WO2020022769A1 - A plurality of host materials and organic electroluminescent device comprising the same - Google Patents

A plurality of host materials and organic electroluminescent device comprising the same Download PDF

Info

Publication number
WO2020022769A1
WO2020022769A1 PCT/KR2019/009166 KR2019009166W WO2020022769A1 WO 2020022769 A1 WO2020022769 A1 WO 2020022769A1 KR 2019009166 W KR2019009166 W KR 2019009166W WO 2020022769 A1 WO2020022769 A1 WO 2020022769A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
alkyl
membered
Prior art date
Application number
PCT/KR2019/009166
Other languages
French (fr)
Inventor
Su-Hyun Lee
Bitnari Kim
Hyo-Nim Shin
Jeong-Eun YANG
Sang-Hee Cho
Tae-Jun Han
Hyo-Soon Park
So-Young Jung
Original Assignee
Rohm And Haas Electronic Materials Korea Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190088681A external-priority patent/KR20200011884A/en
Application filed by Rohm And Haas Electronic Materials Korea Ltd. filed Critical Rohm And Haas Electronic Materials Korea Ltd.
Priority to DE112019003171.6T priority Critical patent/DE112019003171T5/en
Priority to US17/263,137 priority patent/US20210151693A1/en
Priority to CN201980046897.2A priority patent/CN112424964A/en
Priority to JP2021503888A priority patent/JP2021532586A/en
Publication of WO2020022769A1 publication Critical patent/WO2020022769A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/94[b, c]- or [b, d]-condensed containing carbocyclic rings other than six-membered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/14Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present disclosure relates to a plurality of host materials and an organic electroluminescent device comprising the same.
  • OLED organic electroluminescent device
  • TPD/Alq3 bilayer consisting of a light-emitting layer and a charge transport layer. Since then, the research on an OLED has been rapidly carried out, and it has been commercialized.
  • phosphorous materials which provide excellent luminous efficiency in realizing panels, are mainly used in organic electroluminescent devices. OLEDs having high luminous efficiency and/or long lifespan are required for long periods of uses and high resolution of displays.
  • U.S. Patent No. 9,397,307 discloses an organic electroluminescent device using a compound in which dibenzofuran or dibenzothiophene is bonded to a nitrogen-containing heteroaryl directly or via a linker as a host.
  • said reference does not specifically disclose the specific combination of the plurality of host materials of the present disclosure, and development of a host material for improving performances of an OLED is still required.
  • the objective of the present disclosure is to provide an organic electroluminescent device having high luminous efficiency and/or improved lifespan characteristics by comprising a plurality of host materials comprising a specific combination of compounds.
  • the compound of formula 1 of the present disclosure provides slow hole mobility due to very deep HOMO (highest occupied molecular orbital) and fast electron mobility due to a nitrogen-containing moiety. Due to this imbalance of the hole and electron mobilities, improvement of luminous efficiency and lifespan characteristics is required.
  • the present inventors found that the objective above can be achieved by a plurality of host materials comprising a first host material comprising a compound represented by the following formula 1, and a second host material comprising a compound represented by the following formula 2:
  • X represents O or S
  • R 1 to R 8 each independently represent -L 1 -HAr, hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR 9 R 10 , or -SiR 11 R 12 R 13 ; or may be linked to an adjacent substituent to form a ring; with a proviso that at least one of R 1 to R 8 is -L 1 -HAr;
  • L 1 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, where if a plurality of L 1 is present, each of L 1 may be the same or different;
  • HAr represents a substituted or unsubstituted nitrogen-containing (3- to 30-membered)heteroaryl, where if a plurality of HAr is present, each HAr may be the same or different;
  • L 2 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
  • Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR 9 R 10 , or -SiR 11 R 12 R 13 ; or may be linked to an adjacent substituent to form a ring;
  • X 1 to X 25 each independently represent N or CR 14 ;
  • R 14 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)ary
  • R 9 to R 13 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl;
  • * represents a bonding site with L 2 .
  • an organic electroluminescent device having higher luminous efficiency and/or improved lifespan characteristics compared to conventional organic electroluminescent devices can be provided, and a display device or a lighting device using the organic electroluminescent device can be manufactured.
  • organic electroluminescent material in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound.
  • the organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device, as necessary.
  • the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material (comprising a host material and a dopant material), an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc.
  • a plurality of organic electroluminescent materials in the present disclosure means an organic electroluminescent material comprising a combination of at least two compounds, which may be comprised in any layer constituting an organic electroluminescent device. It may mean both a material before being comprised in an organic electroluminescent device (for example, before vapor deposition) and a material after being comprised in an organic electroluminescent device (for example, after vapor deposition).
  • a plurality of organic electroluminescent materials may be a combination of at least two compunds, which may be comprised in at least one layer of a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron blocking layer, a light-emitting layer, an electron buffer layer, a hole blocking layer, an electron transport layer, and an electron injection layer.
  • Such at least two compounds may be comprised in the same layer or different layers by a used method in the field, and may be mixture-evaporated or co-evaporated, or may be individually evaporated.
  • a plurality of host materials in the present disclosure means a host material comprising a combination of at least two compounds, which may be comprised in any light-emitting layer constituting an organic electroluminescent device. It may mean both a material before being comprised in an organic electroluminescent device (for example, before vapor deposition) and a material after being comprised in an organic electroluminescent device (for example, after vapor deposition).
  • a plurality of host materials of the present disclosure may be a combination of at least two host materials, and selectively, conventional materials comprised in organic electroluminescent materials may be additionally comprised.
  • a plurality of host materials of the present disclosure may be comprised in any light-emitting layer constituting an organic electroluminescent device, and the at least two compounds comprised in the plurality of host materials of the present disclosure may be comprised together in one light-emitting layer, or may each be comprised in separate light-emitting layers by a method known in the field.
  • the at least two compounds may be mixture-evaporated or co-evaporated, or may be individually evaporated.
  • (C1-C30)alkyl(ene) is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, and more preferably 1 to 10.
  • the above alkyl may include methyl, ethyl, n -propyl, isopropyl, n -butyl, isobutyl, tert -butyl, etc.
  • (C2-C30)alkenyl is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10.
  • the above alkenyl may include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc.
  • (C2-C30)alkynyl is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10.
  • the above alkynyl may include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc.
  • the term "(C3-C30)cycloalkyl(ene)" is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7.
  • the above cycloalkyl may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc.
  • (3- to 7-membered)heterocycloalkyl is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, and including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably the group consisting of O, S, and N.
  • the above heterocycloalkyl may include tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc.
  • (C6-C30)aryl(ene) is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 25, more preferably 6 to 18.
  • the above aryl(ene) may be partially saturated, and may comprise a spiro structure.
  • the above aryl may include phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, etc.
  • the above aryl may include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a benzanthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a naphthacenyl group, a pyrenyl group, a 1-chrysenyl group, a 2-chrysenyl group, a 3-chrysenyl group, a 4-chrysenyl group, a 5-chrysenyl group, a 6-chrysenyl group, a benzo[c]phenanthryl group, a benzo[g]chrysenyl group, a 1-triphenylenyl group, a 2-triphenyl
  • (3- to 30-membered)heteroaryl(ene) is meant to be an aryl having 3 to 30 ring backbone atoms, and including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P.
  • the above heteroaryl(ene) may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and may comprise a spiro structure.
  • the above heteroaryl may include a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, benzonaphthothiophenyl, diazadibenzofuranyl, benzimidazolyl, benzothi
  • the above heteroaryl may include a 1-pyrrolyl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyridinyl group, a 2-pyrimidinyl group, a 4-pyrimidinyl group, a 5-pyrimidinyl group, a 6-pyrimidinyl group, a 1,2,3-triazin-4-yl group, a 1,2,4-triazin-3-yl group, a 1,3,5-triazin-2-yl group, a 1-imidazolyl group, a 2-imidazolyl group, a 1-pyrazolyl group, a 1-indolidinyl group, a 2-indolidinyl group, a 3-indolidinyl group, a 5-indolidinyl group, a 6-indolidinyl group, a 7-indolidinyl group, an 8-indolidinyl group, a 2-imidazo
  • substituted in the expression “substituted or unsubstituted” means that a hydrogen atom in a certain functional group is replaced with another atom or functional group, i.e., a substituent.
  • the substituents each independently are at least one selected from the group consisting of a (C1-C10)alkyl; a (C6-C20)aryl unsubstituted or substituted with at least one of a (C1-C10)alkyl(s), a (3- to 20-membered)heteroaryl(s), and a di(C6-C20)arylamino(s); a (3- to 20-membered)heteroaryl unsubstituted or substituted with a (C6-C20)aryl(s); and a di(C6-C20)arylamino.
  • the substituents each independently are at least one selected from the group consisting of a (C1-C6)alkyl; a (C6-C20)aryl unsubstituted or substituted with at least one of a (C1-C6)alkyl, a (5- to 15-membered)heteroaryl, and a di(C6-C12)arylamino; a (5- to 15-membered)heteroaryl unsubstituted or substituted with a (C6-C12)aryl; and a di(C6-C12)arylamino.
  • the substituents may be at least one of a methyl, a phenyl, a naphthyl, a biphenyl, a terphenyl, a phenanthrenyl, a triphenylenyl, a naphthylphenyl, a phenylnaphthyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, a phenyl substituted with a phenylquinoxalinyl, a carbazolylphenyl, a dibenzofuranylphenyl, a phenyl substituted with a diphenylamino, a phenylquinoxalinyl, a carbazolyl, a phenylcarbazolyl, a dibenzofuranyl, and a diphenylamino.
  • the ring may be a substituted or unsubstituted, mono- or polycyclic, (3- to 30-membered) alicyclic or aromatic ring, or the combination thereof which is formed by the link of two or more adjacent substituents, in which the formed ring may contain at least one heteroatom selected from B, N, O, S, Si, and P, preferably N, O, and S.
  • the fused ring may be a substituted or unsubstituted dibenzothiophene ring, a substituted or unsubstituted dibenzofuran ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted fluorene ring, a substituted or unsubstituted benzothiophene ring, a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted indole ring, a substituted or unsubstituted indene ring, a substituted or unsubstituted benzene ring, or a substituted or unsubstituted carbazole ring.
  • the heteroaryl or heteroarylene may each independently contain at least one heteroatom selected from B, N, O, S, Si, and P.
  • the heteroatom may be bonded to at least one selected from the group consisting of hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl,
  • X represents O or S.
  • R 1 to R 8 each independently represent -L 1 -HAr, hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR 9 R 10 , or -SiR 11 R 12 R 13 ; or may be linked to an adjacent substituent to form a ring; with a proviso that at least one of R 1 to R 8 is -L 1 -HAr. According to one embodiment of the present disclosure
  • L 1 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, where if a plurality of L 1 is present, each of L 1 may be the same or different. According to one embodiment of the present disclosure, L 1 represents a single bond, or a substituted or unsubstituted (C6-C20)arylene.
  • L 1 represents a single bond or an unsubstituted (C6-C20)arylene.
  • L 1 may represent a single bond, a phenylene, a naphthylene, a biphenylene, a naphthylphenylene, a phenylnaphthylene, etc.
  • HAr represents a substituted or unsubstituted nitrogen-containing (3- to 30-membered)heteroaryl, where if a plurality of HAr is present, each of HAr may be the same or different. According to one embodiment of the present disclosure, HAr represents a substituted or unsubstituted nitrogen-containing (5- to 15-membered)heteroaryl.
  • HAr represents a substituted or unsubstituted nitrogen-containing (5- to 15-membered)heteroaryl
  • the substituent of the substituted nitrogen-containing (5- to 15-membered)heteroaryl may be at least one of a (C6-C20)aryl unsubstituted or substituted with at least one of a (C1-C6)alkyl(s), a (5- to 15-membered)heteroaryl(s), and a di(C6-C12)arylamino(s); a (5- to 15-membered)heteroaryl unsubstituted or substituted with a (C6-C12)aryl(s).
  • HAr may represent a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted naphth
  • HAr may represent a triazinyl, a quinazolinyl, a quinoxalinyl, a naphthyridinyl, a triazanaphthyl, a benzoquinazolinyl, a benzoquinoxalinyl, etc.
  • the triazinyl may be substituted with at least one of a phenyl, a naphthyl, a biphenyl, a terphenyl, a naphthylphenyl, a dimethylbenzofluorenyl, a dibenzofuranylphenyl, and a dibenzofuranyl
  • the quinazolinyl may be substituted with at least one of a phenyl and a naphthyl
  • the quinoxalinyl may be substituted with at least one of a phenyl, a naphthyl, a biphenyl, a terphenyl, a phenanthrenyl, a triphenylenyl, a naphthylphenyl, a phenylnaphthyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, a phenyl substituted with a phenylquinoxal
  • formula 1 may be represented by at least one of the following formulas 1-1 to 1-4.
  • R 1 to R 8 , X, L 1 , and HAr are as defined in formula 1.
  • Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR 9 R 10 , or -SiR 11 R 12 R 13 ; or may be linked to an adjacent substituent to form a ring.
  • Ar represents a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 15-membered)heteroaryl, or -NR 9 R 10 .
  • R 9 and R 10 each independently represent a substituted or unsubstituted (C6-C12)aryl.
  • Ar represents a (C6-C25)aryl unsubstituted or substituted with at least one (C1-C6)alkyl, a (5- to 15-membered)heteroaryl unsubstituted or substituted with at least one (C6-C12)aryl, or -NR 9 R 10 .
  • R 9 and R 10 each independently represent an unsubstituted (C6-C12)aryl.
  • Ar may represent a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted naphthylphenyl, a substituted or unsubstituted phenylnaphthyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted benzocarbazolyl, a substituted or unsubstituted dibenzocarbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted benzonaphth
  • Ar may represent a phenyl, a naphthyl, a biphenyl, a terphenyl, a spirobifluorenyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, a phenylpyridyl, a diphenylpyrimidinyl, a dimethyltriazinyl, a phenylquinolyl, a diphenylquinazolinyl, a biphenylquinazolinyl, a phenylquinoxalinyl, a diphenylquinoxalinyl, a naphthylquinoxalinyl, a phenylnaphthyridinyl, a carbazolyl, a phenylcarbazolyl, a dibenzofuranyl, a phenyldibenzofuranyl, a dibenzothiophenyl, a
  • X 1 to X 25 each independently represent N or CR 14 . According to one embodiment of the present disclosure, X 1 to X 25 are all CR 14 .
  • R 14 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6
  • R 14 may each independently represent hydrogen, or a substituted or unsubstituted (C6-C12)aryl, or adjacent R 14 's may be linked to each other to form a ring.
  • R 14 each independently represents hydrogen, or an unsubstituted (C6-C12)aryl, or adjacent R 14 's may be linked to each other to form a ring.
  • R 14 may each independently represent hydrogen, a phenyl, etc., or adjacent R 14 's may be linked to each other to form a benzene ring.
  • L 2 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene.
  • L 2 represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted (5- to 15-membered)heteroarylene.
  • L 2 represents a single bond, an unsubstituted (C6-C12)arylene, or a (5- to 15-membered)heteroarylene unsubstituted or substituted with a (C6-C12)aryl(s).
  • L 2 may represent a single bond, a phenylene, a naphthylene, a biphenylene, a phenylpyridylene, a phenyltriazinylene, a quinolylene, a quinazolinylene, a phenylquinazolinylene, a quinoxalinylene, a phenylquinoxalinylene, a naphthyridinylene, a carbazolylene, a dibenzofuranylene, a benzoquinazolinylene, a benzoquinoxalinylene, a diazadibenzofuranylene, etc.
  • R 9 to R 13 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl.
  • R 9 and R 10 each independently represent a substituted or unsubstituted (C6-C12)aryl.
  • R 9 and R 10 each independently represent an unsubstituted (C6-C12)aryl.
  • R 9 and R 10 each independently represent a phenyl, a naphthyl, a biphenyl, etc.
  • formula 3 may be represented by the following formula 3-1:
  • R 31 to R 33 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C
  • aa represents an integer of 1 to 3
  • ab represents an integer of 1 to 4
  • ac represents an integer of 1 to 5, where if aa, ab, and ac are an integer of 2 or more, each R 31 , each R 32 , and each R 33 may be the same or different.
  • formula 4 may be represented by the following formula 4-1:
  • R 41 to R 44 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C
  • ba represents an integer of 1 to 3
  • bb and bc each independently represent an integer of 1 to 4
  • bd represents 1 or 2 where if ba, bb, bc, and bd are an integer of 2 or more, each R 41 , each R 42 , each R 43 , and each R 44 may be the same or different.
  • the compound represented by formula 1 includes the following compounds, but is not limited thereto.
  • the compound represented by formula 2 includes the following compounds, but is not limited thereto.
  • One or more of compounds E-1 to E-135 and one or more of compounds H-1 to H-122 may be combined and used in an organic electroluminescent device.
  • the compound represented by formula 1 according to the present disclosure may be prepared by a synthetic method known to one skilled in the art. For example, it may be prepared by referring to Korean Patent Application Laying-Open Nos. 2012-0033017, 2013-0128322, 2016-0038006, 2015-0122343, and 2016-0049083; U.S. Patent Application Publication No. 2016/0233436; International Publication No. WO 2017/178311, etc., but is not limited thereto.
  • the compound represented by formula 2 according to the present disclosure may be prepared by a synthetic method known to a person skilled in the art. For example, it may be prepared by referring to the following reaction scheme 1, Korean Patent Application Laying-Open No. 2018-0012709, etc., but is not limited thereto.
  • X 1 to X 12 , L 2 , and Ar as defined as in formulas 2 and 3, and OTf represents trifluoromethanesulfonate.
  • the organic electroluminescent device comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
  • the organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron buffer layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer.
  • the second electrode may be a transflective electrode or a reflective electrode, and may be a top emission, bottom emission, or both-sides emission type according to the material used.
  • the hole injection layer may be further doped with a p-dopant
  • the electron injection layer may be further doped with an n-dopant.
  • the organic electroluminescent device may comprise an anode, a cathode, and at least one organic layer between the anode and cathode, in which the organic layer may comprise a plurality of organic electroluminescent materials including a compound represented by formula 1 as the first organic electroluminescent material and a compound represented by formula 2 as the second organic electroluminescent material.
  • the organic electroluminescent device according to the present disclosure may comprise an anode, a cathode, and at least one light-emitting layer between the anode and cathode, in which the light-emitting layer may comprise a compound represented by formula 1 and a compound represented by formula 2.
  • the light-emitting layer comprises a host and a dopant, and the host comprises the plurality of host materials.
  • the compound represented by formula 1 may be comprised as a first host compound of the plurality of host materials and the compound represented by formula 2 may be comprised as a second host compound of the plurality of host materials.
  • the weight ratio of the first host compound to the second host compound is in the range of about 1:99 to about 99:1, preferably about 10:90 to about 90:10, more preferably about 30:70 to about 70:30, even more preferably about 40:60 to about 60:40, and further more preferably about 50:50.
  • the light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi-layer of which two or more layers are stacked.
  • the first and second host materials may both be comprised in one layer or may be respectively comprised in different light-emitting layers.
  • the doping concentration of the dopant compound with respect to the host compound of the light-emitting layer may be less than 20 wt%.
  • the organic electroluminescent device of the present disclosure may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron injection layer, an interlayer, an electron buffer layer, a hole blocking layer, and an electron blocking layer.
  • the organic electroluminescent device of the present disclosure may further comprise an amine-based compound, in addition to the plurality of host materials of the present disclosure, as at least one of a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting material, a light-emitting auxiliary material, and an electron blocking material.
  • the organic electroluminescent device of the present disclosure may further comprise an azine-based compound, in addition to the plurality of host materials of the present disclosure, as at least one of an electron transport material, an electron injection material, an electron buffer material, and a hole blocking material.
  • the dopant comprised in the organic electroluminescent device according to the present disclosure may be at least one phosphorescent or fluorescent dopant, and preferably phosphorescent dopant.
  • the phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particularly limited, but may be selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and more preferably ortho-metallated iridium complex compounds.
  • the dopant comprised in the organic electroluminescent device of the present disclosure may include the compound represented by the following formula 101, but is not limited thereto.
  • L is selected from the following structures 1 and 2:
  • R 100 to R 103 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or may be linked to an adjacent substituent to form a ring, e.g., a substituted or unsubstituted, quinoline, benzofuropyridine, benzothienopyridine, benzothienoquinoline, or indenoquinoline ring, together with pyridine;
  • R 104 to R 107 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; or may be linked to an adjacent substituent to form a ring, e.g., a substituted or unsubstituted, naphthyl, fluorene, dibenzothiophene, dibenzofuran, indenopyridine, benzofuropyridine or benzothienopyridine ring, together with benzene;
  • R 201 to R 211 each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to an adjacent substituent to form a ring; and
  • n an integer of 1 to 3.
  • dopant compound is as follows, but are not limited thereto.
  • a hole injection layer between the anode and the light-emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, or a combination thereof can be used.
  • Multiple hole injection layers can be used in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer.
  • Two compounds can be simultaneously used in each layer.
  • the hole transport layer or the electron blocking layer can also be formed of multi-layers.
  • an electron buffer layer between the light-emitting layer and the cathode, an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof can be used.
  • Multiple electron buffer layers can be used in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer.
  • Two compounds can be simultaneously used in each layer.
  • the hole blocking layer or the electron transport layer can also be formed of multi-layers, and each layer can comprise two or more compounds.
  • organic electroluminescent compound or the plurality of host materials according to the present disclosure can also be used in an organic electroluminescent device comprising a quantum dot (QD).
  • QD quantum dot
  • dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating methods can be used.
  • a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc.
  • the solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
  • first and the second host compounds of the present disclosure may be film-formed in the above-listed methods, commonly by a co-evaporation process or a mixture-evaporation process.
  • the co-evaporation is a mixed deposition method in which two or more materials are placed in a respective individual crucible source and a current is applied to both cells at the same time to evaporate the materials.
  • the mixture-evaporation is a mixed deposition method in which two or more materials are mixed in one crucible source before evaporating them, and a current is applied to the cell to evaporate the materials.
  • the two host compounds may individually form films.
  • the second host compound may be deposited after depositing the first host compound.
  • the present disclosure may provide a display device by using the plurality of host materials comprising the compound represented by formula 1 and the compound represented by formula 2. That is, it is possible to manufacture a display system or a lighting system by using the plurality of host materials of the present disclosure. Specifically, it is possible to produce a display system, e.g., a display system for smartphones, tablets, notebooks, PCs, TVs, or cars, or a lighting system, e.g., an outdoor or indoor lighting system, by using the plurality of host materials of the present disclosure.
  • a display system e.g., a display system for smartphones, tablets, notebooks, PCs, TVs, or cars
  • a lighting system e.g., an outdoor or indoor lighting system
  • An organic electroluminescent device (OLED) according to the present disclosure was produced comprising the plurality of host materials according to the present disclosure.
  • a transparent electrode indium tin oxide (ITO) thin film (10 ⁇ /sq) on a glass substrate for an OLED (Geomatec, Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol.
  • the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus.
  • Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10 -6 torr.
  • Compound HT-2 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layers and the hole transport layers, a light-emitting layer was then deposited as follows.
  • the first and second host compounds shown in Table 1 below were introduced into two cells of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell.
  • the two host materials were evaporated at a rate of 1:1 and the dopant material was simultaneously evaporated at a different rate and these were deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer.
  • Compound ET-1 and compound EI-1 were then introduced into two other cells, evaporated at the rate of 1:1, and deposited to form an electron transport layer having a thickness of 35 nm on the light-emitting layer.
  • An OLED was produced in the same manner as in Device Example 1, except that only one compound, i.e., the first host compound as listed in Table 1 below, was used instead of two hosts.
  • the luminous efficiency at a luminance of 1,000 nit, and the time taken for luminance to decrease from 100% to 95% at a constant current in a luminance of 5,000 nit (lifespan; T95) of the OLED devices produced in the Device Examples and Comparative Examples are provided in Table 1 below.
  • an organic electroluminescent device comprising the plurality of host materials comprising a specific combination of compounds according to the present disclosure has improved efficiency and/or lifespan characteristics compared to conventional organic electroluminescent devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present disclosure relates to a plurality of host materials comprising a first host material comprising a compound represented by the following formula 1, and a second host material comprising a compound represented by the following formula 2, and an organic electroluminescent device comprising the same. By comprising a specific combination of compounds as a host material, it is possible to provide an organic electroluminescent device having higher luminous efficiency and/or improved lifespan characteristics compared to conventional organic electroluminescent devices.

Description

A PLURALITY OF HOST MATERIALS AND ORGANIC ELECTROLUMINESCENT DEVICE COMPRISING THE SAME
The present disclosure relates to a plurality of host materials and an organic electroluminescent device comprising the same.
In 1987, Tang et al. of Eastman Kodak first developed a small molecule green organic electroluminescent device (OLED) of TPD/Alq3 bilayer consisting of a light-emitting layer and a charge transport layer. Since then, the research on an OLED has been rapidly carried out, and it has been commercialized. At present, phosphorous materials, which provide excellent luminous efficiency in realizing panels, are mainly used in organic electroluminescent devices. OLEDs having high luminous efficiency and/or long lifespan are required for long periods of uses and high resolution of displays.
In order to enhance luminous efficiency, driving voltage and/or lifespan, various materials or concepts for an organic layer of an organic electroluminescent device have been proposed. However, they were not satisfactory to use practically.
U.S. Patent No. 9,397,307 discloses an organic electroluminescent device using a compound in which dibenzofuran or dibenzothiophene is bonded to a nitrogen-containing heteroaryl directly or via a linker as a host. However, said reference does not specifically disclose the specific combination of the plurality of host materials of the present disclosure, and development of a host material for improving performances of an OLED is still required.
The objective of the present disclosure is to provide an organic electroluminescent device having high luminous efficiency and/or improved lifespan characteristics by comprising a plurality of host materials comprising a specific combination of compounds.
The compound of formula 1 of the present disclosure provides slow hole mobility due to very deep HOMO (highest occupied molecular orbital) and fast electron mobility due to a nitrogen-containing moiety. Due to this imbalance of the hole and electron mobilities, improvement of luminous efficiency and lifespan characteristics is required.
As a result of intense studies, the present inventors found that introducing a combination of a compound of formula 1 and a compound of formula 2, which has fast hole mobility, could provide positive influence on the hole transport property. As a result, high efficiency and long lifespan due to increase of exciton formation in the light-emitting layer could be accomplished by using the combination of the compounds of formulas 1 and 2 in an OLED.
The present inventors found that the objective above can be achieved by a plurality of host materials comprising a first host material comprising a compound represented by the following formula 1, and a second host material comprising a compound represented by the following formula 2:
Figure PCTKR2019009166-appb-I000001
wherein
X represents O or S;
R1 to R8 each independently represent -L1-HAr, hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR9R10, or -SiR11R12R13; or may be linked to an adjacent substituent to form a ring; with a proviso that at least one of R1 to R8 is -L1-HAr;
L1 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, where if a plurality of L1 is present, each of L1 may be the same or different;
HAr represents a substituted or unsubstituted nitrogen-containing (3- to 30-membered)heteroaryl, where if a plurality of HAr is present, each HAr may be the same or different;
Figure PCTKR2019009166-appb-I000002
wherein
L2 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR9R10, or -SiR11R12R13; or may be linked to an adjacent substituent to form a ring;
Figure PCTKR2019009166-appb-I000003
is represented by the following formula 3 or formula 4;
Figure PCTKR2019009166-appb-I000004
Figure PCTKR2019009166-appb-I000005
wherein
X1 to X25 each independently represent N or CR14;
R14 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or adjacent R14's may be linked to each other to form a ring, and where if a plurality of R14 is present, each R14 may be the same or different;
R9 to R13 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl; and
* represents a bonding site with L2.
By comprising the plurality of host materials of the present disclosure, an organic electroluminescent device having higher luminous efficiency and/or improved lifespan characteristics compared to conventional organic electroluminescent devices can be provided, and a display device or a lighting device using the organic electroluminescent device can be manufactured.
Hereinafter, the present disclosure will be described in detail. However, the following description is intended to explain the disclosure, and is not meant in any way to restrict the scope of the disclosure.
The term "organic electroluminescent material" in the present disclosure means a material that may be used in an organic electroluminescent device, and may comprise at least one compound. The organic electroluminescent material may be comprised in any layer constituting an organic electroluminescent device, as necessary. For example, the organic electroluminescent material may be a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting auxiliary material, an electron blocking material, a light-emitting material (comprising a host material and a dopant material), an electron buffer material, a hole blocking material, an electron transport material, an electron injection material, etc.
The term "a plurality of organic electroluminescent materials" in the present disclosure means an organic electroluminescent material comprising a combination of at least two compounds, which may be comprised in any layer constituting an organic electroluminescent device. It may mean both a material before being comprised in an organic electroluminescent device (for example, before vapor deposition) and a material after being comprised in an organic electroluminescent device (for example, after vapor deposition). For example, a plurality of organic electroluminescent materials may be a combination of at least two compunds, which may be comprised in at least one layer of a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron blocking layer, a light-emitting layer, an electron buffer layer, a hole blocking layer, an electron transport layer, and an electron injection layer. Such at least two compounds may be comprised in the same layer or different layers by a used method in the field, and may be mixture-evaporated or co-evaporated, or may be individually evaporated.
The term "a plurality of host materials" in the present disclosure means a host material comprising a combination of at least two compounds, which may be comprised in any light-emitting layer constituting an organic electroluminescent device. It may mean both a material before being comprised in an organic electroluminescent device (for example, before vapor deposition) and a material after being comprised in an organic electroluminescent device (for example, after vapor deposition). For example, a plurality of host materials of the present disclosure may be a combination of at least two host materials, and selectively, conventional materials comprised in organic electroluminescent materials may be additionally comprised. A plurality of host materials of the present disclosure may be comprised in any light-emitting layer constituting an organic electroluminescent device, and the at least two compounds comprised in the plurality of host materials of the present disclosure may be comprised together in one light-emitting layer, or may each be comprised in separate light-emitting layers by a method known in the field. For example, the at least two compounds may be mixture-evaporated or co-evaporated, or may be individually evaporated.
Hereinafter, the compounds represented by formulas 1 and 2 will be described in detail.
Herein, the term "(C1-C30)alkyl(ene)" is meant to be a linear or branched alkyl(ene) having 1 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 1 to 20, and more preferably 1 to 10. The above alkyl may include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, etc. The term "(C2-C30)alkenyl" is meant to be a linear or branched alkenyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10. The above alkenyl may include vinyl, 1-propenyl, 2-propenyl, 1-butenyl, 2-butenyl, 3-butenyl, 2-methylbut-2-enyl, etc. The term "(C2-C30)alkynyl" is meant to be a linear or branched alkynyl having 2 to 30 carbon atoms constituting the chain, in which the number of carbon atoms is preferably 2 to 20, and more preferably 2 to 10. The above alkynyl may include ethynyl, 1-propynyl, 2-propynyl, 1-butynyl, 2-butynyl, 3-butynyl, 1-methylpent-2-ynyl, etc. The term "(C3-C30)cycloalkyl(ene)" is meant to be a mono- or polycyclic hydrocarbon having 3 to 30 ring backbone carbon atoms, in which the number of carbon atoms is preferably 3 to 20, and more preferably 3 to 7. The above cycloalkyl may include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, etc. The term "(3- to 7-membered)heterocycloalkyl" is meant to be a cycloalkyl having 3 to 7, preferably 5 to 7, ring backbone atoms, and including at least one heteroatom selected from the group consisting of B, N, O, S, Si, and P, and preferably the group consisting of O, S, and N. The above heterocycloalkyl may include tetrahydrofuran, pyrrolidine, thiolan, tetrahydropyran, etc. The term "(C6-C30)aryl(ene)" is meant to be a monocyclic or fused ring radical derived from an aromatic hydrocarbon having 6 to 30 ring backbone carbon atoms, in which the number of the ring backbone carbon atoms is preferably 6 to 25, more preferably 6 to 18. The above aryl(ene) may be partially saturated, and may comprise a spiro structure. The above aryl may include phenyl, biphenyl, terphenyl, naphthyl, binaphthyl, phenylnaphthyl, naphthylphenyl, phenylterphenyl, fluorenyl, phenylfluorenyl, benzofluorenyl, dibenzofluorenyl, phenanthrenyl, phenylphenanthrenyl, anthracenyl, indenyl, triphenylenyl, pyrenyl, tetracenyl, perylenyl, chrysenyl, naphthacenyl, fluoranthenyl, spirobifluorenyl, etc. More specifically, the above aryl may include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a 1-anthryl group, a 2-anthryl group, a 9-anthryl group, a benzanthryl group, a 1-phenanthryl group, a 2-phenanthryl group, a 3-phenanthryl group, a 4-phenanthryl group, a 9-phenanthryl group, a naphthacenyl group, a pyrenyl group, a 1-chrysenyl group, a 2-chrysenyl group, a 3-chrysenyl group, a 4-chrysenyl group, a 5-chrysenyl group, a 6-chrysenyl group, a benzo[c]phenanthryl group, a benzo[g]chrysenyl group, a 1-triphenylenyl group, a 2-triphenylenyl group, a 3-triphenylenyl group, a 4-triphenylenyl group, a 1-fluorenyl group, a 2-fluorenyl group, a 3-fluorenyl group, a 4-fluorenyl group, a 9-fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a 2-biphenylyl group, a 3-biphenylyl group, a 4-biphenylyl group, an o-terphenyl group, an m-terphenyl-4-yl group, an m-terphenyl-3-yl group, an m-terphenyl-2-yl group, a p-terphenyl-4-yl group, a p-terphenyl-3-yl group, a p-terphenyl-2-yl group, an m-quaterphenyl group, a 3-fluoranthenyl group, a 4-fluoranthenyl group, an 8-fluoranthenyl group, a 9-fluoranthenyl group, a benzofluoranthenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, a 2,3-xylyl group, a 3,4-xylyl group, a 2,5-xylyl group, a mesityl group, an o-cumenyl group, an m-cumenyl group, a p-cumenyl group, a p-t-butylphenyl group, a p-(2-phenylpropyl)phenyl group, a 4'-methylbiphenylyl group, a 4"-t-butyl-p-terphenyl-4-yl group, a 9,9-dimethyl-1-fluorenyl group, a 9,9-dimethyl-2-fluorenyl group, a 9,9-dimethyl-3-fluorenyl group, a 9,9-dimethyl-4-fluorenyl group, a 9,9-diphenyl-1-fluorenyl group, a 9,9-diphenyl-2-fluorenyl group, a 9,9-diphenyl-3-fluorenyl group, a 9,9-diphenyl-4-fluorenyl group, etc.
The term "(3- to 30-membered)heteroaryl(ene)" is meant to be an aryl having 3 to 30 ring backbone atoms, and including at least one, preferably 1 to 4 heteroatoms selected from the group consisting of B, N, O, S, Si, and P. The above heteroaryl(ene) may be a monocyclic ring, or a fused ring condensed with at least one benzene ring; may be partially saturated; may be one formed by linking at least one heteroaryl or aryl group to a heteroaryl group via a single bond(s); and may comprise a spiro structure. The above heteroaryl may include a monocyclic ring-type heteroaryl such as furyl, thiophenyl, pyrrolyl, imidazolyl, pyrazolyl, thiazolyl, thiadiazolyl, isothiazolyl, isoxazolyl, oxazolyl, oxadiazolyl, triazinyl, tetrazinyl, triazolyl, tetrazolyl, furazanyl, pyridyl, pyrazinyl, pyrimidinyl, and pyridazinyl, and a fused ring-type heteroaryl such as benzofuranyl, benzothiophenyl, isobenzofuranyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, benzonaphthothiophenyl, diazadibenzofuranyl, benzimidazolyl, benzothiazolyl, benzoisothiazolyl, benzoisoxazolyl, benzoxazolyl, isoindolyl, indolyl, benzoindolyl, indazolyl, benzothiadiazolyl, quinolyl, benzoquinolyl, isoquinolyl, benzoisoquinolyl, cinnolinyl, quinazolinyl, benzoquinazolinyl, quinoxalinyl, benzoquinoxalinyl, naphthyridinyl, triazanaphthyl, benzothienopyrimidinyl, carbazolyl, benzocarbazolyl, dibenzocarbazolyl, phenoxazinyl, phenothiazinyl, phenanthridinyl, benzodioxolyl, dihydroacridinyl, etc. More specifically, the above heteroaryl may include a 1-pyrrolyl group, a 2-pyrrolyl group, a 3-pyrrolyl group, a pyrazinyl group, a 2-pyridinyl group, a 2-pyrimidinyl group, a 4-pyrimidinyl group, a 5-pyrimidinyl group, a 6-pyrimidinyl group, a 1,2,3-triazin-4-yl group, a 1,2,4-triazin-3-yl group, a 1,3,5-triazin-2-yl group, a 1-imidazolyl group, a 2-imidazolyl group, a 1-pyrazolyl group, a 1-indolidinyl group, a 2-indolidinyl group, a 3-indolidinyl group, a 5-indolidinyl group, a 6-indolidinyl group, a 7-indolidinyl group, an 8-indolidinyl group, a 2-imidazopyridinyl group, a 3-imidazopyridinyl group, a 5-imidazopyridinyl group, a 6-imidazopyridinyl group, a 7-imidazopyridinyl group, an 8-imidazopyridinyl group, a 3-pyridinyl group, a 4-pyridinyl group, a 1-indolyl group, a 2-indolyl group, a 3-indolyl group, a 4-indolyl group, a 5-indolyl group, a 6-indolyl group, a 7-indolyl group, a 1-isoindolyl group, a 2-isoindolyl group, a 3-isoindolyl group, a 4-isoindolyl group, a 5-isoindolyl group, a 6-isoindolyl group, a 7-isoindolyl group, a 2-furyl group, a 3-furyl group, a 2-benzofuranyl group, a 3-benzofuranyl group, a 4-benzofuranyl group, a 5-benzofuranyl group, a 6-benzofuranyl group, a 7-benzofuranyl group, a 1-isobenzofuranyl group, a 3-isobenzofuranyl group, a 4-isobenzofuranyl group, a 5-isobenzofuranyl group, a 6-isobenzofuranyl group, a 7-isobenzofuranyl group, a 2-quinolyl group, a 3-quinolyl group, a 4-quinolyl group, a 5-quinolyl group, a 6-quinolyl group, a 7-quinolyl group, an 8-quinolyl group, a 1-isoquinolyl group, a 3-isoquinolyl group, a 4-isoquinolyl group, a 5-isoquinolyl group, a 6-isoquinolyl group, a 7-isoquinolyl group, an 8-isoquinolyl group, a 2-quinoxalinyl group, a 5-quinoxalinyl group, a 6-quinoxalinyl group, a 1-carbazolyl group, a 2-carbazolyl group, a 3-carbazolyl group, a 4-carbazolyl group, a 9-carbazolyl group, an azacarbazolyl-1-yl group, an azacarbazolyl-2-yl group, an azacarbazolyl-3-yl group, an azacarbazolyl-4-yl group, an azacarbazolyl-5-yl group, an azacarbazolyl-6-yl group, an azacarbazolyl-7-yl group, an azacarbazolyl-8-yl group, an azacarbazolyl-9-yl group, a 1-phenanthridinyl group, a 2-phenanthridinyl group, a 3-phenanthridinyl group, a 4-phenanthridinyl group, a 6-phenanthridinyl group, a 7-phenanthridinyl group, an 8-phenanthridinyl group, a 9-phenanthridinyl group, a 10-phenanthridinyl group, a 1-acridinyl group, a 2-acridinyl group, a 3-acridinyl group, a 4-acridinyl group, a 9-acridinyl group, a 2-oxazolyl group, a 4-oxazolyl group, a 5-oxazolyl group, a 2-oxadiazolyl group, a 5-oxadiazolyl group, a 3-furazanyl group, a 2-thienyl group, a 3-thienyl group, a 2-methylpyrrol-1-yl group, a 2-methylpyrrol-3-yl group, a 2-methylpyrrol-4-yl group, a 2-methylpyrrol-5-yl group, a 3-methylpyrrol-1-yl group, a 3-methylpyrrol-2-yl group, a 3-methylpyrrol-4-yl group, a 3-methylpyrrol-5-yl group, a 2-t-butylpyrrol-4-yl group, a 3-(2-phenylpropyl)pyrrol-1-yl group, a 2-methyl-1-indolyl group, a 4-methyl-1-indolyl group, a 2-methyl-3-indolyl group, a 4-methyl-3-indolyl group, a 2-t-butyl-1-indolyl group, a 4-t-butyl-1-indolyl group, a 2-t-butyl-3-indolyl group, a 4-t-butyl-3-indolyl group, a 1-dibenzofuranyl group, a 2-dibenzofuranyl group, a 3-dibenzofuranyl group, a 4-dibenzofuranyl group, a 1-dibenzothiophenyl group, a 2-dibenzothiophenyl group, a 3-dibenzothiophenyl group, a 4-dibenzothiophenyl group, a 1-silafluorenyl group, a 2-silafluorenyl group, a 3-silafluorenyl group, a 4-silafluorenyl group, a 1-germafluorenyl group, a 2-germafluorenyl group, a 3-germafluorenyl group, and a 4-germafluorenyl group. Furthermore, "halogen" includes F, Cl, Br, and I.
Herein, "substituted" in the expression "substituted or unsubstituted" means that a hydrogen atom in a certain functional group is replaced with another atom or functional group, i.e., a substituent. The substituents of the substituted alkyl, the substituted alkylene, the substituted aryl, the substituted arylene, the substituted heteroaryl, the substituted heteroarylene, the substituted cycloalkyl, the substituted cycloalkylene, the substituted cycloalkenyl, the substituted heterocycloalkyl, the substituted alkoxy, the substituted trialkylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted triarylsilyl, the substituted mono- or di- alkylamino, the substituted mono- or di- arylamino, and the substituted alkylarylamino in the formulas of the present disclosure each independently are at least one selected from the group consisting of deuterium; a halogen; a cyano; a carboxyl; a nitro; a hydroxyl; a (C1-C30)alkyl; a halo(C1-C30)alkyl; a (C2-C30)alkenyl; a (C2-C30)alkynyl; a (C1-C30)alkoxy; a (C1-C30)alkylthio; a (C3-C30)cycloalkyl; a (C3-C30)cycloalkenyl; a (3- to 7-membered)heterocycloalkyl; a (C6-C30)aryloxy; a (C6-C30)arylthio; a (3- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl(s); a (C6-C30)aryl unsubstituted or substituted with at least one of a (C1-C30)alkyl(s), a (3- to 30-membered)heteroaryl(s), and a di(C6-C30)arylamino(s); a tri(C1-C30)alkylsilyl; a tri(C6-C30)arylsilyl; a di(C1-C30)alkyl(C6-C30)arylsilyl; a (C1-C30)alkyldi(C6-C30)arylsilyl; an amino; a mono- or di- (C1-C30)alkylamino; a mono- or di- (C6-C30)arylamino; a (C1-C30)alkyl(C6-C30)arylamino; a (C1-C30)alkylcarbonyl; a (C1-C30)alkoxycarbonyl; a (C6-C30)arylcarbonyl; a di(C6-C30)arylboronyl; a di(C1-C30)alkylboronyl; a (C1-C30)alkyl(C6-C30)arylboronyl; a (C6-C30)aryl(C1-C30)alkyl; and a (C1-C30)alkyl(C6-C30)aryl. Preferably, the substituents each independently are at least one selected from the group consisting of a (C1-C10)alkyl; a (C6-C20)aryl unsubstituted or substituted with at least one of a (C1-C10)alkyl(s), a (3- to 20-membered)heteroaryl(s), and a di(C6-C20)arylamino(s); a (3- to 20-membered)heteroaryl unsubstituted or substituted with a (C6-C20)aryl(s); and a di(C6-C20)arylamino. More preferably, the substituents each independently are at least one selected from the group consisting of a (C1-C6)alkyl; a (C6-C20)aryl unsubstituted or substituted with at least one of a (C1-C6)alkyl, a (5- to 15-membered)heteroaryl, and a di(C6-C12)arylamino; a (5- to 15-membered)heteroaryl unsubstituted or substituted with a (C6-C12)aryl; and a di(C6-C12)arylamino. For example, the substituents may be at least one of a methyl, a phenyl, a naphthyl, a biphenyl, a terphenyl, a phenanthrenyl, a triphenylenyl, a naphthylphenyl, a phenylnaphthyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, a phenyl substituted with a phenylquinoxalinyl, a carbazolylphenyl, a dibenzofuranylphenyl, a phenyl substituted with a diphenylamino, a phenylquinoxalinyl, a carbazolyl, a phenylcarbazolyl, a dibenzofuranyl, and a diphenylamino.
In the formulas of the present disclosure, if adjacent substituents are linked to each other to form a ring, the ring may be a substituted or unsubstituted, mono- or polycyclic, (3- to 30-membered) alicyclic or aromatic ring, or the combination thereof which is formed by the link of two or more adjacent substituents, in which the formed ring may contain at least one heteroatom selected from B, N, O, S, Si, and P, preferably N, O, and S. For example, the fused ring may be a substituted or unsubstituted dibenzothiophene ring, a substituted or unsubstituted dibenzofuran ring, a substituted or unsubstituted naphthalene ring, a substituted or unsubstituted phenanthrene ring, a substituted or unsubstituted fluorene ring, a substituted or unsubstituted benzothiophene ring, a substituted or unsubstituted benzofuran ring, a substituted or unsubstituted indole ring, a substituted or unsubstituted indene ring, a substituted or unsubstituted benzene ring, or a substituted or unsubstituted carbazole ring.
In the formulas of the present disclosure, the heteroaryl or heteroarylene may each independently contain at least one heteroatom selected from B, N, O, S, Si, and P. In addition, the heteroatom may be bonded to at least one selected from the group consisting of hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (5- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, and a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino.
In formula 1, X represents O or S.
In formula 1, R1 to R8 each independently represent -L1-HAr, hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR9R10, or -SiR11R12R13; or may be linked to an adjacent substituent to form a ring; with a proviso that at least one of R1 to R8 is -L1-HAr. According to one embodiment of the present disclosure, one of R1 to R8 is -L1-HAr, and the others are hydrogen.
In formula 1, L1 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, where if a plurality of L1 is present, each of L1 may be the same or different. According to one embodiment of the present disclosure, L1 represents a single bond, or a substituted or unsubstituted (C6-C20)arylene. According to another embodiment of the present disclosure, L1 represents a single bond or an unsubstituted (C6-C20)arylene. Specifically, L1 may represent a single bond, a phenylene, a naphthylene, a biphenylene, a naphthylphenylene, a phenylnaphthylene, etc.
In formula 1, HAr represents a substituted or unsubstituted nitrogen-containing (3- to 30-membered)heteroaryl, where if a plurality of HAr is present, each of HAr may be the same or different. According to one embodiment of the present disclosure, HAr represents a substituted or unsubstituted nitrogen-containing (5- to 15-membered)heteroaryl. According to another embodiment of the present disclosure, HAr represents a substituted or unsubstituted nitrogen-containing (5- to 15-membered)heteroaryl, and the substituent of the substituted nitrogen-containing (5- to 15-membered)heteroaryl may be at least one of a (C6-C20)aryl unsubstituted or substituted with at least one of a (C1-C6)alkyl(s), a (5- to 15-membered)heteroaryl(s), and a di(C6-C12)arylamino(s); a (5- to 15-membered)heteroaryl unsubstituted or substituted with a (C6-C12)aryl(s). Specifically, HAr may represent a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted triazanaphthyl, a substituted or unsubstituted benzothienopyrimidinyl, etc. For example, HAr may represent a triazinyl, a quinazolinyl, a quinoxalinyl, a naphthyridinyl, a triazanaphthyl, a benzoquinazolinyl, a benzoquinoxalinyl, etc. The triazinyl may be substituted with at least one of a phenyl, a naphthyl, a biphenyl, a terphenyl, a naphthylphenyl, a dimethylbenzofluorenyl, a dibenzofuranylphenyl, and a dibenzofuranyl, the quinazolinyl may be substituted with at least one of a phenyl and a naphthyl, the quinoxalinyl may be substituted with at least one of a phenyl, a naphthyl, a biphenyl, a terphenyl, a phenanthrenyl, a triphenylenyl, a naphthylphenyl, a phenylnaphthyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, a phenyl substituted with a phenylquinoxalinyl, a carbazolylphenyl, a dibenzofuranylphenyl, a phenyl substituted with a diphenylamino, a phenylcarbazolyl, and a dibenzofuranyl, the naphthyridinyl may be substituted with at least one of a phenyl, a naphthyl, a biphenyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, and a phenylcarbazolyl, the triazanaphthyl may be substituted with at least one phenyl, the benzoquinazolinyl may be substituted with at least one biphenyl, and the benzoquinoxalinyl may be substituted with at least one of a phenyl, a naphthyl, a biphenyl, and a naphthylphenyl.
According to one embodiment of the present disclosure, formula 1 may be represented by at least one of the following formulas 1-1 to 1-4.
Figure PCTKR2019009166-appb-I000006
Figure PCTKR2019009166-appb-I000007
Figure PCTKR2019009166-appb-I000008
Figure PCTKR2019009166-appb-I000009
wherein
R1 to R8, X, L1, and HAr are as defined in formula 1.
In formula 2, Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR9R10, or -SiR11R12R13; or may be linked to an adjacent substituent to form a ring. According to one embodiment of the present disclosure, Ar represents a substituted or unsubstituted (C6-C25)aryl, a substituted or unsubstituted (5- to 15-membered)heteroaryl, or -NR9R10. Herein, R9 and R10 each independently represent a substituted or unsubstituted (C6-C12)aryl. According to another embodiment of the present disclosure, Ar represents a (C6-C25)aryl unsubstituted or substituted with at least one (C1-C6)alkyl, a (5- to 15-membered)heteroaryl unsubstituted or substituted with at least one (C6-C12)aryl, or -NR9R10. Herein, R9 and R10 each independently represent an unsubstituted (C6-C12)aryl. Specifically, Ar may represent a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted naphthylphenyl, a substituted or unsubstituted phenylnaphthyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted benzocarbazolyl, a substituted or unsubstituted dibenzocarbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted benzonaphthothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted benzofuranyl, a substituted or unsubstituted benzonaphthofuranyl, a substituted or unsubstituted diazadibenzofuranyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted benzothienopyrimidinyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted benzofluorenyl, a substituted or unsubstituted spirobifluorenyl, a substituted or unsubstituted diphenylamino, a substituted or unsubstituted phenylnaphthylamino, a substituted or unsubstituted phenylbiphenylamino, a substituted or unsubstituted naphthylbiphenylamino, a substituted or unsubstituted dibiphenylamino, a substituted or unsubstituted biphenylfluorenylamino, or a substituted or unsubstituted biphenyldibenzofuranylamino, etc. For example, Ar may represent a phenyl, a naphthyl, a biphenyl, a terphenyl, a spirobifluorenyl, a dimethylfluorenyl, a dimethylbenzofluorenyl, a phenylpyridyl, a diphenylpyrimidinyl, a dimethyltriazinyl, a phenylquinolyl, a diphenylquinazolinyl, a biphenylquinazolinyl, a phenylquinoxalinyl, a diphenylquinoxalinyl, a naphthylquinoxalinyl, a phenylnaphthyridinyl, a carbazolyl, a phenylcarbazolyl, a dibenzofuranyl, a phenyldibenzofuranyl, a dibenzothiophenyl, a phenyldiazadibenzofuranyl, a phenylbenzoquinazolinyl, a phenylbenzoquinoxalinyl, a diphenylamino, a phenylnaphthylamino, a phenylbiphenylamino, etc.
In formulas 3 and 4, X1 to X25 each independently represent N or CR14. According to one embodiment of the present disclosure, X1 to X25 are all CR14.
In formulas 3 and 4, R14 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or adjacent R14's may be linked to each other to form a ring, and where if a plurality of R14 is present, each R14 may be the same or different. According to one embodiment of the present disclosure, R14 may each independently represent hydrogen, or a substituted or unsubstituted (C6-C12)aryl, or adjacent R14's may be linked to each other to form a ring. According to another embodiment of the present disclosure, R14 each independently represents hydrogen, or an unsubstituted (C6-C12)aryl, or adjacent R14's may be linked to each other to form a ring. Specifically, R14 may each independently represent hydrogen, a phenyl, etc., or adjacent R14's may be linked to each other to form a benzene ring.
In formula 2, L2 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene. According to one embodiment of the present disclosure, L2 represents a single bond, a substituted or unsubstituted (C6-C12)arylene, or a substituted or unsubstituted (5- to 15-membered)heteroarylene. According to another embodiment of the present disclosure, L2 represents a single bond, an unsubstituted (C6-C12)arylene, or a (5- to 15-membered)heteroarylene unsubstituted or substituted with a (C6-C12)aryl(s). Specifically, L2 may represent a single bond, a phenylene, a naphthylene, a biphenylene, a phenylpyridylene, a phenyltriazinylene, a quinolylene, a quinazolinylene, a phenylquinazolinylene, a quinoxalinylene, a phenylquinoxalinylene, a naphthyridinylene, a carbazolylene, a dibenzofuranylene, a benzoquinazolinylene, a benzoquinoxalinylene, a diazadibenzofuranylene, etc.
In formulas 1 and 2, R9 to R13 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl. According to one embodiment of the present disclosure, R9 and R10 each independently represent a substituted or unsubstituted (C6-C12)aryl. According to another embodiment of the present disclosure, R9 and R10 each independently represent an unsubstituted (C6-C12)aryl. Specifically, R9 and R10 each independently represent a phenyl, a naphthyl, a biphenyl, etc.
According to one embodiment of the present disclosure, formula 3 may be represented by the following formula 3-1:
Figure PCTKR2019009166-appb-I000010
wherein
R31 to R33 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a ring; and
aa represents an integer of 1 to 3, ab represents an integer of 1 to 4, ac represents an integer of 1 to 5, where if aa, ab, and ac are an integer of 2 or more, each R31, each R32, and each R33 may be the same or different.
According to one embodiment of the present disclosure, formula 4 may be represented by the following formula 4-1:
Figure PCTKR2019009166-appb-I000011
wherein
R41 to R44 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a ring; and
ba represents an integer of 1 to 3, bb and bc each independently represent an integer of 1 to 4, bd represents 1 or 2, where if ba, bb, bc, and bd are an integer of 2 or more, each R41, each R42, each R43, and each R44 may be the same or different.
The compound represented by formula 1 includes the following compounds, but is not limited thereto.
Figure PCTKR2019009166-appb-I000012
Figure PCTKR2019009166-appb-I000013
Figure PCTKR2019009166-appb-I000014
Figure PCTKR2019009166-appb-I000015
Figure PCTKR2019009166-appb-I000016
Figure PCTKR2019009166-appb-I000017
Figure PCTKR2019009166-appb-I000018
Figure PCTKR2019009166-appb-I000019
Figure PCTKR2019009166-appb-I000020
Figure PCTKR2019009166-appb-I000021
Figure PCTKR2019009166-appb-I000022
Figure PCTKR2019009166-appb-I000023
Figure PCTKR2019009166-appb-I000024
Figure PCTKR2019009166-appb-I000025
Figure PCTKR2019009166-appb-I000026
Figure PCTKR2019009166-appb-I000027
Figure PCTKR2019009166-appb-I000028
Figure PCTKR2019009166-appb-I000029
Figure PCTKR2019009166-appb-I000030
Figure PCTKR2019009166-appb-I000031
Figure PCTKR2019009166-appb-I000032
Figure PCTKR2019009166-appb-I000033
Figure PCTKR2019009166-appb-I000034
Figure PCTKR2019009166-appb-I000035
Figure PCTKR2019009166-appb-I000036
Figure PCTKR2019009166-appb-I000037
Figure PCTKR2019009166-appb-I000038
Figure PCTKR2019009166-appb-I000039
Figure PCTKR2019009166-appb-I000040
Figure PCTKR2019009166-appb-I000041
Figure PCTKR2019009166-appb-I000042
The compound represented by formula 2 includes the following compounds, but is not limited thereto.
Figure PCTKR2019009166-appb-I000043
Figure PCTKR2019009166-appb-I000044
Figure PCTKR2019009166-appb-I000045
Figure PCTKR2019009166-appb-I000046
Figure PCTKR2019009166-appb-I000047
Figure PCTKR2019009166-appb-I000048
Figure PCTKR2019009166-appb-I000049
Figure PCTKR2019009166-appb-I000050
Figure PCTKR2019009166-appb-I000051
Figure PCTKR2019009166-appb-I000052
Figure PCTKR2019009166-appb-I000053
Figure PCTKR2019009166-appb-I000054
Figure PCTKR2019009166-appb-I000055
Figure PCTKR2019009166-appb-I000056
Figure PCTKR2019009166-appb-I000057
Figure PCTKR2019009166-appb-I000058
Figure PCTKR2019009166-appb-I000059
Figure PCTKR2019009166-appb-I000060
Figure PCTKR2019009166-appb-I000061
Figure PCTKR2019009166-appb-I000062
Figure PCTKR2019009166-appb-I000063
Figure PCTKR2019009166-appb-I000064
Figure PCTKR2019009166-appb-I000065
Figure PCTKR2019009166-appb-I000066
One or more of compounds E-1 to E-135 and one or more of compounds H-1 to H-122 may be combined and used in an organic electroluminescent device.
The compound represented by formula 1 according to the present disclosure may be prepared by a synthetic method known to one skilled in the art. For example, it may be prepared by referring to Korean Patent Application Laying-Open Nos. 2012-0033017, 2013-0128322, 2016-0038006, 2015-0122343, and 2016-0049083; U.S. Patent Application Publication No. 2016/0233436; International Publication No. WO 2017/178311, etc., but is not limited thereto.
The compound represented by formula 2 according to the present disclosure may be prepared by a synthetic method known to a person skilled in the art. For example, it may be prepared by referring to the following reaction scheme 1, Korean Patent Application Laying-Open No. 2018-0012709, etc., but is not limited thereto.
[Reaction Scheme 1]
Figure PCTKR2019009166-appb-I000067
Figure PCTKR2019009166-appb-I000068
Figure PCTKR2019009166-appb-I000069
wherein X1 to X12, L2, and Ar as defined as in formulas 2 and 3, and OTf represents trifluoromethanesulfonate.
The organic electroluminescent device according to the present disclosure comprises a first electrode; a second electrode; and at least one organic layer between the first and second electrodes.
One of the first and second electrodes may be an anode, and the other may be a cathode. The organic layer comprises a light-emitting layer, and may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron buffer layer, an electron injection layer, an interlayer, a hole blocking layer, and an electron blocking layer. Herein, the second electrode may be a transflective electrode or a reflective electrode, and may be a top emission, bottom emission, or both-sides emission type according to the material used. In addition, the hole injection layer may be further doped with a p-dopant, and the electron injection layer may be further doped with an n-dopant.
The organic electroluminescent device according to the present disclosure may comprise an anode, a cathode, and at least one organic layer between the anode and cathode, in which the organic layer may comprise a plurality of organic electroluminescent materials including a compound represented by formula 1 as the first organic electroluminescent material and a compound represented by formula 2 as the second organic electroluminescent material. The organic electroluminescent device according to the present disclosure may comprise an anode, a cathode, and at least one light-emitting layer between the anode and cathode, in which the light-emitting layer may comprise a compound represented by formula 1 and a compound represented by formula 2.
The light-emitting layer comprises a host and a dopant, and the host comprises the plurality of host materials. The compound represented by formula 1 may be comprised as a first host compound of the plurality of host materials and the compound represented by formula 2 may be comprised as a second host compound of the plurality of host materials. Herein, the weight ratio of the first host compound to the second host compound is in the range of about 1:99 to about 99:1, preferably about 10:90 to about 90:10, more preferably about 30:70 to about 70:30, even more preferably about 40:60 to about 60:40, and further more preferably about 50:50.
The light-emitting layer is a layer from which light is emitted, and can be a single layer or a multi-layer of which two or more layers are stacked. In the plurality of host materials according to the present disclosure, the first and second host materials may both be comprised in one layer or may be respectively comprised in different light-emitting layers. According to one embodiment of the present disclosure, the doping concentration of the dopant compound with respect to the host compound of the light-emitting layer may be less than 20 wt%.
The organic electroluminescent device of the present disclosure may further comprise at least one layer selected from a hole injection layer, a hole transport layer, a hole auxiliary layer, a light-emitting auxiliary layer, an electron transport layer, an electron injection layer, an interlayer, an electron buffer layer, a hole blocking layer, and an electron blocking layer. In one embodiment of the present disclosure, the organic electroluminescent device of the present disclosure may further comprise an amine-based compound, in addition to the plurality of host materials of the present disclosure, as at least one of a hole injection material, a hole transport material, a hole auxiliary material, a light-emitting material, a light-emitting auxiliary material, and an electron blocking material. In addition, in one embodiment of the present disclosure, the organic electroluminescent device of the present disclosure may further comprise an azine-based compound, in addition to the plurality of host materials of the present disclosure, as at least one of an electron transport material, an electron injection material, an electron buffer material, and a hole blocking material.
The dopant comprised in the organic electroluminescent device according to the present disclosure may be at least one phosphorescent or fluorescent dopant, and preferably phosphorescent dopant. The phosphorescent dopant material applied to the organic electroluminescent device of the present disclosure is not particularly limited, but may be selected from metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), preferably selected from ortho-metallated complex compounds of iridium (Ir), osmium (Os), copper (Cu), and platinum (Pt), and more preferably ortho-metallated iridium complex compounds.
The dopant comprised in the organic electroluminescent device of the present disclosure may include the compound represented by the following formula 101, but is not limited thereto.
Figure PCTKR2019009166-appb-I000070
In formula 101, L is selected from the following structures 1 and 2:
Figure PCTKR2019009166-appb-I000071
R100 to R103, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a cyano, a substituted or unsubstituted (3- to 30-membered)heteroaryl, or a substituted or unsubstituted (C1-C30)alkoxy; or may be linked to an adjacent substituent to form a ring, e.g., a substituted or unsubstituted, quinoline, benzofuropyridine, benzothienopyridine, benzothienoquinoline, or indenoquinoline ring, together with pyridine;
R104 to R107, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a cyano, or a substituted or unsubstituted (C1-C30)alkoxy; or may be linked to an adjacent substituent to form a ring, e.g., a substituted or unsubstituted, naphthyl, fluorene, dibenzothiophene, dibenzofuran, indenopyridine, benzofuropyridine or benzothienopyridine ring, together with benzene;
R201 to R211, each independently, represent hydrogen, deuterium, a halogen, a (C1-C30)alkyl unsubstituted or substituted with a halogen(s), a substituted or unsubstituted (C3-C30)cycloalkyl, or a substituted or unsubstituted (C6-C30)aryl; or may be linked to an adjacent substituent to form a ring; and
n represents an integer of 1 to 3.
The specific examples of the dopant compound are as follows, but are not limited thereto.
Figure PCTKR2019009166-appb-I000072
Figure PCTKR2019009166-appb-I000073
Figure PCTKR2019009166-appb-I000074
Figure PCTKR2019009166-appb-I000075
Figure PCTKR2019009166-appb-I000076
Figure PCTKR2019009166-appb-I000077
Figure PCTKR2019009166-appb-I000078
Figure PCTKR2019009166-appb-I000079
Figure PCTKR2019009166-appb-I000080
Figure PCTKR2019009166-appb-I000081
Figure PCTKR2019009166-appb-I000082
Figure PCTKR2019009166-appb-I000083
Figure PCTKR2019009166-appb-I000084
Figure PCTKR2019009166-appb-I000085
Figure PCTKR2019009166-appb-I000086
Figure PCTKR2019009166-appb-I000087
Figure PCTKR2019009166-appb-I000088
Figure PCTKR2019009166-appb-I000089
Figure PCTKR2019009166-appb-I000090
Figure PCTKR2019009166-appb-I000091
Figure PCTKR2019009166-appb-I000092
Figure PCTKR2019009166-appb-I000093
In the organic electroluminescent device of the present disclosure, between the anode and the light-emitting layer, a hole injection layer, a hole transport layer, an electron blocking layer, or a combination thereof can be used. Multiple hole injection layers can be used in order to lower the hole injection barrier (or hole injection voltage) from the anode to the hole transport layer or the electron blocking layer. Two compounds can be simultaneously used in each layer. The hole transport layer or the electron blocking layer can also be formed of multi-layers.
In addition, between the light-emitting layer and the cathode, an electron buffer layer, a hole blocking layer, an electron transport layer, an electron injection layer, or a combination thereof can be used. Multiple electron buffer layers can be used in order to control the injection of the electrons and enhance the interfacial characteristics between the light-emitting layer and the electron injection layer. Two compounds can be simultaneously used in each layer. The hole blocking layer or the electron transport layer can also be formed of multi-layers, and each layer can comprise two or more compounds.
In addition, the organic electroluminescent compound or the plurality of host materials according to the present disclosure can also be used in an organic electroluminescent device comprising a quantum dot (QD).
In order to form each layer of the organic electroluminescent device of the present disclosure, dry film-forming methods such as vacuum evaporation, sputtering, plasma and ion plating methods, or wet film-forming methods such as ink jet printing, nozzle printing, slot coating, spin coating, dip coating, and flow coating methods can be used.
When using a solvent in a wet film-forming method, a thin film can be formed by dissolving or diffusing materials forming each layer into any suitable solvent such as ethanol, chloroform, tetrahydrofuran, dioxane, etc. The solvent can be any solvent where the materials forming each layer can be dissolved or diffused, and where there are no problems in film-formation capability.
In addition, the first and the second host compounds of the present disclosure may be film-formed in the above-listed methods, commonly by a co-evaporation process or a mixture-evaporation process. The co-evaporation is a mixed deposition method in which two or more materials are placed in a respective individual crucible source and a current is applied to both cells at the same time to evaporate the materials. The mixture-evaporation is a mixed deposition method in which two or more materials are mixed in one crucible source before evaporating them, and a current is applied to the cell to evaporate the materials. Further, if the first and the second host compounds are present in the same layer or different layers in an organic electroluminescent device, the two host compounds may individually form films. For example, the second host compound may be deposited after depositing the first host compound.
The present disclosure may provide a display device by using the plurality of host materials comprising the compound represented by formula 1 and the compound represented by formula 2. That is, it is possible to manufacture a display system or a lighting system by using the plurality of host materials of the present disclosure. Specifically, it is possible to produce a display system, e.g., a display system for smartphones, tablets, notebooks, PCs, TVs, or cars, or a lighting system, e.g., an outdoor or indoor lighting system, by using the plurality of host materials of the present disclosure.
Hereinafter, the preparation method of the compound of the present disclosure and the properties thereof, and the properties of an organic electroluminescent device comprising the plurality of host materials of the present disclosure will be explained in detail with reference to the representative compounds of the present disclosure. However, the present disclosure is not limited by the following examples.
Synthesis Example 1: Preparation of compound H-49
Figure PCTKR2019009166-appb-I000094
Figure PCTKR2019009166-appb-I000095
Figure PCTKR2019009166-appb-I000096
Synthesis of compound 1
70 g of 2-nitro-1-naphthol (370 mmol) and 4.5 g of dimethylaminopyridine (DMAP) (37 mmol) were dissolved in 1800 mL of methylene chloride (MC) in a flask. 62 mL of triethylamine (TEA) (444 mmol) were added dropwise at 0℃ and stirred for 20 minutes. 125.3 g of trifluoromethane sulfonic anhydride (444 mmol) was slowly added dropwise to the reactant at the same temperature and stirred for 1 hour. After the reaction was completed, an organic layer was extracted with MC, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 96.2 g of compound 1 (yield: 81%).
Synthesis of compound 2
96.2 g of compound 1 (299 mmol), 72.1 g of 2-bromophenylboronic acid (359 mmol), 17.3 g of tetrakis(triphenylphosphine)palladium(0) (15 mmol), and 79.3 g of sodium carbonate (749 mmol) were dissolved in 1400 mL of toluene, 350 mL of ethanol, and 350 mL of water in a flask and refluxed for 1 hour. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 98 g of compound 2 (yield: 99%).
Synthesis of compound 3
98 g of compound 2 (299 mmol), 78.5 g of 2-aminophenylboronic acid pinacol ester (358 mmol), 17.2 g of tetrakis(triphenylphosphine)palladium(0) (15 mmol), and 103 g of potassium carbonate (747 mmol) were dissolved in 1300 mL of toluene, 350 mL of ethanol, and 350 mL of water in a flask and refluxed for 20 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 54 g of compound 3 (yield: 53%).
Synthesis of compound 4
25 g of compound 3 (73 mmol) was dissolved in 250 mL of acetic acid and 25 mL of sulfuric acid in a flask, 6.5 g of sodium nitrite (95 mmol) was slowly added dropwise at 0℃ and stirred for 40 minutes. After the reaction was completed, the reaction product was added dropwise to water and filtered to remove moisture. The residue was dried and separated by column chromatography to obtain 2 g of compound 4 (yield: 8.4%).
Synthesis of compound 5
4.7g of compound 4 (15 mmol) was dissolved in 48 mL of triethylphosphite and 48 mL of 1,2-dichlorobenzene in a flask and refluxed for 3 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 2.7 g of compound 5 (yield: 63%).
Synthesis of compound H-49
2.1 g of compound 5 (7 mmol), 3.1 g of 2-(3-bromophenyl)-4,6-diphenyl-1,3,5-triazine (8 mmol), 0.81 g of palladium (II) acetate (0.36 mmol), 0.3 g of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (S-Phos) (0.7 mmol), and 1.7 g of sodium tert-butoxide (18 mmol) were dissolved in 72 mL of 1,2-xylene in a flask and refluxed for 4 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 2.5 g of compound H-49 (yield: 58%).
Figure PCTKR2019009166-appb-I000097
Synthesis Example 2: Preparation of compound H-6
Figure PCTKR2019009166-appb-I000098
Synthesis of compound 6
155 mL of toluene was added to 9 g of compound 5 (30.89 mmol), 10.6 g of 1-bromo-3-iodobenzene (61.78 mmol), 3 g of CuI (15.44 mmol), 1.8 g of ethylenediamine (EDA) (30.89 mmol), and 16.4 g of K3PO4 (77.22 mmol) and stirred under reflux for one day. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The solid was dissolved in CHCl3 and separated by column chromatography using MC/Hex to obtain 10 g of compound 6 (yield: 75%).
Synthesis of compound H-6
50 mL of toluene, 13 mL of EtOH, and 13 mL of purified water were added to 5.7 g of compound 6 (12.77 mmol), 0.73 g of Pd(PPh3)4 (0.638 mmol), and 3.5 g of K2CO3 (25.54 mmol) and stirred under reflux for 2 hours. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The solid was dissolved in CHCl3 and separated by column chromatography using MC/Hex to obtain 2.9 g of compound H-6 (yield: 43%).
Figure PCTKR2019009166-appb-I000099
Figure PCTKR2019009166-appb-I000100
Synthesis Example 3: Preparation of compound H-7
Figure PCTKR2019009166-appb-I000101
6.6 g of compound 6 (14.78 mmol), 3.4 g of dibenzo[b,d]furan-1-yl boronic acid (16.24 mmol), 0.85 g of Pd(PPh3)4 (0.739 mmol), and 4 g of K2CO3 (29.57 mmol) were added to 60 mL of toluene, 15 mL of ethanol, and 15 mL of purified water and stirred under reflux for one day. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The filtered solid was dissolved in CHCl3, extracted with MC/Hex, and separated by column chromatography to obtain 3.5 g of compound H-7 (yield: 45%).
Figure PCTKR2019009166-appb-I000102
Synthesis Example 4: Preparation of compound H-1
Figure PCTKR2019009166-appb-I000103
86 mL of o-xylene was added to 5 g of compound 5 (17.16 mmol), 5.3 g of 4-bromo-1, 1':2',1"-terphenyl (17.16 mmol), 0.8 g of Pd2(dba)3 (0.858 mmol), 0.7 g of 2-dicyclohexylphosphino-2',6'-dimethoxybiphenyl (s-phos) (1.716 mmol), and 5 g of NaOt-Bu (51.48 mmol) and stirred under reflux for 2 hours. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The filtered solid was dissolved in CHCl3, extracted with MC/Hex, and separated by column chromatography to obtain 2.4 g of compound H-1 (yield: 26%).
Figure PCTKR2019009166-appb-I000104
Synthesis Example 5: Preparation of compound H-122
Figure PCTKR2019009166-appb-I000105
90 mL of o-xylene was added to 5 g of compound 5 (17.16 mmol), 7 g of 1-(3-bromophenyl)dibenzo[b,d]thiophene (20.59 mmol), 0.16 g of CuI (0.858 mmol), 1 g of ethylenediamine (EDA) (17.16 mmol), and 9.1 g of K3PO4 (42.90 mmol) and stirred under reflux for 2 hours. After the reaction was completed, the reaction product was cooled to room temperature, and the resulting solid was filtered under reduced pressure. The filtered solid was dissolved in CHCl3, extracted with MC/Hex, and separated by column chromatography to obtain 2.2 g of compound H-122 (yield: 22%).
Figure PCTKR2019009166-appb-I000106
Synthesis Example 6: Preparation of compound H-16
Figure PCTKR2019009166-appb-I000107
70 mL of toluene was added dropwise to 4.0 g of compound 5 (14 mmol), 4.87 g of 9-(3-bromophenyl)-9H-carbazole (15 mmol), 1.307 g of CuI (7 mmol), 1.647 g of EDA (27 mmol), and 5.83 g of K3PO4 (27 mmol) in a flask and stirred under reflux at 180℃ for 4 hours. After the reaction was completed, the reaction product was extracted with ethylacetate (EA) and dried with MgSO4. The residue was separated by column chromatography and the solid produced was filtered by adding methanol thereto under reduced pressure to obtain 2.3 g of compound H-16 (yield: 31.5%).
Figure PCTKR2019009166-appb-I000108
Synthesis Example 7: Preparation of compound H-104
Figure PCTKR2019009166-appb-I000109
Figure PCTKR2019009166-appb-I000110
Synthesis of compound 7-1
70 g of compound 5 (240 mmol) and 40.6 g of N-bromosuccinimide (255 mmol) were dissolved in 1200 mL of dimethylformamide in a flask, and stirred at 0℃ for 3 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 68 g of compound 7-1 (yield: 76%).
Synthesis of compound 7-2
47.3 g of compound 7-1 (127 mmol), 42 g of bis(pinacolato)diboron (166 mmol), 4.5 g of bis(triphenylphosphine)palladium(II) dichloride (6.4 mmol), and 25 g of potassium acetate (255 mmol) were dissolved in 635 mL of 1,4-dioxane in a flask and refluxed for 4 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate after distillation under reduced pressure, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 31.5 g of compound 7-2 (yield: 59%).
Synthesis of compound 7-3
4.5 g of compound 7-2 (10.7 mmol), 1.9 g of 1-bromobenzene (11.85 mmol), 0.63 g of tetrakis(triphenylphosphine)palladium(0) (0.54 mmol), and 3.7 g of potassium carbonate (26.95 mmol) were dissolved in 54 mL of toluene, 13 mL of ethanol, and 13 mL of water in a flask and refluxed for 12 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 2.2 g of compound 7-3 (yield: 56%).
Synthesis of compound H-104
2.2 g of compound 7-3 (5.9 mmol), 1.58 g of 2-chloro-3-phenylquinoxaline (6.57 mmol), 3.89 g of cesium carbonate (11.96 mmol), and 0.36 g of 4-dimethylaminopyridine (2.99 mmol) were dissolved in 30 mL of dimethyl sulfur monoxide in a flask and stirred at 100℃ for 4 hours. After the reaction was completed, the reaction product was cooled to room temperature, and distilled water was added thereto. An organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 2.9 g of compound H-104 (yield: 85%).
Figure PCTKR2019009166-appb-I000111
Synthesis Example 8: Preparation of compound H-11
Figure PCTKR2019009166-appb-I000112
60 mL of toluene was added to 5.0 g of compound 6 (11.2 mmol), 3.0 g of N-phenyl-[1,1'-biphenyl]-4-amine (12.3 mmol), 0.5 g of Pd2(dba)3 (0.56 mmol), 0.46 g of s-phos (1.12 mmol), and 2.7 g of NaOtBu (28 mmol) in a flask and stirred under reflux for 6 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and stirred at room temperature. A solid produced by adding MeOH thereto was filtered under reduced pressure, and separated by column chromatography using MC/Hex to obtain 2.3 g of compound H-11 (yield: 34%).
Figure PCTKR2019009166-appb-I000113
Synthesis Example 9: Preparation of compound H-120
Figure PCTKR2019009166-appb-I000114
80 mL of o-xylene was added to 5.0 g of 14H-7b,14-diazadibenzo[3,4:5,6]azuleno[7,8,1-lma]fluorene (11.2 mmol), 5.4 g of 4-bromo-N,N-diphenylaniline (16.7 mmol), 0.7 g of Pd2(dba)3 (0.76 mmol), 0.6 g of s-phos (1.52 mmol), and 2.9 g of NaOtBu (30.4 mmol) in a flask and stirred under reflux for 4 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and stirred at room temperature. A solid produced by adding MeOH thereto was filtered under reduced pressure, and separated by column chromatography using MC/Hex to obtain 4.0 g of compound H-120 (yield: 46%).
Figure PCTKR2019009166-appb-I000115
Synthesis Example 10: Preparation of compound H-121
Figure PCTKR2019009166-appb-I000116
160 mL of toluene was added to 14.0 g of compound 6 (31.4 mmol), 7.78 g of N-phenyl-[1,1'-biphenyl]-3-amine (31.7 mmol), 1.44 g of Pd2dba3 (1.57 mmol), 635 mg of t-Bu3P (3.14 mmol), and 6.04 g of t-BuONa (62.8 mmol) in a flask and stirred under reflux for 2 hours. After the reaction was completed, the mixture was cooled to room temperature and extracted with distilled water and EA. The organic layer was filtered under reduced pressure, and separated by column chromatography using MC/Hex to obtain 14.6 g of compound H-121 (yield: 76%).
Figure PCTKR2019009166-appb-I000117
Synthesis Example 11: Preparation of compound H-119
Figure PCTKR2019009166-appb-I000118
170 mL of toluene was added to 10 g of compound 5 (34.3 mmol), 12.7 g of 3-bromodibenzo[b,d]furan (51.45 mmol), 3.3 g of CuI (17.15 mmol), 4.6 mL of ethylenediamine (EDA) (68.8 mmol), and 21.8 g of K3PO4 (102.9 mmol) in a flask and stirred under reflux for 12 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and stirred at room temperature. A solid produced by adding MeOH thereto was filtered under reduced pressure, and separated by column chromatography using MC/Hex to obtain 8.3 g of compound H-119 (yield: 53%).
Figure PCTKR2019009166-appb-I000119
Synthesis Example 12: Preparation of compound H-12
Figure PCTKR2019009166-appb-I000120
Synthesis of compound 12-1
10.0 g of 3H-3-azadibenzo[g,ij]naphtho[2,1,8-cde]azulene (34.3 mmol), 14.6 g of 1-bromo-4-iodobenzene (51.5 mmol), 3.28 g of CuI (17.2 mmol), 4.12 g of EDA (68.6 mmol), 14.6 g of K3PO4 (68.6 mmol), and 170 mL of toluene were introduced into a flask and stirred under reflux at 145℃ for 3 hours. After the reaction was completed, the reaction product was extracted with MC and dried with MgSO4. The residue was separated by column chromatography and the solid produced was filtered by adding MeOH thereto under reduced pressure to obtain 9.0 g of compound 12-1 (yield: 59%).
Synthesis of compound H-12
5.0 g of compound 12-1 (11 mmol), 3.3 g of N-phenyl-[1,1'-bipenyl]-4-amine (13 mmol), 0.513 g of Pd2(dba)3 (0.56 mmol), 0.460 g of s-phos (1 mmol), 2.691 g of NaOt-Bu (28 mmol), and 60 mL of toluene were introduced into a flask and stirred under reflux at 100℃ for 0.5 hours. After the reaction was completed, the reaction product was extracted with MC and dried with MgSO4. The residue was separated by column chromatography and filtered the solid produced by adding MeOH thereto under reduced pressure to obtain 1.3 g of compound H-12 (yield: 19%).
Figure PCTKR2019009166-appb-I000121
Synthesis Example 13: Preparation of compound H-35
Figure PCTKR2019009166-appb-I000122
75 mL of o-xylene was added to 5.0 g of 14H-7b,14-diazadibenzo[3,4:5,6]azuleno[7,8,1-lma]fluorene (15.1 mmol), 4.1 g of 2-bromodibenzo[b,d]furan (16.6 mmol), 0.691 g of Pd2(dba)3 (0.755 mmol), 0.620 g of s-phos (1.51 mmol), and 3.63 g of NaOtBu (37.8 mmol) in a flask and stirred under reflux for 6 hours. After the reaction was completed, the reaction mixture was cooled to room temperature and stirred at room temperature. A solid produced by adding MeOH thereto was filtered under reduced pressure, and separated by column chromatography using MC/Hex to obtain 1.9 g of compound H-35 (yield: 25%).
Figure PCTKR2019009166-appb-I000123
Synthesis Example 14: Preparation of compound E-112
Figure PCTKR2019009166-appb-I000124
Figure PCTKR2019009166-appb-I000125
Synthesis of compound 14-1
20 g of dibenzo[b,d]furan-1-yl boronic acid (94.3 mmol), 53.9 g of 1,4-dibromonaphthalene (188.67 mmol), 32.6 g of K2CO3 (235.75 mmol), and 5.4 g of Pd(PPh3)4 (4.7 mmol) were dissolved in 470 mL of toluene, 235 mL of ethanol, and 235 mL of water in a flask, and refluxed at 140℃ for 4 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 20 g of compound 14-1 (yield: 56.8%).
Synthesis of compound 14-2
20 g of compound 14-1 (53.6 mmol), 16.3 g of 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bi(1,3,2-dioxaborolane) (64.3 mmol), 3.76 g of PdCl2(PPh3)2 (5.36 mmol), and 10.5 g of KOAc (107.2 mmol) were dissolved in 270 mL of 1,4-dioxane in a flask, and refluxed at 150℃ for 4 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 23 g of compound 14-2 (yield: 100%).
Synthesis of compound E-112
7 g of compound 14-2 (16.6 mmol), 7.35 g of 2-chloro-4,6-di(naphthalen-2-yl)-1,3,5-triazine (19.9 mmol), 13.5 g of Cs2CO3 (41.5 mmol), and 959 mg of Pd(PPh3)4 (0.83 mmol) were dissolved in 83 mL of toluene in a flask, and refluxed at 130℃ for 18 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 2 g of compound E-112 (yield: 19.2%).
Synthesis Example 15: Preparation of compound E-117
Figure PCTKR2019009166-appb-I000126
Figure PCTKR2019009166-appb-I000127
Synthesis of compound 15-1
32.2 g of 2-chloro-4,6-di(naphthalen-2-yl)-1,3,5-triazine (87.7 mmol), 20 g of (4-bromonaphthalen-1-yl)boronic acid (79.7 mmol), 65 g of Cs2CO3 (199.25 mmol), and 4.6 g of Pd(PPh3)4 (3.985 mmol) were dissolved in 400 mL of toluene in a flask, and refluxed at 140℃ for 4 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 20 g of compound 15-1 (yield: 46.6%).
Synthesis of compound E-117
7 g of compound 15-1 (13 mmol), 4.6 g of 2-(dibenzo[b,d]furan-2-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (15.6 mmol), 4.5 g of K2CO3 (32.5 mmol), and 0.75 g of Pd(PPh3)4 (0.65 mmol) were dissolved in 65 mL of toluene, 32.5 mL of ethanol, and 32.5 mL of water in a flask, and refluxed at 130℃ for 3 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 3.4 g of compound E-117 (yield: 41%).
Synthesis Example 16: Preparation of compound E-130
Figure PCTKR2019009166-appb-I000128
4.4 g of compound 15-1 (12.3 mmol), 5 g of 2-(dibenzo[b,d]furan-3-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (13.5 mmol), 4.5 g of Cs2CO3 (32.5 mmol), and 0.75 g of Pd(PPh3)4 (0.65 mmol) were dissolved in 60 mL of toluene, 30 mL of ethanol, and 30 mL of water in a flask, and refluxed at 130℃ for 3 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 4 g of compound E-130 (yield: 49%).
Synthesis Example 17: Preparation of compound E-111
Figure PCTKR2019009166-appb-I000129
64 mL of toluene, 16 mL of EtOH, and 16 mL of purified water were added to 6 g of compound 14-2 (14.16 mmol), 5 g of 2-chloro-4-(naphthalen-2-yl)-6-phenyl-1,3,5-triazine (15.73 mmol), 0.9 g of Pd(PPh3)4 (0.786 mmol), and 4.3 g of K2CO3 (31.47 mmol) in a flask and stirred under reflux for 2 hours. After the reaction was completed, the mixture was cooled to room temperature and extracted with distilled water and EA. The organic layer was filtered under reduced pressure, and separated by column chromatography using MC/Hex to obtain 4 g of compound E-111 (yield: 44%).
Figure PCTKR2019009166-appb-I000130
Figure PCTKR2019009166-appb-I000131
Synthesis Example 18: Preparation of compound E-90
Figure PCTKR2019009166-appb-I000132
Figure PCTKR2019009166-appb-I000133
Synthesis of compound 18-1
150 mL of toluene and 30 mL of purified water were added to 10 g of 2,4,6-trichloro-1,3,5-triazine (54.22 mmol), 20.7 g of dibenzo[b,d]furan-1-yl boronic acid (97.60 mmol), 0.76 g of PdCl2(PPh3)2 (1.084 mmol), and 5.7 g of Na2CO3 (54.22 mmol) in a flask and stirred for 2 days. After the reaction was completed, the mixture was cooled to room temperature and extracted with distilled water and MeOH to obtain 3.4 g of compound 18-1 (yield: 14%).
Synthesis of compound E-90
32 mL of toluene, 8 mL of EtOH, and 8 mL of purified water were added to 3.4 g of compound 18-1 (7.592 mmol), 1.5 g of naphthalen-2-yl boronic acid (9.111 mmol), 0.4 g of Pd(PPh3)4 (0.379 mmol), and 2 g of K2CO3 (15.18 mmol) in a flask and stirred under reflux at 140℃ for 1 hour. After the reaction was completed, the mixture was condensed under reduced pressure and extracted with MC, and the organic layer was condensed. The condensed organic layer was separated by column chromatography using MC/Hex to obtain 0.88 g of compound E-90 (yield: 21%).
Figure PCTKR2019009166-appb-I000134
Figure PCTKR2019009166-appb-I000135
Synthesis Example 19: Preparation of compound E-125
Figure PCTKR2019009166-appb-I000136
3.0 g of dibenzo[b,d]furan-1-yl boronic acid (14.2 mmol), 7.3 g of 2-(3'-bromo-[1,1'-biphenyl]-3-yl)-4,6-diphenyl-1,3,5-triazine (15.6 mmol), 0.8 g of tetrakis(triphenylphosphine)palladium(0) (0.71 mmol), and 3.9 g of sodium carbonate (28.4 mmol) were dissolved in 30 mL of toluene, 8 mL of ethanol, and 15 mL of water in a flask and refluxed for 2 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 2.7 g of compound E-125 (yield: 35%).
Figure PCTKR2019009166-appb-I000137
Synthesis Example 20: Preparation of compound E-106
Figure PCTKR2019009166-appb-I000138
3.0 g of dibenzo[b,d]furan-1-yl boronic acid (14.2 mmol), 6.3 g of 2-(4-bromonaphthalen-1-yl)-4,6-diphenyl-1,3,5-triazine (14.2 mmol), 0.82 g of tetrakis(triphenylphosphine)palladium(0) (0.71 mmol), and 3.9 g of sodium carbonate (28.4 mmol) were dissolved in 30 mL of toluene, 8 mL of ethanol, and 15 mL of water in a flask and refluxed for 2 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 1.9 g of compound E-106 (yield: 26%).
Figure PCTKR2019009166-appb-I000139
Synthesis Example 21: Preparation of compound E-91
Figure PCTKR2019009166-appb-I000140
1.6 g of 2,4-dichloro-6-(4-(naphthalen-2-yl)phenyl)-1,3,5-triazine (4.54 mmol), 2.12 g of dibenzo[b,d]furan-1-yl boronic acid (10 mmol), 0.26 g of tetrakis(triphenylphosphine)palladium(0) (0.23 mmol), and 1.3 g of sodium carbonate (9.0 mmol) were dissolved in 16 mL of toluene, 1 mL of ethanol, and 1 mL of water in a flask and refluxed for 3 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 1.0 g of compound E-91 (yield: 36%).
Figure PCTKR2019009166-appb-I000141
Synthesis Example 22: Preparation of compound E-110
Figure PCTKR2019009166-appb-I000142
4.0 g of 2-(4-(dibenzo[b,d]furan-1-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (10.8 mmol), 4.4 g of 2-chloro-4,6-di(naphthalen-2-yl)-1,3,5-triazine (11.9 mmol), 0.6 g of tetrakis(triphenylphosphine)palladium(0) (0.54 mmol), and 3.0 g of sodium carbonate (21.6 mmol) were dissolved in 30 mL of toluene, 7 mL of ethanol, and 10 mL of water in a flask and refluxed for 7 hours. After the reaction was completed, an organic layer was extracted with ethyl acetate, and residual moisture was removed by using magnesium sulfate. The residue was dried and separated by column chromatography to obtain 4.0 g of compound E-110 (yield: 65%).
Figure PCTKR2019009166-appb-I000143
Device Examples 1 to 10: Production of an OLED comprising the plurality
of host materials according to the present disclosure
An organic electroluminescent device (OLED) according to the present disclosure was produced comprising the plurality of host materials according to the present disclosure. A transparent electrode indium tin oxide (ITO) thin film (10 Ω/sq) on a glass substrate for an OLED (Geomatec, Japan) was subjected to an ultrasonic washing with trichloroethylene, acetone, ethanol, and distilled water, sequentially, and was then stored in isopropanol. Next, the ITO substrate was mounted on a substrate holder of a vacuum vapor depositing apparatus. Compound HI-1 was introduced into a cell of said vacuum vapor depositing apparatus, and then the pressure in the chamber of said apparatus was controlled to 10-6 torr. Thereafter, an electric current was applied to the cell to evaporate the above-introduced material, thereby forming a first hole injection layer having a thickness of 80 nm on the ITO substrate. Compound HI-2 was then introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole injection layer having a thickness of 5 nm on the first hole injection layer. Compound HT-1 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a first hole transport layer having a thickness of 10 nm on the second hole injection layer. Compound HT-2 was introduced into another cell of said vacuum vapor depositing apparatus, and was evaporated by applying an electric current to the cell, thereby forming a second hole transport layer having a thickness of 60 nm on the first hole transport layer. After forming the hole injection layers and the hole transport layers, a light-emitting layer was then deposited as follows. The first and second host compounds shown in Table 1 below were introduced into two cells of the vacuum vapor depositing apparatus as a host, and compound D-39 was introduced into another cell. The two host materials were evaporated at a rate of 1:1 and the dopant material was simultaneously evaporated at a different rate and these were deposited in a doping amount of 3 wt% based on the total amount of the host and dopant to form a light-emitting layer having a thickness of 40 nm on the second hole transport layer. Compound ET-1 and compound EI-1 were then introduced into two other cells, evaporated at the rate of 1:1, and deposited to form an electron transport layer having a thickness of 35 nm on the light-emitting layer. Next, after depositing compound EI-1 as an electron injection layer having a thickness of 2 nm on the electron transport layer, an Al cathode having a thickness of 80 nm was deposited by another vacuum vapor deposition apparatus on the electron injection layer. Thus, an OLED was produced.
Comparative Examples 1 and 2: Production of an OLED not according to
the present disclosure
An OLED was produced in the same manner as in Device Example 1, except that only one compound, i.e., the first host compound as listed in Table 1 below, was used instead of two hosts.
The luminous efficiency at a luminance of 1,000 nit, and the time taken for luminance to decrease from 100% to 95% at a constant current in a luminance of 5,000 nit (lifespan; T95) of the OLED devices produced in the Device Examples and Comparative Examples are provided in Table 1 below.
Figure PCTKR2019009166-appb-I000144
Figure PCTKR2019009166-appb-I000145
Figure PCTKR2019009166-appb-I000146
From Table 1, it is confirmed that an organic electroluminescent device comprising the plurality of host materials comprising a specific combination of compounds according to the present disclosure has improved efficiency and/or lifespan characteristics compared to conventional organic electroluminescent devices.
The compounds used in the Device Examples and the Comparative Examples are shown in Table 2 below.
Figure PCTKR2019009166-appb-I000147
Figure PCTKR2019009166-appb-I000148
Figure PCTKR2019009166-appb-I000149

Claims (10)

  1. A plurality of host materials comprising a first host material comprising a compound represented by the following formula 1, and a second host material comprising a compound represented by the following formula 2:
    Figure PCTKR2019009166-appb-I000150
    wherein
    X represents O or S;
    R1 to R8 each independently represent -L1-HAr, hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR9R10, or -SiR11R12R13; or may be linked to an adjacent substituent to form a ring; with a proviso that at least one of R1 to R8 is -L1-HAr;
    L1 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene, where if a plurality of L1 is present, each of L1 may be the same or different;
    HAr represents a substituted or unsubstituted nitrogen-containing (3- to 30-membered)heteroaryl, where if a plurality of HAr is present, each HAr may be the same or different;
    Figure PCTKR2019009166-appb-I000151
    wherein
    L2 represents a single bond, a substituted or unsubstituted (C1-C30)alkylene, a substituted or unsubstituted (C6-C30)arylene, a substituted or unsubstituted (3- to 30-membered)heteroarylene, or a substituted or unsubstituted (C3-C30)cycloalkylene;
    Ar represents hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C3-C30)cycloalkenyl, a substituted or unsubstituted (3- to 7-membered)heterocycloalkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, -NR9R10, or -SiR11R12R13; or may be linked to an adjacent substituent to form a ring;
    Figure PCTKR2019009166-appb-I000152
    is represented by the following formula 3 or formula 4;
    Figure PCTKR2019009166-appb-I000153
    Figure PCTKR2019009166-appb-I000154
    wherein
    X1 to X25 each independently represent N or CR14;
    R14 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or adjacent R14's may be linked to each other to form a ring, and where if a plurality of R14 is present, each R14 may be the same or different;
    R9 to R13 each independently represent a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, or a substituted or unsubstituted (3- to 30-membered)heteroaryl; and
    * represents a bonding site with L2.
  2. The plurality of host materials according to claim 1, wherein the substituents of the substituted alkyl, the substituted alkylene, the substituted aryl, the substituted arylene, the substituted heteroaryl, the substituted heteroarylene, the substituted cycloalkyl, the substituted cycloalkylene, the substituted cycloalkenyl, the substituted heterocycloalkyl, the substituted alkoxy, the substituted trialkylsilyl, the substituted dialkylarylsilyl, the substituted alkyldiarylsilyl, the substituted triarylsilyl, the substituted mono- or di- alkylamino, the substituted mono- or di- arylamino, and the substituted alkylarylamino in R1 to R14, L1, L2, HAr, and Ar, each independently, are at least one selected from the group consisting of deuterium; a halogen; a cyano; a carboxyl; a nitro; a hydroxyl; a (C1-C30)alkyl; a halo(C1-C30)alkyl; a (C2-C30)alkenyl; a (C2-C30)alkynyl; a (C1-C30)alkoxy; a (C1-C30)alkylthio; a (C3-C30)cycloalkyl; a (C3-C30)cycloalkenyl; a (3- to 7-membered)heterocycloalkyl; a (C6-C30)aryloxy; a (C6-C30)arylthio; a (3- to 30-membered)heteroaryl unsubstituted or substituted with a (C6-C30)aryl(s); a (C6-C30)aryl unsubstituted or substituted with at least one of a (C1-C30)alkyl(s), a (3- to 30-membered)heteroaryl(s), and a di(C6-C30)arylamino(s); a tri(C1-C30)alkylsilyl; a tri(C6-C30)arylsilyl; a di(C1-C30)alkyl(C6-C30)arylsilyl; a (C1-C30)alkyldi(C6-C30)arylsilyl; an amino; a mono- or di- (C1-C30)alkylamino; a mono- or di- (C6-C30)arylamino; a (C1-C30)alkyl(C6-C30)arylamino; a (C1-C30)alkylcarbonyl; a (C1-C30)alkoxycarbonyl; a (C6-C30)arylcarbonyl; a di(C6-C30)arylboronyl; a di(C1-C30)alkylboronyl; a (C1-C30)alkyl(C6-C30)arylboronyl; a (C6-C30)aryl(C1-C30)alkyl; and a (C1-C30)alkyl(C6-C30)aryl.
  3. The plurality of host materials according to claim 1, wherein formula 1 is represented by at least one of the following formulas 1-1 to 1-4:
    Figure PCTKR2019009166-appb-I000155
    Figure PCTKR2019009166-appb-I000156
    Figure PCTKR2019009166-appb-I000157
    Figure PCTKR2019009166-appb-I000158
    wherein
    R1 to R8, X, L1, and HAr are as defined in claim 1.
  4. The plurality of host materials according to claim 1, wherein formula 3 is represented by the following formula 3-1:
    Figure PCTKR2019009166-appb-I000159
    wherein
    R31 to R33 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a ring; and
    aa represents an integer of 1 to 3, ab represents an integer of 1 to 4, ac represents an integer of 1 to 5, where if aa, ab, and ac are an integer of 2 or more, each R31, each R32, and each R33 may be the same or different.
  5. The plurality of host materials according to claim 1, wherein formula 4 is represented by the following formula 4-1:
    Figure PCTKR2019009166-appb-I000160
    wherein
    R41 to R44 each independently represent hydrogen, deuterium, a halogen, a cyano, a substituted or unsubstituted (C1-C30)alkyl, a substituted or unsubstituted (C6-C30)aryl, a substituted or unsubstituted (3- to 30-membered)heteroaryl, a substituted or unsubstituted (C3-C30)cycloalkyl, a substituted or unsubstituted (C1-C30)alkoxy, a substituted or unsubstituted tri(C1-C30)alkylsilyl, a substituted or unsubstituted di(C1-C30)alkyl(C6-C30)arylsilyl, a substituted or unsubstituted (C1-C30)alkyldi(C6-C30)arylsilyl, a substituted or unsubstituted tri(C6-C30)arylsilyl, a substituted or unsubstituted mono- or di- (C1-C30)alkylamino, a substituted or unsubstituted mono- or di- (C6-C30)arylamino, or a substituted or unsubstituted (C1-C30)alkyl(C6-C30)arylamino; or may be linked to an adjacent substituent to form a ring; and
    ba represents an integer of 1 to 3, bb and bc each independently represent an integer of 1 to 4, bd represents 1 or 2, where if ba, bb, bc, and bd are an integer of 2 or more, each R41, each R42, each R43, and each R44 may be the same or different.
  6. The plurality of host materials according to claim 1, wherein HAr represents a substituted or unsubstituted triazinyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted triazanaphthyl, or a substituted or unsubstituted benzothienopyrimidinyl.
  7. The plurality of host materials according to claim 1, wherein Ar represents a substituted or unsubstituted phenyl, a substituted or unsubstituted naphthyl, a substituted or unsubstituted biphenyl, a substituted or unsubstituted naphthylphenyl, a substituted or unsubstituted phenylnaphthyl, a substituted or unsubstituted terphenyl, a substituted or unsubstituted carbazolyl, a substituted or unsubstituted benzocarbazolyl, a substituted or unsubstituted dibenzocarbazolyl, a substituted or unsubstituted dibenzothiophenyl, a substituted or unsubstituted benzothiophenyl, a substituted or unsubstituted benzonaphthothiophenyl, a substituted or unsubstituted dibenzofuranyl, a substituted or unsubstituted benzofuranyl, a substituted or unsubstituted benzonaphthofuranyl, a substituted or unsubstituted diazadibenzofuranyl, a substituted or unsubstituted pyridyl, a substituted or unsubstituted pyrimidinyl, a substituted or unsubstituted triazinyl, a substituted or unsubstituted quinazolinyl, a substituted or unsubstituted benzoquinazolinyl, a substituted or unsubstituted quinoxalinyl, a substituted or unsubstituted benzoquinoxalinyl, a substituted or unsubstituted quinolyl, a substituted or unsubstituted benzoquinolyl, a substituted or unsubstituted isoquinolyl, a substituted or unsubstituted benzoisoquinolyl, a substituted or unsubstituted triazolyl, a substituted or unsubstituted pyrazolyl, a substituted or unsubstituted naphthyridinyl, a substituted or unsubstituted benzothienopyrimidinyl, a substituted or unsubstituted fluorenyl, a substituted or unsubstituted benzofluorenyl, a substituted or unsubstituted spirobifluorenyl, a substituted or unsubstituted diphenylamino, a substituted or unsubstituted phenylnaphthylamino, a substituted or unsubstituted phenylbiphenylamino, a substituted or unsubstituted naphthylbiphenylamino, a substituted or unsubstituted dibiphenylamino, a substituted or unsubstituted biphenylfluorenylamino, or a substituted or unsubstituted biphenyldibenzofuranylamino.
  8. The plurality of host materials according to claim 1, wherein the compound represented by formula 1 is at least one selected from the following compounds:
    Figure PCTKR2019009166-appb-I000161
    Figure PCTKR2019009166-appb-I000162
    Figure PCTKR2019009166-appb-I000163
    Figure PCTKR2019009166-appb-I000164
    Figure PCTKR2019009166-appb-I000165
    Figure PCTKR2019009166-appb-I000166
    Figure PCTKR2019009166-appb-I000167
    Figure PCTKR2019009166-appb-I000168
    Figure PCTKR2019009166-appb-I000169
    Figure PCTKR2019009166-appb-I000170
    Figure PCTKR2019009166-appb-I000171
    Figure PCTKR2019009166-appb-I000172
    Figure PCTKR2019009166-appb-I000173
    Figure PCTKR2019009166-appb-I000174
    Figure PCTKR2019009166-appb-I000175
    Figure PCTKR2019009166-appb-I000176
    Figure PCTKR2019009166-appb-I000177
    Figure PCTKR2019009166-appb-I000178
    Figure PCTKR2019009166-appb-I000179
    Figure PCTKR2019009166-appb-I000180
    Figure PCTKR2019009166-appb-I000181
    Figure PCTKR2019009166-appb-I000182
    Figure PCTKR2019009166-appb-I000183
    Figure PCTKR2019009166-appb-I000184
    Figure PCTKR2019009166-appb-I000185
    Figure PCTKR2019009166-appb-I000186
    Figure PCTKR2019009166-appb-I000187
    Figure PCTKR2019009166-appb-I000188
    Figure PCTKR2019009166-appb-I000189
    Figure PCTKR2019009166-appb-I000190
    Figure PCTKR2019009166-appb-I000191
  9. The plurality of host materials according to claim 1, wherein the compound represented by formula 2 is at least one selected from the following compounds:
    Figure PCTKR2019009166-appb-I000192
    Figure PCTKR2019009166-appb-I000193
    Figure PCTKR2019009166-appb-I000194
    Figure PCTKR2019009166-appb-I000195
    Figure PCTKR2019009166-appb-I000196
    Figure PCTKR2019009166-appb-I000197
    Figure PCTKR2019009166-appb-I000198
    Figure PCTKR2019009166-appb-I000199
    Figure PCTKR2019009166-appb-I000200
    Figure PCTKR2019009166-appb-I000201
    Figure PCTKR2019009166-appb-I000202
    Figure PCTKR2019009166-appb-I000203
    Figure PCTKR2019009166-appb-I000204
    Figure PCTKR2019009166-appb-I000205
    Figure PCTKR2019009166-appb-I000206
    Figure PCTKR2019009166-appb-I000207
    Figure PCTKR2019009166-appb-I000208
    Figure PCTKR2019009166-appb-I000209
    Figure PCTKR2019009166-appb-I000210
    Figure PCTKR2019009166-appb-I000211
    Figure PCTKR2019009166-appb-I000212
    Figure PCTKR2019009166-appb-I000213
    Figure PCTKR2019009166-appb-I000214
    Figure PCTKR2019009166-appb-I000215
  10. An organic electroluminescent device comprising an anode, a cathode, and at least one light-emitting layer between the anode and the cathode, wherein at least one layer of the light-emitting layers comprises the plurality of host materials according to claim 1.
PCT/KR2019/009166 2018-07-25 2019-07-24 A plurality of host materials and organic electroluminescent device comprising the same WO2020022769A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019003171.6T DE112019003171T5 (en) 2018-07-25 2019-07-24 MULTIPLE HOST MATERIALS AND THIS COMPREHENSIVE ORGANIC ELECTROLUMINESCENT DEVICE
US17/263,137 US20210151693A1 (en) 2018-07-25 2019-07-24 A plurality of host materials and organic electroluminescent device comprising the same
CN201980046897.2A CN112424964A (en) 2018-07-25 2019-07-24 Multiple host materials and organic electroluminescent device comprising the same
JP2021503888A JP2021532586A (en) 2018-07-25 2019-07-24 Multiple host materials and organic electroluminescent devices containing them

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0086830 2018-07-25
KR20180086830 2018-07-25
KR10-2019-0088681 2019-07-23
KR1020190088681A KR20200011884A (en) 2018-07-25 2019-07-23 A plurality of host materials and organic electroluminescent device comprising the same

Publications (1)

Publication Number Publication Date
WO2020022769A1 true WO2020022769A1 (en) 2020-01-30

Family

ID=69180954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/009166 WO2020022769A1 (en) 2018-07-25 2019-07-24 A plurality of host materials and organic electroluminescent device comprising the same

Country Status (1)

Country Link
WO (1) WO2020022769A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269239A (en) * 2020-03-09 2020-06-12 杨曦 Organic compound and application thereof in organic electronic device
CN111574536A (en) * 2020-05-27 2020-08-25 宁波卢米蓝新材料有限公司 Organic electroluminescent compound and preparation method and application thereof
CN112159412A (en) * 2020-10-19 2021-01-01 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
CN112209937A (en) * 2020-10-19 2021-01-12 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
CN113402508A (en) * 2020-03-17 2021-09-17 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device
KR20230142716A (en) 2021-02-04 2023-10-11 이데미쓰 고산 가부시키가이샤 Compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150121337A (en) * 2014-04-18 2015-10-29 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
US20160163998A1 (en) * 2013-01-24 2016-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence
CN105693631A (en) * 2016-03-11 2016-06-22 吉林奥来德光电材料股份有限公司 Aromatic heterocyclic compound, preparation method thereof and organic electroluminescence device
CN105753849A (en) * 2016-02-03 2016-07-13 上海道亦化工科技有限公司 Compound containing quinoxaline and pyridine groups and organic electroluminescent device thereof
WO2018021841A1 (en) * 2016-07-27 2018-02-01 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160163998A1 (en) * 2013-01-24 2016-06-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence
KR20150121337A (en) * 2014-04-18 2015-10-29 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element using the same, and an electronic device thereof
CN105753849A (en) * 2016-02-03 2016-07-13 上海道亦化工科技有限公司 Compound containing quinoxaline and pyridine groups and organic electroluminescent device thereof
CN105693631A (en) * 2016-03-11 2016-06-22 吉林奥来德光电材料股份有限公司 Aromatic heterocyclic compound, preparation method thereof and organic electroluminescence device
WO2018021841A1 (en) * 2016-07-27 2018-02-01 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111269239A (en) * 2020-03-09 2020-06-12 杨曦 Organic compound and application thereof in organic electronic device
CN111269239B (en) * 2020-03-09 2022-04-29 广州追光科技有限公司 Organic compound and application thereof in organic electronic device
CN113402508A (en) * 2020-03-17 2021-09-17 罗门哈斯电子材料韩国有限公司 Organic electroluminescent compounds and organic electroluminescent device comprising the same
CN111574536A (en) * 2020-05-27 2020-08-25 宁波卢米蓝新材料有限公司 Organic electroluminescent compound and preparation method and application thereof
CN111574536B (en) * 2020-05-27 2021-11-30 宁波卢米蓝新材料有限公司 Organic electroluminescent compound and preparation method and application thereof
CN112159412A (en) * 2020-10-19 2021-01-01 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
CN112209937A (en) * 2020-10-19 2021-01-12 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
CN112209937B (en) * 2020-10-19 2022-02-25 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
CN112159412B (en) * 2020-10-19 2022-04-08 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
CN114380836A (en) * 2020-10-19 2022-04-22 宁波卢米蓝新材料有限公司 Organic nitrogen-containing heterocyclic compound and application thereof
KR20230142716A (en) 2021-02-04 2023-10-11 이데미쓰 고산 가부시키가이샤 Compounds, materials for organic electroluminescent devices, organic electroluminescent devices and electronic devices
EP4122934A1 (en) 2021-11-25 2023-01-25 Beijing Summer Sprout Technology Co., Ltd. Organic electroluminescent material and device

Similar Documents

Publication Publication Date Title
WO2019177407A1 (en) Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same
WO2020022769A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
EP3446345A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2019143184A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020218762A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2015099507A1 (en) Novel organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2012036482A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device using the same
EP2817387A1 (en) Novel organic electroluminescent compounds and organic electroluminescent device comprising the same
WO2020085829A1 (en) A plurality of light-emitting materials and organic electroluminescent device comprising the same
EP3685453A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2015093878A1 (en) Organic electroluminescent compound, and multi-component host material and organic electroluminescent device comprising the same
WO2020197240A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020256376A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020091446A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2017183859A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2020171630A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2019190149A1 (en) Composition material for organic electroluminescent device, plurality of host materials, and organic electroluminescent device comprising the same
WO2019066260A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020045981A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2020032574A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
EP3440155A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2019235748A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
WO2018066812A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same
WO2020080693A1 (en) A plurality of host materials and organic electroluminescent device comprising the same
EP3452442A1 (en) Organic electroluminescent compound and organic electroluminescent device comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021503888

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19841357

Country of ref document: EP

Kind code of ref document: A1