WO2020022860A1 - Novel compound and organic light-emitting device using same - Google Patents

Novel compound and organic light-emitting device using same Download PDF

Info

Publication number
WO2020022860A1
WO2020022860A1 PCT/KR2019/009417 KR2019009417W WO2020022860A1 WO 2020022860 A1 WO2020022860 A1 WO 2020022860A1 KR 2019009417 W KR2019009417 W KR 2019009417W WO 2020022860 A1 WO2020022860 A1 WO 2020022860A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
mmol
formula
added
Prior art date
Application number
PCT/KR2019/009417
Other languages
French (fr)
Korean (ko)
Inventor
정민우
이동훈
서상덕
박슬찬
황성현
장분재
이정하
한수진
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190091211A external-priority patent/KR102231197B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to JP2020555215A priority Critical patent/JP7102679B2/en
Priority to EP19842262.8A priority patent/EP3808744A4/en
Priority to US17/046,647 priority patent/US20210184131A1/en
Priority to CN201980028729.0A priority patent/CN112041315B/en
Publication of WO2020022860A1 publication Critical patent/WO2020022860A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a novel compound and an organic light emitting device comprising the same.
  • organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent brightness, driving voltage and response speed characteristics, many studies have been conducted.
  • the organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to a novel organic light emitting material and an organic light emitting device comprising the same.
  • the present invention provides a compound represented by Formula 1:
  • X 1 to X 3 are each independently CH or N, provided that at least two of X 1 to X 3 are N,
  • Y 1 and Y 2 are each independently O or S,
  • L is a single bond; Substituted or unsubstituted C 6-60 arylene; Or C 2-60 heteroarylene containing any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
  • Ar 1 is C 6-60 aryl substituted with at least one deuterium
  • Each R 1 is independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl including one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S, or two adjacent R 1 's combine with each other to form a C 6-60 aromatic ring Or form a C 2-60 heteroaromatic ring comprising at least one heteroatom selected from the group consisting of N, O and S,
  • n is an integer of 0-4.
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
  • the compound represented by Chemical Formula 1 may be used as a material of the organic material layer of the organic light emitting diode, and may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting diode.
  • the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, an electron transport layer 8, an electron injection layer 9.
  • an organic light emitting element composed of a cathode 4.
  • the present invention provides a compound represented by Chemical Formula 1.
  • substituted or unsubstituted is deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide groups; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Silyl groups; Boron group; Alkyl groups; Cycloalkyl group; Alkenyl groups; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group; Aralkyl amine groups; Heteroarylamine group; Arylamine group; Aryl phosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups including one or more of N, O, and S atoms, or two or more substituents connected to the substituents
  • a substituent to which two or more substituents are linked may be a biphenyl group. That is, the biphenyl group may be an aryl group, and can be interpreted as a substituent to which two phenyl groups are linked.
  • carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the ester group may be substituted with oxygen of the ester group having 1 to 25 carbon atoms, a straight chain, branched chain or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms.
  • it may be a compound of the following structural formula, but is not limited thereto.
  • carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
  • the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, And so on.
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group containing one or more of O, N, Si, and S as a dissimilar element, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms.
  • the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group
  • the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the alkyl group described above.
  • the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group.
  • the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above.
  • the description of the aryl group described above may be applied.
  • the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding.
  • the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
  • Formula 1 may be represented by any one of the following Formula 2 to Formula 5:
  • X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are the same as defined in Chemical Formula 1.
  • Formula 1 may be represented by any one of the following Formulas 2-1 to 5-4:
  • X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are the same as defined in Chemical Formula 1.
  • X 1 to X 3 may be all N.
  • L is a single bond; Substituted or unsubstituted C 6-20 arylene; Or C 6-20 heteroarylene including any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
  • L may be a single bond, phenylene, biphenylene, naphthylene, carbazolylene, dibenzofuranylene, or dibenzothiophenylene,
  • L may be a single bond.
  • Ar 1 is C 6-20 aryl substituted with at least one deuterium
  • Ar 1 may be phenyl substituted with five deuteriums.
  • R 1 is each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-10 alkyl; Substituted or unsubstituted C 3-20 cycloalkyl; Substituted or unsubstituted C 2-10 alkenyl; Substituted or unsubstituted C 6-20 aryl; Or C 6-20 heteroaryl including one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S, or two adjacent R 1 's combine with each other to form a C 6-20 aromatic ring Or C 2-20 heteroaromatic ring comprising at least one heteroatom selected from the group consisting of N, O and S,
  • each R 1 is independently hydrogen or phenyl, or two adjacent R 1 's may be bonded to each other to form one ring selected from the following group;
  • R 1 is each independently hydrogen or phenyl, or two adjacent R 1 are bonded to each other Can be formed.
  • n is an integer from 0 to 2.
  • Formula 1 may be represented by any one of the following Formula 1-1 or Formula 1-2:
  • X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 and R 1 are as defined in Chemical Formula 1.
  • the compound represented by Chemical Formula 1 may be prepared by, for example, a manufacturing method as in Scheme 1 below, and the remaining compounds may be similarly prepared.
  • X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are as defined in Formula 1, Z 1 and Z 2 are each independently halogen, preferably Z 1 and Z 2 are each independently chloro or bromo.
  • Step 1 of Scheme 1 is a Suzuki coupling reaction, preferably carried out in the presence of a palladium catalyst and a base, the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • Step 2 of Scheme 1 is an amine substitution reaction, preferably carried out in the presence of a palladium catalyst and a base, the reactor for the amine substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in the production examples to be described later.
  • the present invention provides an organic light emitting device comprising a compound represented by the formula (1).
  • the present invention is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
  • the organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1.
  • the compound according to the present invention can be used as a host of the light emitting layer.
  • the organic layer may include an electron transport layer, or an electron injection layer, the electron transport layer, or the electron injection layer comprises a compound represented by the formula (1).
  • the electron transport layer, the electron injection layer, or a layer for the electron transport and electron injection at the same time includes a compound represented by the formula (1).
  • the organic layer may include a light emitting layer and an electron transport layer
  • the electron transport layer may include a compound represented by the formula (1).
  • the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting diode according to the present invention may be an organic light emitting diode having an inverted type structure in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • FIGS. 1 and 2 the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
  • FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • the compound represented by Formula 1 may be included in the light emitting layer.
  • the compound represented by Chemical Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the electron transport layer and the electron injection layer.
  • the organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode.
  • PVD physical vapor deposition
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer may be formed thereon, and then a material that may be used as a cathode may be deposited thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the compound represented by Chemical Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
  • an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (WO 2003/012890).
  • the manufacturing method is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the anode material a material having a large work function is generally preferred to facilitate hole injection into the organic material layer.
  • the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
  • the cathode material is a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and has a capability of transporting holes to the hole injection material, and has a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, A compound which prevents the excitons from moving to the electron injection layer or the electron injection material and is excellent in thin film formation ability is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic layer.
  • hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
  • the hole transport layer is a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer.
  • a hole transporting material is a material capable of transporting holes from an anode or a hole injection layer and transferring them to the light emitting layer. This is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
  • the electron blocking layer is a layer placed between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from being passed back to the hole transport layer without recombination in the light emitting layer.
  • the electron blocking layer is also called an electron suppression layer or an electron blocking layer. .
  • As the electron blocking layer a material having a smaller electron affinity than the electron transport layer is preferable.
  • the light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable.
  • Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material may be a condensed aromatic ring derivative or a hetero ring-containing compound.
  • the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds
  • the heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the compound represented by Formula 1 may be included as a host material of the emission layer.
  • Dopant materials include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like.
  • the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and a styrylamine compound may be substituted or unsubstituted.
  • At least one arylvinyl group is substituted with the above-described arylamine, and one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group are substituted or unsubstituted.
  • styrylamine, styryldiamine, styryltriamine, styryltetraamine and the like but is not limited thereto.
  • the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • the electron transporting material a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, followed by aluminum layers or silver layers in each case.
  • the electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer
  • the compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, etc. It is not limited to this.
  • the organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
  • the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
  • compound sub 1 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • the solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 1 (13.5 g, yield 54%).
  • compound sub 2 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and dissolved with sodium tertiary-butoxide (7.3 g, 75.7 mmol). Warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • the solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 2 (9.0 g, yield 36%).
  • the solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 3 (13.5 g, yield 54%).
  • compound sub 4 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound sub 5 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, followed by stirring for 12 hours at reflux. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • the solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 7 (10.2 g, yield 41%).
  • compound sub 8 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound sub 9 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.1 g, 73.5 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound 10 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and dissolved with sodium tertiary-butoxide (7.1 g, 73.5 mmol).
  • Bis (tri tert-butylphosphine) palladium 0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound sub 11 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.1 g, 73.5 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound sub 12 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.1 g, 73.5 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound sub 13 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, followed by stirring for 12 hours at reflux. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • Dissolve compound sub 14 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) in 200 mL of xylene in a nitrogen atmosphere, and add sodium tertiary-butoxide (7.3 g, 75.7 mmol).
  • sodium tertiary-butoxide 7.7 g, 75.7 mmol.
  • Bis (tri tert-butylphosphine) palladium 0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • the solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 14 (12.0 g, yield 48%).
  • compound sub 15 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • compound sub 16 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto.
  • Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered.
  • a glass substrate coated with a thin film of ITO (indium tin oxide) having a thickness of 1,300 mm 3 was placed in distilled water in which detergent was dissolved and ultrasonically cleaned.
  • ITO indium tin oxide
  • Fischer Co. was used as a detergent
  • distilled water was filtered secondly as a filter of Millipore Co. as a distilled water.
  • ultrasonic washing was repeated 10 times with distilled water twice.
  • ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol dried and transported to a plasma cleaner.
  • the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
  • the following compound HI-1 was thermally vacuum deposited to a thickness of 50 kPa on the prepared ITO transparent electrode to form a hole injection layer.
  • a hole transport layer was formed by thermal vacuum deposition of the following compound HT-1 to 250 kW on the hole injection layer, and an electron blocking layer was formed by vacuum depositing the following compound HT-2 to 50 kW on the HT-1 deposition film.
  • the following ET-1 compound was vacuum deposited to a thickness of 250 kPa on the light emitting layer to form an electron transport layer. Formed. Aluminum was deposited to a thickness of 1000 ⁇ on the electron injection layer to form a cathode.
  • the deposition rate of the organic material was maintained at 0.4 ⁇ 0.7 ⁇ / sec
  • the aluminum was maintained at the deposition rate of 2 ⁇ / sec
  • the vacuum during deposition was maintained at 1 ⁇ 10 -7 ⁇ 5 ⁇ 10 -8 torr It was.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that Example 1 was used instead of Compound 1 of Preparation Example 7 in Table 1.
  • An organic light-emitting device was manufactured in the same manner as in Example 1, except that Example 1 was used instead of Compound 1 of Preparation Example 7 in Table 1.
  • the compounds of CE1 to CE4 in Table 1 are as follows.
  • the organic light emitting diodes were measured voltage and efficiency at a current density of 10 mA / cm 2 , and their lifetimes were measured at a current density of 50 mA / cm 2 , and the results are shown in Table 1 below.
  • LT 95 means a time when the luminance becomes 95% of the initial luminance.
  • substrate 2 anode

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention provides a novel compound and an organic light-emitting device comprising same.

Description

신규한 화합물 및 이를 이용한 유기발광 소자Novel compound and organic light emitting device using same
관련 출원(들)과의 상호인용Citation with Related Application (s)
본 출원은 2018년 7월 27일자 한국 특허 출원 제 10-2018-0088202호 및 2019년 7월 26일자 한국 특허 출원 제 10-2019-0091211호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 10-2018-0088202 filed on July 27, 2018 and Korean Patent Application No. 10-2019-0091211 filed on July 26, 2019. All content disclosed in the literature is included as part of this specification.
본 발명은 신규한 화합물 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel compound and an organic light emitting device comprising the same.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.In general, organic light emitting phenomenon refers to a phenomenon of converting electrical energy into light energy using an organic material. The organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, excellent brightness, driving voltage and response speed characteristics, many studies have been conducted.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.The organic light emitting device generally has a structure including an anode and a cathode and an organic layer between the anode and the cathode. The organic layer is often formed of a multi-layered structure composed of different materials to increase the efficiency and stability of the organic light emitting device, for example, it may be made of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer. When the voltage is applied between the two electrodes in the structure of the organic light emitting device, holes are injected into the organic material layer at the anode, and electrons are injected into the organic material layer, and excitons are formed when the injected holes and the electrons meet each other. When it falls back to the ground, it glows.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.There is a continuous demand for the development of new materials for organic materials used in such organic light emitting devices.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
(특허문헌 1) 한국특허공개 제10-2000-0051826호(Patent Document 1) Korean Patent Publication No. 10-2000-0051826
본 발명은 신규한 유기발광 재료 및 이를 포함하는 유기 발광 소자에 관한 것이다.The present invention relates to a novel organic light emitting material and an organic light emitting device comprising the same.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다:The present invention provides a compound represented by Formula 1:
[화학식 1][Formula 1]
Figure PCTKR2019009417-appb-I000001
Figure PCTKR2019009417-appb-I000001
상기 화학식 1에서,In Chemical Formula 1,
X1 내지 X3는 각각 독립적으로, CH 또는 N이고, 단 X1 내지 X3 중 적어도 둘은 N이고,X 1 to X 3 are each independently CH or N, provided that at least two of X 1 to X 3 are N,
Y1 및 Y2는 각각 독립적으로, O 또는 S이고,Y 1 and Y 2 are each independently O or S,
L은 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,L is a single bond; Substituted or unsubstituted C 6-60 arylene; Or C 2-60 heteroarylene containing any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
Ar1은 적어도 하나의 중수소로 치환된 C6-60 아릴이고,Ar 1 is C 6-60 aryl substituted with at least one deuterium,
R1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 2개의 R1이 서로 결합하여 C6-60 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로방향족 고리를 형성하고,Each R 1 is independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl including one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S, or two adjacent R 1 's combine with each other to form a C 6-60 aromatic ring Or form a C 2-60 heteroaromatic ring comprising at least one heteroatom selected from the group consisting of N, O and S,
n은 0 내지 4의 정수이다.n is an integer of 0-4.
또한, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In addition, the present invention is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
상술한 화학식 1로 표시되는 화합물은 유기 발광 소자의 유기물 층의 재료로서 사용될 수 있으며, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다. 특히, 상술한 화학식 1로 표시되는 화합물은 정공주입, 정공수송, 정공주입 및 수송, 발광, 전자수송, 또는 전자주입 재료로 사용될 수 있다.The compound represented by Chemical Formula 1 may be used as a material of the organic material layer of the organic light emitting diode, and may improve efficiency, low driving voltage, and / or lifetime characteristics in the organic light emitting diode. In particular, the compound represented by Chemical Formula 1 may be used as a hole injection, hole transport, hole injection and transport, light emission, electron transport, or electron injection material.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 전자수송층(8), 전자주입층(9) 및 음극(4)로 이루어진 유기 발광 소자의 예를 도시한 것이다.2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer 7, a light emitting layer 3, an electron transport layer 8, an electron injection layer 9. And an example of an organic light emitting element composed of a cathode 4.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail to help understand the present invention.
본 발명은 상기 화학식 1로 표시되는 화합물을 제공한다.The present invention provides a compound represented by Chemical Formula 1.
본 명세서에서,
Figure PCTKR2019009417-appb-I000002
또는
Figure PCTKR2019009417-appb-I000003
는 다른 치환기에 연결되는 결합을 의미한다.
In this specification,
Figure PCTKR2019009417-appb-I000002
or
Figure PCTKR2019009417-appb-I000003
Means a bond connected to another substituent.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.As used herein, the term "substituted or unsubstituted" is deuterium; Halogen group; Nitrile group; Nitro group; Hydroxyl group; Carbonyl group; Ester group; Imide group; Amino group; Phosphine oxide groups; An alkoxy group; Aryloxy group; Alkyl thioxy group; Arylthioxy group; Alkyl sulfoxy groups; Aryl sulfoxy group; Silyl groups; Boron group; Alkyl groups; Cycloalkyl group; Alkenyl groups; Aryl group; Aralkyl group; Ar alkenyl group; Alkylaryl group; Alkylamine group; Aralkyl amine groups; Heteroarylamine group; Arylamine group; Aryl phosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of heterocyclic groups including one or more of N, O, and S atoms, or two or more substituents connected to the substituents exemplified above. . For example, "a substituent to which two or more substituents are linked" may be a biphenyl group. That is, the biphenyl group may be an aryl group, and can be interpreted as a substituent to which two phenyl groups are linked.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.Although carbon number of a carbonyl group in this specification is not specifically limited, It is preferable that it is C1-C40. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
Figure PCTKR2019009417-appb-I000004
Figure PCTKR2019009417-appb-I000004
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the ester group may be substituted with oxygen of the ester group having 1 to 25 carbon atoms, a straight chain, branched chain or cyclic alkyl group or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a compound of the following structural formula, but is not limited thereto.
Figure PCTKR2019009417-appb-I000005
Figure PCTKR2019009417-appb-I000005
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.In this specification, although carbon number of an imide group is not specifically limited, It is preferable that it is C1-C25. Specifically, it may be a compound having a structure as follows, but is not limited thereto.
Figure PCTKR2019009417-appb-I000006
Figure PCTKR2019009417-appb-I000006
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.In the present specification, specifically, the silyl group includes trimethylsilyl group, triethylsilyl group, t-butyldimethylsilyl group, vinyldimethylsilyl group, propyldimethylsilyl group, triphenylsilyl group, diphenylsilyl group, phenylsilyl group, and the like. However, the present invention is not limited thereto.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.In the present specification, the boron group specifically includes, but is not limited to, trimethylboron group, triethylboron group, t-butyldimethylboron group, triphenylboron group, phenylboron group and the like.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.In the present specification, examples of the halogen group include fluorine, chlorine, bromine or iodine.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.In the present specification, the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the alkyl group has 1 to 20 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 10 carbon atoms. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -Pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl, 2-propylpentyl, n-nonyl, 2,2 -Dimethylheptyl, 1-ethyl-propyl, 1,1-dimethyl-propyl, isohexyl, 2-methylpentyl, 4-methylhexyl, 5-methylhexyl, and the like, but is not limited thereto.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.In the present specification, the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms. Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2- ( Naphthyl-1-yl) vinyl-1-yl, 2,2-bis (diphenyl-1-yl) vinyl-1-yl, stilbenyl group, styrenyl group and the like, but are not limited thereto.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.In the present specification, the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to one embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 20 carbon atoms. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms. Specifically cyclopropyl, cyclobutyl, cyclopentyl, 3-methylcyclopentyl, 2,3-dimethylcyclopentyl, cyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, 2,3-dimethylcyclohexyl, 3, 4,5-trimethylcyclohexyl, 4-tert-butylcyclohexyl, cycloheptyl, cyclooctyl, and the like, but are not limited thereto.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.In the present specification, the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the aryl group has 6 to 30 carbon atoms. According to an exemplary embodiment, the aryl group has 6 to 20 carbon atoms. The aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as the monocyclic aryl group, but is not limited thereto. The polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2019009417-appb-I000007
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
In the present specification, a fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure. When the fluorenyl group is substituted,
Figure PCTKR2019009417-appb-I000007
And so on. However, the present invention is not limited thereto.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.In the present specification, the heterocyclic group is a heterocyclic group containing one or more of O, N, Si, and S as a dissimilar element, and the carbon number is not particularly limited, but is preferably 2 to 60 carbon atoms. Examples of the heterocyclic group include thiophene group, furan group, pyrrole group, imidazole group, thiazole group, oxazole group, oxadiazole group, triazole group, pyridyl group, bipyridyl group, pyrimidyl group, triazine group, acridil group , Pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , Carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia There may be a sleepy group, a phenothiazinyl group, a dibenzofuranyl group, and the like, but is not limited thereto.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.In the present specification, the aryl group in the aralkyl group, aralkenyl group, alkylaryl group, and arylamine group is the same as the example of the aryl group described above. In the present specification, the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the alkyl group described above. In the present specification, the heteroaryl of the heteroarylamine may be applied to the description of the aforementioned heterocyclic group. In the present specification, the alkenyl group in the aralkenyl group is the same as the example of the alkenyl group described above. In the present specification, except that the arylene is a divalent group, the description of the aryl group described above may be applied. In the present specification, the description of the aforementioned heterocyclic group may be applied except that the heteroarylene is a divalent group. In the present specification, the hydrocarbon ring is not a monovalent group, and the description of the aforementioned aryl group or cycloalkyl group may be applied except that two substituents are formed by bonding. In the present specification, the heterocyclic group is not a monovalent group, and the description of the aforementioned heterocyclic group may be applied except that two substituents are formed by bonding.
바람직하게는, 상기 화학식 1은 하기 화학식 2 내지 화학식 5 중 어느 하나로 표시될 수 있다:Preferably, Formula 1 may be represented by any one of the following Formula 2 to Formula 5:
[화학식 2][Formula 2]
Figure PCTKR2019009417-appb-I000008
Figure PCTKR2019009417-appb-I000008
[화학식 3][Formula 3]
Figure PCTKR2019009417-appb-I000009
Figure PCTKR2019009417-appb-I000009
[화학식 4][Formula 4]
Figure PCTKR2019009417-appb-I000010
Figure PCTKR2019009417-appb-I000010
[화학식 5][Formula 5]
Figure PCTKR2019009417-appb-I000011
Figure PCTKR2019009417-appb-I000011
상기 화학식 2 내지 5에서,In Chemical Formulas 2 to 5,
X1 내지 X3, Y1, Y2, L, Ar1, R1 및 n은 상기 화학식 1에서 정의한 바와 같다.X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are the same as defined in Chemical Formula 1.
보다 바람직하게는, 상기 화학식 1은 하기 화학식 2-1 내지 화학식 5-4 중 어느 하나로 표시될 수 있다:More preferably, Formula 1 may be represented by any one of the following Formulas 2-1 to 5-4:
[화학식 2-1][Formula 2-1]
Figure PCTKR2019009417-appb-I000012
Figure PCTKR2019009417-appb-I000012
[화학식 2-2][Formula 2-2]
Figure PCTKR2019009417-appb-I000013
Figure PCTKR2019009417-appb-I000013
[화학식 2-3][Formula 2-3]
Figure PCTKR2019009417-appb-I000014
Figure PCTKR2019009417-appb-I000014
[화학식 2-4][Formula 2-4]
Figure PCTKR2019009417-appb-I000015
Figure PCTKR2019009417-appb-I000015
[화학식 3-1][Formula 3-1]
Figure PCTKR2019009417-appb-I000016
Figure PCTKR2019009417-appb-I000016
[화학식 3-2][Formula 3-2]
Figure PCTKR2019009417-appb-I000017
Figure PCTKR2019009417-appb-I000017
[화학식 3-3][Formula 3-3]
Figure PCTKR2019009417-appb-I000018
Figure PCTKR2019009417-appb-I000018
[화학식 3-4][Formula 3-4]
Figure PCTKR2019009417-appb-I000019
Figure PCTKR2019009417-appb-I000019
[화학식 4-1][Formula 4-1]
Figure PCTKR2019009417-appb-I000020
Figure PCTKR2019009417-appb-I000020
[화학식 4-2][Formula 4-2]
Figure PCTKR2019009417-appb-I000021
Figure PCTKR2019009417-appb-I000021
[화학식 4-3][Formula 4-3]
Figure PCTKR2019009417-appb-I000022
Figure PCTKR2019009417-appb-I000022
[화학식 4-4][Formula 4-4]
Figure PCTKR2019009417-appb-I000023
Figure PCTKR2019009417-appb-I000023
[화학식 5-1][Formula 5-1]
Figure PCTKR2019009417-appb-I000024
Figure PCTKR2019009417-appb-I000024
[화학식 5-2][Formula 5-2]
Figure PCTKR2019009417-appb-I000025
Figure PCTKR2019009417-appb-I000025
[화학식 5-3][Formula 5-3]
Figure PCTKR2019009417-appb-I000026
Figure PCTKR2019009417-appb-I000026
[화학식 5-4][Formula 5-4]
Figure PCTKR2019009417-appb-I000027
Figure PCTKR2019009417-appb-I000027
상기 화학식 2-1 내지 5-4에서,In Chemical Formulas 2-1 to 5-4,
X1 내지 X3, Y1, Y2, L, Ar1, R1 및 n은 상기 화학식 1에서 정의한 바와 같다.X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are the same as defined in Chemical Formula 1.
바람직하게는, X1 내지 X3는 모두 N일 수 있다.Preferably, X 1 to X 3 may be all N.
바람직하게는, L은 단일결합; 치환 또는 비치환된 C6-20 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C6-20 헤테로아릴렌일 수 있고,Preferably, L is a single bond; Substituted or unsubstituted C 6-20 arylene; Or C 6-20 heteroarylene including any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
보다 바람직하게는, L은 단일결합, 페닐렌, 비페닐렌, 나프틸렌, 카바졸일렌, 디벤조퓨라닐렌, 또는 디벤조티오페닐렌일 수 있고,More preferably, L may be a single bond, phenylene, biphenylene, naphthylene, carbazolylene, dibenzofuranylene, or dibenzothiophenylene,
가장 바람직하게는, L은 단일결합일 수 있다.Most preferably, L may be a single bond.
Ar1은 적어도 하나의 중수소로 치환된 C6-20 아릴이고,Ar 1 is C 6-20 aryl substituted with at least one deuterium,
보다 바람직하게는, Ar1은 5 개의 중수소로 치환된 페닐일 수 있다.More preferably, Ar 1 may be phenyl substituted with five deuteriums.
바람직하게는 R1은 각각 독립적으로, 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C1-10 알킬; 치환 또는 비치환된 C3-20 사이클로알킬; 치환 또는 비치환된 C2-10 알케닐; 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C6-20 헤테로아릴이거나, 또는 인접한 2개의 R1이 서로 결합하여 C6-20 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-20 헤테로방향족 고리를 형성할 수 있고,Preferably, R 1 is each independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-10 alkyl; Substituted or unsubstituted C 3-20 cycloalkyl; Substituted or unsubstituted C 2-10 alkenyl; Substituted or unsubstituted C 6-20 aryl; Or C 6-20 heteroaryl including one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S, or two adjacent R 1 's combine with each other to form a C 6-20 aromatic ring Or C 2-20 heteroaromatic ring comprising at least one heteroatom selected from the group consisting of N, O and S,
보다 바람직하게는, R1은 각각 독립적으로, 수소 또는 페닐이거나, 또는 인접한 2개의 R1이 서로 결합하여 하기의 군으로부터 선택되는 어느 하나의 고리를 형성할 수 있고;More preferably, each R 1 is independently hydrogen or phenyl, or two adjacent R 1 's may be bonded to each other to form one ring selected from the following group;
Figure PCTKR2019009417-appb-I000028
Figure PCTKR2019009417-appb-I000028
가장 바람직하게는, R1은 각각 독립적으로, 수소 또는 페닐이거나, 또는 인접한 2개의 R1이 서로 결합하여
Figure PCTKR2019009417-appb-I000029
를 형성할 수 있다.
Most preferably, R 1 is each independently hydrogen or phenyl, or two adjacent R 1 are bonded to each other
Figure PCTKR2019009417-appb-I000029
Can be formed.
바람직하게는, n은 0 내지 2의 정수이다.Preferably, n is an integer from 0 to 2.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2 중 어느 하나로 표시될 수 있다:Preferably, Formula 1 may be represented by any one of the following Formula 1-1 or Formula 1-2:
[화학식 1-1][Formula 1-1]
Figure PCTKR2019009417-appb-I000030
Figure PCTKR2019009417-appb-I000030
[화학식 1-2][Formula 1-2]
Figure PCTKR2019009417-appb-I000031
Figure PCTKR2019009417-appb-I000031
상기 화학식 1-1 또는 화학식 1-2에서,In Chemical Formula 1-1 or Chemical Formula 1-2,
X1 내지 X3, Y1, Y2, L, Ar1 및 R1은 상기 화학식 1에서 정의한 바와 같다.X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 and R 1 are as defined in Chemical Formula 1.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:Representative examples of the compound represented by Formula 1 are as follows:
Figure PCTKR2019009417-appb-I000032
Figure PCTKR2019009417-appb-I000032
Figure PCTKR2019009417-appb-I000033
Figure PCTKR2019009417-appb-I000033
Figure PCTKR2019009417-appb-I000034
Figure PCTKR2019009417-appb-I000034
Figure PCTKR2019009417-appb-I000035
Figure PCTKR2019009417-appb-I000035
Figure PCTKR2019009417-appb-I000036
Figure PCTKR2019009417-appb-I000036
Figure PCTKR2019009417-appb-I000037
Figure PCTKR2019009417-appb-I000037
Figure PCTKR2019009417-appb-I000038
Figure PCTKR2019009417-appb-I000038
Figure PCTKR2019009417-appb-I000039
Figure PCTKR2019009417-appb-I000039
Figure PCTKR2019009417-appb-I000040
Figure PCTKR2019009417-appb-I000040
Figure PCTKR2019009417-appb-I000041
Figure PCTKR2019009417-appb-I000041
Figure PCTKR2019009417-appb-I000042
Figure PCTKR2019009417-appb-I000042
Figure PCTKR2019009417-appb-I000043
Figure PCTKR2019009417-appb-I000043
Figure PCTKR2019009417-appb-I000044
Figure PCTKR2019009417-appb-I000044
Figure PCTKR2019009417-appb-I000045
Figure PCTKR2019009417-appb-I000045
Figure PCTKR2019009417-appb-I000046
Figure PCTKR2019009417-appb-I000046
Figure PCTKR2019009417-appb-I000047
Figure PCTKR2019009417-appb-I000047
Figure PCTKR2019009417-appb-I000048
Figure PCTKR2019009417-appb-I000048
Figure PCTKR2019009417-appb-I000049
Figure PCTKR2019009417-appb-I000049
상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.The compound represented by Chemical Formula 1 may be prepared by, for example, a manufacturing method as in Scheme 1 below, and the remaining compounds may be similarly prepared.
[반응식 1] Scheme 1
Figure PCTKR2019009417-appb-I000050
Figure PCTKR2019009417-appb-I000050
상기 반응식 1에서, X1 내지 X3, Y1, Y2, L, Ar1, R1 및 n는 상기 화학식 1에서 정의한 바와 같으며, Z1 및 Z2는 각각 독립적으로 할로겐이고, 바람직하게는 Z1 및 Z2는 각각 독립적으로 클로로 또는 브로모이다.In Scheme 1, X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are as defined in Formula 1, Z 1 and Z 2 are each independently halogen, preferably Z 1 and Z 2 are each independently chloro or bromo.
상기 반응식 1의 단계 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 또한, 상기 반응식 1의 단계 2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다. Step 1 of Scheme 1 is a Suzuki coupling reaction, preferably carried out in the presence of a palladium catalyst and a base, the reactor for the Suzuki coupling reaction can be changed as known in the art. In addition, Step 2 of Scheme 1 is an amine substitution reaction, preferably carried out in the presence of a palladium catalyst and a base, the reactor for the amine substitution reaction can be changed as known in the art. The manufacturing method may be more specific in the production examples to be described later.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 유기 발광 소자를 제공한다. 일례로, 본 발명은 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물 층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 상기 화학식 1로 표시되는 화합물을 포함하는, 유기 발광 소자를 제공한다.In another aspect, the present invention provides an organic light emitting device comprising a compound represented by the formula (1). In one embodiment, the present invention is a first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound represented by Chemical Formula 1. do.
본 발명의 유기 발광 소자의 유기물 층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물 층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.The organic material layer of the organic light emitting device of the present invention may be formed of a single layer structure, but may be formed of a multilayer structure in which two or more organic material layers are stacked. For example, the organic light emitting device of the present invention may have a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer and the like as an organic layer. However, the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
또한, 상기 유기물 층은 발광층을 포함할 수 있고, 상기 발광층은 상기 화학식 1로 표시되는 화합물을 포함한다. 특히, 본 발명에 따른 화합물은 발광층의 호스트로 사용할 수 있다.In addition, the organic layer may include a light emitting layer, and the light emitting layer includes a compound represented by Chemical Formula 1. In particular, the compound according to the present invention can be used as a host of the light emitting layer.
또한, 상기 유기물 층은 전자수송층, 또는 전자주입층을 포함할 수 있고, 상기 전자수송층, 또는 전자주입층은 상기 화학식 1로 표시되는 화합물을 포함한다.In addition, the organic layer may include an electron transport layer, or an electron injection layer, the electron transport layer, or the electron injection layer comprises a compound represented by the formula (1).
또한, 상기 전자수송층, 전자주입층, 또는 전자수송 및 전자주입을 동시에 하는 층은 상기 화학식 1로 표시되는 화합물을 포함한다.In addition, the electron transport layer, the electron injection layer, or a layer for the electron transport and electron injection at the same time includes a compound represented by the formula (1).
또한, 상기 유기물 층은 발광층 및 전자수송층을 포함하고, 상기 전자수송층은 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.In addition, the organic layer may include a light emitting layer and an electron transport layer, the electron transport layer may include a compound represented by the formula (1).
또한, 본 발명에 따른 유기 발광 소자는, 기판 상에 양극, 1층 이상의 유기물 층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다. 또한, 본 발명에 따른 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물 층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다. 예컨대, 본 발명의 일실시예에 따른 유기 발광 소자의 구조는 도 1 및 2에 예시되어 있다.In addition, the organic light emitting device according to the present invention may be an organic light emitting device having a structure in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate. In addition, the organic light emitting diode according to the present invention may be an organic light emitting diode having an inverted type structure in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate. For example, the structure of an organic light emitting device according to an embodiment of the present invention is illustrated in FIGS. 1 and 2.
도 1은 기판(1), 양극(2), 발광층(3), 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 발광층에 포함될 수 있다.FIG. 1 shows an example of an organic light emitting element composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4. In such a structure, the compound represented by Formula 1 may be included in the light emitting layer.
도 2는 도 2는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 전자수송층(8), 전자주입층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 이와 같은 구조에 있어서, 상기 화학식 1로 표시되는 화합물은 상기 정공주입층, 정공수송층, 전자차단층, 발광층, 전자수송층 및 전자주입층 중 1층 이상에 포함될 수 있다.2 is a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, an electron blocking layer (7), a light emitting layer (3), an electron transport layer (8), an electron injection layer An example of the organic light emitting element consisting of (9) and the cathode (4) is shown. In such a structure, the compound represented by Chemical Formula 1 may be included in one or more of the hole injection layer, the hole transport layer, the electron blocking layer, the light emitting layer, the electron transport layer and the electron injection layer.
본 발명에 따른 유기 발광 소자는, 상기 유기물 층 중 1층 이상이 상기 화학식 1로 표시되는 화합물을 포함하는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 또한, 상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.The organic light emitting device according to the present invention may be manufactured by materials and methods known in the art, except that at least one layer of the organic material layer includes the compound represented by Chemical Formula 1. In addition, when the organic light emitting device includes a plurality of organic material layers, the organic material layers may be formed of the same material or different materials.
예컨대, 본 발명에 따른 유기 발광 소자는 기판 상에 제1 전극, 유기물층 및 제2 전극을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공 주입층, 정공 수송층, 발광층 및 전자 수송층을 포함하는 유기물 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.For example, the organic light emitting device according to the present invention may be manufactured by sequentially stacking a first electrode, an organic material layer, and a second electrode on a substrate. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on the substrate to form an anode. In addition, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron transport layer may be formed thereon, and then a material that may be used as a cathode may be deposited thereon. In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
또한, 상기 화학식 1로 표시되는 화합물은 유기 발광 소자의 제조시 진공 증착법 뿐만 아니라 용액 도포법에 의하여 유기물 층으로 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.In addition, the compound represented by Chemical Formula 1 may be formed as an organic layer by a solution coating method as well as a vacuum deposition method in the manufacture of the organic light emitting device. Here, the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, etc., but is not limited thereto.
이와 같은 방법 외에도, 기판 상에 음극 물질로부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 제조할 수 있다(WO 2003/012890). 다만, 제조 방법이 이에 한정되는 것은 아니다.In addition to the above method, an organic light emitting device may be manufactured by sequentially depositing an organic material layer and an anode material on a substrate from a cathode material (WO 2003/012890). However, the manufacturing method is not limited thereto.
일례로, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이거나, 또는 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.In one example, the first electrode is an anode, the second electrode is a cathode, or the first electrode is a cathode, the second electrode is an anode.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.As the anode material, a material having a large work function is generally preferred to facilitate hole injection into the organic material layer. Specific examples of the positive electrode material include metals such as vanadium, chromium, copper, zinc and gold or alloys thereof; Metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO); Combinations of oxides with metals such as ZnO: Al or SnO 2 : Sb; Conductive polymers such as poly (3-methylthiophene), poly [3,4- (ethylene-1,2-dioxy) thiophene] (PEDOT), polypyrrole and polyaniline, and the like, but are not limited thereto.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.It is preferable that the cathode material is a material having a small work function to facilitate electron injection into the organic material layer. Specific examples of the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; Multilayer structure materials such as LiF / Al or LiO 2 / Al, and the like, but are not limited thereto.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다. 정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.The hole injection layer is a layer for injecting holes from the electrode, and has a capability of transporting holes to the hole injection material, and has a hole injection effect at the anode, an excellent hole injection effect to the light emitting layer or the light emitting material, A compound which prevents the excitons from moving to the electron injection layer or the electron injection material and is excellent in thin film formation ability is preferable. Preferably, the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic layer. Specific examples of the hole injection material include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based Organic materials, anthraquinone and polyaniline and polythiophene-based conductive polymers, but are not limited thereto.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.The hole transport layer is a layer for receiving holes from the hole injection layer and transporting holes to the light emitting layer. A hole transporting material is a material capable of transporting holes from an anode or a hole injection layer and transferring them to the light emitting layer. This is suitable. Specific examples thereof include an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together, but are not limited thereto.
상기 전자차단층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로는 층으로, 전자억제층 또는 전자저지층으로 불리기도 한다. 전자차단층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다.The electron blocking layer is a layer placed between the hole transport layer and the light emitting layer to prevent electrons injected from the cathode from being passed back to the hole transport layer without recombination in the light emitting layer. The electron blocking layer is also called an electron suppression layer or an electron blocking layer. . As the electron blocking layer, a material having a smaller electron affinity than the electron transport layer is preferable.
상기 발광 물질로는 정공 수송층과 전자 수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌, 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.The light emitting material is a material capable of emitting light in the visible region by transporting and combining holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency with respect to fluorescence or phosphorescence is preferable. Specific examples thereof include 8-hydroxyquinoline aluminum complex (Alq 3 ); Carbazole series compounds; Dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compound; Benzoxazole, benzthiazole and benzimidazole series compounds; Poly (p-phenylenevinylene) (PPV) -based polymers; Spiro compounds; Polyfluorene, rubrene and the like, but are not limited thereto.
상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 구체적으로 축합 방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 바람직하게는, 상기 화학식 1로 표시되는 화합물을 발광층의 호스트 재료로 포함할 수 있다.The light emitting layer may include a host material and a dopant material. The host material may be a condensed aromatic ring derivative or a hetero ring-containing compound. Specifically, the condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, and fluoranthene compounds, and the heterocyclic containing compounds include carbazole derivatives, dibenzofuran derivatives and ladder types. Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto. Preferably, the compound represented by Formula 1 may be included as a host material of the emission layer.
도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.Dopant materials include aromatic amine derivatives, styrylamine compounds, boron complexes, fluoranthene compounds, metal complexes, and the like. Specifically, the aromatic amine derivatives include condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, and include pyrene, anthracene, chrysene and periplanthene having an arylamino group, and a styrylamine compound may be substituted or unsubstituted. At least one arylvinyl group is substituted with the above-described arylamine, and one or two or more substituents selected from the group consisting of aryl group, silyl group, alkyl group, cycloalkyl group and arylamino group are substituted or unsubstituted. Specifically, styrylamine, styryldiamine, styryltriamine, styryltetraamine and the like, but is not limited thereto. In addition, the metal complex includes, but is not limited to, an iridium complex, a platinum complex, and the like.
상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.The electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer. As the electron transporting material, a material capable of injecting electrons well from the cathode and transferring them to the light emitting layer is suitable. Do. Specific examples include Al complexes of 8-hydroxyquinoline; Complexes including Alq 3 ; Organic radical compounds; Hydroxyflavone-metal complexes and the like, but are not limited thereto. The electron transport layer can be used with any desired cathode material as used according to the prior art. In particular, examples of suitable cathode materials are conventional materials having a low work function followed by an aluminum or silver layer. Specifically cesium, barium, calcium, ytterbium and samarium, followed by aluminum layers or silver layers in each case.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.The electron injection layer is a layer for injecting electrons from an electrode, has a capability of transporting electrons, has an electron injection effect from the cathode, excellent electron injection effect to the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer The compound which prevents the movement to a layer and is excellent in thin film formation ability is preferable. Specifically, fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preorenylidene methane, anthrone and the derivatives thereof, metal Complex compounds, nitrogen-containing five-membered ring derivatives, and the like, but are not limited thereto.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, Tris (8-hydroxyquinolinato) aluminum, tris (2-methyl-8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-cresolato) gallium, bis (2-methyl-8-quinolinato) (1-naphtholato) aluminum, bis (2-methyl-8-quinolinato) (2-naphtolato) gallium, etc. It is not limited to this.
본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.The organic light emitting device according to the present invention may be a top emission type, a bottom emission type or a double-sided emission type depending on the material used.
또한, 상기 화학식1로 표시되는 화합물은 유기 발광 소자 외에도 유기 태양 전지 또는 유기 트랜지스터에 포함될 수 있다.In addition, the compound represented by Formula 1 may be included in an organic solar cell or an organic transistor in addition to the organic light emitting device.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail to help understand the present invention. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.
[제조예][Production example]
제조예 1: 화합물 P-6의 제조 Preparation Example 1 Preparation of Compound P-6
Figure PCTKR2019009417-appb-I000051
Figure PCTKR2019009417-appb-I000051
브로모-3-플루오로-2-요오드벤젠(1-bromo-3-fluoro-2-iodobenzene)(100 g, 333.5 mmol), 5-클로로-2-메톡시페닐보론산((5-chloro-2-methoxyphenyl)boronic acid)(62.2 g, 333.5 mmol)를 테트라하이드로퓨란(THF) 800 ml에 녹였다. 여기에 탄산나트륨(Na2CO3) 2 M 용액(500 mL), 테트라키스(트리페닐포스핀)팔라듐(0)[Pd(PPh3)4](7.7 g, 6.7 mmol)을 넣고 12 시간 환류시켰다. 반응이 끝난 후 상온으로 냉각시키고, 생성된 혼합물을 물과 톨루엔으로 3회 추출하였다. 톨루엔층을 분리한 뒤 황산마그네슘(magnesium sulfate)으로 건조하여 여과한 여액을 감압증류하여 얻은 혼합물을 클로로폼, 에탄올을 이용해 3회 재결정 하여 화합물 P-1(53.7 g, 수율 51 %; MS:[M+H]+=314)을 얻었다.1-bromo-3-fluoro-2-iodobenzene (100 g, 333.5 mmol), 5-chloro-2-methoxyphenylboronic acid ((5-chloro- 2-methoxyphenyl) boronic acid) (62.2 g, 333.5 mmol) was dissolved in 800 ml of tetrahydrofuran (THF). Sodium carbonate (Na 2 CO 3 ) 2 M solution (500 mL) and tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 ] (7.7 g, 6.7 mmol) were added and refluxed for 12 hours. . After the reaction was completed, the mixture was cooled to room temperature, and the resulting mixture was extracted three times with water and toluene. The toluene layer was separated, dried over magnesium sulfate, and the filtrate was filtered and distilled under reduced pressure. The mixture was recrystallized three times with chloroform and ethanol to give compound P-1 (53.7 g, yield 51%; MS: [ M + H] + = 314).
Figure PCTKR2019009417-appb-I000052
Figure PCTKR2019009417-appb-I000052
화합물 P-1(50.0 g, 158.5 mmol)을 디클로로메탄(Dichlorometahne)(600 ml)에 녹인 뒤 0 ℃로 냉각시킨다. 보론트리브로마이드(boron tribromide)(15.8 ml, 166.4 mmol)를 천천히 적가한 뒤 12 시간동안 교반하였다. 반응이 종료된 후 물로 3 회 세척하고, 황산마그네슘(magnesium sulfate)으로 건조하여 여과한 여액을 감압증류하고 컬럼크로마토크래피로 정제하여 화합물 P-2(47.4 g, 수율 99 %; MS:[M+H]+=300)을 얻었다.Compound P-1 (50.0 g, 158.5 mmol) was dissolved in Dichlorometahne (600 ml) and cooled to 0 ° C. Boron tribromide (15.8 ml, 166.4 mmol) was slowly added dropwise and stirred for 12 hours. After completion of the reaction, the mixture was washed three times with water, dried over magnesium sulfate (magnesium sulfate), and the filtrate was filtered under reduced pressure and purified by column chromatography to give the compound P-2 (47.4 g, yield 99%; MS: [M + H] + = 300).
Figure PCTKR2019009417-appb-I000053
Figure PCTKR2019009417-appb-I000053
화합물 P-2(40.0 g, 132.7 mmol)을 증류된 다이메틸포름아마이드(DMF)(400ml)에 녹인다. 이를 0 ℃로 냉각시키고, 여기에 나트륨 하이드리드(sodium hydride)(3.5 g, 145.9 mmol)를 천천히 적가하였다. 20 분동안 교반한 뒤 100 ℃에서 1 시간동안 교반하였다. 반응이 종료된 후 상온으로 냉각하고, 에탄올(Ethanol) 100 ml을 천천히 넣었다. 위 혼합물을 감압증류 하여 얻은 혼합물을 클로로포름, 에틸아세테이트로 재결정하여 화합물 P-3(30.3 g, 수율 81 %; MS:[M+H]+=280)을 얻었다.Compound P-2 (40.0 g, 132.7 mmol) is dissolved in distilled dimethylformamide (DMF) (400 ml). It was cooled to 0 ° C. and sodium hydride (3.5 g, 145.9 mmol) was slowly added dropwise. After stirring for 20 minutes, the mixture was stirred at 100 ° C. for 1 hour. After the reaction was completed and cooled to room temperature, 100 ml of ethanol (Ethanol) was slowly added. The mixture obtained by distillation under reduced pressure was recrystallized with chloroform and ethyl acetate to give the compound P-3 (30.3 g, yield 81%; MS: [M + H] + = 280).
Figure PCTKR2019009417-appb-I000054
Figure PCTKR2019009417-appb-I000054
화합물 P-3(30.0 g, 106.6 mmol)을 테트라하이드로퓨란(300 ml)에 녹인 후, -78 ℃로 온도를 낮추고 1.7 M 터셔리-부틸리튬(t-BuLi)(62.7 ml, 106.6 mmol)을 천천히 가하였다. 동일 온도에서 한 시간 동안 교반한 후 트리아이소프로필보레이트(B(OiPr)3)(28.3 ml, 213.1 mmol)을 가하고, 상온으로 온도를 서서히 올리면서 3 시간동안 교반하였다. 반응 혼합물에 2 N 염산수용액(200 ml)을 가하고 1.5 시간 동안 상온에서 교반하였다. 생성된 침전물을 거르고 물과 에틸에테르(ethyl ether)로 차례로 씻은 후 진공 건조하였다. 건조 후 에틸에테르에 분산시켜 두 시간 동안 교반한 후 여과하고 건조하여 화합물 P-4(24.4 g, 수율 93 %; MS:[M+H]+=247)을 제조하였다.Compound P-3 (30.0 g, 106.6 mmol) was dissolved in tetrahydrofuran (300 ml), then the temperature was lowered to -78 ° C and 1.7 M tert-butyllithium (t-BuLi) (62.7 ml, 106.6 mmol) was added. Slowly added. After stirring for 1 hour at the same temperature, triisopropylborate (B (OiPr) 3 ) (28.3 ml, 213.1 mmol) was added, and the mixture was stirred for 3 hours while gradually raising the temperature to room temperature. 2N aqueous hydrochloric acid solution (200 ml) was added to the reaction mixture, which was stirred for 1.5 hours at room temperature. The resulting precipitate was filtered off, washed sequentially with water and ethyl ether, and dried in vacuo. After drying, the mixture was dispersed in ethyl ether, stirred for 2 hours, filtered, and dried to prepare compound P-4 (24.4 g, yield 93%; MS: [M + H] + = 247).
제조예 2: 화합물 Q-4의 제조Preparation Example 2 Preparation of Compound Q-4
Figure PCTKR2019009417-appb-I000055
Figure PCTKR2019009417-appb-I000055
브로모-3-플루오로-4-요오드벤젠(1-bromo-3-fluoro-4-iodobenzene)(50 g, 166.6 mmol), 5-클로로-2-메톡시페닐보론산((5-chloro-2-methoxyphenyl)boronic acid)(31.1 g, 166.6 mmol)를 테트라하이드로퓨란(THF) 800 ml에 녹였다. 여기에 탄산나트륨(Na2CO3) 2 M 용액(250 mL), 테트라키스(트리페닐포스핀)팔라듐(0)[Pd(PPh3)4](3.8 g, 3 mol%)을 넣고 12 시간 환류시켰다. 반응이 끝난 후 상온으로 냉각시키고, 생성된 혼합물을 물과 톨루엔으로 3 회 추출하였다. 톨루엔층을 분리한 뒤 황산마그네슘(magnesium sulfate)으로 건조하여 여과한 여액을 감압증류하여 얻은 혼합물을 클로로폼, 에탄올을 이용해 3회 재결정 하여 화합물 Q-1(27.5 g, 수율 51 %; MS:[M+H]+=314)을 얻었다.1-bromo-3-fluoro-4-iodobenzene (50 g, 166.6 mmol), 5-chloro-2-methoxyphenylboronic acid ((5-chloro- 2-methoxyphenyl) boronic acid) (31.1 g, 166.6 mmol) was dissolved in 800 ml of tetrahydrofuran (THF). Add sodium carbonate (Na 2 CO 3 ) 2 M solution (250 mL), tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 ] (3.8 g, 3 mol%), and reflux for 12 hours. I was. After the reaction was completed, the mixture was cooled to room temperature, and the resulting mixture was extracted three times with water and toluene. The toluene layer was separated, dried over magnesium sulfate, and the filtrate was filtered and distilled under reduced pressure. The mixture was recrystallized three times with chloroform and ethanol to give compound Q-1 (27.5 g, yield 51%; MS: [ M + H] + = 314).
Figure PCTKR2019009417-appb-I000056
Figure PCTKR2019009417-appb-I000056
화합물 Q-1(25.0 g, 150 mmol)을 디클로로메탄(Dichlorometahne)(300 ml)에 녹인 뒤 0 ℃로 냉각시킨다. 보론트리브로마이드(boron tribromide)(7.9 ml, 83.2 mmol)를 천천히 적가한 뒤 12 시간동안 교반하였다. 반응이 종료된 후 물로 3 회 세척하고, 황산마그네슘(magnesium sulfate)으로 건조하여 여과한 여액을 감압증류하고 컬럼크로마토크래피로 정제하여 화합물 Q-2(23.7 g, 수율 99 %; MS:[M+H]+= 300)을 얻었다.Compound Q-1 (25.0 g, 150 mmol) is dissolved in Dichlorometahne (300 ml) and cooled to 0 ° C. Boron tribromide (7.9 ml, 83.2 mmol) was slowly added dropwise and stirred for 12 hours. After completion of the reaction, the mixture was washed three times with water, dried over magnesium sulfate (magnesium sulfate), and the filtrate was filtered under reduced pressure and purified by column chromatography to give compound Q-2 (23.7 g, yield 99%; MS: [M + H] + = 300).
Figure PCTKR2019009417-appb-I000057
Figure PCTKR2019009417-appb-I000057
화합물 Q-2(20.0 g, 66.4 mmol)을 증류된 다이메틸포름아마이드(DMF)(200 ml)에 녹인다. 이를 0 ℃ 로 냉각시키고, 여기에 나트륨 하이드리드(sodium hydride)(1.8 g, 72.9 mmol)를 천천히 적가하였다. 20 분동안 교반한 뒤 100 ℃에서 1 시간동안 교반하였다. 반응이 종료된 후 상온으로 냉각하고, 에탄올(Ethanol) 100 ml을 천천히 넣었다. 위 혼합물을 감압증류 하여 얻은 혼합물을 클로로포름, 에틸아세테이트로 재결정하여 화합물 Q-3(15.2 g, 수율 81 %; MS:[M+H]+=280)을 얻었다.Compound Q-2 (20.0 g, 66.4 mmol) is dissolved in distilled dimethylformamide (DMF) (200 ml). It was cooled to 0 ° C. and sodium hydride (1.8 g, 72.9 mmol) was slowly added dropwise thereto. After stirring for 20 minutes, the mixture was stirred at 100 ° C. for 1 hour. After the reaction was completed and cooled to room temperature, 100 ml of ethanol (Ethanol) was slowly added. The mixture obtained by distillation under reduced pressure was recrystallized with chloroform and ethyl acetate to obtain compound Q-3 (15.2 g, yield 81%; MS: [M + H] + = 280).
Figure PCTKR2019009417-appb-I000058
Figure PCTKR2019009417-appb-I000058
화합물 Q-3(15.0 g, 53.3 mmol)을 테트라하이드로퓨란(150 ml)에 녹인 후, -78 ℃로 온도를 낮추고 1.7 M 터셔리-부틸리튬(t-BuLi)(31.8 ml, 53.3 mmol)을 천천히 가하였다. 동일 온도에서 한 시간 동안 교반한 후 트리아이소프로필보레이트(B(OiPr)3)(14.2 ml, 107.0 mmol)을 가하고, 상온으로 온도를 서서히 올리면서 3 시간동안 교반하였다. 반응 혼합물에 2 N 염산수용액(100 ml)을 가하고 1.5 시간 동안 상온에서 교반하였다. 생성된 침전물을 거르고 물과 에틸에테르(ethyl ether)로 차례로 씻은 후 진공 건조하였다. 건조후 에틸에테르에 분산시켜 두 시간 동안 교반한 후 여과하고 건조하여 화합물 Q-4(12.2 g, 수율 93 %; MS:[M+H]+= 247)을 제조하였다.Compound Q-3 (15.0 g, 53.3 mmol) was dissolved in tetrahydrofuran (150 ml), then the temperature was lowered to -78 ° C and 1.7 M tert-butyllithium (t-BuLi) (31.8 ml, 53.3 mmol) was added. Slowly added. After stirring at the same temperature for 1 hour, triisopropylborate (B (OiPr) 3 ) (14.2 ml, 107.0 mmol) was added thereto, and the mixture was stirred for 3 hours while gradually raising the temperature to room temperature. 2N aqueous hydrochloric acid solution (100 ml) was added to the reaction mixture, which was stirred for 1.5 hours at room temperature. The resulting precipitate was filtered off, washed sequentially with water and ethyl ether, and dried in vacuo. After drying, the mixture was dispersed in ethyl ether, stirred for 2 hours, filtered, and dried to prepare compound Q-4 (12.2 g, yield 93%; MS: [M + H] + = 247).
제조예 3: 화합물 R-4의 제조Preparation Example 3 Preparation of Compound R-4
Figure PCTKR2019009417-appb-I000059
Figure PCTKR2019009417-appb-I000059
브로모-3-플루오로-4-요오드벤젠(1-bromo-3-fluoro-4-iodobenzene)(50 g, 166.6 mmol), (5-chloro-2-methoxyphenyl)boronic(31.1 g, 166.6 mmol)를 테트라하이드로퓨란(THF) 800 ml에 녹였다. 여기에 탄산나트륨(Na2CO3) 2 M 용액(250 mL), 테트라키스(트리페닐포스핀)팔라듐(0)[Pd(PPh3)4](3.8 g, 3 mol%)을 넣고 12 시간 환류시켰다. 반응이 끝난 후 상온으로 냉각시키고, 생성된 혼합물을 물과 톨루엔으로 3 회 추출하였다. 톨루엔층을 분리한 뒤 황산마그네슘(magnesium sulfate)으로 건조하여 여과한 여액을 감압증류하여 얻은 혼합물을 클로로폼, 에탄올을 이용해 3회 재결정 하여 화합물 R-1(27.5 g, 수율 51 %; MS:[M+H]+=314)을 얻었다.1-bromo-3-fluoro-4-iodobenzene (50 g, 166.6 mmol), (5-chloro-2-methoxyphenyl) boronic (31.1 g, 166.6 mmol) Was dissolved in 800 ml of tetrahydrofuran (THF). Add sodium carbonate (Na 2 CO 3 ) 2 M solution (250 mL), tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 ] (3.8 g, 3 mol%), and reflux for 12 hours. I was. After the reaction was completed, the mixture was cooled to room temperature, and the resulting mixture was extracted three times with water and toluene. The toluene layer was separated, dried over magnesium sulfate, and the filtrate was filtered and distilled under reduced pressure. The mixture was recrystallized three times with chloroform and ethanol to give a compound R-1 (27.5 g, yield 51%; MS: [ M + H] + = 314).
Figure PCTKR2019009417-appb-I000060
Figure PCTKR2019009417-appb-I000060
화합물 R-1(25.0 g, 150 mmol)을 디클로로메탄(Dichlorometahne)(300 ml)에 녹인 뒤 0 ℃ 로 냉각시킨다. 보론트리브로마이드(boron tribromide)(7.9 ml, 83.2 mmol)를 천천히 적가한 뒤 12 시간동안 교반하였다. 반응이 종료된 후 물로 3 회 세척하고, 황산마그네슘(magnesium sulfate)으로 건조하여 여과한 여액을 감압증류하고 컬럼크로마토크래피로 정제하여 화합물 R-2(23.7 g, 수율 99 %; MS:[M+H]+= 300)을 얻었다.Compound R-1 (25.0 g, 150 mmol) is dissolved in Dichlorometahne (300 ml) and cooled to 0 ° C. Boron tribromide (7.9 ml, 83.2 mmol) was slowly added dropwise and stirred for 12 hours. After the reaction was completed, washed three times with water, dried over magnesium sulfate (magnesium sulfate) and the filtrate was filtered under reduced pressure and purified by column chromatography to give a compound R-2 (23.7 g, 99% yield; MS: [M + H] + = 300).
Figure PCTKR2019009417-appb-I000061
Figure PCTKR2019009417-appb-I000061
화합물 R-2(20.0 g, 66.4 mmol)을 증류된 다이메틸포름아마이드(DMF)(200ml)에 녹인다. 이를 0 ℃로 냉각시키고, 여기에 나트륨 하이드리드(sodium hydride)(1.8 g, 72.9 mmol)를 천천히 적가하였다. 20 분동안 교반한 뒤 100 ℃에서 1시간동안 교반하였다. 반응이 종료된 후 상온으로 냉각하고, 에탄올(Ethanol) 100 ml을 천천히 넣었다. 위 혼합물을 감압증류 하여 얻은 혼합물을 클로로포름, 에틸아세테이트로 재결정하여 화합물 R-3(15.2 g, 수율 81 %; MS:[M+H]+= 280)을 얻었다.Compound R-2 (20.0 g, 66.4 mmol) is dissolved in distilled dimethylformamide (DMF) (200 ml). It was cooled to 0 ° C. and sodium hydride (1.8 g, 72.9 mmol) was slowly added dropwise thereto. After stirring for 20 minutes, the mixture was stirred at 100 ° C for 1 hour. After the reaction was completed and cooled to room temperature, 100 ml of ethanol (Ethanol) was slowly added. The mixture obtained by distillation under reduced pressure was recrystallized with chloroform and ethyl acetate to give the compound R-3 (15.2 g, yield 81%; MS: [M + H] + = 280).
Figure PCTKR2019009417-appb-I000062
Figure PCTKR2019009417-appb-I000062
화합물 R-3(15.0 g, 53.3 mmol)을 테트라하이드로퓨란(150 ml)에 녹인 후, -78 ℃로 온도를 낮추고 1.7 M 터셔리-부틸리튬(t-BuLi)(31.8 ml, 53.3 mmol)을 천천히 가하였다. 동일 온도에서 한 시간 동안 교반한 후 트리아이소프로필보레이트(B(OiPr)3)(14.2 ml, 107.0 mmol)을 가하고, 상온으로 온도를 서서히 올리면서 3 시간동안 교반하였다. 반응 혼합물에 2 N 염산수용액(100 ml)을 가하고 1.5 시간 동안 상온에서 교반하였다. 생성된 침전물을 거르고 물과 에틸에테르(ethyl ether)로 차례로 씻은 후 진공 건조하였다. 건조후 에틸에테르에 분산시켜 두 시간 동안 교반한 후 여과하고 건조하여 화합물 R-4(12.2 g, 수율 93 %; MS:[M+H]+=247)을 제조하였다.Compound R-3 (15.0 g, 53.3 mmol) was dissolved in tetrahydrofuran (150 ml), then the temperature was lowered to -78 ° C and 1.7 M tert-butyllithium (t-BuLi) (31.8 ml, 53.3 mmol) was added. Slowly added. After stirring at the same temperature for 1 hour, triisopropylborate (B (OiPr) 3 ) (14.2 ml, 107.0 mmol) was added thereto, and the mixture was stirred for 3 hours while gradually raising the temperature to room temperature. 2N aqueous hydrochloric acid solution (100 ml) was added to the reaction mixture, which was stirred for 1.5 hours at room temperature. The resulting precipitate was filtered off, washed sequentially with water and ethyl ether, and dried in vacuo. After drying, the mixture was dispersed in ethyl ether, stirred for 2 hours, filtered, and dried to prepare compound R-4 (12.2 g, yield 93%; MS: [M + H] + = 247).
제조예 4: 화합물 T-4의 제조 Preparation Example 4 Preparation of Compound T-4
Figure PCTKR2019009417-appb-I000063
Figure PCTKR2019009417-appb-I000063
5-클로로-2-메톡시페닐보론산((5-chloro-2-methoxyphenyl)boronic acid)(62.2 g, 333.5 mmol) 대신 4-클로로-2-메톡시페닐보론산((4-chloro-2-methoxyphenyl)boronic acid)(62.2 g, 333.5 mmol)을 사용한 것 외에는 제조예 1의 P-1의 제조와 동일한 방법으로 화합물 T-1(65.3 g, 수율 62 %; MS:[M+H]+=314)을 제조하였다.4-chloro-2-methoxyphenylboronic acid ((4-chloro-2) instead of (5-chloro-2-methoxyphenyl) boronic acid (62.2 g, 333.5 mmol) Compound T-1 (65.3 g, Yield 62%; MS: [M + H] +) in the same manner as in the preparation of P-1 of Preparation Example 1, except that -methoxyphenyl) boronic acid) (62.2 g, 333.5 mmol) was used. = 314).
Figure PCTKR2019009417-appb-I000064
Figure PCTKR2019009417-appb-I000064
화합물 P-1(50.0 g, 158.5 mmol)대신 화합물 T-1(50.0 g, 158.5 mmol)을 사용한 것 외에는 제조예 1의 P-2의 제조와 동일한 방법으로 화합물 T-2(43.0 g, 수율 90 %; MS:[M+H]+=300)을 제조하였다.Compound T-2 (43.0 g, yield 90) in the same manner as in the preparation of P-2 of Preparation Example 1, except that Compound T-1 (50.0 g, 158.5 mmol) was used instead of Compound P-1 (50.0 g, 158.5 mmol). %; MS: [M + H] + = 300).
Figure PCTKR2019009417-appb-I000065
Figure PCTKR2019009417-appb-I000065
화합물 P-2(40.0 g, 132.7 mmol) 대신 화합물 T-2(40.0 g, 132.7 mmol)을 사용한 것 외에는 제조예 1의 P-3의 제조와 동일한 방법으로 화합물 T-3(30.6 g, 수율 82 %; MS:[M+H]+=280)을 제조하였다.Compound T-3 (30.6 g, Yield 82) in the same manner as in the preparation of P-3 of Preparation Example 1, except that Compound T-2 (40.0 g, 132.7 mmol) was used instead of Compound P-2 (40.0 g, 132.7 mmol). %; MS: [M + H] + = 280).
Figure PCTKR2019009417-appb-I000066
Figure PCTKR2019009417-appb-I000066
화합물 P-3(30.0 g, 106.6 mmol) 대신 화합물 T-3(30.0 g, 106.6 mmol)을 사용한 것 외에는 제조예 1의 P-4의 제조와 동일한 방법으로 화합물 T-4(25.0 g, 수율 95 %; MS:[M+H]+=247)을 제조하였다.Compound T-4 (25.0 g, Yield 95) in the same manner as in the preparation of P-4 of Preparation Example 1, except that Compound T-3 (30.0 g, 106.6 mmol) was used instead of Compound P-3 (30.0 g, 106.6 mmol). %; MS: [M + H] + = 247).
제조예 5: 화합물 A1, A2, A4 및 A5의 제조 Preparation Example 5 Preparation of Compounds A1, A2, A4 and A5
1) 화합물 A1의 제조1) Preparation of Compound A1
Figure PCTKR2019009417-appb-I000067
Figure PCTKR2019009417-appb-I000067
2,4-dichloro-6-(dibenzo[b,d]furan-4-yl)-1,3,5-triazine(50.0 g, 158.7 mmol)과 (phenyl-d5)boronic acid(20.2 g, 158.7 mmol)을 테트라하이드로퓨란(500 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(238 ml, 476.2 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](5.5 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 A1(39.1 g, 수율 68 %; MS:[M+H]+=363)을 제조하였다.2,4-dichloro-6- (dibenzo [b, d] furan-4-yl) -1,3,5-triazine (50.0 g, 158.7 mmol) and (phenyl-d5) boronic acid (20.2 g, 158.7 mmol ) Was dispersed in tetrahydrofuran (500 ml), and then 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (238 ml, 476.2 mmol) was added, and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (5.5 g, 3 mol%) was added and stirred under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound A1 (39.1 g, yield 68%; MS: [M + H] + = 363).
2) 화합물 A2의 제조2) Preparation of Compound A2
Figure PCTKR2019009417-appb-I000068
Figure PCTKR2019009417-appb-I000068
2,4-dichloro-6-(dibenzo[b,d]furan-3-yl)-1,3,5-triazine(50.0 g, 158.7 mmol)과 (phenyl-d5)boronic acid(20.2 g, 158.7 mmol)을 테트라하이드로퓨란(500 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(238 ml, 476.2 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](5.5 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 A2(42.5 g, 수율 74 %; MS:[M+H]+=363)을 제조하였다.2,4-dichloro-6- (dibenzo [b, d] furan-3-yl) -1,3,5-triazine (50.0 g, 158.7 mmol) and (phenyl-d5) boronic acid (20.2 g, 158.7 mmol ) Was dispersed in tetrahydrofuran (500 ml), and then 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (238 ml, 476.2 mmol) was added, and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (5.5 g, 3 mol%) was added and stirred under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound A2 (42.5 g, yield 74%; MS: [M + H] + = 363).
3) 화합물 A4의 제조3) Preparation of Compound A4
Figure PCTKR2019009417-appb-I000069
Figure PCTKR2019009417-appb-I000069
2,4-dichloro-6-(dibenzo[b,d]furan-1-yl)-1,3,5-triazine(50.0 g, 158.7 mmol)과 (phenyl-d5)boronic acid(20.2 g, 158.7 mmol)을 테트라하이드로퓨란(500 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(238 ml, 476.2 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](5.5 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 A4(33.9 g, 수율 59 %; MS:[M+H]+=363)을 제조하였다.2,4-dichloro-6- (dibenzo [b, d] furan-1-yl) -1,3,5-triazine (50.0 g, 158.7 mmol) and (phenyl-d5) boronic acid (20.2 g, 158.7 mmol ) Was dispersed in tetrahydrofuran (500 ml), and then 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (238 ml, 476.2 mmol) was added, and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (5.5 g, 3 mol%) was added and stirred under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound A4 (33.9 g, yield 59%; MS: [M + H] + = 363).
4) 화합물 A5의 제조4) Preparation of Compound A5
Figure PCTKR2019009417-appb-I000070
Figure PCTKR2019009417-appb-I000070
2,4-dichloro-6-(dibenzo[b,d]thiophen-4-yl)-1,3,5-triazine(50.0 g, 151.1 mmol)과 (phenyl-d5)boronic acid(19.2 g, 151.1 mmol)을 테트라하이드로퓨란(500 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(226 ml, 453.2 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](5.2 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 A5(42.8 g, 수율 75 %; MS:[M+H]+=379)을 제조하였다.2,4-dichloro-6- (dibenzo [b, d] thiophen-4-yl) -1,3,5-triazine (50.0 g, 151.1 mmol) and (phenyl-d5) boronic acid (19.2 g, 151.1 mmol ) Is dispersed in tetrahydrofuran (500 ml), and then 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (226 ml, 453.2 mmol) is added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (5.2 g, 3 mol%) was added and stirred under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized from chloroform and ethyl acetate, filtered and dried to give compound A5 (42.8 g, yield 75%; MS: [M + H] + = 379).
제조예 6: 화합물 sub 1 내지 sub 16 의 제조 Preparation Example 6 Preparation of Compound sub 1 to sub 16
1) 화합물 sub 1의 제조1) Preparation of Compound sub 1
Figure PCTKR2019009417-appb-I000071
Figure PCTKR2019009417-appb-I000071
화합물 P-4(20.0 g, 81.3 mmol)과 화합물 A2(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 1(21.9 g, 수율 51 %; MS:[M+H]+=529)을 제조하였다.Compound P-4 (20.0 g, 81.3 mmol) and Compound A2 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 1 (21.9 g, yield 51%; MS: [M + H] + = 529).
2) 화합물 sub 2의 제조2) Preparation of Compound sub 2
Figure PCTKR2019009417-appb-I000072
Figure PCTKR2019009417-appb-I000072
화합물 Q-4(20.0 g, 81.3 mmol)과 화합물 A2(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 2(28.3 g, 수율 66 %; MS:[M+H]+=529)을 제조하였다.Compound Q-4 (20.0 g, 81.3 mmol) and Compound A2 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 2 (28.3 g, yield 66%; MS: [M + H] + = 529).
3) 화합물 sub 3의 제조3) Preparation of Compound sub 3
Figure PCTKR2019009417-appb-I000073
Figure PCTKR2019009417-appb-I000073
화합물 R-4(20.0 g, 81.3 mmol)과 화합물 A2(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 3(28.3 g, 수율 66 %; MS:[M+H]+=529)을 제조하였다.Compound R-4 (20.0 g, 81.3 mmol) and Compound A2 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 3 (28.3 g, yield 66%; MS: [M + H] + = 529).
4) 화합물 sub 4의 제조4) Preparation of Compound sub 4
Figure PCTKR2019009417-appb-I000074
Figure PCTKR2019009417-appb-I000074
화합물 T-4(20.0 g, 81.3 mmol)과 화합물 A2(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 4(21.5 g, 수율 50 %; MS:[M+H]+=529)을 제조하였다.Compound T-4 (20.0 g, 81.3 mmol) and Compound A2 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 4 (21.5 g, yield 50%; MS: [M + H] + = 529).
5) 화합물 sub 5의 제조5) Preparation of Compound sub 5
Figure PCTKR2019009417-appb-I000075
Figure PCTKR2019009417-appb-I000075
화합물 P-4(20.0 g, 81.3 mmol)과 화합물 A1(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 5(25.8 g, 수율 60 %; MS:[M+H]+=529)을 제조하였다.Compound P-4 (20.0 g, 81.3 mmol) and Compound A1 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 5 (25.8 g, yield 60%; MS: [M + H] + = 529).
6) 화합물 sub 6의 제조6) Preparation of Compound sub 6
Figure PCTKR2019009417-appb-I000076
Figure PCTKR2019009417-appb-I000076
화합물 Q-4(20.0 g, 81.3 mmol)과 화합물 A1(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 6(24.5 g, 수율 57 %; MS:[M+H]+=529)을 제조하였다.Compound Q-4 (20.0 g, 81.3 mmol) and Compound A1 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 6 (24.5 g, yield 57%; MS: [M + H] + = 529).
7) 화합물 sub 7의 제조7) Preparation of Compound sub 7
Figure PCTKR2019009417-appb-I000077
Figure PCTKR2019009417-appb-I000077
화합물 R-4(20.0 g, 81.3 mmol)과 화합물 A1(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 7(32.2 g, 수율 75 %; MS:[M+H]+=529)을 제조하였다.Compound R-4 (20.0 g, 81.3 mmol) and Compound A1 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 7 (32.2 g, yield 75%; MS: [M + H] + = 529).
8) 화합물 sub 8의 제조8) Preparation of Compound sub 8
Figure PCTKR2019009417-appb-I000078
Figure PCTKR2019009417-appb-I000078
화합물 T-4(20.0 g, 81.3 mmol)과 화합물 A1(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 8(27.9 g, 수율 65 %; MS:[M+H]+=529)을 제조하였다.Compound T-4 (20.0 g, 81.3 mmol) and Compound A1 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 8 (27.9 g, yield 65%; MS: [M + H] + = 529).
9) 화합물 sub 9의 제조9) Preparation of Compound sub 9
Figure PCTKR2019009417-appb-I000079
Figure PCTKR2019009417-appb-I000079
화합물 P-4(20.0 g, 81.3 mmol)과 화합물 A5(30.7 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 9(24.8 g, 수율 56 %; MS:[M+H]+=545)을 제조하였다.Compound P-4 (20.0 g, 81.3 mmol) and Compound A5 (30.7 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 9 (24.8 g, yield 56%; MS: [M + H] + = 545).
10) 화합물 sub 10의 제조10) Preparation of Compound sub 10
Figure PCTKR2019009417-appb-I000080
Figure PCTKR2019009417-appb-I000080
화합물 Q-4(20.0 g, 81.3 mmol)과 화합물 A5(30.7 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 10(26.5 g, 수율 60 %; MS:[M+H]+=545)을 제조하였다.Compound Q-4 (20.0 g, 81.3 mmol) and Compound A5 (30.7 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 10 (26.5 g, yield 60%; MS: [M + H] + = 545).
11) 화합물 sub 11의 제조11) Preparation of Compound sub 11
Figure PCTKR2019009417-appb-I000081
Figure PCTKR2019009417-appb-I000081
화합물 R-4(20.0 g, 81.3 mmol)과 화합물 A5(30.7 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 11(31.0 g, 수율 70 %; MS:[M+H]+=545)을 제조하였다.Compound R-4 (20.0 g, 81.3 mmol) and Compound A5 (30.7 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 11 (31.0 g, yield 70%; MS: [M + H] + = 545).
12) 화합물 sub 12의 제조12) Preparation of Compound sub 12
Figure PCTKR2019009417-appb-I000082
Figure PCTKR2019009417-appb-I000082
화합물 T-4(20.0 g, 81.3 mmol)과 화합물 A5(30.7 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 12(29.2 g, 수율 66 %; MS:[M+H]+=545)을 제조하였다.Compound T-4 (20.0 g, 81.3 mmol) and Compound A5 (30.7 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 12 (29.2 g, yield 66%; MS: [M + H] + = 545).
13) 화합물 sub 13의 제조13) Preparation of Compound sub 13
Figure PCTKR2019009417-appb-I000083
Figure PCTKR2019009417-appb-I000083
화합물 P-4(20.0 g, 81.3 mmol)과 화합물 A4(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 13(27.0 g, 수율 63 %; MS:[M+H]+=529)을 제조하였다.Compound P-4 (20.0 g, 81.3 mmol) and Compound A4 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 13 (27.0 g, yield 63%; MS: [M + H] + = 529).
14) 화합물 sub 14의 제조14) Preparation of Compound sub 14
Figure PCTKR2019009417-appb-I000084
Figure PCTKR2019009417-appb-I000084
화합물 Q-4(20.0 g, 81.3 mmol)과 화합물 A4(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 14(26.6 g, 수율 62 %; MS:[M+H]+=529)을 제조하였다.Compound Q-4 (20.0 g, 81.3 mmol) and Compound A4 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 14 (26.6 g, yield 62%; MS: [M + H] + = 529).
15) 화합물 sub 15의 제조15) Preparation of Compound sub 15
Figure PCTKR2019009417-appb-I000085
Figure PCTKR2019009417-appb-I000085
화합물 R-4(20.0 g, 81.3 mmol)과 화합물 A4(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 15(30.9 g, 수율 72 %; MS:[M+H]+=529)을 제조하였다.Compound R-4 (20.0 g, 81.3 mmol) and Compound A4 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 15 (30.9 g, yield 72%; MS: [M + H] + = 529).
16) 화합물 sub 16의 제조16) Preparation of Compound sub 16
Figure PCTKR2019009417-appb-I000086
Figure PCTKR2019009417-appb-I000086
화합물 T-4(20.0 g, 81.3 mmol)과 화합물 A4(29.4 g, 81.3 mmol)을 테트라하이드로퓨란(200 ml)에 분산시킨 후, 2M 탄산칼륨수용액(aq. K2CO3)(122 ml, 243.9 mmol)을 첨가하고 테트라키스트리페닐포스피노팔라듐[Pd(PPh3)4](2.8 g, 3 mol%)을 넣은 후 5 시간 동안 교반 환류하였다. 상온으로 온도를 낮추고 생성된 고체를 여과하였다. 여과된 고체를 클로로포름과 에틸아세테이트로 재결정하고 여과한 뒤, 건조하여 화합물 sub 16(23.2 g, 수율 54 %; MS:[M+H]+=529)을 제조하였다.Compound T-4 (20.0 g, 81.3 mmol) and Compound A4 (29.4 g, 81.3 mmol) were dispersed in tetrahydrofuran (200 ml), followed by 2M aqueous potassium carbonate solution (aq. K 2 CO 3 ) (122 ml, 243.9 mmol) was added and tetrakistriphenylphosphinopalladium [Pd (PPh 3 ) 4 ] (2.8 g, 3 mol%) was added thereto, followed by stirring under reflux for 5 hours. The temperature was lowered to room temperature and the resulting solid was filtered. The filtered solid was recrystallized with chloroform and ethyl acetate, filtered and dried to give compound sub 16 (23.2 g, yield 54%; MS: [M + H] + = 529).
제조예 7: 화합물 1 내지 16 의 제조 Preparation Example 7 Preparation of Compounds 1-16
1) 화합물 1의 제조1) Preparation of Compound 1
Figure PCTKR2019009417-appb-I000087
Figure PCTKR2019009417-appb-I000087
질소 분위기에서 화합물 sub 1(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 1(13.5 g, 수율 54 %)을 제조하였다.In a nitrogen atmosphere, compound sub 1 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 1 (13.5 g, yield 54%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
2) 화합물 2의 제조2) Preparation of Compound 2
Figure PCTKR2019009417-appb-I000088
Figure PCTKR2019009417-appb-I000088
질소 분위기에서 화합물 sub 2(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 녹색의 고체 화합물 2(9.0 g, 수율 36 %)을 제조하였다.In a nitrogen atmosphere, compound sub 2 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and dissolved with sodium tertiary-butoxide (7.3 g, 75.7 mmol). Warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 2 (9.0 g, yield 36%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
3) 화합물 3의 제조3) Preparation of Compound 3
Figure PCTKR2019009417-appb-I000089
Figure PCTKR2019009417-appb-I000089
질소 분위기에서 화합물 sub 3(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 녹색의 고체 화합물 3(13.5 g, 수율 54 %)을 제조하였다.In a nitrogen atmosphere, compound sub 3 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were dissolved in 200 mL of xylene, and sodium tertiary-butoxide (7.3 g, 75.7 mmol) was added thereto. Warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 3 (13.5 g, yield 54%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
4) 화합물 4의 제조4) Preparation of Compound 4
Figure PCTKR2019009417-appb-I000090
Figure PCTKR2019009417-appb-I000090
질소 분위기에서 화합물 sub 4(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 4(9.0 g, 수율 36 %)을 제조하였다.In a nitrogen atmosphere, compound sub 4 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 4 (9.0 g, 36% yield).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
5) 화합물 5의 제조5) Preparation of Compound 5
Figure PCTKR2019009417-appb-I000091
Figure PCTKR2019009417-appb-I000091
질소 분위기에서 화합물 sub 5(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 5(16.7 g, 수율 67 %)을 제조하였다.In a nitrogen atmosphere, compound sub 5 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, followed by stirring for 12 hours at reflux. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 5 (16.7 g, yield 67%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
6) 화합물 6의 제조6) Preparation of Compound 6
Figure PCTKR2019009417-appb-I000092
Figure PCTKR2019009417-appb-I000092
질소 분위기에서 화합물 sub 6(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 6(10.0 g, 수율 40 %)을 제조하였다.In a nitrogen atmosphere, compound sub 6 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 6 (10.0 g, yield 40%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
7) 화합물 7의 제조7) Preparation of Compound 7
Figure PCTKR2019009417-appb-I000093
Figure PCTKR2019009417-appb-I000093
질소 분위기에서 화합물 sub 7(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 녹색의 고체 화합물 7(10.2 g, 수율 41 %)을 제조하였다.In a nitrogen atmosphere, compound sub 7 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were dissolved in 200 mL of xylene, and sodium tertiary-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 7 (10.2 g, yield 41%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
8) 화합물 8의 제조8) Preparation of Compound 8
Figure PCTKR2019009417-appb-I000094
Figure PCTKR2019009417-appb-I000094
질소 분위기에서 화합물 sub 8(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 녹색의 고체 화합물 8(18.5 g, 수율 74 %)을 제조하였다.In a nitrogen atmosphere, compound sub 8 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 8 (18.5 g, yield 74%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
9) 화합물 9의 제조9) Preparation of Compound 9
Figure PCTKR2019009417-appb-I000095
Figure PCTKR2019009417-appb-I000095
질소 분위기에서 화합물 sub 9(20.0 g, 36.8 mmol)과 9-카바졸(6.1 g, 36.8 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.1 g, 73.5 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 9(9.7 g, 수율 39 %)을 제조하였다.In a nitrogen atmosphere, compound sub 9 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.1 g, 73.5 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 9 (9.7 g, yield 39%).
MS: [M+H]+ = 676MS: [M + H] < + > = 676
10) 화합물 10의 제조10) Preparation of Compound 10
Figure PCTKR2019009417-appb-I000096
Figure PCTKR2019009417-appb-I000096
질소 분위기에서 화합물 sub 10(20.0 g, 36.8 mmol)과 9-카바졸(6.1 g, 36.8 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.1 g, 73.5 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 초록색의 고체 화합물 10(13.9 g, 수율 56 %)을 제조하였다.In a nitrogen atmosphere, compound 10 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and dissolved with sodium tertiary-butoxide (7.1 g, 73.5 mmol). To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 10 (13.9 g, 56% yield).
MS: [M+H]+ = 676MS: [M + H] < + > = 676
11) 화합물 11의 제조11) Preparation of Compound 11
Figure PCTKR2019009417-appb-I000097
Figure PCTKR2019009417-appb-I000097
질소 분위기에서 화합물 sub 11(20.0 g, 36.8 mmol)과 9-카바졸(6.1 g, 36.8 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.1g, 73.5 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 초록색의 고체 화합물 11(14.4 g, 수율 58 %)을 제조하였다.In a nitrogen atmosphere, compound sub 11 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.1 g, 73.5 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 11 (14.4 g, yield 58%).
MS: [M+H]+ = 676MS: [M + H] < + > = 676
12) 화합물 12의 제조12) Preparation of Compound 12
Figure PCTKR2019009417-appb-I000098
Figure PCTKR2019009417-appb-I000098
질소 분위기에서 화합물 sub 12(20.0 g, 36.8 mmol)과 9-카바졸(6.1 g, 36.8 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.1 g, 73.5 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 초록색의 고체 화합물 12(11.2 g, 수율 45 %)을 제조하였다.In a nitrogen atmosphere, compound sub 12 (20.0 g, 36.8 mmol) and 9-carbazole (6.1 g, 36.8 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.1 g, 73.5 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 12 (11.2 g, 45% yield).
MS: [M+H]+ = 676MS: [M + H] < + > = 676
13) 화합물 13의 제조13) Preparation of Compound 13
Figure PCTKR2019009417-appb-I000099
Figure PCTKR2019009417-appb-I000099
질소 분위기에서 화합물 sub 13(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6g, 3mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 13(13.7 g, 수율 55 %)을 제조하였다.In a nitrogen atmosphere, compound sub 13 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, followed by stirring for 12 hours at reflux. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 13 (13.7 g, 55% yield).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
14) 화합물 14의 제조14) Preparation of Compound 14
Figure PCTKR2019009417-appb-I000100
Figure PCTKR2019009417-appb-I000100
질소 분위기에서 화합물 sub 14(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 녹색의 고체 화합물 14(12.0 g, 수율 48 %)을 제조하였다.Dissolve compound sub 14 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) in 200 mL of xylene in a nitrogen atmosphere, and add sodium tertiary-butoxide (7.3 g, 75.7 mmol). To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 14 (12.0 g, yield 48%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
15) 화합물 15의 제조15) Preparation of Compound 15
Figure PCTKR2019009417-appb-I000101
Figure PCTKR2019009417-appb-I000101
질소 분위기에서 화합물 sub 15(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 녹색의 고체 화합물 15(15.5 g, 수율 62 %)을 제조하였다.In a nitrogen atmosphere, compound sub 15 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a green solid compound 15 (15.5 g, 62% yield).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
16) 화합물 16의 제조16) Preparation of Compound 16
Figure PCTKR2019009417-appb-I000102
Figure PCTKR2019009417-appb-I000102
질소 분위기에서 화합물 sub 16(20.0 g, 37.9 mmol)과 9-카바졸(6.3 g, 37.9 mmol)을 자일렌 200 mL에 투입하여 녹이고, 나트륨 터셔리-부톡사이드(7.3 g, 75.7 mmol)를 첨가하여 가온한다. 비스(트리 터셔리-부틸포스핀)팔라듐(0.6 g, 3 mol%)을 투입하여 12 시간 환류 교반 시킨다. 반응이 완결되면 상온으로 온도를 낮춘 후 생성된 고체를 여과하였다. 고체를 클로로포름 1000 mL에 녹이고, 물로 2 회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 클로로포름과 에틸아세테이트을 이용하여 실리카 컬럼을 통해 정제하여 노란색의 고체 화합물 16(15.0 g, 수율 60 %)을 제조하였다.In a nitrogen atmosphere, compound sub 16 (20.0 g, 37.9 mmol) and 9-carbazole (6.3 g, 37.9 mmol) were added to 200 mL of xylene, and sodium tert-butoxide (7.3 g, 75.7 mmol) was added thereto. To warm up. Bis (tri tert-butylphosphine) palladium (0.6 g, 3 mol%) was added thereto, and the mixture was stirred under reflux for 12 hours. After the reaction was completed, the temperature was lowered to room temperature, and the produced solid was filtered. The solid was dissolved in 1000 mL of chloroform, washed twice with water, and then the organic layer was separated, anhydrous magnesium sulfate was added thereto, stirred, and filtered. The filtrate was distilled under reduced pressure. The concentrated compound was purified through a silica column using chloroform and ethyl acetate to give a yellow solid compound 16 (15.0 g, yield 60%).
MS: [M+H]+ = 660MS: [M + H] < + > = 660
[실시예]EXAMPLE
실시예 1Example 1
ITO(indium tin oxide)가 1,300 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후 증류수로 2 회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.A glass substrate coated with a thin film of ITO (indium tin oxide) having a thickness of 1,300 mm 3 was placed in distilled water in which detergent was dissolved and ultrasonically cleaned. In this case, Fischer Co. was used as a detergent, and distilled water was filtered secondly as a filter of Millipore Co. as a distilled water. After ITO was washed for 30 minutes, ultrasonic washing was repeated 10 times with distilled water twice. After washing the distilled water, ultrasonic washing with a solvent of isopropyl alcohol, acetone, methanol, dried and transported to a plasma cleaner. In addition, the substrate was cleaned for 5 minutes using an oxygen plasma, and then the substrate was transferred to a vacuum evaporator.
상기와 같이 준비된 ITO 투명 전극 위에 하기 화합물 HI-1을 50 Å의 두께로 열 진공 증착하여 정공주입층을 형성하였다. 상기 정공주입층 위에 하기 화합물 HT-1을 250 Å의 두께로 열 진공 증착하여 정공수송층을 형성하고, HT-1 증착막 위에 하기 화합물 HT-2을 50 Å 두께로 진공 증착하여 전자차단층을 형성하였다. 상기 HT-2 증착막 위에 발광층으로서 앞서 제조예 7에서 제조한 화합물 1, 하기 화합물 YGH-1 및 인광도펀트 YGD-1을 44:44:12의 중량비로 공증착하여 400Å 두께의 발광층을 형성하였다. 상기 발광층 위에 하기 ET-1 화합물을 250Å의 두께로 진공 증착하여 전자수송층을 형성하고, 상기 전자수송층 위에 하기 ET-2 화합물 및 Li를 98:2의 중량비로 진공 증착하여 100Å 두께의 전자주입층을 형성하였다. 상기 전자주입층 위에 1000Å 두께로 알루미늄을 증착하여 음극을 형성하였다.The following compound HI-1 was thermally vacuum deposited to a thickness of 50 kPa on the prepared ITO transparent electrode to form a hole injection layer. A hole transport layer was formed by thermal vacuum deposition of the following compound HT-1 to 250 kW on the hole injection layer, and an electron blocking layer was formed by vacuum depositing the following compound HT-2 to 50 kW on the HT-1 deposition film. . Compound 1, the following compound YGH-1 and phosphorescent dopant YGD-1, which were prepared in Preparation Example 7 as a light emitting layer on the HT-2 deposited film, were co-deposited at a weight ratio of 44:44:12 to form a light emitting layer having a thickness of 400 kHz. The following ET-1 compound was vacuum deposited to a thickness of 250 kPa on the light emitting layer to form an electron transport layer. Formed. Aluminum was deposited to a thickness of 1000 Å on the electron injection layer to form a cathode.
Figure PCTKR2019009417-appb-I000103
Figure PCTKR2019009417-appb-I000103
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 1 × 10-7 ~ 5 × 10-8 torr를 유지하였다.In the above process, the deposition rate of the organic material was maintained at 0.4 ~ 0.7 Å / sec, the aluminum was maintained at the deposition rate of 2 Å / sec, the vacuum during deposition was maintained at 1 × 10 -7 ~ 5 × 10 -8 torr It was.
실시예 2 내지 실시예 16Examples 2-16
상기 실시예 1에서 제조예 7의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. An organic light-emitting device was manufactured in the same manner as in Example 1, except that Example 1 was used instead of Compound 1 of Preparation Example 7 in Table 1.
비교예 1 내지 비교예 4Comparative Example 1 to Comparative Example 4
상기 실시예 1에서 제조예 7의 화합물 1 대신 하기 표 1에 기재된 화합물을 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다. 하기 표 1의 CE1 내지 CE4의 화합물은 하기와 같다.An organic light-emitting device was manufactured in the same manner as in Example 1, except that Example 1 was used instead of Compound 1 of Preparation Example 7 in Table 1. The compounds of CE1 to CE4 in Table 1 are as follows.
Figure PCTKR2019009417-appb-I000104
Figure PCTKR2019009417-appb-I000104
실험예Experimental Example
상기 실시예 및 비교예에서 유기 발광 소자를 10 mA/cm2의 전류 밀도에서 전압과 효율을 측정하였고, 50 mA/cm2의 전류 밀도에서 수명을 측정하여 그 결과를 하기 표 1에 나타내었다. 이때, LT95는 초기 휘도 대비 95%가 되는 시간을 의미한다 In Examples and Comparative Examples, the organic light emitting diodes were measured voltage and efficiency at a current density of 10 mA / cm 2 , and their lifetimes were measured at a current density of 50 mA / cm 2 , and the results are shown in Table 1 below. In this case, LT 95 means a time when the luminance becomes 95% of the initial luminance.
Figure PCTKR2019009417-appb-T000001
Figure PCTKR2019009417-appb-T000001
상기 표 1에서 나타난 바와 같이, 본 발명의 화합물을 발광층 물질로 사용할 경우, 비교예에 비하여 효율 및 수명이 우수한 특성을 나타내는 것을 확인할 수 있었다. 이는 트리아진기에 다이벤조퓨란기 또는 다이벤조싸이오펜기와 중수소가 치환된 페닐이 치환됨에 따라 전기안정성이 증가된 것이 기인한다.As shown in Table 1, when the compound of the present invention is used as the light emitting layer material, it was confirmed that exhibits excellent efficiency and lifespan compared to the comparative example. This is attributable to the increase in electrical stability as the triazine group is substituted with dibenzofuran group or diphenylthiophene group and phenyl substituted with deuterium.
[부호의 설명][Description of the code]
1: 기판 2: 양극1: substrate 2: anode
3: 발광층 4: 음극3: light emitting layer 4: cathode
5: 정공주입층 6: 정공수송층5: hole injection layer 6: hole transport layer
7: 전자차단층 8: 전자수송층7: electron blocking layer 8: electron transport layer
9: 전자주입층9: electron injection layer

Claims (10)

  1. 하기 화학식 1로 표시되는 화합물:Compound represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2019009417-appb-I000105
    Figure PCTKR2019009417-appb-I000105
    상기 화학식 1에서,In Chemical Formula 1,
    X1 내지 X3는 각각 독립적으로, CH 또는 N이고, 단 X1 내지 X3 중 적어도 둘은 N이고,X 1 to X 3 are each independently CH or N, provided that at least two of X 1 to X 3 are N,
    Y1 및 Y2는 각각 독립적으로, O 또는 S이고,Y 1 and Y 2 are each independently O or S,
    L은 단일결합; 치환 또는 비치환된 C6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이고,L is a single bond; Substituted or unsubstituted C 6-60 arylene; Or C 2-60 heteroarylene containing any one or more selected from the group consisting of substituted or unsubstituted N, O and S,
    Ar1은 적어도 하나의 중수소로 치환된 C6-60 아릴이고,Ar 1 is C 6-60 aryl substituted with at least one deuterium,
    R1은 각각 독립적으로 수소; 중수소; 할로겐; 시아노; 니트로; 아미노; 치환 또는 비치환된 C1-60 알킬; 치환 또는 비치환된 C3-60 사이클로알킬; 치환 또는 비치환된 C2-60 알케닐; 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로아릴이거나, 또는 인접한 2개의 R1이 서로 결합하여 C6-60 방향족 고리, 또는 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상의 헤테로원자를 포함하는 C2-60 헤테로방향족 고리를 형성하고,Each R 1 is independently hydrogen; heavy hydrogen; halogen; Cyano; Nitro; Amino; Substituted or unsubstituted C 1-60 alkyl; Substituted or unsubstituted C 3-60 cycloalkyl; Substituted or unsubstituted C 2-60 alkenyl; Substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl including one or more heteroatoms selected from the group consisting of substituted or unsubstituted N, O and S, or two adjacent R 1 's combine with each other to form a C 6-60 aromatic ring Or form a C 2-60 heteroaromatic ring comprising at least one heteroatom selected from the group consisting of N, O and S,
    n은 0 내지 4의 정수이다.n is an integer of 0-4.
  2. 제1항에 있어서,The method of claim 1,
    상기 화학식 1은 하기 화학식 2 내지 화학식 5 중 어느 하나로 표시되는,Formula 1 is represented by any one of the following Formula 2 to Formula 5,
    화합물:compound:
    [화학식 2][Formula 2]
    Figure PCTKR2019009417-appb-I000106
    Figure PCTKR2019009417-appb-I000106
    [화학식 3][Formula 3]
    Figure PCTKR2019009417-appb-I000107
    Figure PCTKR2019009417-appb-I000107
    [화학식 4][Formula 4]
    Figure PCTKR2019009417-appb-I000108
    Figure PCTKR2019009417-appb-I000108
    [화학식 5][Formula 5]
    Figure PCTKR2019009417-appb-I000109
    Figure PCTKR2019009417-appb-I000109
    상기 화학식 2 내지 5에서,In Chemical Formulas 2 to 5,
    X1 내지 X3, Y1, Y2, L, Ar1, R1 및 n은 제1항에서 정의한 바와 같다.X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 , R 1 and n are as defined in claim 1.
  3. 제1항에 있어서,The method of claim 1,
    X1 내지 X3는 모두 N인,X 1 to X 3 are all N,
    화합물.compound.
  4. 제1항에 있어서,The method of claim 1,
    L은 단일결합인,L is a single bond,
    화합물.compound.
  5. 제1항에 있어서,The method of claim 1,
    Ar1은 5 개의 중수소로 치환된 페닐인,Ar 1 is phenyl substituted with 5 deuterium,
    화합물.compound.
  6. 제1항에 있어서,The method of claim 1,
    R1은 각각 독립적으로, 수소 또는 페닐이거나, 또는 인접한 2개의 R1이 서로 결합하여
    Figure PCTKR2019009417-appb-I000110
    를 형성하는,
    Each R 1 is independently hydrogen or phenyl, or two adjacent R 1 's are bonded to each other;
    Figure PCTKR2019009417-appb-I000110
    Forming,
    화합물.compound.
  7. 제1항에 있어서,The method of claim 1,
    n은 0 내지 2의 정수인,n is an integer from 0 to 2,
    화합물.compound.
  8. 제1항에 있어서,The method of claim 1,
    상기 화학식 1은 하기 화학식 1-1 또는 화학식 1-2 중 어느 하나로 표시되는,Formula 1 is represented by any one of the following Formula 1-1 or Formula 1-2,
    화합물:compound:
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2019009417-appb-I000111
    Figure PCTKR2019009417-appb-I000111
    [화학식 1-2][Formula 1-2]
    Figure PCTKR2019009417-appb-I000112
    Figure PCTKR2019009417-appb-I000112
    상기 화학식 1-1 또는 화학식 1-2에서,In Chemical Formula 1-1 or Chemical Formula 1-2,
    X1 내지 X3, Y1, Y2, L, Ar1 및 R1은 제1항에서 정의한 바와 같다.X 1 to X 3 , Y 1 , Y 2 , L, Ar 1 and R 1 are as defined in claim 1.
  9. 제1항에 있어서,The method of claim 1,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,The compound represented by Formula 1 is any one selected from the group consisting of
    화합물:compound:
    Figure PCTKR2019009417-appb-I000113
    Figure PCTKR2019009417-appb-I000113
    Figure PCTKR2019009417-appb-I000114
    Figure PCTKR2019009417-appb-I000114
    Figure PCTKR2019009417-appb-I000115
    Figure PCTKR2019009417-appb-I000115
    Figure PCTKR2019009417-appb-I000116
    Figure PCTKR2019009417-appb-I000116
    Figure PCTKR2019009417-appb-I000117
    Figure PCTKR2019009417-appb-I000117
    Figure PCTKR2019009417-appb-I000118
    Figure PCTKR2019009417-appb-I000118
    Figure PCTKR2019009417-appb-I000119
    Figure PCTKR2019009417-appb-I000119
    Figure PCTKR2019009417-appb-I000120
    Figure PCTKR2019009417-appb-I000120
    Figure PCTKR2019009417-appb-I000121
    Figure PCTKR2019009417-appb-I000121
    Figure PCTKR2019009417-appb-I000122
    Figure PCTKR2019009417-appb-I000122
    Figure PCTKR2019009417-appb-I000123
    Figure PCTKR2019009417-appb-I000123
    Figure PCTKR2019009417-appb-I000124
    Figure PCTKR2019009417-appb-I000124
    Figure PCTKR2019009417-appb-I000125
    Figure PCTKR2019009417-appb-I000125
    Figure PCTKR2019009417-appb-I000126
    Figure PCTKR2019009417-appb-I000126
    Figure PCTKR2019009417-appb-I000127
    Figure PCTKR2019009417-appb-I000127
    Figure PCTKR2019009417-appb-I000128
    Figure PCTKR2019009417-appb-I000128
    Figure PCTKR2019009417-appb-I000129
    Figure PCTKR2019009417-appb-I000129
    Figure PCTKR2019009417-appb-I000130
    Figure PCTKR2019009417-appb-I000130
  10. 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하는 유기 발광 소자로서, 상기 유기물층 중 1층 이상은 제1항 내지 제9항 중 어느 하나의 항에 따른 화합물을 포함하는 것인,A first electrode; A second electrode provided to face the first electrode; And at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers comprises a compound according to any one of claims 1 to 9. That is,
    유기 발광 소자.Organic light emitting device.
PCT/KR2019/009417 2018-07-27 2019-07-29 Novel compound and organic light-emitting device using same WO2020022860A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020555215A JP7102679B2 (en) 2018-07-27 2019-07-29 New compounds and organic light emitting devices using them
EP19842262.8A EP3808744A4 (en) 2018-07-27 2019-07-29 Novel compound and organic light-emitting device using same
US17/046,647 US20210184131A1 (en) 2018-07-27 2019-07-29 Novel compound and organic light emitting device comprising the same
CN201980028729.0A CN112041315B (en) 2018-07-27 2019-07-29 Compound and organic light emitting device comprising the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0088202 2018-07-27
KR20180088202 2018-07-27
KR1020190091211A KR102231197B1 (en) 2018-07-27 2019-07-26 Novel compound and organic light emitting device comprising the same
KR10-2019-0091211 2019-07-26

Publications (1)

Publication Number Publication Date
WO2020022860A1 true WO2020022860A1 (en) 2020-01-30

Family

ID=69180525

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009417 WO2020022860A1 (en) 2018-07-27 2019-07-29 Novel compound and organic light-emitting device using same

Country Status (1)

Country Link
WO (1) WO2020022860A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166553A1 (en) * 2020-02-17 2021-08-26 出光興産株式会社 Organic electroluminescent element and electronic appliance
WO2021166552A1 (en) * 2020-02-17 2021-08-26 出光興産株式会社 Organic electroluminescence element and electronic device
WO2021180625A1 (en) 2020-03-11 2021-09-16 Merck Patent Gmbh Organic electroluminescent apparatus
WO2021180614A1 (en) 2020-03-11 2021-09-16 Merck Patent Gmbh Organic electroluminescent apparatus
EP4019513A4 (en) * 2019-12-20 2022-11-09 LG Chem, Ltd. Novel compound and organic light-emitting diode comprising same
US12029120B2 (en) 2020-02-17 2024-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
WO2017078494A1 (en) * 2015-11-06 2017-05-11 희성소재(주) Heterocyclic compound and organic light emitting device using same
KR20180045798A (en) * 2016-10-25 2018-05-04 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180061077A (en) * 2016-11-29 2018-06-07 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180062208A (en) * 2016-11-30 2018-06-08 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20180071621A (en) * 2016-12-20 2018-06-28 희성소재 (주) Organic light emitting device and composition for organic layer of organic light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (en) 1999-01-27 2000-08-16 성재갑 New organomattalic complex molecule for the fabrication of organic light emitting diodes
WO2003012890A2 (en) 2001-07-20 2003-02-13 Novaled Gmbh Light emitting component with organic layers
WO2017078494A1 (en) * 2015-11-06 2017-05-11 희성소재(주) Heterocyclic compound and organic light emitting device using same
KR20180045798A (en) * 2016-10-25 2018-05-04 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180061077A (en) * 2016-11-29 2018-06-07 주식회사 엘지화학 Novel hetero-cyclic compound and organic light emitting device comprising the same
KR20180062208A (en) * 2016-11-30 2018-06-08 희성소재 (주) Hetero-cyclic compound and organic light emitting device using the same
KR20180071621A (en) * 2016-12-20 2018-06-28 희성소재 (주) Organic light emitting device and composition for organic layer of organic light emitting device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4019513A4 (en) * 2019-12-20 2022-11-09 LG Chem, Ltd. Novel compound and organic light-emitting diode comprising same
WO2021166553A1 (en) * 2020-02-17 2021-08-26 出光興産株式会社 Organic electroluminescent element and electronic appliance
WO2021166552A1 (en) * 2020-02-17 2021-08-26 出光興産株式会社 Organic electroluminescence element and electronic device
CN114514232A (en) * 2020-02-17 2022-05-17 出光兴产株式会社 Organic electroluminescent element and electronic device
US12029120B2 (en) 2020-02-17 2024-07-02 Idemitsu Kosan Co., Ltd. Organic electroluminescence element and electronic device
WO2021180625A1 (en) 2020-03-11 2021-09-16 Merck Patent Gmbh Organic electroluminescent apparatus
WO2021180614A1 (en) 2020-03-11 2021-09-16 Merck Patent Gmbh Organic electroluminescent apparatus

Similar Documents

Publication Publication Date Title
WO2021025328A9 (en) Novel compound and organic light emitting device comprising the same
WO2019168367A1 (en) Organic light emitting diode
WO2017171376A1 (en) Compound, and organic electronic element comprising same
WO2020022860A1 (en) Novel compound and organic light-emitting device using same
WO2019164218A1 (en) Polycyclic compound and organic light emitting diode comprising same
WO2020262861A1 (en) Novel compound and organic light emitting device comprising same
WO2021091165A1 (en) Organic light-emitting device
WO2022102992A1 (en) Novel compound and organic light-emitting device using same
WO2017052221A1 (en) Novel compound and organic light-emitting element comprising same
WO2021251661A1 (en) Novel compound and organic light emitting device comprising same
WO2020231242A1 (en) Organic light-emitting element
WO2017111420A1 (en) Compound and organic electronic device comprising same
WO2023096405A1 (en) Novel compound and organic light emitting device comprising same
WO2016140551A2 (en) Heterocyclic compound and organic light emitting element comprising same
WO2022250386A1 (en) Organic light-emitting device
WO2022031020A1 (en) Novel compound and organic light emitting device comprising same
WO2022059923A1 (en) Novel compound and organic light-emitting device comprising same
WO2022031016A1 (en) Novel compound and organic light-emitting device using same
WO2022031013A1 (en) Novel compound and organic light-emitting device comprising same
WO2021194261A1 (en) Novel compound and organic light-emitting device using same
WO2020231022A1 (en) Organic light emitting device
WO2020231021A1 (en) Organic light emitting device
WO2021034156A1 (en) Novel compound and organic light emitting device using same
WO2020246835A9 (en) Novel compound and organic light-emitting device using same
WO2020246837A1 (en) Novel compound and organic light emitting device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19842262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE