源,所述多个PUCCH资源分别对应于根据所述多个QCL参数传输的所述物理共享信道。
需要说明的是,在上述各实施例中,DCI指的是用于调度多个物理共享信道的一个DCI,高层信息例如可以是无线资源控制(Radio Resource Control,RRC)信息,或者MAC层信令,等等。
本公开实施例提供的终端设备600,由于接收的来自网络设备的控制信息,使得终端设备可以根据多个准共址QCL参数传输物理共享信道,而不是透明地接收PDSCH等物理共享信道,因此可以提高物理共享信道传输的有效性和可靠性。
上述图6所示的终端设备600,可以用于实现上述图4所示的下行信号接收方法的各个实施例,相关之处请参考上述方法实施例。
请参阅图7,图7是本公开实施例应用的网络设备的结构图,能够实现上述控制信息指示方法的细节,并达到相同的效果。如图7所示,网络设备700包括:处理器701、收发机702、存储器703、用户接口704和总线接口,其中:
在本公开实施例中,网络设备700还包括:存储在存储器上703并可在处理器701上运行的计算机程序,计算机程序被处理器701、执行时实现上述控制信息指示方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的至少一个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发 送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的终端设备,用户接口704还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器701负责管理总线架构和通常的处理,存储器703可以存储处理器701在执行操作时所使用的数据。
图8是本公开另一个实施例的终端设备的结构示意图。图8所示的终端设备800包括:至少一个处理器801、存储器802、至少一个网络接口804和用户接口803。终端设备800中的各个组件通过总线系统805耦合在一起。可理解,总线系统805用于实现这些组件之间的连接通信。总线系统805除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统805。
其中,用户接口803可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器802可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch Link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本公开实施例描述的系统和方法的存储器802旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器802存储了如下的元素,可执行模块或者数 据结构,或者他们的子集,或者他们的扩展集:操作系统8021和应用程序8022。
其中,操作系统8021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序8022,包含各种应用程序,例如媒体播放器(MediaPlayer)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序8022中。
在本公开实施例中,终端设备800还包括:存储在存储器802上并可在处理器801上运行的计算机程序,计算机程序被处理器801执行时实现上述控制信息接收方法的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法可以应用于处理器801中,或者由处理器801实现。处理器801可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器801可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的计算机可读存储介质中。该计算机可读存储介质位于存储器802,处理器801读取存储器802中的信息,结合其硬件完成上述方法的步骤。具体地,该计算机可读存储介质上存储有计算机程序,计算机程序被处理器801执行时实现如上述控制信息接收方法实施例的各步骤。
可以理解的是,本公开实施例描述的这些实施例可以用硬件、软件、固 件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在至少一个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本公开所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本公开实施例所述功能的模块(例如过程、函数等)来实现本公开实施例所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述控制信息指示方法或上述控制信息接收方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本公开实施例还提供一种包括指令的计算机程序产品,当计算机运行所述计算机程序产品的所述指令时,所述计算机执行上述控制信息指示方法或者上述控制信息接收方法。具体地,该计算机程序产品可以运行于上述网络设备上。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本公开所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意 性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应所述以权利要求的保护范围为准。

Claims (33)

  1. 一种控制信息指示方法,应用于网络设备,所述方法包括:
    发送控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
  2. 根据权利要求1所述的方法,其中,
    所述物理共享信道包括物理下行共享信道PDSCH和物理上行共享信道PUSCH。
  3. 根据权利要求1所述的方法,其中,
    所述控制信息通过下行控制信息DCI发送,其中,所述控制信息包括用于指示所述多个QCL参数的第一指示信息。
  4. 权利要求3所述的方法,其中,
    所述控制信息还包括第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
  5. 根据权利要求3所述的方法,其中,在发送所述DCI之前,所述方法还包括:通过高层信息发送第一预设规则;
    其中,所述第一预设规则用于所述终端设备根据接收所述DCI时采用的控制资源集的标识确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
  6. 根据权利要求3所述的方法,其中,在发送所述DCI之前,所述方法还包括:通过高层信息发送预设对应关系,所述预设对应关系为所述TCI域值与第二指示信息之间的对应关系;
    其中,所述控制信息还包括传输控制指示信息TCI域值,所述TCI域值用于基于所述预设对应关系确定所述第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
  7. 根据权利要求1所述的方法,其中,在发送所述DCI之前,所述方 法还包括:通过高层信息发送所述第四指示信息,所述第四指示信息用于指示根据所述多个QCL参数传输所述物理共享信道的频域资源分配信息。
  8. 根据权利要求7所述的方法,其中,
    所述频域资源分配信息包括第一频域资源,其中,根据所述多个QCL参数传输所述物理共享信道时的频域资源均为所述第一频域资源;或者,
    所述频域资源分配信息包括参考频域资源和第二预设规则,所述参考频域资源为根据参考QCL参数传输所述物理共享信道的频域资源,所述第二预设规则用于基于所述参考频域资源确定目标频域资源,所述目标频域资源为根据目标QCL参数传输所述物理共享信道的频域资源,所述目标QCL参数为所述多个QCL参数中的任一个。
  9. 根据权利要求8所述的方法,其中,
    所述控制信息通过下行控制信息DCI发送,且所述控制信息还包括用于指示频域资源偏移值的第五指示信息;
    其中,所述第二预设规则为,基于所述参考频域资源和所述频域资源偏移值确定所述目标频域资源。
  10. 根据权利要求1所述的方法,其中,
    所述控制信息通过下行控制信息DCI发送,其中,所述控制信息包括第六指示信息,所述第六指示信息用于指示根据所述多个QCL参数传输所述物理共享信道时的调制编码信息,所述多个QCL参数对应的所述调制编码信息相同,或者所述多个QCL参数对应的所述调制编码信息不同。
  11. 根据权利要求1所述的方法,其中,
    所述控制信息通过下行控制信息DCI发送,其中,所述控制信息包括第七指示信息,所述第七指示信息用于指示多个物理共享信道对应的物理上行控制信道PUCCH的发射功率控制TPC命令,所述多个物理共享信道为根据所述多个QCL参数传输的物理共享信道;
    其中,所述第七指示信息中所述多个QCL参数对应的所述TPC命令相同,或者所述第七指示信息中所述多个QCL参数对应的所述TPC命令不同。
  12. 根据权利要求1所述的方法,其中,
    所述控制信息通过下行控制信息DCI发送,其中,所述控制信息包括第 八指示信息,所述第八指示信息用于指示所述物理共享信道对应的物理上行控制信道PUCCH资源。
  13. 根据权利要求12所述的方法,其中,
    所述第八指示信息用于指示第一PUCCH资源,所述第一PUCCH资源对应于根据第一QCL参数传输的所述物理共享信道,或者所述第一PUCCH资源对应于根据第二QCL参数传输的所述物理共享信道,所述第一QCL参数和所述第二QCL参数为不同的QCL参数。
  14. 根据权利要求12所述的方法,其中,
    所述第八指示信息用于指示与所述多个QCL参数数量相等的多个PUCCH资源,所述多个PUCCH资源分别对应于根据所述多个QCL参数传输的所述物理共享信道。
  15. 一种控制信息接收方法,应用于终端设备,所述方法包括:
    接收控制信息,所述控制信息用于指示所述终端设备根据多个准共址QCL参数传输物理共享信道。
  16. 根据权利要求1所述的方法,其中,
    所述物理共享信道包括物理下行共享信道PDSCH和物理上行共享信道PUSCH。
  17. 根据权利要求15所述的方法,其中,
    所述控制信息通过下行控制信息DCI接收,其中,所述控制信息包括用于指示所述多个QCL参数的第一指示信息。
  18. 权利要求17所述的方法,其中,
    所述控制信息还包括第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数接收的所述物理共享信道的传输块TB是否相同。
  19. 根据权利要求17所述的方法,其中,在接收所述DCI之前,所述方法还包括:通过高层信息接收第一预设规则;
    其中,所述控制信息还包括第一预设规则,所述第一预设规则用于所述终端设备根据接收所述DCI时采用的控制资源集的标识确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数传输的所 述物理共享信道的传输块TB是否相同。
  20. 根据权利要求17所述的方法,其中,在接收所述DCI之前,所述方法还包括:通过高层信息接收预设对应关系,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系;
    其中,所述控制信息还包括传输控制指示信息TCI域值,所述TCI域值用于基于所述预设对应关系确定第二指示信息,所述第二指示信息用于所述终端设备确定根据所述多个QCL参数传输的所述物理共享信道的传输块TB是否相同,所述预设对应关系为所述TCI域值与所述第二指示信息之间的对应关系。
  21. 根据权利要求15所述的方法,其中,在接收所述DCI之前,所述方法还包括:通过高层信息接收所述第四指示信息,所述第四指示信息用于指示根据所述多个QCL参数传输所述物理共享信道的频域资源分配信息。
  22. 根据权利要求21所述的方法,其中,
    所述频域资源分配信息包括第一频域资源,其中,根据所述多个QCL参数传输所述物理共享信道时的频域资源均为所述第一频域资源;或者,
    所述频域资源分配信息包括参考频域资源和第二预设规则,所述参考频域资源为根据参考QCL参数传输所述物理共享信道的频域资源,所述第二预设规则用于基于所述参考频域资源确定目标频域资源,所述目标频域资源为根据目标QCL参数传输所述物理共享信道的频域资源,所述目标QCL参数为所述多个QCL参数中的任一个。
  23. 根据权利要求22所述的方法,其中,
    所述控制信息通过下行控制信息DCI接收,其中,所述控制信息还包括用于指示频域资源偏移值的第五指示信息;
    其中,所述第二预设规则为,基于所述参考频域资源和所述频域资源偏移值确定所述目标频域资源。
  24. 根据权利要求15所述的方法,其中,
    所述控制信息通过下行控制信息DCI接收,其中,所述控制信息包括第六指示信息,所述第六指示信息用于指示根据所述多个QCL参数传输所述物理共享信道时的调制编码信息,所述多个QCL参数对应的所述调制编码信息 相同,或者所述多个QCL参数对应的所述调制编码信息不同。
  25. 根据权利要求15所述的方法,其中,
    所述控制信息通过下行控制信息DCI接收,其中,所述控制信息包括第七指示信息,所述第七指示信息用于指示多个物理共享信道对应的物理上行控制信道PUCCH的发射功率控制TPC命令,所述多个物理共享信道为根据所述多个QCL参数传输的物理共享信道;
    其中,所述第七指示信息中所述多个QCL参数对应的所述TPC命令相同,或者所述第七指示信息中所述多个QCL参数对应的所述TPC命令不同。
  26. 根据权利要求15所述的方法,其中,
    所述控制信息通过下行控制信息DCI发送,其中,所述控制信息包括第八指示信息,所述第八指示信息用于指示所述物理共享信道对应的物理上行控制信道PUCCH资源的第四指示信息。
  27. 根据权利要求26所述的方法,其中,
    所述第八指示信息用于指示第一PUCCH资源,所述第一PUCCH资源对应于根据第一QCL参数传输的所述物理共享信道,或者所述第一PUCCH资源对应于根据第二QCL参数传输的所述物理共享信道,所述第一QCL参数和所述第二QCL参数为不同的QCL参数。
  28. 根据权利要求26所述的方法,其中,
    所述第八指示信息用于指示与所述多个QCL参数数量相等的多个PUCCH资源,所述多个PUCCH资源分别对应于根据所述多个QCL参数传输的所述物理共享信道。
  29. 一种网络设备,包括:
    发送模块,用于发送控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
  30. 一种终端设备,包括:
    接收模块,用于接收控制信息,所述控制信息用于指示终端设备根据多个准共址QCL参数传输物理共享信道。
  31. 一种网络设备,该网络设备包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理 器执行时实现如权利要求1-14任一项所述的方法的步骤。
  32. 一种终端设备,该终端设备包括存储器、处理器及存储在所述存储器上并在所述处理器上运行的无线通信程序,所述无线通信程序被所述处理器执行时实现如权利要求15-28任一项所述的方法的步骤。
  33. 一种计算机可读介质,所述计算机可读介质上存储有无线通信程序,所述无线通信程序被处理器执行时实现如权利要求1-28任一项所述的方法的步骤。
PCT/CN2019/096706 2018-08-03 2019-07-19 控制信息指示、接收方法和设备 WO2020024813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810879716.1 2018-08-03
CN201810879716.1A CN110798298B (zh) 2018-08-03 2018-08-03 控制信息指示、接收方法和设备

Publications (1)

Publication Number Publication Date
WO2020024813A1 true WO2020024813A1 (zh) 2020-02-06

Family

ID=69230993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096706 WO2020024813A1 (zh) 2018-08-03 2019-07-19 控制信息指示、接收方法和设备

Country Status (2)

Country Link
CN (1) CN110798298B (zh)
WO (1) WO2020024813A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203994A1 (zh) * 2020-04-10 2021-10-14 中兴通讯股份有限公司 一种参数的获取方法及装置、参数的确定方法及装置
CN114070462A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 重复传输的方法、装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230156742A1 (en) * 2020-04-30 2023-05-18 Qualcomm Incorporated Multiple tci state activation for pdcch and pdsch
WO2021243483A1 (en) * 2020-05-30 2021-12-09 Qualcomm Incorporated Multiple trp sidelink qcl indication to enable agc prediction

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015135589A1 (en) * 2014-03-14 2015-09-17 Nokia Solutions And Networks Oy Dormant cell rrm measurement reporting
US20160174194A1 (en) * 2013-08-06 2016-06-16 Panasonic Intellectual Property Corporation Of America Wireless communication method for device to device communication and user equipment
CN108023841A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN108024274A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种无线通信数据传输方法、装置和系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007117444A2 (en) * 2006-03-31 2007-10-18 Yinghe Hu Protein detection by aptamers
KR102186240B1 (ko) * 2012-08-31 2020-12-03 엘지전자 주식회사 무선 통신 시스템에서 하향링크 신호 수신 방법 및 장치
CN111836384A (zh) * 2014-09-24 2020-10-27 交互数字专利控股公司 用于无授权频段中的lte操作的信道使用指示和同步
US20170325216A1 (en) * 2016-05-09 2017-11-09 Sharp Laboratories Of America, Inc. User equipments, base stations and methods
CN107888236B (zh) * 2016-09-30 2021-06-29 华为技术有限公司 一种用于数据传输的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160174194A1 (en) * 2013-08-06 2016-06-16 Panasonic Intellectual Property Corporation Of America Wireless communication method for device to device communication and user equipment
WO2015135589A1 (en) * 2014-03-14 2015-09-17 Nokia Solutions And Networks Oy Dormant cell rrm measurement reporting
CN108023841A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 准共址信息的发送接收方法、装置、网络设备及终端
CN108024274A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 一种无线通信数据传输方法、装置和系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021203994A1 (zh) * 2020-04-10 2021-10-14 中兴通讯股份有限公司 一种参数的获取方法及装置、参数的确定方法及装置
CN114070462A (zh) * 2020-07-31 2022-02-18 华为技术有限公司 重复传输的方法、装置

Also Published As

Publication number Publication date
CN110798298A (zh) 2020-02-14
CN110798298B (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
KR102371958B1 (ko) Harq-ack 피드백 시간 결정 방법, 지시 방법, 단말 기기 및 네트워크 기기
JP7191966B2 (ja) デバイスのモビリティを改善し、新しい無線(nr)内のネットワークトラフィックオーバーヘッドを低減するための階層ビームフォーミング構造及びビーム指示の送信
WO2020024813A1 (zh) 控制信息指示、接收方法和设备
WO2021204208A1 (zh) 信道状态信息csi报告的确定方法和通信设备
WO2019233339A1 (zh) 传输信息的方法和通信设备
US11985679B2 (en) Wireless communication method and device
US20220116182A1 (en) Method and apparatus for determining spatial domain transmission filter
WO2021032203A1 (zh) Pucch传输方法、终端设备和网络设备
WO2018202098A1 (zh) 无线通信的方法、网络设备和终端设备
WO2018228535A1 (zh) 传输方法、网络设备和终端
WO2020168577A1 (zh) 传输上行反馈信息的方法、终端设备和网络设备
CN110798296B (zh) 下行信号指示、接收方法和设备
WO2018228176A1 (zh) 通信方法、终端设备和网络设备
TWI741147B (zh) 傳輸回饋訊息的方法和終端設備
KR102422915B1 (ko) 데이터 전송 방법 및 단말 기기
KR20240060734A (ko) 업링크 제어 정보(uci)의 송신
WO2020118574A1 (zh) 一种上行传输的功率控制方法及终端设备
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
WO2019192283A1 (zh) 一种资源确定、资源指示方法及装置
US20220141819A1 (en) Parameter determining method, information configuration method, and device
WO2021062813A1 (zh) 确定数据传输的时域资源的方法、装置及计算机存储介质
JP2023519460A (ja) 情報受信方法、送信方法、装置及び設備
WO2020206581A1 (zh) 传输信号的方法、终端设备和网络设备
WO2019129253A1 (zh) 一种通信方法及装置
AU2016435027B2 (en) Information transmission method, network device and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844085

Country of ref document: EP

Kind code of ref document: A1