WO2020024801A1 - 随机接入方法、终端设备及网络设备 - Google Patents

随机接入方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020024801A1
WO2020024801A1 PCT/CN2019/096505 CN2019096505W WO2020024801A1 WO 2020024801 A1 WO2020024801 A1 WO 2020024801A1 CN 2019096505 W CN2019096505 W CN 2019096505W WO 2020024801 A1 WO2020024801 A1 WO 2020024801A1
Authority
WO
WIPO (PCT)
Prior art keywords
mcs
random access
access message
dmrs
target
Prior art date
Application number
PCT/CN2019/096505
Other languages
English (en)
French (fr)
Inventor
陈晓航
潘学明
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to KR1020217005256A priority Critical patent/KR102497447B1/ko
Priority to JP2021504527A priority patent/JP7181991B2/ja
Priority to SG11202100190YA priority patent/SG11202100190YA/en
Priority to EP19844628.8A priority patent/EP3813466A4/en
Publication of WO2020024801A1 publication Critical patent/WO2020024801A1/zh
Priority to US17/144,010 priority patent/US20210126733A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/004Transmission of channel access control information in the uplink, i.e. towards network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • H04L1/0005Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0011Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding applied to payload information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a random access method, a terminal device, and a network device.
  • the fifth generation 5G mobile communication system needs to adapt to more diverse scenarios and service requirements.
  • the main scenarios of the New Radio (NR) system include mobile broadband enhancement (eMBB), massive Machine Type of Communication (mMTC), and ultra-reliable ultra-low-latency communication (Ultra-Reliable). Low latency, Communications, URLLC), etc. These scenarios require high reliability, low latency, large bandwidth and wide coverage for the corresponding system.
  • a terminal device such as a user equipment (UE)
  • UE user equipment
  • TA uplink timing advance
  • the UE can send uplink data through dynamic scheduling or semi-static scheduling.
  • the UE can send uplink data in an asynchronous state. Similar to the random access process, the UE may be in an asynchronous state when sending a preamble code, but it is necessary to add a cyclic prefix (CP) to the preamble code to offset the impact of transmission delay.
  • CP cyclic prefix
  • a network device such as a base station can be configured at a time point (time instance, that is, the time required to transmit a Physical Random Access Channel (PRACH) resource), which can also be referred to as a PRACH transmission here.
  • PRACH Physical Random Access Channel
  • FDM Frequency Division Multiplexing
  • the PRACH transmission opportunities may also be referred to as PRACH opportunities (referred to as RO).
  • the number of ROs that can perform FDM at a time point can be: ⁇ 1,2,4,8 ⁇ .
  • the random access preamble can only be transmitted on the time domain resources configured by the parameter PRACHConfigurationIndex, and the random access preamble can only be transmitted on the frequency domain resources configured by the parameter prach-FDM.
  • n RA ⁇ ⁇ 0,1, ..., M-1 ⁇ , where M is equal to the high-level parameter prach-FDM.
  • the PRACH frequency domain resource n RA can be numbered in ascending order from the RO resource with the lowest frequency in the initial active uplink bandwidth part; otherwise, the PRACH frequency domain resource n RA starts from the activated uplink bandwidth part The RO resource with the lowest frequency in the (active uplink bandwidth part) starts to be numbered in ascending order.
  • the UE when the UE sends a two-step random access (2-step RACH) message MSG1, it can transmit a preamble and a payload (ie, a payload) part at the same time.
  • the payload part is, for example, uplink data and / or control information.
  • the UE needs to perform modulation and coding on it.
  • Embodiments of the present disclosure provide a random access method, a terminal device, and a network device, so as to solve the problem that it is currently not clear how to modulate and encode the load part carried by a message during the random access process.
  • an embodiment of the present disclosure provides a random access method, which is applied to a terminal device, and includes:
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to a target MCS.
  • an embodiment of the present disclosure further provides a random access method, which is applied to a network device and includes:
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to the target MCS.
  • an embodiment of the present disclosure further provides a terminal device, including:
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to a target MCS.
  • an embodiment of the present disclosure further provides a network device, including:
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to a target MCS.
  • an embodiment of the present disclosure further provides a communication device including a memory, a processor, and a computer program stored on the memory and executable on the processor, wherein the computer program is described by the When executed by the processor, the steps of the random access method applied to the terminal device or the steps of the random access method applied to the network device may be implemented.
  • the communication device may be a terminal device or a network device.
  • an embodiment of the present disclosure further provides a computer-readable storage medium on which a computer program is stored, wherein when the computer program is executed by a processor, the random access method applied to a terminal device can be implemented. Steps, or steps of the above-mentioned random access method applied to network equipment.
  • the payload part carried in the random access message 1 is modulated and coded based on the target MCS, and it is clear how to modulate and encode the payload part carried in the message 1 in the random access process, so that the payload part can be guaranteed by the network.
  • Accurate reception at the network side reduces the complexity of network-side reception processing, thereby ensuring communication effectiveness and reliability.
  • FIG. 1 is a flowchart of a random access method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 5 is a second schematic structural diagram of a terminal device according to an embodiment of the present disclosure.
  • FIG. 6 is a second schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • LTE Long Time Evolution
  • LTE-A LTE-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Single-carrier Frequency-Division Multiple Access
  • system and “network” are often used interchangeably.
  • the CDMA system can implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA) and the like.
  • UTRA includes Wideband CDMA (Wideband Code Division Multiple Access) and other CDMA variants.
  • the TDMA system can implement a radio technology such as Global System for Mobile (Communication, Global System for Mobile).
  • OFDMA system can implement such as Ultra Mobile Broadband (UMB), Evolution-UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM And other radio technologies.
  • UMB Ultra Mobile Broadband
  • Evolution-UTRA Evolution-UTRA
  • IEEE802.11 Wi-Fi
  • IEEE 802.16 WiMAX
  • IEEE 802.20 Flash-OFDM And other radio technologies.
  • UTRA and E-UTRA are part of Universal Mobile Telecommunications System (UMTS).
  • LTE and more advanced LTE (such as LTE-A) are new UMTS versions using E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project” (3rd Generation Generation Partnership Project (3GPP)).
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • the techniques described herein can be used for both the systems and radio technologies mentioned above as well as other systems and radio technologies.
  • the following description describes the NR system for the purpose of example, and uses NR terminology in most of the following descriptions. Those skilled in the art can understand that the embodiments are only examples and do not constitute a limitation. Can be applied to applications other than NR system applications.
  • the wireless communication system includes a terminal device and a network device.
  • the terminal device can also be called a terminal or a user terminal (User) (UE), and the terminal device can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant, Terminal-side devices such as PDA, Mobile Internet Device (MID), Wearable Device, or vehicle-mounted device.
  • UE user terminal
  • UE user terminal
  • the terminal device can be a mobile phone, a tablet (Personal Computer), a laptop (Laptop Computer), or a personal digital assistant (Personal Digital Assistant, Terminal-side devices such as PDA, Mobile Internet Device (MID), Wearable Device, or vehicle-mounted device.
  • PDA Personal Digital Assistant
  • MID Mobile Internet Device
  • Wearable Device or vehicle-mounted device.
  • the network device may be a base station or a core network, where the base station may be a base station of 5G and later versions (for example, gNB, 5G, NR, NB, etc.), or a base station in other communication systems (for example, eNB, WLAN access point, or Other access points, etc.), among which, the base station can be referred to as Node B, evolved Node B, access point, Base Transceiver Station (BTS), radio base station, radio transceiver, and basic service set (Basic Service Set (BSS), Extended Service Set (ESS), Node B, evolved Node B (eNB), home Node B, home evolved Node B, WLAN access point, WiFi node, or others in the field
  • BSS Base Transceiver Station
  • ESS Extended Service Set
  • Node B evolved Node B
  • eNB evolved Node B
  • home Node B home evolved Node B
  • WLAN access point WiFi node, or others in the field
  • WiFi node WiFi node, or others in the field
  • an embodiment of the present disclosure provides a random access method applied to a terminal device.
  • the method may include the following steps:
  • Step 101 Send a random access message 1; the random access message 1 carries a payload portion, which is obtained by performing modulation and coding according to the target MCS.
  • the random access message 1 may specifically be a message in a random access process, and may be a request message in a two-step random access (2-step RACH) process, such as Msg1.
  • the random access message 1 may carry a preamble and a payload part, and the payload part may include uplink data and / or control information.
  • the payload part may be carried by a data channel, a control channel, and / or other channels.
  • the uplink data in the payload part can be carried by a physical uplink shared channel (PUSCH)
  • the control information in the payload part can be carried by a physical uplink control channel (PUCCH), or with the uplink Data is multiplexed on the PUSCH.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • the target MCS (Modulation and Coding Scheme) may be agreed by a protocol or configured by a network device.
  • the target MCS may be:
  • a predefined MCS or (a network device) an MCS indicated by a system broadcast message or high-level signaling.
  • the terminal device may first receive the MCS configured for it from the network device. If the network device is not configured with MCS, the terminal device can use the default MCS, that is, a predefined MCS. In other scenarios, it is assumed that the network device will not be configured with MCS for the terminal device in advance, then the terminal device may directly use the predefined MCS to modulate and encode the load part in Msg1.
  • the payload part carried in the random access message 1 is modulated and coded based on the target MCS, and it is clear how to modulate and encode the payload part carried in the message 1 in the random access process, thereby ensuring the payload Partially received by the network side, reducing the complexity of the network side receiving processing, thereby ensuring the effectiveness and reliability of communication.
  • the target MCS may also be determined and selected by the terminal device from the MCS set.
  • the MCS set may be agreed by a protocol or configured by a network device.
  • the method may further include:
  • the terminal device obtains the MCS collection
  • the terminal device selects the target MCS from the MCS set.
  • the MCS set may be:
  • the process for the terminal device to select the target MCS from the MCS set may be: the terminal device selects the target MCS from the MCS set according to the signal measurement result and / or the payload size of the two-step random access request message.
  • the signal measurement result may be at least one of the following: Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Received Signal Strength Indicator (Received Signal Strength) Indication (RSSI).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Received Signal Strength Indicator
  • TB Transport Block
  • a network device may configure a terminal device to select a MCS threshold based on a signal measurement result such as RSRP.
  • a signal measurement result such as RSRP.
  • the terminal device selects the MCS from the MCS set, it can select a matching MCS according to the threshold value.
  • the network device can configure the RSRP thresholds as X1 and X2, so that the terminal device can respond to the correspondence shown in Table 1 below.
  • a network device may configure a terminal device to select a MCS threshold based on a payload size. In this way, when the terminal device selects the MCS from the MCS set, it can select a matching MCS according to the threshold value.
  • the network device when selecting the target MCS based on the load size, if the MCS included in the MCS set is MCS4, MCS5, and MCS6, the network device can be configured with load thresholds of X3 and X4, so that the terminal device can be configured as shown in Table 2 below.
  • Corresponding target selection MCS :
  • the terminal device can also be configured based on the network device's configured threshold (including The threshold value of the signal measurement result and the threshold value of the load size) and the corresponding correspondence are combined with the signal measurement result and the load size to select a matching MCS, which will not be described again here.
  • the terminal device when the target MCS is selected from the MCS set, in order to ensure that the network device learns the target MCS and processes the random access message 1 correctly, the terminal device can send the random access message 1 through the The related information of the random access message 1 indicates the target MCS to the network device.
  • the random access message 1 may carry uplink control information (Uplink Control Information) (UCI), and the UCI is used to explicitly indicate the target MCS.
  • UCI Uplink Control Information
  • the UCI may use a predefined or configured modulation and coding scheme for network equipment for modulation and coding.
  • the UCI may be carried in a data channel or a control channel of a payload part, and sent together with the payload part.
  • the UCI may use a different modulation and coding method from the data part in the payload part, and the UCI may be separately encoded from the data part.
  • the UCI may not be limited to explicitly indicating the target MCS, but may also be used to indicate other information, which is not limited in the embodiments of the present disclosure.
  • the random access message 1 may carry a demodulation reference signal (Demodulation Reference Signal, DMRS), and the DMRS is used to implicitly indicate the target MCS.
  • DMRS Demodulation Reference Signal
  • the configuration parameters of the DMRS may be configured by a network device, and the configuration parameters of the DMRS may include multiple DMRS configurations or multiple DMRS sequences.
  • the configuration parameters of the DMRS include a DMRS configuration
  • one or b DMRS configurations may be associated with one MCS in the MCS set
  • the configuration parameters of the DMRS include c DMRS sequences
  • one or The d DMRS sequences may be associated with one MCS in the MCS set.
  • a, b, c, and d are positive integers greater than 1, b is less than or equal to a, and d is less than or equal to c.
  • the DMRS configuration parameters included in the DMRS configuration parameters may specifically be DMRS ports or time domain resources of the DMRS, or DMRS ports or DMRS frequency domain resources.
  • the terminal device indicates the target MCS through the DMRS carried in the random access message 1
  • the MCS included in the MCS set is MCS1, MCS2, and MCS3
  • the corresponding indication relationship between the DMRS sequence and the target MCS can be shown in Table 3 below:
  • the random access message 1 may carry a preamble, and the preamble and / or a PRACH opportunity corresponding to the preamble are used to implicitly indicate the target MCS.
  • association between the preamble and the target MCS can be configured by the network device, and one or more preambles can be associated with one MCS in the MCS set.
  • the association relationship between the PRACH opportunity and the target MCS may be configured by a network device, and one or more PRACH opportunities are associated with one MCS in the MCS set.
  • the UE may first measure a synchronization signal block (Synchronization / PBCH block, SSblock), and report measurement reports such as RSRP, RSRQ, and / or RSSI. .
  • a network device such as a base station, can configure the MCS or MCS set for the UE based on the measurement report, so that the UE can modulate the load carried by MSG1 in the two-step random access based on the MCS or MCS set. coding.
  • the configuration for the UE to send MSG1 obtained from the network side may include at least one of the following:
  • Random access channel (PRACH) configuration parameters may include a preamble format, time-frequency domain resources, etc., and are used to process the preamble carried in MSG1;
  • Configuration parameters of the payload part may include N MCS; wherein, if there is no such configuration parameter, the UE may adopt the default MCS or the default MCS set;
  • Configuration parameters when UCI is transmitted on PUSCH may include beta value, code rate, modulation mode, time-frequency domain resources, etc. Among them, if there is no such configuration parameter, the UE may adopt UCI default parameters.
  • the UE can send the corresponding MSG1.
  • the UE may determine the appropriate MCS according to the signal (RSRP, RSRQ, and / or RSSI) measurement results and / or the size of the MSG1 payload, and use this determined MCS to perform the load part carried in MSG1 Modulation and coding; when sending MSG1, the UE may explicitly indicate the MCS used by UCI according to the UCI configuration parameters or default parameters.
  • the configuration for the UE to send MSG1 obtained from the network side may include at least one of the following:
  • Random access channel (PRACH) configuration parameters may include a preamble format, time-frequency domain resources, etc., and are used to process the preamble carried in MSG1;
  • the configuration parameters of the payload part may include N MCS; among them, if there is no such configuration parameter, the UE may adopt a default MCS or a default MCS set;
  • the configuration parameters can include M1 DMRS configurations or M2 DMRS sequences; where M1 DMRS configurations are included, N MCSs can be associated with M1 DMRS configurations, for example, MCS can correspond to DMRS configuration m1 M1 is equal to M1modN, mod represents the remainder function; when M2 DMRS sequences are included, N MCSs can be associated with M2 DMRS sequences, for example, MCSn can correspond to DMRS sequence m2, m2 equals M2mod N, mod represents remainder Function; M1 and M2 are positive integers greater than 1, m1 is less than or equal to M1, m2 is less than or equal to M2, 0 ⁇ n ⁇ N-1. If there is no such configuration parameter, the UE may adopt the default parameters of the DMRS.
  • the UE can send the corresponding MSG1.
  • the UE may determine the appropriate MCS according to the signal (RSRP, RSRQ, and / or RSSI) measurement results and / or the size of the MSG1 payload, and use this determined MCS to perform the load part carried in MSG1 Modulation and coding; further, when sending MSG1, the UE may select the corresponding DMRS according to the configuration parameters or default parameters of the DMRS to implicitly indicate the MCS used.
  • the configuration for the UE to send MSG1 obtained from the network side may include at least one of the following:
  • Random access channel (PRACH) configuration parameters may include a preamble format, time-frequency domain resources, etc., and are used to process the preamble carried in MSG1;
  • the configuration parameters of the payload part may include N MCS; among them, if there is no such configuration parameter, the UE may adopt a default MCS or a default MCS set;
  • association between the preamble and MCS, and / or the association between PRACH opportunities and MCS for example, every M MCS is associated with 1 PRACH opportunity; and / or, R contention-based (CB) preambles It can be associated with each MCS; for example, R consecutively numbered CB preambles can be associated with MCS at each PRACH opportunity, 0 ⁇ n ⁇ N-1, and the preamble index starts from n * 64 / N.
  • CB contention-based
  • MCS0 can be associated with 4 FDM PRACH opportunities at PRACH transmission time 1
  • MCS1 can be associated with PRACH opportunity association of 4 FDMs at PRACH transmission time 2 and so on.
  • the CB Preamble of each PRACH opportunity is associated with one MCS.
  • MCS Preamble number of each PRACH opportunity
  • R * max (1, M) 8
  • one PRACH opportunity is associated with two MCSs
  • each PRACH opportunity Each MCS is associated with 4 CB Preambles.
  • MCS0 ⁇ 1 can be associated with PRACH opportunity 1 of the FDM at PRACH transmission time 1
  • MCS2 ⁇ 3 can be associated with PRACH opportunity 2 of the FDM at PRACH transmission time 1.
  • preambles 0 to 3 can be associated with MCS0, preambles 4 to 7 can be associated with MCS1, and in PRACH opportunity 2, preamble 8 ⁇ 11 can be associated with MCS2, and preambles 12 ⁇ 15 can be associated with MCS3.
  • Preamble and MCS have the same correspondence relationship.
  • 8 CB Preambles of each PRACH opportunity are associated with the MCS.
  • MCS0 can be associated with 4 PRACH opportunities at PRACH transmission time 1 of PRACH slot 1
  • MCS1 Can be associated with 4 PRACH opportunities at PRACH transmission time 2 at PRACH slot 1
  • MCS2 can be associated with 4 PRACH opportunities at PRACH transmission time 1 at PRACH slot 2
  • MCS3 can be associated with 4 PRACH at PRACH transmission time 2 at PRACH slot 2 Opportunity association.
  • MCS can be associated with PRACH opportunities in the following order: first, MCS is associated with multiple preamble codes of a PRACH opportunity in ascending or descending order of preamble index; second, MCS is indexed by frequency domain resources ( frequency (resource index) in ascending or descending order to associate PRACH opportunities to multiple FDMs; then, MCS associates PRACH opportunities to multiple TDMs in a PRACH slot in time order (time resource index) ascending or descending order Opportunities; Finally, multiple PRACH opportunities are associated in an ascending order of PRACH time slots.
  • the UE can send the corresponding MSG1.
  • the UE may determine the appropriate MCS according to the signal (RSRP, RSRQ, and / or RSSI) measurement results and / or the size of the MSG1 payload, and use this determined MCS to perform the load part carried in MSG1 Modulation and coding; further, when transmitting MSG1, the UE may implicitly indicate the MCS used by using the preamble carried in the MSG1 and / or the PRACH opportunity corresponding to the preamble.
  • an embodiment of the present disclosure further provides a random access method, which is applied to a network device.
  • the method may include the following steps:
  • Step 201 Receive a random access message 1; the random access message 1 carries a payload portion, which is obtained by performing modulation and coding according to the target MCS.
  • the random access message 1 may specifically be a message in a random access process, and may optionally be a request message in a two-step random access (2-step RACH) process, such as Msg1.
  • the random access message 1 may carry a preamble and a payload part, and the payload part may include uplink data and / or control information.
  • the payload part may be carried by a data channel, a control channel, and / or other channels.
  • the uplink data in the payload part can be carried by the PUSCH, and the control information in the payload part can be carried by the PUCCH.
  • a random access message 1 is received from a terminal device, and the payload carried in the random access message 1 is obtained by performing modulation and coding according to the target MCS. It is clear how to modulate and encode the payload carried in message 1 during the random access process. This can ensure that the payload is accurately received by the network side, reducing the complexity of the receiving process on the network side, thereby ensuring the effectiveness and reliability of communication.
  • the method may further include any one of the following:
  • the UCI is used to indicate the target MCS explicitly; the DMRS is used to implicitly indicate the target MCS; the preamble, and / or, the PRACH opportunity corresponding to the preamble is used implicitly
  • the target MCS is indicated.
  • the payload part carried in the received random access message 1 can be demodulated and decoded according to the target MCS, thereby ensuring the accuracy of the reception processing.
  • an embodiment of the present disclosure further provides a terminal device 3, including:
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to a target MCS.
  • the terminal device performs modulation and coding on the payload part carried in the random access message 1 based on the target MCS, and can clarify how to modulate and encode the payload part carried in the message 1 in the random access process, thereby ensuring that the payload part is Network-side accurate reception reduces the complexity of network-side reception processing, thereby ensuring communication effectiveness and reliability.
  • the target MCS is:
  • a predefined MCS or an MCS indicated by a system broadcast message or high-level signaling.
  • the terminal device 3 may further include:
  • a first acquisition module configured to acquire an MCS set
  • a selection module configured to select the target MCS from the MCS set.
  • the MCS set is:
  • a predefined MCS set or an MCS set indicated by a system broadcast message or high-level signaling.
  • the selection module is specifically configured to:
  • the random access message 1 carries uplink control information UCI, and the UCI is used to explicitly indicate the target MCS;
  • the random access message 1 carries a demodulation reference signal DMRS, which is used to implicitly indicate the target MCS;
  • the random access message 1 carries a preamble, and the preamble and / or a PRACH opportunity of a physical random access channel corresponding to the preamble is used to implicitly indicate the target MCS.
  • the UCI adopts a modulation or coding scheme that is predefined or configured by a network device for modulation and coding.
  • the configuration parameters of the DMRS are configured by a network device, and the configuration parameters of the DMRS include multiple DMRS configurations or multiple DMRS sequences.
  • the configuration parameters of the DMRS include a DMRS configuration
  • one or b of the DMRS configurations are associated with one MCS in the MCS set
  • the configuration parameters of the DMRS include c DMRS sequences
  • one or d DMRS sequences are associated with one MCS in the MCS set
  • a, b, c, and d are positive integers greater than 1, b is less than or equal to a, and d is less than or equal to c.
  • the association between the preamble and the target MCS is configured by a network device, and one or more preambles are associated with one MCS in the MCS set.
  • the association relationship between the PRACH opportunity and the target MCS is configured by a network device, and one or more PRACH opportunities are associated with one MCS in the MCS set.
  • an embodiment of the present disclosure further provides a network device 4, including:
  • a receiving module 41 configured to receive a random access message 1
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to a target MCS.
  • the network device receives a random access message 1 from a terminal device, and a payload part carried in the random access message 1 is obtained by performing modulation and coding according to a target MCS, and it is clear how to modulate and encode the message 1 carried in the random access process Therefore, it can ensure that the load part is accurately received by the network side, reducing the complexity of the receiving process on the network side, thereby ensuring the communication effectiveness and reliability.
  • the network device 4 may further include:
  • the second obtaining module is configured to perform any one of the following operations when the target MCS is selected from the MCS set:
  • the UCI is used to indicate the target MCS explicitly; the DMRS is used to implicitly indicate the target MCS; the preamble, and / or, the PRACH opportunity corresponding to the preamble is used implicitly
  • the target MCS is indicated.
  • An embodiment of the present disclosure further provides a terminal device including a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein when the computer program is executed by the processor, Various processes of the foregoing random access method embodiments applied to a terminal device can be implemented, and the same technical effects can be achieved. To avoid repetition, details are not described herein again.
  • FIG. 5 is a schematic diagram of a hardware structure of a terminal device for implementing various embodiments of the present disclosure.
  • the terminal device 500 includes, but is not limited to, a radio frequency unit 501, a network module 502, an audio output unit 503, an input unit 504, a sensor 505, The display unit 506, the user input unit 507, the interface unit 508, the memory 509, the processor 510, and the power supply 511 and other components.
  • the terminal structure shown in FIG. 5 does not constitute a limitation on the terminal, and the terminal device may include more or fewer components than shown in the figure, or combine certain components, or arrange different components.
  • the terminal device includes, but is not limited to, a mobile phone, a tablet computer, a notebook computer, a palmtop computer, a car terminal, a wearable device, and a pedometer.
  • the radio frequency unit 501 is configured to send a random access message 1; the random access message 1 carries a payload portion, and the payload portion is obtained by performing modulation and coding according to the MCS.
  • the terminal device 500 in the embodiment of the present disclosure performs modulation and coding on the payload part carried in the random access message 1 based on the target MCS, and can clarify how to modulate and encode the payload part carried in the random access message 1 in order to ensure the payload part Received accurately by the network side, reducing the complexity of network side reception processing, thereby ensuring the effectiveness and reliability of communication.
  • the radio frequency unit 501 may be used to receive and send signals during the transmission and reception of information or during a call. Specifically, the downlink data from the base station is received and processed by the processor 510; The uplink data is sent to the base station.
  • the radio frequency unit 501 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 501 can also communicate with a network and other devices through a wireless communication system.
  • the terminal device provides users with wireless broadband Internet access through the network module 502, such as helping users to send and receive email, browse web pages, and access streaming media.
  • the audio output unit 503 may convert audio data received by the radio frequency unit 501 or the network module 502 or stored in the memory 509 into an audio signal and output it as a sound. Moreover, the audio output unit 503 may also provide audio output (for example, a call signal receiving sound, a message receiving sound, etc.) related to a specific function performed by the terminal device 500.
  • the audio output unit 503 includes a speaker, a buzzer, a receiver, and the like.
  • the input unit 504 is used for receiving audio or video signals.
  • the input unit 504 may include a graphics processing unit (GPU) 5041 and a microphone 5042.
  • the graphics processor 5041 pairs images of still pictures or videos obtained by an image capture device (such as a camera) in a video capture mode or an image capture mode. Data is processed.
  • the processed image frames may be displayed on the display unit 506.
  • the image frames processed by the graphics processor 5041 may be stored in the memory 509 (or other storage medium) or transmitted via the radio frequency unit 501 or the network module 502.
  • the microphone 5042 can receive sound, and can process such sound into audio data.
  • the processed audio data can be converted into a format that can be transmitted to a mobile communication base station via the radio frequency unit 501 in the case of a telephone call mode and output.
  • the terminal device 500 further includes at least one sensor 505, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor includes an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display panel 5061 according to the brightness of the ambient light.
  • the proximity sensor can close the display panel 5061 and the terminal panel 500 when the terminal device 500 is moved to the ear. / Or backlight.
  • an accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes).
  • sensor 505 can also include fingerprint sensor, pressure sensor, iris sensor, molecular sensor, gyroscope, barometer, hygrometer, thermometer, infrared The sensors and the like are not repeated here.
  • the display unit 506 is configured to display information input by the user or information provided to the user.
  • the display unit 506 may include a display panel 5061.
  • the display panel 5061 may be configured in the form of a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the user input unit 507 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the terminal.
  • the user input unit 507 includes a touch panel 5071 and other input devices 5072.
  • Touch panel 5071 also known as touch screen, can collect user's touch operations on or near it (such as the user using a finger, stylus, etc. any suitable object or accessory on touch panel 5071 or near touch panel 5071 operating).
  • the touch panel 5071 may include two parts, a touch detection device and a touch controller.
  • the touch detection device detects the user's touch position, and detects the signal caused by the touch operation, and transmits the signal to the touch controller; the touch controller receives touch information from the touch detection device, converts it into contact coordinates, and sends it To the processor 510, receive the command sent by the processor 510 and execute it.
  • various types such as resistive, capacitive, infrared, and surface acoustic wave can be used to implement the touch panel 5071.
  • the user input unit 507 may also include other input devices 5072.
  • other input devices 5072 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), a trackball, a mouse, and a joystick, and details are not described herein again.
  • the touch panel 5071 may be overlaid on the display panel 5061. After the touch panel 5071 detects a touch operation on or near the touch panel 5071, the touch panel 5071 transmits the touch operation to the processor 510 to determine the type of the touch event. The type of event provides corresponding visual output on the display panel 5061.
  • the touch panel 5071 and the display panel 5061 are implemented as two independent components to implement the input and output functions of the terminal, in some embodiments, the touch panel 5071 and the display panel 5061 can be integrated and Implement the input and output functions of the terminal, which are not limited here.
  • the interface unit 508 is an interface through which an external device is connected to the terminal device 500.
  • the external device may include a wired or wireless headset port, an external power (or battery charger) port, a wired or wireless data port, a memory card port, a port for connecting a device with an identification module, and audio input / output (I / O) port, video I / O port, headphone port, and more.
  • the interface unit 508 may be used to receive an input (e.g., data information, power, etc.) from an external device and transmit the received input to one or more elements within the terminal device 500 or may be used to connect the terminal device 500 and an external device. Transfer data between devices.
  • the memory 509 can be used to store software programs and various data.
  • the memory 509 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store data according to Data (such as audio data, phone book, etc.) created by the use of mobile phones.
  • the memory 509 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the processor 510 is a control center of the terminal device, and uses various interfaces and lines to connect various parts of the entire terminal. By running or executing software programs and / or modules stored in the memory 509, and calling data stored in the memory 509, Perform various functions of the terminal and process data to monitor the terminal as a whole.
  • the processor 510 may include one or more processing units; optionally, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the tuning processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 510.
  • the terminal device 500 may further include a power source 511 (such as a battery) for supplying power to various components.
  • a power source 511 such as a battery
  • the power source 511 may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • terminal device 500 may further include some functional modules that are not shown, and details are not described herein again.
  • An embodiment of the present disclosure further provides a network device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, wherein when the computer program is executed by the processor,
  • FIG. 6 is a schematic diagram of a hardware structure of a network device that implements various embodiments of the present disclosure.
  • the network device 60 includes, but is not limited to, a bus 61, a transceiver 62, an antenna 63, a bus interface 64, a processor 65, and Memory 66.
  • the network device 60 further includes a computer program stored on the memory 66 and executable on the processor 65.
  • the computer program When the computer program is executed by the processor 65, the following steps are implemented:
  • the random access message 1 carries a payload part, and the payload part is obtained by performing modulation and coding according to a target MCS.
  • the transceiver 62 is configured to receive and send data under the control of the processor 65.
  • the bus architecture (represented by bus 61).
  • the bus 61 may include any number of interconnected buses and bridges.
  • the bus 61 will include one or more processors represented by the processor 65 and memories represented by the memory 66.
  • Various circuits are linked together.
  • the bus 61 can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, and therefore, they will not be described further herein.
  • the bus interface 64 provides an interface between the bus 61 and the transceiver 62.
  • the transceiver 62 may be a single element or a plurality of elements, such as a plurality of receivers and transmitters, providing a unit for communicating with various other devices on a transmission medium.
  • the data processed by the processor 65 is transmitted on a wireless medium through the antenna 63. Further, the antenna 63 also receives the data and transmits the data to the processor 65.
  • the processor 65 is responsible for managing the bus 61 and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 66 may be used to store data used by the processor 65 when performing operations.
  • the processor 65 may be a CPU, an ASIC, an FPGA, or a CPLD.
  • An embodiment of the present disclosure further provides a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, each process of the foregoing random access method embodiment is implemented, and the same can be achieved.
  • the computer-readable storage medium is, for example, a read-only memory (ROM), a random access memory (RAM), a magnetic disk or an optical disk.
  • the methods in the above embodiments can be implemented by means of software plus a necessary universal hardware platform, and of course, also by hardware, but in many cases the former is better.
  • Implementation Based on this understanding, the technical solution of the present disclosure that is essentially or contributes to the existing technology can be embodied in the form of a software product that is stored in a storage medium (such as ROM / RAM, magnetic disk, The optical disc) includes several instructions for causing a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) to execute the methods described in the embodiments of the present disclosure.
  • a terminal which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供一种随机接入方法、终端设备及网络设备,其中,所述随机接入方法包括:发送随机接入消息1;所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标调制与编码策略MCS进行调制编码得到。

Description

随机接入方法、终端设备及网络设备
相关申请的交叉引用
本申请主张在2018年7月31日在中国提交的中国专利申请号No.201810858499.8的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信技术领域,尤其涉及一种随机接入方法、终端设备及网络设备。
背景技术
与相关技术中的移动通信系统相比,第五代5G移动通信系统需要适应更加多样化的场景和业务需求。新无线(New Radio,NR)系统的主要场景包括移动宽带增强(enhance Mobile Broadband,eMBB)、大规模物联网(massive Machine Type of Communication,mMTC)和超高可靠超低时延通信(Ultra-Reliable Low latency Communications,URLLC)等,这些场景对相应系统提出了高可靠、低时延、大带宽和广覆盖等要求。
在传统的上行传输模式下,终端设备比如用户设备(User Equipment,UE),如果需要发送上行数据,首先要通过随机接入过程获取上行定时同步,即从网络侧获取上行定时提前(Timing advance,TA)信息。在获得上行定时同步后,UE可以通过动态调度或半静态调度发送上行数据。
当上行数据包较小时,通过随机接入过程获得上行定时同步后发送上行数据的方式,会造成资源和电量的消耗。因此在mMTC场景下,UE可在非同步的状态下,发送上行数据。与随机接入过程类似,UE发送前导(preamble)码时也可处于非同步的状态,但是需要通过在preamble码中添加循环前缀(cyclic prefix,CP),来抵消传输延迟带来的影响。
在NR系统中,网络设备比如基站可以配置在一个时间点(time instance,即传输一个物理随机接入信道(Physical Random Access Channel,PRACH)资源所需的时长,在此也可指用于传输PRACH的时域位置)上存在多个频 分多路复用(Frequency Division Multiplexing,FDM)的PRACH传输机会(transmission occasion),其中该PRACH传输机会也可称为PRACH机会(occasion),简称为RO。一个时间点上可以进行FDM的RO个数可以为:{1,2,4,8}。
通常,随机接入前导(preamble)码只能在参数PRACHConfigurationIndex配置的时域资源上传输,随机接入前导码只能在参数prach-FDM配置的频域资源上传输,PRACH频域资源可表示为n RA∈{0,1,...,M-1},其中M等于高层参数prach-FDM。在初始接入的时候,PRACH频域资源n RA可以从初始激活上行带宽部分(initial active uplink bandwidth part)内频率最低的RO资源开始升序编号,否则,PRACH频域资源n RA从激活上行带宽部分(active uplink bandwidth part)内频率最低的RO资源开始升序编号。
目前,UE在发送两步随机接入(2-step RACH)的消息MSG1时,可以同时传输前导码和载荷(即负荷,payload)部分,该载荷部分比如为上行数据和/或控制信息。对于载荷部分,UE要对其进行调制编码。然而,目前对于如何调制编码MSG1中携带的载荷部分却没有明确,从而无法保证通信有效性跟可靠性。
发明内容
本公开实施例提供一种随机接入方法、终端设备及网络设备,以解决当前没有明确如何对随机接入过程中消息携带的载荷部分进行调制编码的问题。
为了解决上述问题,第一方面,本公开实施例提供了一种随机接入方法,应用于终端设备,包括:
发送随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
第二方面,本公开实施例还提供了一种随机接入方法,应用于网络设备,包括:
接收随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目 标MCS进行调制编码得到。
第三方面,本公开实施例还提供了一种终端设备,包括:
发送模块,用于发送随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
第四方面,本公开实施例还提供了一种网络设备,包括:
接收模块,用于接收随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
第五方面,本公开实施例还提供了一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时可实现上述应用于终端设备的随机接入方法的步骤,或者上述应用于网络设备的随机接入方法的步骤。该通信设备可选为终端设备或者网络设备。
第六方面,本公开实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时可实现上述应用于终端设备的随机接入方法的步骤,或者上述应用于网络设备的随机接入方法的步骤。
在本公开实施例中,基于目标MCS对随机接入消息1中携带的载荷部分进行调制编码,可以明确如何调制编码随机接入过程中消息1携带的载荷部分,从而可以保证该载荷部分被网络侧准确接收,降低网络侧接收处理的复杂度,从而保证通信有效性跟可靠性。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的一随机接入方法的流程图;
图2为本公开实施例的另一随机接入方法的流程图;
图3为本公开实施例的终端设备的结构示意图之一;
图4为本公开实施例的网络设备的结构示意图之一;
图5为本公开实施例的终端设备的结构示意图之二;
图6为本公开实施例的网络设备的结构示意图之二。
具体实施方式
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。说明书以及权利要求中“和/或”表示所连接对象的至少其中之一。
本文所描述的技术不限于长期演进型(Long Time Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,并且也可用于各种无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。术语“系统”和“网络”常被可互换地使用。CDMA系统可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code  Division Multiple Access,WCDMA)和其他CDMA变体。TDMA系统可实现诸如全球移动通信系统(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA系统可实现诸如超移动宽带(Ultra Mobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信系统(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了NR系统,并且在以下大部分描述中使用NR术语,所属领域技术人员可以理解,实施例仅为举例,并不构成限制,本公开实施例的技术方案也可应用于NR系统应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
本公开实施例无线通信系统包括终端设备和网络设备。其中,终端设备也可以称作终端或者用户终端(User Equipment,UE),终端设备可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本公开实施例中并不限定终端的具体类型。网络设备可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信系统中的基站(例如:eNB、WLAN接入点、或其他接入点等),其中,基站可被称为节点B、演进节点B、接入点、基收 发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本公开实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
参见图1所示,本公开实施例提供了一种随机接入方法,应用于终端设备,所述方法可包括如下步骤:
步骤101:发送随机接入消息1;该随机接入消息1中携带有载荷部分,该载荷部分为根据目标MCS进行调制编码得到。
可以理解的,该随机接入消息1具体可为随机接入过程中的消息,可选为两步随机接入(2-step RACH)过程中请求消息,比如Msg1。
该随机接入消息1中可携带有前导码和载荷部分,该载荷部分可以包括上行数据,和/或控制信息等。该载荷部分可以由数据信道、控制信道和/或其他信道承载。比如该载荷部分中的上行数据可以由物理上行共享信道(Physical Uplink Shared Channel,PUSCH)承载,该载荷部分中的控制信息可以由物理上行控制信道(Physical Uplink Control Channel,PUCCH)承载,或者与上行数据复用在PUSCH上承载。
可选的,该目标MCS(Modulation and Coding Scheme,调制与编码策略)可以由协议约定,也可以由网络设备配置。具体的,该目标MCS可以为:
预定义的MCS,或者,(网络设备)通过系统广播消息或者高层信令指示的MCS。
需说明的是,终端设备在根据目标MCS对Msg1中的载荷部分进行调制编码之前,可首先从网络设备接收为其配置的MCS。而如果网络设备没有为其配置MCS,则终端设备可采用默认的MCS,即预定义的MCS。而另外一些场景下,假设预先约定网络设备不会为终端设备配置MCS,则终端设备可直接采用预定义的MCS对Msg1中的载荷部分进行调制编码。
本公开实施例的随机接入方法,基于目标MCS对随机接入消息1中携带的载荷部分进行调制编码,可以明确如何调制编码随机接入过程中消息1携 带的载荷部分,从而可以保证该载荷部分被网络侧准确接收,降低网络侧接收处理的复杂度,从而保证通信有效性跟可靠性。
本公开实施例中,除上述确定目标MCS的方式外,目标MCS还可以由终端设备从MCS集合中自行确定及选择。该MCS集合可以由协议约定,也可以由网络设备配置。具体的步骤101之前,所述方法还可包括:
终端设备获取MCS集合;
终端设备从MCS集合中选择目标MCS。
其中,该MCS集合可以为:
预定义的MCS集合,或者,(网络设备)通过系统广播消息或者高层信令指示的MCS集合。
而终端设备从MCS集合中选择目标MCS的过程可以为:终端设备根据信号测量结果,和/或该两步随机接入请求消息的载荷大小,从MCS集合中选择目标MCS。
可选的,该信号测量结果可以为如下至少一项:参考信号接收功率((Reference Signal Receiving Power,RSRP)、参考信号接收质量(Reference Signal Receiving Quality,RSRQ)和接收信号强度指示(Received Signal Strength Indication,RSSI)。可以理解的,当载荷部分具体为数据部分时,对应的载荷大小即为传输块(Transport Block,TB)的大小。
例如实际应用中,网络设备可为终端设备配置基于信号测量结果比如RSRP,选择MCS的门限值。这样终端设备在从MCS集合中选择MCS时,可根据该门限值选择匹配的MCS。比如,在根据RSRP选择目标MCS时,若MCS集合包括的MCS为MCS1、MCS2和MCS3,则网络设备可配置RSRP的门限值为X1和X2,使得终端设备可根据如下表1所示的对应关系选择目标MCS:
RSRP值 目标MCS
RSRP<X1 MCS1
X1<=RSRP<X2 MCS2
X2<=RSRP MCS3
表1
又例如实际应用中,网络设备可为终端设备配置基于载荷大小(Payload  size)选择MCS的门限值。这样终端设备在从MCS集合中选择MCS时,可根据该门限值选择匹配的MCS。
比如,在根据载荷大小选择目标MCS时,若MCS集合包括的MCS为MCS4、MCS5和MCS6,则网络设备可配置载荷大小的门限值为X3和X4,使得终端设备可根据如下表2所示的对应关系选择目标MCS:
载荷大小 目标MCS
载荷大小<X3 MCS4
X3<=载荷大小<X4 MCS5
X4<=载荷大小 MCS6
表2
需说明的是,基于上述根据RSRP选择目标MCS的实例,和上述根据载荷大小选择目标MCS的实例,当根据信号测量结果和载荷大小时,终端设备同样可以根据网络设备配置的门限值(包括信号测量结果的门限值,和载荷大小的门限值)及相应的对应关系,结合信号测量结果和载荷大小,选择匹配的MCS,在此不再赘述。
本公开实施例中,当目标MCS为从MCS集合中选择的时,为了保证网络设备获知该目标MCS以及正确处理随机接入消息1,终端设备可在发送随机接入消息1的同时,通过该随机接入消息1的相关信息向网络设备指示该目标MCS。
具体的,该随机接入消息1中可携带有上行控制信息(Uplink Control Information,UCI),该UCI用于显式指示目标MCS。
需指出的是,该UCI可以采用预定义或网络设备配置的调制编码方案进行调制编码。该UCI可以承载于载荷部分的数据信道或者控制信道中,同该载荷部分一同发送。并且该UCI可以采用与载荷部分中的数据部分不同的调制编码方式,该UCI可以与数据部分分别进行单独编码。可以理解的,具体实现时,该UCI可不仅仅限于显式指示目标MCS,还可以用于指示其他信息,本公开实施例不对其进行限制。
或者,该随机接入消息1中可携带有解调参考信号(Demodulation Reference Signal,DMRS),该DMRS用于隐式指示目标MCS。
需指出的是,该DMRS的配置参数可以由网络设备配置,且该DMRS 的配置参数可以包括多个DMRS配置或多个DMRS序列。可选的,当该DMRS的配置参数包括a个DMRS配置时,一个或者b个DMRS配置可与MCS集合中的一个MCS关联;或者,当该DMRS的配置参数包括c个DMRS序列时,一个或者d个DMRS序列可与MCS集合中的一个MCS关联。其中,a、b、c和d为大于1的正整数,b小于或等于a,d小于或等于c。
可以理解的,该DMRS的配置参数包括的DMRS配置具体可为DMRS端口或DMRS的时域资源,或者,DMRS端口或DMRS的频域资源等。
例如,终端设备通过随机接入消息1中携带的DMRS指示目标MCS时,若配置有DMRS序列1、2和3,MCS集合包括的MCS为MCS1、MCS2和MCS3(需说明的是,DMRS序列的数量与MCS集合包括的MCS的数量不一定相等,此处仅示出相同的实例),则DMRS序列与目标MCS的对应指示关系可如下表3所示:
DMRS序列 目标MCS
DMRS序列1 MCS1
DMRS序列2 MCS2
DMRS序列3 MCS3
表3
或者,该随机接入消息1中可携带有前导码,该前导码和/或该前导码对应的PRACH机会,用于隐式指示目标MCS。
需指出的是,该前导码和目标MCS的关联关系可由网络设备配置,且一个或多个前导码可与MCS集合中的一个MCS关联。该PRACH机会和目标MCS的关联关系可由网络设备配置,且一个或多个PRACH机会与MCS集合中的一个MCS关联。
下面结合具体实施例对本公开的随机接入过程进行说明。
本公开一具体实施例中,在两步随机接入(2-step RACH)之前,UE可首先测量同步信号块(Synchronization/PBCH block,SSblock),并上报RSRP、RSRQ和/或RSSI等测量报告。网络设备比如基站在接收到UE上报的测量报告后,可根据该测量报告为UE配置MCS或MCS集合,以使得UE基于MCS或MCS集合,对两步随机接入中MSG1携带的载荷部分进行调制编码。
本公开另一具体实施例中,UE从网络侧获取的发送MSG1的配置,可 包括如下至少一项:
随机接入信道(PRACH)的配置参数;该配置参数可包括前导码(Preamble)格式,时频域资源等,用于对MSG1中携带的前导码进行处理;
载荷(payload)部分的配置参数;该配置参数可包括N个MCS;其中,若没有该配置参数,UE可采用默认MCS或默认MCS集合;
UCI在PUSCH上传输时的配置参数;该配置参数可包括beta值、编码率(code rate)、调制方式、时频域资源等;其中,若没有该配置参数,UE可采用UCI的默认参数。
基于上述配置,UE可发送对应的MSG1。并且当N=1时,UE可根据该MCS,对MSG1中携带的载荷部分进行调制编码。当N>1时,UE可根据信号(RSRP、RSRQ和/或RSSI)测量结果,和/或MSG1载荷的大小,确定合适的MCS,并利用此确定的MCS,对MSG1中携带的载荷部分进行调制编码;进一步在发送MSG1时,UE可根据UCI的配置参数或默认参数,通过UCI显式指示所使用的MCS。
本公开又一具体实施例中,UE从网络侧获取的发送MSG1的配置,可包括如下至少一项:
随机接入信道(PRACH)的配置参数;该配置参数可包括前导码(Preamble)格式,时频域资源等,用于对MSG1中携带的前导码进行处理;
载荷部分的配置参数;该配置参数可包括N个MCS;其中,若没有该配置参数,UE可采用默认MCS或默认MCS集合;
DMRS的配置参数;该配置参数可包括M1个DMRS配置,或者M2个DMRS序列;其中当包括M1个DMRS配置时,N个MCS可关联到M1个DMRS配置,比如MCS n可与DMRS配置m1对应,m1等于M1mod N,mod表示求余函数;当包括M2个DMRS序列时,N个MCS可关联到M2个DMRS序列,比如MCS n可与DMRS序列m2对应,m2等于M2mod N,mod表示求余函数;M1和M2为大于1的正整数,m1小于或等于M1,m2小于或等于M2,0≤n≤N-1。而若没有该配置参数,UE可采用DMRS的默认参数。
基于上述配置,UE可发送对应的MSG1。并且当N=1时,UE可根据该 MCS,对MSG1中携带的载荷部分进行调制编码。当N>1时,UE可根据信号(RSRP、RSRQ和/或RSSI)测量结果,和/或MSG1载荷的大小,确定合适的MCS,并利用此确定的MCS,对MSG1中携带的载荷部分进行调制编码;进一步在发送MSG1时,UE可根据DMRS的配置参数或默认参数,选择对应的DMRS,以隐式指示所使用的MCS。
本公开再一具体实施例中,UE从网络侧获取的发送MSG1的配置,可包括如下至少一项:
随机接入信道(PRACH)的配置参数;该配置参数可包括前导码(Preamble)格式,时频域资源等,用于对MSG1中携带的前导码进行处理;
载荷部分的配置参数;该配置参数可包括N个MCS;其中,若没有该配置参数,UE可采用默认MCS或默认MCS集合;
前导码与MCS的关联关系,和/或,PRACH机会与MCS的关联关系;例如,每M个MCS与1个PRACH机会关联;和/或,R个基于竞争(contention based,CB)的前导码可与每个MCS关联;具体的比如R个连续编号的CB前导码在每个PRACH机会可与MCS n关联,0≤n≤N-1,而前导码索引从n*64/N开始。
例如,当配置PRACH机会与MCS的关联关系时,若M=1/4,则1个MCS与4个PRACH机会关联;若M=2,则2个MCS与1个PRACH机会关联。
又例如,当配置前导码与MCS的关联关系时,若R=8,则每个MCS与8个CB Preamble关联;若R=4,则每个MCS与4个CB Preamble关联。
又例如,当配置MCS与前导码和PRACH机会的关联关系时,每个PRACH机会的CB Preamble数可以为R*max(1,M),若N=4,M=1/4,R=8,则每个PRACH机会的CB Preamble数量为R*max(1,M)=8,4个PRACH机会与1个MCS关联,此4个PRACH机会中,每个PRACH机会的8个CB Preamble关联该MCS。具体的,若每个PRACH传输时刻,有4个FDM的PRACH机会,一个PRACH slot中,有4个PRACH传输时刻,则MCS0可与PRACH传输时刻1的4个FDM的PRACH机会关联,MCS1可与PRACH传输时刻2的4个FDM的PRACH机会关联,以此类推。此实例中,每个 PRACH机会的CB Preamble都与1个MCS关联。
或者,若N=8,M=2,R=4,则每个PRACH机会的CB Preamble数为R*max(1,M)=8,1个PRACH机会与2个MCS关联,每个PRACH机会中,每个MCS与4个CB Preamble关联。具体的,若每个PRACH传输时刻,有2个FDM的PRACH机会,一个PRACH slot中,有2个PRACH传输时刻,则MCS0~1可与PRACH传输时刻1的FDM的PRACH机会1关联,MCS2~3可与PRACH传输时刻1的FDM的PRACH机会2关联,在PRACH机会1中,前导码0~3可与MCS0关联,前导码4~7可与MCS1关联,在PRACH机会2中,前导码8~11可与MCS2关联,前导码12~15可与MCS3关联。以此类推,在PRACH传输时刻2的2个FDM的PRACH机会上,Preamble与MCS有相同的对应关系。
或者,若N=4,M=1/4,R=8,则每个PRACH机会的CB Preamble数为R*max(1,M)=8,4个PRACH机会与1个MCS关联,此4个PRACH机会中,每个PRACH机会的8个CB Preamble关联该MCS。具体的,若每个PRACH传输时刻,有4个FDM的PRACH机会,一个PRACH slot中,有2个PRACH传输时刻,则MCS0可与PRACH slot 1的PRACH传输时刻1的4个PRACH机会关联,MCS1可与PRACH slot 1的PRACH传输时刻2的4个PRACH机会关联,MCS2可与PRACH slot 2的PRACH传输时刻1的4个PRACH机会关联,MCS3可与PRACH slot 2的PRACH传输时刻2的4个PRACH机会关联。
可以理解的,MCS可以按照以下的顺序关联到PRACH机会:首先,MCS以preamble索引(index)升序或降序的方式,关联到一个PRACH机会的多个preamble码;其次,MCS以频域资源索引(frequency resource index)升序或降序的方式,关联到多个FDM的PRACH机会;然后,MCS以时域资源索引(time resource index)升序或降序的方式,关联到一个PRACH时隙的多个TDM的PRACH机会;最后,以PRACH时隙升序的方式,关联到多个PRACH机会。
基于上述配置,UE可发送对应的MSG1。并且当N=1时,UE可根据该MCS,对MSG1中携带的载荷部分进行调制编码。当N>1时,UE可根据信 号(RSRP、RSRQ和/或RSSI)测量结果,和/或MSG1载荷的大小,确定合适的MCS,并利用此确定的MCS,对MSG1中携带的载荷部分进行调制编码;进一步在发送MSG1时,UE可通过MSG1中携带的前导码和/或该前导码对应的PRACH机会,隐式指示所使用的MCS。
参见图2所示,本公开实施例还提供了一种随机接入方法,应用于网络设备,所述方法可包括如下步骤:
步骤201:接收随机接入消息1;该随机接入消息1中携带有载荷部分,该载荷部分为根据目标MCS进行调制编码得到。
可以理解的,该随机接入消息1具体可为随机接入过程中的消息,可选为两步随机接入(2-step RACH)过程中请求消息,比如Msg1。
该随机接入消息1中可携带有前导码和载荷部分,该载荷部分可以包括上行数据,和/或控制信息等。该载荷部分可以由数据信道、控制信道和/或其他信道承载。比如该载荷部分中的上行数据可以由PUSCH承载,该载荷部分中的控制信息可以由PUCCH承载。
本公开实施例中,从终端设备接收随机接入消息1,该随机接入消息1中携带的载荷部分根据目标MCS进行调制编码得到,可以明确如何调制编码随机接入过程中消息1携带的载荷部分,从而可以保证该载荷部分被网络侧准确接收,降低网络侧接收处理的复杂度,从而保证通信有效性跟可靠性。
本公开实施例中,可选的,当所述目标MCS为从MCS集合中选择的时,所述接收随机接入消息1之后,所述方法还可包括如下任意一项:
通过所述随机接入消息1中携带的UCI,获取所述目标MCS;
通过所述随机接入消息1中携带的DMRS,获取所述目标MCS;
通过所述随机接入消息1中携带的前导码,和/或,所述前导码对应的PRACH机会,获取所述目标MCS;
其中,所述UCI用于显式指示所述目标MCS;所述DMRS用于隐式指示所述目标MCS;所述前导码,和/或,所述前导码对应的PRACH机会,用于隐式指示所述目标MCS。
这样,获取目标MCS后,可根据该目标MCS,对接收到的随机接入消息1中携带的载荷部分进行解调解码,从而保证接收处理的准确性。
上述实施例对本公开的随机接入方法进行了说明,下面将结合实施例和附图对本公开的终端设备和网络设备进行说明。
参见图3所示,本公开实施例还提供了一种终端设备3,包括:
发送模块31,用于发送随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
本公开实施例的终端设备,基于目标MCS对随机接入消息1中携带的载荷部分进行调制编码,可以明确如何调制编码随机接入过程中消息1携带的载荷部分,从而可以保证该载荷部分被网络侧准确接收,降低网络侧接收处理的复杂度,从而保证通信有效性跟可靠性。
本公开实施例中,可选的,所述目标MCS为:
预定义的MCS,或者,通过系统广播消息或者高层信令指示的MCS。
可选的,所述终端设备3还可包括:
第一获取模块,用于获取MCS集合;
选择模块,用于从所述MCS集合中选择所述目标MCS。
可选的,所述MCS集合为:
预定义的MCS集合,或者,通过系统广播消息或者高层信令指示的MCS集合。
可选的,所述选择模块具体用于:
根据信号测量结果,和/或所述随机接入消息1的载荷大小,从所述MCS集合中选择所述目标MCS。
可选的,所述随机接入消息1中携带有上行控制信息UCI,所述UCI用于显式指示所述目标MCS;
或者
所述随机接入消息1中携带有解调参考信号DMRS,所述DMRS用于隐式指示所述目标MCS;
或者
所述随机接入消息1中携带有前导码,所述前导码和/或所述前导码对应的物理随机接入信道PRACH机会,用于隐式指示所述目标MCS。
可选的,所述UCI采用预定义或网络设备配置的调制编码方案进行调制编码。
可选的,所述DMRS的配置参数由网络设备配置,所述DMRS的配置参数包括多个DMRS配置或多个DMRS序列。
可选的,当所述DMRS的配置参数包括a个DMRS配置时,一个或者b个所述DMRS配置与所述MCS集合中的一个MCS关联;
或者,当所述DMRS的配置参数包括c个DMRS序列时,一个或者d个所述DMRS序列与所述MCS集合中的一个MCS关联;
其中,a、b、c和d为大于1的正整数,b小于或等于a,d小于或等于c。
可选的,所述前导码和所述目标MCS的关联关系由网络设备配置,一个或多个前导码与所述MCS集合中的一个MCS关联。
可选的,所述PRACH机会和所述目标MCS的关联关系由网络设备配置,一个或多个PRACH机会与所述MCS集合中的一个MCS关联。
参见图4所示,本公开实施例还提供了一种网络设备4,包括:
接收模块41,用于接收随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
本公开实施例的网络设备,从终端设备接收随机接入消息1,该随机接入消息1中携带的载荷部分根据目标MCS进行调制编码得到,可以明确如何调制编码随机接入过程中消息1携带的载荷部分,从而可以保证该载荷部分被网络侧准确接收,降低网络侧接收处理的复杂度,从而保证通信有效性跟可靠性。
本公开实施例中,可选的,所述网络设备4还可包括:
第二获取模块,用于当所述目标MCS为从MCS集合中选择的时,执行如下任意一项的操作:
通过所述随机接入消息1中携带的UCI,获取所述目标MCS;
通过所述随机接入消息1中携带的DMRS,获取所述目标MCS;
通过所述随机接入消息1中携带的前导码,和/或,所述前导码对应的PRACH机会,获取所述目标MCS;
其中,所述UCI用于显式指示所述目标MCS;所述DMRS用于隐式指示所述目标MCS;所述前导码,和/或,所述前导码对应的PRACH机会,用于隐式指示所述目标MCS。
本公开实施例还提供了一种终端设备,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时可实现上述应用于终端设备的随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,图5为实现本公开各个实施例的一种终端设备的硬件结构示意图,终端设备500包括但不限于:射频单元501、网络模块502、音频输出单元503、输入单元504、传感器505、显示单元506、用户输入单元507、接口单元508、存储器509、处理器510、以及电源511等部件。本领域技术人员可以理解,图5中示出的终端结构并不构成对终端的限定,终端设备可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本公开实施例中,终端设备包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
其中,射频单元501,用于发送随机接入消息1;所述随机接入消息1中携带有载荷部分,所述载荷部分为根据MCS进行调制编码得到。
本公开实施例的终端设备500,基于目标MCS对随机接入消息1中携带的载荷部分进行调制编码,可以明确如何调制编码随机接入过程中消息1携带的载荷部分,从而可以保证该载荷部分被网络侧准确接收,降低网络侧接收处理的复杂度,从而保证通信有效性跟可靠性。
应理解的是,本公开实施例中,射频单元501可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元501包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元501还可以通过无线通信系统与网络和其他设备通信。
终端设备通过网络模块502为用户提供了无线的宽带互联网访问,如帮助用户收发电子邮件、浏览网页和访问流式媒体等。
音频输出单元503可以将射频单元501或网络模块502接收的或者在存 储器509中存储的音频数据转换成音频信号并且输出为声音。而且,音频输出单元503还可以提供与终端设备500执行的特定功能相关的音频输出(例如,呼叫信号接收声音、消息接收声音等等)。音频输出单元503包括扬声器、蜂鸣器以及受话器等。
输入单元504用于接收音频或视频信号。输入单元504可以包括图形处理器(Graphics Processing Unit,GPU)5041和麦克风5042,图形处理器5041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。处理后的图像帧可以显示在显示单元506上。经图形处理器5041处理后的图像帧可以存储在存储器509(或其它存储介质)中或者经由射频单元501或网络模块502进行发送。麦克风5042可以接收声音,并且能够将这样的声音处理为音频数据。处理后的音频数据可以在电话通话模式的情况下转换为可经由射频单元501发送到移动通信基站的格式输出。
终端设备500还包括至少一种传感器505,比如光传感器、运动传感器以及其他传感器。具体地,光传感器包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板5061的亮度,接近传感器可在终端设备500移动到耳边时,关闭显示面板5061和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别终端姿态(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;传感器505还可以包括指纹传感器、压力传感器、虹膜传感器、分子传感器、陀螺仪、气压计、湿度计、温度计、红外线传感器等,在此不再赘述。
显示单元506用于显示由用户输入的信息或提供给用户的信息。显示单元506可包括显示面板5061,可以采用液晶显示器(Liquid Crystal Display,LCD)、有机发光二极管(Organic Light-Emitting Diode,OLED)等形式来配置显示面板5061。
用户输入单元507可用于接收输入的数字或字符信息,以及产生与终端的用户设置以及功能控制有关的键信号输入。具体地,用户输入单元507包 括触控面板5071以及其他输入设备5072。触控面板5071,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板5071上或在触控面板5071附近的操作)。触控面板5071可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给处理器510,接收处理器510发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板5071。除了触控面板5071,用户输入单元507还可以包括其他输入设备5072。具体地,其他输入设备5072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
进一步的,触控面板5071可覆盖在显示面板5061上,当触控面板5071检测到在其上或附近的触摸操作后,传送给处理器510以确定触摸事件的类型,随后处理器510根据触摸事件的类型在显示面板5061上提供相应的视觉输出。虽然在图5中,触控面板5071与显示面板5061是作为两个独立的部件来实现终端的输入和输出功能,但是在某些实施例中,可以将触控面板5071与显示面板5061集成而实现终端的输入和输出功能,具体此处不做限定。
接口单元508为外部装置与终端设备500连接的接口。例如,外部装置可以包括有线或无线头戴式耳机端口、外部电源(或电池充电器)端口、有线或无线数据端口、存储卡端口、用于连接具有识别模块的装置的端口、音频输入/输出(I/O)端口、视频I/O端口、耳机端口等等。接口单元508可以用于接收来自外部装置的输入(例如,数据信息、电力等等)并且将接收到的输入传输到终端设备500内的一个或多个元件或者可以用于在终端设备500和外部装置之间传输数据。
存储器509可用于存储软件程序以及各种数据。存储器509可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器509可以包括高速随机存取存储器,还可以包括非易失性存储器,例 如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是终端设备的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器509内的软件程序和/或模块,以及调用存储在存储器509内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器510可包括一个或多个处理单元;可选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
终端设备500还可以包括给各个部件供电的电源511(比如电池),可选的,电源511可以通过电源管理系统与处理器510逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。
另外,终端设备500还可包括一些未示出的功能模块,在此不再赘述。
本公开实施例还提供了一种网络设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现上述应用于网络设备的随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体的,图6为实现本公开各个实施例的一种网络设备的硬件结构示意图,所述网络设备60包括但不限于:总线61、收发机62、天线63、总线接口64、处理器65和存储器66。
在本公开实施例中,所述网络设备60还包括:存储在存储器66上并可在处理器65上运行的计算机程序,计算机程序被处理器65执行时实现以下步骤:
接收随机接入消息1;
其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
收发机62,用于在处理器65的控制下接收和发送数据。
在图6中,总线架构(用总线61来代表),总线61可以包括任意数量的互联的总线和桥,总线61将包括由处理器65代表的一个或多个处理器和存储器66代表的存储器的各种电路链接在一起。总线61还可以将诸如外围设 备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口64在总线61和收发机62之间提供接口。收发机62可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器65处理的数据通过天线63在无线介质上进行传输,进一步,天线63还接收数据并将数据传送给处理器65。
处理器65负责管理总线61和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器66可以被用于存储处理器65在执行操作时所使用的数据。
可选的,处理器65可以是CPU、ASIC、FPGA或CPLD。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述随机接入方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,该计算机可读存储介质,例如为只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本公开各个实施例所述的方法。
上面结合附图对本公开的实施例进行了描述,但是本公开并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本公开的启示下,在不脱离本公开宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本公开的保护之内。

Claims (17)

  1. 一种随机接入方法,应用于终端设备,包括:
    发送随机接入消息1;
    其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标调制与编码策略MCS进行调制编码得到。
  2. 根据权利要求1所述的方法,其中,所述目标MCS为:
    预定义的MCS,或者,通过系统广播消息或者高层信令指示的MCS。
  3. 根据权利要求1所述的方法,其中,所述发送随机接入消息1之前,所述方法还包括:
    获取MCS集合;
    从所述MCS集合中选择所述目标MCS。
  4. 根据权利要求3所述的方法,其中,所述MCS集合为:
    预定义的MCS集合,或者,通过系统广播消息或者高层信令指示的MCS集合。
  5. 根据权利要求3所述的方法,其中,所述从所述MCS集合中选择所述目标MCS,包括:
    根据信号测量结果,和/或所述随机接入消息1的载荷大小,从所述MCS集合中选择所述目标MCS。
  6. 根据权利要求3所述的方法,其中,所述随机接入消息1中携带有上行控制信息UCI,所述UCI用于显式指示所述目标MCS;
    或者
    所述随机接入消息1中携带有解调参考信号DMRS,所述DMRS用于隐式指示所述目标MCS;
    或者
    所述随机接入消息1中携带有前导码,所述前导码和/或所述前导码对应的物理随机接入信道PRACH机会,用于隐式指示所述目标MCS。
  7. 根据权利要求6所述的方法,其中,所述UCI采用预定义或网络设备配置的调制编码方案进行调制编码。
  8. 根据权利要求6所述的方法,其中,所述DMRS的配置参数由网络设备配置,所述DMRS的配置参数包括多个DMRS配置或多个DMRS序列。
  9. 根据权利要求8所述的方法,其中,当所述DMRS的配置参数包括a个DMRS配置时,一个或者b个所述DMRS配置与所述MCS集合中的一个MCS关联;
    或者,当所述DMRS的配置参数包括c个DMRS序列时,一个或者d个所述DMRS序列与所述MCS集合中的一个MCS关联;
    其中,a、b、c和d为大于1的正整数,b小于或等于a,d小于或等于c。
  10. 根据权利要求6所述的方法,其中,所述前导码和所述目标MCS的关联关系由网络设备配置,一个或多个前导码与所述MCS集合中的一个MCS关联。
  11. 根据权利要求6所述的方法,其中,所述PRACH机会和所述目标MCS的关联关系由网络设备配置,一个或多个PRACH机会与所述MCS集合中的一个MCS关联。
  12. 一种随机接入方法,应用于网络设备,包括:
    接收随机接入消息1;
    其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
  13. 根据权利要求12所述的方法,其中,当所述目标MCS为从MCS集合中选择的时,所述接收随机接入消息1之后,所述方法还包括如下任意一项:
    通过所述随机接入消息1中携带的UCI,获取所述目标MCS;
    通过所述随机接入消息1中携带的DMRS,获取所述目标MCS;
    通过所述随机接入消息1中携带的前导码,和/或,所述前导码对应的PRACH机会,获取所述目标MCS;
    其中,所述UCI用于显式指示所述目标MCS;所述DMRS用于隐式指示所述目标MCS;所述前导码,和/或,所述前导码对应的PRACH机会,用于隐式指示所述目标MCS。
  14. 一种终端设备,包括:
    发送模块,用于发送随机接入消息1;
    其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
  15. 一种网络设备,包括:
    接收模块,用于接收随机接入消息1;
    其中,所述随机接入消息1中携带有载荷部分,所述载荷部分为根据目标MCS进行调制编码得到。
  16. 一种通信设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述计算机程序被所述处理器执行时实现如权利要求1至11中任一项所述的随机接入方法的步骤,或者如权利要求12或13所述的随机接入方法的步骤。
  17. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至11中任一项所述的随机接入方法的步骤,或者如权利要求12或13所述的随机接入方法的步骤。
PCT/CN2019/096505 2018-07-31 2019-07-18 随机接入方法、终端设备及网络设备 WO2020024801A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217005256A KR102497447B1 (ko) 2018-07-31 2019-07-18 랜덤 액세스 방법, 단말 기기 및 네트워크 기기
JP2021504527A JP7181991B2 (ja) 2018-07-31 2019-07-18 ランダムアクセス方法、端末機器及びネットワーク機器
SG11202100190YA SG11202100190YA (en) 2018-07-31 2019-07-18 Random access method, terminal device and network device
EP19844628.8A EP3813466A4 (en) 2018-07-31 2019-07-18 RANDOM ACCESS PROCESS, TERMINAL DEVICE AND NETWORK DEVICE
US17/144,010 US20210126733A1 (en) 2018-07-31 2021-01-07 Random access method, terminal device and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810858499.8A CN110784932B (zh) 2018-07-31 2018-07-31 随机接入方法、终端设备及网络设备
CN201810858499.8 2018-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/144,010 Continuation US20210126733A1 (en) 2018-07-31 2021-01-07 Random access method, terminal device and network device

Publications (1)

Publication Number Publication Date
WO2020024801A1 true WO2020024801A1 (zh) 2020-02-06

Family

ID=69232353

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096505 WO2020024801A1 (zh) 2018-07-31 2019-07-18 随机接入方法、终端设备及网络设备

Country Status (7)

Country Link
US (1) US20210126733A1 (zh)
EP (1) EP3813466A4 (zh)
JP (1) JP7181991B2 (zh)
KR (1) KR102497447B1 (zh)
CN (1) CN110784932B (zh)
SG (1) SG11202100190YA (zh)
WO (1) WO2020024801A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4344108A3 (en) * 2020-11-18 2024-05-29 Beijing Xiaomi Mobile Software Co., Ltd. Modulation and coding scheme (mcs) configuration method and apparatus, and communication device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020068596A1 (en) 2018-09-26 2020-04-02 Intel Corporation Non-orthogonal multiple access (noma) transmission for low latency random access channel (rach)
US11996933B2 (en) * 2018-10-17 2024-05-28 Samsung Electronics Co., Ltd. Method and apparatus for selecting MCS in wireless communication system
CN114499748A (zh) * 2020-11-11 2022-05-13 中国移动通信有限公司研究院 一种传输方法、终端及网络侧设备
CN114285520A (zh) * 2021-12-21 2022-04-05 中国电信股份有限公司 配置授权的自适应配置方法、装置、存储介质及电子设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469615A (zh) * 2010-11-05 2012-05-23 中兴通讯股份有限公司 一种随机接入方法及装置
WO2018132843A1 (en) * 2017-01-13 2018-07-19 Motorola Mobility Llc Method and apparatus for performing contention based random access in a carrier frequency

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101567772B (zh) * 2008-04-22 2012-06-27 电信科学技术研究院 一种自适应编码调制方法及系统
WO2011053865A2 (en) * 2009-10-30 2011-05-05 Research In Motion Limited Downlink mcs selection in a type 2 relay network
CN102118234A (zh) * 2009-12-30 2011-07-06 华为技术有限公司 信道质量指示反馈方法、通信设备和系统
US9148205B2 (en) * 2010-01-25 2015-09-29 Qualcomm Incorporated Feedback for supporting SU-MIMO and MU-MIMO operation in wireless communication
US8478258B2 (en) * 2010-03-05 2013-07-02 Intel Corporation Techniques to reduce false detection of control channel messages in a wireless network
US8385953B2 (en) * 2010-06-23 2013-02-26 At&T Mobility Ii Llc Systems, methods, and computer program products for automatic mapping between parlay-X short messaging service message element XML encoding and native SMPP protocol data coding scheme
KR101595197B1 (ko) * 2011-09-23 2016-02-17 엘지전자 주식회사 무선 통신 시스템에서 상향링크 제어 정보 전송 방법 및 장치
US20130083739A1 (en) * 2011-10-04 2013-04-04 Sharp Laboratories Of America, Inc. Devices for random access response scheduling
US9161322B2 (en) * 2012-01-25 2015-10-13 Ofinno Technologies, Llc Configuring base station and wireless device carrier groups
US10630352B2 (en) * 2014-11-07 2020-04-21 Lg Electronics Inc. Signal transmission method and apparatus of apparatus having plurality of antennas in wireless communication system
CA2967281C (en) * 2014-12-08 2023-01-31 Lg Electronics Inc. Method for transmitting uplink control information and device therefor
EP3627750B1 (en) * 2015-01-20 2022-04-13 LG Electronics Inc. Method for transmitting uplink control information and apparatus therefor
US10135562B2 (en) * 2015-05-28 2018-11-20 Huawei Technologies Co., Ltd. Apparatus and method for link adaptation in uplink grant-less random access
CN106961713B (zh) * 2016-01-12 2021-07-09 中兴通讯股份有限公司 一种上行接入方法及终端和基站
CN107666364A (zh) * 2016-07-27 2018-02-06 北京三星通信技术研究有限公司 选择和确定调制编码方式的方法、相应的终端设备、基站设备
WO2018030858A1 (ko) * 2016-08-11 2018-02-15 엘지전자 주식회사 무선 통신 시스템에서 단말에 의해 수행되는 상향링크 제어 정보 전송 방법 및 상기 방법을 이용하는 단말
US10425970B2 (en) * 2016-09-30 2019-09-24 Qualcomm Incorporated Precoding management for random access procedures
KR20180048382A (ko) * 2016-11-01 2018-05-10 아서스테크 컴퓨터 인코포레이션 무선 통신 시스템에서 업링크 타이밍 어드밴스를 식별하기 위한 방법 및 장치
CN108123777A (zh) * 2016-11-30 2018-06-05 华为技术有限公司 一种编码方式确定方法及装置
CN108200649B (zh) * 2016-12-08 2022-01-14 华为技术有限公司 一种信息传输方法及其网元
CN108282900B (zh) * 2017-01-05 2023-10-20 华为技术有限公司 随机接入信号的发送和接收方法、网络设备和用户设备
CN108282301A (zh) * 2017-01-06 2018-07-13 电信科学技术研究院 一种数据传输方法、装置及系统
JP7092771B2 (ja) * 2017-01-17 2022-06-28 クアルコム,インコーポレイテッド ビーム調整要求のためのシステムおよび方法
US10757621B2 (en) * 2017-03-22 2020-08-25 Ofinno, Llc Conditional handover execution
US11483810B2 (en) * 2017-04-03 2022-10-25 Huawei Technologies Co., Ltd. Methods and systems for resource configuration of wireless communication systems
CN116801407A (zh) * 2017-05-04 2023-09-22 皇家飞利浦有限公司 Ue组,ue组管理者ue和ue组成员ue
US11246116B2 (en) * 2017-06-16 2022-02-08 Qualcomm Incorporated Multiple MCS tables for NR
WO2019098784A1 (ko) * 2017-11-17 2019-05-23 엘지전자 주식회사 차세대 통신 시스템에서 다중 반송파 지원을 위한 제어 채널 송신 방법 및 이를 위한 장치
US10805148B2 (en) * 2018-02-05 2020-10-13 Ofinno, Llc Beam failure recovery request procedure
US10952255B2 (en) * 2018-05-04 2021-03-16 Lenovo (Singapore) Pte. Ltd. PUSCH transmission using an aggregation factor
US11044062B2 (en) * 2018-07-13 2021-06-22 Apple Inc. Methods to determine parameters related to phase tracking reference signals (PT-RS) based on a type of radio network temporary identifier (RNTI)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469615A (zh) * 2010-11-05 2012-05-23 中兴通讯股份有限公司 一种随机接入方法及装置
WO2018132843A1 (en) * 2017-01-13 2018-07-19 Motorola Mobility Llc Method and apparatus for performing contention based random access in a carrier frequency

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP3813466A4 *
SONY: "Discussions on 2 Steps RACH Procedure", 3GPP TSG RAN WG1 MEETING AH_NR MEETING R1-1700668, 20 January 2017 (2017-01-20), XP051208192 *
ZTE ET AL.: "2-Step Random Access Procedure", 3GPP TSG RAN WG1 AH_NR MEETING R1-1700105, 20 January 2017 (2017-01-20), XP051207647 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4344108A3 (en) * 2020-11-18 2024-05-29 Beijing Xiaomi Mobile Software Co., Ltd. Modulation and coding scheme (mcs) configuration method and apparatus, and communication device

Also Published As

Publication number Publication date
JP2021532672A (ja) 2021-11-25
CN110784932B (zh) 2022-02-01
US20210126733A1 (en) 2021-04-29
EP3813466A1 (en) 2021-04-28
KR20210027494A (ko) 2021-03-10
KR102497447B1 (ko) 2023-02-07
EP3813466A4 (en) 2021-09-01
SG11202100190YA (en) 2021-02-25
CN110784932A (zh) 2020-02-11
JP7181991B2 (ja) 2022-12-01

Similar Documents

Publication Publication Date Title
US20230040458A1 (en) Sidelink operation method and terminal
CN110474724B (zh) 一种tci状态指示方法、终端及网络侧设备
CN109963326B (zh) 控制信道监听方法、监听指示方法、终端及网络设备
WO2020024801A1 (zh) 随机接入方法、终端设备及网络设备
CN111278129B (zh) 上行控制信息发送、接收方法、终端及网络侧设备
CN113259973B (zh) 波束失败恢复方法、终端及网络设备
WO2019076169A1 (zh) 同步信号块的处理方法、同步信号块的指示方法及装置
CN110719628B (zh) 传输方法、终端设备及网络设备
US20210235430A1 (en) Signal sending method, signal receiving method, sending device, and receiving device
CN111130728A (zh) 一种传输方法、终端及网络侧设备
CN111278004B (zh) 物理下行控制信道候选的位置确定方法、终端、介质及网络设备
CN111262672B (zh) 传输方法、网络设备和终端
CN111278149B (zh) 信息发送方法、信息检测方法、终端设备及网络设备
WO2019095919A1 (zh) Csi的传输方法及装置
CN109803403B (zh) 一种时隙格式指示检测方法、配置方法及装置
CN112788754B (zh) 信息传输方法及设备
WO2021027716A1 (zh) 能力协商方法、终端及网络设备
CN111836361B (zh) 数据接收方法、发送方法、终端及网络设备
CN110868760A (zh) 一种传输方法及终端设备
CN111836382B (zh) 一种结束符号位置的指示方法、终端及网络侧设备
CN111277357A (zh) 信道状态信息报告的传输方法及终端
WO2021143602A1 (zh) 定时确定方法及通信设备
CN113453242B (zh) 测量方法、终端及网络侧设备
US20220264399A1 (en) Handover method, configuration method, terminal, and network device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844628

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021504527

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019844628

Country of ref document: EP

Effective date: 20210121

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217005256

Country of ref document: KR

Kind code of ref document: A