WO2020024252A1 - 一种电源电路 - Google Patents

一种电源电路 Download PDF

Info

Publication number
WO2020024252A1
WO2020024252A1 PCT/CN2018/098490 CN2018098490W WO2020024252A1 WO 2020024252 A1 WO2020024252 A1 WO 2020024252A1 CN 2018098490 W CN2018098490 W CN 2018098490W WO 2020024252 A1 WO2020024252 A1 WO 2020024252A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
component
capacitor
subcomponent
current
Prior art date
Application number
PCT/CN2018/098490
Other languages
English (en)
French (fr)
Inventor
陈晓斌
张辉
宋安国
吴壬华
Original Assignee
深圳欣锐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳欣锐科技股份有限公司 filed Critical 深圳欣锐科技股份有限公司
Priority to PCT/CN2018/098490 priority Critical patent/WO2020024252A1/zh
Priority to CN201880006695.0A priority patent/CN110313123B/zh
Publication of WO2020024252A1 publication Critical patent/WO2020024252A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present application relates to the field of electronic technology, and in particular, to a power supply circuit.
  • an isolated two-stage AC-to-DC (AC / DC) converter it usually includes AC / DC, electrolytic capacitors (such as BULK capacitors), and DC-to-DC (DC / DC) three-stage circuits.
  • electrolytic capacitors such as BULK capacitors
  • DC / DC DC-to-DC
  • the conventional isolated two-stage AC / DC converter usually requires an electrolytic capacitor with a larger capacitance value, which not only causes the volume of the capacitor to be configured to be excessively large, but also causes the electrolytic capacitor to generate severe heat when the AC component accounts for a relatively large amount. More important is the influence of the aging characteristics of electrolytic capacitors on capacitance and heat dissipation, making it a key factor that restricts the service life of AC / DC converters.
  • An embodiment of the present application provides a power circuit.
  • the dependence of the power circuit on the electrolytic capacitor can be reduced, thereby preventing the aging of the electrolytic capacitor from adversely affecting the power circuit.
  • the power supply circuit includes an AC-to-DC circuit, a control circuit, a capacitor circuit, and a DC-to-DC circuit, wherein:
  • the AC to DC circuit is configured to output an electric signal to the control circuit, and the electric signal includes an AC component and a DC component;
  • the control circuit is connected to the AC to DC circuit, and is configured to divide the AC component into a first AC subcomponent and a second AC subcomponent, and control the AC to DC circuit to output the capacitor circuit to the capacitor circuit.
  • the capacitor circuit is connected to the AC-to-DC circuit and is configured to filter the first AC sub-component
  • the DC-to-DC circuit is connected to the AC-to-DC circuit, and is configured to perform step-up or step-down processing on the sum of the second AC sub-component and the DC component, and output is subjected to step-up or step-down processing.
  • the sum of the second AC subcomponent and the DC component is subjected to step-up or step-down processing.
  • the first AC subcomponent is a product of the AC component and a distribution coefficient, and the distribution coefficient is a number greater than or equal to 0 and less than or equal to 1.
  • I is the current peak value of the DC component
  • t is time
  • k is the distribution coefficient
  • the second AC subcomponent is a difference between the AC component and the first AC subcomponent.
  • I is the current peak value of the DC component
  • t is time
  • k is the distribution coefficient
  • control circuit is also connected to the DC-to-DC circuit for obtaining the amplitude and phase of the electrical signal, and adjusting the input of the DC-to-DC circuit according to the amplitude and the phase as A sum of the second AC subcomponent and the DC component.
  • the AC to DC circuit includes a rectifier unit Q1, an inductor L1, a switch S1, and a diode D5, where:
  • a first output port of the rectifier unit Q1 is connected to one end of the inductor L1, another output port of the rectifier unit Q1 is connected to one end of a switch S1, and another end of the inductor L1 is connected to another of the switch S1.
  • One end is respectively connected to the positive electrode of the diode D5, and the negative electrode of the diode D5 is connected to the first input port of the capacitor circuit.
  • the capacitor circuit includes a capacitor C1, where:
  • One end of the capacitor C1 is connected to a first output port of the AC to DC circuit, and the other end of the capacitor C1 is connected to a second output port of the AC to DC circuit.
  • the capacitor C1 is an electrolytic capacitor.
  • the DC to DC circuit includes a switch S2, a transformer T1, a diode D6, a capacitor C2, and a resistor R1, where:
  • One end of the switch S2 is connected to the first output port of the AC-to-DC circuit, the other end of the switch S2 is connected to the first input port of the transformer T1, and the second input port of the transformer T1 is connected to the first input port of the transformer T1.
  • the second output port of the AC-to-DC circuit is connected.
  • the first output port of the transformer T1 is connected to the anode of the diode D6.
  • the anode of the diode D6 and one end of the capacitor C2 are connected to the resistor R1.
  • One end is connected, and the second output port of the transformer T1 and the other end of the capacitor C2 are respectively connected to the other end of the resistor R1.
  • an AC-to-DC circuit outputs an electric signal to the control circuit, and the electric signal includes an AC component and a DC component; then the control circuit divides the AC component into a first AC sub-component and a second An AC sub-component, and controlling the AC-to-DC circuit to output the first AC sub-component to the capacitor circuit, and outputting the second AC sub-component and the DC component to the DC-to-DC circuit; and then the capacitor circuit filters out The first AC sub-component; and finally, the DC-to-DC circuit performs step-up or step-down processing on the sum of the second AC sub-component and the DC component, and outputs the step-up or step-down processing The sum of the second AC subcomponent and the DC component.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a power circuit provided by the present application.
  • FIG. 2 is a schematic structural diagram of an AC-to-DC circuit according to an embodiment of the present application.
  • FIG. 3 (a) is a schematic waveform diagram of an AC current according to an embodiment of the present application.
  • FIG. 3 (b) is a schematic waveform diagram of a current of an electrical signal according to an embodiment of the present application.
  • FIG. 4 (a) is a schematic waveform diagram of an AC component according to an embodiment of the present application.
  • FIG. 4 (b) is a schematic waveform diagram of a DC component according to an embodiment of the present application.
  • FIG. 5 is a schematic waveform diagram of a sum of a second AC sub-component and a DC component according to an embodiment of the present application
  • FIG. 6 is a schematic structural diagram of a second embodiment of a power circuit provided by the present application.
  • FIG. 7 is a schematic diagram of a two-stage independent control circuit structure in the prior art proposed by the present application.
  • FIG. 8 is a schematic diagram of a two-stage merge control circuit structure proposed in the present application.
  • FIG. 1 is a schematic structural diagram of a first embodiment of a power circuit provided by the present application. As shown in the figure, the circuit in the embodiment of the present application includes:
  • the AC to DC circuit 101 is configured to output an electrical signal to the control circuit, and the electrical signal includes an AC component and a DC component.
  • the AC-to-DC circuit 101 may include a rectifier unit Q1, an inductor L1, a switch S1, and a diode D5.
  • a first output port of the rectifier unit Q1 is connected to one end of the inductor L1.
  • the other output port of the rectifier unit Q1 is connected to one end of the switch S1, the other end of the inductor L1 and the other end of the switch S1 are respectively connected to the anode of the diode D5, and the anode of the diode D5 is connected to the anode of the diode D5.
  • the first input port of the capacitor circuit 103 is connected.
  • the rectifying unit Q1 is composed of a diode D1, a diode D2, a diode D3, and a diode D4, which can rectify AC power, and the anode of the diode D1 is connected to the anode of the diode D2, the anode of the diode D2 is connected to the anode of the diode D4, and the diode D4 Is connected to the anode of diode D3 and the anode of diode D3 is connected to the anode of diode D1.
  • the inductor L1 is used to suppress current / voltage spikes.
  • the switch S1 may be a load switch for protecting a circuit.
  • the diode D5 is used for secondary rectification in order to further reduce the AC component in the electrical signal.
  • the AC-to-DC circuit 101 may rectify AC power by using a rectifying unit Q1 and a diode D5 to obtain the electric signal, and the electric signal includes a current and a voltage. Because the rectifier unit Q1 and the diode D5 cannot completely convert the AC power into the DC power, the electrical signal includes both a DC component and an AC component.
  • the DC component is an average value of the electrical signal, and it does not change with time. For example, the average value of the current, and the AC component is an amount of the electrical signal that changes with time.
  • the current of the alternating current output from the AC power source is 3sin (t), where t is time, the unit of the current is ampere (A), and the unit of t is second (s).
  • the AC / DC circuit 101 rectifies the AC power
  • the waveform of the current of the electric signal obtained is shown in FIG. 3 (b). Because of the presence of AC components, the current of the electrical signal is not stable, but all are in the same direction.
  • AC-to-DC circuit 101 may be, but is not limited to, the topology shown in FIG. 2.
  • a control circuit 102 is connected to the AC-to-DC circuit 101 and is configured to divide the AC component into a first AC sub-component and a second AC sub-component, and control the AC-to-DC circuit 101 to the capacitor circuit 103
  • the first AC sub-component is output, and the second AC sub-component and the DC component are output to the DC-to-DC circuit 104.
  • control circuit 102 may be an integrated circuit having arithmetic, storage, and control functions.
  • the control circuit 102 may first sample the electrical signal, determine the waveform of the electrical signal and its mathematical expression according to the amplitude and phase of the electrical signal obtained by the sampling; and then calculate the AC of the electrical signal according to the mathematical expression.
  • the capacitor circuit 103 outputs the first AC sub-component, and is connected to and outputs the second AC sub-component and the DC component to the DC-to-DC circuit 104.
  • the calculation formula of the AC component of the electric signal may be
  • the calculation formula of the first AC subcomponent may be
  • the calculation formula of the second AC subcomponent may be
  • I is the current peak value of the DC component
  • t is time
  • k is a distribution coefficient
  • the electrical signal is 3 sin (t).
  • the AC component of the current of the electrical signal can be calculated by Fourier transform as 3 *
  • the capacitor circuit 103 is connected to the AC-to-DC circuit 101 and is configured to filter out the first AC sub-component.
  • the capacitor circuit 103 may include at least one electrolytic capacitor.
  • the first AC sub-component flows through the electrolytic capacitor, dissipation occurs on the electrolytic capacitor, and when the peak value of the first AC sub-component is within the allowable range of the electrolytic capacitor.
  • the sum of the capacities of the at least one electrolytic capacitor can accommodate the first AC subcomponent to completely dissipate the released electric charge, the first AC subcomponent will be completely dissipated to reach a level where the first AC subcomponent is filtered out.
  • the first AC sub-component is a part of the AC component. Compared to filtering out all the AC components, the capacity requirement of the electrolytic capacitor for filtering the first AC sub-component is reduced, and when the distribution coefficient is 0, the first An AC subcomponent is 0, which can avoid the use of electrolytic capacitors.
  • the DC-to-DC circuit 104 is connected to the AC-to-DC circuit 101 and is configured to perform step-up or step-down processing on the sum of the second AC sub-component and the DC component. After the output undergoes step-up or step-down processing The sum of the second AC subcomponent and the DC component.
  • the DC-to-DC circuit 104 may superimpose the second AC sub-component and the DC component on the electrical signal obtained by the step-up or step-down processing to the electrical equipment Output.
  • -2 * 3 / ⁇ ) and the DC component 2 * 3 / ⁇ are superimposed to obtain the figure.
  • the DC-to-DC circuit 104 generates a voltage signal after the current signal flows through the voltage signal, and outputs the voltage signal to the electric equipment.
  • the AC-to-DC circuit outputs an electric signal to the control circuit, and the electric signal includes an AC component and a DC component; then the control circuit divides the AC component into a first AC sub-component and a first component. Two AC subcomponents, and controlling the AC to DC circuit to output the first AC subcomponent to a capacitor circuit, and outputting the second AC subcomponent and the DC component to a DC to DC circuit; and then the capacitor circuit filters Divide the first AC sub-component; finally, the DC-to-DC circuit performs a step-up or step-down process on the sum of the second AC sub-component and the DC component.
  • FIG. 6 is a schematic structural diagram of a second embodiment of a power circuit provided by the present application.
  • the circuit in the embodiment of the present application includes:
  • the AC to DC circuit 601 is configured to output an electric signal to the control circuit, and the electric signal includes an AC component and a DC component.
  • the AC-to-DC circuit 601 may include a rectifier unit Q1, an inductor L1, a switch S1, and a diode D5.
  • a first output port of the rectifier unit Q1 is connected to one end of the inductor L1.
  • the other output port of the rectifier unit Q1 is connected to one end of the switch S1, the other end of the inductor L1 and the other end of the switch S1 are respectively connected to the anode of the diode D5, and the anode of the diode D5 is connected to the anode of the diode D5.
  • the first input port of the capacitor circuit 603 is connected.
  • the rectifying unit Q1 is composed of a diode D1, a diode D2, a diode D3, and a diode D4, which can rectify AC power, and the anode of the diode D1 is connected to the anode of the diode D2, the anode of the diode D2 is connected to the anode of the diode D4, and the diode D4 Is connected to the anode of diode D3 and the anode of diode D3 is connected to the anode of diode D1.
  • the inductor L1 is used to suppress current / voltage spikes.
  • the switch S1 may be a load switch for protecting a circuit.
  • the diode D5 is used for secondary rectification in order to further reduce the AC component in the electrical signal.
  • the AC-to-DC circuit 601 may use a rectifier unit Q1 and a diode D5 to rectify AC power to obtain the electric signal, and the electric signal includes a current and a voltage. Because the rectifier unit Q1 and the diode D5 cannot completely convert the AC power into the DC power, the electrical signal includes both a DC component and an AC component.
  • the DC component is an average value of the electrical signal, and it does not change with time. For example, the average value of the current, and the AC component is an amount of the electrical signal that changes with time.
  • AC-to-DC circuit 601 may be, but is not limited to, the topology shown in FIG. 2.
  • a control circuit 602 is connected to the AC-to-DC circuit, and is configured to divide the AC component into a first AC sub-component and a second AC sub-component, and control the AC-to-DC circuit 601 to output to the capacitor circuit 603
  • the first AC sub-component and the second AC sub-component and the DC component are output to the DC-to-DC circuit 604.
  • control circuit 602 may be an integrated circuit having arithmetic, storage, and control functions.
  • the control circuit 602 may first sample the electrical signal, and determine the waveform of the electrical signal and its mathematical expression according to the amplitude and phase of the electrical signal obtained by the sampling; and then calculate the AC of the electrical signal according to the mathematical expression.
  • the capacitor circuit 603 outputs the first AC subcomponent, and is connected to and outputs the second AC subcomponent and the DC component to the DC to DC circuit 604.
  • the calculation formula of the AC component of the electric signal may be
  • the calculation formula of the first AC subcomponent may be
  • the calculation formula of the second AC subcomponent may be
  • I is the current peak value of the DC component
  • t is time
  • k is the distribution coefficient
  • control circuit 602 may also be connected to the DC-to-DC circuit 604 for adjusting the input of the DC-to-DC circuit 604 to be the second AC sub-component according to the amplitude and phase of the electrical signal. And the sum of the DC components.
  • the control circuit 604 may first determine the waveform of the electrical signal and its mathematical expression according to the amplitude and phase of the electrical signal obtained from the sampling, so as to calculate the second AC subcomponent and the DC component and the sum of the two. Then, the input of the DC-to-DC circuit 604 is controlled to ensure that the input of the DC-to-DC circuit 604 is the same as the sum of the second AC sub-component and the DC component.
  • the DC-to-DC circuit includes an AC component. Therefore, as shown in FIG. 7, if the AC-to-DC circuit and the DC-to-DC circuit in the prior art use independent control circuits, Solution, in order to control the actual input electrical signal of the DC to DC circuit to be the sum of the second AC subcomponent and the DC component, the control circuit of the DC to DC circuit needs to resample the amplitude and phase of the electrical signal.
  • the AC-to-DC circuit and the DC-to-DC circuit may share a control circuit to control the input / output.
  • the specific situation is shown in FIG. 8.
  • the control circuit includes an AC component division module and a control module. Compared with the prior art, an AC component division module is added.
  • the capacitor circuit 603 is connected to the AC-to-DC circuit 601 and is configured to filter out the first AC sub-component.
  • the capacitor circuit may include a capacitor C1, where the capacitor C1 may be an electrolytic capacitor, such as a bus capacitor.
  • the capacitor C1 may be an electrolytic capacitor, such as a bus capacitor.
  • One end of the capacitor C1 is connected to a first output port of the AC-to-DC circuit 601, and the other end is connected to a second output port of the AC-to-DC circuit 601.
  • the capacitor C1 When the first AC sub-component flows through the capacitor C1, dissipation occurs in the capacitor C1.
  • the peak value of the first AC sub-component is within the allowable range of the capacitor C1, and the capacity of the capacitor C1 can accommodate the first AC sub-component completely consumed
  • the first AC sub-component will be completely dissipated, and the purpose of filtering the first AC sub-component is achieved.
  • the DC-to-DC circuit 604 is connected to the AC-to-DC circuit 601 and is used to perform a step-up or step-down process on the sum of the second AC sub-component and the DC component. The sum of the second AC subcomponent and the DC component.
  • the DC-to-DC circuit 604 may include a switch S2, a transformer T1, a diode D6, a capacitor C2, and a resistor R1. One end of the switch S2 is connected to the first output port of the AC-to-DC circuit 601.
  • the other end of the switch S2 is connected to a first input port of the transformer T1, a second input port of the transformer T1 is connected to a second output port of the AC to DC circuit 601, and a first input of the transformer T1
  • the output port is connected to the anode of the diode D6, the anode of the diode D6 and one end of the capacitor C2 are connected to one end of the resistor R1, and the second output port of the transformer T1 and the other end of the capacitor C2 One end is respectively connected to the other end of the resistor R1.
  • the switch S2 can be a load switch, which is used for overload and short-circuit protection of the transformer T1, a diode D6 is used to rectify the electric signal flowing through it, and a resistor R1 is used to limit the current, preventing excessive output current from damaging the electrical equipment Transformer T1 is used to boost or step down the electrical signal.
  • DC-to-DC circuit 604 may be, but is not limited to, the topology structure shown in FIG. 6.
  • the DC-to-DC circuit 604 may superimpose the second AC sub-component and the direct-current component on the electric signal obtained by step-up or step-down processing and then output the electrical signal to the electrical equipment.
  • -2 * 3 / ⁇ ) and the DC component 2 * 3 / ⁇ are superimposed to obtain the figure.
  • the DC-to-DC circuit 604 performs voltage reduction processing on the voltage generated by flowing the current signal, and then outputs the voltage to the electric equipment.
  • the AC-to-DC circuit outputs an electric signal to the control circuit, and the electric signal includes an AC component and a DC component; then the control circuit divides the AC component into a first AC sub-component and a first component. Two AC subcomponents, and controlling the AC to DC circuit to output the first AC subcomponent to a capacitor circuit, and outputting the second AC subcomponent and the DC component to a DC to DC circuit; and then the capacitor circuit filters Divide the first AC sub-component; finally, the DC-to-DC circuit performs a step-up or step-down process on the sum of the second AC sub-component and the DC component.
  • the program may be stored in a computer-readable storage medium.
  • the storage medium may include: Flash disk, read-only memory (English: Read-Only Memory, referred to as ROM), random access device (English: Random Access Memory, referred to as RAM), magnetic disk or optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本申请实施例公开了一种电源电路,包括:交流转直流电路,用于向所述控制电路输出电信号,所述电信号包括交流分量和直流分量;控制电路,与所述交流转直流电路连接,用于将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路向电容电路和直流转直流电路分别输出所述第一交流子分量和所述第二交流子分量与所述直流分量之和;所述电容电路,与所述交流转直流电路连接,用于滤除所述第一交流子分量;所述直流转直流电路,与所述交流转直流电路连接,用于将所述第二交流子分量和所述直流分量之和进行升压或降压处理后输出。可以降低电源电路对电解电容的依赖性,从而防止电解电容的老化对电源电路产生的不良影响。

Description

一种电源电路 技术领域
本申请涉及电子技术领域,尤其涉及一种电源电路。
背景技术
对于隔离型两级交流转直流(AC/DC)变换器通常包括AC/DC、电解电容(如BULK电容)和直流转直流(DC/DC)三级电路。其中,经过AC/DC级电路的处理后,交流电变为带有交流成分和直流成分的电信号。为了达到直流输出的目的,需要电解电容滤除其中所有的交流成分。因此对常规隔离型两级AC/DC变换器通常要求配置容值较大的电解电容,这不仅造成需要配置的电容的体积过大,而且当交流成分占比较大时,将导致电解电容严重发热,更为重要的是电解电容的老化特性对容值和散热功能的影响,使其成为制约AC/DC变换器使用寿命的关键因素。
发明内容
本申请实施例提供一种电源电路。可以降低电源电路对电解电容的依赖性,从而防止电解电容的老化对电源电路产生的不良影响。
本申请实施例提供了一种电源电路,所述电源电路包括交流转直流电路、控制电路、电容电路和直流转直流电路,其中:
所述交流转直流电路,用于向所述控制电路输出电信号,所述电信号包括交流分量和直流分量;
所述控制电路,与所述交流转直流电路连接,用于将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路向所述电容电路输出所述第一交流子分量、以及向所述直流转直流电路输出所述第二交流子分量和所述直流分量;
所述电容电路,与所述交流转直流电路连接,用于滤除所述第一交流子分量;
所述直流转直流电路,与所述交流转直流电路连接,用于对所述第二交 流子分量和所述直流分量之和进行升压或降压处理,输出经过升压或降压处理后的所述第二交流子分量和所述直流分量之和。
其中,所述第一交流子分量为所述交流分量与分配系数的乘积,所述分配系数为大于等于0且小于等于1的数。
其中,所述交流分量的计算公式为
Figure PCTCN2018098490-appb-000001
所述第一交流子分量的计算公式为
Figure PCTCN2018098490-appb-000002
其中,I为所述直流分量的电流峰值、t为时间以及k为所述分配系数。
其中,所述第二交流子分量为所述交流分量减去所述第一交流子分量的差值。
其中,所述第二交流子分量的计算公式为
Figure PCTCN2018098490-appb-000003
其中,I为所述直流分量的电流峰值、t为时间以及k为所述分配系数。
其中,所述控制电路还与所述直流转直流电路连接,用于获取所述电信号的幅值和相位,并根据所述幅值和所述相位,调节所述直流转直流电路的输入为所述第二交流子分量和所述直流分量之和。
其中,所述交流转直流电路包括整流单元Q1、电感L1、开关S1、二极管D5,其中:
所述整流单元Q1的第一输出端口与所述电感L1的一端连接,所述整流单元Q1的另一输出端口与开关S1的一端连接,所述电感L1的另一端和所述开关S1的另一端分别与所述二极管D5的正极连接,所述二极管D5的负极与所述电容电路的第一输入端口连接。
其中,所述电容电路包括电容C1,其中:
所述电容C1的一端与所述交流转直流电路的第一输出端口连接,所述 电容C1的另一端与所述交流转直流电路的第二输出端口连接。
其中,所述电容C1为电解电容。
其中,所述直流转直流电路包括开关S2、变压器T1、二极管D6、电容C2和电阻R1,其中:
所述开关S2的一端与所述交流转直流电路的第一输出端口连接,所述开关S2的另一端与所述变压器T1的第一输入端口连接,所述变压器T1的第二输入端口与所述交流转直流电路的第二输出端口连接,所述变压器T1的第一输出端口与所述二极管D6的正极连接,所述二极管D6的负极和所述电容C2的一端分别与所述电阻R1的一端连接,所述变压器T1的第二输出端口和所述电容C2的另一端分别与所述电阻R1的另一端连接。
实施本申请实施例,首先交流转直流电路向所述控制电路输出电信号,所述电信号包括交流分量和直流分量;接着所述控制电路将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路向电容电路输出所述第一交流子分量、以及向直流转直流电路输出所述第二交流子分量和所述直流分量;然后所述电容电路滤除所述第一交流子分量;最后所述直流转直流电路对所述第二交流子分量和所述直流分量之和进行升压或降压处理,输出经过升压或降压处理后的所述第二交流子分量和所述直流分量之和。通过减小输入电容电路的交流分量,可以降低电源电路对电解电容的依赖性,从而防止电解电容的老化对电源电路产生的不良影响。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提出的一种电源电路的第一实施例的结构示意图;
图2是本申请实施例提出的一种交流转直流电路的结构示意图;
图3(a)是本申请实施例提供的一种交流电的电流的波形示意图;
图3(b)是本申请实施例提供的一种电信号的电流的波形示意图;
图4(a)是本申请实施例提供的一种交流分量的波形示意图;
图4(b)是本申请实施例提供的一种直流分量的波形示意图;
图5是本申请实施例提供的一种第二交流子分量与直流分量之和的波形示意图;
图6是本申请提出的一种电源电路的第二实施例的结构示意图;
图7是本申请提出的一种现有技术中的两级独立控制的电路结构示意图;
图8是本申请提出的一种两级合并控制的电路结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参考图1,图1是本申请提出的一种电源电路的第一实施例的结构示意图。如图所示,本申请实施例中的电路包括:
交流转直流电路101,用于向所述控制电路输出电信号,所述电信号包括交流分量和直流分量。
具体的,如图2所示,交流转直流电路101可以包括整流单元Q1、电感L1、开关S1和二极管D5,其中,所述整流单元Q1的第一输出端口与所述电感L1的一端连接,所述整流单元Q1的另一输出端口与开关S1的一端连接,所述电感L1的另一端和所述开关S1的另一端分别与所述二极管D5的正极连接,所述二极管D5的负极与所述电容电路103的第一输入端口连接。其中,整流单元Q1由二极管D1、二极管D2、二极管D3和二极管D4组成,可以对交流电进行整流,并且二极管D1的负极与二极管D2的负极连接,二 极管D2的正极与二极管D4的负极连接,二极管D4的正极与二极管D3的正极连接以及二极管D3的负极与二极管D1的正极连接。电感L1用于抑制电流/电压的尖峰值。开关S1可以为负荷开关,用于保护电路。二极管D5用于进行二次整流,以便进一步减少所述电信号中的交流分量。所述交流转直流电路101可以利用整流单元Q1和二极管D5对交流电进行整流,得到所述电信号,该电信号包括电流和电压。因为整流单元Q1和二极管D5无法将交流电彻底的转换成直流电,所以该电信号既包括直流分量也包括交流分量。其中,直流分量为电信号的平均值,它不随时间的变化而变化,如电流的平均值,所述交流分量为该电信号中随时间的变化而变化的量。
例如:如图3(a)所示,交流电源输出的交流电的电流为3sin(t),其中,t为时间,电流的单位为安培(A)以及t的单位为秒(s)。交流直流电路101对该交流电进行整流之后,得到的电信号的电流的波形如图3(b)所示。因为交流分量的存在,该电信号的电流不平稳,但均为同向电流。
需要说明的是,交流转直流电路101可以但不局限于为图2所示的拓扑结构。
控制电路102,与所述交流转直流电路101连接,用于将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路101向所述电容电路103输出所述第一交流子分量、以及向所述直流转直流电路104输出所述第二交流子分量和所述直流分量。
具体的,控制电路102可以是具有运算、存储和控制功能的集成电路。控制电路102可以首先对所述电信号进行采样,根据采样获得的所述电信号的幅值、相位,确定该电信号的波形及其数学表达式;接着根据数学表达式计算该电信号的交流分量和直流分量;然后将所述交流分量划分为第一交流子分量和第二交流子分量,其中,所述第一交流子分量为所述交流分量与分配系数的乘积,所述分配系数为大于等于0且小于等于1的数(如0.6),所述第二交流子分量为所述交流分量减去所述第一交流子分量的差值;最后控制所述交流转直流电路101向所述电容电路103输出所述第一交流子分量、以及向所述直流转直流电路104连接输出所述第二交流子分量和所述直流分量。
可选的,电信号的交流分量的计算公式可以为
Figure PCTCN2018098490-appb-000004
所述第一交流子分量的计算公式可以为
Figure PCTCN2018098490-appb-000005
所述第二交流子分量的计算公式可以为
Figure PCTCN2018098490-appb-000006
其中,I为所述直流分量的电流峰值、t为时间以及k为分配系数。
例如:如图3所示,首先通过对电信号的电流进行采样可以得到该电信号为3sin(t)。进一步,如图4(a)所示,可以通过傅里叶变换计算得到该电信号的电流的交流分量为3*|sin(t)|-2*3/π,以及如图4(b)所示,直流分量为2*3/π;然后将交流分量3*|sin(t)|-2*3/π划分为第一交流子分量0.6*(3*|sin(t)|-2*3/π)和第二交流子分量0.4*(3*|sin(t)|-2*3/π)。
电容电路103,与所述交流转直流电路101连接,用于滤除所述第一交流子分量。
具体的,电容电路103可以包括至少一个电解电容,第一交流子分量在流经电解电容时,将在电解电容上发生耗散,并且当第一交流子分量的峰值在该电解电容的容许范围内,且所述至少一个电解电容的容量之和可容纳第一交流子分量完全耗散所释放的电荷时,第一交流子分量将完全耗散,达到滤除所述第一交流子分量的目的。其中,第一交流子分量为交流分量中的一部分,相比于滤除全部的交流分量,滤除第一交流子分量对电解电容的容量要求得到了降低,并且当分配系数为0时,第一交流子分量为0,则可以避免对电解电容的使用。
直流转直流电路104,与所述交流转直流电路101连接,用于对所述第二交流子分量和所述直流分量之和进行升压或降压处理,输出经过升压或降压处理后的所述第二交流子分量和所述直流分量之和。
具体的,为了适应用电设备的对电压或电流的要求,直流转直流电路104可以将第二交流子分量和直流分量进行叠加所获得的电信号做升压或降压处理后向用电设备输出。
例如:如图5所示,将电信号的电流的第二交流子分量0.4*(3*|sin(t)|-2*3/π)和直流分量2*3/π进行叠加得到图中的电流信号,直流转直流电路104将该电流信号流过所产生的电压进行降压处理后向用电设备输出。
在本申请实施例中,首先交流转直流电路向所述控制电路输出电信号,所述电信号包括交流分量和直流分量;接着所述控制电路将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路向电容电路输出所述第一交流子分量、以及向直流转直流电路输出所述第二交流子分量和所述直流分量;然后所述电容电路滤除所述第一交流子分量;最后所述直流转直流电路对所述第二交流子分量和所述直流分量之和进行升压或降压处理。通过减小输入电容电路的交流分量,可以降低电源电路对电解电容的依赖性,从而防止电解电容的老化对电源电路产生的不良影响。
请参考图6,图6是本申请提出的一种电源电路的第二实施例的结构示意图。如图所示,本申请实施例中的电路包括:
交流转直流电路601,用于向所述控制电路输出电信号,所述电信号包括交流分量和直流分量。
具体的,如图2所示,交流转直流电路601可以包括整流单元Q1、电感L1、开关S1和二极管D5,其中,所述整流单元Q1的第一输出端口与所述电感L1的一端连接,所述整流单元Q1的另一输出端口与开关S1的一端连接,所述电感L1的另一端和所述开关S1的另一端分别与所述二极管D5的正极连接,所述二极管D5的负极与所述电容电路603的第一输入端口连接。其中,整流单元Q1由二极管D1、二极管D2、二极管D3和二极管D4组成,可以对交流电进行整流,并且二极管D1的负极与二极管D2的负极连接,二极管D2的正极与二极管D4的负极连接,二极管D4的正极与二极管D3的正极连接以及二极管D3的负极与二极管D1的正极连接。电感L1用于抑制电流/电压的尖峰值。开关S1可以为负荷开关,用于保护电路。二极管D5 用于进行二次整流,以便进一步减少所述电信号中的交流分量。所述交流转直流电路601可以利用整流单元Q1和二极管D5对交流电进行整流,得到所述电信号,该电信号包括电流和电压。因为整流单元Q1和二极管D5无法将交流电彻底的转换成直流电,所以该电信号既包括直流分量也包括交流分量。其中,直流分量为电信号的平均值,它不随时间的变化而变化,如电流的平均值,所述交流分量为该电信号中随时间的变化而变化的量。
需要说明的是,交流转直流电路601可以但不局限于为图2所示的拓扑结构。
控制电路602,与所述交流转直流电路连接,用于将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路601向所述电容电路603输出所述第一交流子分量、以及向所述直流转直流电路604输出所述第二交流子分量和所述直流分量。
具体的,控制电路602可以是具有运算、存储和控制功能的集成电路。控制电路602可以首先对所述电信号进行采样,根据采样获得的所述电信号的幅值、相位,确定该电信号的波形及其数学表达式;接着根据数学表达式计算该电信号的交流分量和直流分量;然后将所述交流分量划分为第一交流子分量和第二交流子分量,其中,所述第一交流子分量为所述交流分量与分配系数的乘积,所述分配系数为大于等于0且小于等于1的数(如0.6),所述第二交流子分量为所述交流分量减去所述第一交流子分量的差值;最后控制所述交流转直流电路601向所述电容电路603输出所述第一交流子分量、以及向所述直流转直流电路604连接输出所述第二交流子分量和所述直流分量。
可选的,电信号的交流分量的计算公式可以为
Figure PCTCN2018098490-appb-000007
所述第一交流子分量的计算公式可以为
Figure PCTCN2018098490-appb-000008
所述第二交流子分量的计算公式可以为
Figure PCTCN2018098490-appb-000009
其中,I为所述直流分量的电流峰值、t为时间以及k为所述分配系数。
可选的,所述控制电路602还可以与所述直流转直流电路604连接,用于根据所述电信号的幅值和相位,调节直流转直流电路604的输入为所述第二交流子分量和所述直流分量之和。其中,控制电路604可以首先根据采样获得的所述电信号的幅值和相位,确定该电信号的波形及其数学表达式,从而计算第二交流子分量和所述直流分量以及两者之和,然后对直流转直流电路604的输入进行控制,以便确保直流转直流电路604的输入与第二交流子分量和所述直流分量之和相同。
需要说明的是,在本申请实施例中直流转直流电路中包含交流分量,因此,如图7所示,若采用现有技术中的交流转直流电路和直流转直流电路使用独立的控制电路的方案,则为了控制直流转直流电路的实际输入电信号为第二交流子分量和直流分量之和,直流转直流电路的控制电路需要重新对电信号的幅值和相位进行采样,为了避免出现此种情况,本申请实施例中交流转直流电路和直流转直流电路可以共用控制电路对输入/输出进行控制,具体情况如图8所示,其中,控制电路中包括了交流分量划分模块和控制模块,相比于现有技术增加了交流分量划分模块。
电容电路603,与所述交流转直流电路601连接,用于滤除所述第一交流子分量。
具体的,所述电容电路可以包括电容C1,其中,电容C1可以为电解电容,如母线(BULK)电容。其中,所述电容C1的一端与交流转直流电路601的第一输出端口连接,另一端与交流转直流电路601中的第二输出端口。第一交流子分量在流经电容C1时,将在电容C1中发生耗散,当第一交流子分量的峰值电容C1的容许范围内,且电容C1的容量可容纳第一交流子分量完全耗散所释放的电荷时,第一交流子分量将完全耗散,达到滤除所述第一交流子分量的目的。
直流转直流电路604,与所述交流转直流电路601连接,用于对所述第 二交流子分量和所述直流分量之和进行升压或降压处理,输出经过升压或降压处理后的所述第二交流子分量和所述直流分量之和。
具体的,所述直流转直流电路604可以包括开关S2、变压器T1、二极管D6、电容C2和电阻R1,其中,所述开关S2的一端与所述交流转直流电路601的第一输出端口连接,所述开关S2的另一端与所述变压器T1的第一输入端口连接,所述变压器T1的第二输入端口与所述交流转直流电路601的第二输出端口连接,所述变压器T1的第一输出端口与所述二极管D6的正极连接,所述二极管D6的负极和所述电容C2的一端分别与所述电阻R1的一端连接,所述变压器T1的第二输出端口和所述电容C2的另一端分别与所述电阻R1的另一端连接。其中,开关S2可以为负荷开关,用于对变压器T1进行过载和短路保护,二极管D6用于进行对流经的电信号进行整流,电阻R1用于进行限流,防止输出电流过大损害用电设备,变压器T1用于对电信号进行升压或降压。
需要说明的是,直流转直流电路604可以但不局限于为图6给出的拓扑结构。
为了适应用电设备的对电压或电流的要求,直流转直流电路604可以将第二交流子分量和直流分量进行叠加所获得的电信号做升压或降压处理后向用电设备输出。
例如:如图5所示,将电信号的电流的第二交流子分量0.4*(3*|sin(t)|-2*3/π)和直流分量2*3/π进行叠加得到图中的电流信号,直流转直流电路604将该电流信号流过所产生的电压进行降压处理后向用电设备输出。
在本申请实施例中,首先交流转直流电路向所述控制电路输出电信号,所述电信号包括交流分量和直流分量;接着所述控制电路将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路向电容电路输出所述第一交流子分量、以及向直流转直流电路输出所述第二交流子分量和所述直流分量;然后所述电容电路滤除所述第一交流子分量;最后所述直流转直流电路对所述第二交流子分量和所述直流分量之和进行升压或降压处理。通过减小输入电容电路的交流分量,可以降低电源电路对电解电容的依赖性,从而防止电解电容的老化对电源电路产生的不良影响。
需要说明的是,对于前述的各个方法实施例,为了简单描述,故将其都表述为一系列的动作组合,但是本领域技术人员应该知悉,本申请并不受所描述的动作顺序的限制,因为依据本申请,某一些步骤可以采用其他顺序或者同时进行。其次,本领域技术人员也应该知悉,说明书中所描述的实施例均属于优选实施例,所涉及的动作和模块并不一定是本申请所必须的。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:闪存盘、只读存储器(英文:Read-Only Memory,简称:ROM)、随机存取器(英文:Random Access Memory,简称:RAM)、磁盘或光盘等。
以上对本申请实施例所提供的内容下载方法及相关设备、系统进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (10)

  1. 一种电源电路,其特征在于,所述电源电路包括交流转直流电路、控制电路、电容电路和直流转直流电路,其中:
    所述交流转直流电路,用于向所述控制电路输出电信号,所述电信号包括交流分量和直流分量;
    所述控制电路,与所述交流转直流电路连接,用于将所述交流分量划分为第一交流子分量和第二交流子分量,并控制所述交流转直流电路向所述电容电路输出所述第一交流子分量、以及向所述直流转直流电路输出所述第二交流子分量和所述直流分量;
    所述电容电路,与所述交流转直流电路连接,用于滤除所述第一交流子分量;
    所述直流转直流电路,与所述交流转直流电路连接,用于对所述第二交流子分量和所述直流分量之和进行升压或降压处理,输出经过升压或降压处理后的所述第二交流子分量和所述直流分量之和。
  2. 如权利要求1所述的电源电路,其特征在于,所述第一交流子分量为所述交流分量与分配系数的乘积,所述分配系数为大于等于0且小于等于1的数。
  3. 如权利要求2所述的电源电路,其特征在于,所述交流分量的计算公式为
    Figure PCTCN2018098490-appb-100001
    所述第一交流子分量的计算公式为
    Figure PCTCN2018098490-appb-100002
    其中,I为所述直流分量的电流峰值、t为时间以及k为所述分配系数。
  4. 如权利要求1或2所述的电源电路,其特征在于,所述第二交流子分量为所述交流分量减去所述第一交流子分量的差值。
  5. 如权利要求4所述的电源电路,其特征在于,所述第二交流子分量的计算公式为
    Figure PCTCN2018098490-appb-100003
    其中,I为所述直流分量的电流峰值、t为时间以及k为所述分配系数。
  6. 如权利要求1所述的电源电路,其特征在于,所述控制电路还与所述直流转直流电路连接,用于获取所述电信号的幅值和相位,并根据所述幅值和所述相位,调节所述直流转直流电路的输入为所述第二交流子分量和所述直流分量之和。
  7. 如权利要求1所述的电源电路,其特征在于,所述交流转直流电路包括整流单元Q1、电感L1、开关S1、二极管D5,其中:
    所述整流单元Q1的第一输出端口与所述电感L1的一端连接,所述整流单元Q1的另一输出端口与开关S1的一端连接,所述电感L1的另一端和所述开关S1的另一端分别与所述二极管D5的正极连接,所述二极管D5的负极与所述电容电路的第一输入端口连接。
  8. 如权利要求1所述的电源电路,其特征在于,所述电容电路包括电容C1,其中:
    所述电容C1的一端与所述交流转直流电路的第一输出端口连接,所述电容C1的另一端与所述交流转直流电路的第二输出端口连接。
  9. 如权利要求8所述的电源电路,其特征在于,所述电容C1为电解电 容。
  10. 如权利要求1所述的电源电路,其特征在于,所述直流转直流电路包括开关S2、变压器T1、二极管D6、电容C2和电阻R1,其中:
    所述开关S2的一端与所述交流转直流电路的第一输出端口连接,所述开关S2的另一端与所述变压器T1的第一输入端口连接,所述变压器T1的第二输入端口与所述交流转直流电路的第二输出端口连接,所述变压器T1的第一输出端口与所述二极管D6的正极连接,所述二极管D6的负极和所述电容C2的一端分别与所述电阻R1的一端连接,所述变压器T1的第二输出端口和所述电容C2的另一端分别与所述电阻的另一端连接。
PCT/CN2018/098490 2018-08-03 2018-08-03 一种电源电路 WO2020024252A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/098490 WO2020024252A1 (zh) 2018-08-03 2018-08-03 一种电源电路
CN201880006695.0A CN110313123B (zh) 2018-08-03 2018-08-03 一种电源电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/098490 WO2020024252A1 (zh) 2018-08-03 2018-08-03 一种电源电路

Publications (1)

Publication Number Publication Date
WO2020024252A1 true WO2020024252A1 (zh) 2020-02-06

Family

ID=68074291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098490 WO2020024252A1 (zh) 2018-08-03 2018-08-03 一种电源电路

Country Status (2)

Country Link
CN (1) CN110313123B (zh)
WO (1) WO2020024252A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103152931A (zh) * 2013-02-25 2013-06-12 南京航空航天大学 一种无电解电容的高功率因数led驱动电源
CN103765743A (zh) * 2011-07-07 2014-04-30 香港城市大学 用于减少dc链路电容的dc链路模块
JP2015149822A (ja) * 2014-02-06 2015-08-20 パナソニックIpマネジメント株式会社 電源装置
CN107078665A (zh) * 2014-11-11 2017-08-18 三菱电机株式会社 电力变换装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208522662U (zh) * 2018-08-03 2019-02-19 深圳欣锐科技股份有限公司 一种电源电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103765743A (zh) * 2011-07-07 2014-04-30 香港城市大学 用于减少dc链路电容的dc链路模块
CN103152931A (zh) * 2013-02-25 2013-06-12 南京航空航天大学 一种无电解电容的高功率因数led驱动电源
JP2015149822A (ja) * 2014-02-06 2015-08-20 パナソニックIpマネジメント株式会社 電源装置
CN107078665A (zh) * 2014-11-11 2017-08-18 三菱电机株式会社 电力变换装置

Also Published As

Publication number Publication date
CN110313123B (zh) 2021-06-04
CN110313123A (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
EP3142237B1 (en) Series active ripple filter
US9246399B2 (en) Power supply system and control method thereof
EP3138190B1 (en) Power supply control
TWI646760B (zh) 電轉換裝置
US20130187625A1 (en) Convergence type power supply device
US9906119B2 (en) Method of ripple-compensation control and electrical energy conversion device using the same
US20160118904A1 (en) Power conversion apparatus
US12040618B2 (en) Power conversion system including a second circuit being configured to control a current or power such that the current or the power is synchronized with power ripples caused by the AC power supply or the AC load
WO2020024252A1 (zh) 一种电源电路
KR20130116077A (ko) 전력변환기용 불평형 보정회로
CN111478413A (zh) 一种充电电路、充电设备及系统
KR100992587B1 (ko) 수퍼캐패시터를 이용한 정류회로
CN208522662U (zh) 一种电源电路
Heo et al. A capacitance estimation of film capacitors in an LCL-filter of grid-connected PWM converters
KR20160025070A (ko) Hvdc 시스템의 고조파 제거 장치 및 그 방법
KR20140025565A (ko) 직류 전원을 사용하는 시스템의 노이즈 제거 회로
JP3402031B2 (ja) 直流電源装置
Laribi et al. Adaptive state of charge control for DroopControlled industrial DC-microgrids
US9837925B1 (en) Capacitor-less power supply
Pahlevaninezhad et al. An optimal Lyapunov-based control strategy for power factor correction AC/DC converters applicable to electric vehicles
CN106160433B (zh) 一种用于控制变流器的反馈系统和储能系统
EP3987643A1 (en) Paralleled dc-dc converters with circulating current suppression circuit
WO2012169269A1 (ja) 安定性判定方法、安定性判定回路、電力変換装置
JP6345311B1 (ja) 電力変換装置
JP7108526B2 (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18928912

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18928912

Country of ref document: EP

Kind code of ref document: A1