WO2020024276A1 - 充电电路与终端设备 - Google Patents

充电电路与终端设备 Download PDF

Info

Publication number
WO2020024276A1
WO2020024276A1 PCT/CN2018/098582 CN2018098582W WO2020024276A1 WO 2020024276 A1 WO2020024276 A1 WO 2020024276A1 CN 2018098582 W CN2018098582 W CN 2018098582W WO 2020024276 A1 WO2020024276 A1 WO 2020024276A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
module
constant current
channel
circuit
Prior art date
Application number
PCT/CN2018/098582
Other languages
English (en)
French (fr)
Inventor
武渊
罗伟
王朝
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880093201.7A priority Critical patent/CN112075007A/zh
Priority to PCT/CN2018/098582 priority patent/WO2020024276A1/zh
Publication of WO2020024276A1 publication Critical patent/WO2020024276A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of charging, and more particularly, to a charging circuit and a terminal device.
  • the charging IC adjusts the charging current to generate heat. Due to the effect of thermal current limiting, it is difficult for the charging current entering the battery to reach a higher value, resulting in a slower charging speed of the battery.
  • Thermal current limiting refers to the charging of the terminal device, in order to prevent the temperature of the terminal device case from being too high to affect the user experience, the terminal device needs to limit the charging current to a preset value.
  • the charging IC charges the mobile phone battery with 2A current. When it is too high, it is necessary to actively reduce the charging current. For example, the charging current can be reduced to 1.5 amps or 1 amp. At this time, due to the effect of thermal current limiting, it cannot be charged with a maximum current of 2 amps, which causes the charging time to be extended.
  • the present application provides a charging circuit and a terminal device, which can increase the charging speed of a battery at a low cost.
  • a charging circuit including: a first charging channel, a charging IC is provided on the first charging channel, and the first charging channel is configured to receive an externally input charging current, and the charging IC is used; Adjusting the charging current and charging the battery based on the adjusted charging current; a second charging channel, the second charging channel being connected in parallel with the first charging channel, and a constant current module provided on the second charging channel The second charging channel is configured to receive an externally input charging current, use the constant current module to adjust the charging current, and charge the battery based on the adjusted charging current; During charging of the battery by a charging channel and the second charging channel, a charging current in the first charging channel is greater than a charging current in the second charging channel.
  • the first charging channel can be understood as the main charging channel, which uses a charging IC to charge the battery with a larger charging current; the second charging channel can be understood as an auxiliary charging channel, which uses a constant current module to charge the battery with a smaller charging current. .
  • Dual charging channels in parallel can increase the charging speed of the battery. In addition, the cost of the constant current module is lower, which can reduce the cost.
  • the charging IC and the constant current module are located on different circuit boards.
  • the charging IC is located on a main board, and the constant current module is located on a small board.
  • the main board may be a main board of the terminal device, and the small board may be a small board of the terminal device.
  • a first switch module is further disposed on the second charging channel, and the first switch module is connected in series with the constant current module for controlling the On and off of the second charging channel.
  • the constant current module is a triode constant current circuit
  • the constant current module further includes a first switch module, the first switch module and the triode.
  • the bases of the triodes in the constant current circuit are connected and used to control whether the triode constant current circuit works.
  • the first switch module is embedded in the constant current module and controls the on and off of the second charging channel by destroying the working state of the constant current module. Compared with the method of directly connecting the switch module and the constant current module in series, it can be optimized. Path impedance of the second charging channel.
  • the triode constant current circuit includes: a first resistor, a first end of the first resistor is connected to an input terminal of the triode constant current circuit; A triode, the emitter of the first triode is connected to the second end of the first resistor, and the collector of the first triode is connected to the battery; the second triode, so An emitter of the second transistor is connected to a first end of the first resistor, a base of the second transistor is connected to a second end of the first resistor, and the second transistor A collector is connected to the base of the first transistor; a second resistor, a first end of the second resistor is connected to the base of the first transistor, and a second The terminal is connected to the ground through the first switch module.
  • the constant current module composed of two triodes has low cost and simple implementation.
  • the triode constant current circuit includes: a diode, an anode of the diode is connected to a collector of the second transistor, and a cathode of the diode is connected to The bases of the first triodes are connected.
  • the reverse leakage current can be prevented by adding a reverse diode.
  • the first switch module is controlled by a CPU based on control software
  • the charging circuit further includes a control module and a second switch module, and the control module is used for After receiving the instruction information from the CPU indicating that the control software is disabled, the second switch module is used to control the second charging channel to be disconnected.
  • control software fails, using the control module and the second switch module to turn off the constant current module can improve the safety of the battery charging process.
  • the control module is the charging IC, and after receiving the instruction information sent by the CPU, the charging IC passes the charging IC's
  • the status pin outputs a square wave signal to the outside
  • the second switch module includes: an RC circuit, the RC circuit is connected to the status pin of the charging IC for converting the square wave signal to a high level; A switching element connected to the RC and configured to control the second charging channel to be turned off when the high level is received.
  • the second charging channel is forcibly shut down by using the combination of the status pin of the charging IC and the RC circuit, which can improve the safety of the battery charging process.
  • a terminal device including the charging circuit in the first aspect or any possible implementation manner of the first aspect.
  • the terminal device is a mobile terminal.
  • FIG. 1 is a schematic diagram of a charging circuit according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of a topology structure of a second charging channel according to an embodiment of the present application
  • FIG. 3 is an example diagram of a circuit implementation of the topology shown in FIG. 2;
  • FIG. 4 is a schematic diagram of another topology structure of a second charging channel provided by an embodiment of the present application.
  • FIG. 5 is an example diagram of a circuit implementation of the topology shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the charging circuit In order to increase the charging speed of the battery, the charging circuit provided by some manufacturers uses multiple charging ICs in parallel to charge the battery, but this solution will greatly increase the hardware cost.
  • An embodiment of the present application provides a charging circuit 100 that can increase the charging speed of a battery at a lower cost.
  • the charging circuit 100 is described in detail below with reference to FIG. 1.
  • the charging circuit 100 includes a first charging channel 110 and a second charging channel 120.
  • the first charging channel 110 is provided with a charging integrated circuit IC 112.
  • the first charging channel 110 may be used to receive a charging current inputted externally, use a charging IC 112 to adjust the charging current, and charge the battery 300 based on the adjusted current.
  • the external charging current may be provided by the charger 200 (such as an adapter) as shown in FIG. 1, or may be provided by other power supply devices, such as a computer or a mobile power source.
  • the second charging channel 120 is connected in parallel with the first charging channel 110.
  • the first charging channel 110 is also referred to as a main charging channel 110.
  • the second charging channel 120 is provided with a constant current module 122.
  • the second charging channel 120 is also referred to as an auxiliary charging channel 120.
  • the second charging channel 120 may be used to receive an externally-charged charging current, use the constant current module 122 to adjust the charging current, and charge the battery 300 based on the adjusted output current.
  • the constant current module 122 may sometimes be referred to as a constant current source module or a constant current control module.
  • the embodiment of the present application does not specifically limit the form of the constant current module 122, and may be a constant current module based on a triode or a constant current module based on an op amp.
  • the charging current in the main charging channel 110 may be larger than the current in the auxiliary charging channel 120.
  • the first charging channel 110 can be understood as the main charging channel and charges the battery 300 with a larger charging current
  • the second charging channel 120 can be understood as the auxiliary charging channel and charges the battery 300 with a smaller charging current.
  • the embodiment of the present application uses a parallel charging channel to charge the battery, and the parallel charging channel can increase the charging speed of the battery.
  • the embodiments of the present application can reduce the cost as much as possible on the premise of increasing the charging speed.
  • the embodiment of the present application mainly uses the second charging channel 120 as an example for illustration, but the embodiment of the present application is not limited thereto.
  • the second charging channel 120 may include multiple sub-charging channels connected in parallel, and each of the sub-charging channels may be provided with a corresponding constant current module.
  • the embodiment of the present application does not specifically limit the positional relationship between the charging IC 112 and the constant current module 122.
  • the charging IC 112 and the constant current module 122 may be located on the same circuit board, or may be located on different circuit boards.
  • the charging IC 112 can be set on a main board (such as a main board of a terminal device), and the constant current module can be set on a small board (such as a small board of a terminal device).
  • the first charging channel 110 and the second charging channel 120 can always be used to charge the battery 300 at the same time, and the second charging channel 120 can be turned on or off according to the actual situation, which can improve the flexibility of the battery charging process.
  • the first charging channel 110 and the second charging channel 120 may be used to charge the battery at the same time.
  • the battery may be charged using only the first charging channel 110.
  • a first switching module 124 may be provided on the second charging channel 120, and the first switching module 124 and the constant current module 122 may be connected in series.
  • the first switch module 124 may include a transistor 1241, a MOS transistor 1242, a resistor 1243, and a resistor 1244.
  • One end of the resistor 1243 is connected to the charger (not shown in FIG. 3) and the emitter E of the transistor 1241 to form a charging input terminal A of the second charging channel, and the other end of the resistor 1243 is connected to the base B of the transistor 1241.
  • the base B of the transistor 1241 is connected to one end of the resistor 1244, and the collector C of the transistor 1241 is connected to the constant current module 122.
  • the drain D of the MOS transistor 1242 is connected to the other end of the resistor 1244, the source S of the MOS transistor 1242 is grounded, and the gate G of the MOS transistor 1242 is the control terminal K, which can be connected to an external controller (such as a CPU).
  • the control terminal K of the MOS tube 1242 may be connected to a general purpose input and output interface (GPIO) pin of the CPU, that is, the CPU sends a control signal to the control terminal K through the GPIO pin.
  • GPIO general purpose input and output interface
  • the MOS transistor 1242 When the signal received at the gate G (or the control terminal K) of the MOS transistor 1242 is at a high level, the MOS transistor 1242 is turned on, and then the transistor 1241 is controlled to be turned on. After the transistor 1241 is turned on, the second charging channel 120 is turned on, and the constant current module 122 starts to work.
  • the constant current module 122 may include a first transistor 1221, a second transistor 1222, a first resistor 1223, and a second resistor 1224.
  • the first terminal of the first resistor 1223 is connected to the input terminal of the constant current module 122.
  • the emitter E of the first transistor 1221 is connected to the second end of the first resistor 1223.
  • the collector C of the first transistor 1221 is connected to the battery through the output terminal of the constant current module to input a charging current for the battery.
  • the collector C of the first transistor 1221 is the charging output terminal A ′ of the second charging channel 120.
  • the emitter E of the second transistor 1222 is connected to the first end of the first resistor 1223, the base B of the second transistor is connected to the second end of the first resistor 1223, and the collector C of the second transistor is It is connected to the base B of the first transistor 1221.
  • the first end of the second resistor 1224 is connected to the base B of the first transistor 1221, and the second end of the second resistor 1224 is grounded.
  • the path current I becomes larger, the voltage difference across the first resistor 1223 increases, so that the voltage difference between the base B of the second transistor 1222 and the emission set E increases, resulting in the second transistor 1222's
  • the collector current Ic increases, the voltage difference across the second resistor 1224 increases, and the potential of the base B of the first transistor 1221 at the first end of the second resistor 1224 increases.
  • the potential of the emitter E of the first transistor 1221 decreases.
  • the pressure difference between the base B and the emitter E of the first triode 1221 is reduced, and the output current-the current of the collector C of the first triode 1221 is reduced, thereby achieving the function of stable current.
  • the path current I decreases, the current stabilization process is the same, and is not repeated here.
  • the first switch module 124 may be embedded inside the constant current module 122 to form a part of the constant current module 122. Then, the second charging channel 120 can be turned on and off by destroying the working state of the constant current module 122.
  • the constant current module 122 may be a triode constant current circuit.
  • the first switch module 124 may be connected to the base of the triode constant current circuit, and the purpose of destroying the working state of the constant current module 122 is achieved by controlling the voltage of the base.
  • the triode constant current circuit may be a double triode constant current circuit as shown in FIG. 3.
  • the constant current module 122 is a triode constant current circuit similar to FIG. 3.
  • the first switching module 124 may include a MOS transistor 1241, a resistor 1242, and a resistor 1243.
  • the drain D of the MOS transistor 1241 is connected to one end of the resistor 1224, its source S is grounded, and its gate G is connected to the control terminal K1 of the first switch module through the resistor 1243.
  • the control terminal K1 can be connected to an external controller (such as a CPU).
  • One end of the resistor 1242 is connected to the resistor 1243, and the other end thereof is grounded.
  • the resistor 1242, the resistor 1243 plays a role of voltage division and current limiting.
  • the gate G of the MOS transistor 1241 is at a high level, the MOS transistor 1241 is turned on, the constant current module 122 works normally, and the second charging channel 120 is turned on.
  • the control terminal K1 inputs a low level, the MOS tube 1241 is turned off, the working state of the constant current module 122 (the form and working principle of the constant current module is similar to that in FIG. 3, and is not described here any more), and the second charging The channel 120 is disconnected.
  • the first switch module 124 is embedded in the constant current module 122, and controls the on and off of the second charging channel 120 by destroying the working state of the constant current module 122, and directly connects the first switch module 124 and the constant current module 122. Compared with the series connection, the path impedance of the second charging channel 120 can be optimized.
  • the first switch module 124 can be controlled by the CPU based on the control software.
  • the CPU can control the first switch module 124 based on the control software according to the charging status of the charging IC and the constant current module during the entire charging process, the charging current, and the heating status.
  • K1 sends a control signal to control the on and off of the constant current module.
  • the control terminal K1 of the switch module 124 may be connected to a GPIO pin of the CPU.
  • the embodiment of the present application can solve the problem that the working state of the constant current module is uncontrollable due to the failure of the control software by adding a second switch module.
  • the control software fails, the signal state at the control terminal K1 of the first switch module 124 is uncontrollable.
  • the CPU may send instruction information to the control module in the charging circuit 100, where the instruction information is used to indicate that the control software is invalid.
  • the second charging module controls the second charging channel to be turned off.
  • the second charging module 126 includes a MOS transistor 1261, a resistor 1263, a resistor 1264, and a capacitor 1262.
  • the MOS transistor 1261 is a switching element, and the drain D thereof is connected to the gate G of the MOS transistor 1241 in the first switching module 124, and the source S of the MOS transistor 1261 is connected to the ground.
  • the gate G of the MOS transistor 1261 is connected to the control terminal K2 through a resistance capacitor (RC) circuit.
  • the RC circuit is composed of a resistor 1263 and a capacitor 1262.
  • One end of the resistor 1264 is connected to the resistor 1263.
  • the other end of the resistor 1264 can be passed
  • the power supply terminal L is connected to the battery, thereby supplying power to the circuit.
  • the control terminal K2 of the second switch module 126 receives the control signal sent by the control module, and controls the MOS transistor 1261 to be turned on. After the MOS transistor 1261 is turned on, a path to ground is formed, forcing the level at the gate G of the MOS transistor 1241 to be pulled down, so that the MOS transistor 1241 is turned off, which destroys the working state of the constant current module, thereby shutting down the second charging channel.
  • control software fails, using the control module and the second switch module to turn off the constant current module can improve the safety of the battery charging process.
  • the control module in the embodiment of the present application may be a module newly added in the charging circuit 100, or an existing module in the charging circuit 100, such as a charging IC, may be used.
  • the control terminal K2 of the second switch module 126 may be connected to the STAT pin of the charging IC.
  • the charging IC receives the instruction information from the CPU.
  • the charging IC sends a control signal to the control terminal K2 of the second switch module 126 through the STAT pin according to the instruction information.
  • the charging IC can send a 1 Hz square wave signal to the control terminal K2 of the second switch module 126 through the STAT pin.
  • the square wave signal controls the potential of the gate G of the MOS transistor 1261 through an RC circuit composed of a resistor 1263 and a capacitor 1262, so that the MOS transistor 1261 is turned on, the potential at the gate G of the MOS transistor 1241 is forcibly pulled down, and the MOS transistor 1241 is turned off. Turn off the second charging channel.
  • the charging IC may send a control signal to the control terminal K2 of the second switch module 126 through the STAT pin.
  • a high level (logic 1) can be sent to the second switching module 126 shown in FIG. 5 to make the MOS transistor 1261 turn on, forcing the potential of the gate G of the MOS transistor 1241 to be pulled down to control the MOS transistor 1241 to turn off. , Destroying the working state of the constant current module, thereby shutting down the second charging channel.
  • the second charging channel is forcibly shut down by using the combination of the status pin of the charging IC and the RC circuit, which can improve the safety of the battery charging process.
  • a reverse leakage current may be generated.
  • it may be a reverse leakage current generated after the constant current module 122 is disconnected from an external power source. It can also be the reverse leakage current generated when using the OTG (on the go, OTG) function to connect with other devices. Adding a reverse diode between the charging input and the charging output can effectively suppress reverse leakage current.
  • the embodiment of the present application does not specifically limit the position of the reverse diode. For example, as shown in FIG.
  • a diode may be added between the base B of the first transistor 1221 and the collector C of the second transistor 1222, where the anode of the diode 1225 and the base of the first transistor 1221 are added.
  • the pole B is connected, and the anode of the diode 1225 is connected to the collector C of the second transistor 1222.
  • a reverse diode (not shown in the figure) can also be added between the charging and output terminal and the collector C of the second triode to ensure that the reverse leakage current is effectively suppressed.
  • the embedded first switch module 124 can be combined with the second switch module 126 to prevent hidden safety hazards caused by control software failure.
  • the first switch module 124 in series in FIG. 3 may also be combined with the second switch module 126.
  • the second switch module 126 may be connected to the control terminal K of the first switch module 124 in FIG. 3. It may also be that the second switch module is not combined with the first switch module, and is connected to the constant current module separately, which is not specifically limited in the embodiment of the present application.
  • the internal circuit structures of the first switch module 124 and the second switch module 126 shown in FIG. 5 are merely examples.
  • the first switch module and the second switch module may be any type of switching circuit including a switching element.
  • the switching circuit may be a switching circuit composed of a MOS tube shown in FIG. 5, a switching circuit composed of a triode, or two The switching circuit constituted by the transistor and so on.
  • the control signals received by the first switch module and the second switch module are not limited to the signal types described above. When the internal components or connection methods of the first switch module and the second switch module are changed, they may also be other Form of control signal.
  • the terminal device provided in the embodiment of the present application may be any terminal device that needs to be charged.
  • the terminal device provided in this embodiment of the present application is a mobile terminal, such as a mobile phone, a notebook computer, a smart bracelet, and the like.
  • the terminal device in this embodiment of the present application may be a mobile phone
  • FIG. 6 is a schematic structural diagram of a mobile phone provided in this embodiment of the present application.
  • the mobile phone 600 includes a radio frequency (RF) circuit 610, a memory 620, other input devices 630, a display screen 640, a sensor 650, an audio circuit 660, an I / O subsystem 670, a processor 680, and a power supply. 690 and other components.
  • RF radio frequency
  • the structure of the mobile phone shown in FIG. 6 does not constitute a limitation on the mobile phone, and may include more or fewer parts than shown in the figure, or combine some parts, or disassemble some parts, or Different component arrangements.
  • the display screen 640 belongs to a user interface (UI), and the mobile phone 600 may include more or less user interfaces than illustrated.
  • UI user interface
  • the RF circuit 610 may be used for receiving and transmitting signals during information transmission or communication.
  • the downlink information of the base station is received and processed by the processor 680.
  • the uplink data of the design is transmitted to the base station.
  • the RF circuit includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier (LNA), a duplexer, and the like.
  • the RF circuit 610 can also communicate with a network and other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including, but not limited to, global system (GSM), general packet radio service (GPRS), and code division multiple access (code) division multiple access (CDMA), wideband code division multiple access (WCDMA), long term evolution (LTE), email, short message service (SMS), and so on.
  • GSM global system
  • GPRS general packet radio service
  • code division multiple access code division multiple access
  • CDMA wideband code division multiple access
  • LTE long term evolution
  • email short message service
  • SMS short message service
  • the memory 620 may be used to store software programs and modules.
  • the processor 680 executes various functional applications and data processing of the mobile phone 600 by running the software programs and modules stored in the memory 620.
  • the memory 620 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, at least one application required by a function (such as a sound playback function, an image playback function, etc.), etc .; the storage data area may store Data (such as audio data, phone book, etc.) created according to the use of the mobile phone 600.
  • the memory 620 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other volatile solid-state storage devices.
  • the other input device 630 may be used to receive inputted numeric or character information, and generate key signal inputs related to user settings and function control of the mobile phone 600.
  • other input devices 630 may include, but are not limited to, a physical keyboard, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, joysticks, and light mice (light mice are touch-sensitive that do not display visual output Or one or more of a touch sensitive surface formed by a touch screen).
  • the other input device 630 is connected to the other input device controller 671 of the I / O subsystem 670, and performs signal interaction with the processor 680 under the control of the other device input controller 671.
  • the display screen 640 may be used to display information input by the user or information provided to the user and various menus of the mobile phone 600, and may also accept user input.
  • the specific display screen 640 may include a display panel 641 and a touch panel 642.
  • the display panel 641 may be configured with a liquid crystal display (LCD), an organic light-emitting diode (OLED), or the like.
  • the operation near the touch panel 642 can also include somatosensory operation; the operation includes single-point control operation, multi-point control operation and other operation types.), And drive the corresponding connection device according to a preset program.
  • the touch panel 642 may include a touch detection device and a touch controller. Among them, the touch detection device detects a user's touch orientation and posture, and detects signals brought by the touch operation, and transmits the signals to the touch controller; the touch controller receives touch information from the touch detection device and converts it into a processor capable of The processed information is then sent to the processor 680, which can receive commands from the processor 680 and execute them.
  • the touch panel 642 may be implemented using various types such as resistive, capacitive, infrared, and surface acoustic wave, and the touch panel 642 may also be implemented using any technology developed in the future. Further, the touch panel 642 may cover the display panel 641. The user can perform operations on or near the touch panel 642 covered on the display panel 641 according to the content displayed by the display panel 641 (the display content includes, but is not limited to, a soft keyboard, a virtual mouse, virtual keys, icons, etc.).
  • the touch panel 642 After the touch panel 642 detects an operation on or near the touch panel 642, it is transmitted to the processor 680 through the I / O subsystem 670 to determine a user input, and then the processor 680 uses the I / O subsystem 670 on the display panel 641 according to the user input.
  • the corresponding visual output is provided.
  • the touch panel 642 and the display panel 641 are implemented as two independent components to implement the input and input functions of the mobile phone 600, in some embodiments, the touch panel 642 and the display panel 641 may be integrated. The input and output functions of the mobile phone 600 are realized.
  • the mobile phone 600 may further include at least one sensor 650, such as a light sensor, a motion sensor, and other sensors.
  • the light sensor may include an ambient light sensor and a proximity sensor.
  • the ambient light sensor may adjust the brightness of the display panel 641 according to the brightness of the ambient light.
  • the proximity sensor may close the display panel 641 and the mobile phone 600 when the mobile phone 600 moves to the ear. / Or backlight.
  • the accelerometer sensor can detect the magnitude of acceleration in various directions (usually three axes), and can detect the magnitude and direction of gravity when it is stationary.
  • the audio circuit 660, the speaker 661, and the microphone 662 can provide an audio interface between the user and the mobile phone 600.
  • the audio circuit 660 may transmit the converted signal of the received audio data to the speaker 661, and the speaker 661 converts it into a sound signal for output.
  • the microphone 662 converts the collected sound signal into a signal and is received by the audio circuit 660. It is converted into audio data, and then the audio data is output to the RF circuit 608 for transmission to, for example, another mobile phone, or the audio data is output to the memory 620 for further processing.
  • the external device used by the I / O subsystem 670 to control input and output may include other device input controllers 671, sensor controllers 672, and display controllers 673.
  • one or more other input control device controllers 671 receive signals from and / or send signals to other input devices 630.
  • the other input devices 630 may include physical buttons (press buttons, rocker buttons, etc.) , Dial, slide switch, joystick, click wheel, light mouse (light mouse is a touch-sensitive surface that does not display visual output, or an extension of a touch-sensitive surface formed by a touch screen). It is worth noting that the other input control device controller 671 may be connected to any one or more of the above devices.
  • the display controller 673 in the I / O subsystem 670 receives signals from the display screen 640 and / or sends signals to the display screen 640. After the display screen 640 detects the user input, the display controller 673 converts the detected user input into interaction with a user interface object displayed on the display screen 640, that is, realizes human-computer interaction.
  • the sensor controller 672 may receive signals from and / or send signals to one or more sensors 650.
  • the processor 680 is the control center of the mobile phone 600, and uses various interfaces and lines to connect various parts of the entire mobile phone. By running or executing software programs and / or modules stored in the memory 620, and calling data stored in the memory 620, Various functions and processing data of the mobile phone 600 are performed, so as to monitor the mobile phone as a whole.
  • the processor 680 may include one or more processing units; preferably, the processor 680 may integrate an application processor and a modem processor, wherein the application processor mainly processes an operating system, a user interface, and an application program, etc.
  • the modem processor mainly handles wireless communication. It can be understood that the foregoing modem processor may not be integrated into the processor 680.
  • the mobile phone 600 further includes a power source 690 (such as a battery) for supplying power to various components.
  • a power source 690 such as a battery
  • the power source can be logically connected to the processor 680 through a power management system, thereby implementing functions such as managing charging, discharging, and power consumption through the power management system.
  • the power management system can include other components such as charging ICs, switches, etc.
  • the mobile phone 600 may further include a camera module, a Bluetooth module, an infrared module, and the like, and details are not described herein again.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种充电电路与终端设备,包括:第一充电通道,其上设置有充电IC,第一充电通道用于接收外部输入的充电电流,利用充电IC对充电电流进行调整,并基于调整后的充电电流为电池充电;第二充电通道,其与第一充电通道并联,第二充电通道上设置有恒流模块,第二充电通道用于接收外部输入的充电电流,利用恒流模块对充电电流进行调整,并基于调整后的充电电流为电池充电;其中,在使用第一充电通道和第二充电通道为电池充电的过程中,第一充电通道中的充电电流大于第二充电通道中的充电电流。

Description

充电电路与终端设备 技术领域
本申请涉及充电领域,并且更具体地,涉及一种充电电路与终端设备。
背景技术
电池的充电速度一直是用户感知产品的关键因素之一。
外部输入的充电电流在进入电池之前,通常需要利用充电集成电路(integrated circuit,IC)对其进行调整。充电IC对充电电流的调整过程会产生热量,由于热限流的作用,进入电池的充电电流很难达到较高值,从而导致电池的充电速度较慢。热限流是指终端设备充电时,为了防止终端设备外壳温度过高影响用户体验,终端设备需要将充电电流限定为一预设值,例如,充电IC以2安电流为手机电池充电,当温度过高时,需要主动减小充电电流,例如可将充电电流降为1.5安或1安,此时由于热限流的影响,导致无法以最大电流2安进行充电,使得充电时间被延长。
发明内容
本申请提供一种充电电路与终端设备,能够低成本地提高电池的充电速度。
第一方面,提供了一种充电电路,包括:第一充电通道,所述第一充电通道上设置有充电IC,所述第一充电通道用于接收外部输入的充电电流,利用所述充电IC对所述充电电流进行调整,并基于调整后的充电电流为电池充电;第二充电通道,所述第二充电通道与所述第一充电通道并联,所述第二充电通道上设置有恒流模块,所述第二充电通道用于接收外部输入的充电电流,利用所述恒流模块对所述充电电流进行调整,并基于调整后的充电电流为所述电池充电;其中,在使用所述第一充电通道和所述第二充电通道为所述电池充电的过程中,所述第一充电通道中的充电电流大于所述第二充电通道中的充电电流。
第一充电通道可以理解为主充电通道,其利用充电IC以较大的充电电流为电池充电;第二充电通道可以理解为辅充电通道,其利用恒流模块以较小的充电电流为电池充电。双充电通道并联能够提升电池的充电速度,此外,由于恒流模块的成本较低,能够降低成本。
结合第一方面,在第一方面的某些实现方式中,所述充电IC与所述恒流模块位于不同的电路板上。
将充电IC与恒流模块设置于不同的电路板上,能够分散热源,从而降低热限流的影响。
结合第一方面,在第一方面的某些实现方式中,所述充电IC位于主板,所述恒流模块位于小板。以电池为终端设备(如手机)的电池为例,该主板可以为终端设备的主板,该小板可以为终端设备的小板。
结合第一方面,在第一方面的某些实现方式中,所述第二充电通道上还设置有第一开关模块,所述第一开关模块与所述恒流模块串联,用于控制所述第二充电通道的通断。
通过将第一开关模块与恒流模块串联,能够根据实际需要控制第二充电通道是否工作,从而提高了电池的充电过程的灵活性。
结合第一方面,在第一方面的某些实现方式中,所述恒流模块为三极管恒流电路,所述恒流模块还包括:第一开关模块,所述第一开关模块与所述三极管恒流电路中的三极管的基极相连,用于控制所述三极管恒流电路是否工作。
第一开关模块嵌入到了恒流模块内部,并通过破坏恒流模块工作状态的方式控制第二充电通道的导通与关断,与直接将开关模块与恒流模块串联的方式相比,可以优化第二充电通道的通路阻抗。
结合第一方面,在第一方面的某些实现方式中,所述三极管恒流电路包括:第一电阻,所述第一电阻的第一端与所述三极管恒流电路的输入端相连;第一三极管,所述第一三极管的发射极与所述第一电阻的第二端相连,所述第一三极管的集电极与所述电池相连;第二三极管,所述第二三极管的发射极与所述第一电阻的第一端相连,所述第二三极管的基极与所述第一电阻的第二端相连,所述第二三极管的集电极与所述第一三极管的基极相连;第二电阻,所述第二电阻的第一端与所述第一三极管的基极相连,所述第二电阻的第二端通过所述第一开关模块与地相连。
两个三极管构成的恒流模块造价低廉,实现简单。
结合第一方面,在第一方面的某些实现方式中,所述三极管恒流电路包括:二极管,所述二极管的正极与所述第二三极管的集电极相连,所述二极管的负极与所述第一三极管的基极相连。
通过添加反向二极管能够防止反向漏电流。
结合第一方面,在第一方面的某些实现方式中,所述第一开关模块由CPU基于控制软件进行控制,所述充电电路还包括:控制模块和第二开关模块,所述控制模块用于在接收所述CPU发出的指示所述控制软件失效的指示信息之后,通过所述第二开关模块控制所述第二充电通道断开。
在控制软件失效的情况下,利用控制模块和第二开关模块关断恒流模块,能够提高电池充电过程的安全性。
结合第一方面,在第一方面的某些实现方式中,所述控制模块为所述充电IC,所述充电IC在接收到所述CPU发出的所述指示信息之后,通过所述充电IC的状态引脚向外输出方波信号,所述第二开关模块包括:RC电路,所述RC电路与所述充电IC的状态引脚相连,用于将所述方波信号转换成高电平;开关元件,所述开关元件与所述RC相连,用于在接收到所述高电平时,控制所述第二充电通道断开。
在控制软件失效的情况下,利用充电IC的状态引脚与RC电路结合的方式强制关断第二充电通道,能够提高电池充电过程的安全性。
第二方面,提供了一种终端设备,包括如第一方面或第一方面的任一种可能的实现方式中的充电电路。
结合第二方面,在第二方面的某些实现方式中,所述终端设备为移动终端。
附图说明
图1是本申请实施例提供的充电电路的示意图;
图2是本申请实施例提供的第二充电通道的一种拓扑结构的示意图;
图3是图2所示的拓扑结构的电路实现方式的示例图;
图4是本申请实施例提供的第二充电通道的另一拓扑结构的示意图;
图5是图4所示的拓扑结构的电路实现方式的示例图;
图6是本申请实施例提供的终端设备的结构示意图。
具体实施方式
为了提升电池的充电速度,有些厂商提供的充电电路采用多充电IC并联方式为电池充电,但这种方案会极大地增加硬件成本。
本申请实施例提供一种充电电路100,能够以较低成本提升电池的充电速度,下面结合图1对该充电电路100进行详细描述。
如图1所示,该充电电路100包含第一充电通道110与第二充电通道120。
第一充电通道110上设置有充电集成电路IC 112。第一充电通道110可用于接收外部输入的充电电流,利用充电IC 112对充电电流进行调整,并基于调整后的电流为电池300充电。
外部的充电电流可以由如图1所示的充电器200(如适配器)提供,也可以由其他电源提供设备提供,如电脑或移动电源等。
第二充电通道120与第一充电通道110并联,第一充电通道110也称为主充电通道110。第二充电通道120上设置有恒流模块122,第二充电通道120也称为辅充电通道120。第二充电通道120可用于接收外部输入的充电电流,利用恒流模块122对充电电流进行调整,并基于调整后的输出电流为电池300充电。恒流模块122有时也可称为恒流源模块,或恒流控制模块。本申请实施例对恒流模块122的形式不做具体限定,可以是基于三极管的恒流模块,也可以是基于运放的恒流模块。
在使用主充电通道110与辅充电通道120为电池300充电的过程中,主充电通道110中的充电电流可以大于辅充电通道120中的电流。换句话说,第一充电通道110可以理解为主充电通道,以较大的充电电流为电池300充电;第二充电通道120可以理解为辅充电通道,以较小的充电电流为电池300充电。
本申请实施例采用双充电通道并联的方式为电池充电,双充电通道并联能够提升电池的充电速度。此外,由于恒流模块的成本较低,因此,本申请实施例能够在提升充电速度的前提下尽量降低成本。
本申请实施例主要以第二充电通道120为一条充电通道为例进行举例说明,但本申请实施例不限于此。实际上,第二充电通道120可以包括并联的多条子充电通道,且各个子充电通道均可设置对应的恒流模块。
本申请实施例对充电IC 112和恒流模块122的位置关系不做具体限定。充电IC 112与恒流模块122可以位于同一电路板上,也可以位于不同的电路板上。例如充电IC 112可以设置于主板(如终端设备的主板)上,恒流模块可以设置于小板(如终端设备的小板)上。
将充电IC 112与恒流模块122设置于不同的电路板上,能够分散热源,从而降低热限流的影响。
本申请实施例可以始终使用第一充电通道110和第二充电通道120同时为电池300充电,也可以根据实际情况选择导通或关断第二充电通道120,这样可以提升电池充电过程的灵活性。例如,在电池300的恒流充电阶段,可以同时采用第一充电通道110和第二充电通道120为电池充电。又如,在电池300的恒压充电阶段,可以仅使用第一充电通道110为电池充电。
第二充电通道120的导通与关断的实现方式可以有多种,下面结合图2-图5进行详细的举例说明。
作为一个示例,如图2所示,可以在第二充电通道120上设置第一开关模块124,并将第一开关模块124与恒流模块122串联。
下面以图3为例,给出图2所示的拓扑结构的电路实现方式的一个示例。如图3所示,第一开关模块124可以包括三极管1241,MOS管1242,电阻1243和电阻1244。电阻1243的一端分别与充电器(图3中未示出)和三极管1241的发射极E相连,形成第二充电通道的充电输入端A,电阻1243的另一端与三极管1241的基极B相连。三极管1241的基极B与电阻1244的一端相连,三极管1241的集电极C与恒流模块122相连。MOS管1242的漏极D与电阻1244的另一端相连,MOS管1242的源极S接地,MOS管1242的栅极G为控制端K,可以与外部的控制器(如CPU)相连。例如MOS管1242的控制端K可以与CPU的通用输入输出接口(general purpose input output ports,GPIO)引脚相连,即CPU通过GPIO引脚向控制端K发送控制信号。
当MOS管1242的栅极G(或控制端K)处接收到的信号为高电平时,MOS管1242导通,进而控制三极管1241导通。三极管1241导通之后,第二充电通道120导通,恒流模块122开始工作。
恒流模块122可以包括第一三极管1221,第二三极管1222,第一电阻1223,第二电阻1224。第一电阻1223的第一端与恒流模块122的输入端相连。第一三极管1221的发射极E与第一电阻1223的第二端相连。第一三极管1221的集电极C通过恒流模块的输出端与电池相连,为电池输入充电电流,第一三极管1221的集电极C为第二充电通道120的充电输出端A'。第二三极管1222的发射极E与第一电阻1223的第一端相连,第二三极管的基极B与第一电阻1223的第二端相连,第二三极管的集电极C与第一三极管1221的基极B相连。第二电阻1224的第一端与第一三极管1221的基极B相连,第二电阻1224的第二端接地。
下面对图3所示的恒流模块的恒流原理进行简单介绍:当恒流模块122处于工作状态时,第二三极管1222导通。第二三极管1222的发射极E和基极B之间的压差Veb在一定范围内保持稳定,整个通路的电流I可以用I=Veb/R预估,其中R表示第一电阻1223的阻值。当通路电流I变大时,第一电阻1223两端的压差增大,从而第二三极管1222的基极B与发射集E之间的压差增大,导致第二三极管1222的集电极电流Ic增大,第二电阻1224两端的压差增大,第二电阻1224第一端即第一三极管1221的基极B电位上升。同时由于第一电阻1223两端的压差增大,第一三极管1221的发射极E电位降低。导致第一三极管1221的基极B与发射极E之间的压差减小,最终使输出电流——第一三极管1221的集电极C电流减小,从而达到稳流的作用。当通路电流I减小时,稳流过程相同,此处不再赘述。
作为另一个示例,如图4所示,可以将第一开关模块124内嵌于恒流模块122内部,形成恒流模块122的一部分。然后,可以通过破坏恒流模块122的工作状态的方式实现第二充电通道120的导通与关断。具体地,恒流模块122可以是三极管恒流电路,可以将第一开关模块124连接到三极管恒流电路的基极,并通过控制基极的电压达到破坏恒流模块122的工作状态的目的。该三极管恒流电路可以是如图3所示的双三极管恒流电路。
下面以图5为例,给出图4所示的拓扑结构的电路实现方式的一个示例。如图5所示,恒流模块122是与图3类似的三极管恒流电路。
第一开关模块124可以包括MOS管1241、电阻1242和电阻1243。MOS管1241的漏极D与电阻1224的一端相连,其源极S接地,其栅极G通过电阻1243与第一开关模块的控制端K1连接。该控制端K1可以与外部的控制器(如CPU)相连。电阻1242的一端与电阻1243连接,其另一端接地,电阻1242、电阻1243起到分压限流的作用。当控制端K1输入高电平时,MOS管1241的栅极G为高电平,MOS管1241导通,恒流模块122正常工作,第二充电通道120导通。当控制端K1输入低电平时,MOS管1241关断,恒流模块122(恒流模块的形式和工作原理与图3类似,此处不再详述)的工作状态遭到破坏,第二充电通道120断开。
第一开关模块124嵌入到了恒流模块122内部,并通过破坏恒流模块122工作状态的方式控制第二充电通道120的导通与关断,与直接将第一开关模块124与恒流模块122串联的方式相比,可以优化第二充电通道120的通路阻抗。
第一开关模块124可以由CPU基于控制软件进行控制,例如,CPU可以基于控制软件根据整个充电过程中充电IC以及恒流模块的充电状态,充电电流、发热状况等向第一开关模块124控制端K1发送控制信号,从而控制恒流模块的通断。具体地,开关模块124的控制端K1可以与CPU的GPIO引脚相连。当CPU基于控制软件通过GPIO引脚向控制端K1输入高电平时,MOS管1241导通,恒流模块122正常工作,第二充电通道120导通;当CPU基于控制软件通过GPIO引脚向控制端K1输入低电平时,MOS管1241关断,恒流模块122的工作状态遭到破坏,第二充电通道120断开。
然而当控制软件失效时,由CPU发送至控制端K1的信号不可控,从而导致恒流模块的工作状态不可控。
本申请实施例通过增加第二开关模块,能够解决由于控制软件失效导致的恒流模块工作状态不可控的问题。当控制软件失效时,第一开关模块124控制端K1处的信号状态不可控。CPU可以向充电电路100中的控制模块发送指示信息,该指示信息用于指示控制软件失效。控制模块接收指示信息之后,通过第二开关模块控制第二充电通道关断。
作为一个示例,下面结合图5描述第二开关模块的控制原理。参考图5,第二充电模块126包含MOS管1261、电阻1263、电阻1264,电容1262。其中MOS管1261为开关元件,其漏极D与第一开关模块124中的MOS管1241的栅极G相连,MOS管1261的源极S与地相连。MOS管1261的栅极G通过电阻电容(resistance capacitance,RC)电路与控制端K2相连,其中RC电路由电阻1263与电容1262构成,电阻1264的一端与电阻1263连接,电阻1264的另一端可以通过供电端L与电池相连,从而为电路供电。
当控制软件失效时,第二开关模块126的控制端K2接收控制模块发送的控制信号,控制MOS管1261导通。MOS管1261导通后形成对地通路,强制拉低MOS管1241栅 极G处的电平,使得MOS管1241关断,破坏恒流模块的工作状态,从而关断第二充电通道。
在控制软件失效的情况下,利用控制模块和第二开关模块关断恒流模块,能够提高电池充电过程的安全性。
本申请实施例中的控制模块可以是充电电路100中新增的模块,也可以利用充电电路100中已有的模块,例如充电IC等等。
当控制模块为充电IC时,第二开关模块126的控制端K2可以与充电IC的STAT引脚相连。当控制软件失效导致第一开关模块124控制端K2处的信号状态不可控时,充电IC接收来自CPU的指示信息。充电IC根据指示信息通过STAT引脚向第二开关模块126的控制端K2发送控制信号。具体地,当控制软件失效时,充电IC可以通过STAT引脚向第二开关模块126的控制端K2发送1Hz的方波信号。方波信号经由电阻1263与电容1262组成的RC电路,控制MOS管1261栅极G的电位,使得MOS管1261开通,强制拉低MOS管1241栅极G处的电位,关断MOS管1241,从而关断第二充电通道。
或者当充电IC检测到电池电量充满时,充电IC可以通过STAT引脚向第二开关模块126的控制端K2发送控制信号。例如,可以向图5中所示的第二开关模块126发送高电平(逻辑1),使得MOS管1261导通,强制拉低MOS管1241的栅极G的电位,控制MOS管1241关断,破坏恒流模块的工作状态,从而关断第二充电通道。
在控制软件失效的情况下,利用充电IC的状态引脚与RC电路结合的方式强制关断第二充电通道,能够提高电池充电过程的安全性。
对于图5中的恒流模块122而言,当充电输入端A或充电输出端A'的状态不确定时,有可能产生反向漏电流。例如,可以是恒流模块122断开与外部电源连接后,产生的反向漏电流。还可以是在使用OTG(on the go,OTG)功能与其他设备连接时,产生的反向漏电流。在充电输入端与充电输出端之间添加反向二极管可以有效抑制反向漏电流。本申请实施例对反向二极管位置不做具体限定。例如,如图5所示,可以在第一三极管1221的基极B与第二三极管1222的集电极C之间添加二极管,其中二极管1225的负极与第一三极管1221的基极B连接,二极管1225的正极与第二三极管1222的集电极C相连。还可以在充输出端与第二三极管的集电极C之间添加反向二极管(图中未示出),从而保证反向漏电流得到有效抑制。
通过在恒流模块中加入反向二极管,可以防止电路中的反向漏电流。
由图5可知,内嵌式的第一开关模块124可以与第二开关模块126结合,防止控制软件失效带来的安全隐患。图3中串联式的第一开关模块124也可以与第二开关模块126结合,具体地,可以将第二开关模块126与图3中第一开关模块124的控制端K连接。还可以是第二开关模块不结合第一开关模块,单独接入恒流模块等等,本申请实施例对此不做具体限定。
应理解,图5中示出的第一开关模块124与第二开关模块126的内部电路结构仅仅是一种示例。第一开关模块与第二开关模块可以是任意一种包含开关元件的开关电路,例如可以是图5中示出的由MOS管构成的开关电路,可以是三极管构成的开关电路,还可以是二级管构成的开关电路等等。第一开关模块与第二开关模块接收的控制信号也不仅仅限定于上文所述的信号类型,当第一开关模块与第二开关模块内部元器件或连接方式发生变 化时,还可以是其他形式的控制信号。
本申请实施例提供的终端设备可以是任意一种需要充电的终端设备。可选地,本申请实施例提供的终端设备为移动终端,例如可以是手机,笔记本电脑,智能手环等等。
作为一个示例,本申请实施例中的终端设备可以是手机,图6是本申请实施例提供的手机的结构示意图。
参考图6,手机600包括、射频(radio frequency,RF)电路610、存储器620、其他输入设备630、显示屏640、传感器650、音频电路660、I/O子系统670、处理器680、以及电源690等部件。本领域技术人员可以理解,图6中示出的手机结构并不构成对手机的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。本领领域技术人员可以理解显示屏640属于用户界面(user interface,UI),且手机600可以包括比图示更多或者更少的用户界面。
下面结合图6,对手机600的各个构成部件进行具体的介绍:
RF电路610可用于收发信息或通话过程中,信号的接收和发送,特别地,将基站的下行信息接收后,给处理器680处理;另外,将设计上行的数据发送给基站。通常,RF电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器(low noise amplifier,LNA)、双工器等。此外,RF电路610还可以通过无线通信与网络和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统(global system of mobile communication,GSM)、通用分组无线服务(general packet radio service,GPRS)、码分多址(code division multiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、长期演进(long term evolution,LTE)、电子邮件、短消息服务(short messaging service,SMS)等。
存储器620可用于存储软件程序以及模块,处理器680通过运行存储在存储器620的软件程序以及模块,从而执行手机600的各种功能应用以及数据处理。存储器620可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图象播放功能等)等;存储数据区可存储根据手机600的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器620可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其他输入设备630可用于接收输入的数字或字符信息,以及产生与手机600的用户设置以及功能控制有关的键信号输入。具体地,其他输入设备630可包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)等中的一种或多种。其他输入设备630与I/O子系统670的其他输入设备控制器671相连接,在其他设备输入控制器671的控制下与处理器680进行信号交互。
显示屏640可用于显示由用户输入的信息或提供给用户的信息以及手机600的各种菜单,还可以接受用户输入。具体的显示屏640可包括显示面板641,以及触控面板642。其中显示面板641可以采用液晶显示器(liquid crystal display,LCD)、有机发光二极管(organic light-emitting diode,OLED)等形式来配置显示面板641。触控面板642,也称为触摸屏、触敏屏等,可收集用户在其上或附近的接触或者非接触操作(比如用户使用手指、 触笔等任何适合的物体或附件在触控面板642上或在触控面板642附近的操作,也可以包括体感操作;该操作包括单点控制操作、多点控制操作等操作类型。),并根据预先设定的程式驱动相应的连接装置。可选的,触控面板642可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位、姿势,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成处理器能够处理的信息,再送给处理器680,并能接收处理器680发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板642,也可以采用未来发展的任何技术实现触控面板642。进一步的,触控面板642可覆盖显示面板641。用户可以根据显示面板641显示的内容(该显示内容包括但不限于,软键盘、虚拟鼠标、虚拟按键、图标等),在显示面板641上覆盖的触控面板642上或者附近进行操作。触控面板642检测到在其上或附近的操作后,通过I/O子系统670传送给处理器680以确定用户输入,随后处理器680根据用户输入通过I/O子系统670在显示面板641上提供相应的视觉输出。虽然在图6中,触控面板642与显示面板641是作为两个独立的部件来实现手机600的输入和输入功能,但是在某些实施例中,可以将触控面板642与显示面板641集成而实现手机600的输入和输出功能。
手机600还可包括至少一种传感器650,比如光传感器、运动传感器以及其他传感器。具体地,光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节显示面板641的亮度,接近传感器可在手机600移动到耳边时,关闭显示面板641和/或背光。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机600还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
音频电路660、扬声器661,麦克风662可提供用户与手机600之间的音频接口。音频电路660可将接收到的音频数据转换后的信号,传输到扬声器661,由扬声器661转换为声音信号输出;另一方面,麦克风662将收集的声音信号转换为信号,由音频电路660接收后转换为音频数据,再将音频数据输出至RF电路608以发送给比如另一手机,或者将音频数据输出至存储器620以便进一步处理。
I/O子系统670用来控制输入输出的外部设备,可以包括其他设备输入控制器671、传感器控制器672、显示控制器673。可选的,一个或多个其他输入控制设备控制器671从其他输入设备630接收信号和/或者向其他输入设备630发送信号,其他输入设备630可以包括物理按钮(按压按钮、摇臂按钮等)、拨号盘、滑动开关、操纵杆、点击滚轮、光鼠(光鼠是不显示可视输出的触摸敏感表面,或者是由触摸屏形成的触摸敏感表面的延伸)。值得说明的是,其他输入控制设备控制器671可以与任一个或者多个上述设备连接。所述I/O子系统670中的显示控制器673从显示屏640接收信号和/或者向显示屏640发送信号。显示屏640检测到用户输入后,显示控制器673将检测到的用户输入转换为与显示在显示屏640上的用户界面对象的交互,即实现人机交互。传感器控制器672可以从一个或者多个传感器650接收信号和/或者向一个或者多个传感器650发送信号。
处理器680是手机600的控制中心,利用各种接口和线路连接整个手机的各个部分, 通过运行或执行存储在存储器620内的软件程序和/或模块,以及调用存储在存储器620内的数据,执行手机600的各种功能和处理数据,从而对手机进行整体监控。可选的,处理器680可包括一个或多个处理单元;优选的,处理器680可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器680中。
手机600还包括给各个部件供电的电源690(比如电池),优选的,电源可以通过电源管理系统与处理器680逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗等功能,其中电源管理系统可以包含充电IC,切换开关等其他部件。
尽管未示出,手机600还可以包括摄像头模块、蓝牙模块、红外模块等,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种充电电路,其特征在于,所述充电电路包括:
    第一充电通道,所述第一充电通道上设置有充电集成电路IC,所述第一充电通道用于接收外部输入的充电电流,利用所述充电IC对所述充电电流进行调整,并基于调整后的充电电流为电池充电;
    第二充电通道,所述第二充电通道与所述第一充电通道并联,所述第二充电通道上设置有恒流模块,所述第二充电通道用于接收外部输入的充电电流,利用所述恒流模块对所述充电电流进行调整,并基于调整后的充电电流为所述电池充电;
    其中,在使用所述第一充电通道和所述第二充电通道为所述电池充电的过程中,所述第一充电通道中的充电电流大于所述第二充电通道中的充电电流。
  2. 如权利要求1所述的充电电路,其特征在于,所述充电IC与所述恒流模块位于不同的电路板上。
  3. 如权利要求2所述的充电电路,其特征在于,所述充电IC位于主板,所述恒流模块位于小板。
  4. 如权利要求1-3中任一项所述的充电电路,其特征在于,所述第二充电通道上还设置有第一开关模块,所述第一开关模块与所述恒流模块串联,用于控制所述第二充电通道的通断。
  5. 如权利要求1-3中任一项所述的充电电路,其特征在于,所述恒流模块为三极管恒流电路,
    所述恒流模块还包括:
    第一开关模块,所述第一开关模块与所述三极管恒流电路中的三极管的基极相连,用于控制所述三极管恒流电路是否工作。
  6. 根据权利要求5所述的充电电路,其特征在于,所述三极管恒流电路包括:
    第一电阻,所述第一电阻的第一端与所述三极管恒流电路的输入端相连;
    第一三极管,所述第一三极管的发射极与所述第一电阻的第二端相连,所述第一三极管的集电极与所述电池相连;
    第二三极管,所述第二三极管的发射极与所述第一电阻的第一端相连,所述第二三极管的基极与所述第一电阻的第二端相连,所述第二三极管的集电极与所述第一三极管的基极相连;
    第二电阻,所述第二电阻的第一端与所述第一三极管的基极相连,所述第二电阻的第二端通过所述第一开关模块与地相连。
  7. 如权利要求4-6中任一项所述的充电电路,其特征在于,所述第一开关模块由中央处理单元CPU基于控制软件进行控制,
    所述充电电路还包括:
    控制模块和第二开关模块,所述控制模块用于在接收所述CPU发出的指示所述控制软件失效的指示信息之后,通过所述第二开关模块控制所述第二充电通道断开。
  8. 根据权利要求7所述的充电电路,其特征在于,所述控制模块为所述充电IC,所 述充电IC在接收到所述CPU发出的所述指示信息之后,通过所述充电IC的状态引脚向外输出方波信号,
    所述第二开关模块包括:
    RC电路,所述RC电路与所述充电IC的状态引脚相连,用于将所述方波信号转换成高电平;
    开关元件,所述开关元件与所述RC相连,用于在接收到所述高电平时,控制所述第二充电通道断开。
  9. 一种终端设备,其特征在于,所述终端设备中设置有如权利要求1-8中任一项所述的充电电路。
  10. 根据权利要求9所述的终端设备,其特征在于,所述终端设备为移动终端。
PCT/CN2018/098582 2018-08-03 2018-08-03 充电电路与终端设备 WO2020024276A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880093201.7A CN112075007A (zh) 2018-08-03 2018-08-03 充电电路与终端设备
PCT/CN2018/098582 WO2020024276A1 (zh) 2018-08-03 2018-08-03 充电电路与终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098582 WO2020024276A1 (zh) 2018-08-03 2018-08-03 充电电路与终端设备

Publications (1)

Publication Number Publication Date
WO2020024276A1 true WO2020024276A1 (zh) 2020-02-06

Family

ID=69232282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098582 WO2020024276A1 (zh) 2018-08-03 2018-08-03 充电电路与终端设备

Country Status (2)

Country Link
CN (1) CN112075007A (zh)
WO (1) WO2020024276A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762865A (zh) * 2016-02-29 2016-07-13 宇龙计算机通信科技(深圳)有限公司 一种充电装置及充电方法
CN106207296A (zh) * 2016-08-25 2016-12-07 上海传英信息技术有限公司 充电方法
CN106300513A (zh) * 2016-08-24 2017-01-04 北京小米移动软件有限公司 一种充电方法及装置
CN106532882A (zh) * 2016-11-21 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205565693U (zh) * 2016-05-05 2016-09-07 德力西电气有限公司 一种电机限时导通装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105762865A (zh) * 2016-02-29 2016-07-13 宇龙计算机通信科技(深圳)有限公司 一种充电装置及充电方法
CN106300513A (zh) * 2016-08-24 2017-01-04 北京小米移动软件有限公司 一种充电方法及装置
CN106207296A (zh) * 2016-08-25 2016-12-07 上海传英信息技术有限公司 充电方法
CN106532882A (zh) * 2016-11-21 2017-03-22 珠海市魅族科技有限公司 一种充电控制方法及装置

Also Published As

Publication number Publication date
CN112075007A (zh) 2020-12-11

Similar Documents

Publication Publication Date Title
EP3567938B1 (en) Method and device for reducing power consumption of electronic apparatus
KR102614481B1 (ko) 충전 제어 회로, 단말 장치 및 제어 방법
CN111092621B (zh) 射频电路、控制方法及电子设备
WO2016061771A1 (zh) 一种开机电路和电子设备
WO2020107401A1 (zh) 控制屏幕开闭的方法、控制屏幕开闭的装置和电子设备
WO2017161587A1 (zh) 一种负载供电电路和终端
WO2019011335A1 (zh) 一种移动终端及其控制方法和可读存储介质
WO2018166204A1 (zh) 一种控制指纹识别模组的方法、移动终端及存储介质
US10651950B2 (en) Method and system for shortening wireless pairing connection time by detecting an object or body
JP2021536077A (ja) 情報処理方法および端末
US12022399B2 (en) Power control device, method, and terminal device
WO2021083053A1 (zh) 电子设备的功耗控制方法、电子设备及存储介质
CN106371749A (zh) 一种终端控制的方法和装置
EP4387214A1 (en) Touch screen control method and related device
WO2019034110A1 (zh) 按键控制方法、存储介质及智能终端
WO2018039914A1 (zh) 一种数据复制方法及用户终端
CN110837319B (zh) 一种可视角度调节方法及电子设备
WO2020052494A1 (zh) 一种终端设备
WO2020024276A1 (zh) 充电电路与终端设备
WO2016131180A1 (zh) 一种键盘的显示方法、装置及终端设备
WO2021164586A1 (zh) 一种供电控制的装置及电子设备
CN108322600B (zh) 一种网络访问方法和移动终端
CN107749751B (zh) 移动终端供电系统及移动终端
CN109638912B (zh) 一种充电指示装置、终端
WO2019042479A1 (zh) 基于陀螺仪的指纹操控方法、移动终端及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928887

Country of ref document: EP

Kind code of ref document: A1